1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct address_space *mapping; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mapping = page_mapping(page); 101 VM_BUG_ON_PAGE(!mapping, page); 102 103 if (!mapping->a_ops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 __SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 struct address_space *mapping; 124 125 mapping = page_mapping(page); 126 mapping->a_ops->putback_page(page); 127 __ClearPageIsolated(page); 128 } 129 130 /* 131 * Put previously isolated pages back onto the appropriate lists 132 * from where they were once taken off for compaction/migration. 133 * 134 * This function shall be used whenever the isolated pageset has been 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 136 * and isolate_huge_page(). 137 */ 138 void putback_movable_pages(struct list_head *l) 139 { 140 struct page *page; 141 struct page *page2; 142 143 list_for_each_entry_safe(page, page2, l, lru) { 144 if (unlikely(PageHuge(page))) { 145 putback_active_hugepage(page); 146 continue; 147 } 148 list_del(&page->lru); 149 /* 150 * We isolated non-lru movable page so here we can use 151 * __PageMovable because LRU page's mapping cannot have 152 * PAGE_MAPPING_MOVABLE. 153 */ 154 if (unlikely(__PageMovable(page))) { 155 VM_BUG_ON_PAGE(!PageIsolated(page), page); 156 lock_page(page); 157 if (PageMovable(page)) 158 putback_movable_page(page); 159 else 160 __ClearPageIsolated(page); 161 unlock_page(page); 162 put_page(page); 163 } else { 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 165 page_is_file_lru(page), -thp_nr_pages(page)); 166 putback_lru_page(page); 167 } 168 } 169 } 170 171 /* 172 * Restore a potential migration pte to a working pte entry 173 */ 174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 175 unsigned long addr, void *old) 176 { 177 struct page_vma_mapped_walk pvmw = { 178 .page = old, 179 .vma = vma, 180 .address = addr, 181 .flags = PVMW_SYNC | PVMW_MIGRATION, 182 }; 183 struct page *new; 184 pte_t pte; 185 swp_entry_t entry; 186 187 VM_BUG_ON_PAGE(PageTail(page), page); 188 while (page_vma_mapped_walk(&pvmw)) { 189 if (PageKsm(page)) 190 new = page; 191 else 192 new = page - pvmw.page->index + 193 linear_page_index(vma, pvmw.address); 194 195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 196 /* PMD-mapped THP migration entry */ 197 if (!pvmw.pte) { 198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 199 remove_migration_pmd(&pvmw, new); 200 continue; 201 } 202 #endif 203 204 get_page(new); 205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 206 if (pte_swp_soft_dirty(*pvmw.pte)) 207 pte = pte_mksoft_dirty(pte); 208 209 /* 210 * Recheck VMA as permissions can change since migration started 211 */ 212 entry = pte_to_swp_entry(*pvmw.pte); 213 if (is_write_migration_entry(entry)) 214 pte = maybe_mkwrite(pte, vma); 215 else if (pte_swp_uffd_wp(*pvmw.pte)) 216 pte = pte_mkuffd_wp(pte); 217 218 if (unlikely(is_device_private_page(new))) { 219 entry = make_device_private_entry(new, pte_write(pte)); 220 pte = swp_entry_to_pte(entry); 221 if (pte_swp_soft_dirty(*pvmw.pte)) 222 pte = pte_swp_mksoft_dirty(pte); 223 if (pte_swp_uffd_wp(*pvmw.pte)) 224 pte = pte_swp_mkuffd_wp(pte); 225 } 226 227 #ifdef CONFIG_HUGETLB_PAGE 228 if (PageHuge(new)) { 229 pte = pte_mkhuge(pte); 230 pte = arch_make_huge_pte(pte, vma, new, 0); 231 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 232 if (PageAnon(new)) 233 hugepage_add_anon_rmap(new, vma, pvmw.address); 234 else 235 page_dup_rmap(new, true); 236 } else 237 #endif 238 { 239 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 240 241 if (PageAnon(new)) 242 page_add_anon_rmap(new, vma, pvmw.address, false); 243 else 244 page_add_file_rmap(new, false); 245 } 246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 247 mlock_vma_page(new); 248 249 if (PageTransHuge(page) && PageMlocked(page)) 250 clear_page_mlock(page); 251 252 /* No need to invalidate - it was non-present before */ 253 update_mmu_cache(vma, pvmw.address, pvmw.pte); 254 } 255 256 return true; 257 } 258 259 /* 260 * Get rid of all migration entries and replace them by 261 * references to the indicated page. 262 */ 263 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 264 { 265 struct rmap_walk_control rwc = { 266 .rmap_one = remove_migration_pte, 267 .arg = old, 268 }; 269 270 if (locked) 271 rmap_walk_locked(new, &rwc); 272 else 273 rmap_walk(new, &rwc); 274 } 275 276 /* 277 * Something used the pte of a page under migration. We need to 278 * get to the page and wait until migration is finished. 279 * When we return from this function the fault will be retried. 280 */ 281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 282 spinlock_t *ptl) 283 { 284 pte_t pte; 285 swp_entry_t entry; 286 struct page *page; 287 288 spin_lock(ptl); 289 pte = *ptep; 290 if (!is_swap_pte(pte)) 291 goto out; 292 293 entry = pte_to_swp_entry(pte); 294 if (!is_migration_entry(entry)) 295 goto out; 296 297 page = migration_entry_to_page(entry); 298 page = compound_head(page); 299 300 /* 301 * Once page cache replacement of page migration started, page_count 302 * is zero; but we must not call put_and_wait_on_page_locked() without 303 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 304 */ 305 if (!get_page_unless_zero(page)) 306 goto out; 307 pte_unmap_unlock(ptep, ptl); 308 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 309 return; 310 out: 311 pte_unmap_unlock(ptep, ptl); 312 } 313 314 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 315 unsigned long address) 316 { 317 spinlock_t *ptl = pte_lockptr(mm, pmd); 318 pte_t *ptep = pte_offset_map(pmd, address); 319 __migration_entry_wait(mm, ptep, ptl); 320 } 321 322 void migration_entry_wait_huge(struct vm_area_struct *vma, 323 struct mm_struct *mm, pte_t *pte) 324 { 325 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 326 __migration_entry_wait(mm, pte, ptl); 327 } 328 329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 330 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 331 { 332 spinlock_t *ptl; 333 struct page *page; 334 335 ptl = pmd_lock(mm, pmd); 336 if (!is_pmd_migration_entry(*pmd)) 337 goto unlock; 338 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 339 if (!get_page_unless_zero(page)) 340 goto unlock; 341 spin_unlock(ptl); 342 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 343 return; 344 unlock: 345 spin_unlock(ptl); 346 } 347 #endif 348 349 static int expected_page_refs(struct address_space *mapping, struct page *page) 350 { 351 int expected_count = 1; 352 353 /* 354 * Device private pages have an extra refcount as they are 355 * ZONE_DEVICE pages. 356 */ 357 expected_count += is_device_private_page(page); 358 if (mapping) 359 expected_count += thp_nr_pages(page) + page_has_private(page); 360 361 return expected_count; 362 } 363 364 /* 365 * Replace the page in the mapping. 366 * 367 * The number of remaining references must be: 368 * 1 for anonymous pages without a mapping 369 * 2 for pages with a mapping 370 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 371 */ 372 int migrate_page_move_mapping(struct address_space *mapping, 373 struct page *newpage, struct page *page, int extra_count) 374 { 375 XA_STATE(xas, &mapping->i_pages, page_index(page)); 376 struct zone *oldzone, *newzone; 377 int dirty; 378 int expected_count = expected_page_refs(mapping, page) + extra_count; 379 int nr = thp_nr_pages(page); 380 381 if (!mapping) { 382 /* Anonymous page without mapping */ 383 if (page_count(page) != expected_count) 384 return -EAGAIN; 385 386 /* No turning back from here */ 387 newpage->index = page->index; 388 newpage->mapping = page->mapping; 389 if (PageSwapBacked(page)) 390 __SetPageSwapBacked(newpage); 391 392 return MIGRATEPAGE_SUCCESS; 393 } 394 395 oldzone = page_zone(page); 396 newzone = page_zone(newpage); 397 398 xas_lock_irq(&xas); 399 if (page_count(page) != expected_count || xas_load(&xas) != page) { 400 xas_unlock_irq(&xas); 401 return -EAGAIN; 402 } 403 404 if (!page_ref_freeze(page, expected_count)) { 405 xas_unlock_irq(&xas); 406 return -EAGAIN; 407 } 408 409 /* 410 * Now we know that no one else is looking at the page: 411 * no turning back from here. 412 */ 413 newpage->index = page->index; 414 newpage->mapping = page->mapping; 415 page_ref_add(newpage, nr); /* add cache reference */ 416 if (PageSwapBacked(page)) { 417 __SetPageSwapBacked(newpage); 418 if (PageSwapCache(page)) { 419 SetPageSwapCache(newpage); 420 set_page_private(newpage, page_private(page)); 421 } 422 } else { 423 VM_BUG_ON_PAGE(PageSwapCache(page), page); 424 } 425 426 /* Move dirty while page refs frozen and newpage not yet exposed */ 427 dirty = PageDirty(page); 428 if (dirty) { 429 ClearPageDirty(page); 430 SetPageDirty(newpage); 431 } 432 433 xas_store(&xas, newpage); 434 if (PageTransHuge(page)) { 435 int i; 436 437 for (i = 1; i < nr; i++) { 438 xas_next(&xas); 439 xas_store(&xas, newpage); 440 } 441 } 442 443 /* 444 * Drop cache reference from old page by unfreezing 445 * to one less reference. 446 * We know this isn't the last reference. 447 */ 448 page_ref_unfreeze(page, expected_count - nr); 449 450 xas_unlock(&xas); 451 /* Leave irq disabled to prevent preemption while updating stats */ 452 453 /* 454 * If moved to a different zone then also account 455 * the page for that zone. Other VM counters will be 456 * taken care of when we establish references to the 457 * new page and drop references to the old page. 458 * 459 * Note that anonymous pages are accounted for 460 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 461 * are mapped to swap space. 462 */ 463 if (newzone != oldzone) { 464 struct lruvec *old_lruvec, *new_lruvec; 465 struct mem_cgroup *memcg; 466 467 memcg = page_memcg(page); 468 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 469 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 470 471 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 472 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 473 if (PageSwapBacked(page) && !PageSwapCache(page)) { 474 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 475 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 476 } 477 #ifdef CONFIG_SWAP 478 if (PageSwapCache(page)) { 479 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 480 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 481 } 482 #endif 483 if (dirty && mapping_can_writeback(mapping)) { 484 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 485 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 486 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 487 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 488 } 489 } 490 local_irq_enable(); 491 492 return MIGRATEPAGE_SUCCESS; 493 } 494 EXPORT_SYMBOL(migrate_page_move_mapping); 495 496 /* 497 * The expected number of remaining references is the same as that 498 * of migrate_page_move_mapping(). 499 */ 500 int migrate_huge_page_move_mapping(struct address_space *mapping, 501 struct page *newpage, struct page *page) 502 { 503 XA_STATE(xas, &mapping->i_pages, page_index(page)); 504 int expected_count; 505 506 xas_lock_irq(&xas); 507 expected_count = 2 + page_has_private(page); 508 if (page_count(page) != expected_count || xas_load(&xas) != page) { 509 xas_unlock_irq(&xas); 510 return -EAGAIN; 511 } 512 513 if (!page_ref_freeze(page, expected_count)) { 514 xas_unlock_irq(&xas); 515 return -EAGAIN; 516 } 517 518 newpage->index = page->index; 519 newpage->mapping = page->mapping; 520 521 get_page(newpage); 522 523 xas_store(&xas, newpage); 524 525 page_ref_unfreeze(page, expected_count - 1); 526 527 xas_unlock_irq(&xas); 528 529 return MIGRATEPAGE_SUCCESS; 530 } 531 532 /* 533 * Gigantic pages are so large that we do not guarantee that page++ pointer 534 * arithmetic will work across the entire page. We need something more 535 * specialized. 536 */ 537 static void __copy_gigantic_page(struct page *dst, struct page *src, 538 int nr_pages) 539 { 540 int i; 541 struct page *dst_base = dst; 542 struct page *src_base = src; 543 544 for (i = 0; i < nr_pages; ) { 545 cond_resched(); 546 copy_highpage(dst, src); 547 548 i++; 549 dst = mem_map_next(dst, dst_base, i); 550 src = mem_map_next(src, src_base, i); 551 } 552 } 553 554 static void copy_huge_page(struct page *dst, struct page *src) 555 { 556 int i; 557 int nr_pages; 558 559 if (PageHuge(src)) { 560 /* hugetlbfs page */ 561 struct hstate *h = page_hstate(src); 562 nr_pages = pages_per_huge_page(h); 563 564 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 565 __copy_gigantic_page(dst, src, nr_pages); 566 return; 567 } 568 } else { 569 /* thp page */ 570 BUG_ON(!PageTransHuge(src)); 571 nr_pages = thp_nr_pages(src); 572 } 573 574 for (i = 0; i < nr_pages; i++) { 575 cond_resched(); 576 copy_highpage(dst + i, src + i); 577 } 578 } 579 580 /* 581 * Copy the page to its new location 582 */ 583 void migrate_page_states(struct page *newpage, struct page *page) 584 { 585 int cpupid; 586 587 if (PageError(page)) 588 SetPageError(newpage); 589 if (PageReferenced(page)) 590 SetPageReferenced(newpage); 591 if (PageUptodate(page)) 592 SetPageUptodate(newpage); 593 if (TestClearPageActive(page)) { 594 VM_BUG_ON_PAGE(PageUnevictable(page), page); 595 SetPageActive(newpage); 596 } else if (TestClearPageUnevictable(page)) 597 SetPageUnevictable(newpage); 598 if (PageWorkingset(page)) 599 SetPageWorkingset(newpage); 600 if (PageChecked(page)) 601 SetPageChecked(newpage); 602 if (PageMappedToDisk(page)) 603 SetPageMappedToDisk(newpage); 604 605 /* Move dirty on pages not done by migrate_page_move_mapping() */ 606 if (PageDirty(page)) 607 SetPageDirty(newpage); 608 609 if (page_is_young(page)) 610 set_page_young(newpage); 611 if (page_is_idle(page)) 612 set_page_idle(newpage); 613 614 /* 615 * Copy NUMA information to the new page, to prevent over-eager 616 * future migrations of this same page. 617 */ 618 cpupid = page_cpupid_xchg_last(page, -1); 619 page_cpupid_xchg_last(newpage, cpupid); 620 621 ksm_migrate_page(newpage, page); 622 /* 623 * Please do not reorder this without considering how mm/ksm.c's 624 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 625 */ 626 if (PageSwapCache(page)) 627 ClearPageSwapCache(page); 628 ClearPagePrivate(page); 629 630 /* page->private contains hugetlb specific flags */ 631 if (!PageHuge(page)) 632 set_page_private(page, 0); 633 634 /* 635 * If any waiters have accumulated on the new page then 636 * wake them up. 637 */ 638 if (PageWriteback(newpage)) 639 end_page_writeback(newpage); 640 641 /* 642 * PG_readahead shares the same bit with PG_reclaim. The above 643 * end_page_writeback() may clear PG_readahead mistakenly, so set the 644 * bit after that. 645 */ 646 if (PageReadahead(page)) 647 SetPageReadahead(newpage); 648 649 copy_page_owner(page, newpage); 650 651 if (!PageHuge(page)) 652 mem_cgroup_migrate(page, newpage); 653 } 654 EXPORT_SYMBOL(migrate_page_states); 655 656 void migrate_page_copy(struct page *newpage, struct page *page) 657 { 658 if (PageHuge(page) || PageTransHuge(page)) 659 copy_huge_page(newpage, page); 660 else 661 copy_highpage(newpage, page); 662 663 migrate_page_states(newpage, page); 664 } 665 EXPORT_SYMBOL(migrate_page_copy); 666 667 /************************************************************ 668 * Migration functions 669 ***********************************************************/ 670 671 /* 672 * Common logic to directly migrate a single LRU page suitable for 673 * pages that do not use PagePrivate/PagePrivate2. 674 * 675 * Pages are locked upon entry and exit. 676 */ 677 int migrate_page(struct address_space *mapping, 678 struct page *newpage, struct page *page, 679 enum migrate_mode mode) 680 { 681 int rc; 682 683 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 684 685 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 686 687 if (rc != MIGRATEPAGE_SUCCESS) 688 return rc; 689 690 if (mode != MIGRATE_SYNC_NO_COPY) 691 migrate_page_copy(newpage, page); 692 else 693 migrate_page_states(newpage, page); 694 return MIGRATEPAGE_SUCCESS; 695 } 696 EXPORT_SYMBOL(migrate_page); 697 698 #ifdef CONFIG_BLOCK 699 /* Returns true if all buffers are successfully locked */ 700 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 701 enum migrate_mode mode) 702 { 703 struct buffer_head *bh = head; 704 705 /* Simple case, sync compaction */ 706 if (mode != MIGRATE_ASYNC) { 707 do { 708 lock_buffer(bh); 709 bh = bh->b_this_page; 710 711 } while (bh != head); 712 713 return true; 714 } 715 716 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 717 do { 718 if (!trylock_buffer(bh)) { 719 /* 720 * We failed to lock the buffer and cannot stall in 721 * async migration. Release the taken locks 722 */ 723 struct buffer_head *failed_bh = bh; 724 bh = head; 725 while (bh != failed_bh) { 726 unlock_buffer(bh); 727 bh = bh->b_this_page; 728 } 729 return false; 730 } 731 732 bh = bh->b_this_page; 733 } while (bh != head); 734 return true; 735 } 736 737 static int __buffer_migrate_page(struct address_space *mapping, 738 struct page *newpage, struct page *page, enum migrate_mode mode, 739 bool check_refs) 740 { 741 struct buffer_head *bh, *head; 742 int rc; 743 int expected_count; 744 745 if (!page_has_buffers(page)) 746 return migrate_page(mapping, newpage, page, mode); 747 748 /* Check whether page does not have extra refs before we do more work */ 749 expected_count = expected_page_refs(mapping, page); 750 if (page_count(page) != expected_count) 751 return -EAGAIN; 752 753 head = page_buffers(page); 754 if (!buffer_migrate_lock_buffers(head, mode)) 755 return -EAGAIN; 756 757 if (check_refs) { 758 bool busy; 759 bool invalidated = false; 760 761 recheck_buffers: 762 busy = false; 763 spin_lock(&mapping->private_lock); 764 bh = head; 765 do { 766 if (atomic_read(&bh->b_count)) { 767 busy = true; 768 break; 769 } 770 bh = bh->b_this_page; 771 } while (bh != head); 772 if (busy) { 773 if (invalidated) { 774 rc = -EAGAIN; 775 goto unlock_buffers; 776 } 777 spin_unlock(&mapping->private_lock); 778 invalidate_bh_lrus(); 779 invalidated = true; 780 goto recheck_buffers; 781 } 782 } 783 784 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 785 if (rc != MIGRATEPAGE_SUCCESS) 786 goto unlock_buffers; 787 788 attach_page_private(newpage, detach_page_private(page)); 789 790 bh = head; 791 do { 792 set_bh_page(bh, newpage, bh_offset(bh)); 793 bh = bh->b_this_page; 794 795 } while (bh != head); 796 797 if (mode != MIGRATE_SYNC_NO_COPY) 798 migrate_page_copy(newpage, page); 799 else 800 migrate_page_states(newpage, page); 801 802 rc = MIGRATEPAGE_SUCCESS; 803 unlock_buffers: 804 if (check_refs) 805 spin_unlock(&mapping->private_lock); 806 bh = head; 807 do { 808 unlock_buffer(bh); 809 bh = bh->b_this_page; 810 811 } while (bh != head); 812 813 return rc; 814 } 815 816 /* 817 * Migration function for pages with buffers. This function can only be used 818 * if the underlying filesystem guarantees that no other references to "page" 819 * exist. For example attached buffer heads are accessed only under page lock. 820 */ 821 int buffer_migrate_page(struct address_space *mapping, 822 struct page *newpage, struct page *page, enum migrate_mode mode) 823 { 824 return __buffer_migrate_page(mapping, newpage, page, mode, false); 825 } 826 EXPORT_SYMBOL(buffer_migrate_page); 827 828 /* 829 * Same as above except that this variant is more careful and checks that there 830 * are also no buffer head references. This function is the right one for 831 * mappings where buffer heads are directly looked up and referenced (such as 832 * block device mappings). 833 */ 834 int buffer_migrate_page_norefs(struct address_space *mapping, 835 struct page *newpage, struct page *page, enum migrate_mode mode) 836 { 837 return __buffer_migrate_page(mapping, newpage, page, mode, true); 838 } 839 #endif 840 841 /* 842 * Writeback a page to clean the dirty state 843 */ 844 static int writeout(struct address_space *mapping, struct page *page) 845 { 846 struct writeback_control wbc = { 847 .sync_mode = WB_SYNC_NONE, 848 .nr_to_write = 1, 849 .range_start = 0, 850 .range_end = LLONG_MAX, 851 .for_reclaim = 1 852 }; 853 int rc; 854 855 if (!mapping->a_ops->writepage) 856 /* No write method for the address space */ 857 return -EINVAL; 858 859 if (!clear_page_dirty_for_io(page)) 860 /* Someone else already triggered a write */ 861 return -EAGAIN; 862 863 /* 864 * A dirty page may imply that the underlying filesystem has 865 * the page on some queue. So the page must be clean for 866 * migration. Writeout may mean we loose the lock and the 867 * page state is no longer what we checked for earlier. 868 * At this point we know that the migration attempt cannot 869 * be successful. 870 */ 871 remove_migration_ptes(page, page, false); 872 873 rc = mapping->a_ops->writepage(page, &wbc); 874 875 if (rc != AOP_WRITEPAGE_ACTIVATE) 876 /* unlocked. Relock */ 877 lock_page(page); 878 879 return (rc < 0) ? -EIO : -EAGAIN; 880 } 881 882 /* 883 * Default handling if a filesystem does not provide a migration function. 884 */ 885 static int fallback_migrate_page(struct address_space *mapping, 886 struct page *newpage, struct page *page, enum migrate_mode mode) 887 { 888 if (PageDirty(page)) { 889 /* Only writeback pages in full synchronous migration */ 890 switch (mode) { 891 case MIGRATE_SYNC: 892 case MIGRATE_SYNC_NO_COPY: 893 break; 894 default: 895 return -EBUSY; 896 } 897 return writeout(mapping, page); 898 } 899 900 /* 901 * Buffers may be managed in a filesystem specific way. 902 * We must have no buffers or drop them. 903 */ 904 if (page_has_private(page) && 905 !try_to_release_page(page, GFP_KERNEL)) 906 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 907 908 return migrate_page(mapping, newpage, page, mode); 909 } 910 911 /* 912 * Move a page to a newly allocated page 913 * The page is locked and all ptes have been successfully removed. 914 * 915 * The new page will have replaced the old page if this function 916 * is successful. 917 * 918 * Return value: 919 * < 0 - error code 920 * MIGRATEPAGE_SUCCESS - success 921 */ 922 static int move_to_new_page(struct page *newpage, struct page *page, 923 enum migrate_mode mode) 924 { 925 struct address_space *mapping; 926 int rc = -EAGAIN; 927 bool is_lru = !__PageMovable(page); 928 929 VM_BUG_ON_PAGE(!PageLocked(page), page); 930 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 931 932 mapping = page_mapping(page); 933 934 if (likely(is_lru)) { 935 if (!mapping) 936 rc = migrate_page(mapping, newpage, page, mode); 937 else if (mapping->a_ops->migratepage) 938 /* 939 * Most pages have a mapping and most filesystems 940 * provide a migratepage callback. Anonymous pages 941 * are part of swap space which also has its own 942 * migratepage callback. This is the most common path 943 * for page migration. 944 */ 945 rc = mapping->a_ops->migratepage(mapping, newpage, 946 page, mode); 947 else 948 rc = fallback_migrate_page(mapping, newpage, 949 page, mode); 950 } else { 951 /* 952 * In case of non-lru page, it could be released after 953 * isolation step. In that case, we shouldn't try migration. 954 */ 955 VM_BUG_ON_PAGE(!PageIsolated(page), page); 956 if (!PageMovable(page)) { 957 rc = MIGRATEPAGE_SUCCESS; 958 __ClearPageIsolated(page); 959 goto out; 960 } 961 962 rc = mapping->a_ops->migratepage(mapping, newpage, 963 page, mode); 964 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 965 !PageIsolated(page)); 966 } 967 968 /* 969 * When successful, old pagecache page->mapping must be cleared before 970 * page is freed; but stats require that PageAnon be left as PageAnon. 971 */ 972 if (rc == MIGRATEPAGE_SUCCESS) { 973 if (__PageMovable(page)) { 974 VM_BUG_ON_PAGE(!PageIsolated(page), page); 975 976 /* 977 * We clear PG_movable under page_lock so any compactor 978 * cannot try to migrate this page. 979 */ 980 __ClearPageIsolated(page); 981 } 982 983 /* 984 * Anonymous and movable page->mapping will be cleared by 985 * free_pages_prepare so don't reset it here for keeping 986 * the type to work PageAnon, for example. 987 */ 988 if (!PageMappingFlags(page)) 989 page->mapping = NULL; 990 991 if (likely(!is_zone_device_page(newpage))) 992 flush_dcache_page(newpage); 993 994 } 995 out: 996 return rc; 997 } 998 999 static int __unmap_and_move(struct page *page, struct page *newpage, 1000 int force, enum migrate_mode mode) 1001 { 1002 int rc = -EAGAIN; 1003 int page_was_mapped = 0; 1004 struct anon_vma *anon_vma = NULL; 1005 bool is_lru = !__PageMovable(page); 1006 1007 if (!trylock_page(page)) { 1008 if (!force || mode == MIGRATE_ASYNC) 1009 goto out; 1010 1011 /* 1012 * It's not safe for direct compaction to call lock_page. 1013 * For example, during page readahead pages are added locked 1014 * to the LRU. Later, when the IO completes the pages are 1015 * marked uptodate and unlocked. However, the queueing 1016 * could be merging multiple pages for one bio (e.g. 1017 * mpage_readahead). If an allocation happens for the 1018 * second or third page, the process can end up locking 1019 * the same page twice and deadlocking. Rather than 1020 * trying to be clever about what pages can be locked, 1021 * avoid the use of lock_page for direct compaction 1022 * altogether. 1023 */ 1024 if (current->flags & PF_MEMALLOC) 1025 goto out; 1026 1027 lock_page(page); 1028 } 1029 1030 if (PageWriteback(page)) { 1031 /* 1032 * Only in the case of a full synchronous migration is it 1033 * necessary to wait for PageWriteback. In the async case, 1034 * the retry loop is too short and in the sync-light case, 1035 * the overhead of stalling is too much 1036 */ 1037 switch (mode) { 1038 case MIGRATE_SYNC: 1039 case MIGRATE_SYNC_NO_COPY: 1040 break; 1041 default: 1042 rc = -EBUSY; 1043 goto out_unlock; 1044 } 1045 if (!force) 1046 goto out_unlock; 1047 wait_on_page_writeback(page); 1048 } 1049 1050 /* 1051 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1052 * we cannot notice that anon_vma is freed while we migrates a page. 1053 * This get_anon_vma() delays freeing anon_vma pointer until the end 1054 * of migration. File cache pages are no problem because of page_lock() 1055 * File Caches may use write_page() or lock_page() in migration, then, 1056 * just care Anon page here. 1057 * 1058 * Only page_get_anon_vma() understands the subtleties of 1059 * getting a hold on an anon_vma from outside one of its mms. 1060 * But if we cannot get anon_vma, then we won't need it anyway, 1061 * because that implies that the anon page is no longer mapped 1062 * (and cannot be remapped so long as we hold the page lock). 1063 */ 1064 if (PageAnon(page) && !PageKsm(page)) 1065 anon_vma = page_get_anon_vma(page); 1066 1067 /* 1068 * Block others from accessing the new page when we get around to 1069 * establishing additional references. We are usually the only one 1070 * holding a reference to newpage at this point. We used to have a BUG 1071 * here if trylock_page(newpage) fails, but would like to allow for 1072 * cases where there might be a race with the previous use of newpage. 1073 * This is much like races on refcount of oldpage: just don't BUG(). 1074 */ 1075 if (unlikely(!trylock_page(newpage))) 1076 goto out_unlock; 1077 1078 if (unlikely(!is_lru)) { 1079 rc = move_to_new_page(newpage, page, mode); 1080 goto out_unlock_both; 1081 } 1082 1083 /* 1084 * Corner case handling: 1085 * 1. When a new swap-cache page is read into, it is added to the LRU 1086 * and treated as swapcache but it has no rmap yet. 1087 * Calling try_to_unmap() against a page->mapping==NULL page will 1088 * trigger a BUG. So handle it here. 1089 * 2. An orphaned page (see truncate_cleanup_page) might have 1090 * fs-private metadata. The page can be picked up due to memory 1091 * offlining. Everywhere else except page reclaim, the page is 1092 * invisible to the vm, so the page can not be migrated. So try to 1093 * free the metadata, so the page can be freed. 1094 */ 1095 if (!page->mapping) { 1096 VM_BUG_ON_PAGE(PageAnon(page), page); 1097 if (page_has_private(page)) { 1098 try_to_free_buffers(page); 1099 goto out_unlock_both; 1100 } 1101 } else if (page_mapped(page)) { 1102 /* Establish migration ptes */ 1103 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1104 page); 1105 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK); 1106 page_was_mapped = 1; 1107 } 1108 1109 if (!page_mapped(page)) 1110 rc = move_to_new_page(newpage, page, mode); 1111 1112 if (page_was_mapped) 1113 remove_migration_ptes(page, 1114 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1115 1116 out_unlock_both: 1117 unlock_page(newpage); 1118 out_unlock: 1119 /* Drop an anon_vma reference if we took one */ 1120 if (anon_vma) 1121 put_anon_vma(anon_vma); 1122 unlock_page(page); 1123 out: 1124 /* 1125 * If migration is successful, decrease refcount of the newpage 1126 * which will not free the page because new page owner increased 1127 * refcounter. As well, if it is LRU page, add the page to LRU 1128 * list in here. Use the old state of the isolated source page to 1129 * determine if we migrated a LRU page. newpage was already unlocked 1130 * and possibly modified by its owner - don't rely on the page 1131 * state. 1132 */ 1133 if (rc == MIGRATEPAGE_SUCCESS) { 1134 if (unlikely(!is_lru)) 1135 put_page(newpage); 1136 else 1137 putback_lru_page(newpage); 1138 } 1139 1140 return rc; 1141 } 1142 1143 /* 1144 * Obtain the lock on page, remove all ptes and migrate the page 1145 * to the newly allocated page in newpage. 1146 */ 1147 static int unmap_and_move(new_page_t get_new_page, 1148 free_page_t put_new_page, 1149 unsigned long private, struct page *page, 1150 int force, enum migrate_mode mode, 1151 enum migrate_reason reason, 1152 struct list_head *ret) 1153 { 1154 int rc = MIGRATEPAGE_SUCCESS; 1155 struct page *newpage = NULL; 1156 1157 if (!thp_migration_supported() && PageTransHuge(page)) 1158 return -ENOSYS; 1159 1160 if (page_count(page) == 1) { 1161 /* page was freed from under us. So we are done. */ 1162 ClearPageActive(page); 1163 ClearPageUnevictable(page); 1164 if (unlikely(__PageMovable(page))) { 1165 lock_page(page); 1166 if (!PageMovable(page)) 1167 __ClearPageIsolated(page); 1168 unlock_page(page); 1169 } 1170 goto out; 1171 } 1172 1173 newpage = get_new_page(page, private); 1174 if (!newpage) 1175 return -ENOMEM; 1176 1177 rc = __unmap_and_move(page, newpage, force, mode); 1178 if (rc == MIGRATEPAGE_SUCCESS) 1179 set_page_owner_migrate_reason(newpage, reason); 1180 1181 out: 1182 if (rc != -EAGAIN) { 1183 /* 1184 * A page that has been migrated has all references 1185 * removed and will be freed. A page that has not been 1186 * migrated will have kept its references and be restored. 1187 */ 1188 list_del(&page->lru); 1189 } 1190 1191 /* 1192 * If migration is successful, releases reference grabbed during 1193 * isolation. Otherwise, restore the page to right list unless 1194 * we want to retry. 1195 */ 1196 if (rc == MIGRATEPAGE_SUCCESS) { 1197 /* 1198 * Compaction can migrate also non-LRU pages which are 1199 * not accounted to NR_ISOLATED_*. They can be recognized 1200 * as __PageMovable 1201 */ 1202 if (likely(!__PageMovable(page))) 1203 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1204 page_is_file_lru(page), -thp_nr_pages(page)); 1205 1206 if (reason != MR_MEMORY_FAILURE) 1207 /* 1208 * We release the page in page_handle_poison. 1209 */ 1210 put_page(page); 1211 } else { 1212 if (rc != -EAGAIN) 1213 list_add_tail(&page->lru, ret); 1214 1215 if (put_new_page) 1216 put_new_page(newpage, private); 1217 else 1218 put_page(newpage); 1219 } 1220 1221 return rc; 1222 } 1223 1224 /* 1225 * Counterpart of unmap_and_move_page() for hugepage migration. 1226 * 1227 * This function doesn't wait the completion of hugepage I/O 1228 * because there is no race between I/O and migration for hugepage. 1229 * Note that currently hugepage I/O occurs only in direct I/O 1230 * where no lock is held and PG_writeback is irrelevant, 1231 * and writeback status of all subpages are counted in the reference 1232 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1233 * under direct I/O, the reference of the head page is 512 and a bit more.) 1234 * This means that when we try to migrate hugepage whose subpages are 1235 * doing direct I/O, some references remain after try_to_unmap() and 1236 * hugepage migration fails without data corruption. 1237 * 1238 * There is also no race when direct I/O is issued on the page under migration, 1239 * because then pte is replaced with migration swap entry and direct I/O code 1240 * will wait in the page fault for migration to complete. 1241 */ 1242 static int unmap_and_move_huge_page(new_page_t get_new_page, 1243 free_page_t put_new_page, unsigned long private, 1244 struct page *hpage, int force, 1245 enum migrate_mode mode, int reason, 1246 struct list_head *ret) 1247 { 1248 int rc = -EAGAIN; 1249 int page_was_mapped = 0; 1250 struct page *new_hpage; 1251 struct anon_vma *anon_vma = NULL; 1252 struct address_space *mapping = NULL; 1253 1254 /* 1255 * Migratability of hugepages depends on architectures and their size. 1256 * This check is necessary because some callers of hugepage migration 1257 * like soft offline and memory hotremove don't walk through page 1258 * tables or check whether the hugepage is pmd-based or not before 1259 * kicking migration. 1260 */ 1261 if (!hugepage_migration_supported(page_hstate(hpage))) { 1262 list_move_tail(&hpage->lru, ret); 1263 return -ENOSYS; 1264 } 1265 1266 if (page_count(hpage) == 1) { 1267 /* page was freed from under us. So we are done. */ 1268 putback_active_hugepage(hpage); 1269 return MIGRATEPAGE_SUCCESS; 1270 } 1271 1272 new_hpage = get_new_page(hpage, private); 1273 if (!new_hpage) 1274 return -ENOMEM; 1275 1276 if (!trylock_page(hpage)) { 1277 if (!force) 1278 goto out; 1279 switch (mode) { 1280 case MIGRATE_SYNC: 1281 case MIGRATE_SYNC_NO_COPY: 1282 break; 1283 default: 1284 goto out; 1285 } 1286 lock_page(hpage); 1287 } 1288 1289 /* 1290 * Check for pages which are in the process of being freed. Without 1291 * page_mapping() set, hugetlbfs specific move page routine will not 1292 * be called and we could leak usage counts for subpools. 1293 */ 1294 if (page_private(hpage) && !page_mapping(hpage)) { 1295 rc = -EBUSY; 1296 goto out_unlock; 1297 } 1298 1299 if (PageAnon(hpage)) 1300 anon_vma = page_get_anon_vma(hpage); 1301 1302 if (unlikely(!trylock_page(new_hpage))) 1303 goto put_anon; 1304 1305 if (page_mapped(hpage)) { 1306 bool mapping_locked = false; 1307 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK; 1308 1309 if (!PageAnon(hpage)) { 1310 /* 1311 * In shared mappings, try_to_unmap could potentially 1312 * call huge_pmd_unshare. Because of this, take 1313 * semaphore in write mode here and set TTU_RMAP_LOCKED 1314 * to let lower levels know we have taken the lock. 1315 */ 1316 mapping = hugetlb_page_mapping_lock_write(hpage); 1317 if (unlikely(!mapping)) 1318 goto unlock_put_anon; 1319 1320 mapping_locked = true; 1321 ttu |= TTU_RMAP_LOCKED; 1322 } 1323 1324 try_to_unmap(hpage, ttu); 1325 page_was_mapped = 1; 1326 1327 if (mapping_locked) 1328 i_mmap_unlock_write(mapping); 1329 } 1330 1331 if (!page_mapped(hpage)) 1332 rc = move_to_new_page(new_hpage, hpage, mode); 1333 1334 if (page_was_mapped) 1335 remove_migration_ptes(hpage, 1336 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1337 1338 unlock_put_anon: 1339 unlock_page(new_hpage); 1340 1341 put_anon: 1342 if (anon_vma) 1343 put_anon_vma(anon_vma); 1344 1345 if (rc == MIGRATEPAGE_SUCCESS) { 1346 move_hugetlb_state(hpage, new_hpage, reason); 1347 put_new_page = NULL; 1348 } 1349 1350 out_unlock: 1351 unlock_page(hpage); 1352 out: 1353 if (rc == MIGRATEPAGE_SUCCESS) 1354 putback_active_hugepage(hpage); 1355 else if (rc != -EAGAIN) 1356 list_move_tail(&hpage->lru, ret); 1357 1358 /* 1359 * If migration was not successful and there's a freeing callback, use 1360 * it. Otherwise, put_page() will drop the reference grabbed during 1361 * isolation. 1362 */ 1363 if (put_new_page) 1364 put_new_page(new_hpage, private); 1365 else 1366 putback_active_hugepage(new_hpage); 1367 1368 return rc; 1369 } 1370 1371 static inline int try_split_thp(struct page *page, struct page **page2, 1372 struct list_head *from) 1373 { 1374 int rc = 0; 1375 1376 lock_page(page); 1377 rc = split_huge_page_to_list(page, from); 1378 unlock_page(page); 1379 if (!rc) 1380 list_safe_reset_next(page, *page2, lru); 1381 1382 return rc; 1383 } 1384 1385 /* 1386 * migrate_pages - migrate the pages specified in a list, to the free pages 1387 * supplied as the target for the page migration 1388 * 1389 * @from: The list of pages to be migrated. 1390 * @get_new_page: The function used to allocate free pages to be used 1391 * as the target of the page migration. 1392 * @put_new_page: The function used to free target pages if migration 1393 * fails, or NULL if no special handling is necessary. 1394 * @private: Private data to be passed on to get_new_page() 1395 * @mode: The migration mode that specifies the constraints for 1396 * page migration, if any. 1397 * @reason: The reason for page migration. 1398 * 1399 * The function returns after 10 attempts or if no pages are movable any more 1400 * because the list has become empty or no retryable pages exist any more. 1401 * It is caller's responsibility to call putback_movable_pages() to return pages 1402 * to the LRU or free list only if ret != 0. 1403 * 1404 * Returns the number of pages that were not migrated, or an error code. 1405 */ 1406 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1407 free_page_t put_new_page, unsigned long private, 1408 enum migrate_mode mode, int reason) 1409 { 1410 int retry = 1; 1411 int thp_retry = 1; 1412 int nr_failed = 0; 1413 int nr_succeeded = 0; 1414 int nr_thp_succeeded = 0; 1415 int nr_thp_failed = 0; 1416 int nr_thp_split = 0; 1417 int pass = 0; 1418 bool is_thp = false; 1419 struct page *page; 1420 struct page *page2; 1421 int swapwrite = current->flags & PF_SWAPWRITE; 1422 int rc, nr_subpages; 1423 LIST_HEAD(ret_pages); 1424 1425 trace_mm_migrate_pages_start(mode, reason); 1426 1427 if (!swapwrite) 1428 current->flags |= PF_SWAPWRITE; 1429 1430 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1431 retry = 0; 1432 thp_retry = 0; 1433 1434 list_for_each_entry_safe(page, page2, from, lru) { 1435 retry: 1436 /* 1437 * THP statistics is based on the source huge page. 1438 * Capture required information that might get lost 1439 * during migration. 1440 */ 1441 is_thp = PageTransHuge(page) && !PageHuge(page); 1442 nr_subpages = thp_nr_pages(page); 1443 cond_resched(); 1444 1445 if (PageHuge(page)) 1446 rc = unmap_and_move_huge_page(get_new_page, 1447 put_new_page, private, page, 1448 pass > 2, mode, reason, 1449 &ret_pages); 1450 else 1451 rc = unmap_and_move(get_new_page, put_new_page, 1452 private, page, pass > 2, mode, 1453 reason, &ret_pages); 1454 /* 1455 * The rules are: 1456 * Success: non hugetlb page will be freed, hugetlb 1457 * page will be put back 1458 * -EAGAIN: stay on the from list 1459 * -ENOMEM: stay on the from list 1460 * Other errno: put on ret_pages list then splice to 1461 * from list 1462 */ 1463 switch(rc) { 1464 /* 1465 * THP migration might be unsupported or the 1466 * allocation could've failed so we should 1467 * retry on the same page with the THP split 1468 * to base pages. 1469 * 1470 * Head page is retried immediately and tail 1471 * pages are added to the tail of the list so 1472 * we encounter them after the rest of the list 1473 * is processed. 1474 */ 1475 case -ENOSYS: 1476 /* THP migration is unsupported */ 1477 if (is_thp) { 1478 if (!try_split_thp(page, &page2, from)) { 1479 nr_thp_split++; 1480 goto retry; 1481 } 1482 1483 nr_thp_failed++; 1484 nr_failed += nr_subpages; 1485 break; 1486 } 1487 1488 /* Hugetlb migration is unsupported */ 1489 nr_failed++; 1490 break; 1491 case -ENOMEM: 1492 /* 1493 * When memory is low, don't bother to try to migrate 1494 * other pages, just exit. 1495 */ 1496 if (is_thp) { 1497 if (!try_split_thp(page, &page2, from)) { 1498 nr_thp_split++; 1499 goto retry; 1500 } 1501 1502 nr_thp_failed++; 1503 nr_failed += nr_subpages; 1504 goto out; 1505 } 1506 nr_failed++; 1507 goto out; 1508 case -EAGAIN: 1509 if (is_thp) { 1510 thp_retry++; 1511 break; 1512 } 1513 retry++; 1514 break; 1515 case MIGRATEPAGE_SUCCESS: 1516 if (is_thp) { 1517 nr_thp_succeeded++; 1518 nr_succeeded += nr_subpages; 1519 break; 1520 } 1521 nr_succeeded++; 1522 break; 1523 default: 1524 /* 1525 * Permanent failure (-EBUSY, etc.): 1526 * unlike -EAGAIN case, the failed page is 1527 * removed from migration page list and not 1528 * retried in the next outer loop. 1529 */ 1530 if (is_thp) { 1531 nr_thp_failed++; 1532 nr_failed += nr_subpages; 1533 break; 1534 } 1535 nr_failed++; 1536 break; 1537 } 1538 } 1539 } 1540 nr_failed += retry + thp_retry; 1541 nr_thp_failed += thp_retry; 1542 rc = nr_failed; 1543 out: 1544 /* 1545 * Put the permanent failure page back to migration list, they 1546 * will be put back to the right list by the caller. 1547 */ 1548 list_splice(&ret_pages, from); 1549 1550 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1551 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1552 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1553 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1554 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1555 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1556 nr_thp_failed, nr_thp_split, mode, reason); 1557 1558 if (!swapwrite) 1559 current->flags &= ~PF_SWAPWRITE; 1560 1561 return rc; 1562 } 1563 1564 struct page *alloc_migration_target(struct page *page, unsigned long private) 1565 { 1566 struct migration_target_control *mtc; 1567 gfp_t gfp_mask; 1568 unsigned int order = 0; 1569 struct page *new_page = NULL; 1570 int nid; 1571 int zidx; 1572 1573 mtc = (struct migration_target_control *)private; 1574 gfp_mask = mtc->gfp_mask; 1575 nid = mtc->nid; 1576 if (nid == NUMA_NO_NODE) 1577 nid = page_to_nid(page); 1578 1579 if (PageHuge(page)) { 1580 struct hstate *h = page_hstate(compound_head(page)); 1581 1582 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1583 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1584 } 1585 1586 if (PageTransHuge(page)) { 1587 /* 1588 * clear __GFP_RECLAIM to make the migration callback 1589 * consistent with regular THP allocations. 1590 */ 1591 gfp_mask &= ~__GFP_RECLAIM; 1592 gfp_mask |= GFP_TRANSHUGE; 1593 order = HPAGE_PMD_ORDER; 1594 } 1595 zidx = zone_idx(page_zone(page)); 1596 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1597 gfp_mask |= __GFP_HIGHMEM; 1598 1599 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1600 1601 if (new_page && PageTransHuge(new_page)) 1602 prep_transhuge_page(new_page); 1603 1604 return new_page; 1605 } 1606 1607 #ifdef CONFIG_NUMA 1608 1609 static int store_status(int __user *status, int start, int value, int nr) 1610 { 1611 while (nr-- > 0) { 1612 if (put_user(value, status + start)) 1613 return -EFAULT; 1614 start++; 1615 } 1616 1617 return 0; 1618 } 1619 1620 static int do_move_pages_to_node(struct mm_struct *mm, 1621 struct list_head *pagelist, int node) 1622 { 1623 int err; 1624 struct migration_target_control mtc = { 1625 .nid = node, 1626 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1627 }; 1628 1629 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1630 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1631 if (err) 1632 putback_movable_pages(pagelist); 1633 return err; 1634 } 1635 1636 /* 1637 * Resolves the given address to a struct page, isolates it from the LRU and 1638 * puts it to the given pagelist. 1639 * Returns: 1640 * errno - if the page cannot be found/isolated 1641 * 0 - when it doesn't have to be migrated because it is already on the 1642 * target node 1643 * 1 - when it has been queued 1644 */ 1645 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1646 int node, struct list_head *pagelist, bool migrate_all) 1647 { 1648 struct vm_area_struct *vma; 1649 struct page *page; 1650 unsigned int follflags; 1651 int err; 1652 1653 mmap_read_lock(mm); 1654 err = -EFAULT; 1655 vma = find_vma(mm, addr); 1656 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1657 goto out; 1658 1659 /* FOLL_DUMP to ignore special (like zero) pages */ 1660 follflags = FOLL_GET | FOLL_DUMP; 1661 page = follow_page(vma, addr, follflags); 1662 1663 err = PTR_ERR(page); 1664 if (IS_ERR(page)) 1665 goto out; 1666 1667 err = -ENOENT; 1668 if (!page) 1669 goto out; 1670 1671 err = 0; 1672 if (page_to_nid(page) == node) 1673 goto out_putpage; 1674 1675 err = -EACCES; 1676 if (page_mapcount(page) > 1 && !migrate_all) 1677 goto out_putpage; 1678 1679 if (PageHuge(page)) { 1680 if (PageHead(page)) { 1681 isolate_huge_page(page, pagelist); 1682 err = 1; 1683 } 1684 } else { 1685 struct page *head; 1686 1687 head = compound_head(page); 1688 err = isolate_lru_page(head); 1689 if (err) 1690 goto out_putpage; 1691 1692 err = 1; 1693 list_add_tail(&head->lru, pagelist); 1694 mod_node_page_state(page_pgdat(head), 1695 NR_ISOLATED_ANON + page_is_file_lru(head), 1696 thp_nr_pages(head)); 1697 } 1698 out_putpage: 1699 /* 1700 * Either remove the duplicate refcount from 1701 * isolate_lru_page() or drop the page ref if it was 1702 * not isolated. 1703 */ 1704 put_page(page); 1705 out: 1706 mmap_read_unlock(mm); 1707 return err; 1708 } 1709 1710 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1711 struct list_head *pagelist, int __user *status, 1712 int start, int i, unsigned long nr_pages) 1713 { 1714 int err; 1715 1716 if (list_empty(pagelist)) 1717 return 0; 1718 1719 err = do_move_pages_to_node(mm, pagelist, node); 1720 if (err) { 1721 /* 1722 * Positive err means the number of failed 1723 * pages to migrate. Since we are going to 1724 * abort and return the number of non-migrated 1725 * pages, so need to include the rest of the 1726 * nr_pages that have not been attempted as 1727 * well. 1728 */ 1729 if (err > 0) 1730 err += nr_pages - i - 1; 1731 return err; 1732 } 1733 return store_status(status, start, node, i - start); 1734 } 1735 1736 /* 1737 * Migrate an array of page address onto an array of nodes and fill 1738 * the corresponding array of status. 1739 */ 1740 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1741 unsigned long nr_pages, 1742 const void __user * __user *pages, 1743 const int __user *nodes, 1744 int __user *status, int flags) 1745 { 1746 int current_node = NUMA_NO_NODE; 1747 LIST_HEAD(pagelist); 1748 int start, i; 1749 int err = 0, err1; 1750 1751 lru_cache_disable(); 1752 1753 for (i = start = 0; i < nr_pages; i++) { 1754 const void __user *p; 1755 unsigned long addr; 1756 int node; 1757 1758 err = -EFAULT; 1759 if (get_user(p, pages + i)) 1760 goto out_flush; 1761 if (get_user(node, nodes + i)) 1762 goto out_flush; 1763 addr = (unsigned long)untagged_addr(p); 1764 1765 err = -ENODEV; 1766 if (node < 0 || node >= MAX_NUMNODES) 1767 goto out_flush; 1768 if (!node_state(node, N_MEMORY)) 1769 goto out_flush; 1770 1771 err = -EACCES; 1772 if (!node_isset(node, task_nodes)) 1773 goto out_flush; 1774 1775 if (current_node == NUMA_NO_NODE) { 1776 current_node = node; 1777 start = i; 1778 } else if (node != current_node) { 1779 err = move_pages_and_store_status(mm, current_node, 1780 &pagelist, status, start, i, nr_pages); 1781 if (err) 1782 goto out; 1783 start = i; 1784 current_node = node; 1785 } 1786 1787 /* 1788 * Errors in the page lookup or isolation are not fatal and we simply 1789 * report them via status 1790 */ 1791 err = add_page_for_migration(mm, addr, current_node, 1792 &pagelist, flags & MPOL_MF_MOVE_ALL); 1793 1794 if (err > 0) { 1795 /* The page is successfully queued for migration */ 1796 continue; 1797 } 1798 1799 /* 1800 * If the page is already on the target node (!err), store the 1801 * node, otherwise, store the err. 1802 */ 1803 err = store_status(status, i, err ? : current_node, 1); 1804 if (err) 1805 goto out_flush; 1806 1807 err = move_pages_and_store_status(mm, current_node, &pagelist, 1808 status, start, i, nr_pages); 1809 if (err) 1810 goto out; 1811 current_node = NUMA_NO_NODE; 1812 } 1813 out_flush: 1814 /* Make sure we do not overwrite the existing error */ 1815 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1816 status, start, i, nr_pages); 1817 if (err >= 0) 1818 err = err1; 1819 out: 1820 lru_cache_enable(); 1821 return err; 1822 } 1823 1824 /* 1825 * Determine the nodes of an array of pages and store it in an array of status. 1826 */ 1827 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1828 const void __user **pages, int *status) 1829 { 1830 unsigned long i; 1831 1832 mmap_read_lock(mm); 1833 1834 for (i = 0; i < nr_pages; i++) { 1835 unsigned long addr = (unsigned long)(*pages); 1836 struct vm_area_struct *vma; 1837 struct page *page; 1838 int err = -EFAULT; 1839 1840 vma = vma_lookup(mm, addr); 1841 if (!vma) 1842 goto set_status; 1843 1844 /* FOLL_DUMP to ignore special (like zero) pages */ 1845 page = follow_page(vma, addr, FOLL_DUMP); 1846 1847 err = PTR_ERR(page); 1848 if (IS_ERR(page)) 1849 goto set_status; 1850 1851 err = page ? page_to_nid(page) : -ENOENT; 1852 set_status: 1853 *status = err; 1854 1855 pages++; 1856 status++; 1857 } 1858 1859 mmap_read_unlock(mm); 1860 } 1861 1862 /* 1863 * Determine the nodes of a user array of pages and store it in 1864 * a user array of status. 1865 */ 1866 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1867 const void __user * __user *pages, 1868 int __user *status) 1869 { 1870 #define DO_PAGES_STAT_CHUNK_NR 16 1871 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1872 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1873 1874 while (nr_pages) { 1875 unsigned long chunk_nr; 1876 1877 chunk_nr = nr_pages; 1878 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1879 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1880 1881 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1882 break; 1883 1884 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1885 1886 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1887 break; 1888 1889 pages += chunk_nr; 1890 status += chunk_nr; 1891 nr_pages -= chunk_nr; 1892 } 1893 return nr_pages ? -EFAULT : 0; 1894 } 1895 1896 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1897 { 1898 struct task_struct *task; 1899 struct mm_struct *mm; 1900 1901 /* 1902 * There is no need to check if current process has the right to modify 1903 * the specified process when they are same. 1904 */ 1905 if (!pid) { 1906 mmget(current->mm); 1907 *mem_nodes = cpuset_mems_allowed(current); 1908 return current->mm; 1909 } 1910 1911 /* Find the mm_struct */ 1912 rcu_read_lock(); 1913 task = find_task_by_vpid(pid); 1914 if (!task) { 1915 rcu_read_unlock(); 1916 return ERR_PTR(-ESRCH); 1917 } 1918 get_task_struct(task); 1919 1920 /* 1921 * Check if this process has the right to modify the specified 1922 * process. Use the regular "ptrace_may_access()" checks. 1923 */ 1924 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1925 rcu_read_unlock(); 1926 mm = ERR_PTR(-EPERM); 1927 goto out; 1928 } 1929 rcu_read_unlock(); 1930 1931 mm = ERR_PTR(security_task_movememory(task)); 1932 if (IS_ERR(mm)) 1933 goto out; 1934 *mem_nodes = cpuset_mems_allowed(task); 1935 mm = get_task_mm(task); 1936 out: 1937 put_task_struct(task); 1938 if (!mm) 1939 mm = ERR_PTR(-EINVAL); 1940 return mm; 1941 } 1942 1943 /* 1944 * Move a list of pages in the address space of the currently executing 1945 * process. 1946 */ 1947 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1948 const void __user * __user *pages, 1949 const int __user *nodes, 1950 int __user *status, int flags) 1951 { 1952 struct mm_struct *mm; 1953 int err; 1954 nodemask_t task_nodes; 1955 1956 /* Check flags */ 1957 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1958 return -EINVAL; 1959 1960 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1961 return -EPERM; 1962 1963 mm = find_mm_struct(pid, &task_nodes); 1964 if (IS_ERR(mm)) 1965 return PTR_ERR(mm); 1966 1967 if (nodes) 1968 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1969 nodes, status, flags); 1970 else 1971 err = do_pages_stat(mm, nr_pages, pages, status); 1972 1973 mmput(mm); 1974 return err; 1975 } 1976 1977 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1978 const void __user * __user *, pages, 1979 const int __user *, nodes, 1980 int __user *, status, int, flags) 1981 { 1982 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1983 } 1984 1985 #ifdef CONFIG_COMPAT 1986 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1987 compat_uptr_t __user *, pages32, 1988 const int __user *, nodes, 1989 int __user *, status, 1990 int, flags) 1991 { 1992 const void __user * __user *pages; 1993 int i; 1994 1995 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1996 for (i = 0; i < nr_pages; i++) { 1997 compat_uptr_t p; 1998 1999 if (get_user(p, pages32 + i) || 2000 put_user(compat_ptr(p), pages + i)) 2001 return -EFAULT; 2002 } 2003 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2004 } 2005 #endif /* CONFIG_COMPAT */ 2006 2007 #ifdef CONFIG_NUMA_BALANCING 2008 /* 2009 * Returns true if this is a safe migration target node for misplaced NUMA 2010 * pages. Currently it only checks the watermarks which crude 2011 */ 2012 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2013 unsigned long nr_migrate_pages) 2014 { 2015 int z; 2016 2017 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2018 struct zone *zone = pgdat->node_zones + z; 2019 2020 if (!populated_zone(zone)) 2021 continue; 2022 2023 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2024 if (!zone_watermark_ok(zone, 0, 2025 high_wmark_pages(zone) + 2026 nr_migrate_pages, 2027 ZONE_MOVABLE, 0)) 2028 continue; 2029 return true; 2030 } 2031 return false; 2032 } 2033 2034 static struct page *alloc_misplaced_dst_page(struct page *page, 2035 unsigned long data) 2036 { 2037 int nid = (int) data; 2038 struct page *newpage; 2039 2040 newpage = __alloc_pages_node(nid, 2041 (GFP_HIGHUSER_MOVABLE | 2042 __GFP_THISNODE | __GFP_NOMEMALLOC | 2043 __GFP_NORETRY | __GFP_NOWARN) & 2044 ~__GFP_RECLAIM, 0); 2045 2046 return newpage; 2047 } 2048 2049 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2050 { 2051 int page_lru; 2052 2053 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2054 2055 /* Avoid migrating to a node that is nearly full */ 2056 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2057 return 0; 2058 2059 if (isolate_lru_page(page)) 2060 return 0; 2061 2062 /* 2063 * migrate_misplaced_transhuge_page() skips page migration's usual 2064 * check on page_count(), so we must do it here, now that the page 2065 * has been isolated: a GUP pin, or any other pin, prevents migration. 2066 * The expected page count is 3: 1 for page's mapcount and 1 for the 2067 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2068 */ 2069 if (PageTransHuge(page) && page_count(page) != 3) { 2070 putback_lru_page(page); 2071 return 0; 2072 } 2073 2074 page_lru = page_is_file_lru(page); 2075 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2076 thp_nr_pages(page)); 2077 2078 /* 2079 * Isolating the page has taken another reference, so the 2080 * caller's reference can be safely dropped without the page 2081 * disappearing underneath us during migration. 2082 */ 2083 put_page(page); 2084 return 1; 2085 } 2086 2087 bool pmd_trans_migrating(pmd_t pmd) 2088 { 2089 struct page *page = pmd_page(pmd); 2090 return PageLocked(page); 2091 } 2092 2093 /* 2094 * Attempt to migrate a misplaced page to the specified destination 2095 * node. Caller is expected to have an elevated reference count on 2096 * the page that will be dropped by this function before returning. 2097 */ 2098 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2099 int node) 2100 { 2101 pg_data_t *pgdat = NODE_DATA(node); 2102 int isolated; 2103 int nr_remaining; 2104 LIST_HEAD(migratepages); 2105 2106 /* 2107 * Don't migrate file pages that are mapped in multiple processes 2108 * with execute permissions as they are probably shared libraries. 2109 */ 2110 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2111 (vma->vm_flags & VM_EXEC)) 2112 goto out; 2113 2114 /* 2115 * Also do not migrate dirty pages as not all filesystems can move 2116 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2117 */ 2118 if (page_is_file_lru(page) && PageDirty(page)) 2119 goto out; 2120 2121 isolated = numamigrate_isolate_page(pgdat, page); 2122 if (!isolated) 2123 goto out; 2124 2125 list_add(&page->lru, &migratepages); 2126 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2127 NULL, node, MIGRATE_ASYNC, 2128 MR_NUMA_MISPLACED); 2129 if (nr_remaining) { 2130 if (!list_empty(&migratepages)) { 2131 list_del(&page->lru); 2132 dec_node_page_state(page, NR_ISOLATED_ANON + 2133 page_is_file_lru(page)); 2134 putback_lru_page(page); 2135 } 2136 isolated = 0; 2137 } else 2138 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2139 BUG_ON(!list_empty(&migratepages)); 2140 return isolated; 2141 2142 out: 2143 put_page(page); 2144 return 0; 2145 } 2146 #endif /* CONFIG_NUMA_BALANCING */ 2147 2148 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2149 /* 2150 * Migrates a THP to a given target node. page must be locked and is unlocked 2151 * before returning. 2152 */ 2153 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2154 struct vm_area_struct *vma, 2155 pmd_t *pmd, pmd_t entry, 2156 unsigned long address, 2157 struct page *page, int node) 2158 { 2159 spinlock_t *ptl; 2160 pg_data_t *pgdat = NODE_DATA(node); 2161 int isolated = 0; 2162 struct page *new_page = NULL; 2163 int page_lru = page_is_file_lru(page); 2164 unsigned long start = address & HPAGE_PMD_MASK; 2165 2166 new_page = alloc_pages_node(node, 2167 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2168 HPAGE_PMD_ORDER); 2169 if (!new_page) 2170 goto out_fail; 2171 prep_transhuge_page(new_page); 2172 2173 isolated = numamigrate_isolate_page(pgdat, page); 2174 if (!isolated) { 2175 put_page(new_page); 2176 goto out_fail; 2177 } 2178 2179 /* Prepare a page as a migration target */ 2180 __SetPageLocked(new_page); 2181 if (PageSwapBacked(page)) 2182 __SetPageSwapBacked(new_page); 2183 2184 /* anon mapping, we can simply copy page->mapping to the new page: */ 2185 new_page->mapping = page->mapping; 2186 new_page->index = page->index; 2187 /* flush the cache before copying using the kernel virtual address */ 2188 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2189 migrate_page_copy(new_page, page); 2190 WARN_ON(PageLRU(new_page)); 2191 2192 /* Recheck the target PMD */ 2193 ptl = pmd_lock(mm, pmd); 2194 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2195 spin_unlock(ptl); 2196 2197 /* Reverse changes made by migrate_page_copy() */ 2198 if (TestClearPageActive(new_page)) 2199 SetPageActive(page); 2200 if (TestClearPageUnevictable(new_page)) 2201 SetPageUnevictable(page); 2202 2203 unlock_page(new_page); 2204 put_page(new_page); /* Free it */ 2205 2206 /* Retake the callers reference and putback on LRU */ 2207 get_page(page); 2208 putback_lru_page(page); 2209 mod_node_page_state(page_pgdat(page), 2210 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2211 2212 goto out_unlock; 2213 } 2214 2215 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2216 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2217 2218 /* 2219 * Overwrite the old entry under pagetable lock and establish 2220 * the new PTE. Any parallel GUP will either observe the old 2221 * page blocking on the page lock, block on the page table 2222 * lock or observe the new page. The SetPageUptodate on the 2223 * new page and page_add_new_anon_rmap guarantee the copy is 2224 * visible before the pagetable update. 2225 */ 2226 page_add_anon_rmap(new_page, vma, start, true); 2227 /* 2228 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2229 * has already been flushed globally. So no TLB can be currently 2230 * caching this non present pmd mapping. There's no need to clear the 2231 * pmd before doing set_pmd_at(), nor to flush the TLB after 2232 * set_pmd_at(). Clearing the pmd here would introduce a race 2233 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2234 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2235 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2236 * pmd. 2237 */ 2238 set_pmd_at(mm, start, pmd, entry); 2239 update_mmu_cache_pmd(vma, address, &entry); 2240 2241 page_ref_unfreeze(page, 2); 2242 mlock_migrate_page(new_page, page); 2243 page_remove_rmap(page, true); 2244 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2245 2246 spin_unlock(ptl); 2247 2248 /* Take an "isolate" reference and put new page on the LRU. */ 2249 get_page(new_page); 2250 putback_lru_page(new_page); 2251 2252 unlock_page(new_page); 2253 unlock_page(page); 2254 put_page(page); /* Drop the rmap reference */ 2255 put_page(page); /* Drop the LRU isolation reference */ 2256 2257 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2258 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2259 2260 mod_node_page_state(page_pgdat(page), 2261 NR_ISOLATED_ANON + page_lru, 2262 -HPAGE_PMD_NR); 2263 return isolated; 2264 2265 out_fail: 2266 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2267 ptl = pmd_lock(mm, pmd); 2268 if (pmd_same(*pmd, entry)) { 2269 entry = pmd_modify(entry, vma->vm_page_prot); 2270 set_pmd_at(mm, start, pmd, entry); 2271 update_mmu_cache_pmd(vma, address, &entry); 2272 } 2273 spin_unlock(ptl); 2274 2275 out_unlock: 2276 unlock_page(page); 2277 put_page(page); 2278 return 0; 2279 } 2280 #endif /* CONFIG_NUMA_BALANCING */ 2281 2282 #endif /* CONFIG_NUMA */ 2283 2284 #ifdef CONFIG_DEVICE_PRIVATE 2285 static int migrate_vma_collect_skip(unsigned long start, 2286 unsigned long end, 2287 struct mm_walk *walk) 2288 { 2289 struct migrate_vma *migrate = walk->private; 2290 unsigned long addr; 2291 2292 for (addr = start; addr < end; addr += PAGE_SIZE) { 2293 migrate->dst[migrate->npages] = 0; 2294 migrate->src[migrate->npages++] = 0; 2295 } 2296 2297 return 0; 2298 } 2299 2300 static int migrate_vma_collect_hole(unsigned long start, 2301 unsigned long end, 2302 __always_unused int depth, 2303 struct mm_walk *walk) 2304 { 2305 struct migrate_vma *migrate = walk->private; 2306 unsigned long addr; 2307 2308 /* Only allow populating anonymous memory. */ 2309 if (!vma_is_anonymous(walk->vma)) 2310 return migrate_vma_collect_skip(start, end, walk); 2311 2312 for (addr = start; addr < end; addr += PAGE_SIZE) { 2313 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2314 migrate->dst[migrate->npages] = 0; 2315 migrate->npages++; 2316 migrate->cpages++; 2317 } 2318 2319 return 0; 2320 } 2321 2322 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2323 unsigned long start, 2324 unsigned long end, 2325 struct mm_walk *walk) 2326 { 2327 struct migrate_vma *migrate = walk->private; 2328 struct vm_area_struct *vma = walk->vma; 2329 struct mm_struct *mm = vma->vm_mm; 2330 unsigned long addr = start, unmapped = 0; 2331 spinlock_t *ptl; 2332 pte_t *ptep; 2333 2334 again: 2335 if (pmd_none(*pmdp)) 2336 return migrate_vma_collect_hole(start, end, -1, walk); 2337 2338 if (pmd_trans_huge(*pmdp)) { 2339 struct page *page; 2340 2341 ptl = pmd_lock(mm, pmdp); 2342 if (unlikely(!pmd_trans_huge(*pmdp))) { 2343 spin_unlock(ptl); 2344 goto again; 2345 } 2346 2347 page = pmd_page(*pmdp); 2348 if (is_huge_zero_page(page)) { 2349 spin_unlock(ptl); 2350 split_huge_pmd(vma, pmdp, addr); 2351 if (pmd_trans_unstable(pmdp)) 2352 return migrate_vma_collect_skip(start, end, 2353 walk); 2354 } else { 2355 int ret; 2356 2357 get_page(page); 2358 spin_unlock(ptl); 2359 if (unlikely(!trylock_page(page))) 2360 return migrate_vma_collect_skip(start, end, 2361 walk); 2362 ret = split_huge_page(page); 2363 unlock_page(page); 2364 put_page(page); 2365 if (ret) 2366 return migrate_vma_collect_skip(start, end, 2367 walk); 2368 if (pmd_none(*pmdp)) 2369 return migrate_vma_collect_hole(start, end, -1, 2370 walk); 2371 } 2372 } 2373 2374 if (unlikely(pmd_bad(*pmdp))) 2375 return migrate_vma_collect_skip(start, end, walk); 2376 2377 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2378 arch_enter_lazy_mmu_mode(); 2379 2380 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2381 unsigned long mpfn = 0, pfn; 2382 struct page *page; 2383 swp_entry_t entry; 2384 pte_t pte; 2385 2386 pte = *ptep; 2387 2388 if (pte_none(pte)) { 2389 if (vma_is_anonymous(vma)) { 2390 mpfn = MIGRATE_PFN_MIGRATE; 2391 migrate->cpages++; 2392 } 2393 goto next; 2394 } 2395 2396 if (!pte_present(pte)) { 2397 /* 2398 * Only care about unaddressable device page special 2399 * page table entry. Other special swap entries are not 2400 * migratable, and we ignore regular swapped page. 2401 */ 2402 entry = pte_to_swp_entry(pte); 2403 if (!is_device_private_entry(entry)) 2404 goto next; 2405 2406 page = device_private_entry_to_page(entry); 2407 if (!(migrate->flags & 2408 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2409 page->pgmap->owner != migrate->pgmap_owner) 2410 goto next; 2411 2412 mpfn = migrate_pfn(page_to_pfn(page)) | 2413 MIGRATE_PFN_MIGRATE; 2414 if (is_write_device_private_entry(entry)) 2415 mpfn |= MIGRATE_PFN_WRITE; 2416 } else { 2417 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2418 goto next; 2419 pfn = pte_pfn(pte); 2420 if (is_zero_pfn(pfn)) { 2421 mpfn = MIGRATE_PFN_MIGRATE; 2422 migrate->cpages++; 2423 goto next; 2424 } 2425 page = vm_normal_page(migrate->vma, addr, pte); 2426 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2427 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2428 } 2429 2430 /* FIXME support THP */ 2431 if (!page || !page->mapping || PageTransCompound(page)) { 2432 mpfn = 0; 2433 goto next; 2434 } 2435 2436 /* 2437 * By getting a reference on the page we pin it and that blocks 2438 * any kind of migration. Side effect is that it "freezes" the 2439 * pte. 2440 * 2441 * We drop this reference after isolating the page from the lru 2442 * for non device page (device page are not on the lru and thus 2443 * can't be dropped from it). 2444 */ 2445 get_page(page); 2446 migrate->cpages++; 2447 2448 /* 2449 * Optimize for the common case where page is only mapped once 2450 * in one process. If we can lock the page, then we can safely 2451 * set up a special migration page table entry now. 2452 */ 2453 if (trylock_page(page)) { 2454 pte_t swp_pte; 2455 2456 mpfn |= MIGRATE_PFN_LOCKED; 2457 ptep_get_and_clear(mm, addr, ptep); 2458 2459 /* Setup special migration page table entry */ 2460 entry = make_migration_entry(page, mpfn & 2461 MIGRATE_PFN_WRITE); 2462 swp_pte = swp_entry_to_pte(entry); 2463 if (pte_present(pte)) { 2464 if (pte_soft_dirty(pte)) 2465 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2466 if (pte_uffd_wp(pte)) 2467 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2468 } else { 2469 if (pte_swp_soft_dirty(pte)) 2470 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2471 if (pte_swp_uffd_wp(pte)) 2472 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2473 } 2474 set_pte_at(mm, addr, ptep, swp_pte); 2475 2476 /* 2477 * This is like regular unmap: we remove the rmap and 2478 * drop page refcount. Page won't be freed, as we took 2479 * a reference just above. 2480 */ 2481 page_remove_rmap(page, false); 2482 put_page(page); 2483 2484 if (pte_present(pte)) 2485 unmapped++; 2486 } 2487 2488 next: 2489 migrate->dst[migrate->npages] = 0; 2490 migrate->src[migrate->npages++] = mpfn; 2491 } 2492 arch_leave_lazy_mmu_mode(); 2493 pte_unmap_unlock(ptep - 1, ptl); 2494 2495 /* Only flush the TLB if we actually modified any entries */ 2496 if (unmapped) 2497 flush_tlb_range(walk->vma, start, end); 2498 2499 return 0; 2500 } 2501 2502 static const struct mm_walk_ops migrate_vma_walk_ops = { 2503 .pmd_entry = migrate_vma_collect_pmd, 2504 .pte_hole = migrate_vma_collect_hole, 2505 }; 2506 2507 /* 2508 * migrate_vma_collect() - collect pages over a range of virtual addresses 2509 * @migrate: migrate struct containing all migration information 2510 * 2511 * This will walk the CPU page table. For each virtual address backed by a 2512 * valid page, it updates the src array and takes a reference on the page, in 2513 * order to pin the page until we lock it and unmap it. 2514 */ 2515 static void migrate_vma_collect(struct migrate_vma *migrate) 2516 { 2517 struct mmu_notifier_range range; 2518 2519 /* 2520 * Note that the pgmap_owner is passed to the mmu notifier callback so 2521 * that the registered device driver can skip invalidating device 2522 * private page mappings that won't be migrated. 2523 */ 2524 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2525 migrate->vma->vm_mm, migrate->start, migrate->end, 2526 migrate->pgmap_owner); 2527 mmu_notifier_invalidate_range_start(&range); 2528 2529 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2530 &migrate_vma_walk_ops, migrate); 2531 2532 mmu_notifier_invalidate_range_end(&range); 2533 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2534 } 2535 2536 /* 2537 * migrate_vma_check_page() - check if page is pinned or not 2538 * @page: struct page to check 2539 * 2540 * Pinned pages cannot be migrated. This is the same test as in 2541 * migrate_page_move_mapping(), except that here we allow migration of a 2542 * ZONE_DEVICE page. 2543 */ 2544 static bool migrate_vma_check_page(struct page *page) 2545 { 2546 /* 2547 * One extra ref because caller holds an extra reference, either from 2548 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2549 * a device page. 2550 */ 2551 int extra = 1; 2552 2553 /* 2554 * FIXME support THP (transparent huge page), it is bit more complex to 2555 * check them than regular pages, because they can be mapped with a pmd 2556 * or with a pte (split pte mapping). 2557 */ 2558 if (PageCompound(page)) 2559 return false; 2560 2561 /* Page from ZONE_DEVICE have one extra reference */ 2562 if (is_zone_device_page(page)) { 2563 /* 2564 * Private page can never be pin as they have no valid pte and 2565 * GUP will fail for those. Yet if there is a pending migration 2566 * a thread might try to wait on the pte migration entry and 2567 * will bump the page reference count. Sadly there is no way to 2568 * differentiate a regular pin from migration wait. Hence to 2569 * avoid 2 racing thread trying to migrate back to CPU to enter 2570 * infinite loop (one stopping migration because the other is 2571 * waiting on pte migration entry). We always return true here. 2572 * 2573 * FIXME proper solution is to rework migration_entry_wait() so 2574 * it does not need to take a reference on page. 2575 */ 2576 return is_device_private_page(page); 2577 } 2578 2579 /* For file back page */ 2580 if (page_mapping(page)) 2581 extra += 1 + page_has_private(page); 2582 2583 if ((page_count(page) - extra) > page_mapcount(page)) 2584 return false; 2585 2586 return true; 2587 } 2588 2589 /* 2590 * migrate_vma_prepare() - lock pages and isolate them from the lru 2591 * @migrate: migrate struct containing all migration information 2592 * 2593 * This locks pages that have been collected by migrate_vma_collect(). Once each 2594 * page is locked it is isolated from the lru (for non-device pages). Finally, 2595 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2596 * migrated by concurrent kernel threads. 2597 */ 2598 static void migrate_vma_prepare(struct migrate_vma *migrate) 2599 { 2600 const unsigned long npages = migrate->npages; 2601 const unsigned long start = migrate->start; 2602 unsigned long addr, i, restore = 0; 2603 bool allow_drain = true; 2604 2605 lru_add_drain(); 2606 2607 for (i = 0; (i < npages) && migrate->cpages; i++) { 2608 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2609 bool remap = true; 2610 2611 if (!page) 2612 continue; 2613 2614 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2615 /* 2616 * Because we are migrating several pages there can be 2617 * a deadlock between 2 concurrent migration where each 2618 * are waiting on each other page lock. 2619 * 2620 * Make migrate_vma() a best effort thing and backoff 2621 * for any page we can not lock right away. 2622 */ 2623 if (!trylock_page(page)) { 2624 migrate->src[i] = 0; 2625 migrate->cpages--; 2626 put_page(page); 2627 continue; 2628 } 2629 remap = false; 2630 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2631 } 2632 2633 /* ZONE_DEVICE pages are not on LRU */ 2634 if (!is_zone_device_page(page)) { 2635 if (!PageLRU(page) && allow_drain) { 2636 /* Drain CPU's pagevec */ 2637 lru_add_drain_all(); 2638 allow_drain = false; 2639 } 2640 2641 if (isolate_lru_page(page)) { 2642 if (remap) { 2643 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2644 migrate->cpages--; 2645 restore++; 2646 } else { 2647 migrate->src[i] = 0; 2648 unlock_page(page); 2649 migrate->cpages--; 2650 put_page(page); 2651 } 2652 continue; 2653 } 2654 2655 /* Drop the reference we took in collect */ 2656 put_page(page); 2657 } 2658 2659 if (!migrate_vma_check_page(page)) { 2660 if (remap) { 2661 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2662 migrate->cpages--; 2663 restore++; 2664 2665 if (!is_zone_device_page(page)) { 2666 get_page(page); 2667 putback_lru_page(page); 2668 } 2669 } else { 2670 migrate->src[i] = 0; 2671 unlock_page(page); 2672 migrate->cpages--; 2673 2674 if (!is_zone_device_page(page)) 2675 putback_lru_page(page); 2676 else 2677 put_page(page); 2678 } 2679 } 2680 } 2681 2682 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2683 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2684 2685 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2686 continue; 2687 2688 remove_migration_pte(page, migrate->vma, addr, page); 2689 2690 migrate->src[i] = 0; 2691 unlock_page(page); 2692 put_page(page); 2693 restore--; 2694 } 2695 } 2696 2697 /* 2698 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2699 * @migrate: migrate struct containing all migration information 2700 * 2701 * Replace page mapping (CPU page table pte) with a special migration pte entry 2702 * and check again if it has been pinned. Pinned pages are restored because we 2703 * cannot migrate them. 2704 * 2705 * This is the last step before we call the device driver callback to allocate 2706 * destination memory and copy contents of original page over to new page. 2707 */ 2708 static void migrate_vma_unmap(struct migrate_vma *migrate) 2709 { 2710 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK; 2711 const unsigned long npages = migrate->npages; 2712 const unsigned long start = migrate->start; 2713 unsigned long addr, i, restore = 0; 2714 2715 for (i = 0; i < npages; i++) { 2716 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2717 2718 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2719 continue; 2720 2721 if (page_mapped(page)) { 2722 try_to_unmap(page, flags); 2723 if (page_mapped(page)) 2724 goto restore; 2725 } 2726 2727 if (migrate_vma_check_page(page)) 2728 continue; 2729 2730 restore: 2731 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2732 migrate->cpages--; 2733 restore++; 2734 } 2735 2736 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2737 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2738 2739 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2740 continue; 2741 2742 remove_migration_ptes(page, page, false); 2743 2744 migrate->src[i] = 0; 2745 unlock_page(page); 2746 restore--; 2747 2748 if (is_zone_device_page(page)) 2749 put_page(page); 2750 else 2751 putback_lru_page(page); 2752 } 2753 } 2754 2755 /** 2756 * migrate_vma_setup() - prepare to migrate a range of memory 2757 * @args: contains the vma, start, and pfns arrays for the migration 2758 * 2759 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2760 * without an error. 2761 * 2762 * Prepare to migrate a range of memory virtual address range by collecting all 2763 * the pages backing each virtual address in the range, saving them inside the 2764 * src array. Then lock those pages and unmap them. Once the pages are locked 2765 * and unmapped, check whether each page is pinned or not. Pages that aren't 2766 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2767 * corresponding src array entry. Then restores any pages that are pinned, by 2768 * remapping and unlocking those pages. 2769 * 2770 * The caller should then allocate destination memory and copy source memory to 2771 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2772 * flag set). Once these are allocated and copied, the caller must update each 2773 * corresponding entry in the dst array with the pfn value of the destination 2774 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2775 * (destination pages must have their struct pages locked, via lock_page()). 2776 * 2777 * Note that the caller does not have to migrate all the pages that are marked 2778 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2779 * device memory to system memory. If the caller cannot migrate a device page 2780 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2781 * consequences for the userspace process, so it must be avoided if at all 2782 * possible. 2783 * 2784 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2785 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2786 * allowing the caller to allocate device memory for those unbacked virtual 2787 * addresses. For this the caller simply has to allocate device memory and 2788 * properly set the destination entry like for regular migration. Note that 2789 * this can still fail, and thus inside the device driver you must check if the 2790 * migration was successful for those entries after calling migrate_vma_pages(), 2791 * just like for regular migration. 2792 * 2793 * After that, the callers must call migrate_vma_pages() to go over each entry 2794 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2795 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2796 * then migrate_vma_pages() to migrate struct page information from the source 2797 * struct page to the destination struct page. If it fails to migrate the 2798 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2799 * src array. 2800 * 2801 * At this point all successfully migrated pages have an entry in the src 2802 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2803 * array entry with MIGRATE_PFN_VALID flag set. 2804 * 2805 * Once migrate_vma_pages() returns the caller may inspect which pages were 2806 * successfully migrated, and which were not. Successfully migrated pages will 2807 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2808 * 2809 * It is safe to update device page table after migrate_vma_pages() because 2810 * both destination and source page are still locked, and the mmap_lock is held 2811 * in read mode (hence no one can unmap the range being migrated). 2812 * 2813 * Once the caller is done cleaning up things and updating its page table (if it 2814 * chose to do so, this is not an obligation) it finally calls 2815 * migrate_vma_finalize() to update the CPU page table to point to new pages 2816 * for successfully migrated pages or otherwise restore the CPU page table to 2817 * point to the original source pages. 2818 */ 2819 int migrate_vma_setup(struct migrate_vma *args) 2820 { 2821 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2822 2823 args->start &= PAGE_MASK; 2824 args->end &= PAGE_MASK; 2825 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2826 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2827 return -EINVAL; 2828 if (nr_pages <= 0) 2829 return -EINVAL; 2830 if (args->start < args->vma->vm_start || 2831 args->start >= args->vma->vm_end) 2832 return -EINVAL; 2833 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2834 return -EINVAL; 2835 if (!args->src || !args->dst) 2836 return -EINVAL; 2837 2838 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2839 args->cpages = 0; 2840 args->npages = 0; 2841 2842 migrate_vma_collect(args); 2843 2844 if (args->cpages) 2845 migrate_vma_prepare(args); 2846 if (args->cpages) 2847 migrate_vma_unmap(args); 2848 2849 /* 2850 * At this point pages are locked and unmapped, and thus they have 2851 * stable content and can safely be copied to destination memory that 2852 * is allocated by the drivers. 2853 */ 2854 return 0; 2855 2856 } 2857 EXPORT_SYMBOL(migrate_vma_setup); 2858 2859 /* 2860 * This code closely matches the code in: 2861 * __handle_mm_fault() 2862 * handle_pte_fault() 2863 * do_anonymous_page() 2864 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2865 * private page. 2866 */ 2867 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2868 unsigned long addr, 2869 struct page *page, 2870 unsigned long *src) 2871 { 2872 struct vm_area_struct *vma = migrate->vma; 2873 struct mm_struct *mm = vma->vm_mm; 2874 bool flush = false; 2875 spinlock_t *ptl; 2876 pte_t entry; 2877 pgd_t *pgdp; 2878 p4d_t *p4dp; 2879 pud_t *pudp; 2880 pmd_t *pmdp; 2881 pte_t *ptep; 2882 2883 /* Only allow populating anonymous memory */ 2884 if (!vma_is_anonymous(vma)) 2885 goto abort; 2886 2887 pgdp = pgd_offset(mm, addr); 2888 p4dp = p4d_alloc(mm, pgdp, addr); 2889 if (!p4dp) 2890 goto abort; 2891 pudp = pud_alloc(mm, p4dp, addr); 2892 if (!pudp) 2893 goto abort; 2894 pmdp = pmd_alloc(mm, pudp, addr); 2895 if (!pmdp) 2896 goto abort; 2897 2898 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2899 goto abort; 2900 2901 /* 2902 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2903 * pte_offset_map() on pmds where a huge pmd might be created 2904 * from a different thread. 2905 * 2906 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2907 * parallel threads are excluded by other means. 2908 * 2909 * Here we only have mmap_read_lock(mm). 2910 */ 2911 if (pte_alloc(mm, pmdp)) 2912 goto abort; 2913 2914 /* See the comment in pte_alloc_one_map() */ 2915 if (unlikely(pmd_trans_unstable(pmdp))) 2916 goto abort; 2917 2918 if (unlikely(anon_vma_prepare(vma))) 2919 goto abort; 2920 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2921 goto abort; 2922 2923 /* 2924 * The memory barrier inside __SetPageUptodate makes sure that 2925 * preceding stores to the page contents become visible before 2926 * the set_pte_at() write. 2927 */ 2928 __SetPageUptodate(page); 2929 2930 if (is_zone_device_page(page)) { 2931 if (is_device_private_page(page)) { 2932 swp_entry_t swp_entry; 2933 2934 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2935 entry = swp_entry_to_pte(swp_entry); 2936 } else { 2937 /* 2938 * For now we only support migrating to un-addressable 2939 * device memory. 2940 */ 2941 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 2942 goto abort; 2943 } 2944 } else { 2945 entry = mk_pte(page, vma->vm_page_prot); 2946 if (vma->vm_flags & VM_WRITE) 2947 entry = pte_mkwrite(pte_mkdirty(entry)); 2948 } 2949 2950 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2951 2952 if (check_stable_address_space(mm)) 2953 goto unlock_abort; 2954 2955 if (pte_present(*ptep)) { 2956 unsigned long pfn = pte_pfn(*ptep); 2957 2958 if (!is_zero_pfn(pfn)) 2959 goto unlock_abort; 2960 flush = true; 2961 } else if (!pte_none(*ptep)) 2962 goto unlock_abort; 2963 2964 /* 2965 * Check for userfaultfd but do not deliver the fault. Instead, 2966 * just back off. 2967 */ 2968 if (userfaultfd_missing(vma)) 2969 goto unlock_abort; 2970 2971 inc_mm_counter(mm, MM_ANONPAGES); 2972 page_add_new_anon_rmap(page, vma, addr, false); 2973 if (!is_zone_device_page(page)) 2974 lru_cache_add_inactive_or_unevictable(page, vma); 2975 get_page(page); 2976 2977 if (flush) { 2978 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2979 ptep_clear_flush_notify(vma, addr, ptep); 2980 set_pte_at_notify(mm, addr, ptep, entry); 2981 update_mmu_cache(vma, addr, ptep); 2982 } else { 2983 /* No need to invalidate - it was non-present before */ 2984 set_pte_at(mm, addr, ptep, entry); 2985 update_mmu_cache(vma, addr, ptep); 2986 } 2987 2988 pte_unmap_unlock(ptep, ptl); 2989 *src = MIGRATE_PFN_MIGRATE; 2990 return; 2991 2992 unlock_abort: 2993 pte_unmap_unlock(ptep, ptl); 2994 abort: 2995 *src &= ~MIGRATE_PFN_MIGRATE; 2996 } 2997 2998 /** 2999 * migrate_vma_pages() - migrate meta-data from src page to dst page 3000 * @migrate: migrate struct containing all migration information 3001 * 3002 * This migrates struct page meta-data from source struct page to destination 3003 * struct page. This effectively finishes the migration from source page to the 3004 * destination page. 3005 */ 3006 void migrate_vma_pages(struct migrate_vma *migrate) 3007 { 3008 const unsigned long npages = migrate->npages; 3009 const unsigned long start = migrate->start; 3010 struct mmu_notifier_range range; 3011 unsigned long addr, i; 3012 bool notified = false; 3013 3014 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 3015 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3016 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3017 struct address_space *mapping; 3018 int r; 3019 3020 if (!newpage) { 3021 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3022 continue; 3023 } 3024 3025 if (!page) { 3026 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 3027 continue; 3028 if (!notified) { 3029 notified = true; 3030 3031 mmu_notifier_range_init_migrate(&range, 0, 3032 migrate->vma, migrate->vma->vm_mm, 3033 addr, migrate->end, 3034 migrate->pgmap_owner); 3035 mmu_notifier_invalidate_range_start(&range); 3036 } 3037 migrate_vma_insert_page(migrate, addr, newpage, 3038 &migrate->src[i]); 3039 continue; 3040 } 3041 3042 mapping = page_mapping(page); 3043 3044 if (is_zone_device_page(newpage)) { 3045 if (is_device_private_page(newpage)) { 3046 /* 3047 * For now only support private anonymous when 3048 * migrating to un-addressable device memory. 3049 */ 3050 if (mapping) { 3051 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3052 continue; 3053 } 3054 } else { 3055 /* 3056 * Other types of ZONE_DEVICE page are not 3057 * supported. 3058 */ 3059 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3060 continue; 3061 } 3062 } 3063 3064 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3065 if (r != MIGRATEPAGE_SUCCESS) 3066 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3067 } 3068 3069 /* 3070 * No need to double call mmu_notifier->invalidate_range() callback as 3071 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3072 * did already call it. 3073 */ 3074 if (notified) 3075 mmu_notifier_invalidate_range_only_end(&range); 3076 } 3077 EXPORT_SYMBOL(migrate_vma_pages); 3078 3079 /** 3080 * migrate_vma_finalize() - restore CPU page table entry 3081 * @migrate: migrate struct containing all migration information 3082 * 3083 * This replaces the special migration pte entry with either a mapping to the 3084 * new page if migration was successful for that page, or to the original page 3085 * otherwise. 3086 * 3087 * This also unlocks the pages and puts them back on the lru, or drops the extra 3088 * refcount, for device pages. 3089 */ 3090 void migrate_vma_finalize(struct migrate_vma *migrate) 3091 { 3092 const unsigned long npages = migrate->npages; 3093 unsigned long i; 3094 3095 for (i = 0; i < npages; i++) { 3096 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3097 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3098 3099 if (!page) { 3100 if (newpage) { 3101 unlock_page(newpage); 3102 put_page(newpage); 3103 } 3104 continue; 3105 } 3106 3107 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3108 if (newpage) { 3109 unlock_page(newpage); 3110 put_page(newpage); 3111 } 3112 newpage = page; 3113 } 3114 3115 remove_migration_ptes(page, newpage, false); 3116 unlock_page(page); 3117 3118 if (is_zone_device_page(page)) 3119 put_page(page); 3120 else 3121 putback_lru_page(page); 3122 3123 if (newpage != page) { 3124 unlock_page(newpage); 3125 if (is_zone_device_page(newpage)) 3126 put_page(newpage); 3127 else 3128 putback_lru_page(newpage); 3129 } 3130 } 3131 } 3132 EXPORT_SYMBOL(migrate_vma_finalize); 3133 #endif /* CONFIG_DEVICE_PRIVATE */ 3134