xref: /openbmc/linux/mm/migrate.c (revision 83b41bb27b25b4b972d03b593e8da7e3dd5735aa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct folio *folio,
175 		struct vm_area_struct *vma, unsigned long addr, void *old)
176 {
177 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
178 
179 	while (page_vma_mapped_walk(&pvmw)) {
180 		rmap_t rmap_flags = RMAP_NONE;
181 		pte_t pte;
182 		swp_entry_t entry;
183 		struct page *new;
184 		unsigned long idx = 0;
185 
186 		/* pgoff is invalid for ksm pages, but they are never large */
187 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
188 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
189 		new = folio_page(folio, idx);
190 
191 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
192 		/* PMD-mapped THP migration entry */
193 		if (!pvmw.pte) {
194 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
195 					!folio_test_pmd_mappable(folio), folio);
196 			remove_migration_pmd(&pvmw, new);
197 			continue;
198 		}
199 #endif
200 
201 		folio_get(folio);
202 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
203 		if (pte_swp_soft_dirty(*pvmw.pte))
204 			pte = pte_mksoft_dirty(pte);
205 
206 		/*
207 		 * Recheck VMA as permissions can change since migration started
208 		 */
209 		entry = pte_to_swp_entry(*pvmw.pte);
210 		if (is_writable_migration_entry(entry))
211 			pte = maybe_mkwrite(pte, vma);
212 		else if (pte_swp_uffd_wp(*pvmw.pte))
213 			pte = pte_mkuffd_wp(pte);
214 
215 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
216 			rmap_flags |= RMAP_EXCLUSIVE;
217 
218 		if (unlikely(is_device_private_page(new))) {
219 			if (pte_write(pte))
220 				entry = make_writable_device_private_entry(
221 							page_to_pfn(new));
222 			else
223 				entry = make_readable_device_private_entry(
224 							page_to_pfn(new));
225 			pte = swp_entry_to_pte(entry);
226 			if (pte_swp_soft_dirty(*pvmw.pte))
227 				pte = pte_swp_mksoft_dirty(pte);
228 			if (pte_swp_uffd_wp(*pvmw.pte))
229 				pte = pte_swp_mkuffd_wp(pte);
230 		}
231 
232 #ifdef CONFIG_HUGETLB_PAGE
233 		if (folio_test_hugetlb(folio)) {
234 			unsigned int shift = huge_page_shift(hstate_vma(vma));
235 
236 			pte = pte_mkhuge(pte);
237 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238 			if (folio_test_anon(folio))
239 				hugepage_add_anon_rmap(new, vma, pvmw.address,
240 						       rmap_flags);
241 			else
242 				page_dup_file_rmap(new, true);
243 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244 		} else
245 #endif
246 		{
247 			if (folio_test_anon(folio))
248 				page_add_anon_rmap(new, vma, pvmw.address,
249 						   rmap_flags);
250 			else
251 				page_add_file_rmap(new, vma, false);
252 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
253 		}
254 		if (vma->vm_flags & VM_LOCKED)
255 			mlock_page_drain_local();
256 
257 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
258 					   compound_order(new));
259 
260 		/* No need to invalidate - it was non-present before */
261 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 	}
263 
264 	return true;
265 }
266 
267 /*
268  * Get rid of all migration entries and replace them by
269  * references to the indicated page.
270  */
271 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
272 {
273 	struct rmap_walk_control rwc = {
274 		.rmap_one = remove_migration_pte,
275 		.arg = src,
276 	};
277 
278 	if (locked)
279 		rmap_walk_locked(dst, &rwc);
280 	else
281 		rmap_walk(dst, &rwc);
282 }
283 
284 /*
285  * Something used the pte of a page under migration. We need to
286  * get to the page and wait until migration is finished.
287  * When we return from this function the fault will be retried.
288  */
289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 				spinlock_t *ptl)
291 {
292 	pte_t pte;
293 	swp_entry_t entry;
294 
295 	spin_lock(ptl);
296 	pte = *ptep;
297 	if (!is_swap_pte(pte))
298 		goto out;
299 
300 	entry = pte_to_swp_entry(pte);
301 	if (!is_migration_entry(entry))
302 		goto out;
303 
304 	migration_entry_wait_on_locked(entry, ptep, ptl);
305 	return;
306 out:
307 	pte_unmap_unlock(ptep, ptl);
308 }
309 
310 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
311 				unsigned long address)
312 {
313 	spinlock_t *ptl = pte_lockptr(mm, pmd);
314 	pte_t *ptep = pte_offset_map(pmd, address);
315 	__migration_entry_wait(mm, ptep, ptl);
316 }
317 
318 void migration_entry_wait_huge(struct vm_area_struct *vma,
319 		struct mm_struct *mm, pte_t *pte)
320 {
321 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
322 	__migration_entry_wait(mm, pte, ptl);
323 }
324 
325 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
326 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
327 {
328 	spinlock_t *ptl;
329 
330 	ptl = pmd_lock(mm, pmd);
331 	if (!is_pmd_migration_entry(*pmd))
332 		goto unlock;
333 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
334 	return;
335 unlock:
336 	spin_unlock(ptl);
337 }
338 #endif
339 
340 static int expected_page_refs(struct address_space *mapping, struct page *page)
341 {
342 	int expected_count = 1;
343 
344 	if (mapping)
345 		expected_count += compound_nr(page) + page_has_private(page);
346 	return expected_count;
347 }
348 
349 /*
350  * Replace the page in the mapping.
351  *
352  * The number of remaining references must be:
353  * 1 for anonymous pages without a mapping
354  * 2 for pages with a mapping
355  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
356  */
357 int folio_migrate_mapping(struct address_space *mapping,
358 		struct folio *newfolio, struct folio *folio, int extra_count)
359 {
360 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
361 	struct zone *oldzone, *newzone;
362 	int dirty;
363 	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
364 	long nr = folio_nr_pages(folio);
365 
366 	if (!mapping) {
367 		/* Anonymous page without mapping */
368 		if (folio_ref_count(folio) != expected_count)
369 			return -EAGAIN;
370 
371 		/* No turning back from here */
372 		newfolio->index = folio->index;
373 		newfolio->mapping = folio->mapping;
374 		if (folio_test_swapbacked(folio))
375 			__folio_set_swapbacked(newfolio);
376 
377 		return MIGRATEPAGE_SUCCESS;
378 	}
379 
380 	oldzone = folio_zone(folio);
381 	newzone = folio_zone(newfolio);
382 
383 	xas_lock_irq(&xas);
384 	if (!folio_ref_freeze(folio, expected_count)) {
385 		xas_unlock_irq(&xas);
386 		return -EAGAIN;
387 	}
388 
389 	/*
390 	 * Now we know that no one else is looking at the folio:
391 	 * no turning back from here.
392 	 */
393 	newfolio->index = folio->index;
394 	newfolio->mapping = folio->mapping;
395 	folio_ref_add(newfolio, nr); /* add cache reference */
396 	if (folio_test_swapbacked(folio)) {
397 		__folio_set_swapbacked(newfolio);
398 		if (folio_test_swapcache(folio)) {
399 			folio_set_swapcache(newfolio);
400 			newfolio->private = folio_get_private(folio);
401 		}
402 	} else {
403 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
404 	}
405 
406 	/* Move dirty while page refs frozen and newpage not yet exposed */
407 	dirty = folio_test_dirty(folio);
408 	if (dirty) {
409 		folio_clear_dirty(folio);
410 		folio_set_dirty(newfolio);
411 	}
412 
413 	xas_store(&xas, newfolio);
414 
415 	/*
416 	 * Drop cache reference from old page by unfreezing
417 	 * to one less reference.
418 	 * We know this isn't the last reference.
419 	 */
420 	folio_ref_unfreeze(folio, expected_count - nr);
421 
422 	xas_unlock(&xas);
423 	/* Leave irq disabled to prevent preemption while updating stats */
424 
425 	/*
426 	 * If moved to a different zone then also account
427 	 * the page for that zone. Other VM counters will be
428 	 * taken care of when we establish references to the
429 	 * new page and drop references to the old page.
430 	 *
431 	 * Note that anonymous pages are accounted for
432 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
433 	 * are mapped to swap space.
434 	 */
435 	if (newzone != oldzone) {
436 		struct lruvec *old_lruvec, *new_lruvec;
437 		struct mem_cgroup *memcg;
438 
439 		memcg = folio_memcg(folio);
440 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
441 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
442 
443 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
444 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
445 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
446 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
447 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
448 		}
449 #ifdef CONFIG_SWAP
450 		if (folio_test_swapcache(folio)) {
451 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
452 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
453 		}
454 #endif
455 		if (dirty && mapping_can_writeback(mapping)) {
456 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
457 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
458 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
459 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
460 		}
461 	}
462 	local_irq_enable();
463 
464 	return MIGRATEPAGE_SUCCESS;
465 }
466 EXPORT_SYMBOL(folio_migrate_mapping);
467 
468 /*
469  * The expected number of remaining references is the same as that
470  * of folio_migrate_mapping().
471  */
472 int migrate_huge_page_move_mapping(struct address_space *mapping,
473 				   struct page *newpage, struct page *page)
474 {
475 	XA_STATE(xas, &mapping->i_pages, page_index(page));
476 	int expected_count;
477 
478 	xas_lock_irq(&xas);
479 	expected_count = 2 + page_has_private(page);
480 	if (!page_ref_freeze(page, expected_count)) {
481 		xas_unlock_irq(&xas);
482 		return -EAGAIN;
483 	}
484 
485 	newpage->index = page->index;
486 	newpage->mapping = page->mapping;
487 
488 	get_page(newpage);
489 
490 	xas_store(&xas, newpage);
491 
492 	page_ref_unfreeze(page, expected_count - 1);
493 
494 	xas_unlock_irq(&xas);
495 
496 	return MIGRATEPAGE_SUCCESS;
497 }
498 
499 /*
500  * Copy the flags and some other ancillary information
501  */
502 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
503 {
504 	int cpupid;
505 
506 	if (folio_test_error(folio))
507 		folio_set_error(newfolio);
508 	if (folio_test_referenced(folio))
509 		folio_set_referenced(newfolio);
510 	if (folio_test_uptodate(folio))
511 		folio_mark_uptodate(newfolio);
512 	if (folio_test_clear_active(folio)) {
513 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
514 		folio_set_active(newfolio);
515 	} else if (folio_test_clear_unevictable(folio))
516 		folio_set_unevictable(newfolio);
517 	if (folio_test_workingset(folio))
518 		folio_set_workingset(newfolio);
519 	if (folio_test_checked(folio))
520 		folio_set_checked(newfolio);
521 	/*
522 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
523 	 * migration entries. We can still have PG_anon_exclusive set on an
524 	 * effectively unmapped and unreferenced first sub-pages of an
525 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
526 	 */
527 	if (folio_test_mappedtodisk(folio))
528 		folio_set_mappedtodisk(newfolio);
529 
530 	/* Move dirty on pages not done by folio_migrate_mapping() */
531 	if (folio_test_dirty(folio))
532 		folio_set_dirty(newfolio);
533 
534 	if (folio_test_young(folio))
535 		folio_set_young(newfolio);
536 	if (folio_test_idle(folio))
537 		folio_set_idle(newfolio);
538 
539 	/*
540 	 * Copy NUMA information to the new page, to prevent over-eager
541 	 * future migrations of this same page.
542 	 */
543 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
544 	page_cpupid_xchg_last(&newfolio->page, cpupid);
545 
546 	folio_migrate_ksm(newfolio, folio);
547 	/*
548 	 * Please do not reorder this without considering how mm/ksm.c's
549 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
550 	 */
551 	if (folio_test_swapcache(folio))
552 		folio_clear_swapcache(folio);
553 	folio_clear_private(folio);
554 
555 	/* page->private contains hugetlb specific flags */
556 	if (!folio_test_hugetlb(folio))
557 		folio->private = NULL;
558 
559 	/*
560 	 * If any waiters have accumulated on the new page then
561 	 * wake them up.
562 	 */
563 	if (folio_test_writeback(newfolio))
564 		folio_end_writeback(newfolio);
565 
566 	/*
567 	 * PG_readahead shares the same bit with PG_reclaim.  The above
568 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
569 	 * bit after that.
570 	 */
571 	if (folio_test_readahead(folio))
572 		folio_set_readahead(newfolio);
573 
574 	folio_copy_owner(newfolio, folio);
575 
576 	if (!folio_test_hugetlb(folio))
577 		mem_cgroup_migrate(folio, newfolio);
578 }
579 EXPORT_SYMBOL(folio_migrate_flags);
580 
581 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
582 {
583 	folio_copy(newfolio, folio);
584 	folio_migrate_flags(newfolio, folio);
585 }
586 EXPORT_SYMBOL(folio_migrate_copy);
587 
588 /************************************************************
589  *                    Migration functions
590  ***********************************************************/
591 
592 /*
593  * Common logic to directly migrate a single LRU page suitable for
594  * pages that do not use PagePrivate/PagePrivate2.
595  *
596  * Pages are locked upon entry and exit.
597  */
598 int migrate_page(struct address_space *mapping,
599 		struct page *newpage, struct page *page,
600 		enum migrate_mode mode)
601 {
602 	struct folio *newfolio = page_folio(newpage);
603 	struct folio *folio = page_folio(page);
604 	int rc;
605 
606 	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
607 
608 	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
609 
610 	if (rc != MIGRATEPAGE_SUCCESS)
611 		return rc;
612 
613 	if (mode != MIGRATE_SYNC_NO_COPY)
614 		folio_migrate_copy(newfolio, folio);
615 	else
616 		folio_migrate_flags(newfolio, folio);
617 	return MIGRATEPAGE_SUCCESS;
618 }
619 EXPORT_SYMBOL(migrate_page);
620 
621 #ifdef CONFIG_BLOCK
622 /* Returns true if all buffers are successfully locked */
623 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
624 							enum migrate_mode mode)
625 {
626 	struct buffer_head *bh = head;
627 
628 	/* Simple case, sync compaction */
629 	if (mode != MIGRATE_ASYNC) {
630 		do {
631 			lock_buffer(bh);
632 			bh = bh->b_this_page;
633 
634 		} while (bh != head);
635 
636 		return true;
637 	}
638 
639 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
640 	do {
641 		if (!trylock_buffer(bh)) {
642 			/*
643 			 * We failed to lock the buffer and cannot stall in
644 			 * async migration. Release the taken locks
645 			 */
646 			struct buffer_head *failed_bh = bh;
647 			bh = head;
648 			while (bh != failed_bh) {
649 				unlock_buffer(bh);
650 				bh = bh->b_this_page;
651 			}
652 			return false;
653 		}
654 
655 		bh = bh->b_this_page;
656 	} while (bh != head);
657 	return true;
658 }
659 
660 static int __buffer_migrate_page(struct address_space *mapping,
661 		struct page *newpage, struct page *page, enum migrate_mode mode,
662 		bool check_refs)
663 {
664 	struct buffer_head *bh, *head;
665 	int rc;
666 	int expected_count;
667 
668 	if (!page_has_buffers(page))
669 		return migrate_page(mapping, newpage, page, mode);
670 
671 	/* Check whether page does not have extra refs before we do more work */
672 	expected_count = expected_page_refs(mapping, page);
673 	if (page_count(page) != expected_count)
674 		return -EAGAIN;
675 
676 	head = page_buffers(page);
677 	if (!buffer_migrate_lock_buffers(head, mode))
678 		return -EAGAIN;
679 
680 	if (check_refs) {
681 		bool busy;
682 		bool invalidated = false;
683 
684 recheck_buffers:
685 		busy = false;
686 		spin_lock(&mapping->private_lock);
687 		bh = head;
688 		do {
689 			if (atomic_read(&bh->b_count)) {
690 				busy = true;
691 				break;
692 			}
693 			bh = bh->b_this_page;
694 		} while (bh != head);
695 		if (busy) {
696 			if (invalidated) {
697 				rc = -EAGAIN;
698 				goto unlock_buffers;
699 			}
700 			spin_unlock(&mapping->private_lock);
701 			invalidate_bh_lrus();
702 			invalidated = true;
703 			goto recheck_buffers;
704 		}
705 	}
706 
707 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
708 	if (rc != MIGRATEPAGE_SUCCESS)
709 		goto unlock_buffers;
710 
711 	attach_page_private(newpage, detach_page_private(page));
712 
713 	bh = head;
714 	do {
715 		set_bh_page(bh, newpage, bh_offset(bh));
716 		bh = bh->b_this_page;
717 
718 	} while (bh != head);
719 
720 	if (mode != MIGRATE_SYNC_NO_COPY)
721 		migrate_page_copy(newpage, page);
722 	else
723 		migrate_page_states(newpage, page);
724 
725 	rc = MIGRATEPAGE_SUCCESS;
726 unlock_buffers:
727 	if (check_refs)
728 		spin_unlock(&mapping->private_lock);
729 	bh = head;
730 	do {
731 		unlock_buffer(bh);
732 		bh = bh->b_this_page;
733 
734 	} while (bh != head);
735 
736 	return rc;
737 }
738 
739 /*
740  * Migration function for pages with buffers. This function can only be used
741  * if the underlying filesystem guarantees that no other references to "page"
742  * exist. For example attached buffer heads are accessed only under page lock.
743  */
744 int buffer_migrate_page(struct address_space *mapping,
745 		struct page *newpage, struct page *page, enum migrate_mode mode)
746 {
747 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
748 }
749 EXPORT_SYMBOL(buffer_migrate_page);
750 
751 /*
752  * Same as above except that this variant is more careful and checks that there
753  * are also no buffer head references. This function is the right one for
754  * mappings where buffer heads are directly looked up and referenced (such as
755  * block device mappings).
756  */
757 int buffer_migrate_page_norefs(struct address_space *mapping,
758 		struct page *newpage, struct page *page, enum migrate_mode mode)
759 {
760 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
761 }
762 #endif
763 
764 /*
765  * Writeback a page to clean the dirty state
766  */
767 static int writeout(struct address_space *mapping, struct page *page)
768 {
769 	struct folio *folio = page_folio(page);
770 	struct writeback_control wbc = {
771 		.sync_mode = WB_SYNC_NONE,
772 		.nr_to_write = 1,
773 		.range_start = 0,
774 		.range_end = LLONG_MAX,
775 		.for_reclaim = 1
776 	};
777 	int rc;
778 
779 	if (!mapping->a_ops->writepage)
780 		/* No write method for the address space */
781 		return -EINVAL;
782 
783 	if (!clear_page_dirty_for_io(page))
784 		/* Someone else already triggered a write */
785 		return -EAGAIN;
786 
787 	/*
788 	 * A dirty page may imply that the underlying filesystem has
789 	 * the page on some queue. So the page must be clean for
790 	 * migration. Writeout may mean we loose the lock and the
791 	 * page state is no longer what we checked for earlier.
792 	 * At this point we know that the migration attempt cannot
793 	 * be successful.
794 	 */
795 	remove_migration_ptes(folio, folio, false);
796 
797 	rc = mapping->a_ops->writepage(page, &wbc);
798 
799 	if (rc != AOP_WRITEPAGE_ACTIVATE)
800 		/* unlocked. Relock */
801 		lock_page(page);
802 
803 	return (rc < 0) ? -EIO : -EAGAIN;
804 }
805 
806 /*
807  * Default handling if a filesystem does not provide a migration function.
808  */
809 static int fallback_migrate_page(struct address_space *mapping,
810 	struct page *newpage, struct page *page, enum migrate_mode mode)
811 {
812 	if (PageDirty(page)) {
813 		/* Only writeback pages in full synchronous migration */
814 		switch (mode) {
815 		case MIGRATE_SYNC:
816 		case MIGRATE_SYNC_NO_COPY:
817 			break;
818 		default:
819 			return -EBUSY;
820 		}
821 		return writeout(mapping, page);
822 	}
823 
824 	/*
825 	 * Buffers may be managed in a filesystem specific way.
826 	 * We must have no buffers or drop them.
827 	 */
828 	if (page_has_private(page) &&
829 	    !try_to_release_page(page, GFP_KERNEL))
830 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
831 
832 	return migrate_page(mapping, newpage, page, mode);
833 }
834 
835 /*
836  * Move a page to a newly allocated page
837  * The page is locked and all ptes have been successfully removed.
838  *
839  * The new page will have replaced the old page if this function
840  * is successful.
841  *
842  * Return value:
843  *   < 0 - error code
844  *  MIGRATEPAGE_SUCCESS - success
845  */
846 static int move_to_new_folio(struct folio *dst, struct folio *src,
847 				enum migrate_mode mode)
848 {
849 	struct address_space *mapping;
850 	int rc = -EAGAIN;
851 	bool is_lru = !__PageMovable(&src->page);
852 
853 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
854 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
855 
856 	mapping = folio_mapping(src);
857 
858 	if (likely(is_lru)) {
859 		if (!mapping)
860 			rc = migrate_page(mapping, &dst->page, &src->page, mode);
861 		else if (mapping->a_ops->migratepage)
862 			/*
863 			 * Most pages have a mapping and most filesystems
864 			 * provide a migratepage callback. Anonymous pages
865 			 * are part of swap space which also has its own
866 			 * migratepage callback. This is the most common path
867 			 * for page migration.
868 			 */
869 			rc = mapping->a_ops->migratepage(mapping, &dst->page,
870 							&src->page, mode);
871 		else
872 			rc = fallback_migrate_page(mapping, &dst->page,
873 							&src->page, mode);
874 	} else {
875 		/*
876 		 * In case of non-lru page, it could be released after
877 		 * isolation step. In that case, we shouldn't try migration.
878 		 */
879 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
880 		if (!folio_test_movable(src)) {
881 			rc = MIGRATEPAGE_SUCCESS;
882 			folio_clear_isolated(src);
883 			goto out;
884 		}
885 
886 		rc = mapping->a_ops->migratepage(mapping, &dst->page,
887 						&src->page, mode);
888 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
889 				!folio_test_isolated(src));
890 	}
891 
892 	/*
893 	 * When successful, old pagecache src->mapping must be cleared before
894 	 * src is freed; but stats require that PageAnon be left as PageAnon.
895 	 */
896 	if (rc == MIGRATEPAGE_SUCCESS) {
897 		if (__PageMovable(&src->page)) {
898 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
899 
900 			/*
901 			 * We clear PG_movable under page_lock so any compactor
902 			 * cannot try to migrate this page.
903 			 */
904 			folio_clear_isolated(src);
905 		}
906 
907 		/*
908 		 * Anonymous and movable src->mapping will be cleared by
909 		 * free_pages_prepare so don't reset it here for keeping
910 		 * the type to work PageAnon, for example.
911 		 */
912 		if (!folio_mapping_flags(src))
913 			src->mapping = NULL;
914 
915 		if (likely(!folio_is_zone_device(dst)))
916 			flush_dcache_folio(dst);
917 	}
918 out:
919 	return rc;
920 }
921 
922 static int __unmap_and_move(struct page *page, struct page *newpage,
923 				int force, enum migrate_mode mode)
924 {
925 	struct folio *folio = page_folio(page);
926 	struct folio *dst = page_folio(newpage);
927 	int rc = -EAGAIN;
928 	bool page_was_mapped = false;
929 	struct anon_vma *anon_vma = NULL;
930 	bool is_lru = !__PageMovable(page);
931 
932 	if (!trylock_page(page)) {
933 		if (!force || mode == MIGRATE_ASYNC)
934 			goto out;
935 
936 		/*
937 		 * It's not safe for direct compaction to call lock_page.
938 		 * For example, during page readahead pages are added locked
939 		 * to the LRU. Later, when the IO completes the pages are
940 		 * marked uptodate and unlocked. However, the queueing
941 		 * could be merging multiple pages for one bio (e.g.
942 		 * mpage_readahead). If an allocation happens for the
943 		 * second or third page, the process can end up locking
944 		 * the same page twice and deadlocking. Rather than
945 		 * trying to be clever about what pages can be locked,
946 		 * avoid the use of lock_page for direct compaction
947 		 * altogether.
948 		 */
949 		if (current->flags & PF_MEMALLOC)
950 			goto out;
951 
952 		lock_page(page);
953 	}
954 
955 	if (PageWriteback(page)) {
956 		/*
957 		 * Only in the case of a full synchronous migration is it
958 		 * necessary to wait for PageWriteback. In the async case,
959 		 * the retry loop is too short and in the sync-light case,
960 		 * the overhead of stalling is too much
961 		 */
962 		switch (mode) {
963 		case MIGRATE_SYNC:
964 		case MIGRATE_SYNC_NO_COPY:
965 			break;
966 		default:
967 			rc = -EBUSY;
968 			goto out_unlock;
969 		}
970 		if (!force)
971 			goto out_unlock;
972 		wait_on_page_writeback(page);
973 	}
974 
975 	/*
976 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
977 	 * we cannot notice that anon_vma is freed while we migrates a page.
978 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
979 	 * of migration. File cache pages are no problem because of page_lock()
980 	 * File Caches may use write_page() or lock_page() in migration, then,
981 	 * just care Anon page here.
982 	 *
983 	 * Only page_get_anon_vma() understands the subtleties of
984 	 * getting a hold on an anon_vma from outside one of its mms.
985 	 * But if we cannot get anon_vma, then we won't need it anyway,
986 	 * because that implies that the anon page is no longer mapped
987 	 * (and cannot be remapped so long as we hold the page lock).
988 	 */
989 	if (PageAnon(page) && !PageKsm(page))
990 		anon_vma = page_get_anon_vma(page);
991 
992 	/*
993 	 * Block others from accessing the new page when we get around to
994 	 * establishing additional references. We are usually the only one
995 	 * holding a reference to newpage at this point. We used to have a BUG
996 	 * here if trylock_page(newpage) fails, but would like to allow for
997 	 * cases where there might be a race with the previous use of newpage.
998 	 * This is much like races on refcount of oldpage: just don't BUG().
999 	 */
1000 	if (unlikely(!trylock_page(newpage)))
1001 		goto out_unlock;
1002 
1003 	if (unlikely(!is_lru)) {
1004 		rc = move_to_new_folio(dst, folio, mode);
1005 		goto out_unlock_both;
1006 	}
1007 
1008 	/*
1009 	 * Corner case handling:
1010 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1011 	 * and treated as swapcache but it has no rmap yet.
1012 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1013 	 * trigger a BUG.  So handle it here.
1014 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1015 	 * fs-private metadata. The page can be picked up due to memory
1016 	 * offlining.  Everywhere else except page reclaim, the page is
1017 	 * invisible to the vm, so the page can not be migrated.  So try to
1018 	 * free the metadata, so the page can be freed.
1019 	 */
1020 	if (!page->mapping) {
1021 		VM_BUG_ON_PAGE(PageAnon(page), page);
1022 		if (page_has_private(page)) {
1023 			try_to_free_buffers(folio);
1024 			goto out_unlock_both;
1025 		}
1026 	} else if (page_mapped(page)) {
1027 		/* Establish migration ptes */
1028 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1029 				page);
1030 		try_to_migrate(folio, 0);
1031 		page_was_mapped = true;
1032 	}
1033 
1034 	if (!page_mapped(page))
1035 		rc = move_to_new_folio(dst, folio, mode);
1036 
1037 	/*
1038 	 * When successful, push newpage to LRU immediately: so that if it
1039 	 * turns out to be an mlocked page, remove_migration_ptes() will
1040 	 * automatically build up the correct newpage->mlock_count for it.
1041 	 *
1042 	 * We would like to do something similar for the old page, when
1043 	 * unsuccessful, and other cases when a page has been temporarily
1044 	 * isolated from the unevictable LRU: but this case is the easiest.
1045 	 */
1046 	if (rc == MIGRATEPAGE_SUCCESS) {
1047 		lru_cache_add(newpage);
1048 		if (page_was_mapped)
1049 			lru_add_drain();
1050 	}
1051 
1052 	if (page_was_mapped)
1053 		remove_migration_ptes(folio,
1054 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1055 
1056 out_unlock_both:
1057 	unlock_page(newpage);
1058 out_unlock:
1059 	/* Drop an anon_vma reference if we took one */
1060 	if (anon_vma)
1061 		put_anon_vma(anon_vma);
1062 	unlock_page(page);
1063 out:
1064 	/*
1065 	 * If migration is successful, decrease refcount of the newpage,
1066 	 * which will not free the page because new page owner increased
1067 	 * refcounter.
1068 	 */
1069 	if (rc == MIGRATEPAGE_SUCCESS)
1070 		put_page(newpage);
1071 
1072 	return rc;
1073 }
1074 
1075 /*
1076  * Obtain the lock on page, remove all ptes and migrate the page
1077  * to the newly allocated page in newpage.
1078  */
1079 static int unmap_and_move(new_page_t get_new_page,
1080 				   free_page_t put_new_page,
1081 				   unsigned long private, struct page *page,
1082 				   int force, enum migrate_mode mode,
1083 				   enum migrate_reason reason,
1084 				   struct list_head *ret)
1085 {
1086 	int rc = MIGRATEPAGE_SUCCESS;
1087 	struct page *newpage = NULL;
1088 
1089 	if (!thp_migration_supported() && PageTransHuge(page))
1090 		return -ENOSYS;
1091 
1092 	if (page_count(page) == 1) {
1093 		/* page was freed from under us. So we are done. */
1094 		ClearPageActive(page);
1095 		ClearPageUnevictable(page);
1096 		if (unlikely(__PageMovable(page))) {
1097 			lock_page(page);
1098 			if (!PageMovable(page))
1099 				ClearPageIsolated(page);
1100 			unlock_page(page);
1101 		}
1102 		goto out;
1103 	}
1104 
1105 	newpage = get_new_page(page, private);
1106 	if (!newpage)
1107 		return -ENOMEM;
1108 
1109 	rc = __unmap_and_move(page, newpage, force, mode);
1110 	if (rc == MIGRATEPAGE_SUCCESS)
1111 		set_page_owner_migrate_reason(newpage, reason);
1112 
1113 out:
1114 	if (rc != -EAGAIN) {
1115 		/*
1116 		 * A page that has been migrated has all references
1117 		 * removed and will be freed. A page that has not been
1118 		 * migrated will have kept its references and be restored.
1119 		 */
1120 		list_del(&page->lru);
1121 	}
1122 
1123 	/*
1124 	 * If migration is successful, releases reference grabbed during
1125 	 * isolation. Otherwise, restore the page to right list unless
1126 	 * we want to retry.
1127 	 */
1128 	if (rc == MIGRATEPAGE_SUCCESS) {
1129 		/*
1130 		 * Compaction can migrate also non-LRU pages which are
1131 		 * not accounted to NR_ISOLATED_*. They can be recognized
1132 		 * as __PageMovable
1133 		 */
1134 		if (likely(!__PageMovable(page)))
1135 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1136 					page_is_file_lru(page), -thp_nr_pages(page));
1137 
1138 		if (reason != MR_MEMORY_FAILURE)
1139 			/*
1140 			 * We release the page in page_handle_poison.
1141 			 */
1142 			put_page(page);
1143 	} else {
1144 		if (rc != -EAGAIN)
1145 			list_add_tail(&page->lru, ret);
1146 
1147 		if (put_new_page)
1148 			put_new_page(newpage, private);
1149 		else
1150 			put_page(newpage);
1151 	}
1152 
1153 	return rc;
1154 }
1155 
1156 /*
1157  * Counterpart of unmap_and_move_page() for hugepage migration.
1158  *
1159  * This function doesn't wait the completion of hugepage I/O
1160  * because there is no race between I/O and migration for hugepage.
1161  * Note that currently hugepage I/O occurs only in direct I/O
1162  * where no lock is held and PG_writeback is irrelevant,
1163  * and writeback status of all subpages are counted in the reference
1164  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1165  * under direct I/O, the reference of the head page is 512 and a bit more.)
1166  * This means that when we try to migrate hugepage whose subpages are
1167  * doing direct I/O, some references remain after try_to_unmap() and
1168  * hugepage migration fails without data corruption.
1169  *
1170  * There is also no race when direct I/O is issued on the page under migration,
1171  * because then pte is replaced with migration swap entry and direct I/O code
1172  * will wait in the page fault for migration to complete.
1173  */
1174 static int unmap_and_move_huge_page(new_page_t get_new_page,
1175 				free_page_t put_new_page, unsigned long private,
1176 				struct page *hpage, int force,
1177 				enum migrate_mode mode, int reason,
1178 				struct list_head *ret)
1179 {
1180 	struct folio *dst, *src = page_folio(hpage);
1181 	int rc = -EAGAIN;
1182 	int page_was_mapped = 0;
1183 	struct page *new_hpage;
1184 	struct anon_vma *anon_vma = NULL;
1185 	struct address_space *mapping = NULL;
1186 
1187 	/*
1188 	 * Migratability of hugepages depends on architectures and their size.
1189 	 * This check is necessary because some callers of hugepage migration
1190 	 * like soft offline and memory hotremove don't walk through page
1191 	 * tables or check whether the hugepage is pmd-based or not before
1192 	 * kicking migration.
1193 	 */
1194 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1195 		list_move_tail(&hpage->lru, ret);
1196 		return -ENOSYS;
1197 	}
1198 
1199 	if (page_count(hpage) == 1) {
1200 		/* page was freed from under us. So we are done. */
1201 		putback_active_hugepage(hpage);
1202 		return MIGRATEPAGE_SUCCESS;
1203 	}
1204 
1205 	new_hpage = get_new_page(hpage, private);
1206 	if (!new_hpage)
1207 		return -ENOMEM;
1208 	dst = page_folio(new_hpage);
1209 
1210 	if (!trylock_page(hpage)) {
1211 		if (!force)
1212 			goto out;
1213 		switch (mode) {
1214 		case MIGRATE_SYNC:
1215 		case MIGRATE_SYNC_NO_COPY:
1216 			break;
1217 		default:
1218 			goto out;
1219 		}
1220 		lock_page(hpage);
1221 	}
1222 
1223 	/*
1224 	 * Check for pages which are in the process of being freed.  Without
1225 	 * page_mapping() set, hugetlbfs specific move page routine will not
1226 	 * be called and we could leak usage counts for subpools.
1227 	 */
1228 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1229 		rc = -EBUSY;
1230 		goto out_unlock;
1231 	}
1232 
1233 	if (PageAnon(hpage))
1234 		anon_vma = page_get_anon_vma(hpage);
1235 
1236 	if (unlikely(!trylock_page(new_hpage)))
1237 		goto put_anon;
1238 
1239 	if (page_mapped(hpage)) {
1240 		enum ttu_flags ttu = 0;
1241 
1242 		if (!PageAnon(hpage)) {
1243 			/*
1244 			 * In shared mappings, try_to_unmap could potentially
1245 			 * call huge_pmd_unshare.  Because of this, take
1246 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1247 			 * to let lower levels know we have taken the lock.
1248 			 */
1249 			mapping = hugetlb_page_mapping_lock_write(hpage);
1250 			if (unlikely(!mapping))
1251 				goto unlock_put_anon;
1252 
1253 			ttu = TTU_RMAP_LOCKED;
1254 		}
1255 
1256 		try_to_migrate(src, ttu);
1257 		page_was_mapped = 1;
1258 
1259 		if (ttu & TTU_RMAP_LOCKED)
1260 			i_mmap_unlock_write(mapping);
1261 	}
1262 
1263 	if (!page_mapped(hpage))
1264 		rc = move_to_new_folio(dst, src, mode);
1265 
1266 	if (page_was_mapped)
1267 		remove_migration_ptes(src,
1268 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1269 
1270 unlock_put_anon:
1271 	unlock_page(new_hpage);
1272 
1273 put_anon:
1274 	if (anon_vma)
1275 		put_anon_vma(anon_vma);
1276 
1277 	if (rc == MIGRATEPAGE_SUCCESS) {
1278 		move_hugetlb_state(hpage, new_hpage, reason);
1279 		put_new_page = NULL;
1280 	}
1281 
1282 out_unlock:
1283 	unlock_page(hpage);
1284 out:
1285 	if (rc == MIGRATEPAGE_SUCCESS)
1286 		putback_active_hugepage(hpage);
1287 	else if (rc != -EAGAIN)
1288 		list_move_tail(&hpage->lru, ret);
1289 
1290 	/*
1291 	 * If migration was not successful and there's a freeing callback, use
1292 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1293 	 * isolation.
1294 	 */
1295 	if (put_new_page)
1296 		put_new_page(new_hpage, private);
1297 	else
1298 		putback_active_hugepage(new_hpage);
1299 
1300 	return rc;
1301 }
1302 
1303 static inline int try_split_thp(struct page *page, struct page **page2,
1304 				struct list_head *from)
1305 {
1306 	int rc = 0;
1307 
1308 	lock_page(page);
1309 	rc = split_huge_page_to_list(page, from);
1310 	unlock_page(page);
1311 	if (!rc)
1312 		list_safe_reset_next(page, *page2, lru);
1313 
1314 	return rc;
1315 }
1316 
1317 /*
1318  * migrate_pages - migrate the pages specified in a list, to the free pages
1319  *		   supplied as the target for the page migration
1320  *
1321  * @from:		The list of pages to be migrated.
1322  * @get_new_page:	The function used to allocate free pages to be used
1323  *			as the target of the page migration.
1324  * @put_new_page:	The function used to free target pages if migration
1325  *			fails, or NULL if no special handling is necessary.
1326  * @private:		Private data to be passed on to get_new_page()
1327  * @mode:		The migration mode that specifies the constraints for
1328  *			page migration, if any.
1329  * @reason:		The reason for page migration.
1330  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1331  *			the caller passes a non-NULL pointer.
1332  *
1333  * The function returns after 10 attempts or if no pages are movable any more
1334  * because the list has become empty or no retryable pages exist any more.
1335  * It is caller's responsibility to call putback_movable_pages() to return pages
1336  * to the LRU or free list only if ret != 0.
1337  *
1338  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1339  * an error code. The number of THP splits will be considered as the number of
1340  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1341  */
1342 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1343 		free_page_t put_new_page, unsigned long private,
1344 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1345 {
1346 	int retry = 1;
1347 	int thp_retry = 1;
1348 	int nr_failed = 0;
1349 	int nr_failed_pages = 0;
1350 	int nr_succeeded = 0;
1351 	int nr_thp_succeeded = 0;
1352 	int nr_thp_failed = 0;
1353 	int nr_thp_split = 0;
1354 	int pass = 0;
1355 	bool is_thp = false;
1356 	struct page *page;
1357 	struct page *page2;
1358 	int rc, nr_subpages;
1359 	LIST_HEAD(ret_pages);
1360 	LIST_HEAD(thp_split_pages);
1361 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1362 	bool no_subpage_counting = false;
1363 
1364 	trace_mm_migrate_pages_start(mode, reason);
1365 
1366 thp_subpage_migration:
1367 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1368 		retry = 0;
1369 		thp_retry = 0;
1370 
1371 		list_for_each_entry_safe(page, page2, from, lru) {
1372 retry:
1373 			/*
1374 			 * THP statistics is based on the source huge page.
1375 			 * Capture required information that might get lost
1376 			 * during migration.
1377 			 */
1378 			is_thp = PageTransHuge(page) && !PageHuge(page);
1379 			nr_subpages = compound_nr(page);
1380 			cond_resched();
1381 
1382 			if (PageHuge(page))
1383 				rc = unmap_and_move_huge_page(get_new_page,
1384 						put_new_page, private, page,
1385 						pass > 2, mode, reason,
1386 						&ret_pages);
1387 			else
1388 				rc = unmap_and_move(get_new_page, put_new_page,
1389 						private, page, pass > 2, mode,
1390 						reason, &ret_pages);
1391 			/*
1392 			 * The rules are:
1393 			 *	Success: non hugetlb page will be freed, hugetlb
1394 			 *		 page will be put back
1395 			 *	-EAGAIN: stay on the from list
1396 			 *	-ENOMEM: stay on the from list
1397 			 *	Other errno: put on ret_pages list then splice to
1398 			 *		     from list
1399 			 */
1400 			switch(rc) {
1401 			/*
1402 			 * THP migration might be unsupported or the
1403 			 * allocation could've failed so we should
1404 			 * retry on the same page with the THP split
1405 			 * to base pages.
1406 			 *
1407 			 * Head page is retried immediately and tail
1408 			 * pages are added to the tail of the list so
1409 			 * we encounter them after the rest of the list
1410 			 * is processed.
1411 			 */
1412 			case -ENOSYS:
1413 				/* THP migration is unsupported */
1414 				if (is_thp) {
1415 					nr_thp_failed++;
1416 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1417 						nr_thp_split++;
1418 						goto retry;
1419 					}
1420 				/* Hugetlb migration is unsupported */
1421 				} else if (!no_subpage_counting) {
1422 					nr_failed++;
1423 				}
1424 
1425 				nr_failed_pages += nr_subpages;
1426 				break;
1427 			case -ENOMEM:
1428 				/*
1429 				 * When memory is low, don't bother to try to migrate
1430 				 * other pages, just exit.
1431 				 * THP NUMA faulting doesn't split THP to retry.
1432 				 */
1433 				if (is_thp && !nosplit) {
1434 					nr_thp_failed++;
1435 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1436 						nr_thp_split++;
1437 						goto retry;
1438 					}
1439 				} else if (!no_subpage_counting) {
1440 					nr_failed++;
1441 				}
1442 
1443 				nr_failed_pages += nr_subpages;
1444 				/*
1445 				 * There might be some subpages of fail-to-migrate THPs
1446 				 * left in thp_split_pages list. Move them back to migration
1447 				 * list so that they could be put back to the right list by
1448 				 * the caller otherwise the page refcnt will be leaked.
1449 				 */
1450 				list_splice_init(&thp_split_pages, from);
1451 				nr_thp_failed += thp_retry;
1452 				goto out;
1453 			case -EAGAIN:
1454 				if (is_thp)
1455 					thp_retry++;
1456 				else
1457 					retry++;
1458 				break;
1459 			case MIGRATEPAGE_SUCCESS:
1460 				nr_succeeded += nr_subpages;
1461 				if (is_thp)
1462 					nr_thp_succeeded++;
1463 				break;
1464 			default:
1465 				/*
1466 				 * Permanent failure (-EBUSY, etc.):
1467 				 * unlike -EAGAIN case, the failed page is
1468 				 * removed from migration page list and not
1469 				 * retried in the next outer loop.
1470 				 */
1471 				if (is_thp)
1472 					nr_thp_failed++;
1473 				else if (!no_subpage_counting)
1474 					nr_failed++;
1475 
1476 				nr_failed_pages += nr_subpages;
1477 				break;
1478 			}
1479 		}
1480 	}
1481 	nr_failed += retry;
1482 	nr_thp_failed += thp_retry;
1483 	/*
1484 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1485 	 * counting in this round, since all subpages of a THP is counted
1486 	 * as 1 failure in the first round.
1487 	 */
1488 	if (!list_empty(&thp_split_pages)) {
1489 		/*
1490 		 * Move non-migrated pages (after 10 retries) to ret_pages
1491 		 * to avoid migrating them again.
1492 		 */
1493 		list_splice_init(from, &ret_pages);
1494 		list_splice_init(&thp_split_pages, from);
1495 		no_subpage_counting = true;
1496 		retry = 1;
1497 		goto thp_subpage_migration;
1498 	}
1499 
1500 	rc = nr_failed + nr_thp_failed;
1501 out:
1502 	/*
1503 	 * Put the permanent failure page back to migration list, they
1504 	 * will be put back to the right list by the caller.
1505 	 */
1506 	list_splice(&ret_pages, from);
1507 
1508 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1509 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1510 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1511 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1512 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1513 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1514 			       nr_thp_failed, nr_thp_split, mode, reason);
1515 
1516 	if (ret_succeeded)
1517 		*ret_succeeded = nr_succeeded;
1518 
1519 	return rc;
1520 }
1521 
1522 struct page *alloc_migration_target(struct page *page, unsigned long private)
1523 {
1524 	struct folio *folio = page_folio(page);
1525 	struct migration_target_control *mtc;
1526 	gfp_t gfp_mask;
1527 	unsigned int order = 0;
1528 	struct folio *new_folio = NULL;
1529 	int nid;
1530 	int zidx;
1531 
1532 	mtc = (struct migration_target_control *)private;
1533 	gfp_mask = mtc->gfp_mask;
1534 	nid = mtc->nid;
1535 	if (nid == NUMA_NO_NODE)
1536 		nid = folio_nid(folio);
1537 
1538 	if (folio_test_hugetlb(folio)) {
1539 		struct hstate *h = page_hstate(&folio->page);
1540 
1541 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1542 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1543 	}
1544 
1545 	if (folio_test_large(folio)) {
1546 		/*
1547 		 * clear __GFP_RECLAIM to make the migration callback
1548 		 * consistent with regular THP allocations.
1549 		 */
1550 		gfp_mask &= ~__GFP_RECLAIM;
1551 		gfp_mask |= GFP_TRANSHUGE;
1552 		order = folio_order(folio);
1553 	}
1554 	zidx = zone_idx(folio_zone(folio));
1555 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1556 		gfp_mask |= __GFP_HIGHMEM;
1557 
1558 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1559 
1560 	return &new_folio->page;
1561 }
1562 
1563 #ifdef CONFIG_NUMA
1564 
1565 static int store_status(int __user *status, int start, int value, int nr)
1566 {
1567 	while (nr-- > 0) {
1568 		if (put_user(value, status + start))
1569 			return -EFAULT;
1570 		start++;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static int do_move_pages_to_node(struct mm_struct *mm,
1577 		struct list_head *pagelist, int node)
1578 {
1579 	int err;
1580 	struct migration_target_control mtc = {
1581 		.nid = node,
1582 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1583 	};
1584 
1585 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1586 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1587 	if (err)
1588 		putback_movable_pages(pagelist);
1589 	return err;
1590 }
1591 
1592 /*
1593  * Resolves the given address to a struct page, isolates it from the LRU and
1594  * puts it to the given pagelist.
1595  * Returns:
1596  *     errno - if the page cannot be found/isolated
1597  *     0 - when it doesn't have to be migrated because it is already on the
1598  *         target node
1599  *     1 - when it has been queued
1600  */
1601 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1602 		int node, struct list_head *pagelist, bool migrate_all)
1603 {
1604 	struct vm_area_struct *vma;
1605 	struct page *page;
1606 	int err;
1607 
1608 	mmap_read_lock(mm);
1609 	err = -EFAULT;
1610 	vma = vma_lookup(mm, addr);
1611 	if (!vma || !vma_migratable(vma))
1612 		goto out;
1613 
1614 	/* FOLL_DUMP to ignore special (like zero) pages */
1615 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1616 
1617 	err = PTR_ERR(page);
1618 	if (IS_ERR(page))
1619 		goto out;
1620 
1621 	err = -ENOENT;
1622 	if (!page)
1623 		goto out;
1624 
1625 	err = 0;
1626 	if (page_to_nid(page) == node)
1627 		goto out_putpage;
1628 
1629 	err = -EACCES;
1630 	if (page_mapcount(page) > 1 && !migrate_all)
1631 		goto out_putpage;
1632 
1633 	if (PageHuge(page)) {
1634 		if (PageHead(page)) {
1635 			isolate_huge_page(page, pagelist);
1636 			err = 1;
1637 		}
1638 	} else {
1639 		struct page *head;
1640 
1641 		head = compound_head(page);
1642 		err = isolate_lru_page(head);
1643 		if (err)
1644 			goto out_putpage;
1645 
1646 		err = 1;
1647 		list_add_tail(&head->lru, pagelist);
1648 		mod_node_page_state(page_pgdat(head),
1649 			NR_ISOLATED_ANON + page_is_file_lru(head),
1650 			thp_nr_pages(head));
1651 	}
1652 out_putpage:
1653 	/*
1654 	 * Either remove the duplicate refcount from
1655 	 * isolate_lru_page() or drop the page ref if it was
1656 	 * not isolated.
1657 	 */
1658 	put_page(page);
1659 out:
1660 	mmap_read_unlock(mm);
1661 	return err;
1662 }
1663 
1664 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1665 		struct list_head *pagelist, int __user *status,
1666 		int start, int i, unsigned long nr_pages)
1667 {
1668 	int err;
1669 
1670 	if (list_empty(pagelist))
1671 		return 0;
1672 
1673 	err = do_move_pages_to_node(mm, pagelist, node);
1674 	if (err) {
1675 		/*
1676 		 * Positive err means the number of failed
1677 		 * pages to migrate.  Since we are going to
1678 		 * abort and return the number of non-migrated
1679 		 * pages, so need to include the rest of the
1680 		 * nr_pages that have not been attempted as
1681 		 * well.
1682 		 */
1683 		if (err > 0)
1684 			err += nr_pages - i - 1;
1685 		return err;
1686 	}
1687 	return store_status(status, start, node, i - start);
1688 }
1689 
1690 /*
1691  * Migrate an array of page address onto an array of nodes and fill
1692  * the corresponding array of status.
1693  */
1694 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1695 			 unsigned long nr_pages,
1696 			 const void __user * __user *pages,
1697 			 const int __user *nodes,
1698 			 int __user *status, int flags)
1699 {
1700 	int current_node = NUMA_NO_NODE;
1701 	LIST_HEAD(pagelist);
1702 	int start, i;
1703 	int err = 0, err1;
1704 
1705 	lru_cache_disable();
1706 
1707 	for (i = start = 0; i < nr_pages; i++) {
1708 		const void __user *p;
1709 		unsigned long addr;
1710 		int node;
1711 
1712 		err = -EFAULT;
1713 		if (get_user(p, pages + i))
1714 			goto out_flush;
1715 		if (get_user(node, nodes + i))
1716 			goto out_flush;
1717 		addr = (unsigned long)untagged_addr(p);
1718 
1719 		err = -ENODEV;
1720 		if (node < 0 || node >= MAX_NUMNODES)
1721 			goto out_flush;
1722 		if (!node_state(node, N_MEMORY))
1723 			goto out_flush;
1724 
1725 		err = -EACCES;
1726 		if (!node_isset(node, task_nodes))
1727 			goto out_flush;
1728 
1729 		if (current_node == NUMA_NO_NODE) {
1730 			current_node = node;
1731 			start = i;
1732 		} else if (node != current_node) {
1733 			err = move_pages_and_store_status(mm, current_node,
1734 					&pagelist, status, start, i, nr_pages);
1735 			if (err)
1736 				goto out;
1737 			start = i;
1738 			current_node = node;
1739 		}
1740 
1741 		/*
1742 		 * Errors in the page lookup or isolation are not fatal and we simply
1743 		 * report them via status
1744 		 */
1745 		err = add_page_for_migration(mm, addr, current_node,
1746 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1747 
1748 		if (err > 0) {
1749 			/* The page is successfully queued for migration */
1750 			continue;
1751 		}
1752 
1753 		/*
1754 		 * The move_pages() man page does not have an -EEXIST choice, so
1755 		 * use -EFAULT instead.
1756 		 */
1757 		if (err == -EEXIST)
1758 			err = -EFAULT;
1759 
1760 		/*
1761 		 * If the page is already on the target node (!err), store the
1762 		 * node, otherwise, store the err.
1763 		 */
1764 		err = store_status(status, i, err ? : current_node, 1);
1765 		if (err)
1766 			goto out_flush;
1767 
1768 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1769 				status, start, i, nr_pages);
1770 		if (err)
1771 			goto out;
1772 		current_node = NUMA_NO_NODE;
1773 	}
1774 out_flush:
1775 	/* Make sure we do not overwrite the existing error */
1776 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1777 				status, start, i, nr_pages);
1778 	if (err >= 0)
1779 		err = err1;
1780 out:
1781 	lru_cache_enable();
1782 	return err;
1783 }
1784 
1785 /*
1786  * Determine the nodes of an array of pages and store it in an array of status.
1787  */
1788 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1789 				const void __user **pages, int *status)
1790 {
1791 	unsigned long i;
1792 
1793 	mmap_read_lock(mm);
1794 
1795 	for (i = 0; i < nr_pages; i++) {
1796 		unsigned long addr = (unsigned long)(*pages);
1797 		struct vm_area_struct *vma;
1798 		struct page *page;
1799 		int err = -EFAULT;
1800 
1801 		vma = vma_lookup(mm, addr);
1802 		if (!vma)
1803 			goto set_status;
1804 
1805 		/* FOLL_DUMP to ignore special (like zero) pages */
1806 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1807 
1808 		err = PTR_ERR(page);
1809 		if (IS_ERR(page))
1810 			goto set_status;
1811 
1812 		if (page) {
1813 			err = page_to_nid(page);
1814 			put_page(page);
1815 		} else {
1816 			err = -ENOENT;
1817 		}
1818 set_status:
1819 		*status = err;
1820 
1821 		pages++;
1822 		status++;
1823 	}
1824 
1825 	mmap_read_unlock(mm);
1826 }
1827 
1828 static int get_compat_pages_array(const void __user *chunk_pages[],
1829 				  const void __user * __user *pages,
1830 				  unsigned long chunk_nr)
1831 {
1832 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1833 	compat_uptr_t p;
1834 	int i;
1835 
1836 	for (i = 0; i < chunk_nr; i++) {
1837 		if (get_user(p, pages32 + i))
1838 			return -EFAULT;
1839 		chunk_pages[i] = compat_ptr(p);
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 /*
1846  * Determine the nodes of a user array of pages and store it in
1847  * a user array of status.
1848  */
1849 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1850 			 const void __user * __user *pages,
1851 			 int __user *status)
1852 {
1853 #define DO_PAGES_STAT_CHUNK_NR 16UL
1854 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1855 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1856 
1857 	while (nr_pages) {
1858 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1859 
1860 		if (in_compat_syscall()) {
1861 			if (get_compat_pages_array(chunk_pages, pages,
1862 						   chunk_nr))
1863 				break;
1864 		} else {
1865 			if (copy_from_user(chunk_pages, pages,
1866 				      chunk_nr * sizeof(*chunk_pages)))
1867 				break;
1868 		}
1869 
1870 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1871 
1872 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1873 			break;
1874 
1875 		pages += chunk_nr;
1876 		status += chunk_nr;
1877 		nr_pages -= chunk_nr;
1878 	}
1879 	return nr_pages ? -EFAULT : 0;
1880 }
1881 
1882 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1883 {
1884 	struct task_struct *task;
1885 	struct mm_struct *mm;
1886 
1887 	/*
1888 	 * There is no need to check if current process has the right to modify
1889 	 * the specified process when they are same.
1890 	 */
1891 	if (!pid) {
1892 		mmget(current->mm);
1893 		*mem_nodes = cpuset_mems_allowed(current);
1894 		return current->mm;
1895 	}
1896 
1897 	/* Find the mm_struct */
1898 	rcu_read_lock();
1899 	task = find_task_by_vpid(pid);
1900 	if (!task) {
1901 		rcu_read_unlock();
1902 		return ERR_PTR(-ESRCH);
1903 	}
1904 	get_task_struct(task);
1905 
1906 	/*
1907 	 * Check if this process has the right to modify the specified
1908 	 * process. Use the regular "ptrace_may_access()" checks.
1909 	 */
1910 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1911 		rcu_read_unlock();
1912 		mm = ERR_PTR(-EPERM);
1913 		goto out;
1914 	}
1915 	rcu_read_unlock();
1916 
1917 	mm = ERR_PTR(security_task_movememory(task));
1918 	if (IS_ERR(mm))
1919 		goto out;
1920 	*mem_nodes = cpuset_mems_allowed(task);
1921 	mm = get_task_mm(task);
1922 out:
1923 	put_task_struct(task);
1924 	if (!mm)
1925 		mm = ERR_PTR(-EINVAL);
1926 	return mm;
1927 }
1928 
1929 /*
1930  * Move a list of pages in the address space of the currently executing
1931  * process.
1932  */
1933 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1934 			     const void __user * __user *pages,
1935 			     const int __user *nodes,
1936 			     int __user *status, int flags)
1937 {
1938 	struct mm_struct *mm;
1939 	int err;
1940 	nodemask_t task_nodes;
1941 
1942 	/* Check flags */
1943 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1944 		return -EINVAL;
1945 
1946 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1947 		return -EPERM;
1948 
1949 	mm = find_mm_struct(pid, &task_nodes);
1950 	if (IS_ERR(mm))
1951 		return PTR_ERR(mm);
1952 
1953 	if (nodes)
1954 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1955 				    nodes, status, flags);
1956 	else
1957 		err = do_pages_stat(mm, nr_pages, pages, status);
1958 
1959 	mmput(mm);
1960 	return err;
1961 }
1962 
1963 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1964 		const void __user * __user *, pages,
1965 		const int __user *, nodes,
1966 		int __user *, status, int, flags)
1967 {
1968 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1969 }
1970 
1971 #ifdef CONFIG_NUMA_BALANCING
1972 /*
1973  * Returns true if this is a safe migration target node for misplaced NUMA
1974  * pages. Currently it only checks the watermarks which is crude.
1975  */
1976 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1977 				   unsigned long nr_migrate_pages)
1978 {
1979 	int z;
1980 
1981 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1982 		struct zone *zone = pgdat->node_zones + z;
1983 
1984 		if (!managed_zone(zone))
1985 			continue;
1986 
1987 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1988 		if (!zone_watermark_ok(zone, 0,
1989 				       high_wmark_pages(zone) +
1990 				       nr_migrate_pages,
1991 				       ZONE_MOVABLE, 0))
1992 			continue;
1993 		return true;
1994 	}
1995 	return false;
1996 }
1997 
1998 static struct page *alloc_misplaced_dst_page(struct page *page,
1999 					   unsigned long data)
2000 {
2001 	int nid = (int) data;
2002 	int order = compound_order(page);
2003 	gfp_t gfp = __GFP_THISNODE;
2004 	struct folio *new;
2005 
2006 	if (order > 0)
2007 		gfp |= GFP_TRANSHUGE_LIGHT;
2008 	else {
2009 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2010 			__GFP_NOWARN;
2011 		gfp &= ~__GFP_RECLAIM;
2012 	}
2013 	new = __folio_alloc_node(gfp, order, nid);
2014 
2015 	return &new->page;
2016 }
2017 
2018 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2019 {
2020 	int nr_pages = thp_nr_pages(page);
2021 	int order = compound_order(page);
2022 
2023 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2024 
2025 	/* Do not migrate THP mapped by multiple processes */
2026 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2027 		return 0;
2028 
2029 	/* Avoid migrating to a node that is nearly full */
2030 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2031 		int z;
2032 
2033 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2034 			return 0;
2035 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2036 			if (managed_zone(pgdat->node_zones + z))
2037 				break;
2038 		}
2039 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2040 		return 0;
2041 	}
2042 
2043 	if (isolate_lru_page(page))
2044 		return 0;
2045 
2046 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2047 			    nr_pages);
2048 
2049 	/*
2050 	 * Isolating the page has taken another reference, so the
2051 	 * caller's reference can be safely dropped without the page
2052 	 * disappearing underneath us during migration.
2053 	 */
2054 	put_page(page);
2055 	return 1;
2056 }
2057 
2058 /*
2059  * Attempt to migrate a misplaced page to the specified destination
2060  * node. Caller is expected to have an elevated reference count on
2061  * the page that will be dropped by this function before returning.
2062  */
2063 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2064 			   int node)
2065 {
2066 	pg_data_t *pgdat = NODE_DATA(node);
2067 	int isolated;
2068 	int nr_remaining;
2069 	unsigned int nr_succeeded;
2070 	LIST_HEAD(migratepages);
2071 	int nr_pages = thp_nr_pages(page);
2072 
2073 	/*
2074 	 * Don't migrate file pages that are mapped in multiple processes
2075 	 * with execute permissions as they are probably shared libraries.
2076 	 */
2077 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2078 	    (vma->vm_flags & VM_EXEC))
2079 		goto out;
2080 
2081 	/*
2082 	 * Also do not migrate dirty pages as not all filesystems can move
2083 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2084 	 */
2085 	if (page_is_file_lru(page) && PageDirty(page))
2086 		goto out;
2087 
2088 	isolated = numamigrate_isolate_page(pgdat, page);
2089 	if (!isolated)
2090 		goto out;
2091 
2092 	list_add(&page->lru, &migratepages);
2093 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2094 				     NULL, node, MIGRATE_ASYNC,
2095 				     MR_NUMA_MISPLACED, &nr_succeeded);
2096 	if (nr_remaining) {
2097 		if (!list_empty(&migratepages)) {
2098 			list_del(&page->lru);
2099 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2100 					page_is_file_lru(page), -nr_pages);
2101 			putback_lru_page(page);
2102 		}
2103 		isolated = 0;
2104 	}
2105 	if (nr_succeeded) {
2106 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2107 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2108 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2109 					    nr_succeeded);
2110 	}
2111 	BUG_ON(!list_empty(&migratepages));
2112 	return isolated;
2113 
2114 out:
2115 	put_page(page);
2116 	return 0;
2117 }
2118 #endif /* CONFIG_NUMA_BALANCING */
2119 
2120 /*
2121  * node_demotion[] example:
2122  *
2123  * Consider a system with two sockets.  Each socket has
2124  * three classes of memory attached: fast, medium and slow.
2125  * Each memory class is placed in its own NUMA node.  The
2126  * CPUs are placed in the node with the "fast" memory.  The
2127  * 6 NUMA nodes (0-5) might be split among the sockets like
2128  * this:
2129  *
2130  *	Socket A: 0, 1, 2
2131  *	Socket B: 3, 4, 5
2132  *
2133  * When Node 0 fills up, its memory should be migrated to
2134  * Node 1.  When Node 1 fills up, it should be migrated to
2135  * Node 2.  The migration path start on the nodes with the
2136  * processors (since allocations default to this node) and
2137  * fast memory, progress through medium and end with the
2138  * slow memory:
2139  *
2140  *	0 -> 1 -> 2 -> stop
2141  *	3 -> 4 -> 5 -> stop
2142  *
2143  * This is represented in the node_demotion[] like this:
2144  *
2145  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2146  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2147  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2148  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2149  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2150  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2151  *
2152  * Moreover some systems may have multiple slow memory nodes.
2153  * Suppose a system has one socket with 3 memory nodes, node 0
2154  * is fast memory type, and node 1/2 both are slow memory
2155  * type, and the distance between fast memory node and slow
2156  * memory node is same. So the migration path should be:
2157  *
2158  *	0 -> 1/2 -> stop
2159  *
2160  * This is represented in the node_demotion[] like this:
2161  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2162  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2163  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2164  */
2165 
2166 /*
2167  * Writes to this array occur without locking.  Cycles are
2168  * not allowed: Node X demotes to Y which demotes to X...
2169  *
2170  * If multiple reads are performed, a single rcu_read_lock()
2171  * must be held over all reads to ensure that no cycles are
2172  * observed.
2173  */
2174 #define DEFAULT_DEMOTION_TARGET_NODES 15
2175 
2176 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2177 #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
2178 #else
2179 #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
2180 #endif
2181 
2182 struct demotion_nodes {
2183 	unsigned short nr;
2184 	short nodes[DEMOTION_TARGET_NODES];
2185 };
2186 
2187 static struct demotion_nodes *node_demotion __read_mostly;
2188 
2189 /**
2190  * next_demotion_node() - Get the next node in the demotion path
2191  * @node: The starting node to lookup the next node
2192  *
2193  * Return: node id for next memory node in the demotion path hierarchy
2194  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2195  * @node online or guarantee that it *continues* to be the next demotion
2196  * target.
2197  */
2198 int next_demotion_node(int node)
2199 {
2200 	struct demotion_nodes *nd;
2201 	unsigned short target_nr, index;
2202 	int target;
2203 
2204 	if (!node_demotion)
2205 		return NUMA_NO_NODE;
2206 
2207 	nd = &node_demotion[node];
2208 
2209 	/*
2210 	 * node_demotion[] is updated without excluding this
2211 	 * function from running.  RCU doesn't provide any
2212 	 * compiler barriers, so the READ_ONCE() is required
2213 	 * to avoid compiler reordering or read merging.
2214 	 *
2215 	 * Make sure to use RCU over entire code blocks if
2216 	 * node_demotion[] reads need to be consistent.
2217 	 */
2218 	rcu_read_lock();
2219 	target_nr = READ_ONCE(nd->nr);
2220 
2221 	switch (target_nr) {
2222 	case 0:
2223 		target = NUMA_NO_NODE;
2224 		goto out;
2225 	case 1:
2226 		index = 0;
2227 		break;
2228 	default:
2229 		/*
2230 		 * If there are multiple target nodes, just select one
2231 		 * target node randomly.
2232 		 *
2233 		 * In addition, we can also use round-robin to select
2234 		 * target node, but we should introduce another variable
2235 		 * for node_demotion[] to record last selected target node,
2236 		 * that may cause cache ping-pong due to the changing of
2237 		 * last target node. Or introducing per-cpu data to avoid
2238 		 * caching issue, which seems more complicated. So selecting
2239 		 * target node randomly seems better until now.
2240 		 */
2241 		index = get_random_int() % target_nr;
2242 		break;
2243 	}
2244 
2245 	target = READ_ONCE(nd->nodes[index]);
2246 
2247 out:
2248 	rcu_read_unlock();
2249 	return target;
2250 }
2251 
2252 /* Disable reclaim-based migration. */
2253 static void __disable_all_migrate_targets(void)
2254 {
2255 	int node, i;
2256 
2257 	if (!node_demotion)
2258 		return;
2259 
2260 	for_each_online_node(node) {
2261 		node_demotion[node].nr = 0;
2262 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2263 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
2264 	}
2265 }
2266 
2267 static void disable_all_migrate_targets(void)
2268 {
2269 	__disable_all_migrate_targets();
2270 
2271 	/*
2272 	 * Ensure that the "disable" is visible across the system.
2273 	 * Readers will see either a combination of before+disable
2274 	 * state or disable+after.  They will never see before and
2275 	 * after state together.
2276 	 *
2277 	 * The before+after state together might have cycles and
2278 	 * could cause readers to do things like loop until this
2279 	 * function finishes.  This ensures they can only see a
2280 	 * single "bad" read and would, for instance, only loop
2281 	 * once.
2282 	 */
2283 	synchronize_rcu();
2284 }
2285 
2286 /*
2287  * Find an automatic demotion target for 'node'.
2288  * Failing here is OK.  It might just indicate
2289  * being at the end of a chain.
2290  */
2291 static int establish_migrate_target(int node, nodemask_t *used,
2292 				    int best_distance)
2293 {
2294 	int migration_target, index, val;
2295 	struct demotion_nodes *nd;
2296 
2297 	if (!node_demotion)
2298 		return NUMA_NO_NODE;
2299 
2300 	nd = &node_demotion[node];
2301 
2302 	migration_target = find_next_best_node(node, used);
2303 	if (migration_target == NUMA_NO_NODE)
2304 		return NUMA_NO_NODE;
2305 
2306 	/*
2307 	 * If the node has been set a migration target node before,
2308 	 * which means it's the best distance between them. Still
2309 	 * check if this node can be demoted to other target nodes
2310 	 * if they have a same best distance.
2311 	 */
2312 	if (best_distance != -1) {
2313 		val = node_distance(node, migration_target);
2314 		if (val > best_distance)
2315 			goto out_clear;
2316 	}
2317 
2318 	index = nd->nr;
2319 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2320 		      "Exceeds maximum demotion target nodes\n"))
2321 		goto out_clear;
2322 
2323 	nd->nodes[index] = migration_target;
2324 	nd->nr++;
2325 
2326 	return migration_target;
2327 out_clear:
2328 	node_clear(migration_target, *used);
2329 	return NUMA_NO_NODE;
2330 }
2331 
2332 /*
2333  * When memory fills up on a node, memory contents can be
2334  * automatically migrated to another node instead of
2335  * discarded at reclaim.
2336  *
2337  * Establish a "migration path" which will start at nodes
2338  * with CPUs and will follow the priorities used to build the
2339  * page allocator zonelists.
2340  *
2341  * The difference here is that cycles must be avoided.  If
2342  * node0 migrates to node1, then neither node1, nor anything
2343  * node1 migrates to can migrate to node0. Also one node can
2344  * be migrated to multiple nodes if the target nodes all have
2345  * a same best-distance against the source node.
2346  *
2347  * This function can run simultaneously with readers of
2348  * node_demotion[].  However, it can not run simultaneously
2349  * with itself.  Exclusion is provided by memory hotplug events
2350  * being single-threaded.
2351  */
2352 static void __set_migration_target_nodes(void)
2353 {
2354 	nodemask_t next_pass;
2355 	nodemask_t this_pass;
2356 	nodemask_t used_targets = NODE_MASK_NONE;
2357 	int node, best_distance;
2358 
2359 	/*
2360 	 * Avoid any oddities like cycles that could occur
2361 	 * from changes in the topology.  This will leave
2362 	 * a momentary gap when migration is disabled.
2363 	 */
2364 	disable_all_migrate_targets();
2365 
2366 	/*
2367 	 * Allocations go close to CPUs, first.  Assume that
2368 	 * the migration path starts at the nodes with CPUs.
2369 	 */
2370 	next_pass = node_states[N_CPU];
2371 again:
2372 	this_pass = next_pass;
2373 	next_pass = NODE_MASK_NONE;
2374 	/*
2375 	 * To avoid cycles in the migration "graph", ensure
2376 	 * that migration sources are not future targets by
2377 	 * setting them in 'used_targets'.  Do this only
2378 	 * once per pass so that multiple source nodes can
2379 	 * share a target node.
2380 	 *
2381 	 * 'used_targets' will become unavailable in future
2382 	 * passes.  This limits some opportunities for
2383 	 * multiple source nodes to share a destination.
2384 	 */
2385 	nodes_or(used_targets, used_targets, this_pass);
2386 
2387 	for_each_node_mask(node, this_pass) {
2388 		best_distance = -1;
2389 
2390 		/*
2391 		 * Try to set up the migration path for the node, and the target
2392 		 * migration nodes can be multiple, so doing a loop to find all
2393 		 * the target nodes if they all have a best node distance.
2394 		 */
2395 		do {
2396 			int target_node =
2397 				establish_migrate_target(node, &used_targets,
2398 							 best_distance);
2399 
2400 			if (target_node == NUMA_NO_NODE)
2401 				break;
2402 
2403 			if (best_distance == -1)
2404 				best_distance = node_distance(node, target_node);
2405 
2406 			/*
2407 			 * Visit targets from this pass in the next pass.
2408 			 * Eventually, every node will have been part of
2409 			 * a pass, and will become set in 'used_targets'.
2410 			 */
2411 			node_set(target_node, next_pass);
2412 		} while (1);
2413 	}
2414 	/*
2415 	 * 'next_pass' contains nodes which became migration
2416 	 * targets in this pass.  Make additional passes until
2417 	 * no more migrations targets are available.
2418 	 */
2419 	if (!nodes_empty(next_pass))
2420 		goto again;
2421 }
2422 
2423 /*
2424  * For callers that do not hold get_online_mems() already.
2425  */
2426 void set_migration_target_nodes(void)
2427 {
2428 	get_online_mems();
2429 	__set_migration_target_nodes();
2430 	put_online_mems();
2431 }
2432 
2433 /*
2434  * This leaves migrate-on-reclaim transiently disabled between
2435  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
2436  * whether reclaim-based migration is enabled or not, which
2437  * ensures that the user can turn reclaim-based migration at
2438  * any time without needing to recalculate migration targets.
2439  *
2440  * These callbacks already hold get_online_mems().  That is why
2441  * __set_migration_target_nodes() can be used as opposed to
2442  * set_migration_target_nodes().
2443  */
2444 #ifdef CONFIG_MEMORY_HOTPLUG
2445 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2446 						 unsigned long action, void *_arg)
2447 {
2448 	struct memory_notify *arg = _arg;
2449 
2450 	/*
2451 	 * Only update the node migration order when a node is
2452 	 * changing status, like online->offline.  This avoids
2453 	 * the overhead of synchronize_rcu() in most cases.
2454 	 */
2455 	if (arg->status_change_nid < 0)
2456 		return notifier_from_errno(0);
2457 
2458 	switch (action) {
2459 	case MEM_GOING_OFFLINE:
2460 		/*
2461 		 * Make sure there are not transient states where
2462 		 * an offline node is a migration target.  This
2463 		 * will leave migration disabled until the offline
2464 		 * completes and the MEM_OFFLINE case below runs.
2465 		 */
2466 		disable_all_migrate_targets();
2467 		break;
2468 	case MEM_OFFLINE:
2469 	case MEM_ONLINE:
2470 		/*
2471 		 * Recalculate the target nodes once the node
2472 		 * reaches its final state (online or offline).
2473 		 */
2474 		__set_migration_target_nodes();
2475 		break;
2476 	case MEM_CANCEL_OFFLINE:
2477 		/*
2478 		 * MEM_GOING_OFFLINE disabled all the migration
2479 		 * targets.  Reenable them.
2480 		 */
2481 		__set_migration_target_nodes();
2482 		break;
2483 	case MEM_GOING_ONLINE:
2484 	case MEM_CANCEL_ONLINE:
2485 		break;
2486 	}
2487 
2488 	return notifier_from_errno(0);
2489 }
2490 #endif
2491 
2492 void __init migrate_on_reclaim_init(void)
2493 {
2494 	node_demotion = kcalloc(nr_node_ids,
2495 				sizeof(struct demotion_nodes),
2496 				GFP_KERNEL);
2497 	WARN_ON(!node_demotion);
2498 #ifdef CONFIG_MEMORY_HOTPLUG
2499 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2500 #endif
2501 	/*
2502 	 * At this point, all numa nodes with memory/CPus have their state
2503 	 * properly set, so we can build the demotion order now.
2504 	 * Let us hold the cpu_hotplug lock just, as we could possibily have
2505 	 * CPU hotplug events during boot.
2506 	 */
2507 	cpus_read_lock();
2508 	set_migration_target_nodes();
2509 	cpus_read_unlock();
2510 }
2511 
2512 bool numa_demotion_enabled = false;
2513 
2514 #ifdef CONFIG_SYSFS
2515 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2516 					  struct kobj_attribute *attr, char *buf)
2517 {
2518 	return sysfs_emit(buf, "%s\n",
2519 			  numa_demotion_enabled ? "true" : "false");
2520 }
2521 
2522 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2523 					   struct kobj_attribute *attr,
2524 					   const char *buf, size_t count)
2525 {
2526 	ssize_t ret;
2527 
2528 	ret = kstrtobool(buf, &numa_demotion_enabled);
2529 	if (ret)
2530 		return ret;
2531 
2532 	return count;
2533 }
2534 
2535 static struct kobj_attribute numa_demotion_enabled_attr =
2536 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2537 	       numa_demotion_enabled_store);
2538 
2539 static struct attribute *numa_attrs[] = {
2540 	&numa_demotion_enabled_attr.attr,
2541 	NULL,
2542 };
2543 
2544 static const struct attribute_group numa_attr_group = {
2545 	.attrs = numa_attrs,
2546 };
2547 
2548 static int __init numa_init_sysfs(void)
2549 {
2550 	int err;
2551 	struct kobject *numa_kobj;
2552 
2553 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
2554 	if (!numa_kobj) {
2555 		pr_err("failed to create numa kobject\n");
2556 		return -ENOMEM;
2557 	}
2558 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
2559 	if (err) {
2560 		pr_err("failed to register numa group\n");
2561 		goto delete_obj;
2562 	}
2563 	return 0;
2564 
2565 delete_obj:
2566 	kobject_put(numa_kobj);
2567 	return err;
2568 }
2569 subsys_initcall(numa_init_sysfs);
2570 #endif /* CONFIG_SYSFS */
2571 #endif /* CONFIG_NUMA */
2572