xref: /openbmc/linux/mm/migrate.c (revision ad2fa3717b74994a22519dbe045757135db00dbb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	__SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	__ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				__ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 				 unsigned long addr, void *old)
176 {
177 	struct page_vma_mapped_walk pvmw = {
178 		.page = old,
179 		.vma = vma,
180 		.address = addr,
181 		.flags = PVMW_SYNC | PVMW_MIGRATION,
182 	};
183 	struct page *new;
184 	pte_t pte;
185 	swp_entry_t entry;
186 
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		if (PageKsm(page))
190 			new = page;
191 		else
192 			new = page - pvmw.page->index +
193 				linear_page_index(vma, pvmw.address);
194 
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 		/* PMD-mapped THP migration entry */
197 		if (!pvmw.pte) {
198 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 			remove_migration_pmd(&pvmw, new);
200 			continue;
201 		}
202 #endif
203 
204 		get_page(new);
205 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 		if (pte_swp_soft_dirty(*pvmw.pte))
207 			pte = pte_mksoft_dirty(pte);
208 
209 		/*
210 		 * Recheck VMA as permissions can change since migration started
211 		 */
212 		entry = pte_to_swp_entry(*pvmw.pte);
213 		if (is_write_migration_entry(entry))
214 			pte = maybe_mkwrite(pte, vma);
215 		else if (pte_swp_uffd_wp(*pvmw.pte))
216 			pte = pte_mkuffd_wp(pte);
217 
218 		if (unlikely(is_device_private_page(new))) {
219 			entry = make_device_private_entry(new, pte_write(pte));
220 			pte = swp_entry_to_pte(entry);
221 			if (pte_swp_soft_dirty(*pvmw.pte))
222 				pte = pte_swp_mksoft_dirty(pte);
223 			if (pte_swp_uffd_wp(*pvmw.pte))
224 				pte = pte_swp_mkuffd_wp(pte);
225 		}
226 
227 #ifdef CONFIG_HUGETLB_PAGE
228 		if (PageHuge(new)) {
229 			pte = pte_mkhuge(pte);
230 			pte = arch_make_huge_pte(pte, vma, new, 0);
231 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232 			if (PageAnon(new))
233 				hugepage_add_anon_rmap(new, vma, pvmw.address);
234 			else
235 				page_dup_rmap(new, true);
236 		} else
237 #endif
238 		{
239 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 
241 			if (PageAnon(new))
242 				page_add_anon_rmap(new, vma, pvmw.address, false);
243 			else
244 				page_add_file_rmap(new, false);
245 		}
246 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 			mlock_vma_page(new);
248 
249 		if (PageTransHuge(page) && PageMlocked(page))
250 			clear_page_mlock(page);
251 
252 		/* No need to invalidate - it was non-present before */
253 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 	}
255 
256 	return true;
257 }
258 
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265 	struct rmap_walk_control rwc = {
266 		.rmap_one = remove_migration_pte,
267 		.arg = old,
268 	};
269 
270 	if (locked)
271 		rmap_walk_locked(new, &rwc);
272 	else
273 		rmap_walk(new, &rwc);
274 }
275 
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282 				spinlock_t *ptl)
283 {
284 	pte_t pte;
285 	swp_entry_t entry;
286 	struct page *page;
287 
288 	spin_lock(ptl);
289 	pte = *ptep;
290 	if (!is_swap_pte(pte))
291 		goto out;
292 
293 	entry = pte_to_swp_entry(pte);
294 	if (!is_migration_entry(entry))
295 		goto out;
296 
297 	page = migration_entry_to_page(entry);
298 	page = compound_head(page);
299 
300 	/*
301 	 * Once page cache replacement of page migration started, page_count
302 	 * is zero; but we must not call put_and_wait_on_page_locked() without
303 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
304 	 */
305 	if (!get_page_unless_zero(page))
306 		goto out;
307 	pte_unmap_unlock(ptep, ptl);
308 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
309 	return;
310 out:
311 	pte_unmap_unlock(ptep, ptl);
312 }
313 
314 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
315 				unsigned long address)
316 {
317 	spinlock_t *ptl = pte_lockptr(mm, pmd);
318 	pte_t *ptep = pte_offset_map(pmd, address);
319 	__migration_entry_wait(mm, ptep, ptl);
320 }
321 
322 void migration_entry_wait_huge(struct vm_area_struct *vma,
323 		struct mm_struct *mm, pte_t *pte)
324 {
325 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
326 	__migration_entry_wait(mm, pte, ptl);
327 }
328 
329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
330 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
331 {
332 	spinlock_t *ptl;
333 	struct page *page;
334 
335 	ptl = pmd_lock(mm, pmd);
336 	if (!is_pmd_migration_entry(*pmd))
337 		goto unlock;
338 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
339 	if (!get_page_unless_zero(page))
340 		goto unlock;
341 	spin_unlock(ptl);
342 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
343 	return;
344 unlock:
345 	spin_unlock(ptl);
346 }
347 #endif
348 
349 static int expected_page_refs(struct address_space *mapping, struct page *page)
350 {
351 	int expected_count = 1;
352 
353 	/*
354 	 * Device private pages have an extra refcount as they are
355 	 * ZONE_DEVICE pages.
356 	 */
357 	expected_count += is_device_private_page(page);
358 	if (mapping)
359 		expected_count += thp_nr_pages(page) + page_has_private(page);
360 
361 	return expected_count;
362 }
363 
364 /*
365  * Replace the page in the mapping.
366  *
367  * The number of remaining references must be:
368  * 1 for anonymous pages without a mapping
369  * 2 for pages with a mapping
370  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
371  */
372 int migrate_page_move_mapping(struct address_space *mapping,
373 		struct page *newpage, struct page *page, int extra_count)
374 {
375 	XA_STATE(xas, &mapping->i_pages, page_index(page));
376 	struct zone *oldzone, *newzone;
377 	int dirty;
378 	int expected_count = expected_page_refs(mapping, page) + extra_count;
379 	int nr = thp_nr_pages(page);
380 
381 	if (!mapping) {
382 		/* Anonymous page without mapping */
383 		if (page_count(page) != expected_count)
384 			return -EAGAIN;
385 
386 		/* No turning back from here */
387 		newpage->index = page->index;
388 		newpage->mapping = page->mapping;
389 		if (PageSwapBacked(page))
390 			__SetPageSwapBacked(newpage);
391 
392 		return MIGRATEPAGE_SUCCESS;
393 	}
394 
395 	oldzone = page_zone(page);
396 	newzone = page_zone(newpage);
397 
398 	xas_lock_irq(&xas);
399 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
400 		xas_unlock_irq(&xas);
401 		return -EAGAIN;
402 	}
403 
404 	if (!page_ref_freeze(page, expected_count)) {
405 		xas_unlock_irq(&xas);
406 		return -EAGAIN;
407 	}
408 
409 	/*
410 	 * Now we know that no one else is looking at the page:
411 	 * no turning back from here.
412 	 */
413 	newpage->index = page->index;
414 	newpage->mapping = page->mapping;
415 	page_ref_add(newpage, nr); /* add cache reference */
416 	if (PageSwapBacked(page)) {
417 		__SetPageSwapBacked(newpage);
418 		if (PageSwapCache(page)) {
419 			SetPageSwapCache(newpage);
420 			set_page_private(newpage, page_private(page));
421 		}
422 	} else {
423 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
424 	}
425 
426 	/* Move dirty while page refs frozen and newpage not yet exposed */
427 	dirty = PageDirty(page);
428 	if (dirty) {
429 		ClearPageDirty(page);
430 		SetPageDirty(newpage);
431 	}
432 
433 	xas_store(&xas, newpage);
434 	if (PageTransHuge(page)) {
435 		int i;
436 
437 		for (i = 1; i < nr; i++) {
438 			xas_next(&xas);
439 			xas_store(&xas, newpage);
440 		}
441 	}
442 
443 	/*
444 	 * Drop cache reference from old page by unfreezing
445 	 * to one less reference.
446 	 * We know this isn't the last reference.
447 	 */
448 	page_ref_unfreeze(page, expected_count - nr);
449 
450 	xas_unlock(&xas);
451 	/* Leave irq disabled to prevent preemption while updating stats */
452 
453 	/*
454 	 * If moved to a different zone then also account
455 	 * the page for that zone. Other VM counters will be
456 	 * taken care of when we establish references to the
457 	 * new page and drop references to the old page.
458 	 *
459 	 * Note that anonymous pages are accounted for
460 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
461 	 * are mapped to swap space.
462 	 */
463 	if (newzone != oldzone) {
464 		struct lruvec *old_lruvec, *new_lruvec;
465 		struct mem_cgroup *memcg;
466 
467 		memcg = page_memcg(page);
468 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
469 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
470 
471 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
472 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
473 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
474 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
475 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
476 		}
477 #ifdef CONFIG_SWAP
478 		if (PageSwapCache(page)) {
479 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
480 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
481 		}
482 #endif
483 		if (dirty && mapping_can_writeback(mapping)) {
484 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
485 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
486 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
487 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
488 		}
489 	}
490 	local_irq_enable();
491 
492 	return MIGRATEPAGE_SUCCESS;
493 }
494 EXPORT_SYMBOL(migrate_page_move_mapping);
495 
496 /*
497  * The expected number of remaining references is the same as that
498  * of migrate_page_move_mapping().
499  */
500 int migrate_huge_page_move_mapping(struct address_space *mapping,
501 				   struct page *newpage, struct page *page)
502 {
503 	XA_STATE(xas, &mapping->i_pages, page_index(page));
504 	int expected_count;
505 
506 	xas_lock_irq(&xas);
507 	expected_count = 2 + page_has_private(page);
508 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
509 		xas_unlock_irq(&xas);
510 		return -EAGAIN;
511 	}
512 
513 	if (!page_ref_freeze(page, expected_count)) {
514 		xas_unlock_irq(&xas);
515 		return -EAGAIN;
516 	}
517 
518 	newpage->index = page->index;
519 	newpage->mapping = page->mapping;
520 
521 	get_page(newpage);
522 
523 	xas_store(&xas, newpage);
524 
525 	page_ref_unfreeze(page, expected_count - 1);
526 
527 	xas_unlock_irq(&xas);
528 
529 	return MIGRATEPAGE_SUCCESS;
530 }
531 
532 /*
533  * Gigantic pages are so large that we do not guarantee that page++ pointer
534  * arithmetic will work across the entire page.  We need something more
535  * specialized.
536  */
537 static void __copy_gigantic_page(struct page *dst, struct page *src,
538 				int nr_pages)
539 {
540 	int i;
541 	struct page *dst_base = dst;
542 	struct page *src_base = src;
543 
544 	for (i = 0; i < nr_pages; ) {
545 		cond_resched();
546 		copy_highpage(dst, src);
547 
548 		i++;
549 		dst = mem_map_next(dst, dst_base, i);
550 		src = mem_map_next(src, src_base, i);
551 	}
552 }
553 
554 static void copy_huge_page(struct page *dst, struct page *src)
555 {
556 	int i;
557 	int nr_pages;
558 
559 	if (PageHuge(src)) {
560 		/* hugetlbfs page */
561 		struct hstate *h = page_hstate(src);
562 		nr_pages = pages_per_huge_page(h);
563 
564 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
565 			__copy_gigantic_page(dst, src, nr_pages);
566 			return;
567 		}
568 	} else {
569 		/* thp page */
570 		BUG_ON(!PageTransHuge(src));
571 		nr_pages = thp_nr_pages(src);
572 	}
573 
574 	for (i = 0; i < nr_pages; i++) {
575 		cond_resched();
576 		copy_highpage(dst + i, src + i);
577 	}
578 }
579 
580 /*
581  * Copy the page to its new location
582  */
583 void migrate_page_states(struct page *newpage, struct page *page)
584 {
585 	int cpupid;
586 
587 	if (PageError(page))
588 		SetPageError(newpage);
589 	if (PageReferenced(page))
590 		SetPageReferenced(newpage);
591 	if (PageUptodate(page))
592 		SetPageUptodate(newpage);
593 	if (TestClearPageActive(page)) {
594 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
595 		SetPageActive(newpage);
596 	} else if (TestClearPageUnevictable(page))
597 		SetPageUnevictable(newpage);
598 	if (PageWorkingset(page))
599 		SetPageWorkingset(newpage);
600 	if (PageChecked(page))
601 		SetPageChecked(newpage);
602 	if (PageMappedToDisk(page))
603 		SetPageMappedToDisk(newpage);
604 
605 	/* Move dirty on pages not done by migrate_page_move_mapping() */
606 	if (PageDirty(page))
607 		SetPageDirty(newpage);
608 
609 	if (page_is_young(page))
610 		set_page_young(newpage);
611 	if (page_is_idle(page))
612 		set_page_idle(newpage);
613 
614 	/*
615 	 * Copy NUMA information to the new page, to prevent over-eager
616 	 * future migrations of this same page.
617 	 */
618 	cpupid = page_cpupid_xchg_last(page, -1);
619 	page_cpupid_xchg_last(newpage, cpupid);
620 
621 	ksm_migrate_page(newpage, page);
622 	/*
623 	 * Please do not reorder this without considering how mm/ksm.c's
624 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
625 	 */
626 	if (PageSwapCache(page))
627 		ClearPageSwapCache(page);
628 	ClearPagePrivate(page);
629 
630 	/* page->private contains hugetlb specific flags */
631 	if (!PageHuge(page))
632 		set_page_private(page, 0);
633 
634 	/*
635 	 * If any waiters have accumulated on the new page then
636 	 * wake them up.
637 	 */
638 	if (PageWriteback(newpage))
639 		end_page_writeback(newpage);
640 
641 	/*
642 	 * PG_readahead shares the same bit with PG_reclaim.  The above
643 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
644 	 * bit after that.
645 	 */
646 	if (PageReadahead(page))
647 		SetPageReadahead(newpage);
648 
649 	copy_page_owner(page, newpage);
650 
651 	if (!PageHuge(page))
652 		mem_cgroup_migrate(page, newpage);
653 }
654 EXPORT_SYMBOL(migrate_page_states);
655 
656 void migrate_page_copy(struct page *newpage, struct page *page)
657 {
658 	if (PageHuge(page) || PageTransHuge(page))
659 		copy_huge_page(newpage, page);
660 	else
661 		copy_highpage(newpage, page);
662 
663 	migrate_page_states(newpage, page);
664 }
665 EXPORT_SYMBOL(migrate_page_copy);
666 
667 /************************************************************
668  *                    Migration functions
669  ***********************************************************/
670 
671 /*
672  * Common logic to directly migrate a single LRU page suitable for
673  * pages that do not use PagePrivate/PagePrivate2.
674  *
675  * Pages are locked upon entry and exit.
676  */
677 int migrate_page(struct address_space *mapping,
678 		struct page *newpage, struct page *page,
679 		enum migrate_mode mode)
680 {
681 	int rc;
682 
683 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
684 
685 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686 
687 	if (rc != MIGRATEPAGE_SUCCESS)
688 		return rc;
689 
690 	if (mode != MIGRATE_SYNC_NO_COPY)
691 		migrate_page_copy(newpage, page);
692 	else
693 		migrate_page_states(newpage, page);
694 	return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697 
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701 							enum migrate_mode mode)
702 {
703 	struct buffer_head *bh = head;
704 
705 	/* Simple case, sync compaction */
706 	if (mode != MIGRATE_ASYNC) {
707 		do {
708 			lock_buffer(bh);
709 			bh = bh->b_this_page;
710 
711 		} while (bh != head);
712 
713 		return true;
714 	}
715 
716 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
717 	do {
718 		if (!trylock_buffer(bh)) {
719 			/*
720 			 * We failed to lock the buffer and cannot stall in
721 			 * async migration. Release the taken locks
722 			 */
723 			struct buffer_head *failed_bh = bh;
724 			bh = head;
725 			while (bh != failed_bh) {
726 				unlock_buffer(bh);
727 				bh = bh->b_this_page;
728 			}
729 			return false;
730 		}
731 
732 		bh = bh->b_this_page;
733 	} while (bh != head);
734 	return true;
735 }
736 
737 static int __buffer_migrate_page(struct address_space *mapping,
738 		struct page *newpage, struct page *page, enum migrate_mode mode,
739 		bool check_refs)
740 {
741 	struct buffer_head *bh, *head;
742 	int rc;
743 	int expected_count;
744 
745 	if (!page_has_buffers(page))
746 		return migrate_page(mapping, newpage, page, mode);
747 
748 	/* Check whether page does not have extra refs before we do more work */
749 	expected_count = expected_page_refs(mapping, page);
750 	if (page_count(page) != expected_count)
751 		return -EAGAIN;
752 
753 	head = page_buffers(page);
754 	if (!buffer_migrate_lock_buffers(head, mode))
755 		return -EAGAIN;
756 
757 	if (check_refs) {
758 		bool busy;
759 		bool invalidated = false;
760 
761 recheck_buffers:
762 		busy = false;
763 		spin_lock(&mapping->private_lock);
764 		bh = head;
765 		do {
766 			if (atomic_read(&bh->b_count)) {
767 				busy = true;
768 				break;
769 			}
770 			bh = bh->b_this_page;
771 		} while (bh != head);
772 		if (busy) {
773 			if (invalidated) {
774 				rc = -EAGAIN;
775 				goto unlock_buffers;
776 			}
777 			spin_unlock(&mapping->private_lock);
778 			invalidate_bh_lrus();
779 			invalidated = true;
780 			goto recheck_buffers;
781 		}
782 	}
783 
784 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785 	if (rc != MIGRATEPAGE_SUCCESS)
786 		goto unlock_buffers;
787 
788 	attach_page_private(newpage, detach_page_private(page));
789 
790 	bh = head;
791 	do {
792 		set_bh_page(bh, newpage, bh_offset(bh));
793 		bh = bh->b_this_page;
794 
795 	} while (bh != head);
796 
797 	if (mode != MIGRATE_SYNC_NO_COPY)
798 		migrate_page_copy(newpage, page);
799 	else
800 		migrate_page_states(newpage, page);
801 
802 	rc = MIGRATEPAGE_SUCCESS;
803 unlock_buffers:
804 	if (check_refs)
805 		spin_unlock(&mapping->private_lock);
806 	bh = head;
807 	do {
808 		unlock_buffer(bh);
809 		bh = bh->b_this_page;
810 
811 	} while (bh != head);
812 
813 	return rc;
814 }
815 
816 /*
817  * Migration function for pages with buffers. This function can only be used
818  * if the underlying filesystem guarantees that no other references to "page"
819  * exist. For example attached buffer heads are accessed only under page lock.
820  */
821 int buffer_migrate_page(struct address_space *mapping,
822 		struct page *newpage, struct page *page, enum migrate_mode mode)
823 {
824 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
825 }
826 EXPORT_SYMBOL(buffer_migrate_page);
827 
828 /*
829  * Same as above except that this variant is more careful and checks that there
830  * are also no buffer head references. This function is the right one for
831  * mappings where buffer heads are directly looked up and referenced (such as
832  * block device mappings).
833  */
834 int buffer_migrate_page_norefs(struct address_space *mapping,
835 		struct page *newpage, struct page *page, enum migrate_mode mode)
836 {
837 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
838 }
839 #endif
840 
841 /*
842  * Writeback a page to clean the dirty state
843  */
844 static int writeout(struct address_space *mapping, struct page *page)
845 {
846 	struct writeback_control wbc = {
847 		.sync_mode = WB_SYNC_NONE,
848 		.nr_to_write = 1,
849 		.range_start = 0,
850 		.range_end = LLONG_MAX,
851 		.for_reclaim = 1
852 	};
853 	int rc;
854 
855 	if (!mapping->a_ops->writepage)
856 		/* No write method for the address space */
857 		return -EINVAL;
858 
859 	if (!clear_page_dirty_for_io(page))
860 		/* Someone else already triggered a write */
861 		return -EAGAIN;
862 
863 	/*
864 	 * A dirty page may imply that the underlying filesystem has
865 	 * the page on some queue. So the page must be clean for
866 	 * migration. Writeout may mean we loose the lock and the
867 	 * page state is no longer what we checked for earlier.
868 	 * At this point we know that the migration attempt cannot
869 	 * be successful.
870 	 */
871 	remove_migration_ptes(page, page, false);
872 
873 	rc = mapping->a_ops->writepage(page, &wbc);
874 
875 	if (rc != AOP_WRITEPAGE_ACTIVATE)
876 		/* unlocked. Relock */
877 		lock_page(page);
878 
879 	return (rc < 0) ? -EIO : -EAGAIN;
880 }
881 
882 /*
883  * Default handling if a filesystem does not provide a migration function.
884  */
885 static int fallback_migrate_page(struct address_space *mapping,
886 	struct page *newpage, struct page *page, enum migrate_mode mode)
887 {
888 	if (PageDirty(page)) {
889 		/* Only writeback pages in full synchronous migration */
890 		switch (mode) {
891 		case MIGRATE_SYNC:
892 		case MIGRATE_SYNC_NO_COPY:
893 			break;
894 		default:
895 			return -EBUSY;
896 		}
897 		return writeout(mapping, page);
898 	}
899 
900 	/*
901 	 * Buffers may be managed in a filesystem specific way.
902 	 * We must have no buffers or drop them.
903 	 */
904 	if (page_has_private(page) &&
905 	    !try_to_release_page(page, GFP_KERNEL))
906 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
907 
908 	return migrate_page(mapping, newpage, page, mode);
909 }
910 
911 /*
912  * Move a page to a newly allocated page
913  * The page is locked and all ptes have been successfully removed.
914  *
915  * The new page will have replaced the old page if this function
916  * is successful.
917  *
918  * Return value:
919  *   < 0 - error code
920  *  MIGRATEPAGE_SUCCESS - success
921  */
922 static int move_to_new_page(struct page *newpage, struct page *page,
923 				enum migrate_mode mode)
924 {
925 	struct address_space *mapping;
926 	int rc = -EAGAIN;
927 	bool is_lru = !__PageMovable(page);
928 
929 	VM_BUG_ON_PAGE(!PageLocked(page), page);
930 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
931 
932 	mapping = page_mapping(page);
933 
934 	if (likely(is_lru)) {
935 		if (!mapping)
936 			rc = migrate_page(mapping, newpage, page, mode);
937 		else if (mapping->a_ops->migratepage)
938 			/*
939 			 * Most pages have a mapping and most filesystems
940 			 * provide a migratepage callback. Anonymous pages
941 			 * are part of swap space which also has its own
942 			 * migratepage callback. This is the most common path
943 			 * for page migration.
944 			 */
945 			rc = mapping->a_ops->migratepage(mapping, newpage,
946 							page, mode);
947 		else
948 			rc = fallback_migrate_page(mapping, newpage,
949 							page, mode);
950 	} else {
951 		/*
952 		 * In case of non-lru page, it could be released after
953 		 * isolation step. In that case, we shouldn't try migration.
954 		 */
955 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
956 		if (!PageMovable(page)) {
957 			rc = MIGRATEPAGE_SUCCESS;
958 			__ClearPageIsolated(page);
959 			goto out;
960 		}
961 
962 		rc = mapping->a_ops->migratepage(mapping, newpage,
963 						page, mode);
964 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
965 			!PageIsolated(page));
966 	}
967 
968 	/*
969 	 * When successful, old pagecache page->mapping must be cleared before
970 	 * page is freed; but stats require that PageAnon be left as PageAnon.
971 	 */
972 	if (rc == MIGRATEPAGE_SUCCESS) {
973 		if (__PageMovable(page)) {
974 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
975 
976 			/*
977 			 * We clear PG_movable under page_lock so any compactor
978 			 * cannot try to migrate this page.
979 			 */
980 			__ClearPageIsolated(page);
981 		}
982 
983 		/*
984 		 * Anonymous and movable page->mapping will be cleared by
985 		 * free_pages_prepare so don't reset it here for keeping
986 		 * the type to work PageAnon, for example.
987 		 */
988 		if (!PageMappingFlags(page))
989 			page->mapping = NULL;
990 
991 		if (likely(!is_zone_device_page(newpage)))
992 			flush_dcache_page(newpage);
993 
994 	}
995 out:
996 	return rc;
997 }
998 
999 static int __unmap_and_move(struct page *page, struct page *newpage,
1000 				int force, enum migrate_mode mode)
1001 {
1002 	int rc = -EAGAIN;
1003 	int page_was_mapped = 0;
1004 	struct anon_vma *anon_vma = NULL;
1005 	bool is_lru = !__PageMovable(page);
1006 
1007 	if (!trylock_page(page)) {
1008 		if (!force || mode == MIGRATE_ASYNC)
1009 			goto out;
1010 
1011 		/*
1012 		 * It's not safe for direct compaction to call lock_page.
1013 		 * For example, during page readahead pages are added locked
1014 		 * to the LRU. Later, when the IO completes the pages are
1015 		 * marked uptodate and unlocked. However, the queueing
1016 		 * could be merging multiple pages for one bio (e.g.
1017 		 * mpage_readahead). If an allocation happens for the
1018 		 * second or third page, the process can end up locking
1019 		 * the same page twice and deadlocking. Rather than
1020 		 * trying to be clever about what pages can be locked,
1021 		 * avoid the use of lock_page for direct compaction
1022 		 * altogether.
1023 		 */
1024 		if (current->flags & PF_MEMALLOC)
1025 			goto out;
1026 
1027 		lock_page(page);
1028 	}
1029 
1030 	if (PageWriteback(page)) {
1031 		/*
1032 		 * Only in the case of a full synchronous migration is it
1033 		 * necessary to wait for PageWriteback. In the async case,
1034 		 * the retry loop is too short and in the sync-light case,
1035 		 * the overhead of stalling is too much
1036 		 */
1037 		switch (mode) {
1038 		case MIGRATE_SYNC:
1039 		case MIGRATE_SYNC_NO_COPY:
1040 			break;
1041 		default:
1042 			rc = -EBUSY;
1043 			goto out_unlock;
1044 		}
1045 		if (!force)
1046 			goto out_unlock;
1047 		wait_on_page_writeback(page);
1048 	}
1049 
1050 	/*
1051 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1052 	 * we cannot notice that anon_vma is freed while we migrates a page.
1053 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1054 	 * of migration. File cache pages are no problem because of page_lock()
1055 	 * File Caches may use write_page() or lock_page() in migration, then,
1056 	 * just care Anon page here.
1057 	 *
1058 	 * Only page_get_anon_vma() understands the subtleties of
1059 	 * getting a hold on an anon_vma from outside one of its mms.
1060 	 * But if we cannot get anon_vma, then we won't need it anyway,
1061 	 * because that implies that the anon page is no longer mapped
1062 	 * (and cannot be remapped so long as we hold the page lock).
1063 	 */
1064 	if (PageAnon(page) && !PageKsm(page))
1065 		anon_vma = page_get_anon_vma(page);
1066 
1067 	/*
1068 	 * Block others from accessing the new page when we get around to
1069 	 * establishing additional references. We are usually the only one
1070 	 * holding a reference to newpage at this point. We used to have a BUG
1071 	 * here if trylock_page(newpage) fails, but would like to allow for
1072 	 * cases where there might be a race with the previous use of newpage.
1073 	 * This is much like races on refcount of oldpage: just don't BUG().
1074 	 */
1075 	if (unlikely(!trylock_page(newpage)))
1076 		goto out_unlock;
1077 
1078 	if (unlikely(!is_lru)) {
1079 		rc = move_to_new_page(newpage, page, mode);
1080 		goto out_unlock_both;
1081 	}
1082 
1083 	/*
1084 	 * Corner case handling:
1085 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1086 	 * and treated as swapcache but it has no rmap yet.
1087 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1088 	 * trigger a BUG.  So handle it here.
1089 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1090 	 * fs-private metadata. The page can be picked up due to memory
1091 	 * offlining.  Everywhere else except page reclaim, the page is
1092 	 * invisible to the vm, so the page can not be migrated.  So try to
1093 	 * free the metadata, so the page can be freed.
1094 	 */
1095 	if (!page->mapping) {
1096 		VM_BUG_ON_PAGE(PageAnon(page), page);
1097 		if (page_has_private(page)) {
1098 			try_to_free_buffers(page);
1099 			goto out_unlock_both;
1100 		}
1101 	} else if (page_mapped(page)) {
1102 		/* Establish migration ptes */
1103 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1104 				page);
1105 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1106 		page_was_mapped = 1;
1107 	}
1108 
1109 	if (!page_mapped(page))
1110 		rc = move_to_new_page(newpage, page, mode);
1111 
1112 	if (page_was_mapped)
1113 		remove_migration_ptes(page,
1114 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1115 
1116 out_unlock_both:
1117 	unlock_page(newpage);
1118 out_unlock:
1119 	/* Drop an anon_vma reference if we took one */
1120 	if (anon_vma)
1121 		put_anon_vma(anon_vma);
1122 	unlock_page(page);
1123 out:
1124 	/*
1125 	 * If migration is successful, decrease refcount of the newpage
1126 	 * which will not free the page because new page owner increased
1127 	 * refcounter. As well, if it is LRU page, add the page to LRU
1128 	 * list in here. Use the old state of the isolated source page to
1129 	 * determine if we migrated a LRU page. newpage was already unlocked
1130 	 * and possibly modified by its owner - don't rely on the page
1131 	 * state.
1132 	 */
1133 	if (rc == MIGRATEPAGE_SUCCESS) {
1134 		if (unlikely(!is_lru))
1135 			put_page(newpage);
1136 		else
1137 			putback_lru_page(newpage);
1138 	}
1139 
1140 	return rc;
1141 }
1142 
1143 /*
1144  * Obtain the lock on page, remove all ptes and migrate the page
1145  * to the newly allocated page in newpage.
1146  */
1147 static int unmap_and_move(new_page_t get_new_page,
1148 				   free_page_t put_new_page,
1149 				   unsigned long private, struct page *page,
1150 				   int force, enum migrate_mode mode,
1151 				   enum migrate_reason reason,
1152 				   struct list_head *ret)
1153 {
1154 	int rc = MIGRATEPAGE_SUCCESS;
1155 	struct page *newpage = NULL;
1156 
1157 	if (!thp_migration_supported() && PageTransHuge(page))
1158 		return -ENOSYS;
1159 
1160 	if (page_count(page) == 1) {
1161 		/* page was freed from under us. So we are done. */
1162 		ClearPageActive(page);
1163 		ClearPageUnevictable(page);
1164 		if (unlikely(__PageMovable(page))) {
1165 			lock_page(page);
1166 			if (!PageMovable(page))
1167 				__ClearPageIsolated(page);
1168 			unlock_page(page);
1169 		}
1170 		goto out;
1171 	}
1172 
1173 	newpage = get_new_page(page, private);
1174 	if (!newpage)
1175 		return -ENOMEM;
1176 
1177 	rc = __unmap_and_move(page, newpage, force, mode);
1178 	if (rc == MIGRATEPAGE_SUCCESS)
1179 		set_page_owner_migrate_reason(newpage, reason);
1180 
1181 out:
1182 	if (rc != -EAGAIN) {
1183 		/*
1184 		 * A page that has been migrated has all references
1185 		 * removed and will be freed. A page that has not been
1186 		 * migrated will have kept its references and be restored.
1187 		 */
1188 		list_del(&page->lru);
1189 	}
1190 
1191 	/*
1192 	 * If migration is successful, releases reference grabbed during
1193 	 * isolation. Otherwise, restore the page to right list unless
1194 	 * we want to retry.
1195 	 */
1196 	if (rc == MIGRATEPAGE_SUCCESS) {
1197 		/*
1198 		 * Compaction can migrate also non-LRU pages which are
1199 		 * not accounted to NR_ISOLATED_*. They can be recognized
1200 		 * as __PageMovable
1201 		 */
1202 		if (likely(!__PageMovable(page)))
1203 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1204 					page_is_file_lru(page), -thp_nr_pages(page));
1205 
1206 		if (reason != MR_MEMORY_FAILURE)
1207 			/*
1208 			 * We release the page in page_handle_poison.
1209 			 */
1210 			put_page(page);
1211 	} else {
1212 		if (rc != -EAGAIN)
1213 			list_add_tail(&page->lru, ret);
1214 
1215 		if (put_new_page)
1216 			put_new_page(newpage, private);
1217 		else
1218 			put_page(newpage);
1219 	}
1220 
1221 	return rc;
1222 }
1223 
1224 /*
1225  * Counterpart of unmap_and_move_page() for hugepage migration.
1226  *
1227  * This function doesn't wait the completion of hugepage I/O
1228  * because there is no race between I/O and migration for hugepage.
1229  * Note that currently hugepage I/O occurs only in direct I/O
1230  * where no lock is held and PG_writeback is irrelevant,
1231  * and writeback status of all subpages are counted in the reference
1232  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1233  * under direct I/O, the reference of the head page is 512 and a bit more.)
1234  * This means that when we try to migrate hugepage whose subpages are
1235  * doing direct I/O, some references remain after try_to_unmap() and
1236  * hugepage migration fails without data corruption.
1237  *
1238  * There is also no race when direct I/O is issued on the page under migration,
1239  * because then pte is replaced with migration swap entry and direct I/O code
1240  * will wait in the page fault for migration to complete.
1241  */
1242 static int unmap_and_move_huge_page(new_page_t get_new_page,
1243 				free_page_t put_new_page, unsigned long private,
1244 				struct page *hpage, int force,
1245 				enum migrate_mode mode, int reason,
1246 				struct list_head *ret)
1247 {
1248 	int rc = -EAGAIN;
1249 	int page_was_mapped = 0;
1250 	struct page *new_hpage;
1251 	struct anon_vma *anon_vma = NULL;
1252 	struct address_space *mapping = NULL;
1253 
1254 	/*
1255 	 * Migratability of hugepages depends on architectures and their size.
1256 	 * This check is necessary because some callers of hugepage migration
1257 	 * like soft offline and memory hotremove don't walk through page
1258 	 * tables or check whether the hugepage is pmd-based or not before
1259 	 * kicking migration.
1260 	 */
1261 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1262 		list_move_tail(&hpage->lru, ret);
1263 		return -ENOSYS;
1264 	}
1265 
1266 	if (page_count(hpage) == 1) {
1267 		/* page was freed from under us. So we are done. */
1268 		putback_active_hugepage(hpage);
1269 		return MIGRATEPAGE_SUCCESS;
1270 	}
1271 
1272 	new_hpage = get_new_page(hpage, private);
1273 	if (!new_hpage)
1274 		return -ENOMEM;
1275 
1276 	if (!trylock_page(hpage)) {
1277 		if (!force)
1278 			goto out;
1279 		switch (mode) {
1280 		case MIGRATE_SYNC:
1281 		case MIGRATE_SYNC_NO_COPY:
1282 			break;
1283 		default:
1284 			goto out;
1285 		}
1286 		lock_page(hpage);
1287 	}
1288 
1289 	/*
1290 	 * Check for pages which are in the process of being freed.  Without
1291 	 * page_mapping() set, hugetlbfs specific move page routine will not
1292 	 * be called and we could leak usage counts for subpools.
1293 	 */
1294 	if (page_private(hpage) && !page_mapping(hpage)) {
1295 		rc = -EBUSY;
1296 		goto out_unlock;
1297 	}
1298 
1299 	if (PageAnon(hpage))
1300 		anon_vma = page_get_anon_vma(hpage);
1301 
1302 	if (unlikely(!trylock_page(new_hpage)))
1303 		goto put_anon;
1304 
1305 	if (page_mapped(hpage)) {
1306 		bool mapping_locked = false;
1307 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1308 
1309 		if (!PageAnon(hpage)) {
1310 			/*
1311 			 * In shared mappings, try_to_unmap could potentially
1312 			 * call huge_pmd_unshare.  Because of this, take
1313 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1314 			 * to let lower levels know we have taken the lock.
1315 			 */
1316 			mapping = hugetlb_page_mapping_lock_write(hpage);
1317 			if (unlikely(!mapping))
1318 				goto unlock_put_anon;
1319 
1320 			mapping_locked = true;
1321 			ttu |= TTU_RMAP_LOCKED;
1322 		}
1323 
1324 		try_to_unmap(hpage, ttu);
1325 		page_was_mapped = 1;
1326 
1327 		if (mapping_locked)
1328 			i_mmap_unlock_write(mapping);
1329 	}
1330 
1331 	if (!page_mapped(hpage))
1332 		rc = move_to_new_page(new_hpage, hpage, mode);
1333 
1334 	if (page_was_mapped)
1335 		remove_migration_ptes(hpage,
1336 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1337 
1338 unlock_put_anon:
1339 	unlock_page(new_hpage);
1340 
1341 put_anon:
1342 	if (anon_vma)
1343 		put_anon_vma(anon_vma);
1344 
1345 	if (rc == MIGRATEPAGE_SUCCESS) {
1346 		move_hugetlb_state(hpage, new_hpage, reason);
1347 		put_new_page = NULL;
1348 	}
1349 
1350 out_unlock:
1351 	unlock_page(hpage);
1352 out:
1353 	if (rc == MIGRATEPAGE_SUCCESS)
1354 		putback_active_hugepage(hpage);
1355 	else if (rc != -EAGAIN)
1356 		list_move_tail(&hpage->lru, ret);
1357 
1358 	/*
1359 	 * If migration was not successful and there's a freeing callback, use
1360 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1361 	 * isolation.
1362 	 */
1363 	if (put_new_page)
1364 		put_new_page(new_hpage, private);
1365 	else
1366 		putback_active_hugepage(new_hpage);
1367 
1368 	return rc;
1369 }
1370 
1371 static inline int try_split_thp(struct page *page, struct page **page2,
1372 				struct list_head *from)
1373 {
1374 	int rc = 0;
1375 
1376 	lock_page(page);
1377 	rc = split_huge_page_to_list(page, from);
1378 	unlock_page(page);
1379 	if (!rc)
1380 		list_safe_reset_next(page, *page2, lru);
1381 
1382 	return rc;
1383 }
1384 
1385 /*
1386  * migrate_pages - migrate the pages specified in a list, to the free pages
1387  *		   supplied as the target for the page migration
1388  *
1389  * @from:		The list of pages to be migrated.
1390  * @get_new_page:	The function used to allocate free pages to be used
1391  *			as the target of the page migration.
1392  * @put_new_page:	The function used to free target pages if migration
1393  *			fails, or NULL if no special handling is necessary.
1394  * @private:		Private data to be passed on to get_new_page()
1395  * @mode:		The migration mode that specifies the constraints for
1396  *			page migration, if any.
1397  * @reason:		The reason for page migration.
1398  *
1399  * The function returns after 10 attempts or if no pages are movable any more
1400  * because the list has become empty or no retryable pages exist any more.
1401  * It is caller's responsibility to call putback_movable_pages() to return pages
1402  * to the LRU or free list only if ret != 0.
1403  *
1404  * Returns the number of pages that were not migrated, or an error code.
1405  */
1406 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1407 		free_page_t put_new_page, unsigned long private,
1408 		enum migrate_mode mode, int reason)
1409 {
1410 	int retry = 1;
1411 	int thp_retry = 1;
1412 	int nr_failed = 0;
1413 	int nr_succeeded = 0;
1414 	int nr_thp_succeeded = 0;
1415 	int nr_thp_failed = 0;
1416 	int nr_thp_split = 0;
1417 	int pass = 0;
1418 	bool is_thp = false;
1419 	struct page *page;
1420 	struct page *page2;
1421 	int swapwrite = current->flags & PF_SWAPWRITE;
1422 	int rc, nr_subpages;
1423 	LIST_HEAD(ret_pages);
1424 
1425 	trace_mm_migrate_pages_start(mode, reason);
1426 
1427 	if (!swapwrite)
1428 		current->flags |= PF_SWAPWRITE;
1429 
1430 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1431 		retry = 0;
1432 		thp_retry = 0;
1433 
1434 		list_for_each_entry_safe(page, page2, from, lru) {
1435 retry:
1436 			/*
1437 			 * THP statistics is based on the source huge page.
1438 			 * Capture required information that might get lost
1439 			 * during migration.
1440 			 */
1441 			is_thp = PageTransHuge(page) && !PageHuge(page);
1442 			nr_subpages = thp_nr_pages(page);
1443 			cond_resched();
1444 
1445 			if (PageHuge(page))
1446 				rc = unmap_and_move_huge_page(get_new_page,
1447 						put_new_page, private, page,
1448 						pass > 2, mode, reason,
1449 						&ret_pages);
1450 			else
1451 				rc = unmap_and_move(get_new_page, put_new_page,
1452 						private, page, pass > 2, mode,
1453 						reason, &ret_pages);
1454 			/*
1455 			 * The rules are:
1456 			 *	Success: non hugetlb page will be freed, hugetlb
1457 			 *		 page will be put back
1458 			 *	-EAGAIN: stay on the from list
1459 			 *	-ENOMEM: stay on the from list
1460 			 *	Other errno: put on ret_pages list then splice to
1461 			 *		     from list
1462 			 */
1463 			switch(rc) {
1464 			/*
1465 			 * THP migration might be unsupported or the
1466 			 * allocation could've failed so we should
1467 			 * retry on the same page with the THP split
1468 			 * to base pages.
1469 			 *
1470 			 * Head page is retried immediately and tail
1471 			 * pages are added to the tail of the list so
1472 			 * we encounter them after the rest of the list
1473 			 * is processed.
1474 			 */
1475 			case -ENOSYS:
1476 				/* THP migration is unsupported */
1477 				if (is_thp) {
1478 					if (!try_split_thp(page, &page2, from)) {
1479 						nr_thp_split++;
1480 						goto retry;
1481 					}
1482 
1483 					nr_thp_failed++;
1484 					nr_failed += nr_subpages;
1485 					break;
1486 				}
1487 
1488 				/* Hugetlb migration is unsupported */
1489 				nr_failed++;
1490 				break;
1491 			case -ENOMEM:
1492 				/*
1493 				 * When memory is low, don't bother to try to migrate
1494 				 * other pages, just exit.
1495 				 */
1496 				if (is_thp) {
1497 					if (!try_split_thp(page, &page2, from)) {
1498 						nr_thp_split++;
1499 						goto retry;
1500 					}
1501 
1502 					nr_thp_failed++;
1503 					nr_failed += nr_subpages;
1504 					goto out;
1505 				}
1506 				nr_failed++;
1507 				goto out;
1508 			case -EAGAIN:
1509 				if (is_thp) {
1510 					thp_retry++;
1511 					break;
1512 				}
1513 				retry++;
1514 				break;
1515 			case MIGRATEPAGE_SUCCESS:
1516 				if (is_thp) {
1517 					nr_thp_succeeded++;
1518 					nr_succeeded += nr_subpages;
1519 					break;
1520 				}
1521 				nr_succeeded++;
1522 				break;
1523 			default:
1524 				/*
1525 				 * Permanent failure (-EBUSY, etc.):
1526 				 * unlike -EAGAIN case, the failed page is
1527 				 * removed from migration page list and not
1528 				 * retried in the next outer loop.
1529 				 */
1530 				if (is_thp) {
1531 					nr_thp_failed++;
1532 					nr_failed += nr_subpages;
1533 					break;
1534 				}
1535 				nr_failed++;
1536 				break;
1537 			}
1538 		}
1539 	}
1540 	nr_failed += retry + thp_retry;
1541 	nr_thp_failed += thp_retry;
1542 	rc = nr_failed;
1543 out:
1544 	/*
1545 	 * Put the permanent failure page back to migration list, they
1546 	 * will be put back to the right list by the caller.
1547 	 */
1548 	list_splice(&ret_pages, from);
1549 
1550 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1551 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1552 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1553 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1554 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1555 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1556 			       nr_thp_failed, nr_thp_split, mode, reason);
1557 
1558 	if (!swapwrite)
1559 		current->flags &= ~PF_SWAPWRITE;
1560 
1561 	return rc;
1562 }
1563 
1564 struct page *alloc_migration_target(struct page *page, unsigned long private)
1565 {
1566 	struct migration_target_control *mtc;
1567 	gfp_t gfp_mask;
1568 	unsigned int order = 0;
1569 	struct page *new_page = NULL;
1570 	int nid;
1571 	int zidx;
1572 
1573 	mtc = (struct migration_target_control *)private;
1574 	gfp_mask = mtc->gfp_mask;
1575 	nid = mtc->nid;
1576 	if (nid == NUMA_NO_NODE)
1577 		nid = page_to_nid(page);
1578 
1579 	if (PageHuge(page)) {
1580 		struct hstate *h = page_hstate(compound_head(page));
1581 
1582 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1583 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1584 	}
1585 
1586 	if (PageTransHuge(page)) {
1587 		/*
1588 		 * clear __GFP_RECLAIM to make the migration callback
1589 		 * consistent with regular THP allocations.
1590 		 */
1591 		gfp_mask &= ~__GFP_RECLAIM;
1592 		gfp_mask |= GFP_TRANSHUGE;
1593 		order = HPAGE_PMD_ORDER;
1594 	}
1595 	zidx = zone_idx(page_zone(page));
1596 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1597 		gfp_mask |= __GFP_HIGHMEM;
1598 
1599 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1600 
1601 	if (new_page && PageTransHuge(new_page))
1602 		prep_transhuge_page(new_page);
1603 
1604 	return new_page;
1605 }
1606 
1607 #ifdef CONFIG_NUMA
1608 
1609 static int store_status(int __user *status, int start, int value, int nr)
1610 {
1611 	while (nr-- > 0) {
1612 		if (put_user(value, status + start))
1613 			return -EFAULT;
1614 		start++;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static int do_move_pages_to_node(struct mm_struct *mm,
1621 		struct list_head *pagelist, int node)
1622 {
1623 	int err;
1624 	struct migration_target_control mtc = {
1625 		.nid = node,
1626 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1627 	};
1628 
1629 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1630 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1631 	if (err)
1632 		putback_movable_pages(pagelist);
1633 	return err;
1634 }
1635 
1636 /*
1637  * Resolves the given address to a struct page, isolates it from the LRU and
1638  * puts it to the given pagelist.
1639  * Returns:
1640  *     errno - if the page cannot be found/isolated
1641  *     0 - when it doesn't have to be migrated because it is already on the
1642  *         target node
1643  *     1 - when it has been queued
1644  */
1645 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1646 		int node, struct list_head *pagelist, bool migrate_all)
1647 {
1648 	struct vm_area_struct *vma;
1649 	struct page *page;
1650 	unsigned int follflags;
1651 	int err;
1652 
1653 	mmap_read_lock(mm);
1654 	err = -EFAULT;
1655 	vma = find_vma(mm, addr);
1656 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1657 		goto out;
1658 
1659 	/* FOLL_DUMP to ignore special (like zero) pages */
1660 	follflags = FOLL_GET | FOLL_DUMP;
1661 	page = follow_page(vma, addr, follflags);
1662 
1663 	err = PTR_ERR(page);
1664 	if (IS_ERR(page))
1665 		goto out;
1666 
1667 	err = -ENOENT;
1668 	if (!page)
1669 		goto out;
1670 
1671 	err = 0;
1672 	if (page_to_nid(page) == node)
1673 		goto out_putpage;
1674 
1675 	err = -EACCES;
1676 	if (page_mapcount(page) > 1 && !migrate_all)
1677 		goto out_putpage;
1678 
1679 	if (PageHuge(page)) {
1680 		if (PageHead(page)) {
1681 			isolate_huge_page(page, pagelist);
1682 			err = 1;
1683 		}
1684 	} else {
1685 		struct page *head;
1686 
1687 		head = compound_head(page);
1688 		err = isolate_lru_page(head);
1689 		if (err)
1690 			goto out_putpage;
1691 
1692 		err = 1;
1693 		list_add_tail(&head->lru, pagelist);
1694 		mod_node_page_state(page_pgdat(head),
1695 			NR_ISOLATED_ANON + page_is_file_lru(head),
1696 			thp_nr_pages(head));
1697 	}
1698 out_putpage:
1699 	/*
1700 	 * Either remove the duplicate refcount from
1701 	 * isolate_lru_page() or drop the page ref if it was
1702 	 * not isolated.
1703 	 */
1704 	put_page(page);
1705 out:
1706 	mmap_read_unlock(mm);
1707 	return err;
1708 }
1709 
1710 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1711 		struct list_head *pagelist, int __user *status,
1712 		int start, int i, unsigned long nr_pages)
1713 {
1714 	int err;
1715 
1716 	if (list_empty(pagelist))
1717 		return 0;
1718 
1719 	err = do_move_pages_to_node(mm, pagelist, node);
1720 	if (err) {
1721 		/*
1722 		 * Positive err means the number of failed
1723 		 * pages to migrate.  Since we are going to
1724 		 * abort and return the number of non-migrated
1725 		 * pages, so need to include the rest of the
1726 		 * nr_pages that have not been attempted as
1727 		 * well.
1728 		 */
1729 		if (err > 0)
1730 			err += nr_pages - i - 1;
1731 		return err;
1732 	}
1733 	return store_status(status, start, node, i - start);
1734 }
1735 
1736 /*
1737  * Migrate an array of page address onto an array of nodes and fill
1738  * the corresponding array of status.
1739  */
1740 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1741 			 unsigned long nr_pages,
1742 			 const void __user * __user *pages,
1743 			 const int __user *nodes,
1744 			 int __user *status, int flags)
1745 {
1746 	int current_node = NUMA_NO_NODE;
1747 	LIST_HEAD(pagelist);
1748 	int start, i;
1749 	int err = 0, err1;
1750 
1751 	lru_cache_disable();
1752 
1753 	for (i = start = 0; i < nr_pages; i++) {
1754 		const void __user *p;
1755 		unsigned long addr;
1756 		int node;
1757 
1758 		err = -EFAULT;
1759 		if (get_user(p, pages + i))
1760 			goto out_flush;
1761 		if (get_user(node, nodes + i))
1762 			goto out_flush;
1763 		addr = (unsigned long)untagged_addr(p);
1764 
1765 		err = -ENODEV;
1766 		if (node < 0 || node >= MAX_NUMNODES)
1767 			goto out_flush;
1768 		if (!node_state(node, N_MEMORY))
1769 			goto out_flush;
1770 
1771 		err = -EACCES;
1772 		if (!node_isset(node, task_nodes))
1773 			goto out_flush;
1774 
1775 		if (current_node == NUMA_NO_NODE) {
1776 			current_node = node;
1777 			start = i;
1778 		} else if (node != current_node) {
1779 			err = move_pages_and_store_status(mm, current_node,
1780 					&pagelist, status, start, i, nr_pages);
1781 			if (err)
1782 				goto out;
1783 			start = i;
1784 			current_node = node;
1785 		}
1786 
1787 		/*
1788 		 * Errors in the page lookup or isolation are not fatal and we simply
1789 		 * report them via status
1790 		 */
1791 		err = add_page_for_migration(mm, addr, current_node,
1792 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1793 
1794 		if (err > 0) {
1795 			/* The page is successfully queued for migration */
1796 			continue;
1797 		}
1798 
1799 		/*
1800 		 * If the page is already on the target node (!err), store the
1801 		 * node, otherwise, store the err.
1802 		 */
1803 		err = store_status(status, i, err ? : current_node, 1);
1804 		if (err)
1805 			goto out_flush;
1806 
1807 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1808 				status, start, i, nr_pages);
1809 		if (err)
1810 			goto out;
1811 		current_node = NUMA_NO_NODE;
1812 	}
1813 out_flush:
1814 	/* Make sure we do not overwrite the existing error */
1815 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1816 				status, start, i, nr_pages);
1817 	if (err >= 0)
1818 		err = err1;
1819 out:
1820 	lru_cache_enable();
1821 	return err;
1822 }
1823 
1824 /*
1825  * Determine the nodes of an array of pages and store it in an array of status.
1826  */
1827 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1828 				const void __user **pages, int *status)
1829 {
1830 	unsigned long i;
1831 
1832 	mmap_read_lock(mm);
1833 
1834 	for (i = 0; i < nr_pages; i++) {
1835 		unsigned long addr = (unsigned long)(*pages);
1836 		struct vm_area_struct *vma;
1837 		struct page *page;
1838 		int err = -EFAULT;
1839 
1840 		vma = vma_lookup(mm, addr);
1841 		if (!vma)
1842 			goto set_status;
1843 
1844 		/* FOLL_DUMP to ignore special (like zero) pages */
1845 		page = follow_page(vma, addr, FOLL_DUMP);
1846 
1847 		err = PTR_ERR(page);
1848 		if (IS_ERR(page))
1849 			goto set_status;
1850 
1851 		err = page ? page_to_nid(page) : -ENOENT;
1852 set_status:
1853 		*status = err;
1854 
1855 		pages++;
1856 		status++;
1857 	}
1858 
1859 	mmap_read_unlock(mm);
1860 }
1861 
1862 /*
1863  * Determine the nodes of a user array of pages and store it in
1864  * a user array of status.
1865  */
1866 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1867 			 const void __user * __user *pages,
1868 			 int __user *status)
1869 {
1870 #define DO_PAGES_STAT_CHUNK_NR 16
1871 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1872 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1873 
1874 	while (nr_pages) {
1875 		unsigned long chunk_nr;
1876 
1877 		chunk_nr = nr_pages;
1878 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1879 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1880 
1881 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1882 			break;
1883 
1884 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1885 
1886 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1887 			break;
1888 
1889 		pages += chunk_nr;
1890 		status += chunk_nr;
1891 		nr_pages -= chunk_nr;
1892 	}
1893 	return nr_pages ? -EFAULT : 0;
1894 }
1895 
1896 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1897 {
1898 	struct task_struct *task;
1899 	struct mm_struct *mm;
1900 
1901 	/*
1902 	 * There is no need to check if current process has the right to modify
1903 	 * the specified process when they are same.
1904 	 */
1905 	if (!pid) {
1906 		mmget(current->mm);
1907 		*mem_nodes = cpuset_mems_allowed(current);
1908 		return current->mm;
1909 	}
1910 
1911 	/* Find the mm_struct */
1912 	rcu_read_lock();
1913 	task = find_task_by_vpid(pid);
1914 	if (!task) {
1915 		rcu_read_unlock();
1916 		return ERR_PTR(-ESRCH);
1917 	}
1918 	get_task_struct(task);
1919 
1920 	/*
1921 	 * Check if this process has the right to modify the specified
1922 	 * process. Use the regular "ptrace_may_access()" checks.
1923 	 */
1924 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1925 		rcu_read_unlock();
1926 		mm = ERR_PTR(-EPERM);
1927 		goto out;
1928 	}
1929 	rcu_read_unlock();
1930 
1931 	mm = ERR_PTR(security_task_movememory(task));
1932 	if (IS_ERR(mm))
1933 		goto out;
1934 	*mem_nodes = cpuset_mems_allowed(task);
1935 	mm = get_task_mm(task);
1936 out:
1937 	put_task_struct(task);
1938 	if (!mm)
1939 		mm = ERR_PTR(-EINVAL);
1940 	return mm;
1941 }
1942 
1943 /*
1944  * Move a list of pages in the address space of the currently executing
1945  * process.
1946  */
1947 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1948 			     const void __user * __user *pages,
1949 			     const int __user *nodes,
1950 			     int __user *status, int flags)
1951 {
1952 	struct mm_struct *mm;
1953 	int err;
1954 	nodemask_t task_nodes;
1955 
1956 	/* Check flags */
1957 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1958 		return -EINVAL;
1959 
1960 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1961 		return -EPERM;
1962 
1963 	mm = find_mm_struct(pid, &task_nodes);
1964 	if (IS_ERR(mm))
1965 		return PTR_ERR(mm);
1966 
1967 	if (nodes)
1968 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1969 				    nodes, status, flags);
1970 	else
1971 		err = do_pages_stat(mm, nr_pages, pages, status);
1972 
1973 	mmput(mm);
1974 	return err;
1975 }
1976 
1977 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1978 		const void __user * __user *, pages,
1979 		const int __user *, nodes,
1980 		int __user *, status, int, flags)
1981 {
1982 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1983 }
1984 
1985 #ifdef CONFIG_COMPAT
1986 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1987 		       compat_uptr_t __user *, pages32,
1988 		       const int __user *, nodes,
1989 		       int __user *, status,
1990 		       int, flags)
1991 {
1992 	const void __user * __user *pages;
1993 	int i;
1994 
1995 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1996 	for (i = 0; i < nr_pages; i++) {
1997 		compat_uptr_t p;
1998 
1999 		if (get_user(p, pages32 + i) ||
2000 			put_user(compat_ptr(p), pages + i))
2001 			return -EFAULT;
2002 	}
2003 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2004 }
2005 #endif /* CONFIG_COMPAT */
2006 
2007 #ifdef CONFIG_NUMA_BALANCING
2008 /*
2009  * Returns true if this is a safe migration target node for misplaced NUMA
2010  * pages. Currently it only checks the watermarks which crude
2011  */
2012 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2013 				   unsigned long nr_migrate_pages)
2014 {
2015 	int z;
2016 
2017 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2018 		struct zone *zone = pgdat->node_zones + z;
2019 
2020 		if (!populated_zone(zone))
2021 			continue;
2022 
2023 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2024 		if (!zone_watermark_ok(zone, 0,
2025 				       high_wmark_pages(zone) +
2026 				       nr_migrate_pages,
2027 				       ZONE_MOVABLE, 0))
2028 			continue;
2029 		return true;
2030 	}
2031 	return false;
2032 }
2033 
2034 static struct page *alloc_misplaced_dst_page(struct page *page,
2035 					   unsigned long data)
2036 {
2037 	int nid = (int) data;
2038 	struct page *newpage;
2039 
2040 	newpage = __alloc_pages_node(nid,
2041 					 (GFP_HIGHUSER_MOVABLE |
2042 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2043 					  __GFP_NORETRY | __GFP_NOWARN) &
2044 					 ~__GFP_RECLAIM, 0);
2045 
2046 	return newpage;
2047 }
2048 
2049 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2050 {
2051 	int page_lru;
2052 
2053 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2054 
2055 	/* Avoid migrating to a node that is nearly full */
2056 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2057 		return 0;
2058 
2059 	if (isolate_lru_page(page))
2060 		return 0;
2061 
2062 	/*
2063 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2064 	 * check on page_count(), so we must do it here, now that the page
2065 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2066 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2067 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2068 	 */
2069 	if (PageTransHuge(page) && page_count(page) != 3) {
2070 		putback_lru_page(page);
2071 		return 0;
2072 	}
2073 
2074 	page_lru = page_is_file_lru(page);
2075 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2076 				thp_nr_pages(page));
2077 
2078 	/*
2079 	 * Isolating the page has taken another reference, so the
2080 	 * caller's reference can be safely dropped without the page
2081 	 * disappearing underneath us during migration.
2082 	 */
2083 	put_page(page);
2084 	return 1;
2085 }
2086 
2087 bool pmd_trans_migrating(pmd_t pmd)
2088 {
2089 	struct page *page = pmd_page(pmd);
2090 	return PageLocked(page);
2091 }
2092 
2093 /*
2094  * Attempt to migrate a misplaced page to the specified destination
2095  * node. Caller is expected to have an elevated reference count on
2096  * the page that will be dropped by this function before returning.
2097  */
2098 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2099 			   int node)
2100 {
2101 	pg_data_t *pgdat = NODE_DATA(node);
2102 	int isolated;
2103 	int nr_remaining;
2104 	LIST_HEAD(migratepages);
2105 
2106 	/*
2107 	 * Don't migrate file pages that are mapped in multiple processes
2108 	 * with execute permissions as they are probably shared libraries.
2109 	 */
2110 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2111 	    (vma->vm_flags & VM_EXEC))
2112 		goto out;
2113 
2114 	/*
2115 	 * Also do not migrate dirty pages as not all filesystems can move
2116 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2117 	 */
2118 	if (page_is_file_lru(page) && PageDirty(page))
2119 		goto out;
2120 
2121 	isolated = numamigrate_isolate_page(pgdat, page);
2122 	if (!isolated)
2123 		goto out;
2124 
2125 	list_add(&page->lru, &migratepages);
2126 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2127 				     NULL, node, MIGRATE_ASYNC,
2128 				     MR_NUMA_MISPLACED);
2129 	if (nr_remaining) {
2130 		if (!list_empty(&migratepages)) {
2131 			list_del(&page->lru);
2132 			dec_node_page_state(page, NR_ISOLATED_ANON +
2133 					page_is_file_lru(page));
2134 			putback_lru_page(page);
2135 		}
2136 		isolated = 0;
2137 	} else
2138 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2139 	BUG_ON(!list_empty(&migratepages));
2140 	return isolated;
2141 
2142 out:
2143 	put_page(page);
2144 	return 0;
2145 }
2146 #endif /* CONFIG_NUMA_BALANCING */
2147 
2148 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2149 /*
2150  * Migrates a THP to a given target node. page must be locked and is unlocked
2151  * before returning.
2152  */
2153 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2154 				struct vm_area_struct *vma,
2155 				pmd_t *pmd, pmd_t entry,
2156 				unsigned long address,
2157 				struct page *page, int node)
2158 {
2159 	spinlock_t *ptl;
2160 	pg_data_t *pgdat = NODE_DATA(node);
2161 	int isolated = 0;
2162 	struct page *new_page = NULL;
2163 	int page_lru = page_is_file_lru(page);
2164 	unsigned long start = address & HPAGE_PMD_MASK;
2165 
2166 	new_page = alloc_pages_node(node,
2167 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2168 		HPAGE_PMD_ORDER);
2169 	if (!new_page)
2170 		goto out_fail;
2171 	prep_transhuge_page(new_page);
2172 
2173 	isolated = numamigrate_isolate_page(pgdat, page);
2174 	if (!isolated) {
2175 		put_page(new_page);
2176 		goto out_fail;
2177 	}
2178 
2179 	/* Prepare a page as a migration target */
2180 	__SetPageLocked(new_page);
2181 	if (PageSwapBacked(page))
2182 		__SetPageSwapBacked(new_page);
2183 
2184 	/* anon mapping, we can simply copy page->mapping to the new page: */
2185 	new_page->mapping = page->mapping;
2186 	new_page->index = page->index;
2187 	/* flush the cache before copying using the kernel virtual address */
2188 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2189 	migrate_page_copy(new_page, page);
2190 	WARN_ON(PageLRU(new_page));
2191 
2192 	/* Recheck the target PMD */
2193 	ptl = pmd_lock(mm, pmd);
2194 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2195 		spin_unlock(ptl);
2196 
2197 		/* Reverse changes made by migrate_page_copy() */
2198 		if (TestClearPageActive(new_page))
2199 			SetPageActive(page);
2200 		if (TestClearPageUnevictable(new_page))
2201 			SetPageUnevictable(page);
2202 
2203 		unlock_page(new_page);
2204 		put_page(new_page);		/* Free it */
2205 
2206 		/* Retake the callers reference and putback on LRU */
2207 		get_page(page);
2208 		putback_lru_page(page);
2209 		mod_node_page_state(page_pgdat(page),
2210 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2211 
2212 		goto out_unlock;
2213 	}
2214 
2215 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2216 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2217 
2218 	/*
2219 	 * Overwrite the old entry under pagetable lock and establish
2220 	 * the new PTE. Any parallel GUP will either observe the old
2221 	 * page blocking on the page lock, block on the page table
2222 	 * lock or observe the new page. The SetPageUptodate on the
2223 	 * new page and page_add_new_anon_rmap guarantee the copy is
2224 	 * visible before the pagetable update.
2225 	 */
2226 	page_add_anon_rmap(new_page, vma, start, true);
2227 	/*
2228 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2229 	 * has already been flushed globally.  So no TLB can be currently
2230 	 * caching this non present pmd mapping.  There's no need to clear the
2231 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2232 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2233 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2234 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2235 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2236 	 * pmd.
2237 	 */
2238 	set_pmd_at(mm, start, pmd, entry);
2239 	update_mmu_cache_pmd(vma, address, &entry);
2240 
2241 	page_ref_unfreeze(page, 2);
2242 	mlock_migrate_page(new_page, page);
2243 	page_remove_rmap(page, true);
2244 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2245 
2246 	spin_unlock(ptl);
2247 
2248 	/* Take an "isolate" reference and put new page on the LRU. */
2249 	get_page(new_page);
2250 	putback_lru_page(new_page);
2251 
2252 	unlock_page(new_page);
2253 	unlock_page(page);
2254 	put_page(page);			/* Drop the rmap reference */
2255 	put_page(page);			/* Drop the LRU isolation reference */
2256 
2257 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2258 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2259 
2260 	mod_node_page_state(page_pgdat(page),
2261 			NR_ISOLATED_ANON + page_lru,
2262 			-HPAGE_PMD_NR);
2263 	return isolated;
2264 
2265 out_fail:
2266 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2267 	ptl = pmd_lock(mm, pmd);
2268 	if (pmd_same(*pmd, entry)) {
2269 		entry = pmd_modify(entry, vma->vm_page_prot);
2270 		set_pmd_at(mm, start, pmd, entry);
2271 		update_mmu_cache_pmd(vma, address, &entry);
2272 	}
2273 	spin_unlock(ptl);
2274 
2275 out_unlock:
2276 	unlock_page(page);
2277 	put_page(page);
2278 	return 0;
2279 }
2280 #endif /* CONFIG_NUMA_BALANCING */
2281 
2282 #endif /* CONFIG_NUMA */
2283 
2284 #ifdef CONFIG_DEVICE_PRIVATE
2285 static int migrate_vma_collect_skip(unsigned long start,
2286 				    unsigned long end,
2287 				    struct mm_walk *walk)
2288 {
2289 	struct migrate_vma *migrate = walk->private;
2290 	unsigned long addr;
2291 
2292 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2293 		migrate->dst[migrate->npages] = 0;
2294 		migrate->src[migrate->npages++] = 0;
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static int migrate_vma_collect_hole(unsigned long start,
2301 				    unsigned long end,
2302 				    __always_unused int depth,
2303 				    struct mm_walk *walk)
2304 {
2305 	struct migrate_vma *migrate = walk->private;
2306 	unsigned long addr;
2307 
2308 	/* Only allow populating anonymous memory. */
2309 	if (!vma_is_anonymous(walk->vma))
2310 		return migrate_vma_collect_skip(start, end, walk);
2311 
2312 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2313 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2314 		migrate->dst[migrate->npages] = 0;
2315 		migrate->npages++;
2316 		migrate->cpages++;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2323 				   unsigned long start,
2324 				   unsigned long end,
2325 				   struct mm_walk *walk)
2326 {
2327 	struct migrate_vma *migrate = walk->private;
2328 	struct vm_area_struct *vma = walk->vma;
2329 	struct mm_struct *mm = vma->vm_mm;
2330 	unsigned long addr = start, unmapped = 0;
2331 	spinlock_t *ptl;
2332 	pte_t *ptep;
2333 
2334 again:
2335 	if (pmd_none(*pmdp))
2336 		return migrate_vma_collect_hole(start, end, -1, walk);
2337 
2338 	if (pmd_trans_huge(*pmdp)) {
2339 		struct page *page;
2340 
2341 		ptl = pmd_lock(mm, pmdp);
2342 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2343 			spin_unlock(ptl);
2344 			goto again;
2345 		}
2346 
2347 		page = pmd_page(*pmdp);
2348 		if (is_huge_zero_page(page)) {
2349 			spin_unlock(ptl);
2350 			split_huge_pmd(vma, pmdp, addr);
2351 			if (pmd_trans_unstable(pmdp))
2352 				return migrate_vma_collect_skip(start, end,
2353 								walk);
2354 		} else {
2355 			int ret;
2356 
2357 			get_page(page);
2358 			spin_unlock(ptl);
2359 			if (unlikely(!trylock_page(page)))
2360 				return migrate_vma_collect_skip(start, end,
2361 								walk);
2362 			ret = split_huge_page(page);
2363 			unlock_page(page);
2364 			put_page(page);
2365 			if (ret)
2366 				return migrate_vma_collect_skip(start, end,
2367 								walk);
2368 			if (pmd_none(*pmdp))
2369 				return migrate_vma_collect_hole(start, end, -1,
2370 								walk);
2371 		}
2372 	}
2373 
2374 	if (unlikely(pmd_bad(*pmdp)))
2375 		return migrate_vma_collect_skip(start, end, walk);
2376 
2377 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2378 	arch_enter_lazy_mmu_mode();
2379 
2380 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2381 		unsigned long mpfn = 0, pfn;
2382 		struct page *page;
2383 		swp_entry_t entry;
2384 		pte_t pte;
2385 
2386 		pte = *ptep;
2387 
2388 		if (pte_none(pte)) {
2389 			if (vma_is_anonymous(vma)) {
2390 				mpfn = MIGRATE_PFN_MIGRATE;
2391 				migrate->cpages++;
2392 			}
2393 			goto next;
2394 		}
2395 
2396 		if (!pte_present(pte)) {
2397 			/*
2398 			 * Only care about unaddressable device page special
2399 			 * page table entry. Other special swap entries are not
2400 			 * migratable, and we ignore regular swapped page.
2401 			 */
2402 			entry = pte_to_swp_entry(pte);
2403 			if (!is_device_private_entry(entry))
2404 				goto next;
2405 
2406 			page = device_private_entry_to_page(entry);
2407 			if (!(migrate->flags &
2408 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2409 			    page->pgmap->owner != migrate->pgmap_owner)
2410 				goto next;
2411 
2412 			mpfn = migrate_pfn(page_to_pfn(page)) |
2413 					MIGRATE_PFN_MIGRATE;
2414 			if (is_write_device_private_entry(entry))
2415 				mpfn |= MIGRATE_PFN_WRITE;
2416 		} else {
2417 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2418 				goto next;
2419 			pfn = pte_pfn(pte);
2420 			if (is_zero_pfn(pfn)) {
2421 				mpfn = MIGRATE_PFN_MIGRATE;
2422 				migrate->cpages++;
2423 				goto next;
2424 			}
2425 			page = vm_normal_page(migrate->vma, addr, pte);
2426 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2427 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2428 		}
2429 
2430 		/* FIXME support THP */
2431 		if (!page || !page->mapping || PageTransCompound(page)) {
2432 			mpfn = 0;
2433 			goto next;
2434 		}
2435 
2436 		/*
2437 		 * By getting a reference on the page we pin it and that blocks
2438 		 * any kind of migration. Side effect is that it "freezes" the
2439 		 * pte.
2440 		 *
2441 		 * We drop this reference after isolating the page from the lru
2442 		 * for non device page (device page are not on the lru and thus
2443 		 * can't be dropped from it).
2444 		 */
2445 		get_page(page);
2446 		migrate->cpages++;
2447 
2448 		/*
2449 		 * Optimize for the common case where page is only mapped once
2450 		 * in one process. If we can lock the page, then we can safely
2451 		 * set up a special migration page table entry now.
2452 		 */
2453 		if (trylock_page(page)) {
2454 			pte_t swp_pte;
2455 
2456 			mpfn |= MIGRATE_PFN_LOCKED;
2457 			ptep_get_and_clear(mm, addr, ptep);
2458 
2459 			/* Setup special migration page table entry */
2460 			entry = make_migration_entry(page, mpfn &
2461 						     MIGRATE_PFN_WRITE);
2462 			swp_pte = swp_entry_to_pte(entry);
2463 			if (pte_present(pte)) {
2464 				if (pte_soft_dirty(pte))
2465 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2466 				if (pte_uffd_wp(pte))
2467 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2468 			} else {
2469 				if (pte_swp_soft_dirty(pte))
2470 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2471 				if (pte_swp_uffd_wp(pte))
2472 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2473 			}
2474 			set_pte_at(mm, addr, ptep, swp_pte);
2475 
2476 			/*
2477 			 * This is like regular unmap: we remove the rmap and
2478 			 * drop page refcount. Page won't be freed, as we took
2479 			 * a reference just above.
2480 			 */
2481 			page_remove_rmap(page, false);
2482 			put_page(page);
2483 
2484 			if (pte_present(pte))
2485 				unmapped++;
2486 		}
2487 
2488 next:
2489 		migrate->dst[migrate->npages] = 0;
2490 		migrate->src[migrate->npages++] = mpfn;
2491 	}
2492 	arch_leave_lazy_mmu_mode();
2493 	pte_unmap_unlock(ptep - 1, ptl);
2494 
2495 	/* Only flush the TLB if we actually modified any entries */
2496 	if (unmapped)
2497 		flush_tlb_range(walk->vma, start, end);
2498 
2499 	return 0;
2500 }
2501 
2502 static const struct mm_walk_ops migrate_vma_walk_ops = {
2503 	.pmd_entry		= migrate_vma_collect_pmd,
2504 	.pte_hole		= migrate_vma_collect_hole,
2505 };
2506 
2507 /*
2508  * migrate_vma_collect() - collect pages over a range of virtual addresses
2509  * @migrate: migrate struct containing all migration information
2510  *
2511  * This will walk the CPU page table. For each virtual address backed by a
2512  * valid page, it updates the src array and takes a reference on the page, in
2513  * order to pin the page until we lock it and unmap it.
2514  */
2515 static void migrate_vma_collect(struct migrate_vma *migrate)
2516 {
2517 	struct mmu_notifier_range range;
2518 
2519 	/*
2520 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2521 	 * that the registered device driver can skip invalidating device
2522 	 * private page mappings that won't be migrated.
2523 	 */
2524 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2525 		migrate->vma->vm_mm, migrate->start, migrate->end,
2526 		migrate->pgmap_owner);
2527 	mmu_notifier_invalidate_range_start(&range);
2528 
2529 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2530 			&migrate_vma_walk_ops, migrate);
2531 
2532 	mmu_notifier_invalidate_range_end(&range);
2533 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2534 }
2535 
2536 /*
2537  * migrate_vma_check_page() - check if page is pinned or not
2538  * @page: struct page to check
2539  *
2540  * Pinned pages cannot be migrated. This is the same test as in
2541  * migrate_page_move_mapping(), except that here we allow migration of a
2542  * ZONE_DEVICE page.
2543  */
2544 static bool migrate_vma_check_page(struct page *page)
2545 {
2546 	/*
2547 	 * One extra ref because caller holds an extra reference, either from
2548 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2549 	 * a device page.
2550 	 */
2551 	int extra = 1;
2552 
2553 	/*
2554 	 * FIXME support THP (transparent huge page), it is bit more complex to
2555 	 * check them than regular pages, because they can be mapped with a pmd
2556 	 * or with a pte (split pte mapping).
2557 	 */
2558 	if (PageCompound(page))
2559 		return false;
2560 
2561 	/* Page from ZONE_DEVICE have one extra reference */
2562 	if (is_zone_device_page(page)) {
2563 		/*
2564 		 * Private page can never be pin as they have no valid pte and
2565 		 * GUP will fail for those. Yet if there is a pending migration
2566 		 * a thread might try to wait on the pte migration entry and
2567 		 * will bump the page reference count. Sadly there is no way to
2568 		 * differentiate a regular pin from migration wait. Hence to
2569 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2570 		 * infinite loop (one stopping migration because the other is
2571 		 * waiting on pte migration entry). We always return true here.
2572 		 *
2573 		 * FIXME proper solution is to rework migration_entry_wait() so
2574 		 * it does not need to take a reference on page.
2575 		 */
2576 		return is_device_private_page(page);
2577 	}
2578 
2579 	/* For file back page */
2580 	if (page_mapping(page))
2581 		extra += 1 + page_has_private(page);
2582 
2583 	if ((page_count(page) - extra) > page_mapcount(page))
2584 		return false;
2585 
2586 	return true;
2587 }
2588 
2589 /*
2590  * migrate_vma_prepare() - lock pages and isolate them from the lru
2591  * @migrate: migrate struct containing all migration information
2592  *
2593  * This locks pages that have been collected by migrate_vma_collect(). Once each
2594  * page is locked it is isolated from the lru (for non-device pages). Finally,
2595  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2596  * migrated by concurrent kernel threads.
2597  */
2598 static void migrate_vma_prepare(struct migrate_vma *migrate)
2599 {
2600 	const unsigned long npages = migrate->npages;
2601 	const unsigned long start = migrate->start;
2602 	unsigned long addr, i, restore = 0;
2603 	bool allow_drain = true;
2604 
2605 	lru_add_drain();
2606 
2607 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2608 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2609 		bool remap = true;
2610 
2611 		if (!page)
2612 			continue;
2613 
2614 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2615 			/*
2616 			 * Because we are migrating several pages there can be
2617 			 * a deadlock between 2 concurrent migration where each
2618 			 * are waiting on each other page lock.
2619 			 *
2620 			 * Make migrate_vma() a best effort thing and backoff
2621 			 * for any page we can not lock right away.
2622 			 */
2623 			if (!trylock_page(page)) {
2624 				migrate->src[i] = 0;
2625 				migrate->cpages--;
2626 				put_page(page);
2627 				continue;
2628 			}
2629 			remap = false;
2630 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2631 		}
2632 
2633 		/* ZONE_DEVICE pages are not on LRU */
2634 		if (!is_zone_device_page(page)) {
2635 			if (!PageLRU(page) && allow_drain) {
2636 				/* Drain CPU's pagevec */
2637 				lru_add_drain_all();
2638 				allow_drain = false;
2639 			}
2640 
2641 			if (isolate_lru_page(page)) {
2642 				if (remap) {
2643 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2644 					migrate->cpages--;
2645 					restore++;
2646 				} else {
2647 					migrate->src[i] = 0;
2648 					unlock_page(page);
2649 					migrate->cpages--;
2650 					put_page(page);
2651 				}
2652 				continue;
2653 			}
2654 
2655 			/* Drop the reference we took in collect */
2656 			put_page(page);
2657 		}
2658 
2659 		if (!migrate_vma_check_page(page)) {
2660 			if (remap) {
2661 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2662 				migrate->cpages--;
2663 				restore++;
2664 
2665 				if (!is_zone_device_page(page)) {
2666 					get_page(page);
2667 					putback_lru_page(page);
2668 				}
2669 			} else {
2670 				migrate->src[i] = 0;
2671 				unlock_page(page);
2672 				migrate->cpages--;
2673 
2674 				if (!is_zone_device_page(page))
2675 					putback_lru_page(page);
2676 				else
2677 					put_page(page);
2678 			}
2679 		}
2680 	}
2681 
2682 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2683 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2684 
2685 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2686 			continue;
2687 
2688 		remove_migration_pte(page, migrate->vma, addr, page);
2689 
2690 		migrate->src[i] = 0;
2691 		unlock_page(page);
2692 		put_page(page);
2693 		restore--;
2694 	}
2695 }
2696 
2697 /*
2698  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2699  * @migrate: migrate struct containing all migration information
2700  *
2701  * Replace page mapping (CPU page table pte) with a special migration pte entry
2702  * and check again if it has been pinned. Pinned pages are restored because we
2703  * cannot migrate them.
2704  *
2705  * This is the last step before we call the device driver callback to allocate
2706  * destination memory and copy contents of original page over to new page.
2707  */
2708 static void migrate_vma_unmap(struct migrate_vma *migrate)
2709 {
2710 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2711 	const unsigned long npages = migrate->npages;
2712 	const unsigned long start = migrate->start;
2713 	unsigned long addr, i, restore = 0;
2714 
2715 	for (i = 0; i < npages; i++) {
2716 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2717 
2718 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2719 			continue;
2720 
2721 		if (page_mapped(page)) {
2722 			try_to_unmap(page, flags);
2723 			if (page_mapped(page))
2724 				goto restore;
2725 		}
2726 
2727 		if (migrate_vma_check_page(page))
2728 			continue;
2729 
2730 restore:
2731 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2732 		migrate->cpages--;
2733 		restore++;
2734 	}
2735 
2736 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2737 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2738 
2739 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2740 			continue;
2741 
2742 		remove_migration_ptes(page, page, false);
2743 
2744 		migrate->src[i] = 0;
2745 		unlock_page(page);
2746 		restore--;
2747 
2748 		if (is_zone_device_page(page))
2749 			put_page(page);
2750 		else
2751 			putback_lru_page(page);
2752 	}
2753 }
2754 
2755 /**
2756  * migrate_vma_setup() - prepare to migrate a range of memory
2757  * @args: contains the vma, start, and pfns arrays for the migration
2758  *
2759  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2760  * without an error.
2761  *
2762  * Prepare to migrate a range of memory virtual address range by collecting all
2763  * the pages backing each virtual address in the range, saving them inside the
2764  * src array.  Then lock those pages and unmap them. Once the pages are locked
2765  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2766  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2767  * corresponding src array entry.  Then restores any pages that are pinned, by
2768  * remapping and unlocking those pages.
2769  *
2770  * The caller should then allocate destination memory and copy source memory to
2771  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2772  * flag set).  Once these are allocated and copied, the caller must update each
2773  * corresponding entry in the dst array with the pfn value of the destination
2774  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2775  * (destination pages must have their struct pages locked, via lock_page()).
2776  *
2777  * Note that the caller does not have to migrate all the pages that are marked
2778  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2779  * device memory to system memory.  If the caller cannot migrate a device page
2780  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2781  * consequences for the userspace process, so it must be avoided if at all
2782  * possible.
2783  *
2784  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2785  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2786  * allowing the caller to allocate device memory for those unbacked virtual
2787  * addresses.  For this the caller simply has to allocate device memory and
2788  * properly set the destination entry like for regular migration.  Note that
2789  * this can still fail, and thus inside the device driver you must check if the
2790  * migration was successful for those entries after calling migrate_vma_pages(),
2791  * just like for regular migration.
2792  *
2793  * After that, the callers must call migrate_vma_pages() to go over each entry
2794  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2795  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2796  * then migrate_vma_pages() to migrate struct page information from the source
2797  * struct page to the destination struct page.  If it fails to migrate the
2798  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2799  * src array.
2800  *
2801  * At this point all successfully migrated pages have an entry in the src
2802  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2803  * array entry with MIGRATE_PFN_VALID flag set.
2804  *
2805  * Once migrate_vma_pages() returns the caller may inspect which pages were
2806  * successfully migrated, and which were not.  Successfully migrated pages will
2807  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2808  *
2809  * It is safe to update device page table after migrate_vma_pages() because
2810  * both destination and source page are still locked, and the mmap_lock is held
2811  * in read mode (hence no one can unmap the range being migrated).
2812  *
2813  * Once the caller is done cleaning up things and updating its page table (if it
2814  * chose to do so, this is not an obligation) it finally calls
2815  * migrate_vma_finalize() to update the CPU page table to point to new pages
2816  * for successfully migrated pages or otherwise restore the CPU page table to
2817  * point to the original source pages.
2818  */
2819 int migrate_vma_setup(struct migrate_vma *args)
2820 {
2821 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2822 
2823 	args->start &= PAGE_MASK;
2824 	args->end &= PAGE_MASK;
2825 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2826 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2827 		return -EINVAL;
2828 	if (nr_pages <= 0)
2829 		return -EINVAL;
2830 	if (args->start < args->vma->vm_start ||
2831 	    args->start >= args->vma->vm_end)
2832 		return -EINVAL;
2833 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2834 		return -EINVAL;
2835 	if (!args->src || !args->dst)
2836 		return -EINVAL;
2837 
2838 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2839 	args->cpages = 0;
2840 	args->npages = 0;
2841 
2842 	migrate_vma_collect(args);
2843 
2844 	if (args->cpages)
2845 		migrate_vma_prepare(args);
2846 	if (args->cpages)
2847 		migrate_vma_unmap(args);
2848 
2849 	/*
2850 	 * At this point pages are locked and unmapped, and thus they have
2851 	 * stable content and can safely be copied to destination memory that
2852 	 * is allocated by the drivers.
2853 	 */
2854 	return 0;
2855 
2856 }
2857 EXPORT_SYMBOL(migrate_vma_setup);
2858 
2859 /*
2860  * This code closely matches the code in:
2861  *   __handle_mm_fault()
2862  *     handle_pte_fault()
2863  *       do_anonymous_page()
2864  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2865  * private page.
2866  */
2867 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2868 				    unsigned long addr,
2869 				    struct page *page,
2870 				    unsigned long *src)
2871 {
2872 	struct vm_area_struct *vma = migrate->vma;
2873 	struct mm_struct *mm = vma->vm_mm;
2874 	bool flush = false;
2875 	spinlock_t *ptl;
2876 	pte_t entry;
2877 	pgd_t *pgdp;
2878 	p4d_t *p4dp;
2879 	pud_t *pudp;
2880 	pmd_t *pmdp;
2881 	pte_t *ptep;
2882 
2883 	/* Only allow populating anonymous memory */
2884 	if (!vma_is_anonymous(vma))
2885 		goto abort;
2886 
2887 	pgdp = pgd_offset(mm, addr);
2888 	p4dp = p4d_alloc(mm, pgdp, addr);
2889 	if (!p4dp)
2890 		goto abort;
2891 	pudp = pud_alloc(mm, p4dp, addr);
2892 	if (!pudp)
2893 		goto abort;
2894 	pmdp = pmd_alloc(mm, pudp, addr);
2895 	if (!pmdp)
2896 		goto abort;
2897 
2898 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2899 		goto abort;
2900 
2901 	/*
2902 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2903 	 * pte_offset_map() on pmds where a huge pmd might be created
2904 	 * from a different thread.
2905 	 *
2906 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2907 	 * parallel threads are excluded by other means.
2908 	 *
2909 	 * Here we only have mmap_read_lock(mm).
2910 	 */
2911 	if (pte_alloc(mm, pmdp))
2912 		goto abort;
2913 
2914 	/* See the comment in pte_alloc_one_map() */
2915 	if (unlikely(pmd_trans_unstable(pmdp)))
2916 		goto abort;
2917 
2918 	if (unlikely(anon_vma_prepare(vma)))
2919 		goto abort;
2920 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2921 		goto abort;
2922 
2923 	/*
2924 	 * The memory barrier inside __SetPageUptodate makes sure that
2925 	 * preceding stores to the page contents become visible before
2926 	 * the set_pte_at() write.
2927 	 */
2928 	__SetPageUptodate(page);
2929 
2930 	if (is_zone_device_page(page)) {
2931 		if (is_device_private_page(page)) {
2932 			swp_entry_t swp_entry;
2933 
2934 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2935 			entry = swp_entry_to_pte(swp_entry);
2936 		} else {
2937 			/*
2938 			 * For now we only support migrating to un-addressable
2939 			 * device memory.
2940 			 */
2941 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2942 			goto abort;
2943 		}
2944 	} else {
2945 		entry = mk_pte(page, vma->vm_page_prot);
2946 		if (vma->vm_flags & VM_WRITE)
2947 			entry = pte_mkwrite(pte_mkdirty(entry));
2948 	}
2949 
2950 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2951 
2952 	if (check_stable_address_space(mm))
2953 		goto unlock_abort;
2954 
2955 	if (pte_present(*ptep)) {
2956 		unsigned long pfn = pte_pfn(*ptep);
2957 
2958 		if (!is_zero_pfn(pfn))
2959 			goto unlock_abort;
2960 		flush = true;
2961 	} else if (!pte_none(*ptep))
2962 		goto unlock_abort;
2963 
2964 	/*
2965 	 * Check for userfaultfd but do not deliver the fault. Instead,
2966 	 * just back off.
2967 	 */
2968 	if (userfaultfd_missing(vma))
2969 		goto unlock_abort;
2970 
2971 	inc_mm_counter(mm, MM_ANONPAGES);
2972 	page_add_new_anon_rmap(page, vma, addr, false);
2973 	if (!is_zone_device_page(page))
2974 		lru_cache_add_inactive_or_unevictable(page, vma);
2975 	get_page(page);
2976 
2977 	if (flush) {
2978 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2979 		ptep_clear_flush_notify(vma, addr, ptep);
2980 		set_pte_at_notify(mm, addr, ptep, entry);
2981 		update_mmu_cache(vma, addr, ptep);
2982 	} else {
2983 		/* No need to invalidate - it was non-present before */
2984 		set_pte_at(mm, addr, ptep, entry);
2985 		update_mmu_cache(vma, addr, ptep);
2986 	}
2987 
2988 	pte_unmap_unlock(ptep, ptl);
2989 	*src = MIGRATE_PFN_MIGRATE;
2990 	return;
2991 
2992 unlock_abort:
2993 	pte_unmap_unlock(ptep, ptl);
2994 abort:
2995 	*src &= ~MIGRATE_PFN_MIGRATE;
2996 }
2997 
2998 /**
2999  * migrate_vma_pages() - migrate meta-data from src page to dst page
3000  * @migrate: migrate struct containing all migration information
3001  *
3002  * This migrates struct page meta-data from source struct page to destination
3003  * struct page. This effectively finishes the migration from source page to the
3004  * destination page.
3005  */
3006 void migrate_vma_pages(struct migrate_vma *migrate)
3007 {
3008 	const unsigned long npages = migrate->npages;
3009 	const unsigned long start = migrate->start;
3010 	struct mmu_notifier_range range;
3011 	unsigned long addr, i;
3012 	bool notified = false;
3013 
3014 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3015 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3016 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3017 		struct address_space *mapping;
3018 		int r;
3019 
3020 		if (!newpage) {
3021 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3022 			continue;
3023 		}
3024 
3025 		if (!page) {
3026 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3027 				continue;
3028 			if (!notified) {
3029 				notified = true;
3030 
3031 				mmu_notifier_range_init_migrate(&range, 0,
3032 					migrate->vma, migrate->vma->vm_mm,
3033 					addr, migrate->end,
3034 					migrate->pgmap_owner);
3035 				mmu_notifier_invalidate_range_start(&range);
3036 			}
3037 			migrate_vma_insert_page(migrate, addr, newpage,
3038 						&migrate->src[i]);
3039 			continue;
3040 		}
3041 
3042 		mapping = page_mapping(page);
3043 
3044 		if (is_zone_device_page(newpage)) {
3045 			if (is_device_private_page(newpage)) {
3046 				/*
3047 				 * For now only support private anonymous when
3048 				 * migrating to un-addressable device memory.
3049 				 */
3050 				if (mapping) {
3051 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3052 					continue;
3053 				}
3054 			} else {
3055 				/*
3056 				 * Other types of ZONE_DEVICE page are not
3057 				 * supported.
3058 				 */
3059 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3060 				continue;
3061 			}
3062 		}
3063 
3064 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3065 		if (r != MIGRATEPAGE_SUCCESS)
3066 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3067 	}
3068 
3069 	/*
3070 	 * No need to double call mmu_notifier->invalidate_range() callback as
3071 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3072 	 * did already call it.
3073 	 */
3074 	if (notified)
3075 		mmu_notifier_invalidate_range_only_end(&range);
3076 }
3077 EXPORT_SYMBOL(migrate_vma_pages);
3078 
3079 /**
3080  * migrate_vma_finalize() - restore CPU page table entry
3081  * @migrate: migrate struct containing all migration information
3082  *
3083  * This replaces the special migration pte entry with either a mapping to the
3084  * new page if migration was successful for that page, or to the original page
3085  * otherwise.
3086  *
3087  * This also unlocks the pages and puts them back on the lru, or drops the extra
3088  * refcount, for device pages.
3089  */
3090 void migrate_vma_finalize(struct migrate_vma *migrate)
3091 {
3092 	const unsigned long npages = migrate->npages;
3093 	unsigned long i;
3094 
3095 	for (i = 0; i < npages; i++) {
3096 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3097 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3098 
3099 		if (!page) {
3100 			if (newpage) {
3101 				unlock_page(newpage);
3102 				put_page(newpage);
3103 			}
3104 			continue;
3105 		}
3106 
3107 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3108 			if (newpage) {
3109 				unlock_page(newpage);
3110 				put_page(newpage);
3111 			}
3112 			newpage = page;
3113 		}
3114 
3115 		remove_migration_ptes(page, newpage, false);
3116 		unlock_page(page);
3117 
3118 		if (is_zone_device_page(page))
3119 			put_page(page);
3120 		else
3121 			putback_lru_page(page);
3122 
3123 		if (newpage != page) {
3124 			unlock_page(newpage);
3125 			if (is_zone_device_page(newpage))
3126 				put_page(newpage);
3127 			else
3128 				putback_lru_page(newpage);
3129 		}
3130 	}
3131 }
3132 EXPORT_SYMBOL(migrate_vma_finalize);
3133 #endif /* CONFIG_DEVICE_PRIVATE */
3134