xref: /openbmc/linux/mm/migrate.c (revision c3cc99ff5d24e2eeaf7ec2032e720681916990e3)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
34 
35 #include "internal.h"
36 
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 
39 /*
40  * Isolate one page from the LRU lists. If successful put it onto
41  * the indicated list with elevated page count.
42  *
43  * Result:
44  *  -EBUSY: page not on LRU list
45  *  0: page removed from LRU list and added to the specified list.
46  */
47 int isolate_lru_page(struct page *page, struct list_head *pagelist)
48 {
49 	int ret = -EBUSY;
50 
51 	if (PageLRU(page)) {
52 		struct zone *zone = page_zone(page);
53 
54 		spin_lock_irq(&zone->lru_lock);
55 		if (PageLRU(page) && get_page_unless_zero(page)) {
56 			ret = 0;
57 			ClearPageLRU(page);
58 			if (PageActive(page))
59 				del_page_from_active_list(zone, page);
60 			else
61 				del_page_from_inactive_list(zone, page);
62 			list_add_tail(&page->lru, pagelist);
63 		}
64 		spin_unlock_irq(&zone->lru_lock);
65 	}
66 	return ret;
67 }
68 
69 /*
70  * migrate_prep() needs to be called before we start compiling a list of pages
71  * to be migrated using isolate_lru_page().
72  */
73 int migrate_prep(void)
74 {
75 	/*
76 	 * Clear the LRU lists so pages can be isolated.
77 	 * Note that pages may be moved off the LRU after we have
78 	 * drained them. Those pages will fail to migrate like other
79 	 * pages that may be busy.
80 	 */
81 	lru_add_drain_all();
82 
83 	return 0;
84 }
85 
86 static inline void move_to_lru(struct page *page)
87 {
88 	if (PageActive(page)) {
89 		/*
90 		 * lru_cache_add_active checks that
91 		 * the PG_active bit is off.
92 		 */
93 		ClearPageActive(page);
94 		lru_cache_add_active(page);
95 	} else {
96 		lru_cache_add(page);
97 	}
98 	put_page(page);
99 }
100 
101 /*
102  * Add isolated pages on the list back to the LRU.
103  *
104  * returns the number of pages put back.
105  */
106 int putback_lru_pages(struct list_head *l)
107 {
108 	struct page *page;
109 	struct page *page2;
110 	int count = 0;
111 
112 	list_for_each_entry_safe(page, page2, l, lru) {
113 		list_del(&page->lru);
114 		move_to_lru(page);
115 		count++;
116 	}
117 	return count;
118 }
119 
120 /*
121  * Restore a potential migration pte to a working pte entry
122  */
123 static void remove_migration_pte(struct vm_area_struct *vma,
124 		struct page *old, struct page *new)
125 {
126 	struct mm_struct *mm = vma->vm_mm;
127 	swp_entry_t entry;
128  	pgd_t *pgd;
129  	pud_t *pud;
130  	pmd_t *pmd;
131 	pte_t *ptep, pte;
132  	spinlock_t *ptl;
133 	unsigned long addr = page_address_in_vma(new, vma);
134 
135 	if (addr == -EFAULT)
136 		return;
137 
138  	pgd = pgd_offset(mm, addr);
139 	if (!pgd_present(*pgd))
140                 return;
141 
142 	pud = pud_offset(pgd, addr);
143 	if (!pud_present(*pud))
144                 return;
145 
146 	pmd = pmd_offset(pud, addr);
147 	if (!pmd_present(*pmd))
148 		return;
149 
150 	ptep = pte_offset_map(pmd, addr);
151 
152 	if (!is_swap_pte(*ptep)) {
153 		pte_unmap(ptep);
154  		return;
155  	}
156 
157  	ptl = pte_lockptr(mm, pmd);
158  	spin_lock(ptl);
159 	pte = *ptep;
160 	if (!is_swap_pte(pte))
161 		goto out;
162 
163 	entry = pte_to_swp_entry(pte);
164 
165 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
166 		goto out;
167 
168 	/*
169 	 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
170 	 * Failure is not an option here: we're now expected to remove every
171 	 * migration pte, and will cause crashes otherwise.  Normally this
172 	 * is not an issue: mem_cgroup_prepare_migration bumped up the old
173 	 * page_cgroup count for safety, that's now attached to the new page,
174 	 * so this charge should just be another incrementation of the count,
175 	 * to keep in balance with rmap.c's mem_cgroup_uncharging.  But if
176 	 * there's been a force_empty, those reference counts may no longer
177 	 * be reliable, and this charge can actually fail: oh well, we don't
178 	 * make the situation any worse by proceeding as if it had succeeded.
179 	 */
180 	mem_cgroup_charge(new, mm, GFP_ATOMIC);
181 
182 	get_page(new);
183 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
184 	if (is_write_migration_entry(entry))
185 		pte = pte_mkwrite(pte);
186 	flush_cache_page(vma, addr, pte_pfn(pte));
187 	set_pte_at(mm, addr, ptep, pte);
188 
189 	if (PageAnon(new))
190 		page_add_anon_rmap(new, vma, addr);
191 	else
192 		page_add_file_rmap(new);
193 
194 	/* No need to invalidate - it was non-present before */
195 	update_mmu_cache(vma, addr, pte);
196 
197 out:
198 	pte_unmap_unlock(ptep, ptl);
199 }
200 
201 /*
202  * Note that remove_file_migration_ptes will only work on regular mappings,
203  * Nonlinear mappings do not use migration entries.
204  */
205 static void remove_file_migration_ptes(struct page *old, struct page *new)
206 {
207 	struct vm_area_struct *vma;
208 	struct address_space *mapping = page_mapping(new);
209 	struct prio_tree_iter iter;
210 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
211 
212 	if (!mapping)
213 		return;
214 
215 	spin_lock(&mapping->i_mmap_lock);
216 
217 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
218 		remove_migration_pte(vma, old, new);
219 
220 	spin_unlock(&mapping->i_mmap_lock);
221 }
222 
223 /*
224  * Must hold mmap_sem lock on at least one of the vmas containing
225  * the page so that the anon_vma cannot vanish.
226  */
227 static void remove_anon_migration_ptes(struct page *old, struct page *new)
228 {
229 	struct anon_vma *anon_vma;
230 	struct vm_area_struct *vma;
231 	unsigned long mapping;
232 
233 	mapping = (unsigned long)new->mapping;
234 
235 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
236 		return;
237 
238 	/*
239 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
240 	 */
241 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
242 	spin_lock(&anon_vma->lock);
243 
244 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
245 		remove_migration_pte(vma, old, new);
246 
247 	spin_unlock(&anon_vma->lock);
248 }
249 
250 /*
251  * Get rid of all migration entries and replace them by
252  * references to the indicated page.
253  */
254 static void remove_migration_ptes(struct page *old, struct page *new)
255 {
256 	if (PageAnon(new))
257 		remove_anon_migration_ptes(old, new);
258 	else
259 		remove_file_migration_ptes(old, new);
260 }
261 
262 /*
263  * Something used the pte of a page under migration. We need to
264  * get to the page and wait until migration is finished.
265  * When we return from this function the fault will be retried.
266  *
267  * This function is called from do_swap_page().
268  */
269 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
270 				unsigned long address)
271 {
272 	pte_t *ptep, pte;
273 	spinlock_t *ptl;
274 	swp_entry_t entry;
275 	struct page *page;
276 
277 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
278 	pte = *ptep;
279 	if (!is_swap_pte(pte))
280 		goto out;
281 
282 	entry = pte_to_swp_entry(pte);
283 	if (!is_migration_entry(entry))
284 		goto out;
285 
286 	page = migration_entry_to_page(entry);
287 
288 	get_page(page);
289 	pte_unmap_unlock(ptep, ptl);
290 	wait_on_page_locked(page);
291 	put_page(page);
292 	return;
293 out:
294 	pte_unmap_unlock(ptep, ptl);
295 }
296 
297 /*
298  * Replace the page in the mapping.
299  *
300  * The number of remaining references must be:
301  * 1 for anonymous pages without a mapping
302  * 2 for pages with a mapping
303  * 3 for pages with a mapping and PagePrivate set.
304  */
305 static int migrate_page_move_mapping(struct address_space *mapping,
306 		struct page *newpage, struct page *page)
307 {
308 	void **pslot;
309 
310 	if (!mapping) {
311 		/* Anonymous page without mapping */
312 		if (page_count(page) != 1)
313 			return -EAGAIN;
314 		return 0;
315 	}
316 
317 	write_lock_irq(&mapping->tree_lock);
318 
319 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
320  					page_index(page));
321 
322 	if (page_count(page) != 2 + !!PagePrivate(page) ||
323 			(struct page *)radix_tree_deref_slot(pslot) != page) {
324 		write_unlock_irq(&mapping->tree_lock);
325 		return -EAGAIN;
326 	}
327 
328 	/*
329 	 * Now we know that no one else is looking at the page.
330 	 */
331 	get_page(newpage);	/* add cache reference */
332 #ifdef CONFIG_SWAP
333 	if (PageSwapCache(page)) {
334 		SetPageSwapCache(newpage);
335 		set_page_private(newpage, page_private(page));
336 	}
337 #endif
338 
339 	radix_tree_replace_slot(pslot, newpage);
340 
341 	/*
342 	 * Drop cache reference from old page.
343 	 * We know this isn't the last reference.
344 	 */
345 	__put_page(page);
346 
347 	/*
348 	 * If moved to a different zone then also account
349 	 * the page for that zone. Other VM counters will be
350 	 * taken care of when we establish references to the
351 	 * new page and drop references to the old page.
352 	 *
353 	 * Note that anonymous pages are accounted for
354 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
355 	 * are mapped to swap space.
356 	 */
357 	__dec_zone_page_state(page, NR_FILE_PAGES);
358 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
359 
360 	write_unlock_irq(&mapping->tree_lock);
361 	if (!PageSwapCache(newpage)) {
362 		mem_cgroup_uncharge_cache_page(page);
363 	}
364 
365 	return 0;
366 }
367 
368 /*
369  * Copy the page to its new location
370  */
371 static void migrate_page_copy(struct page *newpage, struct page *page)
372 {
373 	copy_highpage(newpage, page);
374 
375 	if (PageError(page))
376 		SetPageError(newpage);
377 	if (PageReferenced(page))
378 		SetPageReferenced(newpage);
379 	if (PageUptodate(page))
380 		SetPageUptodate(newpage);
381 	if (PageActive(page))
382 		SetPageActive(newpage);
383 	if (PageChecked(page))
384 		SetPageChecked(newpage);
385 	if (PageMappedToDisk(page))
386 		SetPageMappedToDisk(newpage);
387 
388 	if (PageDirty(page)) {
389 		clear_page_dirty_for_io(page);
390 		/*
391 		 * Want to mark the page and the radix tree as dirty, and
392 		 * redo the accounting that clear_page_dirty_for_io undid,
393 		 * but we can't use set_page_dirty because that function
394 		 * is actually a signal that all of the page has become dirty.
395 		 * Wheras only part of our page may be dirty.
396 		 */
397 		__set_page_dirty_nobuffers(newpage);
398  	}
399 
400 #ifdef CONFIG_SWAP
401 	ClearPageSwapCache(page);
402 #endif
403 	ClearPageActive(page);
404 	ClearPagePrivate(page);
405 	set_page_private(page, 0);
406 	page->mapping = NULL;
407 
408 	/*
409 	 * If any waiters have accumulated on the new page then
410 	 * wake them up.
411 	 */
412 	if (PageWriteback(newpage))
413 		end_page_writeback(newpage);
414 }
415 
416 /************************************************************
417  *                    Migration functions
418  ***********************************************************/
419 
420 /* Always fail migration. Used for mappings that are not movable */
421 int fail_migrate_page(struct address_space *mapping,
422 			struct page *newpage, struct page *page)
423 {
424 	return -EIO;
425 }
426 EXPORT_SYMBOL(fail_migrate_page);
427 
428 /*
429  * Common logic to directly migrate a single page suitable for
430  * pages that do not use PagePrivate.
431  *
432  * Pages are locked upon entry and exit.
433  */
434 int migrate_page(struct address_space *mapping,
435 		struct page *newpage, struct page *page)
436 {
437 	int rc;
438 
439 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
440 
441 	rc = migrate_page_move_mapping(mapping, newpage, page);
442 
443 	if (rc)
444 		return rc;
445 
446 	migrate_page_copy(newpage, page);
447 	return 0;
448 }
449 EXPORT_SYMBOL(migrate_page);
450 
451 #ifdef CONFIG_BLOCK
452 /*
453  * Migration function for pages with buffers. This function can only be used
454  * if the underlying filesystem guarantees that no other references to "page"
455  * exist.
456  */
457 int buffer_migrate_page(struct address_space *mapping,
458 		struct page *newpage, struct page *page)
459 {
460 	struct buffer_head *bh, *head;
461 	int rc;
462 
463 	if (!page_has_buffers(page))
464 		return migrate_page(mapping, newpage, page);
465 
466 	head = page_buffers(page);
467 
468 	rc = migrate_page_move_mapping(mapping, newpage, page);
469 
470 	if (rc)
471 		return rc;
472 
473 	bh = head;
474 	do {
475 		get_bh(bh);
476 		lock_buffer(bh);
477 		bh = bh->b_this_page;
478 
479 	} while (bh != head);
480 
481 	ClearPagePrivate(page);
482 	set_page_private(newpage, page_private(page));
483 	set_page_private(page, 0);
484 	put_page(page);
485 	get_page(newpage);
486 
487 	bh = head;
488 	do {
489 		set_bh_page(bh, newpage, bh_offset(bh));
490 		bh = bh->b_this_page;
491 
492 	} while (bh != head);
493 
494 	SetPagePrivate(newpage);
495 
496 	migrate_page_copy(newpage, page);
497 
498 	bh = head;
499 	do {
500 		unlock_buffer(bh);
501  		put_bh(bh);
502 		bh = bh->b_this_page;
503 
504 	} while (bh != head);
505 
506 	return 0;
507 }
508 EXPORT_SYMBOL(buffer_migrate_page);
509 #endif
510 
511 /*
512  * Writeback a page to clean the dirty state
513  */
514 static int writeout(struct address_space *mapping, struct page *page)
515 {
516 	struct writeback_control wbc = {
517 		.sync_mode = WB_SYNC_NONE,
518 		.nr_to_write = 1,
519 		.range_start = 0,
520 		.range_end = LLONG_MAX,
521 		.nonblocking = 1,
522 		.for_reclaim = 1
523 	};
524 	int rc;
525 
526 	if (!mapping->a_ops->writepage)
527 		/* No write method for the address space */
528 		return -EINVAL;
529 
530 	if (!clear_page_dirty_for_io(page))
531 		/* Someone else already triggered a write */
532 		return -EAGAIN;
533 
534 	/*
535 	 * A dirty page may imply that the underlying filesystem has
536 	 * the page on some queue. So the page must be clean for
537 	 * migration. Writeout may mean we loose the lock and the
538 	 * page state is no longer what we checked for earlier.
539 	 * At this point we know that the migration attempt cannot
540 	 * be successful.
541 	 */
542 	remove_migration_ptes(page, page);
543 
544 	rc = mapping->a_ops->writepage(page, &wbc);
545 	if (rc < 0)
546 		/* I/O Error writing */
547 		return -EIO;
548 
549 	if (rc != AOP_WRITEPAGE_ACTIVATE)
550 		/* unlocked. Relock */
551 		lock_page(page);
552 
553 	return -EAGAIN;
554 }
555 
556 /*
557  * Default handling if a filesystem does not provide a migration function.
558  */
559 static int fallback_migrate_page(struct address_space *mapping,
560 	struct page *newpage, struct page *page)
561 {
562 	if (PageDirty(page))
563 		return writeout(mapping, page);
564 
565 	/*
566 	 * Buffers may be managed in a filesystem specific way.
567 	 * We must have no buffers or drop them.
568 	 */
569 	if (PagePrivate(page) &&
570 	    !try_to_release_page(page, GFP_KERNEL))
571 		return -EAGAIN;
572 
573 	return migrate_page(mapping, newpage, page);
574 }
575 
576 /*
577  * Move a page to a newly allocated page
578  * The page is locked and all ptes have been successfully removed.
579  *
580  * The new page will have replaced the old page if this function
581  * is successful.
582  */
583 static int move_to_new_page(struct page *newpage, struct page *page)
584 {
585 	struct address_space *mapping;
586 	int rc;
587 
588 	/*
589 	 * Block others from accessing the page when we get around to
590 	 * establishing additional references. We are the only one
591 	 * holding a reference to the new page at this point.
592 	 */
593 	if (TestSetPageLocked(newpage))
594 		BUG();
595 
596 	/* Prepare mapping for the new page.*/
597 	newpage->index = page->index;
598 	newpage->mapping = page->mapping;
599 
600 	mapping = page_mapping(page);
601 	if (!mapping)
602 		rc = migrate_page(mapping, newpage, page);
603 	else if (mapping->a_ops->migratepage)
604 		/*
605 		 * Most pages have a mapping and most filesystems
606 		 * should provide a migration function. Anonymous
607 		 * pages are part of swap space which also has its
608 		 * own migration function. This is the most common
609 		 * path for page migration.
610 		 */
611 		rc = mapping->a_ops->migratepage(mapping,
612 						newpage, page);
613 	else
614 		rc = fallback_migrate_page(mapping, newpage, page);
615 
616 	if (!rc) {
617 		remove_migration_ptes(page, newpage);
618 	} else
619 		newpage->mapping = NULL;
620 
621 	unlock_page(newpage);
622 
623 	return rc;
624 }
625 
626 /*
627  * Obtain the lock on page, remove all ptes and migrate the page
628  * to the newly allocated page in newpage.
629  */
630 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
631 			struct page *page, int force)
632 {
633 	int rc = 0;
634 	int *result = NULL;
635 	struct page *newpage = get_new_page(page, private, &result);
636 	int rcu_locked = 0;
637 	int charge = 0;
638 
639 	if (!newpage)
640 		return -ENOMEM;
641 
642 	if (page_count(page) == 1)
643 		/* page was freed from under us. So we are done. */
644 		goto move_newpage;
645 
646 	charge = mem_cgroup_prepare_migration(page, newpage);
647 	if (charge == -ENOMEM) {
648 		rc = -ENOMEM;
649 		goto move_newpage;
650 	}
651 	/* prepare cgroup just returns 0 or -ENOMEM */
652 	BUG_ON(charge);
653 
654 	rc = -EAGAIN;
655 	if (TestSetPageLocked(page)) {
656 		if (!force)
657 			goto move_newpage;
658 		lock_page(page);
659 	}
660 
661 	if (PageWriteback(page)) {
662 		if (!force)
663 			goto unlock;
664 		wait_on_page_writeback(page);
665 	}
666 	/*
667 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
668 	 * we cannot notice that anon_vma is freed while we migrates a page.
669 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
670 	 * of migration. File cache pages are no problem because of page_lock()
671 	 * File Caches may use write_page() or lock_page() in migration, then,
672 	 * just care Anon page here.
673 	 */
674 	if (PageAnon(page)) {
675 		rcu_read_lock();
676 		rcu_locked = 1;
677 	}
678 
679 	/*
680 	 * Corner case handling:
681 	 * 1. When a new swap-cache page is read into, it is added to the LRU
682 	 * and treated as swapcache but it has no rmap yet.
683 	 * Calling try_to_unmap() against a page->mapping==NULL page will
684 	 * trigger a BUG.  So handle it here.
685 	 * 2. An orphaned page (see truncate_complete_page) might have
686 	 * fs-private metadata. The page can be picked up due to memory
687 	 * offlining.  Everywhere else except page reclaim, the page is
688 	 * invisible to the vm, so the page can not be migrated.  So try to
689 	 * free the metadata, so the page can be freed.
690 	 */
691 	if (!page->mapping) {
692 		if (!PageAnon(page) && PagePrivate(page)) {
693 			/*
694 			 * Go direct to try_to_free_buffers() here because
695 			 * a) that's what try_to_release_page() would do anyway
696 			 * b) we may be under rcu_read_lock() here, so we can't
697 			 *    use GFP_KERNEL which is what try_to_release_page()
698 			 *    needs to be effective.
699 			 */
700 			try_to_free_buffers(page);
701 		}
702 		goto rcu_unlock;
703 	}
704 
705 	/* Establish migration ptes or remove ptes */
706 	try_to_unmap(page, 1);
707 
708 	if (!page_mapped(page))
709 		rc = move_to_new_page(newpage, page);
710 
711 	if (rc)
712 		remove_migration_ptes(page, page);
713 rcu_unlock:
714 	if (rcu_locked)
715 		rcu_read_unlock();
716 
717 unlock:
718 
719 	unlock_page(page);
720 
721 	if (rc != -EAGAIN) {
722  		/*
723  		 * A page that has been migrated has all references
724  		 * removed and will be freed. A page that has not been
725  		 * migrated will have kepts its references and be
726  		 * restored.
727  		 */
728  		list_del(&page->lru);
729  		move_to_lru(page);
730 	}
731 
732 move_newpage:
733 	if (!charge)
734 		mem_cgroup_end_migration(newpage);
735 	/*
736 	 * Move the new page to the LRU. If migration was not successful
737 	 * then this will free the page.
738 	 */
739 	move_to_lru(newpage);
740 	if (result) {
741 		if (rc)
742 			*result = rc;
743 		else
744 			*result = page_to_nid(newpage);
745 	}
746 	return rc;
747 }
748 
749 /*
750  * migrate_pages
751  *
752  * The function takes one list of pages to migrate and a function
753  * that determines from the page to be migrated and the private data
754  * the target of the move and allocates the page.
755  *
756  * The function returns after 10 attempts or if no pages
757  * are movable anymore because to has become empty
758  * or no retryable pages exist anymore. All pages will be
759  * returned to the LRU or freed.
760  *
761  * Return: Number of pages not migrated or error code.
762  */
763 int migrate_pages(struct list_head *from,
764 		new_page_t get_new_page, unsigned long private)
765 {
766 	int retry = 1;
767 	int nr_failed = 0;
768 	int pass = 0;
769 	struct page *page;
770 	struct page *page2;
771 	int swapwrite = current->flags & PF_SWAPWRITE;
772 	int rc;
773 
774 	if (!swapwrite)
775 		current->flags |= PF_SWAPWRITE;
776 
777 	for(pass = 0; pass < 10 && retry; pass++) {
778 		retry = 0;
779 
780 		list_for_each_entry_safe(page, page2, from, lru) {
781 			cond_resched();
782 
783 			rc = unmap_and_move(get_new_page, private,
784 						page, pass > 2);
785 
786 			switch(rc) {
787 			case -ENOMEM:
788 				goto out;
789 			case -EAGAIN:
790 				retry++;
791 				break;
792 			case 0:
793 				break;
794 			default:
795 				/* Permanent failure */
796 				nr_failed++;
797 				break;
798 			}
799 		}
800 	}
801 	rc = 0;
802 out:
803 	if (!swapwrite)
804 		current->flags &= ~PF_SWAPWRITE;
805 
806 	putback_lru_pages(from);
807 
808 	if (rc)
809 		return rc;
810 
811 	return nr_failed + retry;
812 }
813 
814 #ifdef CONFIG_NUMA
815 /*
816  * Move a list of individual pages
817  */
818 struct page_to_node {
819 	unsigned long addr;
820 	struct page *page;
821 	int node;
822 	int status;
823 };
824 
825 static struct page *new_page_node(struct page *p, unsigned long private,
826 		int **result)
827 {
828 	struct page_to_node *pm = (struct page_to_node *)private;
829 
830 	while (pm->node != MAX_NUMNODES && pm->page != p)
831 		pm++;
832 
833 	if (pm->node == MAX_NUMNODES)
834 		return NULL;
835 
836 	*result = &pm->status;
837 
838 	return alloc_pages_node(pm->node,
839 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
840 }
841 
842 /*
843  * Move a set of pages as indicated in the pm array. The addr
844  * field must be set to the virtual address of the page to be moved
845  * and the node number must contain a valid target node.
846  */
847 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
848 				int migrate_all)
849 {
850 	int err;
851 	struct page_to_node *pp;
852 	LIST_HEAD(pagelist);
853 
854 	down_read(&mm->mmap_sem);
855 
856 	/*
857 	 * Build a list of pages to migrate
858 	 */
859 	migrate_prep();
860 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
861 		struct vm_area_struct *vma;
862 		struct page *page;
863 
864 		/*
865 		 * A valid page pointer that will not match any of the
866 		 * pages that will be moved.
867 		 */
868 		pp->page = ZERO_PAGE(0);
869 
870 		err = -EFAULT;
871 		vma = find_vma(mm, pp->addr);
872 		if (!vma || !vma_migratable(vma))
873 			goto set_status;
874 
875 		page = follow_page(vma, pp->addr, FOLL_GET);
876 
877 		err = PTR_ERR(page);
878 		if (IS_ERR(page))
879 			goto set_status;
880 
881 		err = -ENOENT;
882 		if (!page)
883 			goto set_status;
884 
885 		if (PageReserved(page))		/* Check for zero page */
886 			goto put_and_set;
887 
888 		pp->page = page;
889 		err = page_to_nid(page);
890 
891 		if (err == pp->node)
892 			/*
893 			 * Node already in the right place
894 			 */
895 			goto put_and_set;
896 
897 		err = -EACCES;
898 		if (page_mapcount(page) > 1 &&
899 				!migrate_all)
900 			goto put_and_set;
901 
902 		err = isolate_lru_page(page, &pagelist);
903 put_and_set:
904 		/*
905 		 * Either remove the duplicate refcount from
906 		 * isolate_lru_page() or drop the page ref if it was
907 		 * not isolated.
908 		 */
909 		put_page(page);
910 set_status:
911 		pp->status = err;
912 	}
913 
914 	if (!list_empty(&pagelist))
915 		err = migrate_pages(&pagelist, new_page_node,
916 				(unsigned long)pm);
917 	else
918 		err = -ENOENT;
919 
920 	up_read(&mm->mmap_sem);
921 	return err;
922 }
923 
924 /*
925  * Determine the nodes of a list of pages. The addr in the pm array
926  * must have been set to the virtual address of which we want to determine
927  * the node number.
928  */
929 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
930 {
931 	down_read(&mm->mmap_sem);
932 
933 	for ( ; pm->node != MAX_NUMNODES; pm++) {
934 		struct vm_area_struct *vma;
935 		struct page *page;
936 		int err;
937 
938 		err = -EFAULT;
939 		vma = find_vma(mm, pm->addr);
940 		if (!vma)
941 			goto set_status;
942 
943 		page = follow_page(vma, pm->addr, 0);
944 
945 		err = PTR_ERR(page);
946 		if (IS_ERR(page))
947 			goto set_status;
948 
949 		err = -ENOENT;
950 		/* Use PageReserved to check for zero page */
951 		if (!page || PageReserved(page))
952 			goto set_status;
953 
954 		err = page_to_nid(page);
955 set_status:
956 		pm->status = err;
957 	}
958 
959 	up_read(&mm->mmap_sem);
960 	return 0;
961 }
962 
963 /*
964  * Move a list of pages in the address space of the currently executing
965  * process.
966  */
967 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
968 			const void __user * __user *pages,
969 			const int __user *nodes,
970 			int __user *status, int flags)
971 {
972 	int err = 0;
973 	int i;
974 	struct task_struct *task;
975 	nodemask_t task_nodes;
976 	struct mm_struct *mm;
977 	struct page_to_node *pm = NULL;
978 
979 	/* Check flags */
980 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
981 		return -EINVAL;
982 
983 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
984 		return -EPERM;
985 
986 	/* Find the mm_struct */
987 	read_lock(&tasklist_lock);
988 	task = pid ? find_task_by_vpid(pid) : current;
989 	if (!task) {
990 		read_unlock(&tasklist_lock);
991 		return -ESRCH;
992 	}
993 	mm = get_task_mm(task);
994 	read_unlock(&tasklist_lock);
995 
996 	if (!mm)
997 		return -EINVAL;
998 
999 	/*
1000 	 * Check if this process has the right to modify the specified
1001 	 * process. The right exists if the process has administrative
1002 	 * capabilities, superuser privileges or the same
1003 	 * userid as the target process.
1004 	 */
1005 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
1006 	    (current->uid != task->suid) && (current->uid != task->uid) &&
1007 	    !capable(CAP_SYS_NICE)) {
1008 		err = -EPERM;
1009 		goto out2;
1010 	}
1011 
1012  	err = security_task_movememory(task);
1013  	if (err)
1014  		goto out2;
1015 
1016 
1017 	task_nodes = cpuset_mems_allowed(task);
1018 
1019 	/* Limit nr_pages so that the multiplication may not overflow */
1020 	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1021 		err = -E2BIG;
1022 		goto out2;
1023 	}
1024 
1025 	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1026 	if (!pm) {
1027 		err = -ENOMEM;
1028 		goto out2;
1029 	}
1030 
1031 	/*
1032 	 * Get parameters from user space and initialize the pm
1033 	 * array. Return various errors if the user did something wrong.
1034 	 */
1035 	for (i = 0; i < nr_pages; i++) {
1036 		const void __user *p;
1037 
1038 		err = -EFAULT;
1039 		if (get_user(p, pages + i))
1040 			goto out;
1041 
1042 		pm[i].addr = (unsigned long)p;
1043 		if (nodes) {
1044 			int node;
1045 
1046 			if (get_user(node, nodes + i))
1047 				goto out;
1048 
1049 			err = -ENODEV;
1050 			if (!node_state(node, N_HIGH_MEMORY))
1051 				goto out;
1052 
1053 			err = -EACCES;
1054 			if (!node_isset(node, task_nodes))
1055 				goto out;
1056 
1057 			pm[i].node = node;
1058 		} else
1059 			pm[i].node = 0;	/* anything to not match MAX_NUMNODES */
1060 	}
1061 	/* End marker */
1062 	pm[nr_pages].node = MAX_NUMNODES;
1063 
1064 	if (nodes)
1065 		err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1066 	else
1067 		err = do_pages_stat(mm, pm);
1068 
1069 	if (err >= 0)
1070 		/* Return status information */
1071 		for (i = 0; i < nr_pages; i++)
1072 			if (put_user(pm[i].status, status + i))
1073 				err = -EFAULT;
1074 
1075 out:
1076 	vfree(pm);
1077 out2:
1078 	mmput(mm);
1079 	return err;
1080 }
1081 
1082 /*
1083  * Call migration functions in the vma_ops that may prepare
1084  * memory in a vm for migration. migration functions may perform
1085  * the migration for vmas that do not have an underlying page struct.
1086  */
1087 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1088 	const nodemask_t *from, unsigned long flags)
1089 {
1090  	struct vm_area_struct *vma;
1091  	int err = 0;
1092 
1093  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1094  		if (vma->vm_ops && vma->vm_ops->migrate) {
1095  			err = vma->vm_ops->migrate(vma, to, from, flags);
1096  			if (err)
1097  				break;
1098  		}
1099  	}
1100  	return err;
1101 }
1102 #endif
1103