xref: /openbmc/linux/mm/migrate.c (revision 6c542ab75714fe90dae292aeb3e91ac53f5ff599)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	const struct movable_operations *mops;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mops = page_movable_ops(page);
101 	VM_BUG_ON_PAGE(!mops, page);
102 
103 	if (!mops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	const struct movable_operations *mops = page_movable_ops(page);
124 
125 	mops->putback_page(page);
126 	ClearPageIsolated(page);
127 }
128 
129 /*
130  * Put previously isolated pages back onto the appropriate lists
131  * from where they were once taken off for compaction/migration.
132  *
133  * This function shall be used whenever the isolated pageset has been
134  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
135  * and isolate_hugetlb().
136  */
137 void putback_movable_pages(struct list_head *l)
138 {
139 	struct page *page;
140 	struct page *page2;
141 
142 	list_for_each_entry_safe(page, page2, l, lru) {
143 		if (unlikely(PageHuge(page))) {
144 			putback_active_hugepage(page);
145 			continue;
146 		}
147 		list_del(&page->lru);
148 		/*
149 		 * We isolated non-lru movable page so here we can use
150 		 * __PageMovable because LRU page's mapping cannot have
151 		 * PAGE_MAPPING_MOVABLE.
152 		 */
153 		if (unlikely(__PageMovable(page))) {
154 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 			lock_page(page);
156 			if (PageMovable(page))
157 				putback_movable_page(page);
158 			else
159 				ClearPageIsolated(page);
160 			unlock_page(page);
161 			put_page(page);
162 		} else {
163 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
164 					page_is_file_lru(page), -thp_nr_pages(page));
165 			putback_lru_page(page);
166 		}
167 	}
168 }
169 
170 /*
171  * Restore a potential migration pte to a working pte entry
172  */
173 static bool remove_migration_pte(struct folio *folio,
174 		struct vm_area_struct *vma, unsigned long addr, void *old)
175 {
176 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
177 
178 	while (page_vma_mapped_walk(&pvmw)) {
179 		rmap_t rmap_flags = RMAP_NONE;
180 		pte_t pte;
181 		swp_entry_t entry;
182 		struct page *new;
183 		unsigned long idx = 0;
184 
185 		/* pgoff is invalid for ksm pages, but they are never large */
186 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
187 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
188 		new = folio_page(folio, idx);
189 
190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
191 		/* PMD-mapped THP migration entry */
192 		if (!pvmw.pte) {
193 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
194 					!folio_test_pmd_mappable(folio), folio);
195 			remove_migration_pmd(&pvmw, new);
196 			continue;
197 		}
198 #endif
199 
200 		folio_get(folio);
201 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
202 		if (pte_swp_soft_dirty(*pvmw.pte))
203 			pte = pte_mksoft_dirty(pte);
204 
205 		/*
206 		 * Recheck VMA as permissions can change since migration started
207 		 */
208 		entry = pte_to_swp_entry(*pvmw.pte);
209 		if (!is_migration_entry_young(entry))
210 			pte = pte_mkold(pte);
211 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
212 			pte = pte_mkdirty(pte);
213 		if (is_writable_migration_entry(entry))
214 			pte = maybe_mkwrite(pte, vma);
215 		else if (pte_swp_uffd_wp(*pvmw.pte))
216 			pte = pte_mkuffd_wp(pte);
217 
218 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
219 			rmap_flags |= RMAP_EXCLUSIVE;
220 
221 		if (unlikely(is_device_private_page(new))) {
222 			if (pte_write(pte))
223 				entry = make_writable_device_private_entry(
224 							page_to_pfn(new));
225 			else
226 				entry = make_readable_device_private_entry(
227 							page_to_pfn(new));
228 			pte = swp_entry_to_pte(entry);
229 			if (pte_swp_soft_dirty(*pvmw.pte))
230 				pte = pte_swp_mksoft_dirty(pte);
231 			if (pte_swp_uffd_wp(*pvmw.pte))
232 				pte = pte_swp_mkuffd_wp(pte);
233 		}
234 
235 #ifdef CONFIG_HUGETLB_PAGE
236 		if (folio_test_hugetlb(folio)) {
237 			unsigned int shift = huge_page_shift(hstate_vma(vma));
238 
239 			pte = pte_mkhuge(pte);
240 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
241 			if (folio_test_anon(folio))
242 				hugepage_add_anon_rmap(new, vma, pvmw.address,
243 						       rmap_flags);
244 			else
245 				page_dup_file_rmap(new, true);
246 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247 		} else
248 #endif
249 		{
250 			if (folio_test_anon(folio))
251 				page_add_anon_rmap(new, vma, pvmw.address,
252 						   rmap_flags);
253 			else
254 				page_add_file_rmap(new, vma, false);
255 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
256 		}
257 		if (vma->vm_flags & VM_LOCKED)
258 			mlock_page_drain_local();
259 
260 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
261 					   compound_order(new));
262 
263 		/* No need to invalidate - it was non-present before */
264 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
265 	}
266 
267 	return true;
268 }
269 
270 /*
271  * Get rid of all migration entries and replace them by
272  * references to the indicated page.
273  */
274 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
275 {
276 	struct rmap_walk_control rwc = {
277 		.rmap_one = remove_migration_pte,
278 		.arg = src,
279 	};
280 
281 	if (locked)
282 		rmap_walk_locked(dst, &rwc);
283 	else
284 		rmap_walk(dst, &rwc);
285 }
286 
287 /*
288  * Something used the pte of a page under migration. We need to
289  * get to the page and wait until migration is finished.
290  * When we return from this function the fault will be retried.
291  */
292 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
293 				spinlock_t *ptl)
294 {
295 	pte_t pte;
296 	swp_entry_t entry;
297 
298 	spin_lock(ptl);
299 	pte = *ptep;
300 	if (!is_swap_pte(pte))
301 		goto out;
302 
303 	entry = pte_to_swp_entry(pte);
304 	if (!is_migration_entry(entry))
305 		goto out;
306 
307 	migration_entry_wait_on_locked(entry, ptep, ptl);
308 	return;
309 out:
310 	pte_unmap_unlock(ptep, ptl);
311 }
312 
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314 				unsigned long address)
315 {
316 	spinlock_t *ptl = pte_lockptr(mm, pmd);
317 	pte_t *ptep = pte_offset_map(pmd, address);
318 	__migration_entry_wait(mm, ptep, ptl);
319 }
320 
321 #ifdef CONFIG_HUGETLB_PAGE
322 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
323 {
324 	pte_t pte;
325 
326 	spin_lock(ptl);
327 	pte = huge_ptep_get(ptep);
328 
329 	if (unlikely(!is_hugetlb_entry_migration(pte)))
330 		spin_unlock(ptl);
331 	else
332 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
333 }
334 
335 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
336 {
337 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
338 
339 	__migration_entry_wait_huge(pte, ptl);
340 }
341 #endif
342 
343 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
344 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
345 {
346 	spinlock_t *ptl;
347 
348 	ptl = pmd_lock(mm, pmd);
349 	if (!is_pmd_migration_entry(*pmd))
350 		goto unlock;
351 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
352 	return;
353 unlock:
354 	spin_unlock(ptl);
355 }
356 #endif
357 
358 static int folio_expected_refs(struct address_space *mapping,
359 		struct folio *folio)
360 {
361 	int refs = 1;
362 	if (!mapping)
363 		return refs;
364 
365 	refs += folio_nr_pages(folio);
366 	if (folio_test_private(folio))
367 		refs++;
368 
369 	return refs;
370 }
371 
372 /*
373  * Replace the page in the mapping.
374  *
375  * The number of remaining references must be:
376  * 1 for anonymous pages without a mapping
377  * 2 for pages with a mapping
378  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
379  */
380 int folio_migrate_mapping(struct address_space *mapping,
381 		struct folio *newfolio, struct folio *folio, int extra_count)
382 {
383 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
384 	struct zone *oldzone, *newzone;
385 	int dirty;
386 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
387 	long nr = folio_nr_pages(folio);
388 
389 	if (!mapping) {
390 		/* Anonymous page without mapping */
391 		if (folio_ref_count(folio) != expected_count)
392 			return -EAGAIN;
393 
394 		/* No turning back from here */
395 		newfolio->index = folio->index;
396 		newfolio->mapping = folio->mapping;
397 		if (folio_test_swapbacked(folio))
398 			__folio_set_swapbacked(newfolio);
399 
400 		return MIGRATEPAGE_SUCCESS;
401 	}
402 
403 	oldzone = folio_zone(folio);
404 	newzone = folio_zone(newfolio);
405 
406 	xas_lock_irq(&xas);
407 	if (!folio_ref_freeze(folio, expected_count)) {
408 		xas_unlock_irq(&xas);
409 		return -EAGAIN;
410 	}
411 
412 	/*
413 	 * Now we know that no one else is looking at the folio:
414 	 * no turning back from here.
415 	 */
416 	newfolio->index = folio->index;
417 	newfolio->mapping = folio->mapping;
418 	folio_ref_add(newfolio, nr); /* add cache reference */
419 	if (folio_test_swapbacked(folio)) {
420 		__folio_set_swapbacked(newfolio);
421 		if (folio_test_swapcache(folio)) {
422 			folio_set_swapcache(newfolio);
423 			newfolio->private = folio_get_private(folio);
424 		}
425 	} else {
426 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
427 	}
428 
429 	/* Move dirty while page refs frozen and newpage not yet exposed */
430 	dirty = folio_test_dirty(folio);
431 	if (dirty) {
432 		folio_clear_dirty(folio);
433 		folio_set_dirty(newfolio);
434 	}
435 
436 	xas_store(&xas, newfolio);
437 
438 	/*
439 	 * Drop cache reference from old page by unfreezing
440 	 * to one less reference.
441 	 * We know this isn't the last reference.
442 	 */
443 	folio_ref_unfreeze(folio, expected_count - nr);
444 
445 	xas_unlock(&xas);
446 	/* Leave irq disabled to prevent preemption while updating stats */
447 
448 	/*
449 	 * If moved to a different zone then also account
450 	 * the page for that zone. Other VM counters will be
451 	 * taken care of when we establish references to the
452 	 * new page and drop references to the old page.
453 	 *
454 	 * Note that anonymous pages are accounted for
455 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
456 	 * are mapped to swap space.
457 	 */
458 	if (newzone != oldzone) {
459 		struct lruvec *old_lruvec, *new_lruvec;
460 		struct mem_cgroup *memcg;
461 
462 		memcg = folio_memcg(folio);
463 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
464 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
465 
466 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
467 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
468 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
469 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
470 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
471 		}
472 #ifdef CONFIG_SWAP
473 		if (folio_test_swapcache(folio)) {
474 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
475 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
476 		}
477 #endif
478 		if (dirty && mapping_can_writeback(mapping)) {
479 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
480 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
481 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
482 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
483 		}
484 	}
485 	local_irq_enable();
486 
487 	return MIGRATEPAGE_SUCCESS;
488 }
489 EXPORT_SYMBOL(folio_migrate_mapping);
490 
491 /*
492  * The expected number of remaining references is the same as that
493  * of folio_migrate_mapping().
494  */
495 int migrate_huge_page_move_mapping(struct address_space *mapping,
496 				   struct folio *dst, struct folio *src)
497 {
498 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
499 	int expected_count;
500 
501 	xas_lock_irq(&xas);
502 	expected_count = 2 + folio_has_private(src);
503 	if (!folio_ref_freeze(src, expected_count)) {
504 		xas_unlock_irq(&xas);
505 		return -EAGAIN;
506 	}
507 
508 	dst->index = src->index;
509 	dst->mapping = src->mapping;
510 
511 	folio_get(dst);
512 
513 	xas_store(&xas, dst);
514 
515 	folio_ref_unfreeze(src, expected_count - 1);
516 
517 	xas_unlock_irq(&xas);
518 
519 	return MIGRATEPAGE_SUCCESS;
520 }
521 
522 /*
523  * Copy the flags and some other ancillary information
524  */
525 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
526 {
527 	int cpupid;
528 
529 	if (folio_test_error(folio))
530 		folio_set_error(newfolio);
531 	if (folio_test_referenced(folio))
532 		folio_set_referenced(newfolio);
533 	if (folio_test_uptodate(folio))
534 		folio_mark_uptodate(newfolio);
535 	if (folio_test_clear_active(folio)) {
536 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
537 		folio_set_active(newfolio);
538 	} else if (folio_test_clear_unevictable(folio))
539 		folio_set_unevictable(newfolio);
540 	if (folio_test_workingset(folio))
541 		folio_set_workingset(newfolio);
542 	if (folio_test_checked(folio))
543 		folio_set_checked(newfolio);
544 	/*
545 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
546 	 * migration entries. We can still have PG_anon_exclusive set on an
547 	 * effectively unmapped and unreferenced first sub-pages of an
548 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
549 	 */
550 	if (folio_test_mappedtodisk(folio))
551 		folio_set_mappedtodisk(newfolio);
552 
553 	/* Move dirty on pages not done by folio_migrate_mapping() */
554 	if (folio_test_dirty(folio))
555 		folio_set_dirty(newfolio);
556 
557 	if (folio_test_young(folio))
558 		folio_set_young(newfolio);
559 	if (folio_test_idle(folio))
560 		folio_set_idle(newfolio);
561 
562 	/*
563 	 * Copy NUMA information to the new page, to prevent over-eager
564 	 * future migrations of this same page.
565 	 */
566 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
567 	/*
568 	 * For memory tiering mode, when migrate between slow and fast
569 	 * memory node, reset cpupid, because that is used to record
570 	 * page access time in slow memory node.
571 	 */
572 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
573 		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
574 		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
575 
576 		if (f_toptier != t_toptier)
577 			cpupid = -1;
578 	}
579 	page_cpupid_xchg_last(&newfolio->page, cpupid);
580 
581 	folio_migrate_ksm(newfolio, folio);
582 	/*
583 	 * Please do not reorder this without considering how mm/ksm.c's
584 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
585 	 */
586 	if (folio_test_swapcache(folio))
587 		folio_clear_swapcache(folio);
588 	folio_clear_private(folio);
589 
590 	/* page->private contains hugetlb specific flags */
591 	if (!folio_test_hugetlb(folio))
592 		folio->private = NULL;
593 
594 	/*
595 	 * If any waiters have accumulated on the new page then
596 	 * wake them up.
597 	 */
598 	if (folio_test_writeback(newfolio))
599 		folio_end_writeback(newfolio);
600 
601 	/*
602 	 * PG_readahead shares the same bit with PG_reclaim.  The above
603 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
604 	 * bit after that.
605 	 */
606 	if (folio_test_readahead(folio))
607 		folio_set_readahead(newfolio);
608 
609 	folio_copy_owner(newfolio, folio);
610 
611 	if (!folio_test_hugetlb(folio))
612 		mem_cgroup_migrate(folio, newfolio);
613 }
614 EXPORT_SYMBOL(folio_migrate_flags);
615 
616 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
617 {
618 	folio_copy(newfolio, folio);
619 	folio_migrate_flags(newfolio, folio);
620 }
621 EXPORT_SYMBOL(folio_migrate_copy);
622 
623 /************************************************************
624  *                    Migration functions
625  ***********************************************************/
626 
627 /**
628  * migrate_folio() - Simple folio migration.
629  * @mapping: The address_space containing the folio.
630  * @dst: The folio to migrate the data to.
631  * @src: The folio containing the current data.
632  * @mode: How to migrate the page.
633  *
634  * Common logic to directly migrate a single LRU folio suitable for
635  * folios that do not use PagePrivate/PagePrivate2.
636  *
637  * Folios are locked upon entry and exit.
638  */
639 int migrate_folio(struct address_space *mapping, struct folio *dst,
640 		struct folio *src, enum migrate_mode mode)
641 {
642 	int rc;
643 
644 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
645 
646 	rc = folio_migrate_mapping(mapping, dst, src, 0);
647 
648 	if (rc != MIGRATEPAGE_SUCCESS)
649 		return rc;
650 
651 	if (mode != MIGRATE_SYNC_NO_COPY)
652 		folio_migrate_copy(dst, src);
653 	else
654 		folio_migrate_flags(dst, src);
655 	return MIGRATEPAGE_SUCCESS;
656 }
657 EXPORT_SYMBOL(migrate_folio);
658 
659 #ifdef CONFIG_BLOCK
660 /* Returns true if all buffers are successfully locked */
661 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
662 							enum migrate_mode mode)
663 {
664 	struct buffer_head *bh = head;
665 
666 	/* Simple case, sync compaction */
667 	if (mode != MIGRATE_ASYNC) {
668 		do {
669 			lock_buffer(bh);
670 			bh = bh->b_this_page;
671 
672 		} while (bh != head);
673 
674 		return true;
675 	}
676 
677 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
678 	do {
679 		if (!trylock_buffer(bh)) {
680 			/*
681 			 * We failed to lock the buffer and cannot stall in
682 			 * async migration. Release the taken locks
683 			 */
684 			struct buffer_head *failed_bh = bh;
685 			bh = head;
686 			while (bh != failed_bh) {
687 				unlock_buffer(bh);
688 				bh = bh->b_this_page;
689 			}
690 			return false;
691 		}
692 
693 		bh = bh->b_this_page;
694 	} while (bh != head);
695 	return true;
696 }
697 
698 static int __buffer_migrate_folio(struct address_space *mapping,
699 		struct folio *dst, struct folio *src, enum migrate_mode mode,
700 		bool check_refs)
701 {
702 	struct buffer_head *bh, *head;
703 	int rc;
704 	int expected_count;
705 
706 	head = folio_buffers(src);
707 	if (!head)
708 		return migrate_folio(mapping, dst, src, mode);
709 
710 	/* Check whether page does not have extra refs before we do more work */
711 	expected_count = folio_expected_refs(mapping, src);
712 	if (folio_ref_count(src) != expected_count)
713 		return -EAGAIN;
714 
715 	if (!buffer_migrate_lock_buffers(head, mode))
716 		return -EAGAIN;
717 
718 	if (check_refs) {
719 		bool busy;
720 		bool invalidated = false;
721 
722 recheck_buffers:
723 		busy = false;
724 		spin_lock(&mapping->private_lock);
725 		bh = head;
726 		do {
727 			if (atomic_read(&bh->b_count)) {
728 				busy = true;
729 				break;
730 			}
731 			bh = bh->b_this_page;
732 		} while (bh != head);
733 		if (busy) {
734 			if (invalidated) {
735 				rc = -EAGAIN;
736 				goto unlock_buffers;
737 			}
738 			spin_unlock(&mapping->private_lock);
739 			invalidate_bh_lrus();
740 			invalidated = true;
741 			goto recheck_buffers;
742 		}
743 	}
744 
745 	rc = folio_migrate_mapping(mapping, dst, src, 0);
746 	if (rc != MIGRATEPAGE_SUCCESS)
747 		goto unlock_buffers;
748 
749 	folio_attach_private(dst, folio_detach_private(src));
750 
751 	bh = head;
752 	do {
753 		set_bh_page(bh, &dst->page, bh_offset(bh));
754 		bh = bh->b_this_page;
755 	} while (bh != head);
756 
757 	if (mode != MIGRATE_SYNC_NO_COPY)
758 		folio_migrate_copy(dst, src);
759 	else
760 		folio_migrate_flags(dst, src);
761 
762 	rc = MIGRATEPAGE_SUCCESS;
763 unlock_buffers:
764 	if (check_refs)
765 		spin_unlock(&mapping->private_lock);
766 	bh = head;
767 	do {
768 		unlock_buffer(bh);
769 		bh = bh->b_this_page;
770 	} while (bh != head);
771 
772 	return rc;
773 }
774 
775 /**
776  * buffer_migrate_folio() - Migration function for folios with buffers.
777  * @mapping: The address space containing @src.
778  * @dst: The folio to migrate to.
779  * @src: The folio to migrate from.
780  * @mode: How to migrate the folio.
781  *
782  * This function can only be used if the underlying filesystem guarantees
783  * that no other references to @src exist. For example attached buffer
784  * heads are accessed only under the folio lock.  If your filesystem cannot
785  * provide this guarantee, buffer_migrate_folio_norefs() may be more
786  * appropriate.
787  *
788  * Return: 0 on success or a negative errno on failure.
789  */
790 int buffer_migrate_folio(struct address_space *mapping,
791 		struct folio *dst, struct folio *src, enum migrate_mode mode)
792 {
793 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
794 }
795 EXPORT_SYMBOL(buffer_migrate_folio);
796 
797 /**
798  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
799  * @mapping: The address space containing @src.
800  * @dst: The folio to migrate to.
801  * @src: The folio to migrate from.
802  * @mode: How to migrate the folio.
803  *
804  * Like buffer_migrate_folio() except that this variant is more careful
805  * and checks that there are also no buffer head references. This function
806  * is the right one for mappings where buffer heads are directly looked
807  * up and referenced (such as block device mappings).
808  *
809  * Return: 0 on success or a negative errno on failure.
810  */
811 int buffer_migrate_folio_norefs(struct address_space *mapping,
812 		struct folio *dst, struct folio *src, enum migrate_mode mode)
813 {
814 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
815 }
816 #endif
817 
818 int filemap_migrate_folio(struct address_space *mapping,
819 		struct folio *dst, struct folio *src, enum migrate_mode mode)
820 {
821 	int ret;
822 
823 	ret = folio_migrate_mapping(mapping, dst, src, 0);
824 	if (ret != MIGRATEPAGE_SUCCESS)
825 		return ret;
826 
827 	if (folio_get_private(src))
828 		folio_attach_private(dst, folio_detach_private(src));
829 
830 	if (mode != MIGRATE_SYNC_NO_COPY)
831 		folio_migrate_copy(dst, src);
832 	else
833 		folio_migrate_flags(dst, src);
834 	return MIGRATEPAGE_SUCCESS;
835 }
836 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
837 
838 /*
839  * Writeback a folio to clean the dirty state
840  */
841 static int writeout(struct address_space *mapping, struct folio *folio)
842 {
843 	struct writeback_control wbc = {
844 		.sync_mode = WB_SYNC_NONE,
845 		.nr_to_write = 1,
846 		.range_start = 0,
847 		.range_end = LLONG_MAX,
848 		.for_reclaim = 1
849 	};
850 	int rc;
851 
852 	if (!mapping->a_ops->writepage)
853 		/* No write method for the address space */
854 		return -EINVAL;
855 
856 	if (!folio_clear_dirty_for_io(folio))
857 		/* Someone else already triggered a write */
858 		return -EAGAIN;
859 
860 	/*
861 	 * A dirty folio may imply that the underlying filesystem has
862 	 * the folio on some queue. So the folio must be clean for
863 	 * migration. Writeout may mean we lose the lock and the
864 	 * folio state is no longer what we checked for earlier.
865 	 * At this point we know that the migration attempt cannot
866 	 * be successful.
867 	 */
868 	remove_migration_ptes(folio, folio, false);
869 
870 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
871 
872 	if (rc != AOP_WRITEPAGE_ACTIVATE)
873 		/* unlocked. Relock */
874 		folio_lock(folio);
875 
876 	return (rc < 0) ? -EIO : -EAGAIN;
877 }
878 
879 /*
880  * Default handling if a filesystem does not provide a migration function.
881  */
882 static int fallback_migrate_folio(struct address_space *mapping,
883 		struct folio *dst, struct folio *src, enum migrate_mode mode)
884 {
885 	if (folio_test_dirty(src)) {
886 		/* Only writeback folios in full synchronous migration */
887 		switch (mode) {
888 		case MIGRATE_SYNC:
889 		case MIGRATE_SYNC_NO_COPY:
890 			break;
891 		default:
892 			return -EBUSY;
893 		}
894 		return writeout(mapping, src);
895 	}
896 
897 	/*
898 	 * Buffers may be managed in a filesystem specific way.
899 	 * We must have no buffers or drop them.
900 	 */
901 	if (folio_test_private(src) &&
902 	    !filemap_release_folio(src, GFP_KERNEL))
903 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
904 
905 	return migrate_folio(mapping, dst, src, mode);
906 }
907 
908 /*
909  * Move a page to a newly allocated page
910  * The page is locked and all ptes have been successfully removed.
911  *
912  * The new page will have replaced the old page if this function
913  * is successful.
914  *
915  * Return value:
916  *   < 0 - error code
917  *  MIGRATEPAGE_SUCCESS - success
918  */
919 static int move_to_new_folio(struct folio *dst, struct folio *src,
920 				enum migrate_mode mode)
921 {
922 	int rc = -EAGAIN;
923 	bool is_lru = !__PageMovable(&src->page);
924 
925 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
926 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
927 
928 	if (likely(is_lru)) {
929 		struct address_space *mapping = folio_mapping(src);
930 
931 		if (!mapping)
932 			rc = migrate_folio(mapping, dst, src, mode);
933 		else if (mapping->a_ops->migrate_folio)
934 			/*
935 			 * Most folios have a mapping and most filesystems
936 			 * provide a migrate_folio callback. Anonymous folios
937 			 * are part of swap space which also has its own
938 			 * migrate_folio callback. This is the most common path
939 			 * for page migration.
940 			 */
941 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
942 								mode);
943 		else
944 			rc = fallback_migrate_folio(mapping, dst, src, mode);
945 	} else {
946 		const struct movable_operations *mops;
947 
948 		/*
949 		 * In case of non-lru page, it could be released after
950 		 * isolation step. In that case, we shouldn't try migration.
951 		 */
952 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
953 		if (!folio_test_movable(src)) {
954 			rc = MIGRATEPAGE_SUCCESS;
955 			folio_clear_isolated(src);
956 			goto out;
957 		}
958 
959 		mops = page_movable_ops(&src->page);
960 		rc = mops->migrate_page(&dst->page, &src->page, mode);
961 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
962 				!folio_test_isolated(src));
963 	}
964 
965 	/*
966 	 * When successful, old pagecache src->mapping must be cleared before
967 	 * src is freed; but stats require that PageAnon be left as PageAnon.
968 	 */
969 	if (rc == MIGRATEPAGE_SUCCESS) {
970 		if (__PageMovable(&src->page)) {
971 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
972 
973 			/*
974 			 * We clear PG_movable under page_lock so any compactor
975 			 * cannot try to migrate this page.
976 			 */
977 			folio_clear_isolated(src);
978 		}
979 
980 		/*
981 		 * Anonymous and movable src->mapping will be cleared by
982 		 * free_pages_prepare so don't reset it here for keeping
983 		 * the type to work PageAnon, for example.
984 		 */
985 		if (!folio_mapping_flags(src))
986 			src->mapping = NULL;
987 
988 		if (likely(!folio_is_zone_device(dst)))
989 			flush_dcache_folio(dst);
990 	}
991 out:
992 	return rc;
993 }
994 
995 static int __unmap_and_move(struct page *page, struct page *newpage,
996 				int force, enum migrate_mode mode)
997 {
998 	struct folio *folio = page_folio(page);
999 	struct folio *dst = page_folio(newpage);
1000 	int rc = -EAGAIN;
1001 	bool page_was_mapped = false;
1002 	struct anon_vma *anon_vma = NULL;
1003 	bool is_lru = !__PageMovable(page);
1004 
1005 	if (!trylock_page(page)) {
1006 		if (!force || mode == MIGRATE_ASYNC)
1007 			goto out;
1008 
1009 		/*
1010 		 * It's not safe for direct compaction to call lock_page.
1011 		 * For example, during page readahead pages are added locked
1012 		 * to the LRU. Later, when the IO completes the pages are
1013 		 * marked uptodate and unlocked. However, the queueing
1014 		 * could be merging multiple pages for one bio (e.g.
1015 		 * mpage_readahead). If an allocation happens for the
1016 		 * second or third page, the process can end up locking
1017 		 * the same page twice and deadlocking. Rather than
1018 		 * trying to be clever about what pages can be locked,
1019 		 * avoid the use of lock_page for direct compaction
1020 		 * altogether.
1021 		 */
1022 		if (current->flags & PF_MEMALLOC)
1023 			goto out;
1024 
1025 		lock_page(page);
1026 	}
1027 
1028 	if (PageWriteback(page)) {
1029 		/*
1030 		 * Only in the case of a full synchronous migration is it
1031 		 * necessary to wait for PageWriteback. In the async case,
1032 		 * the retry loop is too short and in the sync-light case,
1033 		 * the overhead of stalling is too much
1034 		 */
1035 		switch (mode) {
1036 		case MIGRATE_SYNC:
1037 		case MIGRATE_SYNC_NO_COPY:
1038 			break;
1039 		default:
1040 			rc = -EBUSY;
1041 			goto out_unlock;
1042 		}
1043 		if (!force)
1044 			goto out_unlock;
1045 		wait_on_page_writeback(page);
1046 	}
1047 
1048 	/*
1049 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1050 	 * we cannot notice that anon_vma is freed while we migrates a page.
1051 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1052 	 * of migration. File cache pages are no problem because of page_lock()
1053 	 * File Caches may use write_page() or lock_page() in migration, then,
1054 	 * just care Anon page here.
1055 	 *
1056 	 * Only page_get_anon_vma() understands the subtleties of
1057 	 * getting a hold on an anon_vma from outside one of its mms.
1058 	 * But if we cannot get anon_vma, then we won't need it anyway,
1059 	 * because that implies that the anon page is no longer mapped
1060 	 * (and cannot be remapped so long as we hold the page lock).
1061 	 */
1062 	if (PageAnon(page) && !PageKsm(page))
1063 		anon_vma = page_get_anon_vma(page);
1064 
1065 	/*
1066 	 * Block others from accessing the new page when we get around to
1067 	 * establishing additional references. We are usually the only one
1068 	 * holding a reference to newpage at this point. We used to have a BUG
1069 	 * here if trylock_page(newpage) fails, but would like to allow for
1070 	 * cases where there might be a race with the previous use of newpage.
1071 	 * This is much like races on refcount of oldpage: just don't BUG().
1072 	 */
1073 	if (unlikely(!trylock_page(newpage)))
1074 		goto out_unlock;
1075 
1076 	if (unlikely(!is_lru)) {
1077 		rc = move_to_new_folio(dst, folio, mode);
1078 		goto out_unlock_both;
1079 	}
1080 
1081 	/*
1082 	 * Corner case handling:
1083 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1084 	 * and treated as swapcache but it has no rmap yet.
1085 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1086 	 * trigger a BUG.  So handle it here.
1087 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1088 	 * fs-private metadata. The page can be picked up due to memory
1089 	 * offlining.  Everywhere else except page reclaim, the page is
1090 	 * invisible to the vm, so the page can not be migrated.  So try to
1091 	 * free the metadata, so the page can be freed.
1092 	 */
1093 	if (!page->mapping) {
1094 		VM_BUG_ON_PAGE(PageAnon(page), page);
1095 		if (page_has_private(page)) {
1096 			try_to_free_buffers(folio);
1097 			goto out_unlock_both;
1098 		}
1099 	} else if (page_mapped(page)) {
1100 		/* Establish migration ptes */
1101 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1102 				page);
1103 		try_to_migrate(folio, 0);
1104 		page_was_mapped = true;
1105 	}
1106 
1107 	if (!page_mapped(page))
1108 		rc = move_to_new_folio(dst, folio, mode);
1109 
1110 	/*
1111 	 * When successful, push newpage to LRU immediately: so that if it
1112 	 * turns out to be an mlocked page, remove_migration_ptes() will
1113 	 * automatically build up the correct newpage->mlock_count for it.
1114 	 *
1115 	 * We would like to do something similar for the old page, when
1116 	 * unsuccessful, and other cases when a page has been temporarily
1117 	 * isolated from the unevictable LRU: but this case is the easiest.
1118 	 */
1119 	if (rc == MIGRATEPAGE_SUCCESS) {
1120 		lru_cache_add(newpage);
1121 		if (page_was_mapped)
1122 			lru_add_drain();
1123 	}
1124 
1125 	if (page_was_mapped)
1126 		remove_migration_ptes(folio,
1127 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1128 
1129 out_unlock_both:
1130 	unlock_page(newpage);
1131 out_unlock:
1132 	/* Drop an anon_vma reference if we took one */
1133 	if (anon_vma)
1134 		put_anon_vma(anon_vma);
1135 	unlock_page(page);
1136 out:
1137 	/*
1138 	 * If migration is successful, decrease refcount of the newpage,
1139 	 * which will not free the page because new page owner increased
1140 	 * refcounter.
1141 	 */
1142 	if (rc == MIGRATEPAGE_SUCCESS)
1143 		put_page(newpage);
1144 
1145 	return rc;
1146 }
1147 
1148 /*
1149  * Obtain the lock on page, remove all ptes and migrate the page
1150  * to the newly allocated page in newpage.
1151  */
1152 static int unmap_and_move(new_page_t get_new_page,
1153 				   free_page_t put_new_page,
1154 				   unsigned long private, struct page *page,
1155 				   int force, enum migrate_mode mode,
1156 				   enum migrate_reason reason,
1157 				   struct list_head *ret)
1158 {
1159 	int rc = MIGRATEPAGE_SUCCESS;
1160 	struct page *newpage = NULL;
1161 
1162 	if (!thp_migration_supported() && PageTransHuge(page))
1163 		return -ENOSYS;
1164 
1165 	if (page_count(page) == 1) {
1166 		/* Page was freed from under us. So we are done. */
1167 		ClearPageActive(page);
1168 		ClearPageUnevictable(page);
1169 		/* free_pages_prepare() will clear PG_isolated. */
1170 		goto out;
1171 	}
1172 
1173 	newpage = get_new_page(page, private);
1174 	if (!newpage)
1175 		return -ENOMEM;
1176 
1177 	newpage->private = 0;
1178 	rc = __unmap_and_move(page, newpage, force, mode);
1179 	if (rc == MIGRATEPAGE_SUCCESS)
1180 		set_page_owner_migrate_reason(newpage, reason);
1181 
1182 out:
1183 	if (rc != -EAGAIN) {
1184 		/*
1185 		 * A page that has been migrated has all references
1186 		 * removed and will be freed. A page that has not been
1187 		 * migrated will have kept its references and be restored.
1188 		 */
1189 		list_del(&page->lru);
1190 	}
1191 
1192 	/*
1193 	 * If migration is successful, releases reference grabbed during
1194 	 * isolation. Otherwise, restore the page to right list unless
1195 	 * we want to retry.
1196 	 */
1197 	if (rc == MIGRATEPAGE_SUCCESS) {
1198 		/*
1199 		 * Compaction can migrate also non-LRU pages which are
1200 		 * not accounted to NR_ISOLATED_*. They can be recognized
1201 		 * as __PageMovable
1202 		 */
1203 		if (likely(!__PageMovable(page)))
1204 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1205 					page_is_file_lru(page), -thp_nr_pages(page));
1206 
1207 		if (reason != MR_MEMORY_FAILURE)
1208 			/*
1209 			 * We release the page in page_handle_poison.
1210 			 */
1211 			put_page(page);
1212 	} else {
1213 		if (rc != -EAGAIN)
1214 			list_add_tail(&page->lru, ret);
1215 
1216 		if (put_new_page)
1217 			put_new_page(newpage, private);
1218 		else
1219 			put_page(newpage);
1220 	}
1221 
1222 	return rc;
1223 }
1224 
1225 /*
1226  * Counterpart of unmap_and_move_page() for hugepage migration.
1227  *
1228  * This function doesn't wait the completion of hugepage I/O
1229  * because there is no race between I/O and migration for hugepage.
1230  * Note that currently hugepage I/O occurs only in direct I/O
1231  * where no lock is held and PG_writeback is irrelevant,
1232  * and writeback status of all subpages are counted in the reference
1233  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1234  * under direct I/O, the reference of the head page is 512 and a bit more.)
1235  * This means that when we try to migrate hugepage whose subpages are
1236  * doing direct I/O, some references remain after try_to_unmap() and
1237  * hugepage migration fails without data corruption.
1238  *
1239  * There is also no race when direct I/O is issued on the page under migration,
1240  * because then pte is replaced with migration swap entry and direct I/O code
1241  * will wait in the page fault for migration to complete.
1242  */
1243 static int unmap_and_move_huge_page(new_page_t get_new_page,
1244 				free_page_t put_new_page, unsigned long private,
1245 				struct page *hpage, int force,
1246 				enum migrate_mode mode, int reason,
1247 				struct list_head *ret)
1248 {
1249 	struct folio *dst, *src = page_folio(hpage);
1250 	int rc = -EAGAIN;
1251 	int page_was_mapped = 0;
1252 	struct page *new_hpage;
1253 	struct anon_vma *anon_vma = NULL;
1254 	struct address_space *mapping = NULL;
1255 
1256 	/*
1257 	 * Migratability of hugepages depends on architectures and their size.
1258 	 * This check is necessary because some callers of hugepage migration
1259 	 * like soft offline and memory hotremove don't walk through page
1260 	 * tables or check whether the hugepage is pmd-based or not before
1261 	 * kicking migration.
1262 	 */
1263 	if (!hugepage_migration_supported(page_hstate(hpage)))
1264 		return -ENOSYS;
1265 
1266 	if (page_count(hpage) == 1) {
1267 		/* page was freed from under us. So we are done. */
1268 		putback_active_hugepage(hpage);
1269 		return MIGRATEPAGE_SUCCESS;
1270 	}
1271 
1272 	new_hpage = get_new_page(hpage, private);
1273 	if (!new_hpage)
1274 		return -ENOMEM;
1275 	dst = page_folio(new_hpage);
1276 
1277 	if (!trylock_page(hpage)) {
1278 		if (!force)
1279 			goto out;
1280 		switch (mode) {
1281 		case MIGRATE_SYNC:
1282 		case MIGRATE_SYNC_NO_COPY:
1283 			break;
1284 		default:
1285 			goto out;
1286 		}
1287 		lock_page(hpage);
1288 	}
1289 
1290 	/*
1291 	 * Check for pages which are in the process of being freed.  Without
1292 	 * page_mapping() set, hugetlbfs specific move page routine will not
1293 	 * be called and we could leak usage counts for subpools.
1294 	 */
1295 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1296 		rc = -EBUSY;
1297 		goto out_unlock;
1298 	}
1299 
1300 	if (PageAnon(hpage))
1301 		anon_vma = page_get_anon_vma(hpage);
1302 
1303 	if (unlikely(!trylock_page(new_hpage)))
1304 		goto put_anon;
1305 
1306 	if (page_mapped(hpage)) {
1307 		enum ttu_flags ttu = 0;
1308 
1309 		if (!PageAnon(hpage)) {
1310 			/*
1311 			 * In shared mappings, try_to_unmap could potentially
1312 			 * call huge_pmd_unshare.  Because of this, take
1313 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1314 			 * to let lower levels know we have taken the lock.
1315 			 */
1316 			mapping = hugetlb_page_mapping_lock_write(hpage);
1317 			if (unlikely(!mapping))
1318 				goto unlock_put_anon;
1319 
1320 			ttu = TTU_RMAP_LOCKED;
1321 		}
1322 
1323 		try_to_migrate(src, ttu);
1324 		page_was_mapped = 1;
1325 
1326 		if (ttu & TTU_RMAP_LOCKED)
1327 			i_mmap_unlock_write(mapping);
1328 	}
1329 
1330 	if (!page_mapped(hpage))
1331 		rc = move_to_new_folio(dst, src, mode);
1332 
1333 	if (page_was_mapped)
1334 		remove_migration_ptes(src,
1335 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1336 
1337 unlock_put_anon:
1338 	unlock_page(new_hpage);
1339 
1340 put_anon:
1341 	if (anon_vma)
1342 		put_anon_vma(anon_vma);
1343 
1344 	if (rc == MIGRATEPAGE_SUCCESS) {
1345 		move_hugetlb_state(hpage, new_hpage, reason);
1346 		put_new_page = NULL;
1347 	}
1348 
1349 out_unlock:
1350 	unlock_page(hpage);
1351 out:
1352 	if (rc == MIGRATEPAGE_SUCCESS)
1353 		putback_active_hugepage(hpage);
1354 	else if (rc != -EAGAIN)
1355 		list_move_tail(&hpage->lru, ret);
1356 
1357 	/*
1358 	 * If migration was not successful and there's a freeing callback, use
1359 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1360 	 * isolation.
1361 	 */
1362 	if (put_new_page)
1363 		put_new_page(new_hpage, private);
1364 	else
1365 		putback_active_hugepage(new_hpage);
1366 
1367 	return rc;
1368 }
1369 
1370 static inline int try_split_thp(struct page *page, struct list_head *split_pages)
1371 {
1372 	int rc;
1373 
1374 	lock_page(page);
1375 	rc = split_huge_page_to_list(page, split_pages);
1376 	unlock_page(page);
1377 	if (!rc)
1378 		list_move_tail(&page->lru, split_pages);
1379 
1380 	return rc;
1381 }
1382 
1383 /*
1384  * migrate_pages - migrate the pages specified in a list, to the free pages
1385  *		   supplied as the target for the page migration
1386  *
1387  * @from:		The list of pages to be migrated.
1388  * @get_new_page:	The function used to allocate free pages to be used
1389  *			as the target of the page migration.
1390  * @put_new_page:	The function used to free target pages if migration
1391  *			fails, or NULL if no special handling is necessary.
1392  * @private:		Private data to be passed on to get_new_page()
1393  * @mode:		The migration mode that specifies the constraints for
1394  *			page migration, if any.
1395  * @reason:		The reason for page migration.
1396  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1397  *			the caller passes a non-NULL pointer.
1398  *
1399  * The function returns after 10 attempts or if no pages are movable any more
1400  * because the list has become empty or no retryable pages exist any more.
1401  * It is caller's responsibility to call putback_movable_pages() to return pages
1402  * to the LRU or free list only if ret != 0.
1403  *
1404  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1405  * an error code. The number of THP splits will be considered as the number of
1406  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1407  */
1408 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1409 		free_page_t put_new_page, unsigned long private,
1410 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1411 {
1412 	int retry = 1;
1413 	int thp_retry = 1;
1414 	int nr_failed = 0;
1415 	int nr_failed_pages = 0;
1416 	int nr_retry_pages = 0;
1417 	int nr_succeeded = 0;
1418 	int nr_thp_succeeded = 0;
1419 	int nr_thp_failed = 0;
1420 	int nr_thp_split = 0;
1421 	int pass = 0;
1422 	bool is_thp = false;
1423 	struct page *page;
1424 	struct page *page2;
1425 	int rc, nr_subpages;
1426 	LIST_HEAD(ret_pages);
1427 	LIST_HEAD(thp_split_pages);
1428 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1429 	bool no_subpage_counting = false;
1430 
1431 	trace_mm_migrate_pages_start(mode, reason);
1432 
1433 thp_subpage_migration:
1434 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1435 		retry = 0;
1436 		thp_retry = 0;
1437 		nr_retry_pages = 0;
1438 
1439 		list_for_each_entry_safe(page, page2, from, lru) {
1440 			/*
1441 			 * THP statistics is based on the source huge page.
1442 			 * Capture required information that might get lost
1443 			 * during migration.
1444 			 */
1445 			is_thp = PageTransHuge(page) && !PageHuge(page);
1446 			nr_subpages = compound_nr(page);
1447 			cond_resched();
1448 
1449 			if (PageHuge(page))
1450 				rc = unmap_and_move_huge_page(get_new_page,
1451 						put_new_page, private, page,
1452 						pass > 2, mode, reason,
1453 						&ret_pages);
1454 			else
1455 				rc = unmap_and_move(get_new_page, put_new_page,
1456 						private, page, pass > 2, mode,
1457 						reason, &ret_pages);
1458 			/*
1459 			 * The rules are:
1460 			 *	Success: non hugetlb page will be freed, hugetlb
1461 			 *		 page will be put back
1462 			 *	-EAGAIN: stay on the from list
1463 			 *	-ENOMEM: stay on the from list
1464 			 *	-ENOSYS: stay on the from list
1465 			 *	Other errno: put on ret_pages list then splice to
1466 			 *		     from list
1467 			 */
1468 			switch(rc) {
1469 			/*
1470 			 * THP migration might be unsupported or the
1471 			 * allocation could've failed so we should
1472 			 * retry on the same page with the THP split
1473 			 * to base pages.
1474 			 *
1475 			 * Sub-pages are put in thp_split_pages, and
1476 			 * we will migrate them after the rest of the
1477 			 * list is processed.
1478 			 */
1479 			case -ENOSYS:
1480 				/* THP migration is unsupported */
1481 				if (is_thp) {
1482 					nr_thp_failed++;
1483 					if (!try_split_thp(page, &thp_split_pages)) {
1484 						nr_thp_split++;
1485 						break;
1486 					}
1487 				/* Hugetlb migration is unsupported */
1488 				} else if (!no_subpage_counting) {
1489 					nr_failed++;
1490 				}
1491 
1492 				nr_failed_pages += nr_subpages;
1493 				list_move_tail(&page->lru, &ret_pages);
1494 				break;
1495 			case -ENOMEM:
1496 				/*
1497 				 * When memory is low, don't bother to try to migrate
1498 				 * other pages, just exit.
1499 				 */
1500 				if (is_thp) {
1501 					nr_thp_failed++;
1502 					/* THP NUMA faulting doesn't split THP to retry. */
1503 					if (!nosplit && !try_split_thp(page, &thp_split_pages)) {
1504 						nr_thp_split++;
1505 						break;
1506 					}
1507 				} else if (!no_subpage_counting) {
1508 					nr_failed++;
1509 				}
1510 
1511 				nr_failed_pages += nr_subpages + nr_retry_pages;
1512 				/*
1513 				 * There might be some subpages of fail-to-migrate THPs
1514 				 * left in thp_split_pages list. Move them back to migration
1515 				 * list so that they could be put back to the right list by
1516 				 * the caller otherwise the page refcnt will be leaked.
1517 				 */
1518 				list_splice_init(&thp_split_pages, from);
1519 				/* nr_failed isn't updated for not used */
1520 				nr_thp_failed += thp_retry;
1521 				goto out;
1522 			case -EAGAIN:
1523 				if (is_thp)
1524 					thp_retry++;
1525 				else if (!no_subpage_counting)
1526 					retry++;
1527 				nr_retry_pages += nr_subpages;
1528 				break;
1529 			case MIGRATEPAGE_SUCCESS:
1530 				nr_succeeded += nr_subpages;
1531 				if (is_thp)
1532 					nr_thp_succeeded++;
1533 				break;
1534 			default:
1535 				/*
1536 				 * Permanent failure (-EBUSY, etc.):
1537 				 * unlike -EAGAIN case, the failed page is
1538 				 * removed from migration page list and not
1539 				 * retried in the next outer loop.
1540 				 */
1541 				if (is_thp)
1542 					nr_thp_failed++;
1543 				else if (!no_subpage_counting)
1544 					nr_failed++;
1545 
1546 				nr_failed_pages += nr_subpages;
1547 				break;
1548 			}
1549 		}
1550 	}
1551 	nr_failed += retry;
1552 	nr_thp_failed += thp_retry;
1553 	nr_failed_pages += nr_retry_pages;
1554 	/*
1555 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1556 	 * counting in this round, since all subpages of a THP is counted
1557 	 * as 1 failure in the first round.
1558 	 */
1559 	if (!list_empty(&thp_split_pages)) {
1560 		/*
1561 		 * Move non-migrated pages (after 10 retries) to ret_pages
1562 		 * to avoid migrating them again.
1563 		 */
1564 		list_splice_init(from, &ret_pages);
1565 		list_splice_init(&thp_split_pages, from);
1566 		no_subpage_counting = true;
1567 		retry = 1;
1568 		goto thp_subpage_migration;
1569 	}
1570 
1571 	rc = nr_failed + nr_thp_failed;
1572 out:
1573 	/*
1574 	 * Put the permanent failure page back to migration list, they
1575 	 * will be put back to the right list by the caller.
1576 	 */
1577 	list_splice(&ret_pages, from);
1578 
1579 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1580 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1581 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1582 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1583 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1584 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1585 			       nr_thp_failed, nr_thp_split, mode, reason);
1586 
1587 	if (ret_succeeded)
1588 		*ret_succeeded = nr_succeeded;
1589 
1590 	return rc;
1591 }
1592 
1593 struct page *alloc_migration_target(struct page *page, unsigned long private)
1594 {
1595 	struct folio *folio = page_folio(page);
1596 	struct migration_target_control *mtc;
1597 	gfp_t gfp_mask;
1598 	unsigned int order = 0;
1599 	struct folio *new_folio = NULL;
1600 	int nid;
1601 	int zidx;
1602 
1603 	mtc = (struct migration_target_control *)private;
1604 	gfp_mask = mtc->gfp_mask;
1605 	nid = mtc->nid;
1606 	if (nid == NUMA_NO_NODE)
1607 		nid = folio_nid(folio);
1608 
1609 	if (folio_test_hugetlb(folio)) {
1610 		struct hstate *h = page_hstate(&folio->page);
1611 
1612 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1613 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1614 	}
1615 
1616 	if (folio_test_large(folio)) {
1617 		/*
1618 		 * clear __GFP_RECLAIM to make the migration callback
1619 		 * consistent with regular THP allocations.
1620 		 */
1621 		gfp_mask &= ~__GFP_RECLAIM;
1622 		gfp_mask |= GFP_TRANSHUGE;
1623 		order = folio_order(folio);
1624 	}
1625 	zidx = zone_idx(folio_zone(folio));
1626 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1627 		gfp_mask |= __GFP_HIGHMEM;
1628 
1629 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1630 
1631 	return &new_folio->page;
1632 }
1633 
1634 #ifdef CONFIG_NUMA
1635 
1636 static int store_status(int __user *status, int start, int value, int nr)
1637 {
1638 	while (nr-- > 0) {
1639 		if (put_user(value, status + start))
1640 			return -EFAULT;
1641 		start++;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static int do_move_pages_to_node(struct mm_struct *mm,
1648 		struct list_head *pagelist, int node)
1649 {
1650 	int err;
1651 	struct migration_target_control mtc = {
1652 		.nid = node,
1653 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1654 	};
1655 
1656 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1657 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1658 	if (err)
1659 		putback_movable_pages(pagelist);
1660 	return err;
1661 }
1662 
1663 /*
1664  * Resolves the given address to a struct page, isolates it from the LRU and
1665  * puts it to the given pagelist.
1666  * Returns:
1667  *     errno - if the page cannot be found/isolated
1668  *     0 - when it doesn't have to be migrated because it is already on the
1669  *         target node
1670  *     1 - when it has been queued
1671  */
1672 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1673 		int node, struct list_head *pagelist, bool migrate_all)
1674 {
1675 	struct vm_area_struct *vma;
1676 	struct page *page;
1677 	int err;
1678 
1679 	mmap_read_lock(mm);
1680 	err = -EFAULT;
1681 	vma = vma_lookup(mm, addr);
1682 	if (!vma || !vma_migratable(vma))
1683 		goto out;
1684 
1685 	/* FOLL_DUMP to ignore special (like zero) pages */
1686 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1687 
1688 	err = PTR_ERR(page);
1689 	if (IS_ERR(page))
1690 		goto out;
1691 
1692 	err = -ENOENT;
1693 	if (!page || is_zone_device_page(page))
1694 		goto out;
1695 
1696 	err = 0;
1697 	if (page_to_nid(page) == node)
1698 		goto out_putpage;
1699 
1700 	err = -EACCES;
1701 	if (page_mapcount(page) > 1 && !migrate_all)
1702 		goto out_putpage;
1703 
1704 	if (PageHuge(page)) {
1705 		if (PageHead(page)) {
1706 			err = isolate_hugetlb(page, pagelist);
1707 			if (!err)
1708 				err = 1;
1709 		}
1710 	} else {
1711 		struct page *head;
1712 
1713 		head = compound_head(page);
1714 		err = isolate_lru_page(head);
1715 		if (err)
1716 			goto out_putpage;
1717 
1718 		err = 1;
1719 		list_add_tail(&head->lru, pagelist);
1720 		mod_node_page_state(page_pgdat(head),
1721 			NR_ISOLATED_ANON + page_is_file_lru(head),
1722 			thp_nr_pages(head));
1723 	}
1724 out_putpage:
1725 	/*
1726 	 * Either remove the duplicate refcount from
1727 	 * isolate_lru_page() or drop the page ref if it was
1728 	 * not isolated.
1729 	 */
1730 	put_page(page);
1731 out:
1732 	mmap_read_unlock(mm);
1733 	return err;
1734 }
1735 
1736 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1737 		struct list_head *pagelist, int __user *status,
1738 		int start, int i, unsigned long nr_pages)
1739 {
1740 	int err;
1741 
1742 	if (list_empty(pagelist))
1743 		return 0;
1744 
1745 	err = do_move_pages_to_node(mm, pagelist, node);
1746 	if (err) {
1747 		/*
1748 		 * Positive err means the number of failed
1749 		 * pages to migrate.  Since we are going to
1750 		 * abort and return the number of non-migrated
1751 		 * pages, so need to include the rest of the
1752 		 * nr_pages that have not been attempted as
1753 		 * well.
1754 		 */
1755 		if (err > 0)
1756 			err += nr_pages - i;
1757 		return err;
1758 	}
1759 	return store_status(status, start, node, i - start);
1760 }
1761 
1762 /*
1763  * Migrate an array of page address onto an array of nodes and fill
1764  * the corresponding array of status.
1765  */
1766 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1767 			 unsigned long nr_pages,
1768 			 const void __user * __user *pages,
1769 			 const int __user *nodes,
1770 			 int __user *status, int flags)
1771 {
1772 	int current_node = NUMA_NO_NODE;
1773 	LIST_HEAD(pagelist);
1774 	int start, i;
1775 	int err = 0, err1;
1776 
1777 	lru_cache_disable();
1778 
1779 	for (i = start = 0; i < nr_pages; i++) {
1780 		const void __user *p;
1781 		unsigned long addr;
1782 		int node;
1783 
1784 		err = -EFAULT;
1785 		if (get_user(p, pages + i))
1786 			goto out_flush;
1787 		if (get_user(node, nodes + i))
1788 			goto out_flush;
1789 		addr = (unsigned long)untagged_addr(p);
1790 
1791 		err = -ENODEV;
1792 		if (node < 0 || node >= MAX_NUMNODES)
1793 			goto out_flush;
1794 		if (!node_state(node, N_MEMORY))
1795 			goto out_flush;
1796 
1797 		err = -EACCES;
1798 		if (!node_isset(node, task_nodes))
1799 			goto out_flush;
1800 
1801 		if (current_node == NUMA_NO_NODE) {
1802 			current_node = node;
1803 			start = i;
1804 		} else if (node != current_node) {
1805 			err = move_pages_and_store_status(mm, current_node,
1806 					&pagelist, status, start, i, nr_pages);
1807 			if (err)
1808 				goto out;
1809 			start = i;
1810 			current_node = node;
1811 		}
1812 
1813 		/*
1814 		 * Errors in the page lookup or isolation are not fatal and we simply
1815 		 * report them via status
1816 		 */
1817 		err = add_page_for_migration(mm, addr, current_node,
1818 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1819 
1820 		if (err > 0) {
1821 			/* The page is successfully queued for migration */
1822 			continue;
1823 		}
1824 
1825 		/*
1826 		 * The move_pages() man page does not have an -EEXIST choice, so
1827 		 * use -EFAULT instead.
1828 		 */
1829 		if (err == -EEXIST)
1830 			err = -EFAULT;
1831 
1832 		/*
1833 		 * If the page is already on the target node (!err), store the
1834 		 * node, otherwise, store the err.
1835 		 */
1836 		err = store_status(status, i, err ? : current_node, 1);
1837 		if (err)
1838 			goto out_flush;
1839 
1840 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1841 				status, start, i, nr_pages);
1842 		if (err) {
1843 			/* We have accounted for page i */
1844 			if (err > 0)
1845 				err--;
1846 			goto out;
1847 		}
1848 		current_node = NUMA_NO_NODE;
1849 	}
1850 out_flush:
1851 	/* Make sure we do not overwrite the existing error */
1852 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1853 				status, start, i, nr_pages);
1854 	if (err >= 0)
1855 		err = err1;
1856 out:
1857 	lru_cache_enable();
1858 	return err;
1859 }
1860 
1861 /*
1862  * Determine the nodes of an array of pages and store it in an array of status.
1863  */
1864 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1865 				const void __user **pages, int *status)
1866 {
1867 	unsigned long i;
1868 
1869 	mmap_read_lock(mm);
1870 
1871 	for (i = 0; i < nr_pages; i++) {
1872 		unsigned long addr = (unsigned long)(*pages);
1873 		unsigned int foll_flags = FOLL_DUMP;
1874 		struct vm_area_struct *vma;
1875 		struct page *page;
1876 		int err = -EFAULT;
1877 
1878 		vma = vma_lookup(mm, addr);
1879 		if (!vma)
1880 			goto set_status;
1881 
1882 		/* Not all huge page follow APIs support 'FOLL_GET' */
1883 		if (!is_vm_hugetlb_page(vma))
1884 			foll_flags |= FOLL_GET;
1885 
1886 		/* FOLL_DUMP to ignore special (like zero) pages */
1887 		page = follow_page(vma, addr, foll_flags);
1888 
1889 		err = PTR_ERR(page);
1890 		if (IS_ERR(page))
1891 			goto set_status;
1892 
1893 		if (page && !is_zone_device_page(page)) {
1894 			err = page_to_nid(page);
1895 			if (foll_flags & FOLL_GET)
1896 				put_page(page);
1897 		} else {
1898 			err = -ENOENT;
1899 		}
1900 set_status:
1901 		*status = err;
1902 
1903 		pages++;
1904 		status++;
1905 	}
1906 
1907 	mmap_read_unlock(mm);
1908 }
1909 
1910 static int get_compat_pages_array(const void __user *chunk_pages[],
1911 				  const void __user * __user *pages,
1912 				  unsigned long chunk_nr)
1913 {
1914 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1915 	compat_uptr_t p;
1916 	int i;
1917 
1918 	for (i = 0; i < chunk_nr; i++) {
1919 		if (get_user(p, pages32 + i))
1920 			return -EFAULT;
1921 		chunk_pages[i] = compat_ptr(p);
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 /*
1928  * Determine the nodes of a user array of pages and store it in
1929  * a user array of status.
1930  */
1931 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1932 			 const void __user * __user *pages,
1933 			 int __user *status)
1934 {
1935 #define DO_PAGES_STAT_CHUNK_NR 16UL
1936 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1937 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1938 
1939 	while (nr_pages) {
1940 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1941 
1942 		if (in_compat_syscall()) {
1943 			if (get_compat_pages_array(chunk_pages, pages,
1944 						   chunk_nr))
1945 				break;
1946 		} else {
1947 			if (copy_from_user(chunk_pages, pages,
1948 				      chunk_nr * sizeof(*chunk_pages)))
1949 				break;
1950 		}
1951 
1952 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1953 
1954 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1955 			break;
1956 
1957 		pages += chunk_nr;
1958 		status += chunk_nr;
1959 		nr_pages -= chunk_nr;
1960 	}
1961 	return nr_pages ? -EFAULT : 0;
1962 }
1963 
1964 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1965 {
1966 	struct task_struct *task;
1967 	struct mm_struct *mm;
1968 
1969 	/*
1970 	 * There is no need to check if current process has the right to modify
1971 	 * the specified process when they are same.
1972 	 */
1973 	if (!pid) {
1974 		mmget(current->mm);
1975 		*mem_nodes = cpuset_mems_allowed(current);
1976 		return current->mm;
1977 	}
1978 
1979 	/* Find the mm_struct */
1980 	rcu_read_lock();
1981 	task = find_task_by_vpid(pid);
1982 	if (!task) {
1983 		rcu_read_unlock();
1984 		return ERR_PTR(-ESRCH);
1985 	}
1986 	get_task_struct(task);
1987 
1988 	/*
1989 	 * Check if this process has the right to modify the specified
1990 	 * process. Use the regular "ptrace_may_access()" checks.
1991 	 */
1992 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1993 		rcu_read_unlock();
1994 		mm = ERR_PTR(-EPERM);
1995 		goto out;
1996 	}
1997 	rcu_read_unlock();
1998 
1999 	mm = ERR_PTR(security_task_movememory(task));
2000 	if (IS_ERR(mm))
2001 		goto out;
2002 	*mem_nodes = cpuset_mems_allowed(task);
2003 	mm = get_task_mm(task);
2004 out:
2005 	put_task_struct(task);
2006 	if (!mm)
2007 		mm = ERR_PTR(-EINVAL);
2008 	return mm;
2009 }
2010 
2011 /*
2012  * Move a list of pages in the address space of the currently executing
2013  * process.
2014  */
2015 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2016 			     const void __user * __user *pages,
2017 			     const int __user *nodes,
2018 			     int __user *status, int flags)
2019 {
2020 	struct mm_struct *mm;
2021 	int err;
2022 	nodemask_t task_nodes;
2023 
2024 	/* Check flags */
2025 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2026 		return -EINVAL;
2027 
2028 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2029 		return -EPERM;
2030 
2031 	mm = find_mm_struct(pid, &task_nodes);
2032 	if (IS_ERR(mm))
2033 		return PTR_ERR(mm);
2034 
2035 	if (nodes)
2036 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2037 				    nodes, status, flags);
2038 	else
2039 		err = do_pages_stat(mm, nr_pages, pages, status);
2040 
2041 	mmput(mm);
2042 	return err;
2043 }
2044 
2045 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2046 		const void __user * __user *, pages,
2047 		const int __user *, nodes,
2048 		int __user *, status, int, flags)
2049 {
2050 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2051 }
2052 
2053 #ifdef CONFIG_NUMA_BALANCING
2054 /*
2055  * Returns true if this is a safe migration target node for misplaced NUMA
2056  * pages. Currently it only checks the watermarks which is crude.
2057  */
2058 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2059 				   unsigned long nr_migrate_pages)
2060 {
2061 	int z;
2062 
2063 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2064 		struct zone *zone = pgdat->node_zones + z;
2065 
2066 		if (!managed_zone(zone))
2067 			continue;
2068 
2069 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2070 		if (!zone_watermark_ok(zone, 0,
2071 				       high_wmark_pages(zone) +
2072 				       nr_migrate_pages,
2073 				       ZONE_MOVABLE, 0))
2074 			continue;
2075 		return true;
2076 	}
2077 	return false;
2078 }
2079 
2080 static struct page *alloc_misplaced_dst_page(struct page *page,
2081 					   unsigned long data)
2082 {
2083 	int nid = (int) data;
2084 	int order = compound_order(page);
2085 	gfp_t gfp = __GFP_THISNODE;
2086 	struct folio *new;
2087 
2088 	if (order > 0)
2089 		gfp |= GFP_TRANSHUGE_LIGHT;
2090 	else {
2091 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2092 			__GFP_NOWARN;
2093 		gfp &= ~__GFP_RECLAIM;
2094 	}
2095 	new = __folio_alloc_node(gfp, order, nid);
2096 
2097 	return &new->page;
2098 }
2099 
2100 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2101 {
2102 	int nr_pages = thp_nr_pages(page);
2103 	int order = compound_order(page);
2104 
2105 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2106 
2107 	/* Do not migrate THP mapped by multiple processes */
2108 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2109 		return 0;
2110 
2111 	/* Avoid migrating to a node that is nearly full */
2112 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2113 		int z;
2114 
2115 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2116 			return 0;
2117 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2118 			if (managed_zone(pgdat->node_zones + z))
2119 				break;
2120 		}
2121 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2122 		return 0;
2123 	}
2124 
2125 	if (isolate_lru_page(page))
2126 		return 0;
2127 
2128 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2129 			    nr_pages);
2130 
2131 	/*
2132 	 * Isolating the page has taken another reference, so the
2133 	 * caller's reference can be safely dropped without the page
2134 	 * disappearing underneath us during migration.
2135 	 */
2136 	put_page(page);
2137 	return 1;
2138 }
2139 
2140 /*
2141  * Attempt to migrate a misplaced page to the specified destination
2142  * node. Caller is expected to have an elevated reference count on
2143  * the page that will be dropped by this function before returning.
2144  */
2145 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2146 			   int node)
2147 {
2148 	pg_data_t *pgdat = NODE_DATA(node);
2149 	int isolated;
2150 	int nr_remaining;
2151 	unsigned int nr_succeeded;
2152 	LIST_HEAD(migratepages);
2153 	int nr_pages = thp_nr_pages(page);
2154 
2155 	/*
2156 	 * Don't migrate file pages that are mapped in multiple processes
2157 	 * with execute permissions as they are probably shared libraries.
2158 	 */
2159 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2160 	    (vma->vm_flags & VM_EXEC))
2161 		goto out;
2162 
2163 	/*
2164 	 * Also do not migrate dirty pages as not all filesystems can move
2165 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2166 	 */
2167 	if (page_is_file_lru(page) && PageDirty(page))
2168 		goto out;
2169 
2170 	isolated = numamigrate_isolate_page(pgdat, page);
2171 	if (!isolated)
2172 		goto out;
2173 
2174 	list_add(&page->lru, &migratepages);
2175 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2176 				     NULL, node, MIGRATE_ASYNC,
2177 				     MR_NUMA_MISPLACED, &nr_succeeded);
2178 	if (nr_remaining) {
2179 		if (!list_empty(&migratepages)) {
2180 			list_del(&page->lru);
2181 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2182 					page_is_file_lru(page), -nr_pages);
2183 			putback_lru_page(page);
2184 		}
2185 		isolated = 0;
2186 	}
2187 	if (nr_succeeded) {
2188 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2189 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2190 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2191 					    nr_succeeded);
2192 	}
2193 	BUG_ON(!list_empty(&migratepages));
2194 	return isolated;
2195 
2196 out:
2197 	put_page(page);
2198 	return 0;
2199 }
2200 #endif /* CONFIG_NUMA_BALANCING */
2201 #endif /* CONFIG_NUMA */
2202