1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 const struct movable_operations *mops; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mops = page_movable_ops(page); 101 VM_BUG_ON_PAGE(!mops, page); 102 103 if (!mops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 const struct movable_operations *mops = page_movable_ops(page); 124 125 mops->putback_page(page); 126 ClearPageIsolated(page); 127 } 128 129 /* 130 * Put previously isolated pages back onto the appropriate lists 131 * from where they were once taken off for compaction/migration. 132 * 133 * This function shall be used whenever the isolated pageset has been 134 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 135 * and isolate_hugetlb(). 136 */ 137 void putback_movable_pages(struct list_head *l) 138 { 139 struct page *page; 140 struct page *page2; 141 142 list_for_each_entry_safe(page, page2, l, lru) { 143 if (unlikely(PageHuge(page))) { 144 putback_active_hugepage(page); 145 continue; 146 } 147 list_del(&page->lru); 148 /* 149 * We isolated non-lru movable page so here we can use 150 * __PageMovable because LRU page's mapping cannot have 151 * PAGE_MAPPING_MOVABLE. 152 */ 153 if (unlikely(__PageMovable(page))) { 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 lock_page(page); 156 if (PageMovable(page)) 157 putback_movable_page(page); 158 else 159 ClearPageIsolated(page); 160 unlock_page(page); 161 put_page(page); 162 } else { 163 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 164 page_is_file_lru(page), -thp_nr_pages(page)); 165 putback_lru_page(page); 166 } 167 } 168 } 169 170 /* 171 * Restore a potential migration pte to a working pte entry 172 */ 173 static bool remove_migration_pte(struct folio *folio, 174 struct vm_area_struct *vma, unsigned long addr, void *old) 175 { 176 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 177 178 while (page_vma_mapped_walk(&pvmw)) { 179 rmap_t rmap_flags = RMAP_NONE; 180 pte_t pte; 181 swp_entry_t entry; 182 struct page *new; 183 unsigned long idx = 0; 184 185 /* pgoff is invalid for ksm pages, but they are never large */ 186 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 187 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 188 new = folio_page(folio, idx); 189 190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 191 /* PMD-mapped THP migration entry */ 192 if (!pvmw.pte) { 193 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 194 !folio_test_pmd_mappable(folio), folio); 195 remove_migration_pmd(&pvmw, new); 196 continue; 197 } 198 #endif 199 200 folio_get(folio); 201 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 202 if (pte_swp_soft_dirty(*pvmw.pte)) 203 pte = pte_mksoft_dirty(pte); 204 205 /* 206 * Recheck VMA as permissions can change since migration started 207 */ 208 entry = pte_to_swp_entry(*pvmw.pte); 209 if (!is_migration_entry_young(entry)) 210 pte = pte_mkold(pte); 211 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 212 pte = pte_mkdirty(pte); 213 if (is_writable_migration_entry(entry)) 214 pte = maybe_mkwrite(pte, vma); 215 else if (pte_swp_uffd_wp(*pvmw.pte)) 216 pte = pte_mkuffd_wp(pte); 217 218 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 219 rmap_flags |= RMAP_EXCLUSIVE; 220 221 if (unlikely(is_device_private_page(new))) { 222 if (pte_write(pte)) 223 entry = make_writable_device_private_entry( 224 page_to_pfn(new)); 225 else 226 entry = make_readable_device_private_entry( 227 page_to_pfn(new)); 228 pte = swp_entry_to_pte(entry); 229 if (pte_swp_soft_dirty(*pvmw.pte)) 230 pte = pte_swp_mksoft_dirty(pte); 231 if (pte_swp_uffd_wp(*pvmw.pte)) 232 pte = pte_swp_mkuffd_wp(pte); 233 } 234 235 #ifdef CONFIG_HUGETLB_PAGE 236 if (folio_test_hugetlb(folio)) { 237 unsigned int shift = huge_page_shift(hstate_vma(vma)); 238 239 pte = pte_mkhuge(pte); 240 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 241 if (folio_test_anon(folio)) 242 hugepage_add_anon_rmap(new, vma, pvmw.address, 243 rmap_flags); 244 else 245 page_dup_file_rmap(new, true); 246 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 247 } else 248 #endif 249 { 250 if (folio_test_anon(folio)) 251 page_add_anon_rmap(new, vma, pvmw.address, 252 rmap_flags); 253 else 254 page_add_file_rmap(new, vma, false); 255 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 256 } 257 if (vma->vm_flags & VM_LOCKED) 258 mlock_page_drain_local(); 259 260 trace_remove_migration_pte(pvmw.address, pte_val(pte), 261 compound_order(new)); 262 263 /* No need to invalidate - it was non-present before */ 264 update_mmu_cache(vma, pvmw.address, pvmw.pte); 265 } 266 267 return true; 268 } 269 270 /* 271 * Get rid of all migration entries and replace them by 272 * references to the indicated page. 273 */ 274 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 275 { 276 struct rmap_walk_control rwc = { 277 .rmap_one = remove_migration_pte, 278 .arg = src, 279 }; 280 281 if (locked) 282 rmap_walk_locked(dst, &rwc); 283 else 284 rmap_walk(dst, &rwc); 285 } 286 287 /* 288 * Something used the pte of a page under migration. We need to 289 * get to the page and wait until migration is finished. 290 * When we return from this function the fault will be retried. 291 */ 292 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 293 spinlock_t *ptl) 294 { 295 pte_t pte; 296 swp_entry_t entry; 297 298 spin_lock(ptl); 299 pte = *ptep; 300 if (!is_swap_pte(pte)) 301 goto out; 302 303 entry = pte_to_swp_entry(pte); 304 if (!is_migration_entry(entry)) 305 goto out; 306 307 migration_entry_wait_on_locked(entry, ptep, ptl); 308 return; 309 out: 310 pte_unmap_unlock(ptep, ptl); 311 } 312 313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 314 unsigned long address) 315 { 316 spinlock_t *ptl = pte_lockptr(mm, pmd); 317 pte_t *ptep = pte_offset_map(pmd, address); 318 __migration_entry_wait(mm, ptep, ptl); 319 } 320 321 #ifdef CONFIG_HUGETLB_PAGE 322 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) 323 { 324 pte_t pte; 325 326 spin_lock(ptl); 327 pte = huge_ptep_get(ptep); 328 329 if (unlikely(!is_hugetlb_entry_migration(pte))) 330 spin_unlock(ptl); 331 else 332 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); 333 } 334 335 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) 336 { 337 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); 338 339 __migration_entry_wait_huge(pte, ptl); 340 } 341 #endif 342 343 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 344 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 345 { 346 spinlock_t *ptl; 347 348 ptl = pmd_lock(mm, pmd); 349 if (!is_pmd_migration_entry(*pmd)) 350 goto unlock; 351 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 352 return; 353 unlock: 354 spin_unlock(ptl); 355 } 356 #endif 357 358 static int folio_expected_refs(struct address_space *mapping, 359 struct folio *folio) 360 { 361 int refs = 1; 362 if (!mapping) 363 return refs; 364 365 refs += folio_nr_pages(folio); 366 if (folio_test_private(folio)) 367 refs++; 368 369 return refs; 370 } 371 372 /* 373 * Replace the page in the mapping. 374 * 375 * The number of remaining references must be: 376 * 1 for anonymous pages without a mapping 377 * 2 for pages with a mapping 378 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 379 */ 380 int folio_migrate_mapping(struct address_space *mapping, 381 struct folio *newfolio, struct folio *folio, int extra_count) 382 { 383 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 384 struct zone *oldzone, *newzone; 385 int dirty; 386 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 387 long nr = folio_nr_pages(folio); 388 389 if (!mapping) { 390 /* Anonymous page without mapping */ 391 if (folio_ref_count(folio) != expected_count) 392 return -EAGAIN; 393 394 /* No turning back from here */ 395 newfolio->index = folio->index; 396 newfolio->mapping = folio->mapping; 397 if (folio_test_swapbacked(folio)) 398 __folio_set_swapbacked(newfolio); 399 400 return MIGRATEPAGE_SUCCESS; 401 } 402 403 oldzone = folio_zone(folio); 404 newzone = folio_zone(newfolio); 405 406 xas_lock_irq(&xas); 407 if (!folio_ref_freeze(folio, expected_count)) { 408 xas_unlock_irq(&xas); 409 return -EAGAIN; 410 } 411 412 /* 413 * Now we know that no one else is looking at the folio: 414 * no turning back from here. 415 */ 416 newfolio->index = folio->index; 417 newfolio->mapping = folio->mapping; 418 folio_ref_add(newfolio, nr); /* add cache reference */ 419 if (folio_test_swapbacked(folio)) { 420 __folio_set_swapbacked(newfolio); 421 if (folio_test_swapcache(folio)) { 422 folio_set_swapcache(newfolio); 423 newfolio->private = folio_get_private(folio); 424 } 425 } else { 426 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 427 } 428 429 /* Move dirty while page refs frozen and newpage not yet exposed */ 430 dirty = folio_test_dirty(folio); 431 if (dirty) { 432 folio_clear_dirty(folio); 433 folio_set_dirty(newfolio); 434 } 435 436 xas_store(&xas, newfolio); 437 438 /* 439 * Drop cache reference from old page by unfreezing 440 * to one less reference. 441 * We know this isn't the last reference. 442 */ 443 folio_ref_unfreeze(folio, expected_count - nr); 444 445 xas_unlock(&xas); 446 /* Leave irq disabled to prevent preemption while updating stats */ 447 448 /* 449 * If moved to a different zone then also account 450 * the page for that zone. Other VM counters will be 451 * taken care of when we establish references to the 452 * new page and drop references to the old page. 453 * 454 * Note that anonymous pages are accounted for 455 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 456 * are mapped to swap space. 457 */ 458 if (newzone != oldzone) { 459 struct lruvec *old_lruvec, *new_lruvec; 460 struct mem_cgroup *memcg; 461 462 memcg = folio_memcg(folio); 463 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 464 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 465 466 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 467 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 468 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 469 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 470 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 471 } 472 #ifdef CONFIG_SWAP 473 if (folio_test_swapcache(folio)) { 474 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 475 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 476 } 477 #endif 478 if (dirty && mapping_can_writeback(mapping)) { 479 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 480 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 481 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 482 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 483 } 484 } 485 local_irq_enable(); 486 487 return MIGRATEPAGE_SUCCESS; 488 } 489 EXPORT_SYMBOL(folio_migrate_mapping); 490 491 /* 492 * The expected number of remaining references is the same as that 493 * of folio_migrate_mapping(). 494 */ 495 int migrate_huge_page_move_mapping(struct address_space *mapping, 496 struct folio *dst, struct folio *src) 497 { 498 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 499 int expected_count; 500 501 xas_lock_irq(&xas); 502 expected_count = 2 + folio_has_private(src); 503 if (!folio_ref_freeze(src, expected_count)) { 504 xas_unlock_irq(&xas); 505 return -EAGAIN; 506 } 507 508 dst->index = src->index; 509 dst->mapping = src->mapping; 510 511 folio_get(dst); 512 513 xas_store(&xas, dst); 514 515 folio_ref_unfreeze(src, expected_count - 1); 516 517 xas_unlock_irq(&xas); 518 519 return MIGRATEPAGE_SUCCESS; 520 } 521 522 /* 523 * Copy the flags and some other ancillary information 524 */ 525 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 526 { 527 int cpupid; 528 529 if (folio_test_error(folio)) 530 folio_set_error(newfolio); 531 if (folio_test_referenced(folio)) 532 folio_set_referenced(newfolio); 533 if (folio_test_uptodate(folio)) 534 folio_mark_uptodate(newfolio); 535 if (folio_test_clear_active(folio)) { 536 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 537 folio_set_active(newfolio); 538 } else if (folio_test_clear_unevictable(folio)) 539 folio_set_unevictable(newfolio); 540 if (folio_test_workingset(folio)) 541 folio_set_workingset(newfolio); 542 if (folio_test_checked(folio)) 543 folio_set_checked(newfolio); 544 /* 545 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 546 * migration entries. We can still have PG_anon_exclusive set on an 547 * effectively unmapped and unreferenced first sub-pages of an 548 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 549 */ 550 if (folio_test_mappedtodisk(folio)) 551 folio_set_mappedtodisk(newfolio); 552 553 /* Move dirty on pages not done by folio_migrate_mapping() */ 554 if (folio_test_dirty(folio)) 555 folio_set_dirty(newfolio); 556 557 if (folio_test_young(folio)) 558 folio_set_young(newfolio); 559 if (folio_test_idle(folio)) 560 folio_set_idle(newfolio); 561 562 /* 563 * Copy NUMA information to the new page, to prevent over-eager 564 * future migrations of this same page. 565 */ 566 cpupid = page_cpupid_xchg_last(&folio->page, -1); 567 /* 568 * For memory tiering mode, when migrate between slow and fast 569 * memory node, reset cpupid, because that is used to record 570 * page access time in slow memory node. 571 */ 572 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 573 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 574 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 575 576 if (f_toptier != t_toptier) 577 cpupid = -1; 578 } 579 page_cpupid_xchg_last(&newfolio->page, cpupid); 580 581 folio_migrate_ksm(newfolio, folio); 582 /* 583 * Please do not reorder this without considering how mm/ksm.c's 584 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 585 */ 586 if (folio_test_swapcache(folio)) 587 folio_clear_swapcache(folio); 588 folio_clear_private(folio); 589 590 /* page->private contains hugetlb specific flags */ 591 if (!folio_test_hugetlb(folio)) 592 folio->private = NULL; 593 594 /* 595 * If any waiters have accumulated on the new page then 596 * wake them up. 597 */ 598 if (folio_test_writeback(newfolio)) 599 folio_end_writeback(newfolio); 600 601 /* 602 * PG_readahead shares the same bit with PG_reclaim. The above 603 * end_page_writeback() may clear PG_readahead mistakenly, so set the 604 * bit after that. 605 */ 606 if (folio_test_readahead(folio)) 607 folio_set_readahead(newfolio); 608 609 folio_copy_owner(newfolio, folio); 610 611 if (!folio_test_hugetlb(folio)) 612 mem_cgroup_migrate(folio, newfolio); 613 } 614 EXPORT_SYMBOL(folio_migrate_flags); 615 616 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 617 { 618 folio_copy(newfolio, folio); 619 folio_migrate_flags(newfolio, folio); 620 } 621 EXPORT_SYMBOL(folio_migrate_copy); 622 623 /************************************************************ 624 * Migration functions 625 ***********************************************************/ 626 627 /** 628 * migrate_folio() - Simple folio migration. 629 * @mapping: The address_space containing the folio. 630 * @dst: The folio to migrate the data to. 631 * @src: The folio containing the current data. 632 * @mode: How to migrate the page. 633 * 634 * Common logic to directly migrate a single LRU folio suitable for 635 * folios that do not use PagePrivate/PagePrivate2. 636 * 637 * Folios are locked upon entry and exit. 638 */ 639 int migrate_folio(struct address_space *mapping, struct folio *dst, 640 struct folio *src, enum migrate_mode mode) 641 { 642 int rc; 643 644 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 645 646 rc = folio_migrate_mapping(mapping, dst, src, 0); 647 648 if (rc != MIGRATEPAGE_SUCCESS) 649 return rc; 650 651 if (mode != MIGRATE_SYNC_NO_COPY) 652 folio_migrate_copy(dst, src); 653 else 654 folio_migrate_flags(dst, src); 655 return MIGRATEPAGE_SUCCESS; 656 } 657 EXPORT_SYMBOL(migrate_folio); 658 659 #ifdef CONFIG_BLOCK 660 /* Returns true if all buffers are successfully locked */ 661 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 662 enum migrate_mode mode) 663 { 664 struct buffer_head *bh = head; 665 666 /* Simple case, sync compaction */ 667 if (mode != MIGRATE_ASYNC) { 668 do { 669 lock_buffer(bh); 670 bh = bh->b_this_page; 671 672 } while (bh != head); 673 674 return true; 675 } 676 677 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 678 do { 679 if (!trylock_buffer(bh)) { 680 /* 681 * We failed to lock the buffer and cannot stall in 682 * async migration. Release the taken locks 683 */ 684 struct buffer_head *failed_bh = bh; 685 bh = head; 686 while (bh != failed_bh) { 687 unlock_buffer(bh); 688 bh = bh->b_this_page; 689 } 690 return false; 691 } 692 693 bh = bh->b_this_page; 694 } while (bh != head); 695 return true; 696 } 697 698 static int __buffer_migrate_folio(struct address_space *mapping, 699 struct folio *dst, struct folio *src, enum migrate_mode mode, 700 bool check_refs) 701 { 702 struct buffer_head *bh, *head; 703 int rc; 704 int expected_count; 705 706 head = folio_buffers(src); 707 if (!head) 708 return migrate_folio(mapping, dst, src, mode); 709 710 /* Check whether page does not have extra refs before we do more work */ 711 expected_count = folio_expected_refs(mapping, src); 712 if (folio_ref_count(src) != expected_count) 713 return -EAGAIN; 714 715 if (!buffer_migrate_lock_buffers(head, mode)) 716 return -EAGAIN; 717 718 if (check_refs) { 719 bool busy; 720 bool invalidated = false; 721 722 recheck_buffers: 723 busy = false; 724 spin_lock(&mapping->private_lock); 725 bh = head; 726 do { 727 if (atomic_read(&bh->b_count)) { 728 busy = true; 729 break; 730 } 731 bh = bh->b_this_page; 732 } while (bh != head); 733 if (busy) { 734 if (invalidated) { 735 rc = -EAGAIN; 736 goto unlock_buffers; 737 } 738 spin_unlock(&mapping->private_lock); 739 invalidate_bh_lrus(); 740 invalidated = true; 741 goto recheck_buffers; 742 } 743 } 744 745 rc = folio_migrate_mapping(mapping, dst, src, 0); 746 if (rc != MIGRATEPAGE_SUCCESS) 747 goto unlock_buffers; 748 749 folio_attach_private(dst, folio_detach_private(src)); 750 751 bh = head; 752 do { 753 set_bh_page(bh, &dst->page, bh_offset(bh)); 754 bh = bh->b_this_page; 755 } while (bh != head); 756 757 if (mode != MIGRATE_SYNC_NO_COPY) 758 folio_migrate_copy(dst, src); 759 else 760 folio_migrate_flags(dst, src); 761 762 rc = MIGRATEPAGE_SUCCESS; 763 unlock_buffers: 764 if (check_refs) 765 spin_unlock(&mapping->private_lock); 766 bh = head; 767 do { 768 unlock_buffer(bh); 769 bh = bh->b_this_page; 770 } while (bh != head); 771 772 return rc; 773 } 774 775 /** 776 * buffer_migrate_folio() - Migration function for folios with buffers. 777 * @mapping: The address space containing @src. 778 * @dst: The folio to migrate to. 779 * @src: The folio to migrate from. 780 * @mode: How to migrate the folio. 781 * 782 * This function can only be used if the underlying filesystem guarantees 783 * that no other references to @src exist. For example attached buffer 784 * heads are accessed only under the folio lock. If your filesystem cannot 785 * provide this guarantee, buffer_migrate_folio_norefs() may be more 786 * appropriate. 787 * 788 * Return: 0 on success or a negative errno on failure. 789 */ 790 int buffer_migrate_folio(struct address_space *mapping, 791 struct folio *dst, struct folio *src, enum migrate_mode mode) 792 { 793 return __buffer_migrate_folio(mapping, dst, src, mode, false); 794 } 795 EXPORT_SYMBOL(buffer_migrate_folio); 796 797 /** 798 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 799 * @mapping: The address space containing @src. 800 * @dst: The folio to migrate to. 801 * @src: The folio to migrate from. 802 * @mode: How to migrate the folio. 803 * 804 * Like buffer_migrate_folio() except that this variant is more careful 805 * and checks that there are also no buffer head references. This function 806 * is the right one for mappings where buffer heads are directly looked 807 * up and referenced (such as block device mappings). 808 * 809 * Return: 0 on success or a negative errno on failure. 810 */ 811 int buffer_migrate_folio_norefs(struct address_space *mapping, 812 struct folio *dst, struct folio *src, enum migrate_mode mode) 813 { 814 return __buffer_migrate_folio(mapping, dst, src, mode, true); 815 } 816 #endif 817 818 int filemap_migrate_folio(struct address_space *mapping, 819 struct folio *dst, struct folio *src, enum migrate_mode mode) 820 { 821 int ret; 822 823 ret = folio_migrate_mapping(mapping, dst, src, 0); 824 if (ret != MIGRATEPAGE_SUCCESS) 825 return ret; 826 827 if (folio_get_private(src)) 828 folio_attach_private(dst, folio_detach_private(src)); 829 830 if (mode != MIGRATE_SYNC_NO_COPY) 831 folio_migrate_copy(dst, src); 832 else 833 folio_migrate_flags(dst, src); 834 return MIGRATEPAGE_SUCCESS; 835 } 836 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 837 838 /* 839 * Writeback a folio to clean the dirty state 840 */ 841 static int writeout(struct address_space *mapping, struct folio *folio) 842 { 843 struct writeback_control wbc = { 844 .sync_mode = WB_SYNC_NONE, 845 .nr_to_write = 1, 846 .range_start = 0, 847 .range_end = LLONG_MAX, 848 .for_reclaim = 1 849 }; 850 int rc; 851 852 if (!mapping->a_ops->writepage) 853 /* No write method for the address space */ 854 return -EINVAL; 855 856 if (!folio_clear_dirty_for_io(folio)) 857 /* Someone else already triggered a write */ 858 return -EAGAIN; 859 860 /* 861 * A dirty folio may imply that the underlying filesystem has 862 * the folio on some queue. So the folio must be clean for 863 * migration. Writeout may mean we lose the lock and the 864 * folio state is no longer what we checked for earlier. 865 * At this point we know that the migration attempt cannot 866 * be successful. 867 */ 868 remove_migration_ptes(folio, folio, false); 869 870 rc = mapping->a_ops->writepage(&folio->page, &wbc); 871 872 if (rc != AOP_WRITEPAGE_ACTIVATE) 873 /* unlocked. Relock */ 874 folio_lock(folio); 875 876 return (rc < 0) ? -EIO : -EAGAIN; 877 } 878 879 /* 880 * Default handling if a filesystem does not provide a migration function. 881 */ 882 static int fallback_migrate_folio(struct address_space *mapping, 883 struct folio *dst, struct folio *src, enum migrate_mode mode) 884 { 885 if (folio_test_dirty(src)) { 886 /* Only writeback folios in full synchronous migration */ 887 switch (mode) { 888 case MIGRATE_SYNC: 889 case MIGRATE_SYNC_NO_COPY: 890 break; 891 default: 892 return -EBUSY; 893 } 894 return writeout(mapping, src); 895 } 896 897 /* 898 * Buffers may be managed in a filesystem specific way. 899 * We must have no buffers or drop them. 900 */ 901 if (folio_test_private(src) && 902 !filemap_release_folio(src, GFP_KERNEL)) 903 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 904 905 return migrate_folio(mapping, dst, src, mode); 906 } 907 908 /* 909 * Move a page to a newly allocated page 910 * The page is locked and all ptes have been successfully removed. 911 * 912 * The new page will have replaced the old page if this function 913 * is successful. 914 * 915 * Return value: 916 * < 0 - error code 917 * MIGRATEPAGE_SUCCESS - success 918 */ 919 static int move_to_new_folio(struct folio *dst, struct folio *src, 920 enum migrate_mode mode) 921 { 922 int rc = -EAGAIN; 923 bool is_lru = !__PageMovable(&src->page); 924 925 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 926 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 927 928 if (likely(is_lru)) { 929 struct address_space *mapping = folio_mapping(src); 930 931 if (!mapping) 932 rc = migrate_folio(mapping, dst, src, mode); 933 else if (mapping->a_ops->migrate_folio) 934 /* 935 * Most folios have a mapping and most filesystems 936 * provide a migrate_folio callback. Anonymous folios 937 * are part of swap space which also has its own 938 * migrate_folio callback. This is the most common path 939 * for page migration. 940 */ 941 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 942 mode); 943 else 944 rc = fallback_migrate_folio(mapping, dst, src, mode); 945 } else { 946 const struct movable_operations *mops; 947 948 /* 949 * In case of non-lru page, it could be released after 950 * isolation step. In that case, we shouldn't try migration. 951 */ 952 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 953 if (!folio_test_movable(src)) { 954 rc = MIGRATEPAGE_SUCCESS; 955 folio_clear_isolated(src); 956 goto out; 957 } 958 959 mops = page_movable_ops(&src->page); 960 rc = mops->migrate_page(&dst->page, &src->page, mode); 961 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 962 !folio_test_isolated(src)); 963 } 964 965 /* 966 * When successful, old pagecache src->mapping must be cleared before 967 * src is freed; but stats require that PageAnon be left as PageAnon. 968 */ 969 if (rc == MIGRATEPAGE_SUCCESS) { 970 if (__PageMovable(&src->page)) { 971 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 972 973 /* 974 * We clear PG_movable under page_lock so any compactor 975 * cannot try to migrate this page. 976 */ 977 folio_clear_isolated(src); 978 } 979 980 /* 981 * Anonymous and movable src->mapping will be cleared by 982 * free_pages_prepare so don't reset it here for keeping 983 * the type to work PageAnon, for example. 984 */ 985 if (!folio_mapping_flags(src)) 986 src->mapping = NULL; 987 988 if (likely(!folio_is_zone_device(dst))) 989 flush_dcache_folio(dst); 990 } 991 out: 992 return rc; 993 } 994 995 static int __unmap_and_move(struct page *page, struct page *newpage, 996 int force, enum migrate_mode mode) 997 { 998 struct folio *folio = page_folio(page); 999 struct folio *dst = page_folio(newpage); 1000 int rc = -EAGAIN; 1001 bool page_was_mapped = false; 1002 struct anon_vma *anon_vma = NULL; 1003 bool is_lru = !__PageMovable(page); 1004 1005 if (!trylock_page(page)) { 1006 if (!force || mode == MIGRATE_ASYNC) 1007 goto out; 1008 1009 /* 1010 * It's not safe for direct compaction to call lock_page. 1011 * For example, during page readahead pages are added locked 1012 * to the LRU. Later, when the IO completes the pages are 1013 * marked uptodate and unlocked. However, the queueing 1014 * could be merging multiple pages for one bio (e.g. 1015 * mpage_readahead). If an allocation happens for the 1016 * second or third page, the process can end up locking 1017 * the same page twice and deadlocking. Rather than 1018 * trying to be clever about what pages can be locked, 1019 * avoid the use of lock_page for direct compaction 1020 * altogether. 1021 */ 1022 if (current->flags & PF_MEMALLOC) 1023 goto out; 1024 1025 lock_page(page); 1026 } 1027 1028 if (PageWriteback(page)) { 1029 /* 1030 * Only in the case of a full synchronous migration is it 1031 * necessary to wait for PageWriteback. In the async case, 1032 * the retry loop is too short and in the sync-light case, 1033 * the overhead of stalling is too much 1034 */ 1035 switch (mode) { 1036 case MIGRATE_SYNC: 1037 case MIGRATE_SYNC_NO_COPY: 1038 break; 1039 default: 1040 rc = -EBUSY; 1041 goto out_unlock; 1042 } 1043 if (!force) 1044 goto out_unlock; 1045 wait_on_page_writeback(page); 1046 } 1047 1048 /* 1049 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 1050 * we cannot notice that anon_vma is freed while we migrates a page. 1051 * This get_anon_vma() delays freeing anon_vma pointer until the end 1052 * of migration. File cache pages are no problem because of page_lock() 1053 * File Caches may use write_page() or lock_page() in migration, then, 1054 * just care Anon page here. 1055 * 1056 * Only page_get_anon_vma() understands the subtleties of 1057 * getting a hold on an anon_vma from outside one of its mms. 1058 * But if we cannot get anon_vma, then we won't need it anyway, 1059 * because that implies that the anon page is no longer mapped 1060 * (and cannot be remapped so long as we hold the page lock). 1061 */ 1062 if (PageAnon(page) && !PageKsm(page)) 1063 anon_vma = page_get_anon_vma(page); 1064 1065 /* 1066 * Block others from accessing the new page when we get around to 1067 * establishing additional references. We are usually the only one 1068 * holding a reference to newpage at this point. We used to have a BUG 1069 * here if trylock_page(newpage) fails, but would like to allow for 1070 * cases where there might be a race with the previous use of newpage. 1071 * This is much like races on refcount of oldpage: just don't BUG(). 1072 */ 1073 if (unlikely(!trylock_page(newpage))) 1074 goto out_unlock; 1075 1076 if (unlikely(!is_lru)) { 1077 rc = move_to_new_folio(dst, folio, mode); 1078 goto out_unlock_both; 1079 } 1080 1081 /* 1082 * Corner case handling: 1083 * 1. When a new swap-cache page is read into, it is added to the LRU 1084 * and treated as swapcache but it has no rmap yet. 1085 * Calling try_to_unmap() against a page->mapping==NULL page will 1086 * trigger a BUG. So handle it here. 1087 * 2. An orphaned page (see truncate_cleanup_page) might have 1088 * fs-private metadata. The page can be picked up due to memory 1089 * offlining. Everywhere else except page reclaim, the page is 1090 * invisible to the vm, so the page can not be migrated. So try to 1091 * free the metadata, so the page can be freed. 1092 */ 1093 if (!page->mapping) { 1094 VM_BUG_ON_PAGE(PageAnon(page), page); 1095 if (page_has_private(page)) { 1096 try_to_free_buffers(folio); 1097 goto out_unlock_both; 1098 } 1099 } else if (page_mapped(page)) { 1100 /* Establish migration ptes */ 1101 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1102 page); 1103 try_to_migrate(folio, 0); 1104 page_was_mapped = true; 1105 } 1106 1107 if (!page_mapped(page)) 1108 rc = move_to_new_folio(dst, folio, mode); 1109 1110 /* 1111 * When successful, push newpage to LRU immediately: so that if it 1112 * turns out to be an mlocked page, remove_migration_ptes() will 1113 * automatically build up the correct newpage->mlock_count for it. 1114 * 1115 * We would like to do something similar for the old page, when 1116 * unsuccessful, and other cases when a page has been temporarily 1117 * isolated from the unevictable LRU: but this case is the easiest. 1118 */ 1119 if (rc == MIGRATEPAGE_SUCCESS) { 1120 lru_cache_add(newpage); 1121 if (page_was_mapped) 1122 lru_add_drain(); 1123 } 1124 1125 if (page_was_mapped) 1126 remove_migration_ptes(folio, 1127 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false); 1128 1129 out_unlock_both: 1130 unlock_page(newpage); 1131 out_unlock: 1132 /* Drop an anon_vma reference if we took one */ 1133 if (anon_vma) 1134 put_anon_vma(anon_vma); 1135 unlock_page(page); 1136 out: 1137 /* 1138 * If migration is successful, decrease refcount of the newpage, 1139 * which will not free the page because new page owner increased 1140 * refcounter. 1141 */ 1142 if (rc == MIGRATEPAGE_SUCCESS) 1143 put_page(newpage); 1144 1145 return rc; 1146 } 1147 1148 /* 1149 * Obtain the lock on page, remove all ptes and migrate the page 1150 * to the newly allocated page in newpage. 1151 */ 1152 static int unmap_and_move(new_page_t get_new_page, 1153 free_page_t put_new_page, 1154 unsigned long private, struct page *page, 1155 int force, enum migrate_mode mode, 1156 enum migrate_reason reason, 1157 struct list_head *ret) 1158 { 1159 int rc = MIGRATEPAGE_SUCCESS; 1160 struct page *newpage = NULL; 1161 1162 if (!thp_migration_supported() && PageTransHuge(page)) 1163 return -ENOSYS; 1164 1165 if (page_count(page) == 1) { 1166 /* Page was freed from under us. So we are done. */ 1167 ClearPageActive(page); 1168 ClearPageUnevictable(page); 1169 /* free_pages_prepare() will clear PG_isolated. */ 1170 goto out; 1171 } 1172 1173 newpage = get_new_page(page, private); 1174 if (!newpage) 1175 return -ENOMEM; 1176 1177 newpage->private = 0; 1178 rc = __unmap_and_move(page, newpage, force, mode); 1179 if (rc == MIGRATEPAGE_SUCCESS) 1180 set_page_owner_migrate_reason(newpage, reason); 1181 1182 out: 1183 if (rc != -EAGAIN) { 1184 /* 1185 * A page that has been migrated has all references 1186 * removed and will be freed. A page that has not been 1187 * migrated will have kept its references and be restored. 1188 */ 1189 list_del(&page->lru); 1190 } 1191 1192 /* 1193 * If migration is successful, releases reference grabbed during 1194 * isolation. Otherwise, restore the page to right list unless 1195 * we want to retry. 1196 */ 1197 if (rc == MIGRATEPAGE_SUCCESS) { 1198 /* 1199 * Compaction can migrate also non-LRU pages which are 1200 * not accounted to NR_ISOLATED_*. They can be recognized 1201 * as __PageMovable 1202 */ 1203 if (likely(!__PageMovable(page))) 1204 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1205 page_is_file_lru(page), -thp_nr_pages(page)); 1206 1207 if (reason != MR_MEMORY_FAILURE) 1208 /* 1209 * We release the page in page_handle_poison. 1210 */ 1211 put_page(page); 1212 } else { 1213 if (rc != -EAGAIN) 1214 list_add_tail(&page->lru, ret); 1215 1216 if (put_new_page) 1217 put_new_page(newpage, private); 1218 else 1219 put_page(newpage); 1220 } 1221 1222 return rc; 1223 } 1224 1225 /* 1226 * Counterpart of unmap_and_move_page() for hugepage migration. 1227 * 1228 * This function doesn't wait the completion of hugepage I/O 1229 * because there is no race between I/O and migration for hugepage. 1230 * Note that currently hugepage I/O occurs only in direct I/O 1231 * where no lock is held and PG_writeback is irrelevant, 1232 * and writeback status of all subpages are counted in the reference 1233 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1234 * under direct I/O, the reference of the head page is 512 and a bit more.) 1235 * This means that when we try to migrate hugepage whose subpages are 1236 * doing direct I/O, some references remain after try_to_unmap() and 1237 * hugepage migration fails without data corruption. 1238 * 1239 * There is also no race when direct I/O is issued on the page under migration, 1240 * because then pte is replaced with migration swap entry and direct I/O code 1241 * will wait in the page fault for migration to complete. 1242 */ 1243 static int unmap_and_move_huge_page(new_page_t get_new_page, 1244 free_page_t put_new_page, unsigned long private, 1245 struct page *hpage, int force, 1246 enum migrate_mode mode, int reason, 1247 struct list_head *ret) 1248 { 1249 struct folio *dst, *src = page_folio(hpage); 1250 int rc = -EAGAIN; 1251 int page_was_mapped = 0; 1252 struct page *new_hpage; 1253 struct anon_vma *anon_vma = NULL; 1254 struct address_space *mapping = NULL; 1255 1256 /* 1257 * Migratability of hugepages depends on architectures and their size. 1258 * This check is necessary because some callers of hugepage migration 1259 * like soft offline and memory hotremove don't walk through page 1260 * tables or check whether the hugepage is pmd-based or not before 1261 * kicking migration. 1262 */ 1263 if (!hugepage_migration_supported(page_hstate(hpage))) 1264 return -ENOSYS; 1265 1266 if (page_count(hpage) == 1) { 1267 /* page was freed from under us. So we are done. */ 1268 putback_active_hugepage(hpage); 1269 return MIGRATEPAGE_SUCCESS; 1270 } 1271 1272 new_hpage = get_new_page(hpage, private); 1273 if (!new_hpage) 1274 return -ENOMEM; 1275 dst = page_folio(new_hpage); 1276 1277 if (!trylock_page(hpage)) { 1278 if (!force) 1279 goto out; 1280 switch (mode) { 1281 case MIGRATE_SYNC: 1282 case MIGRATE_SYNC_NO_COPY: 1283 break; 1284 default: 1285 goto out; 1286 } 1287 lock_page(hpage); 1288 } 1289 1290 /* 1291 * Check for pages which are in the process of being freed. Without 1292 * page_mapping() set, hugetlbfs specific move page routine will not 1293 * be called and we could leak usage counts for subpools. 1294 */ 1295 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1296 rc = -EBUSY; 1297 goto out_unlock; 1298 } 1299 1300 if (PageAnon(hpage)) 1301 anon_vma = page_get_anon_vma(hpage); 1302 1303 if (unlikely(!trylock_page(new_hpage))) 1304 goto put_anon; 1305 1306 if (page_mapped(hpage)) { 1307 enum ttu_flags ttu = 0; 1308 1309 if (!PageAnon(hpage)) { 1310 /* 1311 * In shared mappings, try_to_unmap could potentially 1312 * call huge_pmd_unshare. Because of this, take 1313 * semaphore in write mode here and set TTU_RMAP_LOCKED 1314 * to let lower levels know we have taken the lock. 1315 */ 1316 mapping = hugetlb_page_mapping_lock_write(hpage); 1317 if (unlikely(!mapping)) 1318 goto unlock_put_anon; 1319 1320 ttu = TTU_RMAP_LOCKED; 1321 } 1322 1323 try_to_migrate(src, ttu); 1324 page_was_mapped = 1; 1325 1326 if (ttu & TTU_RMAP_LOCKED) 1327 i_mmap_unlock_write(mapping); 1328 } 1329 1330 if (!page_mapped(hpage)) 1331 rc = move_to_new_folio(dst, src, mode); 1332 1333 if (page_was_mapped) 1334 remove_migration_ptes(src, 1335 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1336 1337 unlock_put_anon: 1338 unlock_page(new_hpage); 1339 1340 put_anon: 1341 if (anon_vma) 1342 put_anon_vma(anon_vma); 1343 1344 if (rc == MIGRATEPAGE_SUCCESS) { 1345 move_hugetlb_state(hpage, new_hpage, reason); 1346 put_new_page = NULL; 1347 } 1348 1349 out_unlock: 1350 unlock_page(hpage); 1351 out: 1352 if (rc == MIGRATEPAGE_SUCCESS) 1353 putback_active_hugepage(hpage); 1354 else if (rc != -EAGAIN) 1355 list_move_tail(&hpage->lru, ret); 1356 1357 /* 1358 * If migration was not successful and there's a freeing callback, use 1359 * it. Otherwise, put_page() will drop the reference grabbed during 1360 * isolation. 1361 */ 1362 if (put_new_page) 1363 put_new_page(new_hpage, private); 1364 else 1365 putback_active_hugepage(new_hpage); 1366 1367 return rc; 1368 } 1369 1370 static inline int try_split_thp(struct page *page, struct list_head *split_pages) 1371 { 1372 int rc; 1373 1374 lock_page(page); 1375 rc = split_huge_page_to_list(page, split_pages); 1376 unlock_page(page); 1377 if (!rc) 1378 list_move_tail(&page->lru, split_pages); 1379 1380 return rc; 1381 } 1382 1383 /* 1384 * migrate_pages - migrate the pages specified in a list, to the free pages 1385 * supplied as the target for the page migration 1386 * 1387 * @from: The list of pages to be migrated. 1388 * @get_new_page: The function used to allocate free pages to be used 1389 * as the target of the page migration. 1390 * @put_new_page: The function used to free target pages if migration 1391 * fails, or NULL if no special handling is necessary. 1392 * @private: Private data to be passed on to get_new_page() 1393 * @mode: The migration mode that specifies the constraints for 1394 * page migration, if any. 1395 * @reason: The reason for page migration. 1396 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1397 * the caller passes a non-NULL pointer. 1398 * 1399 * The function returns after 10 attempts or if no pages are movable any more 1400 * because the list has become empty or no retryable pages exist any more. 1401 * It is caller's responsibility to call putback_movable_pages() to return pages 1402 * to the LRU or free list only if ret != 0. 1403 * 1404 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1405 * an error code. The number of THP splits will be considered as the number of 1406 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1407 */ 1408 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1409 free_page_t put_new_page, unsigned long private, 1410 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1411 { 1412 int retry = 1; 1413 int thp_retry = 1; 1414 int nr_failed = 0; 1415 int nr_failed_pages = 0; 1416 int nr_retry_pages = 0; 1417 int nr_succeeded = 0; 1418 int nr_thp_succeeded = 0; 1419 int nr_thp_failed = 0; 1420 int nr_thp_split = 0; 1421 int pass = 0; 1422 bool is_thp = false; 1423 struct page *page; 1424 struct page *page2; 1425 int rc, nr_subpages; 1426 LIST_HEAD(ret_pages); 1427 LIST_HEAD(thp_split_pages); 1428 bool nosplit = (reason == MR_NUMA_MISPLACED); 1429 bool no_subpage_counting = false; 1430 1431 trace_mm_migrate_pages_start(mode, reason); 1432 1433 thp_subpage_migration: 1434 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1435 retry = 0; 1436 thp_retry = 0; 1437 nr_retry_pages = 0; 1438 1439 list_for_each_entry_safe(page, page2, from, lru) { 1440 /* 1441 * THP statistics is based on the source huge page. 1442 * Capture required information that might get lost 1443 * during migration. 1444 */ 1445 is_thp = PageTransHuge(page) && !PageHuge(page); 1446 nr_subpages = compound_nr(page); 1447 cond_resched(); 1448 1449 if (PageHuge(page)) 1450 rc = unmap_and_move_huge_page(get_new_page, 1451 put_new_page, private, page, 1452 pass > 2, mode, reason, 1453 &ret_pages); 1454 else 1455 rc = unmap_and_move(get_new_page, put_new_page, 1456 private, page, pass > 2, mode, 1457 reason, &ret_pages); 1458 /* 1459 * The rules are: 1460 * Success: non hugetlb page will be freed, hugetlb 1461 * page will be put back 1462 * -EAGAIN: stay on the from list 1463 * -ENOMEM: stay on the from list 1464 * -ENOSYS: stay on the from list 1465 * Other errno: put on ret_pages list then splice to 1466 * from list 1467 */ 1468 switch(rc) { 1469 /* 1470 * THP migration might be unsupported or the 1471 * allocation could've failed so we should 1472 * retry on the same page with the THP split 1473 * to base pages. 1474 * 1475 * Sub-pages are put in thp_split_pages, and 1476 * we will migrate them after the rest of the 1477 * list is processed. 1478 */ 1479 case -ENOSYS: 1480 /* THP migration is unsupported */ 1481 if (is_thp) { 1482 nr_thp_failed++; 1483 if (!try_split_thp(page, &thp_split_pages)) { 1484 nr_thp_split++; 1485 break; 1486 } 1487 /* Hugetlb migration is unsupported */ 1488 } else if (!no_subpage_counting) { 1489 nr_failed++; 1490 } 1491 1492 nr_failed_pages += nr_subpages; 1493 list_move_tail(&page->lru, &ret_pages); 1494 break; 1495 case -ENOMEM: 1496 /* 1497 * When memory is low, don't bother to try to migrate 1498 * other pages, just exit. 1499 */ 1500 if (is_thp) { 1501 nr_thp_failed++; 1502 /* THP NUMA faulting doesn't split THP to retry. */ 1503 if (!nosplit && !try_split_thp(page, &thp_split_pages)) { 1504 nr_thp_split++; 1505 break; 1506 } 1507 } else if (!no_subpage_counting) { 1508 nr_failed++; 1509 } 1510 1511 nr_failed_pages += nr_subpages + nr_retry_pages; 1512 /* 1513 * There might be some subpages of fail-to-migrate THPs 1514 * left in thp_split_pages list. Move them back to migration 1515 * list so that they could be put back to the right list by 1516 * the caller otherwise the page refcnt will be leaked. 1517 */ 1518 list_splice_init(&thp_split_pages, from); 1519 /* nr_failed isn't updated for not used */ 1520 nr_thp_failed += thp_retry; 1521 goto out; 1522 case -EAGAIN: 1523 if (is_thp) 1524 thp_retry++; 1525 else if (!no_subpage_counting) 1526 retry++; 1527 nr_retry_pages += nr_subpages; 1528 break; 1529 case MIGRATEPAGE_SUCCESS: 1530 nr_succeeded += nr_subpages; 1531 if (is_thp) 1532 nr_thp_succeeded++; 1533 break; 1534 default: 1535 /* 1536 * Permanent failure (-EBUSY, etc.): 1537 * unlike -EAGAIN case, the failed page is 1538 * removed from migration page list and not 1539 * retried in the next outer loop. 1540 */ 1541 if (is_thp) 1542 nr_thp_failed++; 1543 else if (!no_subpage_counting) 1544 nr_failed++; 1545 1546 nr_failed_pages += nr_subpages; 1547 break; 1548 } 1549 } 1550 } 1551 nr_failed += retry; 1552 nr_thp_failed += thp_retry; 1553 nr_failed_pages += nr_retry_pages; 1554 /* 1555 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1556 * counting in this round, since all subpages of a THP is counted 1557 * as 1 failure in the first round. 1558 */ 1559 if (!list_empty(&thp_split_pages)) { 1560 /* 1561 * Move non-migrated pages (after 10 retries) to ret_pages 1562 * to avoid migrating them again. 1563 */ 1564 list_splice_init(from, &ret_pages); 1565 list_splice_init(&thp_split_pages, from); 1566 no_subpage_counting = true; 1567 retry = 1; 1568 goto thp_subpage_migration; 1569 } 1570 1571 rc = nr_failed + nr_thp_failed; 1572 out: 1573 /* 1574 * Put the permanent failure page back to migration list, they 1575 * will be put back to the right list by the caller. 1576 */ 1577 list_splice(&ret_pages, from); 1578 1579 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1580 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1581 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1582 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1583 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1584 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1585 nr_thp_failed, nr_thp_split, mode, reason); 1586 1587 if (ret_succeeded) 1588 *ret_succeeded = nr_succeeded; 1589 1590 return rc; 1591 } 1592 1593 struct page *alloc_migration_target(struct page *page, unsigned long private) 1594 { 1595 struct folio *folio = page_folio(page); 1596 struct migration_target_control *mtc; 1597 gfp_t gfp_mask; 1598 unsigned int order = 0; 1599 struct folio *new_folio = NULL; 1600 int nid; 1601 int zidx; 1602 1603 mtc = (struct migration_target_control *)private; 1604 gfp_mask = mtc->gfp_mask; 1605 nid = mtc->nid; 1606 if (nid == NUMA_NO_NODE) 1607 nid = folio_nid(folio); 1608 1609 if (folio_test_hugetlb(folio)) { 1610 struct hstate *h = page_hstate(&folio->page); 1611 1612 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1613 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1614 } 1615 1616 if (folio_test_large(folio)) { 1617 /* 1618 * clear __GFP_RECLAIM to make the migration callback 1619 * consistent with regular THP allocations. 1620 */ 1621 gfp_mask &= ~__GFP_RECLAIM; 1622 gfp_mask |= GFP_TRANSHUGE; 1623 order = folio_order(folio); 1624 } 1625 zidx = zone_idx(folio_zone(folio)); 1626 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1627 gfp_mask |= __GFP_HIGHMEM; 1628 1629 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1630 1631 return &new_folio->page; 1632 } 1633 1634 #ifdef CONFIG_NUMA 1635 1636 static int store_status(int __user *status, int start, int value, int nr) 1637 { 1638 while (nr-- > 0) { 1639 if (put_user(value, status + start)) 1640 return -EFAULT; 1641 start++; 1642 } 1643 1644 return 0; 1645 } 1646 1647 static int do_move_pages_to_node(struct mm_struct *mm, 1648 struct list_head *pagelist, int node) 1649 { 1650 int err; 1651 struct migration_target_control mtc = { 1652 .nid = node, 1653 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1654 }; 1655 1656 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1657 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1658 if (err) 1659 putback_movable_pages(pagelist); 1660 return err; 1661 } 1662 1663 /* 1664 * Resolves the given address to a struct page, isolates it from the LRU and 1665 * puts it to the given pagelist. 1666 * Returns: 1667 * errno - if the page cannot be found/isolated 1668 * 0 - when it doesn't have to be migrated because it is already on the 1669 * target node 1670 * 1 - when it has been queued 1671 */ 1672 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1673 int node, struct list_head *pagelist, bool migrate_all) 1674 { 1675 struct vm_area_struct *vma; 1676 struct page *page; 1677 int err; 1678 1679 mmap_read_lock(mm); 1680 err = -EFAULT; 1681 vma = vma_lookup(mm, addr); 1682 if (!vma || !vma_migratable(vma)) 1683 goto out; 1684 1685 /* FOLL_DUMP to ignore special (like zero) pages */ 1686 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1687 1688 err = PTR_ERR(page); 1689 if (IS_ERR(page)) 1690 goto out; 1691 1692 err = -ENOENT; 1693 if (!page || is_zone_device_page(page)) 1694 goto out; 1695 1696 err = 0; 1697 if (page_to_nid(page) == node) 1698 goto out_putpage; 1699 1700 err = -EACCES; 1701 if (page_mapcount(page) > 1 && !migrate_all) 1702 goto out_putpage; 1703 1704 if (PageHuge(page)) { 1705 if (PageHead(page)) { 1706 err = isolate_hugetlb(page, pagelist); 1707 if (!err) 1708 err = 1; 1709 } 1710 } else { 1711 struct page *head; 1712 1713 head = compound_head(page); 1714 err = isolate_lru_page(head); 1715 if (err) 1716 goto out_putpage; 1717 1718 err = 1; 1719 list_add_tail(&head->lru, pagelist); 1720 mod_node_page_state(page_pgdat(head), 1721 NR_ISOLATED_ANON + page_is_file_lru(head), 1722 thp_nr_pages(head)); 1723 } 1724 out_putpage: 1725 /* 1726 * Either remove the duplicate refcount from 1727 * isolate_lru_page() or drop the page ref if it was 1728 * not isolated. 1729 */ 1730 put_page(page); 1731 out: 1732 mmap_read_unlock(mm); 1733 return err; 1734 } 1735 1736 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1737 struct list_head *pagelist, int __user *status, 1738 int start, int i, unsigned long nr_pages) 1739 { 1740 int err; 1741 1742 if (list_empty(pagelist)) 1743 return 0; 1744 1745 err = do_move_pages_to_node(mm, pagelist, node); 1746 if (err) { 1747 /* 1748 * Positive err means the number of failed 1749 * pages to migrate. Since we are going to 1750 * abort and return the number of non-migrated 1751 * pages, so need to include the rest of the 1752 * nr_pages that have not been attempted as 1753 * well. 1754 */ 1755 if (err > 0) 1756 err += nr_pages - i; 1757 return err; 1758 } 1759 return store_status(status, start, node, i - start); 1760 } 1761 1762 /* 1763 * Migrate an array of page address onto an array of nodes and fill 1764 * the corresponding array of status. 1765 */ 1766 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1767 unsigned long nr_pages, 1768 const void __user * __user *pages, 1769 const int __user *nodes, 1770 int __user *status, int flags) 1771 { 1772 int current_node = NUMA_NO_NODE; 1773 LIST_HEAD(pagelist); 1774 int start, i; 1775 int err = 0, err1; 1776 1777 lru_cache_disable(); 1778 1779 for (i = start = 0; i < nr_pages; i++) { 1780 const void __user *p; 1781 unsigned long addr; 1782 int node; 1783 1784 err = -EFAULT; 1785 if (get_user(p, pages + i)) 1786 goto out_flush; 1787 if (get_user(node, nodes + i)) 1788 goto out_flush; 1789 addr = (unsigned long)untagged_addr(p); 1790 1791 err = -ENODEV; 1792 if (node < 0 || node >= MAX_NUMNODES) 1793 goto out_flush; 1794 if (!node_state(node, N_MEMORY)) 1795 goto out_flush; 1796 1797 err = -EACCES; 1798 if (!node_isset(node, task_nodes)) 1799 goto out_flush; 1800 1801 if (current_node == NUMA_NO_NODE) { 1802 current_node = node; 1803 start = i; 1804 } else if (node != current_node) { 1805 err = move_pages_and_store_status(mm, current_node, 1806 &pagelist, status, start, i, nr_pages); 1807 if (err) 1808 goto out; 1809 start = i; 1810 current_node = node; 1811 } 1812 1813 /* 1814 * Errors in the page lookup or isolation are not fatal and we simply 1815 * report them via status 1816 */ 1817 err = add_page_for_migration(mm, addr, current_node, 1818 &pagelist, flags & MPOL_MF_MOVE_ALL); 1819 1820 if (err > 0) { 1821 /* The page is successfully queued for migration */ 1822 continue; 1823 } 1824 1825 /* 1826 * The move_pages() man page does not have an -EEXIST choice, so 1827 * use -EFAULT instead. 1828 */ 1829 if (err == -EEXIST) 1830 err = -EFAULT; 1831 1832 /* 1833 * If the page is already on the target node (!err), store the 1834 * node, otherwise, store the err. 1835 */ 1836 err = store_status(status, i, err ? : current_node, 1); 1837 if (err) 1838 goto out_flush; 1839 1840 err = move_pages_and_store_status(mm, current_node, &pagelist, 1841 status, start, i, nr_pages); 1842 if (err) { 1843 /* We have accounted for page i */ 1844 if (err > 0) 1845 err--; 1846 goto out; 1847 } 1848 current_node = NUMA_NO_NODE; 1849 } 1850 out_flush: 1851 /* Make sure we do not overwrite the existing error */ 1852 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1853 status, start, i, nr_pages); 1854 if (err >= 0) 1855 err = err1; 1856 out: 1857 lru_cache_enable(); 1858 return err; 1859 } 1860 1861 /* 1862 * Determine the nodes of an array of pages and store it in an array of status. 1863 */ 1864 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1865 const void __user **pages, int *status) 1866 { 1867 unsigned long i; 1868 1869 mmap_read_lock(mm); 1870 1871 for (i = 0; i < nr_pages; i++) { 1872 unsigned long addr = (unsigned long)(*pages); 1873 unsigned int foll_flags = FOLL_DUMP; 1874 struct vm_area_struct *vma; 1875 struct page *page; 1876 int err = -EFAULT; 1877 1878 vma = vma_lookup(mm, addr); 1879 if (!vma) 1880 goto set_status; 1881 1882 /* Not all huge page follow APIs support 'FOLL_GET' */ 1883 if (!is_vm_hugetlb_page(vma)) 1884 foll_flags |= FOLL_GET; 1885 1886 /* FOLL_DUMP to ignore special (like zero) pages */ 1887 page = follow_page(vma, addr, foll_flags); 1888 1889 err = PTR_ERR(page); 1890 if (IS_ERR(page)) 1891 goto set_status; 1892 1893 if (page && !is_zone_device_page(page)) { 1894 err = page_to_nid(page); 1895 if (foll_flags & FOLL_GET) 1896 put_page(page); 1897 } else { 1898 err = -ENOENT; 1899 } 1900 set_status: 1901 *status = err; 1902 1903 pages++; 1904 status++; 1905 } 1906 1907 mmap_read_unlock(mm); 1908 } 1909 1910 static int get_compat_pages_array(const void __user *chunk_pages[], 1911 const void __user * __user *pages, 1912 unsigned long chunk_nr) 1913 { 1914 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1915 compat_uptr_t p; 1916 int i; 1917 1918 for (i = 0; i < chunk_nr; i++) { 1919 if (get_user(p, pages32 + i)) 1920 return -EFAULT; 1921 chunk_pages[i] = compat_ptr(p); 1922 } 1923 1924 return 0; 1925 } 1926 1927 /* 1928 * Determine the nodes of a user array of pages and store it in 1929 * a user array of status. 1930 */ 1931 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1932 const void __user * __user *pages, 1933 int __user *status) 1934 { 1935 #define DO_PAGES_STAT_CHUNK_NR 16UL 1936 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1937 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1938 1939 while (nr_pages) { 1940 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 1941 1942 if (in_compat_syscall()) { 1943 if (get_compat_pages_array(chunk_pages, pages, 1944 chunk_nr)) 1945 break; 1946 } else { 1947 if (copy_from_user(chunk_pages, pages, 1948 chunk_nr * sizeof(*chunk_pages))) 1949 break; 1950 } 1951 1952 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1953 1954 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1955 break; 1956 1957 pages += chunk_nr; 1958 status += chunk_nr; 1959 nr_pages -= chunk_nr; 1960 } 1961 return nr_pages ? -EFAULT : 0; 1962 } 1963 1964 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1965 { 1966 struct task_struct *task; 1967 struct mm_struct *mm; 1968 1969 /* 1970 * There is no need to check if current process has the right to modify 1971 * the specified process when they are same. 1972 */ 1973 if (!pid) { 1974 mmget(current->mm); 1975 *mem_nodes = cpuset_mems_allowed(current); 1976 return current->mm; 1977 } 1978 1979 /* Find the mm_struct */ 1980 rcu_read_lock(); 1981 task = find_task_by_vpid(pid); 1982 if (!task) { 1983 rcu_read_unlock(); 1984 return ERR_PTR(-ESRCH); 1985 } 1986 get_task_struct(task); 1987 1988 /* 1989 * Check if this process has the right to modify the specified 1990 * process. Use the regular "ptrace_may_access()" checks. 1991 */ 1992 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1993 rcu_read_unlock(); 1994 mm = ERR_PTR(-EPERM); 1995 goto out; 1996 } 1997 rcu_read_unlock(); 1998 1999 mm = ERR_PTR(security_task_movememory(task)); 2000 if (IS_ERR(mm)) 2001 goto out; 2002 *mem_nodes = cpuset_mems_allowed(task); 2003 mm = get_task_mm(task); 2004 out: 2005 put_task_struct(task); 2006 if (!mm) 2007 mm = ERR_PTR(-EINVAL); 2008 return mm; 2009 } 2010 2011 /* 2012 * Move a list of pages in the address space of the currently executing 2013 * process. 2014 */ 2015 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2016 const void __user * __user *pages, 2017 const int __user *nodes, 2018 int __user *status, int flags) 2019 { 2020 struct mm_struct *mm; 2021 int err; 2022 nodemask_t task_nodes; 2023 2024 /* Check flags */ 2025 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2026 return -EINVAL; 2027 2028 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2029 return -EPERM; 2030 2031 mm = find_mm_struct(pid, &task_nodes); 2032 if (IS_ERR(mm)) 2033 return PTR_ERR(mm); 2034 2035 if (nodes) 2036 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2037 nodes, status, flags); 2038 else 2039 err = do_pages_stat(mm, nr_pages, pages, status); 2040 2041 mmput(mm); 2042 return err; 2043 } 2044 2045 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2046 const void __user * __user *, pages, 2047 const int __user *, nodes, 2048 int __user *, status, int, flags) 2049 { 2050 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2051 } 2052 2053 #ifdef CONFIG_NUMA_BALANCING 2054 /* 2055 * Returns true if this is a safe migration target node for misplaced NUMA 2056 * pages. Currently it only checks the watermarks which is crude. 2057 */ 2058 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2059 unsigned long nr_migrate_pages) 2060 { 2061 int z; 2062 2063 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2064 struct zone *zone = pgdat->node_zones + z; 2065 2066 if (!managed_zone(zone)) 2067 continue; 2068 2069 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2070 if (!zone_watermark_ok(zone, 0, 2071 high_wmark_pages(zone) + 2072 nr_migrate_pages, 2073 ZONE_MOVABLE, 0)) 2074 continue; 2075 return true; 2076 } 2077 return false; 2078 } 2079 2080 static struct page *alloc_misplaced_dst_page(struct page *page, 2081 unsigned long data) 2082 { 2083 int nid = (int) data; 2084 int order = compound_order(page); 2085 gfp_t gfp = __GFP_THISNODE; 2086 struct folio *new; 2087 2088 if (order > 0) 2089 gfp |= GFP_TRANSHUGE_LIGHT; 2090 else { 2091 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2092 __GFP_NOWARN; 2093 gfp &= ~__GFP_RECLAIM; 2094 } 2095 new = __folio_alloc_node(gfp, order, nid); 2096 2097 return &new->page; 2098 } 2099 2100 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2101 { 2102 int nr_pages = thp_nr_pages(page); 2103 int order = compound_order(page); 2104 2105 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2106 2107 /* Do not migrate THP mapped by multiple processes */ 2108 if (PageTransHuge(page) && total_mapcount(page) > 1) 2109 return 0; 2110 2111 /* Avoid migrating to a node that is nearly full */ 2112 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2113 int z; 2114 2115 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2116 return 0; 2117 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2118 if (managed_zone(pgdat->node_zones + z)) 2119 break; 2120 } 2121 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2122 return 0; 2123 } 2124 2125 if (isolate_lru_page(page)) 2126 return 0; 2127 2128 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2129 nr_pages); 2130 2131 /* 2132 * Isolating the page has taken another reference, so the 2133 * caller's reference can be safely dropped without the page 2134 * disappearing underneath us during migration. 2135 */ 2136 put_page(page); 2137 return 1; 2138 } 2139 2140 /* 2141 * Attempt to migrate a misplaced page to the specified destination 2142 * node. Caller is expected to have an elevated reference count on 2143 * the page that will be dropped by this function before returning. 2144 */ 2145 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2146 int node) 2147 { 2148 pg_data_t *pgdat = NODE_DATA(node); 2149 int isolated; 2150 int nr_remaining; 2151 unsigned int nr_succeeded; 2152 LIST_HEAD(migratepages); 2153 int nr_pages = thp_nr_pages(page); 2154 2155 /* 2156 * Don't migrate file pages that are mapped in multiple processes 2157 * with execute permissions as they are probably shared libraries. 2158 */ 2159 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2160 (vma->vm_flags & VM_EXEC)) 2161 goto out; 2162 2163 /* 2164 * Also do not migrate dirty pages as not all filesystems can move 2165 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2166 */ 2167 if (page_is_file_lru(page) && PageDirty(page)) 2168 goto out; 2169 2170 isolated = numamigrate_isolate_page(pgdat, page); 2171 if (!isolated) 2172 goto out; 2173 2174 list_add(&page->lru, &migratepages); 2175 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2176 NULL, node, MIGRATE_ASYNC, 2177 MR_NUMA_MISPLACED, &nr_succeeded); 2178 if (nr_remaining) { 2179 if (!list_empty(&migratepages)) { 2180 list_del(&page->lru); 2181 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2182 page_is_file_lru(page), -nr_pages); 2183 putback_lru_page(page); 2184 } 2185 isolated = 0; 2186 } 2187 if (nr_succeeded) { 2188 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2189 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2190 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2191 nr_succeeded); 2192 } 2193 BUG_ON(!list_empty(&migratepages)); 2194 return isolated; 2195 2196 out: 2197 put_page(page); 2198 return 0; 2199 } 2200 #endif /* CONFIG_NUMA_BALANCING */ 2201 #endif /* CONFIG_NUMA */ 2202