xref: /openbmc/linux/mm/migrate.c (revision 97ee19ff491479822eade8a869d49f9ddcd71e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct folio *folio = folio_get_nontail_page(page);
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (!folio)
75 		goto out;
76 
77 	if (unlikely(folio_test_slab(folio)))
78 		goto out_putfolio;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__folio_test_movable(folio)))
87 		goto out_putfolio;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(folio_test_slab(folio)))
91 		goto out_putfolio;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!folio_trylock(folio)))
105 		goto out_putfolio;
106 
107 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 		goto out_no_isolated;
109 
110 	mops = folio_movable_ops(folio);
111 	VM_BUG_ON_FOLIO(!mops, folio);
112 
113 	if (!mops->isolate_page(&folio->page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(folio_test_isolated(folio));
118 	folio_set_isolated(folio);
119 	folio_unlock(folio);
120 
121 	return true;
122 
123 out_no_isolated:
124 	folio_unlock(folio);
125 out_putfolio:
126 	folio_put(folio);
127 out:
128 	return false;
129 }
130 
131 static void putback_movable_folio(struct folio *folio)
132 {
133 	const struct movable_operations *mops = folio_movable_ops(folio);
134 
135 	mops->putback_page(&folio->page);
136 	folio_clear_isolated(folio);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct folio *folio;
150 	struct folio *folio2;
151 
152 	list_for_each_entry_safe(folio, folio2, l, lru) {
153 		if (unlikely(folio_test_hugetlb(folio))) {
154 			folio_putback_active_hugetlb(folio);
155 			continue;
156 		}
157 		list_del(&folio->lru);
158 		/*
159 		 * We isolated non-lru movable folio so here we can use
160 		 * __PageMovable because LRU folio's mapping cannot have
161 		 * PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__folio_test_movable(folio))) {
164 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 			folio_lock(folio);
166 			if (folio_test_movable(folio))
167 				putback_movable_folio(folio);
168 			else
169 				folio_clear_isolated(folio);
170 			folio_unlock(folio);
171 			folio_put(folio);
172 		} else {
173 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 					folio_is_file_lru(folio), -folio_nr_pages(folio));
175 			folio_putback_lru(folio);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t old_pte;
191 		pte_t pte;
192 		swp_entry_t entry;
193 		struct page *new;
194 		unsigned long idx = 0;
195 
196 		/* pgoff is invalid for ksm pages, but they are never large */
197 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 		new = folio_page(folio, idx);
200 
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 		/* PMD-mapped THP migration entry */
203 		if (!pvmw.pte) {
204 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 					!folio_test_pmd_mappable(folio), folio);
206 			remove_migration_pmd(&pvmw, new);
207 			continue;
208 		}
209 #endif
210 
211 		folio_get(folio);
212 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 		old_pte = ptep_get(pvmw.pte);
214 		if (pte_swp_soft_dirty(old_pte))
215 			pte = pte_mksoft_dirty(pte);
216 
217 		entry = pte_to_swp_entry(old_pte);
218 		if (!is_migration_entry_young(entry))
219 			pte = pte_mkold(pte);
220 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
221 			pte = pte_mkdirty(pte);
222 		if (is_writable_migration_entry(entry))
223 			pte = pte_mkwrite(pte, vma);
224 		else if (pte_swp_uffd_wp(old_pte))
225 			pte = pte_mkuffd_wp(pte);
226 
227 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
228 			rmap_flags |= RMAP_EXCLUSIVE;
229 
230 		if (unlikely(is_device_private_page(new))) {
231 			if (pte_write(pte))
232 				entry = make_writable_device_private_entry(
233 							page_to_pfn(new));
234 			else
235 				entry = make_readable_device_private_entry(
236 							page_to_pfn(new));
237 			pte = swp_entry_to_pte(entry);
238 			if (pte_swp_soft_dirty(old_pte))
239 				pte = pte_swp_mksoft_dirty(pte);
240 			if (pte_swp_uffd_wp(old_pte))
241 				pte = pte_swp_mkuffd_wp(pte);
242 		}
243 
244 #ifdef CONFIG_HUGETLB_PAGE
245 		if (folio_test_hugetlb(folio)) {
246 			struct hstate *h = hstate_vma(vma);
247 			unsigned int shift = huge_page_shift(h);
248 			unsigned long psize = huge_page_size(h);
249 
250 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
251 			if (folio_test_anon(folio))
252 				hugepage_add_anon_rmap(new, vma, pvmw.address,
253 						       rmap_flags);
254 			else
255 				page_dup_file_rmap(new, true);
256 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
257 					psize);
258 		} else
259 #endif
260 		{
261 			if (folio_test_anon(folio))
262 				page_add_anon_rmap(new, vma, pvmw.address,
263 						   rmap_flags);
264 			else
265 				page_add_file_rmap(new, vma, false);
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 		}
268 		if (vma->vm_flags & VM_LOCKED)
269 			mlock_drain_local();
270 
271 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
272 					   compound_order(new));
273 
274 		/* No need to invalidate - it was non-present before */
275 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
276 	}
277 
278 	return true;
279 }
280 
281 /*
282  * Get rid of all migration entries and replace them by
283  * references to the indicated page.
284  */
285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
286 {
287 	struct rmap_walk_control rwc = {
288 		.rmap_one = remove_migration_pte,
289 		.arg = src,
290 	};
291 
292 	if (locked)
293 		rmap_walk_locked(dst, &rwc);
294 	else
295 		rmap_walk(dst, &rwc);
296 }
297 
298 /*
299  * Something used the pte of a page under migration. We need to
300  * get to the page and wait until migration is finished.
301  * When we return from this function the fault will be retried.
302  */
303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
304 			  unsigned long address)
305 {
306 	spinlock_t *ptl;
307 	pte_t *ptep;
308 	pte_t pte;
309 	swp_entry_t entry;
310 
311 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
312 	if (!ptep)
313 		return;
314 
315 	pte = ptep_get(ptep);
316 	pte_unmap(ptep);
317 
318 	if (!is_swap_pte(pte))
319 		goto out;
320 
321 	entry = pte_to_swp_entry(pte);
322 	if (!is_migration_entry(entry))
323 		goto out;
324 
325 	migration_entry_wait_on_locked(entry, ptl);
326 	return;
327 out:
328 	spin_unlock(ptl);
329 }
330 
331 #ifdef CONFIG_HUGETLB_PAGE
332 /*
333  * The vma read lock must be held upon entry. Holding that lock prevents either
334  * the pte or the ptl from being freed.
335  *
336  * This function will release the vma lock before returning.
337  */
338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
339 {
340 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
341 	pte_t pte;
342 
343 	hugetlb_vma_assert_locked(vma);
344 	spin_lock(ptl);
345 	pte = huge_ptep_get(ptep);
346 
347 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
348 		spin_unlock(ptl);
349 		hugetlb_vma_unlock_read(vma);
350 	} else {
351 		/*
352 		 * If migration entry existed, safe to release vma lock
353 		 * here because the pgtable page won't be freed without the
354 		 * pgtable lock released.  See comment right above pgtable
355 		 * lock release in migration_entry_wait_on_locked().
356 		 */
357 		hugetlb_vma_unlock_read(vma);
358 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
359 	}
360 }
361 #endif
362 
363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
365 {
366 	spinlock_t *ptl;
367 
368 	ptl = pmd_lock(mm, pmd);
369 	if (!is_pmd_migration_entry(*pmd))
370 		goto unlock;
371 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 static int folio_expected_refs(struct address_space *mapping,
379 		struct folio *folio)
380 {
381 	int refs = 1;
382 	if (!mapping)
383 		return refs;
384 
385 	refs += folio_nr_pages(folio);
386 	if (folio_test_private(folio))
387 		refs++;
388 
389 	return refs;
390 }
391 
392 /*
393  * Replace the page in the mapping.
394  *
395  * The number of remaining references must be:
396  * 1 for anonymous pages without a mapping
397  * 2 for pages with a mapping
398  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
399  */
400 int folio_migrate_mapping(struct address_space *mapping,
401 		struct folio *newfolio, struct folio *folio, int extra_count)
402 {
403 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
404 	struct zone *oldzone, *newzone;
405 	int dirty;
406 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
407 	long nr = folio_nr_pages(folio);
408 	long entries, i;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (folio_ref_count(folio) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newfolio->index = folio->index;
417 		newfolio->mapping = folio->mapping;
418 		if (folio_test_swapbacked(folio))
419 			__folio_set_swapbacked(newfolio);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = folio_zone(folio);
425 	newzone = folio_zone(newfolio);
426 
427 	xas_lock_irq(&xas);
428 	if (!folio_ref_freeze(folio, expected_count)) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	/*
434 	 * Now we know that no one else is looking at the folio:
435 	 * no turning back from here.
436 	 */
437 	newfolio->index = folio->index;
438 	newfolio->mapping = folio->mapping;
439 	folio_ref_add(newfolio, nr); /* add cache reference */
440 	if (folio_test_swapbacked(folio)) {
441 		__folio_set_swapbacked(newfolio);
442 		if (folio_test_swapcache(folio)) {
443 			folio_set_swapcache(newfolio);
444 			newfolio->private = folio_get_private(folio);
445 		}
446 		entries = nr;
447 	} else {
448 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
449 		entries = 1;
450 	}
451 
452 	/* Move dirty while page refs frozen and newpage not yet exposed */
453 	dirty = folio_test_dirty(folio);
454 	if (dirty) {
455 		folio_clear_dirty(folio);
456 		folio_set_dirty(newfolio);
457 	}
458 
459 	/* Swap cache still stores N entries instead of a high-order entry */
460 	for (i = 0; i < entries; i++) {
461 		xas_store(&xas, newfolio);
462 		xas_next(&xas);
463 	}
464 
465 	/*
466 	 * Drop cache reference from old page by unfreezing
467 	 * to one less reference.
468 	 * We know this isn't the last reference.
469 	 */
470 	folio_ref_unfreeze(folio, expected_count - nr);
471 
472 	xas_unlock(&xas);
473 	/* Leave irq disabled to prevent preemption while updating stats */
474 
475 	/*
476 	 * If moved to a different zone then also account
477 	 * the page for that zone. Other VM counters will be
478 	 * taken care of when we establish references to the
479 	 * new page and drop references to the old page.
480 	 *
481 	 * Note that anonymous pages are accounted for
482 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
483 	 * are mapped to swap space.
484 	 */
485 	if (newzone != oldzone) {
486 		struct lruvec *old_lruvec, *new_lruvec;
487 		struct mem_cgroup *memcg;
488 
489 		memcg = folio_memcg(folio);
490 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
491 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
492 
493 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
494 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
495 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
496 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
497 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
498 
499 			if (folio_test_pmd_mappable(folio)) {
500 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
501 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
502 			}
503 		}
504 #ifdef CONFIG_SWAP
505 		if (folio_test_swapcache(folio)) {
506 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
507 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
508 		}
509 #endif
510 		if (dirty && mapping_can_writeback(mapping)) {
511 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
512 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
513 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
514 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
515 		}
516 	}
517 	local_irq_enable();
518 
519 	return MIGRATEPAGE_SUCCESS;
520 }
521 EXPORT_SYMBOL(folio_migrate_mapping);
522 
523 /*
524  * The expected number of remaining references is the same as that
525  * of folio_migrate_mapping().
526  */
527 int migrate_huge_page_move_mapping(struct address_space *mapping,
528 				   struct folio *dst, struct folio *src)
529 {
530 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
531 	int expected_count;
532 
533 	xas_lock_irq(&xas);
534 	expected_count = 2 + folio_has_private(src);
535 	if (!folio_ref_freeze(src, expected_count)) {
536 		xas_unlock_irq(&xas);
537 		return -EAGAIN;
538 	}
539 
540 	dst->index = src->index;
541 	dst->mapping = src->mapping;
542 
543 	folio_get(dst);
544 
545 	xas_store(&xas, dst);
546 
547 	folio_ref_unfreeze(src, expected_count - 1);
548 
549 	xas_unlock_irq(&xas);
550 
551 	return MIGRATEPAGE_SUCCESS;
552 }
553 
554 /*
555  * Copy the flags and some other ancillary information
556  */
557 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
558 {
559 	int cpupid;
560 
561 	if (folio_test_error(folio))
562 		folio_set_error(newfolio);
563 	if (folio_test_referenced(folio))
564 		folio_set_referenced(newfolio);
565 	if (folio_test_uptodate(folio))
566 		folio_mark_uptodate(newfolio);
567 	if (folio_test_clear_active(folio)) {
568 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
569 		folio_set_active(newfolio);
570 	} else if (folio_test_clear_unevictable(folio))
571 		folio_set_unevictable(newfolio);
572 	if (folio_test_workingset(folio))
573 		folio_set_workingset(newfolio);
574 	if (folio_test_checked(folio))
575 		folio_set_checked(newfolio);
576 	/*
577 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
578 	 * migration entries. We can still have PG_anon_exclusive set on an
579 	 * effectively unmapped and unreferenced first sub-pages of an
580 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
581 	 */
582 	if (folio_test_mappedtodisk(folio))
583 		folio_set_mappedtodisk(newfolio);
584 
585 	/* Move dirty on pages not done by folio_migrate_mapping() */
586 	if (folio_test_dirty(folio))
587 		folio_set_dirty(newfolio);
588 
589 	if (folio_test_young(folio))
590 		folio_set_young(newfolio);
591 	if (folio_test_idle(folio))
592 		folio_set_idle(newfolio);
593 
594 	/*
595 	 * Copy NUMA information to the new page, to prevent over-eager
596 	 * future migrations of this same page.
597 	 */
598 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
599 	/*
600 	 * For memory tiering mode, when migrate between slow and fast
601 	 * memory node, reset cpupid, because that is used to record
602 	 * page access time in slow memory node.
603 	 */
604 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
605 		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
606 		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
607 
608 		if (f_toptier != t_toptier)
609 			cpupid = -1;
610 	}
611 	page_cpupid_xchg_last(&newfolio->page, cpupid);
612 
613 	folio_migrate_ksm(newfolio, folio);
614 	/*
615 	 * Please do not reorder this without considering how mm/ksm.c's
616 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
617 	 */
618 	if (folio_test_swapcache(folio))
619 		folio_clear_swapcache(folio);
620 	folio_clear_private(folio);
621 
622 	/* page->private contains hugetlb specific flags */
623 	if (!folio_test_hugetlb(folio))
624 		folio->private = NULL;
625 
626 	/*
627 	 * If any waiters have accumulated on the new page then
628 	 * wake them up.
629 	 */
630 	if (folio_test_writeback(newfolio))
631 		folio_end_writeback(newfolio);
632 
633 	/*
634 	 * PG_readahead shares the same bit with PG_reclaim.  The above
635 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
636 	 * bit after that.
637 	 */
638 	if (folio_test_readahead(folio))
639 		folio_set_readahead(newfolio);
640 
641 	folio_copy_owner(newfolio, folio);
642 
643 	if (!folio_test_hugetlb(folio))
644 		mem_cgroup_migrate(folio, newfolio);
645 }
646 EXPORT_SYMBOL(folio_migrate_flags);
647 
648 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
649 {
650 	folio_copy(newfolio, folio);
651 	folio_migrate_flags(newfolio, folio);
652 }
653 EXPORT_SYMBOL(folio_migrate_copy);
654 
655 /************************************************************
656  *                    Migration functions
657  ***********************************************************/
658 
659 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
660 		struct folio *src, enum migrate_mode mode, int extra_count)
661 {
662 	int rc;
663 
664 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
665 
666 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
667 
668 	if (rc != MIGRATEPAGE_SUCCESS)
669 		return rc;
670 
671 	if (mode != MIGRATE_SYNC_NO_COPY)
672 		folio_migrate_copy(dst, src);
673 	else
674 		folio_migrate_flags(dst, src);
675 	return MIGRATEPAGE_SUCCESS;
676 }
677 
678 /**
679  * migrate_folio() - Simple folio migration.
680  * @mapping: The address_space containing the folio.
681  * @dst: The folio to migrate the data to.
682  * @src: The folio containing the current data.
683  * @mode: How to migrate the page.
684  *
685  * Common logic to directly migrate a single LRU folio suitable for
686  * folios that do not use PagePrivate/PagePrivate2.
687  *
688  * Folios are locked upon entry and exit.
689  */
690 int migrate_folio(struct address_space *mapping, struct folio *dst,
691 		struct folio *src, enum migrate_mode mode)
692 {
693 	return migrate_folio_extra(mapping, dst, src, mode, 0);
694 }
695 EXPORT_SYMBOL(migrate_folio);
696 
697 #ifdef CONFIG_BUFFER_HEAD
698 /* Returns true if all buffers are successfully locked */
699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700 							enum migrate_mode mode)
701 {
702 	struct buffer_head *bh = head;
703 	struct buffer_head *failed_bh;
704 
705 	do {
706 		if (!trylock_buffer(bh)) {
707 			if (mode == MIGRATE_ASYNC)
708 				goto unlock;
709 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
710 				goto unlock;
711 			lock_buffer(bh);
712 		}
713 
714 		bh = bh->b_this_page;
715 	} while (bh != head);
716 
717 	return true;
718 
719 unlock:
720 	/* We failed to lock the buffer and cannot stall. */
721 	failed_bh = bh;
722 	bh = head;
723 	while (bh != failed_bh) {
724 		unlock_buffer(bh);
725 		bh = bh->b_this_page;
726 	}
727 
728 	return false;
729 }
730 
731 static int __buffer_migrate_folio(struct address_space *mapping,
732 		struct folio *dst, struct folio *src, enum migrate_mode mode,
733 		bool check_refs)
734 {
735 	struct buffer_head *bh, *head;
736 	int rc;
737 	int expected_count;
738 
739 	head = folio_buffers(src);
740 	if (!head)
741 		return migrate_folio(mapping, dst, src, mode);
742 
743 	/* Check whether page does not have extra refs before we do more work */
744 	expected_count = folio_expected_refs(mapping, src);
745 	if (folio_ref_count(src) != expected_count)
746 		return -EAGAIN;
747 
748 	if (!buffer_migrate_lock_buffers(head, mode))
749 		return -EAGAIN;
750 
751 	if (check_refs) {
752 		bool busy;
753 		bool invalidated = false;
754 
755 recheck_buffers:
756 		busy = false;
757 		spin_lock(&mapping->private_lock);
758 		bh = head;
759 		do {
760 			if (atomic_read(&bh->b_count)) {
761 				busy = true;
762 				break;
763 			}
764 			bh = bh->b_this_page;
765 		} while (bh != head);
766 		if (busy) {
767 			if (invalidated) {
768 				rc = -EAGAIN;
769 				goto unlock_buffers;
770 			}
771 			spin_unlock(&mapping->private_lock);
772 			invalidate_bh_lrus();
773 			invalidated = true;
774 			goto recheck_buffers;
775 		}
776 	}
777 
778 	rc = folio_migrate_mapping(mapping, dst, src, 0);
779 	if (rc != MIGRATEPAGE_SUCCESS)
780 		goto unlock_buffers;
781 
782 	folio_attach_private(dst, folio_detach_private(src));
783 
784 	bh = head;
785 	do {
786 		folio_set_bh(bh, dst, bh_offset(bh));
787 		bh = bh->b_this_page;
788 	} while (bh != head);
789 
790 	if (mode != MIGRATE_SYNC_NO_COPY)
791 		folio_migrate_copy(dst, src);
792 	else
793 		folio_migrate_flags(dst, src);
794 
795 	rc = MIGRATEPAGE_SUCCESS;
796 unlock_buffers:
797 	if (check_refs)
798 		spin_unlock(&mapping->private_lock);
799 	bh = head;
800 	do {
801 		unlock_buffer(bh);
802 		bh = bh->b_this_page;
803 	} while (bh != head);
804 
805 	return rc;
806 }
807 
808 /**
809  * buffer_migrate_folio() - Migration function for folios with buffers.
810  * @mapping: The address space containing @src.
811  * @dst: The folio to migrate to.
812  * @src: The folio to migrate from.
813  * @mode: How to migrate the folio.
814  *
815  * This function can only be used if the underlying filesystem guarantees
816  * that no other references to @src exist. For example attached buffer
817  * heads are accessed only under the folio lock.  If your filesystem cannot
818  * provide this guarantee, buffer_migrate_folio_norefs() may be more
819  * appropriate.
820  *
821  * Return: 0 on success or a negative errno on failure.
822  */
823 int buffer_migrate_folio(struct address_space *mapping,
824 		struct folio *dst, struct folio *src, enum migrate_mode mode)
825 {
826 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
827 }
828 EXPORT_SYMBOL(buffer_migrate_folio);
829 
830 /**
831  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
832  * @mapping: The address space containing @src.
833  * @dst: The folio to migrate to.
834  * @src: The folio to migrate from.
835  * @mode: How to migrate the folio.
836  *
837  * Like buffer_migrate_folio() except that this variant is more careful
838  * and checks that there are also no buffer head references. This function
839  * is the right one for mappings where buffer heads are directly looked
840  * up and referenced (such as block device mappings).
841  *
842  * Return: 0 on success or a negative errno on failure.
843  */
844 int buffer_migrate_folio_norefs(struct address_space *mapping,
845 		struct folio *dst, struct folio *src, enum migrate_mode mode)
846 {
847 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
848 }
849 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
850 #endif /* CONFIG_BUFFER_HEAD */
851 
852 int filemap_migrate_folio(struct address_space *mapping,
853 		struct folio *dst, struct folio *src, enum migrate_mode mode)
854 {
855 	int ret;
856 
857 	ret = folio_migrate_mapping(mapping, dst, src, 0);
858 	if (ret != MIGRATEPAGE_SUCCESS)
859 		return ret;
860 
861 	if (folio_get_private(src))
862 		folio_attach_private(dst, folio_detach_private(src));
863 
864 	if (mode != MIGRATE_SYNC_NO_COPY)
865 		folio_migrate_copy(dst, src);
866 	else
867 		folio_migrate_flags(dst, src);
868 	return MIGRATEPAGE_SUCCESS;
869 }
870 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
871 
872 /*
873  * Writeback a folio to clean the dirty state
874  */
875 static int writeout(struct address_space *mapping, struct folio *folio)
876 {
877 	struct writeback_control wbc = {
878 		.sync_mode = WB_SYNC_NONE,
879 		.nr_to_write = 1,
880 		.range_start = 0,
881 		.range_end = LLONG_MAX,
882 		.for_reclaim = 1
883 	};
884 	int rc;
885 
886 	if (!mapping->a_ops->writepage)
887 		/* No write method for the address space */
888 		return -EINVAL;
889 
890 	if (!folio_clear_dirty_for_io(folio))
891 		/* Someone else already triggered a write */
892 		return -EAGAIN;
893 
894 	/*
895 	 * A dirty folio may imply that the underlying filesystem has
896 	 * the folio on some queue. So the folio must be clean for
897 	 * migration. Writeout may mean we lose the lock and the
898 	 * folio state is no longer what we checked for earlier.
899 	 * At this point we know that the migration attempt cannot
900 	 * be successful.
901 	 */
902 	remove_migration_ptes(folio, folio, false);
903 
904 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
905 
906 	if (rc != AOP_WRITEPAGE_ACTIVATE)
907 		/* unlocked. Relock */
908 		folio_lock(folio);
909 
910 	return (rc < 0) ? -EIO : -EAGAIN;
911 }
912 
913 /*
914  * Default handling if a filesystem does not provide a migration function.
915  */
916 static int fallback_migrate_folio(struct address_space *mapping,
917 		struct folio *dst, struct folio *src, enum migrate_mode mode)
918 {
919 	if (folio_test_dirty(src)) {
920 		/* Only writeback folios in full synchronous migration */
921 		switch (mode) {
922 		case MIGRATE_SYNC:
923 		case MIGRATE_SYNC_NO_COPY:
924 			break;
925 		default:
926 			return -EBUSY;
927 		}
928 		return writeout(mapping, src);
929 	}
930 
931 	/*
932 	 * Buffers may be managed in a filesystem specific way.
933 	 * We must have no buffers or drop them.
934 	 */
935 	if (!filemap_release_folio(src, GFP_KERNEL))
936 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
937 
938 	return migrate_folio(mapping, dst, src, mode);
939 }
940 
941 /*
942  * Move a page to a newly allocated page
943  * The page is locked and all ptes have been successfully removed.
944  *
945  * The new page will have replaced the old page if this function
946  * is successful.
947  *
948  * Return value:
949  *   < 0 - error code
950  *  MIGRATEPAGE_SUCCESS - success
951  */
952 static int move_to_new_folio(struct folio *dst, struct folio *src,
953 				enum migrate_mode mode)
954 {
955 	int rc = -EAGAIN;
956 	bool is_lru = !__PageMovable(&src->page);
957 
958 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
959 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
960 
961 	if (likely(is_lru)) {
962 		struct address_space *mapping = folio_mapping(src);
963 
964 		if (!mapping)
965 			rc = migrate_folio(mapping, dst, src, mode);
966 		else if (mapping->a_ops->migrate_folio)
967 			/*
968 			 * Most folios have a mapping and most filesystems
969 			 * provide a migrate_folio callback. Anonymous folios
970 			 * are part of swap space which also has its own
971 			 * migrate_folio callback. This is the most common path
972 			 * for page migration.
973 			 */
974 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
975 								mode);
976 		else
977 			rc = fallback_migrate_folio(mapping, dst, src, mode);
978 	} else {
979 		const struct movable_operations *mops;
980 
981 		/*
982 		 * In case of non-lru page, it could be released after
983 		 * isolation step. In that case, we shouldn't try migration.
984 		 */
985 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
986 		if (!folio_test_movable(src)) {
987 			rc = MIGRATEPAGE_SUCCESS;
988 			folio_clear_isolated(src);
989 			goto out;
990 		}
991 
992 		mops = folio_movable_ops(src);
993 		rc = mops->migrate_page(&dst->page, &src->page, mode);
994 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
995 				!folio_test_isolated(src));
996 	}
997 
998 	/*
999 	 * When successful, old pagecache src->mapping must be cleared before
1000 	 * src is freed; but stats require that PageAnon be left as PageAnon.
1001 	 */
1002 	if (rc == MIGRATEPAGE_SUCCESS) {
1003 		if (__PageMovable(&src->page)) {
1004 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1005 
1006 			/*
1007 			 * We clear PG_movable under page_lock so any compactor
1008 			 * cannot try to migrate this page.
1009 			 */
1010 			folio_clear_isolated(src);
1011 		}
1012 
1013 		/*
1014 		 * Anonymous and movable src->mapping will be cleared by
1015 		 * free_pages_prepare so don't reset it here for keeping
1016 		 * the type to work PageAnon, for example.
1017 		 */
1018 		if (!folio_mapping_flags(src))
1019 			src->mapping = NULL;
1020 
1021 		if (likely(!folio_is_zone_device(dst)))
1022 			flush_dcache_folio(dst);
1023 	}
1024 out:
1025 	return rc;
1026 }
1027 
1028 /*
1029  * To record some information during migration, we use some unused
1030  * fields (mapping and private) of struct folio of the newly allocated
1031  * destination folio.  This is safe because nobody is using them
1032  * except us.
1033  */
1034 union migration_ptr {
1035 	struct anon_vma *anon_vma;
1036 	struct address_space *mapping;
1037 };
1038 static void __migrate_folio_record(struct folio *dst,
1039 				   unsigned long page_was_mapped,
1040 				   struct anon_vma *anon_vma)
1041 {
1042 	union migration_ptr ptr = { .anon_vma = anon_vma };
1043 	dst->mapping = ptr.mapping;
1044 	dst->private = (void *)page_was_mapped;
1045 }
1046 
1047 static void __migrate_folio_extract(struct folio *dst,
1048 				   int *page_was_mappedp,
1049 				   struct anon_vma **anon_vmap)
1050 {
1051 	union migration_ptr ptr = { .mapping = dst->mapping };
1052 	*anon_vmap = ptr.anon_vma;
1053 	*page_was_mappedp = (unsigned long)dst->private;
1054 	dst->mapping = NULL;
1055 	dst->private = NULL;
1056 }
1057 
1058 /* Restore the source folio to the original state upon failure */
1059 static void migrate_folio_undo_src(struct folio *src,
1060 				   int page_was_mapped,
1061 				   struct anon_vma *anon_vma,
1062 				   bool locked,
1063 				   struct list_head *ret)
1064 {
1065 	if (page_was_mapped)
1066 		remove_migration_ptes(src, src, false);
1067 	/* Drop an anon_vma reference if we took one */
1068 	if (anon_vma)
1069 		put_anon_vma(anon_vma);
1070 	if (locked)
1071 		folio_unlock(src);
1072 	if (ret)
1073 		list_move_tail(&src->lru, ret);
1074 }
1075 
1076 /* Restore the destination folio to the original state upon failure */
1077 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1078 		free_folio_t put_new_folio, unsigned long private)
1079 {
1080 	if (locked)
1081 		folio_unlock(dst);
1082 	if (put_new_folio)
1083 		put_new_folio(dst, private);
1084 	else
1085 		folio_put(dst);
1086 }
1087 
1088 /* Cleanup src folio upon migration success */
1089 static void migrate_folio_done(struct folio *src,
1090 			       enum migrate_reason reason)
1091 {
1092 	/*
1093 	 * Compaction can migrate also non-LRU pages which are
1094 	 * not accounted to NR_ISOLATED_*. They can be recognized
1095 	 * as __PageMovable
1096 	 */
1097 	if (likely(!__folio_test_movable(src)))
1098 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1099 				    folio_is_file_lru(src), -folio_nr_pages(src));
1100 
1101 	if (reason != MR_MEMORY_FAILURE)
1102 		/* We release the page in page_handle_poison. */
1103 		folio_put(src);
1104 }
1105 
1106 /* Obtain the lock on page, remove all ptes. */
1107 static int migrate_folio_unmap(new_folio_t get_new_folio,
1108 		free_folio_t put_new_folio, unsigned long private,
1109 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1110 		enum migrate_reason reason, struct list_head *ret)
1111 {
1112 	struct folio *dst;
1113 	int rc = -EAGAIN;
1114 	int page_was_mapped = 0;
1115 	struct anon_vma *anon_vma = NULL;
1116 	bool is_lru = !__PageMovable(&src->page);
1117 	bool locked = false;
1118 	bool dst_locked = false;
1119 
1120 	if (folio_ref_count(src) == 1) {
1121 		/* Folio was freed from under us. So we are done. */
1122 		folio_clear_active(src);
1123 		folio_clear_unevictable(src);
1124 		/* free_pages_prepare() will clear PG_isolated. */
1125 		list_del(&src->lru);
1126 		migrate_folio_done(src, reason);
1127 		return MIGRATEPAGE_SUCCESS;
1128 	}
1129 
1130 	dst = get_new_folio(src, private);
1131 	if (!dst)
1132 		return -ENOMEM;
1133 	*dstp = dst;
1134 
1135 	dst->private = NULL;
1136 
1137 	if (!folio_trylock(src)) {
1138 		if (mode == MIGRATE_ASYNC)
1139 			goto out;
1140 
1141 		/*
1142 		 * It's not safe for direct compaction to call lock_page.
1143 		 * For example, during page readahead pages are added locked
1144 		 * to the LRU. Later, when the IO completes the pages are
1145 		 * marked uptodate and unlocked. However, the queueing
1146 		 * could be merging multiple pages for one bio (e.g.
1147 		 * mpage_readahead). If an allocation happens for the
1148 		 * second or third page, the process can end up locking
1149 		 * the same page twice and deadlocking. Rather than
1150 		 * trying to be clever about what pages can be locked,
1151 		 * avoid the use of lock_page for direct compaction
1152 		 * altogether.
1153 		 */
1154 		if (current->flags & PF_MEMALLOC)
1155 			goto out;
1156 
1157 		/*
1158 		 * In "light" mode, we can wait for transient locks (eg
1159 		 * inserting a page into the page table), but it's not
1160 		 * worth waiting for I/O.
1161 		 */
1162 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1163 			goto out;
1164 
1165 		folio_lock(src);
1166 	}
1167 	locked = true;
1168 
1169 	if (folio_test_writeback(src)) {
1170 		/*
1171 		 * Only in the case of a full synchronous migration is it
1172 		 * necessary to wait for PageWriteback. In the async case,
1173 		 * the retry loop is too short and in the sync-light case,
1174 		 * the overhead of stalling is too much
1175 		 */
1176 		switch (mode) {
1177 		case MIGRATE_SYNC:
1178 		case MIGRATE_SYNC_NO_COPY:
1179 			break;
1180 		default:
1181 			rc = -EBUSY;
1182 			goto out;
1183 		}
1184 		folio_wait_writeback(src);
1185 	}
1186 
1187 	/*
1188 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1189 	 * we cannot notice that anon_vma is freed while we migrate a page.
1190 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1191 	 * of migration. File cache pages are no problem because of page_lock()
1192 	 * File Caches may use write_page() or lock_page() in migration, then,
1193 	 * just care Anon page here.
1194 	 *
1195 	 * Only folio_get_anon_vma() understands the subtleties of
1196 	 * getting a hold on an anon_vma from outside one of its mms.
1197 	 * But if we cannot get anon_vma, then we won't need it anyway,
1198 	 * because that implies that the anon page is no longer mapped
1199 	 * (and cannot be remapped so long as we hold the page lock).
1200 	 */
1201 	if (folio_test_anon(src) && !folio_test_ksm(src))
1202 		anon_vma = folio_get_anon_vma(src);
1203 
1204 	/*
1205 	 * Block others from accessing the new page when we get around to
1206 	 * establishing additional references. We are usually the only one
1207 	 * holding a reference to dst at this point. We used to have a BUG
1208 	 * here if folio_trylock(dst) fails, but would like to allow for
1209 	 * cases where there might be a race with the previous use of dst.
1210 	 * This is much like races on refcount of oldpage: just don't BUG().
1211 	 */
1212 	if (unlikely(!folio_trylock(dst)))
1213 		goto out;
1214 	dst_locked = true;
1215 
1216 	if (unlikely(!is_lru)) {
1217 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1218 		return MIGRATEPAGE_UNMAP;
1219 	}
1220 
1221 	/*
1222 	 * Corner case handling:
1223 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1224 	 * and treated as swapcache but it has no rmap yet.
1225 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1226 	 * trigger a BUG.  So handle it here.
1227 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1228 	 * fs-private metadata. The page can be picked up due to memory
1229 	 * offlining.  Everywhere else except page reclaim, the page is
1230 	 * invisible to the vm, so the page can not be migrated.  So try to
1231 	 * free the metadata, so the page can be freed.
1232 	 */
1233 	if (!src->mapping) {
1234 		if (folio_test_private(src)) {
1235 			try_to_free_buffers(src);
1236 			goto out;
1237 		}
1238 	} else if (folio_mapped(src)) {
1239 		/* Establish migration ptes */
1240 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1241 			       !folio_test_ksm(src) && !anon_vma, src);
1242 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1243 		page_was_mapped = 1;
1244 	}
1245 
1246 	if (!folio_mapped(src)) {
1247 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1248 		return MIGRATEPAGE_UNMAP;
1249 	}
1250 
1251 out:
1252 	/*
1253 	 * A folio that has not been unmapped will be restored to
1254 	 * right list unless we want to retry.
1255 	 */
1256 	if (rc == -EAGAIN)
1257 		ret = NULL;
1258 
1259 	migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret);
1260 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1261 
1262 	return rc;
1263 }
1264 
1265 /* Migrate the folio to the newly allocated folio in dst. */
1266 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1267 			      struct folio *src, struct folio *dst,
1268 			      enum migrate_mode mode, enum migrate_reason reason,
1269 			      struct list_head *ret)
1270 {
1271 	int rc;
1272 	int page_was_mapped = 0;
1273 	struct anon_vma *anon_vma = NULL;
1274 	bool is_lru = !__PageMovable(&src->page);
1275 	struct list_head *prev;
1276 
1277 	__migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1278 	prev = dst->lru.prev;
1279 	list_del(&dst->lru);
1280 
1281 	rc = move_to_new_folio(dst, src, mode);
1282 	if (rc)
1283 		goto out;
1284 
1285 	if (unlikely(!is_lru))
1286 		goto out_unlock_both;
1287 
1288 	/*
1289 	 * When successful, push dst to LRU immediately: so that if it
1290 	 * turns out to be an mlocked page, remove_migration_ptes() will
1291 	 * automatically build up the correct dst->mlock_count for it.
1292 	 *
1293 	 * We would like to do something similar for the old page, when
1294 	 * unsuccessful, and other cases when a page has been temporarily
1295 	 * isolated from the unevictable LRU: but this case is the easiest.
1296 	 */
1297 	folio_add_lru(dst);
1298 	if (page_was_mapped)
1299 		lru_add_drain();
1300 
1301 	if (page_was_mapped)
1302 		remove_migration_ptes(src, dst, false);
1303 
1304 out_unlock_both:
1305 	folio_unlock(dst);
1306 	set_page_owner_migrate_reason(&dst->page, reason);
1307 	/*
1308 	 * If migration is successful, decrease refcount of dst,
1309 	 * which will not free the page because new page owner increased
1310 	 * refcounter.
1311 	 */
1312 	folio_put(dst);
1313 
1314 	/*
1315 	 * A folio that has been migrated has all references removed
1316 	 * and will be freed.
1317 	 */
1318 	list_del(&src->lru);
1319 	/* Drop an anon_vma reference if we took one */
1320 	if (anon_vma)
1321 		put_anon_vma(anon_vma);
1322 	folio_unlock(src);
1323 	migrate_folio_done(src, reason);
1324 
1325 	return rc;
1326 out:
1327 	/*
1328 	 * A folio that has not been migrated will be restored to
1329 	 * right list unless we want to retry.
1330 	 */
1331 	if (rc == -EAGAIN) {
1332 		list_add(&dst->lru, prev);
1333 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1334 		return rc;
1335 	}
1336 
1337 	migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret);
1338 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1339 
1340 	return rc;
1341 }
1342 
1343 /*
1344  * Counterpart of unmap_and_move_page() for hugepage migration.
1345  *
1346  * This function doesn't wait the completion of hugepage I/O
1347  * because there is no race between I/O and migration for hugepage.
1348  * Note that currently hugepage I/O occurs only in direct I/O
1349  * where no lock is held and PG_writeback is irrelevant,
1350  * and writeback status of all subpages are counted in the reference
1351  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1352  * under direct I/O, the reference of the head page is 512 and a bit more.)
1353  * This means that when we try to migrate hugepage whose subpages are
1354  * doing direct I/O, some references remain after try_to_unmap() and
1355  * hugepage migration fails without data corruption.
1356  *
1357  * There is also no race when direct I/O is issued on the page under migration,
1358  * because then pte is replaced with migration swap entry and direct I/O code
1359  * will wait in the page fault for migration to complete.
1360  */
1361 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1362 		free_folio_t put_new_folio, unsigned long private,
1363 		struct folio *src, int force, enum migrate_mode mode,
1364 		int reason, struct list_head *ret)
1365 {
1366 	struct folio *dst;
1367 	int rc = -EAGAIN;
1368 	int page_was_mapped = 0;
1369 	struct anon_vma *anon_vma = NULL;
1370 	struct address_space *mapping = NULL;
1371 
1372 	if (folio_ref_count(src) == 1) {
1373 		/* page was freed from under us. So we are done. */
1374 		folio_putback_active_hugetlb(src);
1375 		return MIGRATEPAGE_SUCCESS;
1376 	}
1377 
1378 	dst = get_new_folio(src, private);
1379 	if (!dst)
1380 		return -ENOMEM;
1381 
1382 	if (!folio_trylock(src)) {
1383 		if (!force)
1384 			goto out;
1385 		switch (mode) {
1386 		case MIGRATE_SYNC:
1387 		case MIGRATE_SYNC_NO_COPY:
1388 			break;
1389 		default:
1390 			goto out;
1391 		}
1392 		folio_lock(src);
1393 	}
1394 
1395 	/*
1396 	 * Check for pages which are in the process of being freed.  Without
1397 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1398 	 * be called and we could leak usage counts for subpools.
1399 	 */
1400 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1401 		rc = -EBUSY;
1402 		goto out_unlock;
1403 	}
1404 
1405 	if (folio_test_anon(src))
1406 		anon_vma = folio_get_anon_vma(src);
1407 
1408 	if (unlikely(!folio_trylock(dst)))
1409 		goto put_anon;
1410 
1411 	if (folio_mapped(src)) {
1412 		enum ttu_flags ttu = 0;
1413 
1414 		if (!folio_test_anon(src)) {
1415 			/*
1416 			 * In shared mappings, try_to_unmap could potentially
1417 			 * call huge_pmd_unshare.  Because of this, take
1418 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1419 			 * to let lower levels know we have taken the lock.
1420 			 */
1421 			mapping = hugetlb_page_mapping_lock_write(&src->page);
1422 			if (unlikely(!mapping))
1423 				goto unlock_put_anon;
1424 
1425 			ttu = TTU_RMAP_LOCKED;
1426 		}
1427 
1428 		try_to_migrate(src, ttu);
1429 		page_was_mapped = 1;
1430 
1431 		if (ttu & TTU_RMAP_LOCKED)
1432 			i_mmap_unlock_write(mapping);
1433 	}
1434 
1435 	if (!folio_mapped(src))
1436 		rc = move_to_new_folio(dst, src, mode);
1437 
1438 	if (page_was_mapped)
1439 		remove_migration_ptes(src,
1440 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1441 
1442 unlock_put_anon:
1443 	folio_unlock(dst);
1444 
1445 put_anon:
1446 	if (anon_vma)
1447 		put_anon_vma(anon_vma);
1448 
1449 	if (rc == MIGRATEPAGE_SUCCESS) {
1450 		move_hugetlb_state(src, dst, reason);
1451 		put_new_folio = NULL;
1452 	}
1453 
1454 out_unlock:
1455 	folio_unlock(src);
1456 out:
1457 	if (rc == MIGRATEPAGE_SUCCESS)
1458 		folio_putback_active_hugetlb(src);
1459 	else if (rc != -EAGAIN)
1460 		list_move_tail(&src->lru, ret);
1461 
1462 	/*
1463 	 * If migration was not successful and there's a freeing callback, use
1464 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1465 	 * isolation.
1466 	 */
1467 	if (put_new_folio)
1468 		put_new_folio(dst, private);
1469 	else
1470 		folio_putback_active_hugetlb(dst);
1471 
1472 	return rc;
1473 }
1474 
1475 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1476 {
1477 	int rc;
1478 
1479 	folio_lock(folio);
1480 	rc = split_folio_to_list(folio, split_folios);
1481 	folio_unlock(folio);
1482 	if (!rc)
1483 		list_move_tail(&folio->lru, split_folios);
1484 
1485 	return rc;
1486 }
1487 
1488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1489 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1490 #else
1491 #define NR_MAX_BATCHED_MIGRATION	512
1492 #endif
1493 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1494 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1495 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1496 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1497 
1498 struct migrate_pages_stats {
1499 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1500 				   units of base pages */
1501 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1502 				   units of base pages.  Untried folios aren't counted */
1503 	int nr_thp_succeeded;	/* THP migrated successfully */
1504 	int nr_thp_failed;	/* THP failed to be migrated */
1505 	int nr_thp_split;	/* THP split before migrating */
1506 };
1507 
1508 /*
1509  * Returns the number of hugetlb folios that were not migrated, or an error code
1510  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1511  * any more because the list has become empty or no retryable hugetlb folios
1512  * exist any more. It is caller's responsibility to call putback_movable_pages()
1513  * only if ret != 0.
1514  */
1515 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1516 			    free_folio_t put_new_folio, unsigned long private,
1517 			    enum migrate_mode mode, int reason,
1518 			    struct migrate_pages_stats *stats,
1519 			    struct list_head *ret_folios)
1520 {
1521 	int retry = 1;
1522 	int nr_failed = 0;
1523 	int nr_retry_pages = 0;
1524 	int pass = 0;
1525 	struct folio *folio, *folio2;
1526 	int rc, nr_pages;
1527 
1528 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1529 		retry = 0;
1530 		nr_retry_pages = 0;
1531 
1532 		list_for_each_entry_safe(folio, folio2, from, lru) {
1533 			if (!folio_test_hugetlb(folio))
1534 				continue;
1535 
1536 			nr_pages = folio_nr_pages(folio);
1537 
1538 			cond_resched();
1539 
1540 			/*
1541 			 * Migratability of hugepages depends on architectures and
1542 			 * their size.  This check is necessary because some callers
1543 			 * of hugepage migration like soft offline and memory
1544 			 * hotremove don't walk through page tables or check whether
1545 			 * the hugepage is pmd-based or not before kicking migration.
1546 			 */
1547 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1548 				nr_failed++;
1549 				stats->nr_failed_pages += nr_pages;
1550 				list_move_tail(&folio->lru, ret_folios);
1551 				continue;
1552 			}
1553 
1554 			rc = unmap_and_move_huge_page(get_new_folio,
1555 						      put_new_folio, private,
1556 						      folio, pass > 2, mode,
1557 						      reason, ret_folios);
1558 			/*
1559 			 * The rules are:
1560 			 *	Success: hugetlb folio will be put back
1561 			 *	-EAGAIN: stay on the from list
1562 			 *	-ENOMEM: stay on the from list
1563 			 *	Other errno: put on ret_folios list
1564 			 */
1565 			switch(rc) {
1566 			case -ENOMEM:
1567 				/*
1568 				 * When memory is low, don't bother to try to migrate
1569 				 * other folios, just exit.
1570 				 */
1571 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1572 				return -ENOMEM;
1573 			case -EAGAIN:
1574 				retry++;
1575 				nr_retry_pages += nr_pages;
1576 				break;
1577 			case MIGRATEPAGE_SUCCESS:
1578 				stats->nr_succeeded += nr_pages;
1579 				break;
1580 			default:
1581 				/*
1582 				 * Permanent failure (-EBUSY, etc.):
1583 				 * unlike -EAGAIN case, the failed folio is
1584 				 * removed from migration folio list and not
1585 				 * retried in the next outer loop.
1586 				 */
1587 				nr_failed++;
1588 				stats->nr_failed_pages += nr_pages;
1589 				break;
1590 			}
1591 		}
1592 	}
1593 	/*
1594 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1595 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1596 	 * folios as failed.
1597 	 */
1598 	nr_failed += retry;
1599 	stats->nr_failed_pages += nr_retry_pages;
1600 
1601 	return nr_failed;
1602 }
1603 
1604 /*
1605  * migrate_pages_batch() first unmaps folios in the from list as many as
1606  * possible, then move the unmapped folios.
1607  *
1608  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1609  * lock or bit when we have locked more than one folio.  Which may cause
1610  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1611  * length of the from list must be <= 1.
1612  */
1613 static int migrate_pages_batch(struct list_head *from,
1614 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1615 		unsigned long private, enum migrate_mode mode, int reason,
1616 		struct list_head *ret_folios, struct list_head *split_folios,
1617 		struct migrate_pages_stats *stats, int nr_pass)
1618 {
1619 	int retry = 1;
1620 	int thp_retry = 1;
1621 	int nr_failed = 0;
1622 	int nr_retry_pages = 0;
1623 	int pass = 0;
1624 	bool is_thp = false;
1625 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1626 	int rc, rc_saved = 0, nr_pages;
1627 	LIST_HEAD(unmap_folios);
1628 	LIST_HEAD(dst_folios);
1629 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1630 
1631 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1632 			!list_empty(from) && !list_is_singular(from));
1633 
1634 	for (pass = 0; pass < nr_pass && retry; pass++) {
1635 		retry = 0;
1636 		thp_retry = 0;
1637 		nr_retry_pages = 0;
1638 
1639 		list_for_each_entry_safe(folio, folio2, from, lru) {
1640 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1641 			nr_pages = folio_nr_pages(folio);
1642 
1643 			cond_resched();
1644 
1645 			/*
1646 			 * Large folio migration might be unsupported or
1647 			 * the allocation might be failed so we should retry
1648 			 * on the same folio with the large folio split
1649 			 * to normal folios.
1650 			 *
1651 			 * Split folios are put in split_folios, and
1652 			 * we will migrate them after the rest of the
1653 			 * list is processed.
1654 			 */
1655 			if (!thp_migration_supported() && is_thp) {
1656 				nr_failed++;
1657 				stats->nr_thp_failed++;
1658 				if (!try_split_folio(folio, split_folios)) {
1659 					stats->nr_thp_split++;
1660 					continue;
1661 				}
1662 				stats->nr_failed_pages += nr_pages;
1663 				list_move_tail(&folio->lru, ret_folios);
1664 				continue;
1665 			}
1666 
1667 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1668 					private, folio, &dst, mode, reason,
1669 					ret_folios);
1670 			/*
1671 			 * The rules are:
1672 			 *	Success: folio will be freed
1673 			 *	Unmap: folio will be put on unmap_folios list,
1674 			 *	       dst folio put on dst_folios list
1675 			 *	-EAGAIN: stay on the from list
1676 			 *	-ENOMEM: stay on the from list
1677 			 *	Other errno: put on ret_folios list
1678 			 */
1679 			switch(rc) {
1680 			case -ENOMEM:
1681 				/*
1682 				 * When memory is low, don't bother to try to migrate
1683 				 * other folios, move unmapped folios, then exit.
1684 				 */
1685 				nr_failed++;
1686 				stats->nr_thp_failed += is_thp;
1687 				/* Large folio NUMA faulting doesn't split to retry. */
1688 				if (folio_test_large(folio) && !nosplit) {
1689 					int ret = try_split_folio(folio, split_folios);
1690 
1691 					if (!ret) {
1692 						stats->nr_thp_split += is_thp;
1693 						break;
1694 					} else if (reason == MR_LONGTERM_PIN &&
1695 						   ret == -EAGAIN) {
1696 						/*
1697 						 * Try again to split large folio to
1698 						 * mitigate the failure of longterm pinning.
1699 						 */
1700 						retry++;
1701 						thp_retry += is_thp;
1702 						nr_retry_pages += nr_pages;
1703 						/* Undo duplicated failure counting. */
1704 						nr_failed--;
1705 						stats->nr_thp_failed -= is_thp;
1706 						break;
1707 					}
1708 				}
1709 
1710 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1711 				/* nr_failed isn't updated for not used */
1712 				stats->nr_thp_failed += thp_retry;
1713 				rc_saved = rc;
1714 				if (list_empty(&unmap_folios))
1715 					goto out;
1716 				else
1717 					goto move;
1718 			case -EAGAIN:
1719 				retry++;
1720 				thp_retry += is_thp;
1721 				nr_retry_pages += nr_pages;
1722 				break;
1723 			case MIGRATEPAGE_SUCCESS:
1724 				stats->nr_succeeded += nr_pages;
1725 				stats->nr_thp_succeeded += is_thp;
1726 				break;
1727 			case MIGRATEPAGE_UNMAP:
1728 				list_move_tail(&folio->lru, &unmap_folios);
1729 				list_add_tail(&dst->lru, &dst_folios);
1730 				break;
1731 			default:
1732 				/*
1733 				 * Permanent failure (-EBUSY, etc.):
1734 				 * unlike -EAGAIN case, the failed folio is
1735 				 * removed from migration folio list and not
1736 				 * retried in the next outer loop.
1737 				 */
1738 				nr_failed++;
1739 				stats->nr_thp_failed += is_thp;
1740 				stats->nr_failed_pages += nr_pages;
1741 				break;
1742 			}
1743 		}
1744 	}
1745 	nr_failed += retry;
1746 	stats->nr_thp_failed += thp_retry;
1747 	stats->nr_failed_pages += nr_retry_pages;
1748 move:
1749 	/* Flush TLBs for all unmapped folios */
1750 	try_to_unmap_flush();
1751 
1752 	retry = 1;
1753 	for (pass = 0; pass < nr_pass && retry; pass++) {
1754 		retry = 0;
1755 		thp_retry = 0;
1756 		nr_retry_pages = 0;
1757 
1758 		dst = list_first_entry(&dst_folios, struct folio, lru);
1759 		dst2 = list_next_entry(dst, lru);
1760 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1761 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1762 			nr_pages = folio_nr_pages(folio);
1763 
1764 			cond_resched();
1765 
1766 			rc = migrate_folio_move(put_new_folio, private,
1767 						folio, dst, mode,
1768 						reason, ret_folios);
1769 			/*
1770 			 * The rules are:
1771 			 *	Success: folio will be freed
1772 			 *	-EAGAIN: stay on the unmap_folios list
1773 			 *	Other errno: put on ret_folios list
1774 			 */
1775 			switch(rc) {
1776 			case -EAGAIN:
1777 				retry++;
1778 				thp_retry += is_thp;
1779 				nr_retry_pages += nr_pages;
1780 				break;
1781 			case MIGRATEPAGE_SUCCESS:
1782 				stats->nr_succeeded += nr_pages;
1783 				stats->nr_thp_succeeded += is_thp;
1784 				break;
1785 			default:
1786 				nr_failed++;
1787 				stats->nr_thp_failed += is_thp;
1788 				stats->nr_failed_pages += nr_pages;
1789 				break;
1790 			}
1791 			dst = dst2;
1792 			dst2 = list_next_entry(dst, lru);
1793 		}
1794 	}
1795 	nr_failed += retry;
1796 	stats->nr_thp_failed += thp_retry;
1797 	stats->nr_failed_pages += nr_retry_pages;
1798 
1799 	rc = rc_saved ? : nr_failed;
1800 out:
1801 	/* Cleanup remaining folios */
1802 	dst = list_first_entry(&dst_folios, struct folio, lru);
1803 	dst2 = list_next_entry(dst, lru);
1804 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1805 		int page_was_mapped = 0;
1806 		struct anon_vma *anon_vma = NULL;
1807 
1808 		__migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1809 		migrate_folio_undo_src(folio, page_was_mapped, anon_vma,
1810 				       true, ret_folios);
1811 		list_del(&dst->lru);
1812 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1813 		dst = dst2;
1814 		dst2 = list_next_entry(dst, lru);
1815 	}
1816 
1817 	return rc;
1818 }
1819 
1820 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1821 		free_folio_t put_new_folio, unsigned long private,
1822 		enum migrate_mode mode, int reason,
1823 		struct list_head *ret_folios, struct list_head *split_folios,
1824 		struct migrate_pages_stats *stats)
1825 {
1826 	int rc, nr_failed = 0;
1827 	LIST_HEAD(folios);
1828 	struct migrate_pages_stats astats;
1829 
1830 	memset(&astats, 0, sizeof(astats));
1831 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1832 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1833 				 reason, &folios, split_folios, &astats,
1834 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1835 	stats->nr_succeeded += astats.nr_succeeded;
1836 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1837 	stats->nr_thp_split += astats.nr_thp_split;
1838 	if (rc < 0) {
1839 		stats->nr_failed_pages += astats.nr_failed_pages;
1840 		stats->nr_thp_failed += astats.nr_thp_failed;
1841 		list_splice_tail(&folios, ret_folios);
1842 		return rc;
1843 	}
1844 	stats->nr_thp_failed += astats.nr_thp_split;
1845 	nr_failed += astats.nr_thp_split;
1846 	/*
1847 	 * Fall back to migrate all failed folios one by one synchronously. All
1848 	 * failed folios except split THPs will be retried, so their failure
1849 	 * isn't counted
1850 	 */
1851 	list_splice_tail_init(&folios, from);
1852 	while (!list_empty(from)) {
1853 		list_move(from->next, &folios);
1854 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1855 					 private, mode, reason, ret_folios,
1856 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1857 		list_splice_tail_init(&folios, ret_folios);
1858 		if (rc < 0)
1859 			return rc;
1860 		nr_failed += rc;
1861 	}
1862 
1863 	return nr_failed;
1864 }
1865 
1866 /*
1867  * migrate_pages - migrate the folios specified in a list, to the free folios
1868  *		   supplied as the target for the page migration
1869  *
1870  * @from:		The list of folios to be migrated.
1871  * @get_new_folio:	The function used to allocate free folios to be used
1872  *			as the target of the folio migration.
1873  * @put_new_folio:	The function used to free target folios if migration
1874  *			fails, or NULL if no special handling is necessary.
1875  * @private:		Private data to be passed on to get_new_folio()
1876  * @mode:		The migration mode that specifies the constraints for
1877  *			folio migration, if any.
1878  * @reason:		The reason for folio migration.
1879  * @ret_succeeded:	Set to the number of folios migrated successfully if
1880  *			the caller passes a non-NULL pointer.
1881  *
1882  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1883  * are movable any more because the list has become empty or no retryable folios
1884  * exist any more. It is caller's responsibility to call putback_movable_pages()
1885  * only if ret != 0.
1886  *
1887  * Returns the number of {normal folio, large folio, hugetlb} that were not
1888  * migrated, or an error code. The number of large folio splits will be
1889  * considered as the number of non-migrated large folio, no matter how many
1890  * split folios of the large folio are migrated successfully.
1891  */
1892 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1893 		free_folio_t put_new_folio, unsigned long private,
1894 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1895 {
1896 	int rc, rc_gather;
1897 	int nr_pages;
1898 	struct folio *folio, *folio2;
1899 	LIST_HEAD(folios);
1900 	LIST_HEAD(ret_folios);
1901 	LIST_HEAD(split_folios);
1902 	struct migrate_pages_stats stats;
1903 
1904 	trace_mm_migrate_pages_start(mode, reason);
1905 
1906 	memset(&stats, 0, sizeof(stats));
1907 
1908 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1909 				     mode, reason, &stats, &ret_folios);
1910 	if (rc_gather < 0)
1911 		goto out;
1912 
1913 again:
1914 	nr_pages = 0;
1915 	list_for_each_entry_safe(folio, folio2, from, lru) {
1916 		/* Retried hugetlb folios will be kept in list  */
1917 		if (folio_test_hugetlb(folio)) {
1918 			list_move_tail(&folio->lru, &ret_folios);
1919 			continue;
1920 		}
1921 
1922 		nr_pages += folio_nr_pages(folio);
1923 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1924 			break;
1925 	}
1926 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1927 		list_cut_before(&folios, from, &folio2->lru);
1928 	else
1929 		list_splice_init(from, &folios);
1930 	if (mode == MIGRATE_ASYNC)
1931 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1932 				private, mode, reason, &ret_folios,
1933 				&split_folios, &stats,
1934 				NR_MAX_MIGRATE_PAGES_RETRY);
1935 	else
1936 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1937 				private, mode, reason, &ret_folios,
1938 				&split_folios, &stats);
1939 	list_splice_tail_init(&folios, &ret_folios);
1940 	if (rc < 0) {
1941 		rc_gather = rc;
1942 		list_splice_tail(&split_folios, &ret_folios);
1943 		goto out;
1944 	}
1945 	if (!list_empty(&split_folios)) {
1946 		/*
1947 		 * Failure isn't counted since all split folios of a large folio
1948 		 * is counted as 1 failure already.  And, we only try to migrate
1949 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1950 		 */
1951 		migrate_pages_batch(&split_folios, get_new_folio,
1952 				put_new_folio, private, MIGRATE_ASYNC, reason,
1953 				&ret_folios, NULL, &stats, 1);
1954 		list_splice_tail_init(&split_folios, &ret_folios);
1955 	}
1956 	rc_gather += rc;
1957 	if (!list_empty(from))
1958 		goto again;
1959 out:
1960 	/*
1961 	 * Put the permanent failure folio back to migration list, they
1962 	 * will be put back to the right list by the caller.
1963 	 */
1964 	list_splice(&ret_folios, from);
1965 
1966 	/*
1967 	 * Return 0 in case all split folios of fail-to-migrate large folios
1968 	 * are migrated successfully.
1969 	 */
1970 	if (list_empty(from))
1971 		rc_gather = 0;
1972 
1973 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1974 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1975 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1976 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1977 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1978 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1979 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1980 			       stats.nr_thp_split, mode, reason);
1981 
1982 	if (ret_succeeded)
1983 		*ret_succeeded = stats.nr_succeeded;
1984 
1985 	return rc_gather;
1986 }
1987 
1988 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
1989 {
1990 	struct migration_target_control *mtc;
1991 	gfp_t gfp_mask;
1992 	unsigned int order = 0;
1993 	int nid;
1994 	int zidx;
1995 
1996 	mtc = (struct migration_target_control *)private;
1997 	gfp_mask = mtc->gfp_mask;
1998 	nid = mtc->nid;
1999 	if (nid == NUMA_NO_NODE)
2000 		nid = folio_nid(src);
2001 
2002 	if (folio_test_hugetlb(src)) {
2003 		struct hstate *h = folio_hstate(src);
2004 
2005 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2006 		return alloc_hugetlb_folio_nodemask(h, nid,
2007 						mtc->nmask, gfp_mask);
2008 	}
2009 
2010 	if (folio_test_large(src)) {
2011 		/*
2012 		 * clear __GFP_RECLAIM to make the migration callback
2013 		 * consistent with regular THP allocations.
2014 		 */
2015 		gfp_mask &= ~__GFP_RECLAIM;
2016 		gfp_mask |= GFP_TRANSHUGE;
2017 		order = folio_order(src);
2018 	}
2019 	zidx = zone_idx(folio_zone(src));
2020 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2021 		gfp_mask |= __GFP_HIGHMEM;
2022 
2023 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2024 }
2025 
2026 #ifdef CONFIG_NUMA
2027 
2028 static int store_status(int __user *status, int start, int value, int nr)
2029 {
2030 	while (nr-- > 0) {
2031 		if (put_user(value, status + start))
2032 			return -EFAULT;
2033 		start++;
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static int do_move_pages_to_node(struct mm_struct *mm,
2040 		struct list_head *pagelist, int node)
2041 {
2042 	int err;
2043 	struct migration_target_control mtc = {
2044 		.nid = node,
2045 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2046 	};
2047 
2048 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2049 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2050 	if (err)
2051 		putback_movable_pages(pagelist);
2052 	return err;
2053 }
2054 
2055 /*
2056  * Resolves the given address to a struct page, isolates it from the LRU and
2057  * puts it to the given pagelist.
2058  * Returns:
2059  *     errno - if the page cannot be found/isolated
2060  *     0 - when it doesn't have to be migrated because it is already on the
2061  *         target node
2062  *     1 - when it has been queued
2063  */
2064 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2065 		int node, struct list_head *pagelist, bool migrate_all)
2066 {
2067 	struct vm_area_struct *vma;
2068 	unsigned long addr;
2069 	struct page *page;
2070 	int err;
2071 	bool isolated;
2072 
2073 	mmap_read_lock(mm);
2074 	addr = (unsigned long)untagged_addr_remote(mm, p);
2075 
2076 	err = -EFAULT;
2077 	vma = vma_lookup(mm, addr);
2078 	if (!vma || !vma_migratable(vma))
2079 		goto out;
2080 
2081 	/* FOLL_DUMP to ignore special (like zero) pages */
2082 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2083 
2084 	err = PTR_ERR(page);
2085 	if (IS_ERR(page))
2086 		goto out;
2087 
2088 	err = -ENOENT;
2089 	if (!page)
2090 		goto out;
2091 
2092 	if (is_zone_device_page(page))
2093 		goto out_putpage;
2094 
2095 	err = 0;
2096 	if (page_to_nid(page) == node)
2097 		goto out_putpage;
2098 
2099 	err = -EACCES;
2100 	if (page_mapcount(page) > 1 && !migrate_all)
2101 		goto out_putpage;
2102 
2103 	if (PageHuge(page)) {
2104 		if (PageHead(page)) {
2105 			isolated = isolate_hugetlb(page_folio(page), pagelist);
2106 			err = isolated ? 1 : -EBUSY;
2107 		}
2108 	} else {
2109 		struct page *head;
2110 
2111 		head = compound_head(page);
2112 		isolated = isolate_lru_page(head);
2113 		if (!isolated) {
2114 			err = -EBUSY;
2115 			goto out_putpage;
2116 		}
2117 
2118 		err = 1;
2119 		list_add_tail(&head->lru, pagelist);
2120 		mod_node_page_state(page_pgdat(head),
2121 			NR_ISOLATED_ANON + page_is_file_lru(head),
2122 			thp_nr_pages(head));
2123 	}
2124 out_putpage:
2125 	/*
2126 	 * Either remove the duplicate refcount from
2127 	 * isolate_lru_page() or drop the page ref if it was
2128 	 * not isolated.
2129 	 */
2130 	put_page(page);
2131 out:
2132 	mmap_read_unlock(mm);
2133 	return err;
2134 }
2135 
2136 static int move_pages_and_store_status(struct mm_struct *mm, int node,
2137 		struct list_head *pagelist, int __user *status,
2138 		int start, int i, unsigned long nr_pages)
2139 {
2140 	int err;
2141 
2142 	if (list_empty(pagelist))
2143 		return 0;
2144 
2145 	err = do_move_pages_to_node(mm, pagelist, node);
2146 	if (err) {
2147 		/*
2148 		 * Positive err means the number of failed
2149 		 * pages to migrate.  Since we are going to
2150 		 * abort and return the number of non-migrated
2151 		 * pages, so need to include the rest of the
2152 		 * nr_pages that have not been attempted as
2153 		 * well.
2154 		 */
2155 		if (err > 0)
2156 			err += nr_pages - i;
2157 		return err;
2158 	}
2159 	return store_status(status, start, node, i - start);
2160 }
2161 
2162 /*
2163  * Migrate an array of page address onto an array of nodes and fill
2164  * the corresponding array of status.
2165  */
2166 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2167 			 unsigned long nr_pages,
2168 			 const void __user * __user *pages,
2169 			 const int __user *nodes,
2170 			 int __user *status, int flags)
2171 {
2172 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2173 	int current_node = NUMA_NO_NODE;
2174 	LIST_HEAD(pagelist);
2175 	int start, i;
2176 	int err = 0, err1;
2177 
2178 	lru_cache_disable();
2179 
2180 	for (i = start = 0; i < nr_pages; i++) {
2181 		const void __user *p;
2182 		int node;
2183 
2184 		err = -EFAULT;
2185 		if (in_compat_syscall()) {
2186 			compat_uptr_t cp;
2187 
2188 			if (get_user(cp, compat_pages + i))
2189 				goto out_flush;
2190 
2191 			p = compat_ptr(cp);
2192 		} else {
2193 			if (get_user(p, pages + i))
2194 				goto out_flush;
2195 		}
2196 		if (get_user(node, nodes + i))
2197 			goto out_flush;
2198 
2199 		err = -ENODEV;
2200 		if (node < 0 || node >= MAX_NUMNODES)
2201 			goto out_flush;
2202 		if (!node_state(node, N_MEMORY))
2203 			goto out_flush;
2204 
2205 		err = -EACCES;
2206 		if (!node_isset(node, task_nodes))
2207 			goto out_flush;
2208 
2209 		if (current_node == NUMA_NO_NODE) {
2210 			current_node = node;
2211 			start = i;
2212 		} else if (node != current_node) {
2213 			err = move_pages_and_store_status(mm, current_node,
2214 					&pagelist, status, start, i, nr_pages);
2215 			if (err)
2216 				goto out;
2217 			start = i;
2218 			current_node = node;
2219 		}
2220 
2221 		/*
2222 		 * Errors in the page lookup or isolation are not fatal and we simply
2223 		 * report them via status
2224 		 */
2225 		err = add_page_for_migration(mm, p, current_node, &pagelist,
2226 					     flags & MPOL_MF_MOVE_ALL);
2227 
2228 		if (err > 0) {
2229 			/* The page is successfully queued for migration */
2230 			continue;
2231 		}
2232 
2233 		/*
2234 		 * The move_pages() man page does not have an -EEXIST choice, so
2235 		 * use -EFAULT instead.
2236 		 */
2237 		if (err == -EEXIST)
2238 			err = -EFAULT;
2239 
2240 		/*
2241 		 * If the page is already on the target node (!err), store the
2242 		 * node, otherwise, store the err.
2243 		 */
2244 		err = store_status(status, i, err ? : current_node, 1);
2245 		if (err)
2246 			goto out_flush;
2247 
2248 		err = move_pages_and_store_status(mm, current_node, &pagelist,
2249 				status, start, i, nr_pages);
2250 		if (err) {
2251 			/* We have accounted for page i */
2252 			if (err > 0)
2253 				err--;
2254 			goto out;
2255 		}
2256 		current_node = NUMA_NO_NODE;
2257 	}
2258 out_flush:
2259 	/* Make sure we do not overwrite the existing error */
2260 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
2261 				status, start, i, nr_pages);
2262 	if (err >= 0)
2263 		err = err1;
2264 out:
2265 	lru_cache_enable();
2266 	return err;
2267 }
2268 
2269 /*
2270  * Determine the nodes of an array of pages and store it in an array of status.
2271  */
2272 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2273 				const void __user **pages, int *status)
2274 {
2275 	unsigned long i;
2276 
2277 	mmap_read_lock(mm);
2278 
2279 	for (i = 0; i < nr_pages; i++) {
2280 		unsigned long addr = (unsigned long)(*pages);
2281 		struct vm_area_struct *vma;
2282 		struct page *page;
2283 		int err = -EFAULT;
2284 
2285 		vma = vma_lookup(mm, addr);
2286 		if (!vma)
2287 			goto set_status;
2288 
2289 		/* FOLL_DUMP to ignore special (like zero) pages */
2290 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2291 
2292 		err = PTR_ERR(page);
2293 		if (IS_ERR(page))
2294 			goto set_status;
2295 
2296 		err = -ENOENT;
2297 		if (!page)
2298 			goto set_status;
2299 
2300 		if (!is_zone_device_page(page))
2301 			err = page_to_nid(page);
2302 
2303 		put_page(page);
2304 set_status:
2305 		*status = err;
2306 
2307 		pages++;
2308 		status++;
2309 	}
2310 
2311 	mmap_read_unlock(mm);
2312 }
2313 
2314 static int get_compat_pages_array(const void __user *chunk_pages[],
2315 				  const void __user * __user *pages,
2316 				  unsigned long chunk_nr)
2317 {
2318 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2319 	compat_uptr_t p;
2320 	int i;
2321 
2322 	for (i = 0; i < chunk_nr; i++) {
2323 		if (get_user(p, pages32 + i))
2324 			return -EFAULT;
2325 		chunk_pages[i] = compat_ptr(p);
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 /*
2332  * Determine the nodes of a user array of pages and store it in
2333  * a user array of status.
2334  */
2335 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2336 			 const void __user * __user *pages,
2337 			 int __user *status)
2338 {
2339 #define DO_PAGES_STAT_CHUNK_NR 16UL
2340 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2341 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2342 
2343 	while (nr_pages) {
2344 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2345 
2346 		if (in_compat_syscall()) {
2347 			if (get_compat_pages_array(chunk_pages, pages,
2348 						   chunk_nr))
2349 				break;
2350 		} else {
2351 			if (copy_from_user(chunk_pages, pages,
2352 				      chunk_nr * sizeof(*chunk_pages)))
2353 				break;
2354 		}
2355 
2356 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2357 
2358 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2359 			break;
2360 
2361 		pages += chunk_nr;
2362 		status += chunk_nr;
2363 		nr_pages -= chunk_nr;
2364 	}
2365 	return nr_pages ? -EFAULT : 0;
2366 }
2367 
2368 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2369 {
2370 	struct task_struct *task;
2371 	struct mm_struct *mm;
2372 
2373 	/*
2374 	 * There is no need to check if current process has the right to modify
2375 	 * the specified process when they are same.
2376 	 */
2377 	if (!pid) {
2378 		mmget(current->mm);
2379 		*mem_nodes = cpuset_mems_allowed(current);
2380 		return current->mm;
2381 	}
2382 
2383 	/* Find the mm_struct */
2384 	rcu_read_lock();
2385 	task = find_task_by_vpid(pid);
2386 	if (!task) {
2387 		rcu_read_unlock();
2388 		return ERR_PTR(-ESRCH);
2389 	}
2390 	get_task_struct(task);
2391 
2392 	/*
2393 	 * Check if this process has the right to modify the specified
2394 	 * process. Use the regular "ptrace_may_access()" checks.
2395 	 */
2396 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2397 		rcu_read_unlock();
2398 		mm = ERR_PTR(-EPERM);
2399 		goto out;
2400 	}
2401 	rcu_read_unlock();
2402 
2403 	mm = ERR_PTR(security_task_movememory(task));
2404 	if (IS_ERR(mm))
2405 		goto out;
2406 	*mem_nodes = cpuset_mems_allowed(task);
2407 	mm = get_task_mm(task);
2408 out:
2409 	put_task_struct(task);
2410 	if (!mm)
2411 		mm = ERR_PTR(-EINVAL);
2412 	return mm;
2413 }
2414 
2415 /*
2416  * Move a list of pages in the address space of the currently executing
2417  * process.
2418  */
2419 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2420 			     const void __user * __user *pages,
2421 			     const int __user *nodes,
2422 			     int __user *status, int flags)
2423 {
2424 	struct mm_struct *mm;
2425 	int err;
2426 	nodemask_t task_nodes;
2427 
2428 	/* Check flags */
2429 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2430 		return -EINVAL;
2431 
2432 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2433 		return -EPERM;
2434 
2435 	mm = find_mm_struct(pid, &task_nodes);
2436 	if (IS_ERR(mm))
2437 		return PTR_ERR(mm);
2438 
2439 	if (nodes)
2440 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2441 				    nodes, status, flags);
2442 	else
2443 		err = do_pages_stat(mm, nr_pages, pages, status);
2444 
2445 	mmput(mm);
2446 	return err;
2447 }
2448 
2449 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2450 		const void __user * __user *, pages,
2451 		const int __user *, nodes,
2452 		int __user *, status, int, flags)
2453 {
2454 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2455 }
2456 
2457 #ifdef CONFIG_NUMA_BALANCING
2458 /*
2459  * Returns true if this is a safe migration target node for misplaced NUMA
2460  * pages. Currently it only checks the watermarks which is crude.
2461  */
2462 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2463 				   unsigned long nr_migrate_pages)
2464 {
2465 	int z;
2466 
2467 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2468 		struct zone *zone = pgdat->node_zones + z;
2469 
2470 		if (!managed_zone(zone))
2471 			continue;
2472 
2473 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2474 		if (!zone_watermark_ok(zone, 0,
2475 				       high_wmark_pages(zone) +
2476 				       nr_migrate_pages,
2477 				       ZONE_MOVABLE, 0))
2478 			continue;
2479 		return true;
2480 	}
2481 	return false;
2482 }
2483 
2484 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2485 					   unsigned long data)
2486 {
2487 	int nid = (int) data;
2488 	int order = folio_order(src);
2489 	gfp_t gfp = __GFP_THISNODE;
2490 
2491 	if (order > 0)
2492 		gfp |= GFP_TRANSHUGE_LIGHT;
2493 	else {
2494 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2495 			__GFP_NOWARN;
2496 		gfp &= ~__GFP_RECLAIM;
2497 	}
2498 	return __folio_alloc_node(gfp, order, nid);
2499 }
2500 
2501 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2502 {
2503 	int nr_pages = thp_nr_pages(page);
2504 	int order = compound_order(page);
2505 
2506 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2507 
2508 	/* Do not migrate THP mapped by multiple processes */
2509 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2510 		return 0;
2511 
2512 	/* Avoid migrating to a node that is nearly full */
2513 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2514 		int z;
2515 
2516 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2517 			return 0;
2518 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2519 			if (managed_zone(pgdat->node_zones + z))
2520 				break;
2521 		}
2522 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2523 		return 0;
2524 	}
2525 
2526 	if (!isolate_lru_page(page))
2527 		return 0;
2528 
2529 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2530 			    nr_pages);
2531 
2532 	/*
2533 	 * Isolating the page has taken another reference, so the
2534 	 * caller's reference can be safely dropped without the page
2535 	 * disappearing underneath us during migration.
2536 	 */
2537 	put_page(page);
2538 	return 1;
2539 }
2540 
2541 /*
2542  * Attempt to migrate a misplaced page to the specified destination
2543  * node. Caller is expected to have an elevated reference count on
2544  * the page that will be dropped by this function before returning.
2545  */
2546 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2547 			   int node)
2548 {
2549 	pg_data_t *pgdat = NODE_DATA(node);
2550 	int isolated;
2551 	int nr_remaining;
2552 	unsigned int nr_succeeded;
2553 	LIST_HEAD(migratepages);
2554 	int nr_pages = thp_nr_pages(page);
2555 
2556 	/*
2557 	 * Don't migrate file pages that are mapped in multiple processes
2558 	 * with execute permissions as they are probably shared libraries.
2559 	 */
2560 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2561 	    (vma->vm_flags & VM_EXEC))
2562 		goto out;
2563 
2564 	/*
2565 	 * Also do not migrate dirty pages as not all filesystems can move
2566 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2567 	 */
2568 	if (page_is_file_lru(page) && PageDirty(page))
2569 		goto out;
2570 
2571 	isolated = numamigrate_isolate_page(pgdat, page);
2572 	if (!isolated)
2573 		goto out;
2574 
2575 	list_add(&page->lru, &migratepages);
2576 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2577 				     NULL, node, MIGRATE_ASYNC,
2578 				     MR_NUMA_MISPLACED, &nr_succeeded);
2579 	if (nr_remaining) {
2580 		if (!list_empty(&migratepages)) {
2581 			list_del(&page->lru);
2582 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2583 					page_is_file_lru(page), -nr_pages);
2584 			putback_lru_page(page);
2585 		}
2586 		isolated = 0;
2587 	}
2588 	if (nr_succeeded) {
2589 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2590 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2591 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2592 					    nr_succeeded);
2593 	}
2594 	BUG_ON(!list_empty(&migratepages));
2595 	return isolated;
2596 
2597 out:
2598 	put_page(page);
2599 	return 0;
2600 }
2601 #endif /* CONFIG_NUMA_BALANCING */
2602 #endif /* CONFIG_NUMA */
2603