xref: /openbmc/linux/mm/mempolicy.c (revision e94b1766097d53e6f3ccfb36c8baa562ffeda3fc)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66    could replace all the switch()es with a mempolicy_ops structure.
67 */
68 
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95 
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
100 
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103 
104 #define PDprintk(fmt...)
105 
106 /* Highest zone. An specific allocation for a zone below that is not
107    policied. */
108 enum zone_type policy_zone = ZONE_DMA;
109 
110 struct mempolicy default_policy = {
111 	.refcnt = ATOMIC_INIT(1), /* never free it */
112 	.policy = MPOL_DEFAULT,
113 };
114 
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
117 {
118 	int empty = nodes_empty(*nodes);
119 
120 	switch (mode) {
121 	case MPOL_DEFAULT:
122 		if (!empty)
123 			return -EINVAL;
124 		break;
125 	case MPOL_BIND:
126 	case MPOL_INTERLEAVE:
127 		/* Preferred will only use the first bit, but allow
128 		   more for now. */
129 		if (empty)
130 			return -EINVAL;
131 		break;
132 	}
133 	return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
134 }
135 
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
138 {
139 	struct zonelist *zl;
140 	int num, max, nd;
141 	enum zone_type k;
142 
143 	max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
144 	max++;			/* space for zlcache_ptr (see mmzone.h) */
145 	zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
146 	if (!zl)
147 		return NULL;
148 	zl->zlcache_ptr = NULL;
149 	num = 0;
150 	/* First put in the highest zones from all nodes, then all the next
151 	   lower zones etc. Avoid empty zones because the memory allocator
152 	   doesn't like them. If you implement node hot removal you
153 	   have to fix that. */
154 	k = policy_zone;
155 	while (1) {
156 		for_each_node_mask(nd, *nodes) {
157 			struct zone *z = &NODE_DATA(nd)->node_zones[k];
158 			if (z->present_pages > 0)
159 				zl->zones[num++] = z;
160 		}
161 		if (k == 0)
162 			break;
163 		k--;
164 	}
165 	zl->zones[num] = NULL;
166 	return zl;
167 }
168 
169 /* Create a new policy */
170 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
171 {
172 	struct mempolicy *policy;
173 
174 	PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
175 	if (mode == MPOL_DEFAULT)
176 		return NULL;
177 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
178 	if (!policy)
179 		return ERR_PTR(-ENOMEM);
180 	atomic_set(&policy->refcnt, 1);
181 	switch (mode) {
182 	case MPOL_INTERLEAVE:
183 		policy->v.nodes = *nodes;
184 		if (nodes_weight(*nodes) == 0) {
185 			kmem_cache_free(policy_cache, policy);
186 			return ERR_PTR(-EINVAL);
187 		}
188 		break;
189 	case MPOL_PREFERRED:
190 		policy->v.preferred_node = first_node(*nodes);
191 		if (policy->v.preferred_node >= MAX_NUMNODES)
192 			policy->v.preferred_node = -1;
193 		break;
194 	case MPOL_BIND:
195 		policy->v.zonelist = bind_zonelist(nodes);
196 		if (policy->v.zonelist == NULL) {
197 			kmem_cache_free(policy_cache, policy);
198 			return ERR_PTR(-ENOMEM);
199 		}
200 		break;
201 	}
202 	policy->policy = mode;
203 	policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
204 	return policy;
205 }
206 
207 static void gather_stats(struct page *, void *, int pte_dirty);
208 static void migrate_page_add(struct page *page, struct list_head *pagelist,
209 				unsigned long flags);
210 
211 /* Scan through pages checking if pages follow certain conditions. */
212 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
213 		unsigned long addr, unsigned long end,
214 		const nodemask_t *nodes, unsigned long flags,
215 		void *private)
216 {
217 	pte_t *orig_pte;
218 	pte_t *pte;
219 	spinlock_t *ptl;
220 
221 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
222 	do {
223 		struct page *page;
224 		int nid;
225 
226 		if (!pte_present(*pte))
227 			continue;
228 		page = vm_normal_page(vma, addr, *pte);
229 		if (!page)
230 			continue;
231 		/*
232 		 * The check for PageReserved here is important to avoid
233 		 * handling zero pages and other pages that may have been
234 		 * marked special by the system.
235 		 *
236 		 * If the PageReserved would not be checked here then f.e.
237 		 * the location of the zero page could have an influence
238 		 * on MPOL_MF_STRICT, zero pages would be counted for
239 		 * the per node stats, and there would be useless attempts
240 		 * to put zero pages on the migration list.
241 		 */
242 		if (PageReserved(page))
243 			continue;
244 		nid = page_to_nid(page);
245 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
246 			continue;
247 
248 		if (flags & MPOL_MF_STATS)
249 			gather_stats(page, private, pte_dirty(*pte));
250 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
251 			migrate_page_add(page, private, flags);
252 		else
253 			break;
254 	} while (pte++, addr += PAGE_SIZE, addr != end);
255 	pte_unmap_unlock(orig_pte, ptl);
256 	return addr != end;
257 }
258 
259 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
260 		unsigned long addr, unsigned long end,
261 		const nodemask_t *nodes, unsigned long flags,
262 		void *private)
263 {
264 	pmd_t *pmd;
265 	unsigned long next;
266 
267 	pmd = pmd_offset(pud, addr);
268 	do {
269 		next = pmd_addr_end(addr, end);
270 		if (pmd_none_or_clear_bad(pmd))
271 			continue;
272 		if (check_pte_range(vma, pmd, addr, next, nodes,
273 				    flags, private))
274 			return -EIO;
275 	} while (pmd++, addr = next, addr != end);
276 	return 0;
277 }
278 
279 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
280 		unsigned long addr, unsigned long end,
281 		const nodemask_t *nodes, unsigned long flags,
282 		void *private)
283 {
284 	pud_t *pud;
285 	unsigned long next;
286 
287 	pud = pud_offset(pgd, addr);
288 	do {
289 		next = pud_addr_end(addr, end);
290 		if (pud_none_or_clear_bad(pud))
291 			continue;
292 		if (check_pmd_range(vma, pud, addr, next, nodes,
293 				    flags, private))
294 			return -EIO;
295 	} while (pud++, addr = next, addr != end);
296 	return 0;
297 }
298 
299 static inline int check_pgd_range(struct vm_area_struct *vma,
300 		unsigned long addr, unsigned long end,
301 		const nodemask_t *nodes, unsigned long flags,
302 		void *private)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	pgd = pgd_offset(vma->vm_mm, addr);
308 	do {
309 		next = pgd_addr_end(addr, end);
310 		if (pgd_none_or_clear_bad(pgd))
311 			continue;
312 		if (check_pud_range(vma, pgd, addr, next, nodes,
313 				    flags, private))
314 			return -EIO;
315 	} while (pgd++, addr = next, addr != end);
316 	return 0;
317 }
318 
319 /* Check if a vma is migratable */
320 static inline int vma_migratable(struct vm_area_struct *vma)
321 {
322 	if (vma->vm_flags & (
323 		VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
324 		return 0;
325 	return 1;
326 }
327 
328 /*
329  * Check if all pages in a range are on a set of nodes.
330  * If pagelist != NULL then isolate pages from the LRU and
331  * put them on the pagelist.
332  */
333 static struct vm_area_struct *
334 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
335 		const nodemask_t *nodes, unsigned long flags, void *private)
336 {
337 	int err;
338 	struct vm_area_struct *first, *vma, *prev;
339 
340 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
341 
342 		err = migrate_prep();
343 		if (err)
344 			return ERR_PTR(err);
345 	}
346 
347 	first = find_vma(mm, start);
348 	if (!first)
349 		return ERR_PTR(-EFAULT);
350 	prev = NULL;
351 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
352 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
353 			if (!vma->vm_next && vma->vm_end < end)
354 				return ERR_PTR(-EFAULT);
355 			if (prev && prev->vm_end < vma->vm_start)
356 				return ERR_PTR(-EFAULT);
357 		}
358 		if (!is_vm_hugetlb_page(vma) &&
359 		    ((flags & MPOL_MF_STRICT) ||
360 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
361 				vma_migratable(vma)))) {
362 			unsigned long endvma = vma->vm_end;
363 
364 			if (endvma > end)
365 				endvma = end;
366 			if (vma->vm_start > start)
367 				start = vma->vm_start;
368 			err = check_pgd_range(vma, start, endvma, nodes,
369 						flags, private);
370 			if (err) {
371 				first = ERR_PTR(err);
372 				break;
373 			}
374 		}
375 		prev = vma;
376 	}
377 	return first;
378 }
379 
380 /* Apply policy to a single VMA */
381 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
382 {
383 	int err = 0;
384 	struct mempolicy *old = vma->vm_policy;
385 
386 	PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
387 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
388 		 vma->vm_ops, vma->vm_file,
389 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
390 
391 	if (vma->vm_ops && vma->vm_ops->set_policy)
392 		err = vma->vm_ops->set_policy(vma, new);
393 	if (!err) {
394 		mpol_get(new);
395 		vma->vm_policy = new;
396 		mpol_free(old);
397 	}
398 	return err;
399 }
400 
401 /* Step 2: apply policy to a range and do splits. */
402 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
403 		       unsigned long end, struct mempolicy *new)
404 {
405 	struct vm_area_struct *next;
406 	int err;
407 
408 	err = 0;
409 	for (; vma && vma->vm_start < end; vma = next) {
410 		next = vma->vm_next;
411 		if (vma->vm_start < start)
412 			err = split_vma(vma->vm_mm, vma, start, 1);
413 		if (!err && vma->vm_end > end)
414 			err = split_vma(vma->vm_mm, vma, end, 0);
415 		if (!err)
416 			err = policy_vma(vma, new);
417 		if (err)
418 			break;
419 	}
420 	return err;
421 }
422 
423 static int contextualize_policy(int mode, nodemask_t *nodes)
424 {
425 	if (!nodes)
426 		return 0;
427 
428 	cpuset_update_task_memory_state();
429 	if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
430 		return -EINVAL;
431 	return mpol_check_policy(mode, nodes);
432 }
433 
434 
435 /*
436  * Update task->flags PF_MEMPOLICY bit: set iff non-default
437  * mempolicy.  Allows more rapid checking of this (combined perhaps
438  * with other PF_* flag bits) on memory allocation hot code paths.
439  *
440  * If called from outside this file, the task 'p' should -only- be
441  * a newly forked child not yet visible on the task list, because
442  * manipulating the task flags of a visible task is not safe.
443  *
444  * The above limitation is why this routine has the funny name
445  * mpol_fix_fork_child_flag().
446  *
447  * It is also safe to call this with a task pointer of current,
448  * which the static wrapper mpol_set_task_struct_flag() does,
449  * for use within this file.
450  */
451 
452 void mpol_fix_fork_child_flag(struct task_struct *p)
453 {
454 	if (p->mempolicy)
455 		p->flags |= PF_MEMPOLICY;
456 	else
457 		p->flags &= ~PF_MEMPOLICY;
458 }
459 
460 static void mpol_set_task_struct_flag(void)
461 {
462 	mpol_fix_fork_child_flag(current);
463 }
464 
465 /* Set the process memory policy */
466 long do_set_mempolicy(int mode, nodemask_t *nodes)
467 {
468 	struct mempolicy *new;
469 
470 	if (contextualize_policy(mode, nodes))
471 		return -EINVAL;
472 	new = mpol_new(mode, nodes);
473 	if (IS_ERR(new))
474 		return PTR_ERR(new);
475 	mpol_free(current->mempolicy);
476 	current->mempolicy = new;
477 	mpol_set_task_struct_flag();
478 	if (new && new->policy == MPOL_INTERLEAVE)
479 		current->il_next = first_node(new->v.nodes);
480 	return 0;
481 }
482 
483 /* Fill a zone bitmap for a policy */
484 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
485 {
486 	int i;
487 
488 	nodes_clear(*nodes);
489 	switch (p->policy) {
490 	case MPOL_BIND:
491 		for (i = 0; p->v.zonelist->zones[i]; i++)
492 			node_set(zone_to_nid(p->v.zonelist->zones[i]),
493 				*nodes);
494 		break;
495 	case MPOL_DEFAULT:
496 		break;
497 	case MPOL_INTERLEAVE:
498 		*nodes = p->v.nodes;
499 		break;
500 	case MPOL_PREFERRED:
501 		/* or use current node instead of online map? */
502 		if (p->v.preferred_node < 0)
503 			*nodes = node_online_map;
504 		else
505 			node_set(p->v.preferred_node, *nodes);
506 		break;
507 	default:
508 		BUG();
509 	}
510 }
511 
512 static int lookup_node(struct mm_struct *mm, unsigned long addr)
513 {
514 	struct page *p;
515 	int err;
516 
517 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
518 	if (err >= 0) {
519 		err = page_to_nid(p);
520 		put_page(p);
521 	}
522 	return err;
523 }
524 
525 /* Retrieve NUMA policy */
526 long do_get_mempolicy(int *policy, nodemask_t *nmask,
527 			unsigned long addr, unsigned long flags)
528 {
529 	int err;
530 	struct mm_struct *mm = current->mm;
531 	struct vm_area_struct *vma = NULL;
532 	struct mempolicy *pol = current->mempolicy;
533 
534 	cpuset_update_task_memory_state();
535 	if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
536 		return -EINVAL;
537 	if (flags & MPOL_F_ADDR) {
538 		down_read(&mm->mmap_sem);
539 		vma = find_vma_intersection(mm, addr, addr+1);
540 		if (!vma) {
541 			up_read(&mm->mmap_sem);
542 			return -EFAULT;
543 		}
544 		if (vma->vm_ops && vma->vm_ops->get_policy)
545 			pol = vma->vm_ops->get_policy(vma, addr);
546 		else
547 			pol = vma->vm_policy;
548 	} else if (addr)
549 		return -EINVAL;
550 
551 	if (!pol)
552 		pol = &default_policy;
553 
554 	if (flags & MPOL_F_NODE) {
555 		if (flags & MPOL_F_ADDR) {
556 			err = lookup_node(mm, addr);
557 			if (err < 0)
558 				goto out;
559 			*policy = err;
560 		} else if (pol == current->mempolicy &&
561 				pol->policy == MPOL_INTERLEAVE) {
562 			*policy = current->il_next;
563 		} else {
564 			err = -EINVAL;
565 			goto out;
566 		}
567 	} else
568 		*policy = pol->policy;
569 
570 	if (vma) {
571 		up_read(&current->mm->mmap_sem);
572 		vma = NULL;
573 	}
574 
575 	err = 0;
576 	if (nmask)
577 		get_zonemask(pol, nmask);
578 
579  out:
580 	if (vma)
581 		up_read(&current->mm->mmap_sem);
582 	return err;
583 }
584 
585 #ifdef CONFIG_MIGRATION
586 /*
587  * page migration
588  */
589 static void migrate_page_add(struct page *page, struct list_head *pagelist,
590 				unsigned long flags)
591 {
592 	/*
593 	 * Avoid migrating a page that is shared with others.
594 	 */
595 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
596 		isolate_lru_page(page, pagelist);
597 }
598 
599 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
600 {
601 	return alloc_pages_node(node, GFP_HIGHUSER, 0);
602 }
603 
604 /*
605  * Migrate pages from one node to a target node.
606  * Returns error or the number of pages not migrated.
607  */
608 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
609 {
610 	nodemask_t nmask;
611 	LIST_HEAD(pagelist);
612 	int err = 0;
613 
614 	nodes_clear(nmask);
615 	node_set(source, nmask);
616 
617 	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
618 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
619 
620 	if (!list_empty(&pagelist))
621 		err = migrate_pages(&pagelist, new_node_page, dest);
622 
623 	return err;
624 }
625 
626 /*
627  * Move pages between the two nodesets so as to preserve the physical
628  * layout as much as possible.
629  *
630  * Returns the number of page that could not be moved.
631  */
632 int do_migrate_pages(struct mm_struct *mm,
633 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
634 {
635 	LIST_HEAD(pagelist);
636 	int busy = 0;
637 	int err = 0;
638 	nodemask_t tmp;
639 
640   	down_read(&mm->mmap_sem);
641 
642 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
643 	if (err)
644 		goto out;
645 
646 /*
647  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
648  * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
649  * bit in 'tmp', and return that <source, dest> pair for migration.
650  * The pair of nodemasks 'to' and 'from' define the map.
651  *
652  * If no pair of bits is found that way, fallback to picking some
653  * pair of 'source' and 'dest' bits that are not the same.  If the
654  * 'source' and 'dest' bits are the same, this represents a node
655  * that will be migrating to itself, so no pages need move.
656  *
657  * If no bits are left in 'tmp', or if all remaining bits left
658  * in 'tmp' correspond to the same bit in 'to', return false
659  * (nothing left to migrate).
660  *
661  * This lets us pick a pair of nodes to migrate between, such that
662  * if possible the dest node is not already occupied by some other
663  * source node, minimizing the risk of overloading the memory on a
664  * node that would happen if we migrated incoming memory to a node
665  * before migrating outgoing memory source that same node.
666  *
667  * A single scan of tmp is sufficient.  As we go, we remember the
668  * most recent <s, d> pair that moved (s != d).  If we find a pair
669  * that not only moved, but what's better, moved to an empty slot
670  * (d is not set in tmp), then we break out then, with that pair.
671  * Otherwise when we finish scannng from_tmp, we at least have the
672  * most recent <s, d> pair that moved.  If we get all the way through
673  * the scan of tmp without finding any node that moved, much less
674  * moved to an empty node, then there is nothing left worth migrating.
675  */
676 
677 	tmp = *from_nodes;
678 	while (!nodes_empty(tmp)) {
679 		int s,d;
680 		int source = -1;
681 		int dest = 0;
682 
683 		for_each_node_mask(s, tmp) {
684 			d = node_remap(s, *from_nodes, *to_nodes);
685 			if (s == d)
686 				continue;
687 
688 			source = s;	/* Node moved. Memorize */
689 			dest = d;
690 
691 			/* dest not in remaining from nodes? */
692 			if (!node_isset(dest, tmp))
693 				break;
694 		}
695 		if (source == -1)
696 			break;
697 
698 		node_clear(source, tmp);
699 		err = migrate_to_node(mm, source, dest, flags);
700 		if (err > 0)
701 			busy += err;
702 		if (err < 0)
703 			break;
704 	}
705 out:
706 	up_read(&mm->mmap_sem);
707 	if (err < 0)
708 		return err;
709 	return busy;
710 
711 }
712 
713 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
714 {
715 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
716 
717 	return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma));
718 }
719 #else
720 
721 static void migrate_page_add(struct page *page, struct list_head *pagelist,
722 				unsigned long flags)
723 {
724 }
725 
726 int do_migrate_pages(struct mm_struct *mm,
727 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
728 {
729 	return -ENOSYS;
730 }
731 
732 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
733 {
734 	return NULL;
735 }
736 #endif
737 
738 long do_mbind(unsigned long start, unsigned long len,
739 		unsigned long mode, nodemask_t *nmask, unsigned long flags)
740 {
741 	struct vm_area_struct *vma;
742 	struct mm_struct *mm = current->mm;
743 	struct mempolicy *new;
744 	unsigned long end;
745 	int err;
746 	LIST_HEAD(pagelist);
747 
748 	if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
749 				      MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
750 	    || mode > MPOL_MAX)
751 		return -EINVAL;
752 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
753 		return -EPERM;
754 
755 	if (start & ~PAGE_MASK)
756 		return -EINVAL;
757 
758 	if (mode == MPOL_DEFAULT)
759 		flags &= ~MPOL_MF_STRICT;
760 
761 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
762 	end = start + len;
763 
764 	if (end < start)
765 		return -EINVAL;
766 	if (end == start)
767 		return 0;
768 
769 	if (mpol_check_policy(mode, nmask))
770 		return -EINVAL;
771 
772 	new = mpol_new(mode, nmask);
773 	if (IS_ERR(new))
774 		return PTR_ERR(new);
775 
776 	/*
777 	 * If we are using the default policy then operation
778 	 * on discontinuous address spaces is okay after all
779 	 */
780 	if (!new)
781 		flags |= MPOL_MF_DISCONTIG_OK;
782 
783 	PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
784 			mode,nodes_addr(nodes)[0]);
785 
786 	down_write(&mm->mmap_sem);
787 	vma = check_range(mm, start, end, nmask,
788 			  flags | MPOL_MF_INVERT, &pagelist);
789 
790 	err = PTR_ERR(vma);
791 	if (!IS_ERR(vma)) {
792 		int nr_failed = 0;
793 
794 		err = mbind_range(vma, start, end, new);
795 
796 		if (!list_empty(&pagelist))
797 			nr_failed = migrate_pages(&pagelist, new_vma_page,
798 						(unsigned long)vma);
799 
800 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
801 			err = -EIO;
802 	}
803 
804 	up_write(&mm->mmap_sem);
805 	mpol_free(new);
806 	return err;
807 }
808 
809 /*
810  * User space interface with variable sized bitmaps for nodelists.
811  */
812 
813 /* Copy a node mask from user space. */
814 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
815 		     unsigned long maxnode)
816 {
817 	unsigned long k;
818 	unsigned long nlongs;
819 	unsigned long endmask;
820 
821 	--maxnode;
822 	nodes_clear(*nodes);
823 	if (maxnode == 0 || !nmask)
824 		return 0;
825 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
826 		return -EINVAL;
827 
828 	nlongs = BITS_TO_LONGS(maxnode);
829 	if ((maxnode % BITS_PER_LONG) == 0)
830 		endmask = ~0UL;
831 	else
832 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
833 
834 	/* When the user specified more nodes than supported just check
835 	   if the non supported part is all zero. */
836 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
837 		if (nlongs > PAGE_SIZE/sizeof(long))
838 			return -EINVAL;
839 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
840 			unsigned long t;
841 			if (get_user(t, nmask + k))
842 				return -EFAULT;
843 			if (k == nlongs - 1) {
844 				if (t & endmask)
845 					return -EINVAL;
846 			} else if (t)
847 				return -EINVAL;
848 		}
849 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
850 		endmask = ~0UL;
851 	}
852 
853 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
854 		return -EFAULT;
855 	nodes_addr(*nodes)[nlongs-1] &= endmask;
856 	return 0;
857 }
858 
859 /* Copy a kernel node mask to user space */
860 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
861 			      nodemask_t *nodes)
862 {
863 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
864 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
865 
866 	if (copy > nbytes) {
867 		if (copy > PAGE_SIZE)
868 			return -EINVAL;
869 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
870 			return -EFAULT;
871 		copy = nbytes;
872 	}
873 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
874 }
875 
876 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
877 			unsigned long mode,
878 			unsigned long __user *nmask, unsigned long maxnode,
879 			unsigned flags)
880 {
881 	nodemask_t nodes;
882 	int err;
883 
884 	err = get_nodes(&nodes, nmask, maxnode);
885 	if (err)
886 		return err;
887 	return do_mbind(start, len, mode, &nodes, flags);
888 }
889 
890 /* Set the process memory policy */
891 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
892 		unsigned long maxnode)
893 {
894 	int err;
895 	nodemask_t nodes;
896 
897 	if (mode < 0 || mode > MPOL_MAX)
898 		return -EINVAL;
899 	err = get_nodes(&nodes, nmask, maxnode);
900 	if (err)
901 		return err;
902 	return do_set_mempolicy(mode, &nodes);
903 }
904 
905 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
906 		const unsigned long __user *old_nodes,
907 		const unsigned long __user *new_nodes)
908 {
909 	struct mm_struct *mm;
910 	struct task_struct *task;
911 	nodemask_t old;
912 	nodemask_t new;
913 	nodemask_t task_nodes;
914 	int err;
915 
916 	err = get_nodes(&old, old_nodes, maxnode);
917 	if (err)
918 		return err;
919 
920 	err = get_nodes(&new, new_nodes, maxnode);
921 	if (err)
922 		return err;
923 
924 	/* Find the mm_struct */
925 	read_lock(&tasklist_lock);
926 	task = pid ? find_task_by_pid(pid) : current;
927 	if (!task) {
928 		read_unlock(&tasklist_lock);
929 		return -ESRCH;
930 	}
931 	mm = get_task_mm(task);
932 	read_unlock(&tasklist_lock);
933 
934 	if (!mm)
935 		return -EINVAL;
936 
937 	/*
938 	 * Check if this process has the right to modify the specified
939 	 * process. The right exists if the process has administrative
940 	 * capabilities, superuser privileges or the same
941 	 * userid as the target process.
942 	 */
943 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
944 	    (current->uid != task->suid) && (current->uid != task->uid) &&
945 	    !capable(CAP_SYS_NICE)) {
946 		err = -EPERM;
947 		goto out;
948 	}
949 
950 	task_nodes = cpuset_mems_allowed(task);
951 	/* Is the user allowed to access the target nodes? */
952 	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
953 		err = -EPERM;
954 		goto out;
955 	}
956 
957 	err = security_task_movememory(task);
958 	if (err)
959 		goto out;
960 
961 	err = do_migrate_pages(mm, &old, &new,
962 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
963 out:
964 	mmput(mm);
965 	return err;
966 }
967 
968 
969 /* Retrieve NUMA policy */
970 asmlinkage long sys_get_mempolicy(int __user *policy,
971 				unsigned long __user *nmask,
972 				unsigned long maxnode,
973 				unsigned long addr, unsigned long flags)
974 {
975 	int err, pval;
976 	nodemask_t nodes;
977 
978 	if (nmask != NULL && maxnode < MAX_NUMNODES)
979 		return -EINVAL;
980 
981 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
982 
983 	if (err)
984 		return err;
985 
986 	if (policy && put_user(pval, policy))
987 		return -EFAULT;
988 
989 	if (nmask)
990 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
991 
992 	return err;
993 }
994 
995 #ifdef CONFIG_COMPAT
996 
997 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
998 				     compat_ulong_t __user *nmask,
999 				     compat_ulong_t maxnode,
1000 				     compat_ulong_t addr, compat_ulong_t flags)
1001 {
1002 	long err;
1003 	unsigned long __user *nm = NULL;
1004 	unsigned long nr_bits, alloc_size;
1005 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1006 
1007 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1008 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1009 
1010 	if (nmask)
1011 		nm = compat_alloc_user_space(alloc_size);
1012 
1013 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1014 
1015 	if (!err && nmask) {
1016 		err = copy_from_user(bm, nm, alloc_size);
1017 		/* ensure entire bitmap is zeroed */
1018 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1019 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1020 	}
1021 
1022 	return err;
1023 }
1024 
1025 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1026 				     compat_ulong_t maxnode)
1027 {
1028 	long err = 0;
1029 	unsigned long __user *nm = NULL;
1030 	unsigned long nr_bits, alloc_size;
1031 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1032 
1033 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1034 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1035 
1036 	if (nmask) {
1037 		err = compat_get_bitmap(bm, nmask, nr_bits);
1038 		nm = compat_alloc_user_space(alloc_size);
1039 		err |= copy_to_user(nm, bm, alloc_size);
1040 	}
1041 
1042 	if (err)
1043 		return -EFAULT;
1044 
1045 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1046 }
1047 
1048 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1049 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1050 			     compat_ulong_t maxnode, compat_ulong_t flags)
1051 {
1052 	long err = 0;
1053 	unsigned long __user *nm = NULL;
1054 	unsigned long nr_bits, alloc_size;
1055 	nodemask_t bm;
1056 
1057 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1058 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1059 
1060 	if (nmask) {
1061 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1062 		nm = compat_alloc_user_space(alloc_size);
1063 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1064 	}
1065 
1066 	if (err)
1067 		return -EFAULT;
1068 
1069 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1070 }
1071 
1072 #endif
1073 
1074 /* Return effective policy for a VMA */
1075 static struct mempolicy * get_vma_policy(struct task_struct *task,
1076 		struct vm_area_struct *vma, unsigned long addr)
1077 {
1078 	struct mempolicy *pol = task->mempolicy;
1079 
1080 	if (vma) {
1081 		if (vma->vm_ops && vma->vm_ops->get_policy)
1082 			pol = vma->vm_ops->get_policy(vma, addr);
1083 		else if (vma->vm_policy &&
1084 				vma->vm_policy->policy != MPOL_DEFAULT)
1085 			pol = vma->vm_policy;
1086 	}
1087 	if (!pol)
1088 		pol = &default_policy;
1089 	return pol;
1090 }
1091 
1092 /* Return a zonelist representing a mempolicy */
1093 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1094 {
1095 	int nd;
1096 
1097 	switch (policy->policy) {
1098 	case MPOL_PREFERRED:
1099 		nd = policy->v.preferred_node;
1100 		if (nd < 0)
1101 			nd = numa_node_id();
1102 		break;
1103 	case MPOL_BIND:
1104 		/* Lower zones don't get a policy applied */
1105 		/* Careful: current->mems_allowed might have moved */
1106 		if (gfp_zone(gfp) >= policy_zone)
1107 			if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1108 				return policy->v.zonelist;
1109 		/*FALL THROUGH*/
1110 	case MPOL_INTERLEAVE: /* should not happen */
1111 	case MPOL_DEFAULT:
1112 		nd = numa_node_id();
1113 		break;
1114 	default:
1115 		nd = 0;
1116 		BUG();
1117 	}
1118 	return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1119 }
1120 
1121 /* Do dynamic interleaving for a process */
1122 static unsigned interleave_nodes(struct mempolicy *policy)
1123 {
1124 	unsigned nid, next;
1125 	struct task_struct *me = current;
1126 
1127 	nid = me->il_next;
1128 	next = next_node(nid, policy->v.nodes);
1129 	if (next >= MAX_NUMNODES)
1130 		next = first_node(policy->v.nodes);
1131 	me->il_next = next;
1132 	return nid;
1133 }
1134 
1135 /*
1136  * Depending on the memory policy provide a node from which to allocate the
1137  * next slab entry.
1138  */
1139 unsigned slab_node(struct mempolicy *policy)
1140 {
1141 	int pol = policy ? policy->policy : MPOL_DEFAULT;
1142 
1143 	switch (pol) {
1144 	case MPOL_INTERLEAVE:
1145 		return interleave_nodes(policy);
1146 
1147 	case MPOL_BIND:
1148 		/*
1149 		 * Follow bind policy behavior and start allocation at the
1150 		 * first node.
1151 		 */
1152 		return zone_to_nid(policy->v.zonelist->zones[0]);
1153 
1154 	case MPOL_PREFERRED:
1155 		if (policy->v.preferred_node >= 0)
1156 			return policy->v.preferred_node;
1157 		/* Fall through */
1158 
1159 	default:
1160 		return numa_node_id();
1161 	}
1162 }
1163 
1164 /* Do static interleaving for a VMA with known offset. */
1165 static unsigned offset_il_node(struct mempolicy *pol,
1166 		struct vm_area_struct *vma, unsigned long off)
1167 {
1168 	unsigned nnodes = nodes_weight(pol->v.nodes);
1169 	unsigned target = (unsigned)off % nnodes;
1170 	int c;
1171 	int nid = -1;
1172 
1173 	c = 0;
1174 	do {
1175 		nid = next_node(nid, pol->v.nodes);
1176 		c++;
1177 	} while (c <= target);
1178 	return nid;
1179 }
1180 
1181 /* Determine a node number for interleave */
1182 static inline unsigned interleave_nid(struct mempolicy *pol,
1183 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1184 {
1185 	if (vma) {
1186 		unsigned long off;
1187 
1188 		/*
1189 		 * for small pages, there is no difference between
1190 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1191 		 * for huge pages, since vm_pgoff is in units of small
1192 		 * pages, we need to shift off the always 0 bits to get
1193 		 * a useful offset.
1194 		 */
1195 		BUG_ON(shift < PAGE_SHIFT);
1196 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1197 		off += (addr - vma->vm_start) >> shift;
1198 		return offset_il_node(pol, vma, off);
1199 	} else
1200 		return interleave_nodes(pol);
1201 }
1202 
1203 #ifdef CONFIG_HUGETLBFS
1204 /* Return a zonelist suitable for a huge page allocation. */
1205 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1206 {
1207 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1208 
1209 	if (pol->policy == MPOL_INTERLEAVE) {
1210 		unsigned nid;
1211 
1212 		nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1213 		return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1214 	}
1215 	return zonelist_policy(GFP_HIGHUSER, pol);
1216 }
1217 #endif
1218 
1219 /* Allocate a page in interleaved policy.
1220    Own path because it needs to do special accounting. */
1221 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1222 					unsigned nid)
1223 {
1224 	struct zonelist *zl;
1225 	struct page *page;
1226 
1227 	zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1228 	page = __alloc_pages(gfp, order, zl);
1229 	if (page && page_zone(page) == zl->zones[0])
1230 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1231 	return page;
1232 }
1233 
1234 /**
1235  * 	alloc_page_vma	- Allocate a page for a VMA.
1236  *
1237  * 	@gfp:
1238  *      %GFP_USER    user allocation.
1239  *      %GFP_KERNEL  kernel allocations,
1240  *      %GFP_HIGHMEM highmem/user allocations,
1241  *      %GFP_FS      allocation should not call back into a file system.
1242  *      %GFP_ATOMIC  don't sleep.
1243  *
1244  * 	@vma:  Pointer to VMA or NULL if not available.
1245  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1246  *
1247  * 	This function allocates a page from the kernel page pool and applies
1248  *	a NUMA policy associated with the VMA or the current process.
1249  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1250  *	mm_struct of the VMA to prevent it from going away. Should be used for
1251  *	all allocations for pages that will be mapped into
1252  * 	user space. Returns NULL when no page can be allocated.
1253  *
1254  *	Should be called with the mm_sem of the vma hold.
1255  */
1256 struct page *
1257 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1258 {
1259 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1260 
1261 	cpuset_update_task_memory_state();
1262 
1263 	if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1264 		unsigned nid;
1265 
1266 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1267 		return alloc_page_interleave(gfp, 0, nid);
1268 	}
1269 	return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1270 }
1271 
1272 /**
1273  * 	alloc_pages_current - Allocate pages.
1274  *
1275  *	@gfp:
1276  *		%GFP_USER   user allocation,
1277  *      	%GFP_KERNEL kernel allocation,
1278  *      	%GFP_HIGHMEM highmem allocation,
1279  *      	%GFP_FS     don't call back into a file system.
1280  *      	%GFP_ATOMIC don't sleep.
1281  *	@order: Power of two of allocation size in pages. 0 is a single page.
1282  *
1283  *	Allocate a page from the kernel page pool.  When not in
1284  *	interrupt context and apply the current process NUMA policy.
1285  *	Returns NULL when no page can be allocated.
1286  *
1287  *	Don't call cpuset_update_task_memory_state() unless
1288  *	1) it's ok to take cpuset_sem (can WAIT), and
1289  *	2) allocating for current task (not interrupt).
1290  */
1291 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1292 {
1293 	struct mempolicy *pol = current->mempolicy;
1294 
1295 	if ((gfp & __GFP_WAIT) && !in_interrupt())
1296 		cpuset_update_task_memory_state();
1297 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1298 		pol = &default_policy;
1299 	if (pol->policy == MPOL_INTERLEAVE)
1300 		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1301 	return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1302 }
1303 EXPORT_SYMBOL(alloc_pages_current);
1304 
1305 /*
1306  * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1307  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1308  * with the mems_allowed returned by cpuset_mems_allowed().  This
1309  * keeps mempolicies cpuset relative after its cpuset moves.  See
1310  * further kernel/cpuset.c update_nodemask().
1311  */
1312 void *cpuset_being_rebound;
1313 
1314 /* Slow path of a mempolicy copy */
1315 struct mempolicy *__mpol_copy(struct mempolicy *old)
1316 {
1317 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1318 
1319 	if (!new)
1320 		return ERR_PTR(-ENOMEM);
1321 	if (current_cpuset_is_being_rebound()) {
1322 		nodemask_t mems = cpuset_mems_allowed(current);
1323 		mpol_rebind_policy(old, &mems);
1324 	}
1325 	*new = *old;
1326 	atomic_set(&new->refcnt, 1);
1327 	if (new->policy == MPOL_BIND) {
1328 		int sz = ksize(old->v.zonelist);
1329 		new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL);
1330 		if (!new->v.zonelist) {
1331 			kmem_cache_free(policy_cache, new);
1332 			return ERR_PTR(-ENOMEM);
1333 		}
1334 	}
1335 	return new;
1336 }
1337 
1338 /* Slow path of a mempolicy comparison */
1339 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1340 {
1341 	if (!a || !b)
1342 		return 0;
1343 	if (a->policy != b->policy)
1344 		return 0;
1345 	switch (a->policy) {
1346 	case MPOL_DEFAULT:
1347 		return 1;
1348 	case MPOL_INTERLEAVE:
1349 		return nodes_equal(a->v.nodes, b->v.nodes);
1350 	case MPOL_PREFERRED:
1351 		return a->v.preferred_node == b->v.preferred_node;
1352 	case MPOL_BIND: {
1353 		int i;
1354 		for (i = 0; a->v.zonelist->zones[i]; i++)
1355 			if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1356 				return 0;
1357 		return b->v.zonelist->zones[i] == NULL;
1358 	}
1359 	default:
1360 		BUG();
1361 		return 0;
1362 	}
1363 }
1364 
1365 /* Slow path of a mpol destructor. */
1366 void __mpol_free(struct mempolicy *p)
1367 {
1368 	if (!atomic_dec_and_test(&p->refcnt))
1369 		return;
1370 	if (p->policy == MPOL_BIND)
1371 		kfree(p->v.zonelist);
1372 	p->policy = MPOL_DEFAULT;
1373 	kmem_cache_free(policy_cache, p);
1374 }
1375 
1376 /*
1377  * Shared memory backing store policy support.
1378  *
1379  * Remember policies even when nobody has shared memory mapped.
1380  * The policies are kept in Red-Black tree linked from the inode.
1381  * They are protected by the sp->lock spinlock, which should be held
1382  * for any accesses to the tree.
1383  */
1384 
1385 /* lookup first element intersecting start-end */
1386 /* Caller holds sp->lock */
1387 static struct sp_node *
1388 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1389 {
1390 	struct rb_node *n = sp->root.rb_node;
1391 
1392 	while (n) {
1393 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1394 
1395 		if (start >= p->end)
1396 			n = n->rb_right;
1397 		else if (end <= p->start)
1398 			n = n->rb_left;
1399 		else
1400 			break;
1401 	}
1402 	if (!n)
1403 		return NULL;
1404 	for (;;) {
1405 		struct sp_node *w = NULL;
1406 		struct rb_node *prev = rb_prev(n);
1407 		if (!prev)
1408 			break;
1409 		w = rb_entry(prev, struct sp_node, nd);
1410 		if (w->end <= start)
1411 			break;
1412 		n = prev;
1413 	}
1414 	return rb_entry(n, struct sp_node, nd);
1415 }
1416 
1417 /* Insert a new shared policy into the list. */
1418 /* Caller holds sp->lock */
1419 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1420 {
1421 	struct rb_node **p = &sp->root.rb_node;
1422 	struct rb_node *parent = NULL;
1423 	struct sp_node *nd;
1424 
1425 	while (*p) {
1426 		parent = *p;
1427 		nd = rb_entry(parent, struct sp_node, nd);
1428 		if (new->start < nd->start)
1429 			p = &(*p)->rb_left;
1430 		else if (new->end > nd->end)
1431 			p = &(*p)->rb_right;
1432 		else
1433 			BUG();
1434 	}
1435 	rb_link_node(&new->nd, parent, p);
1436 	rb_insert_color(&new->nd, &sp->root);
1437 	PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1438 		 new->policy ? new->policy->policy : 0);
1439 }
1440 
1441 /* Find shared policy intersecting idx */
1442 struct mempolicy *
1443 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1444 {
1445 	struct mempolicy *pol = NULL;
1446 	struct sp_node *sn;
1447 
1448 	if (!sp->root.rb_node)
1449 		return NULL;
1450 	spin_lock(&sp->lock);
1451 	sn = sp_lookup(sp, idx, idx+1);
1452 	if (sn) {
1453 		mpol_get(sn->policy);
1454 		pol = sn->policy;
1455 	}
1456 	spin_unlock(&sp->lock);
1457 	return pol;
1458 }
1459 
1460 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1461 {
1462 	PDprintk("deleting %lx-l%x\n", n->start, n->end);
1463 	rb_erase(&n->nd, &sp->root);
1464 	mpol_free(n->policy);
1465 	kmem_cache_free(sn_cache, n);
1466 }
1467 
1468 struct sp_node *
1469 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1470 {
1471 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1472 
1473 	if (!n)
1474 		return NULL;
1475 	n->start = start;
1476 	n->end = end;
1477 	mpol_get(pol);
1478 	n->policy = pol;
1479 	return n;
1480 }
1481 
1482 /* Replace a policy range. */
1483 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1484 				 unsigned long end, struct sp_node *new)
1485 {
1486 	struct sp_node *n, *new2 = NULL;
1487 
1488 restart:
1489 	spin_lock(&sp->lock);
1490 	n = sp_lookup(sp, start, end);
1491 	/* Take care of old policies in the same range. */
1492 	while (n && n->start < end) {
1493 		struct rb_node *next = rb_next(&n->nd);
1494 		if (n->start >= start) {
1495 			if (n->end <= end)
1496 				sp_delete(sp, n);
1497 			else
1498 				n->start = end;
1499 		} else {
1500 			/* Old policy spanning whole new range. */
1501 			if (n->end > end) {
1502 				if (!new2) {
1503 					spin_unlock(&sp->lock);
1504 					new2 = sp_alloc(end, n->end, n->policy);
1505 					if (!new2)
1506 						return -ENOMEM;
1507 					goto restart;
1508 				}
1509 				n->end = start;
1510 				sp_insert(sp, new2);
1511 				new2 = NULL;
1512 				break;
1513 			} else
1514 				n->end = start;
1515 		}
1516 		if (!next)
1517 			break;
1518 		n = rb_entry(next, struct sp_node, nd);
1519 	}
1520 	if (new)
1521 		sp_insert(sp, new);
1522 	spin_unlock(&sp->lock);
1523 	if (new2) {
1524 		mpol_free(new2->policy);
1525 		kmem_cache_free(sn_cache, new2);
1526 	}
1527 	return 0;
1528 }
1529 
1530 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1531 				nodemask_t *policy_nodes)
1532 {
1533 	info->root = RB_ROOT;
1534 	spin_lock_init(&info->lock);
1535 
1536 	if (policy != MPOL_DEFAULT) {
1537 		struct mempolicy *newpol;
1538 
1539 		/* Falls back to MPOL_DEFAULT on any error */
1540 		newpol = mpol_new(policy, policy_nodes);
1541 		if (!IS_ERR(newpol)) {
1542 			/* Create pseudo-vma that contains just the policy */
1543 			struct vm_area_struct pvma;
1544 
1545 			memset(&pvma, 0, sizeof(struct vm_area_struct));
1546 			/* Policy covers entire file */
1547 			pvma.vm_end = TASK_SIZE;
1548 			mpol_set_shared_policy(info, &pvma, newpol);
1549 			mpol_free(newpol);
1550 		}
1551 	}
1552 }
1553 
1554 int mpol_set_shared_policy(struct shared_policy *info,
1555 			struct vm_area_struct *vma, struct mempolicy *npol)
1556 {
1557 	int err;
1558 	struct sp_node *new = NULL;
1559 	unsigned long sz = vma_pages(vma);
1560 
1561 	PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1562 		 vma->vm_pgoff,
1563 		 sz, npol? npol->policy : -1,
1564 		npol ? nodes_addr(npol->v.nodes)[0] : -1);
1565 
1566 	if (npol) {
1567 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1568 		if (!new)
1569 			return -ENOMEM;
1570 	}
1571 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1572 	if (err && new)
1573 		kmem_cache_free(sn_cache, new);
1574 	return err;
1575 }
1576 
1577 /* Free a backing policy store on inode delete. */
1578 void mpol_free_shared_policy(struct shared_policy *p)
1579 {
1580 	struct sp_node *n;
1581 	struct rb_node *next;
1582 
1583 	if (!p->root.rb_node)
1584 		return;
1585 	spin_lock(&p->lock);
1586 	next = rb_first(&p->root);
1587 	while (next) {
1588 		n = rb_entry(next, struct sp_node, nd);
1589 		next = rb_next(&n->nd);
1590 		rb_erase(&n->nd, &p->root);
1591 		mpol_free(n->policy);
1592 		kmem_cache_free(sn_cache, n);
1593 	}
1594 	spin_unlock(&p->lock);
1595 }
1596 
1597 /* assumes fs == KERNEL_DS */
1598 void __init numa_policy_init(void)
1599 {
1600 	policy_cache = kmem_cache_create("numa_policy",
1601 					 sizeof(struct mempolicy),
1602 					 0, SLAB_PANIC, NULL, NULL);
1603 
1604 	sn_cache = kmem_cache_create("shared_policy_node",
1605 				     sizeof(struct sp_node),
1606 				     0, SLAB_PANIC, NULL, NULL);
1607 
1608 	/* Set interleaving policy for system init. This way not all
1609 	   the data structures allocated at system boot end up in node zero. */
1610 
1611 	if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1612 		printk("numa_policy_init: interleaving failed\n");
1613 }
1614 
1615 /* Reset policy of current process to default */
1616 void numa_default_policy(void)
1617 {
1618 	do_set_mempolicy(MPOL_DEFAULT, NULL);
1619 }
1620 
1621 /* Migrate a policy to a different set of nodes */
1622 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1623 {
1624 	nodemask_t *mpolmask;
1625 	nodemask_t tmp;
1626 
1627 	if (!pol)
1628 		return;
1629 	mpolmask = &pol->cpuset_mems_allowed;
1630 	if (nodes_equal(*mpolmask, *newmask))
1631 		return;
1632 
1633 	switch (pol->policy) {
1634 	case MPOL_DEFAULT:
1635 		break;
1636 	case MPOL_INTERLEAVE:
1637 		nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1638 		pol->v.nodes = tmp;
1639 		*mpolmask = *newmask;
1640 		current->il_next = node_remap(current->il_next,
1641 						*mpolmask, *newmask);
1642 		break;
1643 	case MPOL_PREFERRED:
1644 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
1645 						*mpolmask, *newmask);
1646 		*mpolmask = *newmask;
1647 		break;
1648 	case MPOL_BIND: {
1649 		nodemask_t nodes;
1650 		struct zone **z;
1651 		struct zonelist *zonelist;
1652 
1653 		nodes_clear(nodes);
1654 		for (z = pol->v.zonelist->zones; *z; z++)
1655 			node_set(zone_to_nid(*z), nodes);
1656 		nodes_remap(tmp, nodes, *mpolmask, *newmask);
1657 		nodes = tmp;
1658 
1659 		zonelist = bind_zonelist(&nodes);
1660 
1661 		/* If no mem, then zonelist is NULL and we keep old zonelist.
1662 		 * If that old zonelist has no remaining mems_allowed nodes,
1663 		 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1664 		 */
1665 
1666 		if (zonelist) {
1667 			/* Good - got mem - substitute new zonelist */
1668 			kfree(pol->v.zonelist);
1669 			pol->v.zonelist = zonelist;
1670 		}
1671 		*mpolmask = *newmask;
1672 		break;
1673 	}
1674 	default:
1675 		BUG();
1676 		break;
1677 	}
1678 }
1679 
1680 /*
1681  * Wrapper for mpol_rebind_policy() that just requires task
1682  * pointer, and updates task mempolicy.
1683  */
1684 
1685 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1686 {
1687 	mpol_rebind_policy(tsk->mempolicy, new);
1688 }
1689 
1690 /*
1691  * Rebind each vma in mm to new nodemask.
1692  *
1693  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
1694  */
1695 
1696 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1697 {
1698 	struct vm_area_struct *vma;
1699 
1700 	down_write(&mm->mmap_sem);
1701 	for (vma = mm->mmap; vma; vma = vma->vm_next)
1702 		mpol_rebind_policy(vma->vm_policy, new);
1703 	up_write(&mm->mmap_sem);
1704 }
1705 
1706 /*
1707  * Display pages allocated per node and memory policy via /proc.
1708  */
1709 
1710 static const char *policy_types[] = { "default", "prefer", "bind",
1711 				      "interleave" };
1712 
1713 /*
1714  * Convert a mempolicy into a string.
1715  * Returns the number of characters in buffer (if positive)
1716  * or an error (negative)
1717  */
1718 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1719 {
1720 	char *p = buffer;
1721 	int l;
1722 	nodemask_t nodes;
1723 	int mode = pol ? pol->policy : MPOL_DEFAULT;
1724 
1725 	switch (mode) {
1726 	case MPOL_DEFAULT:
1727 		nodes_clear(nodes);
1728 		break;
1729 
1730 	case MPOL_PREFERRED:
1731 		nodes_clear(nodes);
1732 		node_set(pol->v.preferred_node, nodes);
1733 		break;
1734 
1735 	case MPOL_BIND:
1736 		get_zonemask(pol, &nodes);
1737 		break;
1738 
1739 	case MPOL_INTERLEAVE:
1740 		nodes = pol->v.nodes;
1741 		break;
1742 
1743 	default:
1744 		BUG();
1745 		return -EFAULT;
1746 	}
1747 
1748 	l = strlen(policy_types[mode]);
1749  	if (buffer + maxlen < p + l + 1)
1750  		return -ENOSPC;
1751 
1752 	strcpy(p, policy_types[mode]);
1753 	p += l;
1754 
1755 	if (!nodes_empty(nodes)) {
1756 		if (buffer + maxlen < p + 2)
1757 			return -ENOSPC;
1758 		*p++ = '=';
1759 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1760 	}
1761 	return p - buffer;
1762 }
1763 
1764 struct numa_maps {
1765 	unsigned long pages;
1766 	unsigned long anon;
1767 	unsigned long active;
1768 	unsigned long writeback;
1769 	unsigned long mapcount_max;
1770 	unsigned long dirty;
1771 	unsigned long swapcache;
1772 	unsigned long node[MAX_NUMNODES];
1773 };
1774 
1775 static void gather_stats(struct page *page, void *private, int pte_dirty)
1776 {
1777 	struct numa_maps *md = private;
1778 	int count = page_mapcount(page);
1779 
1780 	md->pages++;
1781 	if (pte_dirty || PageDirty(page))
1782 		md->dirty++;
1783 
1784 	if (PageSwapCache(page))
1785 		md->swapcache++;
1786 
1787 	if (PageActive(page))
1788 		md->active++;
1789 
1790 	if (PageWriteback(page))
1791 		md->writeback++;
1792 
1793 	if (PageAnon(page))
1794 		md->anon++;
1795 
1796 	if (count > md->mapcount_max)
1797 		md->mapcount_max = count;
1798 
1799 	md->node[page_to_nid(page)]++;
1800 }
1801 
1802 #ifdef CONFIG_HUGETLB_PAGE
1803 static void check_huge_range(struct vm_area_struct *vma,
1804 		unsigned long start, unsigned long end,
1805 		struct numa_maps *md)
1806 {
1807 	unsigned long addr;
1808 	struct page *page;
1809 
1810 	for (addr = start; addr < end; addr += HPAGE_SIZE) {
1811 		pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1812 		pte_t pte;
1813 
1814 		if (!ptep)
1815 			continue;
1816 
1817 		pte = *ptep;
1818 		if (pte_none(pte))
1819 			continue;
1820 
1821 		page = pte_page(pte);
1822 		if (!page)
1823 			continue;
1824 
1825 		gather_stats(page, md, pte_dirty(*ptep));
1826 	}
1827 }
1828 #else
1829 static inline void check_huge_range(struct vm_area_struct *vma,
1830 		unsigned long start, unsigned long end,
1831 		struct numa_maps *md)
1832 {
1833 }
1834 #endif
1835 
1836 int show_numa_map(struct seq_file *m, void *v)
1837 {
1838 	struct proc_maps_private *priv = m->private;
1839 	struct vm_area_struct *vma = v;
1840 	struct numa_maps *md;
1841 	struct file *file = vma->vm_file;
1842 	struct mm_struct *mm = vma->vm_mm;
1843 	int n;
1844 	char buffer[50];
1845 
1846 	if (!mm)
1847 		return 0;
1848 
1849 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1850 	if (!md)
1851 		return 0;
1852 
1853 	mpol_to_str(buffer, sizeof(buffer),
1854 			    get_vma_policy(priv->task, vma, vma->vm_start));
1855 
1856 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1857 
1858 	if (file) {
1859 		seq_printf(m, " file=");
1860 		seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
1861 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1862 		seq_printf(m, " heap");
1863 	} else if (vma->vm_start <= mm->start_stack &&
1864 			vma->vm_end >= mm->start_stack) {
1865 		seq_printf(m, " stack");
1866 	}
1867 
1868 	if (is_vm_hugetlb_page(vma)) {
1869 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1870 		seq_printf(m, " huge");
1871 	} else {
1872 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
1873 				&node_online_map, MPOL_MF_STATS, md);
1874 	}
1875 
1876 	if (!md->pages)
1877 		goto out;
1878 
1879 	if (md->anon)
1880 		seq_printf(m," anon=%lu",md->anon);
1881 
1882 	if (md->dirty)
1883 		seq_printf(m," dirty=%lu",md->dirty);
1884 
1885 	if (md->pages != md->anon && md->pages != md->dirty)
1886 		seq_printf(m, " mapped=%lu", md->pages);
1887 
1888 	if (md->mapcount_max > 1)
1889 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1890 
1891 	if (md->swapcache)
1892 		seq_printf(m," swapcache=%lu", md->swapcache);
1893 
1894 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1895 		seq_printf(m," active=%lu", md->active);
1896 
1897 	if (md->writeback)
1898 		seq_printf(m," writeback=%lu", md->writeback);
1899 
1900 	for_each_online_node(n)
1901 		if (md->node[n])
1902 			seq_printf(m, " N%d=%lu", n, md->node[n]);
1903 out:
1904 	seq_putc(m, '\n');
1905 	kfree(md);
1906 
1907 	if (m->count < m->size)
1908 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
1909 	return 0;
1910 }
1911 
1912