xref: /openbmc/linux/mm/mempolicy.c (revision d451b89dcd183da725eda84dfb8a46c0b32a4234)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the folio's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
435 static inline bool queue_folio_required(struct folio *folio,
436 					struct queue_pages *qp)
437 {
438 	int nid = folio_nid(folio);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_folios_pmd() has three possible return values:
446  * 0 - folios are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing folio was already on a node that does not follow the
452  *        policy.
453  */
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct folio *folio;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	folio = pfn_folio(pmd_pfn(*pmd));
468 	if (is_huge_zero_page(&folio->page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_folio_required(folio, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to folio migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_page_add(&folio->page, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_folios_pte_range() has three possible return values:
495  * 0 - folios are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500  *        on a node that does not follow the policy.
501  */
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct folio *folio;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	spinlock_t *ptl;
512 
513 	ptl = pmd_trans_huge_lock(pmd, vma);
514 	if (ptl)
515 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		folio = vm_normal_folio(vma, addr, *pte);
525 		if (!folio || folio_is_zone_device(folio))
526 			continue;
527 		/*
528 		 * vm_normal_folio() filters out zero pages, but there might
529 		 * still be reserved folios to skip, perhaps in a VDSO.
530 		 */
531 		if (folio_test_reserved(folio))
532 			continue;
533 		if (!queue_folio_required(folio, qp))
534 			continue;
535 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 			/* MPOL_MF_STRICT must be specified if we get here */
537 			if (!vma_migratable(vma)) {
538 				has_unmovable = true;
539 				break;
540 			}
541 
542 			/*
543 			 * Do not abort immediately since there may be
544 			 * temporary off LRU pages in the range.  Still
545 			 * need migrate other LRU pages.
546 			 */
547 			if (migrate_page_add(&folio->page, qp->pagelist, flags))
548 				has_unmovable = true;
549 		} else
550 			break;
551 	}
552 	pte_unmap_unlock(mapped_pte, ptl);
553 	cond_resched();
554 
555 	if (has_unmovable)
556 		return 1;
557 
558 	return addr != end ? -EIO : 0;
559 }
560 
561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
562 			       unsigned long addr, unsigned long end,
563 			       struct mm_walk *walk)
564 {
565 	int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 	struct queue_pages *qp = walk->private;
568 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 	struct folio *folio;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 
573 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 	entry = huge_ptep_get(pte);
575 	if (!pte_present(entry))
576 		goto unlock;
577 	folio = pfn_folio(pte_pfn(entry));
578 	if (!queue_folio_required(folio, qp))
579 		goto unlock;
580 
581 	if (flags == MPOL_MF_STRICT) {
582 		/*
583 		 * STRICT alone means only detecting misplaced folio and no
584 		 * need to further check other vma.
585 		 */
586 		ret = -EIO;
587 		goto unlock;
588 	}
589 
590 	if (!vma_migratable(walk->vma)) {
591 		/*
592 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 		 * stopped walking current vma.
594 		 * Detecting misplaced folio but allow migrating folios which
595 		 * have been queued.
596 		 */
597 		ret = 1;
598 		goto unlock;
599 	}
600 
601 	/*
602 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
603 	 * is shared it is likely not worth migrating.
604 	 *
605 	 * To check if the folio is shared, ideally we want to make sure
606 	 * every page is mapped to the same process. Doing that is very
607 	 * expensive, so check the estimated mapcount of the folio instead.
608 	 */
609 	if (flags & (MPOL_MF_MOVE_ALL) ||
610 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
611 	     !hugetlb_pmd_shared(pte))) {
612 		if (isolate_hugetlb(folio, qp->pagelist) &&
613 			(flags & MPOL_MF_STRICT))
614 			/*
615 			 * Failed to isolate folio but allow migrating pages
616 			 * which have been queued.
617 			 */
618 			ret = 1;
619 	}
620 unlock:
621 	spin_unlock(ptl);
622 #else
623 	BUG();
624 #endif
625 	return ret;
626 }
627 
628 #ifdef CONFIG_NUMA_BALANCING
629 /*
630  * This is used to mark a range of virtual addresses to be inaccessible.
631  * These are later cleared by a NUMA hinting fault. Depending on these
632  * faults, pages may be migrated for better NUMA placement.
633  *
634  * This is assuming that NUMA faults are handled using PROT_NONE. If
635  * an architecture makes a different choice, it will need further
636  * changes to the core.
637  */
638 unsigned long change_prot_numa(struct vm_area_struct *vma,
639 			unsigned long addr, unsigned long end)
640 {
641 	struct mmu_gather tlb;
642 	long nr_updated;
643 
644 	tlb_gather_mmu(&tlb, vma->vm_mm);
645 
646 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
647 	if (nr_updated > 0)
648 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
649 
650 	tlb_finish_mmu(&tlb);
651 
652 	return nr_updated;
653 }
654 #else
655 static unsigned long change_prot_numa(struct vm_area_struct *vma,
656 			unsigned long addr, unsigned long end)
657 {
658 	return 0;
659 }
660 #endif /* CONFIG_NUMA_BALANCING */
661 
662 static int queue_pages_test_walk(unsigned long start, unsigned long end,
663 				struct mm_walk *walk)
664 {
665 	struct vm_area_struct *next, *vma = walk->vma;
666 	struct queue_pages *qp = walk->private;
667 	unsigned long endvma = vma->vm_end;
668 	unsigned long flags = qp->flags;
669 
670 	/* range check first */
671 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
672 
673 	if (!qp->first) {
674 		qp->first = vma;
675 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 			(qp->start < vma->vm_start))
677 			/* hole at head side of range */
678 			return -EFAULT;
679 	}
680 	next = find_vma(vma->vm_mm, vma->vm_end);
681 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
682 		((vma->vm_end < qp->end) &&
683 		(!next || vma->vm_end < next->vm_start)))
684 		/* hole at middle or tail of range */
685 		return -EFAULT;
686 
687 	/*
688 	 * Need check MPOL_MF_STRICT to return -EIO if possible
689 	 * regardless of vma_migratable
690 	 */
691 	if (!vma_migratable(vma) &&
692 	    !(flags & MPOL_MF_STRICT))
693 		return 1;
694 
695 	if (endvma > end)
696 		endvma = end;
697 
698 	if (flags & MPOL_MF_LAZY) {
699 		/* Similar to task_numa_work, skip inaccessible VMAs */
700 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
701 			!(vma->vm_flags & VM_MIXEDMAP))
702 			change_prot_numa(vma, start, endvma);
703 		return 1;
704 	}
705 
706 	/* queue pages from current vma */
707 	if (flags & MPOL_MF_VALID)
708 		return 0;
709 	return 1;
710 }
711 
712 static const struct mm_walk_ops queue_pages_walk_ops = {
713 	.hugetlb_entry		= queue_folios_hugetlb,
714 	.pmd_entry		= queue_folios_pte_range,
715 	.test_walk		= queue_pages_test_walk,
716 };
717 
718 /*
719  * Walk through page tables and collect pages to be migrated.
720  *
721  * If pages found in a given range are on a set of nodes (determined by
722  * @nodes and @flags,) it's isolated and queued to the pagelist which is
723  * passed via @private.
724  *
725  * queue_pages_range() has three possible return values:
726  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
727  *     specified.
728  * 0 - queue pages successfully or no misplaced page.
729  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
730  *         memory range specified by nodemask and maxnode points outside
731  *         your accessible address space (-EFAULT)
732  */
733 static int
734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
735 		nodemask_t *nodes, unsigned long flags,
736 		struct list_head *pagelist)
737 {
738 	int err;
739 	struct queue_pages qp = {
740 		.pagelist = pagelist,
741 		.flags = flags,
742 		.nmask = nodes,
743 		.start = start,
744 		.end = end,
745 		.first = NULL,
746 	};
747 
748 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
749 
750 	if (!qp.first)
751 		/* whole range in hole */
752 		err = -EFAULT;
753 
754 	return err;
755 }
756 
757 /*
758  * Apply policy to a single VMA
759  * This must be called with the mmap_lock held for writing.
760  */
761 static int vma_replace_policy(struct vm_area_struct *vma,
762 						struct mempolicy *pol)
763 {
764 	int err;
765 	struct mempolicy *old;
766 	struct mempolicy *new;
767 
768 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
769 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
770 		 vma->vm_ops, vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
772 
773 	new = mpol_dup(pol);
774 	if (IS_ERR(new))
775 		return PTR_ERR(new);
776 
777 	if (vma->vm_ops && vma->vm_ops->set_policy) {
778 		err = vma->vm_ops->set_policy(vma, new);
779 		if (err)
780 			goto err_out;
781 	}
782 
783 	old = vma->vm_policy;
784 	vma->vm_policy = new; /* protected by mmap_lock */
785 	mpol_put(old);
786 
787 	return 0;
788  err_out:
789 	mpol_put(new);
790 	return err;
791 }
792 
793 /* Step 2: apply policy to a range and do splits. */
794 static int mbind_range(struct mm_struct *mm, unsigned long start,
795 		       unsigned long end, struct mempolicy *new_pol)
796 {
797 	VMA_ITERATOR(vmi, mm, start);
798 	struct vm_area_struct *prev;
799 	struct vm_area_struct *vma;
800 	int err = 0;
801 	pgoff_t pgoff;
802 
803 	prev = vma_prev(&vmi);
804 	vma = vma_find(&vmi, end);
805 	if (WARN_ON(!vma))
806 		return 0;
807 
808 	if (start > vma->vm_start)
809 		prev = vma;
810 
811 	do {
812 		unsigned long vmstart = max(start, vma->vm_start);
813 		unsigned long vmend = min(end, vma->vm_end);
814 
815 		if (mpol_equal(vma_policy(vma), new_pol))
816 			goto next;
817 
818 		pgoff = vma->vm_pgoff +
819 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
820 		prev = vma_merge(&vmi, mm, prev, vmstart, vmend, vma->vm_flags,
821 				 vma->anon_vma, vma->vm_file, pgoff,
822 				 new_pol, vma->vm_userfaultfd_ctx,
823 				 anon_vma_name(vma));
824 		if (prev) {
825 			vma = prev;
826 			goto replace;
827 		}
828 		if (vma->vm_start != vmstart) {
829 			err = split_vma(&vmi, vma, vmstart, 1);
830 			if (err)
831 				goto out;
832 		}
833 		if (vma->vm_end != vmend) {
834 			err = split_vma(&vmi, vma, vmend, 0);
835 			if (err)
836 				goto out;
837 		}
838 replace:
839 		err = vma_replace_policy(vma, new_pol);
840 		if (err)
841 			goto out;
842 next:
843 		prev = vma;
844 	} for_each_vma_range(vmi, vma, end);
845 
846 out:
847 	return err;
848 }
849 
850 /* Set the process memory policy */
851 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
852 			     nodemask_t *nodes)
853 {
854 	struct mempolicy *new, *old;
855 	NODEMASK_SCRATCH(scratch);
856 	int ret;
857 
858 	if (!scratch)
859 		return -ENOMEM;
860 
861 	new = mpol_new(mode, flags, nodes);
862 	if (IS_ERR(new)) {
863 		ret = PTR_ERR(new);
864 		goto out;
865 	}
866 
867 	task_lock(current);
868 	ret = mpol_set_nodemask(new, nodes, scratch);
869 	if (ret) {
870 		task_unlock(current);
871 		mpol_put(new);
872 		goto out;
873 	}
874 
875 	old = current->mempolicy;
876 	current->mempolicy = new;
877 	if (new && new->mode == MPOL_INTERLEAVE)
878 		current->il_prev = MAX_NUMNODES-1;
879 	task_unlock(current);
880 	mpol_put(old);
881 	ret = 0;
882 out:
883 	NODEMASK_SCRATCH_FREE(scratch);
884 	return ret;
885 }
886 
887 /*
888  * Return nodemask for policy for get_mempolicy() query
889  *
890  * Called with task's alloc_lock held
891  */
892 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
893 {
894 	nodes_clear(*nodes);
895 	if (p == &default_policy)
896 		return;
897 
898 	switch (p->mode) {
899 	case MPOL_BIND:
900 	case MPOL_INTERLEAVE:
901 	case MPOL_PREFERRED:
902 	case MPOL_PREFERRED_MANY:
903 		*nodes = p->nodes;
904 		break;
905 	case MPOL_LOCAL:
906 		/* return empty node mask for local allocation */
907 		break;
908 	default:
909 		BUG();
910 	}
911 }
912 
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 	struct page *p = NULL;
916 	int ret;
917 
918 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 	if (ret > 0) {
920 		ret = page_to_nid(p);
921 		put_page(p);
922 	}
923 	return ret;
924 }
925 
926 /* Retrieve NUMA policy */
927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 			     unsigned long addr, unsigned long flags)
929 {
930 	int err;
931 	struct mm_struct *mm = current->mm;
932 	struct vm_area_struct *vma = NULL;
933 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934 
935 	if (flags &
936 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 		return -EINVAL;
938 
939 	if (flags & MPOL_F_MEMS_ALLOWED) {
940 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 			return -EINVAL;
942 		*policy = 0;	/* just so it's initialized */
943 		task_lock(current);
944 		*nmask  = cpuset_current_mems_allowed;
945 		task_unlock(current);
946 		return 0;
947 	}
948 
949 	if (flags & MPOL_F_ADDR) {
950 		/*
951 		 * Do NOT fall back to task policy if the
952 		 * vma/shared policy at addr is NULL.  We
953 		 * want to return MPOL_DEFAULT in this case.
954 		 */
955 		mmap_read_lock(mm);
956 		vma = vma_lookup(mm, addr);
957 		if (!vma) {
958 			mmap_read_unlock(mm);
959 			return -EFAULT;
960 		}
961 		if (vma->vm_ops && vma->vm_ops->get_policy)
962 			pol = vma->vm_ops->get_policy(vma, addr);
963 		else
964 			pol = vma->vm_policy;
965 	} else if (addr)
966 		return -EINVAL;
967 
968 	if (!pol)
969 		pol = &default_policy;	/* indicates default behavior */
970 
971 	if (flags & MPOL_F_NODE) {
972 		if (flags & MPOL_F_ADDR) {
973 			/*
974 			 * Take a refcount on the mpol, because we are about to
975 			 * drop the mmap_lock, after which only "pol" remains
976 			 * valid, "vma" is stale.
977 			 */
978 			pol_refcount = pol;
979 			vma = NULL;
980 			mpol_get(pol);
981 			mmap_read_unlock(mm);
982 			err = lookup_node(mm, addr);
983 			if (err < 0)
984 				goto out;
985 			*policy = err;
986 		} else if (pol == current->mempolicy &&
987 				pol->mode == MPOL_INTERLEAVE) {
988 			*policy = next_node_in(current->il_prev, pol->nodes);
989 		} else {
990 			err = -EINVAL;
991 			goto out;
992 		}
993 	} else {
994 		*policy = pol == &default_policy ? MPOL_DEFAULT :
995 						pol->mode;
996 		/*
997 		 * Internal mempolicy flags must be masked off before exposing
998 		 * the policy to userspace.
999 		 */
1000 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1001 	}
1002 
1003 	err = 0;
1004 	if (nmask) {
1005 		if (mpol_store_user_nodemask(pol)) {
1006 			*nmask = pol->w.user_nodemask;
1007 		} else {
1008 			task_lock(current);
1009 			get_policy_nodemask(pol, nmask);
1010 			task_unlock(current);
1011 		}
1012 	}
1013 
1014  out:
1015 	mpol_cond_put(pol);
1016 	if (vma)
1017 		mmap_read_unlock(mm);
1018 	if (pol_refcount)
1019 		mpol_put(pol_refcount);
1020 	return err;
1021 }
1022 
1023 #ifdef CONFIG_MIGRATION
1024 /*
1025  * page migration, thp tail pages can be passed.
1026  */
1027 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1028 				unsigned long flags)
1029 {
1030 	struct page *head = compound_head(page);
1031 	/*
1032 	 * Avoid migrating a page that is shared with others.
1033 	 */
1034 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1035 		if (!isolate_lru_page(head)) {
1036 			list_add_tail(&head->lru, pagelist);
1037 			mod_node_page_state(page_pgdat(head),
1038 				NR_ISOLATED_ANON + page_is_file_lru(head),
1039 				thp_nr_pages(head));
1040 		} else if (flags & MPOL_MF_STRICT) {
1041 			/*
1042 			 * Non-movable page may reach here.  And, there may be
1043 			 * temporary off LRU pages or non-LRU movable pages.
1044 			 * Treat them as unmovable pages since they can't be
1045 			 * isolated, so they can't be moved at the moment.  It
1046 			 * should return -EIO for this case too.
1047 			 */
1048 			return -EIO;
1049 		}
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 /*
1056  * Migrate pages from one node to a target node.
1057  * Returns error or the number of pages not migrated.
1058  */
1059 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1060 			   int flags)
1061 {
1062 	nodemask_t nmask;
1063 	struct vm_area_struct *vma;
1064 	LIST_HEAD(pagelist);
1065 	int err = 0;
1066 	struct migration_target_control mtc = {
1067 		.nid = dest,
1068 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1069 	};
1070 
1071 	nodes_clear(nmask);
1072 	node_set(source, nmask);
1073 
1074 	/*
1075 	 * This does not "check" the range but isolates all pages that
1076 	 * need migration.  Between passing in the full user address
1077 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1078 	 */
1079 	vma = find_vma(mm, 0);
1080 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1081 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1082 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1083 
1084 	if (!list_empty(&pagelist)) {
1085 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1086 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1087 		if (err)
1088 			putback_movable_pages(&pagelist);
1089 	}
1090 
1091 	return err;
1092 }
1093 
1094 /*
1095  * Move pages between the two nodesets so as to preserve the physical
1096  * layout as much as possible.
1097  *
1098  * Returns the number of page that could not be moved.
1099  */
1100 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1101 		     const nodemask_t *to, int flags)
1102 {
1103 	int busy = 0;
1104 	int err = 0;
1105 	nodemask_t tmp;
1106 
1107 	lru_cache_disable();
1108 
1109 	mmap_read_lock(mm);
1110 
1111 	/*
1112 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1113 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1114 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1115 	 * The pair of nodemasks 'to' and 'from' define the map.
1116 	 *
1117 	 * If no pair of bits is found that way, fallback to picking some
1118 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1119 	 * 'source' and 'dest' bits are the same, this represents a node
1120 	 * that will be migrating to itself, so no pages need move.
1121 	 *
1122 	 * If no bits are left in 'tmp', or if all remaining bits left
1123 	 * in 'tmp' correspond to the same bit in 'to', return false
1124 	 * (nothing left to migrate).
1125 	 *
1126 	 * This lets us pick a pair of nodes to migrate between, such that
1127 	 * if possible the dest node is not already occupied by some other
1128 	 * source node, minimizing the risk of overloading the memory on a
1129 	 * node that would happen if we migrated incoming memory to a node
1130 	 * before migrating outgoing memory source that same node.
1131 	 *
1132 	 * A single scan of tmp is sufficient.  As we go, we remember the
1133 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1134 	 * that not only moved, but what's better, moved to an empty slot
1135 	 * (d is not set in tmp), then we break out then, with that pair.
1136 	 * Otherwise when we finish scanning from_tmp, we at least have the
1137 	 * most recent <s, d> pair that moved.  If we get all the way through
1138 	 * the scan of tmp without finding any node that moved, much less
1139 	 * moved to an empty node, then there is nothing left worth migrating.
1140 	 */
1141 
1142 	tmp = *from;
1143 	while (!nodes_empty(tmp)) {
1144 		int s, d;
1145 		int source = NUMA_NO_NODE;
1146 		int dest = 0;
1147 
1148 		for_each_node_mask(s, tmp) {
1149 
1150 			/*
1151 			 * do_migrate_pages() tries to maintain the relative
1152 			 * node relationship of the pages established between
1153 			 * threads and memory areas.
1154                          *
1155 			 * However if the number of source nodes is not equal to
1156 			 * the number of destination nodes we can not preserve
1157 			 * this node relative relationship.  In that case, skip
1158 			 * copying memory from a node that is in the destination
1159 			 * mask.
1160 			 *
1161 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1162 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1163 			 */
1164 
1165 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1166 						(node_isset(s, *to)))
1167 				continue;
1168 
1169 			d = node_remap(s, *from, *to);
1170 			if (s == d)
1171 				continue;
1172 
1173 			source = s;	/* Node moved. Memorize */
1174 			dest = d;
1175 
1176 			/* dest not in remaining from nodes? */
1177 			if (!node_isset(dest, tmp))
1178 				break;
1179 		}
1180 		if (source == NUMA_NO_NODE)
1181 			break;
1182 
1183 		node_clear(source, tmp);
1184 		err = migrate_to_node(mm, source, dest, flags);
1185 		if (err > 0)
1186 			busy += err;
1187 		if (err < 0)
1188 			break;
1189 	}
1190 	mmap_read_unlock(mm);
1191 
1192 	lru_cache_enable();
1193 	if (err < 0)
1194 		return err;
1195 	return busy;
1196 
1197 }
1198 
1199 /*
1200  * Allocate a new page for page migration based on vma policy.
1201  * Start by assuming the page is mapped by the same vma as contains @start.
1202  * Search forward from there, if not.  N.B., this assumes that the
1203  * list of pages handed to migrate_pages()--which is how we get here--
1204  * is in virtual address order.
1205  */
1206 static struct page *new_page(struct page *page, unsigned long start)
1207 {
1208 	struct folio *dst, *src = page_folio(page);
1209 	struct vm_area_struct *vma;
1210 	unsigned long address;
1211 	VMA_ITERATOR(vmi, current->mm, start);
1212 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1213 
1214 	for_each_vma(vmi, vma) {
1215 		address = page_address_in_vma(page, vma);
1216 		if (address != -EFAULT)
1217 			break;
1218 	}
1219 
1220 	if (folio_test_hugetlb(src)) {
1221 		dst = alloc_hugetlb_folio_vma(folio_hstate(src),
1222 				vma, address);
1223 		return &dst->page;
1224 	}
1225 
1226 	if (folio_test_large(src))
1227 		gfp = GFP_TRANSHUGE;
1228 
1229 	/*
1230 	 * if !vma, vma_alloc_folio() will use task or system default policy
1231 	 */
1232 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1233 			folio_test_large(src));
1234 	return &dst->page;
1235 }
1236 #else
1237 
1238 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1239 				unsigned long flags)
1240 {
1241 	return -EIO;
1242 }
1243 
1244 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1245 		     const nodemask_t *to, int flags)
1246 {
1247 	return -ENOSYS;
1248 }
1249 
1250 static struct page *new_page(struct page *page, unsigned long start)
1251 {
1252 	return NULL;
1253 }
1254 #endif
1255 
1256 static long do_mbind(unsigned long start, unsigned long len,
1257 		     unsigned short mode, unsigned short mode_flags,
1258 		     nodemask_t *nmask, unsigned long flags)
1259 {
1260 	struct mm_struct *mm = current->mm;
1261 	struct mempolicy *new;
1262 	unsigned long end;
1263 	int err;
1264 	int ret;
1265 	LIST_HEAD(pagelist);
1266 
1267 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1268 		return -EINVAL;
1269 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1270 		return -EPERM;
1271 
1272 	if (start & ~PAGE_MASK)
1273 		return -EINVAL;
1274 
1275 	if (mode == MPOL_DEFAULT)
1276 		flags &= ~MPOL_MF_STRICT;
1277 
1278 	len = PAGE_ALIGN(len);
1279 	end = start + len;
1280 
1281 	if (end < start)
1282 		return -EINVAL;
1283 	if (end == start)
1284 		return 0;
1285 
1286 	new = mpol_new(mode, mode_flags, nmask);
1287 	if (IS_ERR(new))
1288 		return PTR_ERR(new);
1289 
1290 	if (flags & MPOL_MF_LAZY)
1291 		new->flags |= MPOL_F_MOF;
1292 
1293 	/*
1294 	 * If we are using the default policy then operation
1295 	 * on discontinuous address spaces is okay after all
1296 	 */
1297 	if (!new)
1298 		flags |= MPOL_MF_DISCONTIG_OK;
1299 
1300 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1301 		 start, start + len, mode, mode_flags,
1302 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1303 
1304 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1305 
1306 		lru_cache_disable();
1307 	}
1308 	{
1309 		NODEMASK_SCRATCH(scratch);
1310 		if (scratch) {
1311 			mmap_write_lock(mm);
1312 			err = mpol_set_nodemask(new, nmask, scratch);
1313 			if (err)
1314 				mmap_write_unlock(mm);
1315 		} else
1316 			err = -ENOMEM;
1317 		NODEMASK_SCRATCH_FREE(scratch);
1318 	}
1319 	if (err)
1320 		goto mpol_out;
1321 
1322 	ret = queue_pages_range(mm, start, end, nmask,
1323 			  flags | MPOL_MF_INVERT, &pagelist);
1324 
1325 	if (ret < 0) {
1326 		err = ret;
1327 		goto up_out;
1328 	}
1329 
1330 	err = mbind_range(mm, start, end, new);
1331 
1332 	if (!err) {
1333 		int nr_failed = 0;
1334 
1335 		if (!list_empty(&pagelist)) {
1336 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1337 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1338 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1339 			if (nr_failed)
1340 				putback_movable_pages(&pagelist);
1341 		}
1342 
1343 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1344 			err = -EIO;
1345 	} else {
1346 up_out:
1347 		if (!list_empty(&pagelist))
1348 			putback_movable_pages(&pagelist);
1349 	}
1350 
1351 	mmap_write_unlock(mm);
1352 mpol_out:
1353 	mpol_put(new);
1354 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1355 		lru_cache_enable();
1356 	return err;
1357 }
1358 
1359 /*
1360  * User space interface with variable sized bitmaps for nodelists.
1361  */
1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1363 		      unsigned long maxnode)
1364 {
1365 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1366 	int ret;
1367 
1368 	if (in_compat_syscall())
1369 		ret = compat_get_bitmap(mask,
1370 					(const compat_ulong_t __user *)nmask,
1371 					maxnode);
1372 	else
1373 		ret = copy_from_user(mask, nmask,
1374 				     nlongs * sizeof(unsigned long));
1375 
1376 	if (ret)
1377 		return -EFAULT;
1378 
1379 	if (maxnode % BITS_PER_LONG)
1380 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1381 
1382 	return 0;
1383 }
1384 
1385 /* Copy a node mask from user space. */
1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 		     unsigned long maxnode)
1388 {
1389 	--maxnode;
1390 	nodes_clear(*nodes);
1391 	if (maxnode == 0 || !nmask)
1392 		return 0;
1393 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1394 		return -EINVAL;
1395 
1396 	/*
1397 	 * When the user specified more nodes than supported just check
1398 	 * if the non supported part is all zero, one word at a time,
1399 	 * starting at the end.
1400 	 */
1401 	while (maxnode > MAX_NUMNODES) {
1402 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1403 		unsigned long t;
1404 
1405 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1406 			return -EFAULT;
1407 
1408 		if (maxnode - bits >= MAX_NUMNODES) {
1409 			maxnode -= bits;
1410 		} else {
1411 			maxnode = MAX_NUMNODES;
1412 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1413 		}
1414 		if (t)
1415 			return -EINVAL;
1416 	}
1417 
1418 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1419 }
1420 
1421 /* Copy a kernel node mask to user space */
1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1423 			      nodemask_t *nodes)
1424 {
1425 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1426 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1427 	bool compat = in_compat_syscall();
1428 
1429 	if (compat)
1430 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1431 
1432 	if (copy > nbytes) {
1433 		if (copy > PAGE_SIZE)
1434 			return -EINVAL;
1435 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1436 			return -EFAULT;
1437 		copy = nbytes;
1438 		maxnode = nr_node_ids;
1439 	}
1440 
1441 	if (compat)
1442 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1443 					 nodes_addr(*nodes), maxnode);
1444 
1445 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1446 }
1447 
1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1450 {
1451 	*flags = *mode & MPOL_MODE_FLAGS;
1452 	*mode &= ~MPOL_MODE_FLAGS;
1453 
1454 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1455 		return -EINVAL;
1456 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1457 		return -EINVAL;
1458 	if (*flags & MPOL_F_NUMA_BALANCING) {
1459 		if (*mode != MPOL_BIND)
1460 			return -EINVAL;
1461 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1462 	}
1463 	return 0;
1464 }
1465 
1466 static long kernel_mbind(unsigned long start, unsigned long len,
1467 			 unsigned long mode, const unsigned long __user *nmask,
1468 			 unsigned long maxnode, unsigned int flags)
1469 {
1470 	unsigned short mode_flags;
1471 	nodemask_t nodes;
1472 	int lmode = mode;
1473 	int err;
1474 
1475 	start = untagged_addr(start);
1476 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1477 	if (err)
1478 		return err;
1479 
1480 	err = get_nodes(&nodes, nmask, maxnode);
1481 	if (err)
1482 		return err;
1483 
1484 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1485 }
1486 
1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1488 		unsigned long, home_node, unsigned long, flags)
1489 {
1490 	struct mm_struct *mm = current->mm;
1491 	struct vm_area_struct *vma;
1492 	struct mempolicy *new, *old;
1493 	unsigned long vmstart;
1494 	unsigned long vmend;
1495 	unsigned long end;
1496 	int err = -ENOENT;
1497 	VMA_ITERATOR(vmi, mm, start);
1498 
1499 	start = untagged_addr(start);
1500 	if (start & ~PAGE_MASK)
1501 		return -EINVAL;
1502 	/*
1503 	 * flags is used for future extension if any.
1504 	 */
1505 	if (flags != 0)
1506 		return -EINVAL;
1507 
1508 	/*
1509 	 * Check home_node is online to avoid accessing uninitialized
1510 	 * NODE_DATA.
1511 	 */
1512 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1513 		return -EINVAL;
1514 
1515 	len = PAGE_ALIGN(len);
1516 	end = start + len;
1517 
1518 	if (end < start)
1519 		return -EINVAL;
1520 	if (end == start)
1521 		return 0;
1522 	mmap_write_lock(mm);
1523 	for_each_vma_range(vmi, vma, end) {
1524 		/*
1525 		 * If any vma in the range got policy other than MPOL_BIND
1526 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1527 		 * the home node for vmas we already updated before.
1528 		 */
1529 		old = vma_policy(vma);
1530 		if (!old)
1531 			continue;
1532 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1533 			err = -EOPNOTSUPP;
1534 			break;
1535 		}
1536 		new = mpol_dup(old);
1537 		if (IS_ERR(new)) {
1538 			err = PTR_ERR(new);
1539 			break;
1540 		}
1541 
1542 		new->home_node = home_node;
1543 		vmstart = max(start, vma->vm_start);
1544 		vmend   = min(end, vma->vm_end);
1545 		err = mbind_range(mm, vmstart, vmend, new);
1546 		mpol_put(new);
1547 		if (err)
1548 			break;
1549 	}
1550 	mmap_write_unlock(mm);
1551 	return err;
1552 }
1553 
1554 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1555 		unsigned long, mode, const unsigned long __user *, nmask,
1556 		unsigned long, maxnode, unsigned int, flags)
1557 {
1558 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1559 }
1560 
1561 /* Set the process memory policy */
1562 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1563 				 unsigned long maxnode)
1564 {
1565 	unsigned short mode_flags;
1566 	nodemask_t nodes;
1567 	int lmode = mode;
1568 	int err;
1569 
1570 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1571 	if (err)
1572 		return err;
1573 
1574 	err = get_nodes(&nodes, nmask, maxnode);
1575 	if (err)
1576 		return err;
1577 
1578 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1579 }
1580 
1581 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1582 		unsigned long, maxnode)
1583 {
1584 	return kernel_set_mempolicy(mode, nmask, maxnode);
1585 }
1586 
1587 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1588 				const unsigned long __user *old_nodes,
1589 				const unsigned long __user *new_nodes)
1590 {
1591 	struct mm_struct *mm = NULL;
1592 	struct task_struct *task;
1593 	nodemask_t task_nodes;
1594 	int err;
1595 	nodemask_t *old;
1596 	nodemask_t *new;
1597 	NODEMASK_SCRATCH(scratch);
1598 
1599 	if (!scratch)
1600 		return -ENOMEM;
1601 
1602 	old = &scratch->mask1;
1603 	new = &scratch->mask2;
1604 
1605 	err = get_nodes(old, old_nodes, maxnode);
1606 	if (err)
1607 		goto out;
1608 
1609 	err = get_nodes(new, new_nodes, maxnode);
1610 	if (err)
1611 		goto out;
1612 
1613 	/* Find the mm_struct */
1614 	rcu_read_lock();
1615 	task = pid ? find_task_by_vpid(pid) : current;
1616 	if (!task) {
1617 		rcu_read_unlock();
1618 		err = -ESRCH;
1619 		goto out;
1620 	}
1621 	get_task_struct(task);
1622 
1623 	err = -EINVAL;
1624 
1625 	/*
1626 	 * Check if this process has the right to modify the specified process.
1627 	 * Use the regular "ptrace_may_access()" checks.
1628 	 */
1629 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1630 		rcu_read_unlock();
1631 		err = -EPERM;
1632 		goto out_put;
1633 	}
1634 	rcu_read_unlock();
1635 
1636 	task_nodes = cpuset_mems_allowed(task);
1637 	/* Is the user allowed to access the target nodes? */
1638 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1639 		err = -EPERM;
1640 		goto out_put;
1641 	}
1642 
1643 	task_nodes = cpuset_mems_allowed(current);
1644 	nodes_and(*new, *new, task_nodes);
1645 	if (nodes_empty(*new))
1646 		goto out_put;
1647 
1648 	err = security_task_movememory(task);
1649 	if (err)
1650 		goto out_put;
1651 
1652 	mm = get_task_mm(task);
1653 	put_task_struct(task);
1654 
1655 	if (!mm) {
1656 		err = -EINVAL;
1657 		goto out;
1658 	}
1659 
1660 	err = do_migrate_pages(mm, old, new,
1661 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1662 
1663 	mmput(mm);
1664 out:
1665 	NODEMASK_SCRATCH_FREE(scratch);
1666 
1667 	return err;
1668 
1669 out_put:
1670 	put_task_struct(task);
1671 	goto out;
1672 
1673 }
1674 
1675 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1676 		const unsigned long __user *, old_nodes,
1677 		const unsigned long __user *, new_nodes)
1678 {
1679 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1680 }
1681 
1682 
1683 /* Retrieve NUMA policy */
1684 static int kernel_get_mempolicy(int __user *policy,
1685 				unsigned long __user *nmask,
1686 				unsigned long maxnode,
1687 				unsigned long addr,
1688 				unsigned long flags)
1689 {
1690 	int err;
1691 	int pval;
1692 	nodemask_t nodes;
1693 
1694 	if (nmask != NULL && maxnode < nr_node_ids)
1695 		return -EINVAL;
1696 
1697 	addr = untagged_addr(addr);
1698 
1699 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1700 
1701 	if (err)
1702 		return err;
1703 
1704 	if (policy && put_user(pval, policy))
1705 		return -EFAULT;
1706 
1707 	if (nmask)
1708 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1709 
1710 	return err;
1711 }
1712 
1713 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1714 		unsigned long __user *, nmask, unsigned long, maxnode,
1715 		unsigned long, addr, unsigned long, flags)
1716 {
1717 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1718 }
1719 
1720 bool vma_migratable(struct vm_area_struct *vma)
1721 {
1722 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1723 		return false;
1724 
1725 	/*
1726 	 * DAX device mappings require predictable access latency, so avoid
1727 	 * incurring periodic faults.
1728 	 */
1729 	if (vma_is_dax(vma))
1730 		return false;
1731 
1732 	if (is_vm_hugetlb_page(vma) &&
1733 		!hugepage_migration_supported(hstate_vma(vma)))
1734 		return false;
1735 
1736 	/*
1737 	 * Migration allocates pages in the highest zone. If we cannot
1738 	 * do so then migration (at least from node to node) is not
1739 	 * possible.
1740 	 */
1741 	if (vma->vm_file &&
1742 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1743 			< policy_zone)
1744 		return false;
1745 	return true;
1746 }
1747 
1748 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1749 						unsigned long addr)
1750 {
1751 	struct mempolicy *pol = NULL;
1752 
1753 	if (vma) {
1754 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1755 			pol = vma->vm_ops->get_policy(vma, addr);
1756 		} else if (vma->vm_policy) {
1757 			pol = vma->vm_policy;
1758 
1759 			/*
1760 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1761 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1762 			 * count on these policies which will be dropped by
1763 			 * mpol_cond_put() later
1764 			 */
1765 			if (mpol_needs_cond_ref(pol))
1766 				mpol_get(pol);
1767 		}
1768 	}
1769 
1770 	return pol;
1771 }
1772 
1773 /*
1774  * get_vma_policy(@vma, @addr)
1775  * @vma: virtual memory area whose policy is sought
1776  * @addr: address in @vma for shared policy lookup
1777  *
1778  * Returns effective policy for a VMA at specified address.
1779  * Falls back to current->mempolicy or system default policy, as necessary.
1780  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1781  * count--added by the get_policy() vm_op, as appropriate--to protect against
1782  * freeing by another task.  It is the caller's responsibility to free the
1783  * extra reference for shared policies.
1784  */
1785 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1786 						unsigned long addr)
1787 {
1788 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1789 
1790 	if (!pol)
1791 		pol = get_task_policy(current);
1792 
1793 	return pol;
1794 }
1795 
1796 bool vma_policy_mof(struct vm_area_struct *vma)
1797 {
1798 	struct mempolicy *pol;
1799 
1800 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1801 		bool ret = false;
1802 
1803 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1804 		if (pol && (pol->flags & MPOL_F_MOF))
1805 			ret = true;
1806 		mpol_cond_put(pol);
1807 
1808 		return ret;
1809 	}
1810 
1811 	pol = vma->vm_policy;
1812 	if (!pol)
1813 		pol = get_task_policy(current);
1814 
1815 	return pol->flags & MPOL_F_MOF;
1816 }
1817 
1818 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1819 {
1820 	enum zone_type dynamic_policy_zone = policy_zone;
1821 
1822 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1823 
1824 	/*
1825 	 * if policy->nodes has movable memory only,
1826 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1827 	 *
1828 	 * policy->nodes is intersect with node_states[N_MEMORY].
1829 	 * so if the following test fails, it implies
1830 	 * policy->nodes has movable memory only.
1831 	 */
1832 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1833 		dynamic_policy_zone = ZONE_MOVABLE;
1834 
1835 	return zone >= dynamic_policy_zone;
1836 }
1837 
1838 /*
1839  * Return a nodemask representing a mempolicy for filtering nodes for
1840  * page allocation
1841  */
1842 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1843 {
1844 	int mode = policy->mode;
1845 
1846 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1847 	if (unlikely(mode == MPOL_BIND) &&
1848 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1849 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1850 		return &policy->nodes;
1851 
1852 	if (mode == MPOL_PREFERRED_MANY)
1853 		return &policy->nodes;
1854 
1855 	return NULL;
1856 }
1857 
1858 /*
1859  * Return the  preferred node id for 'prefer' mempolicy, and return
1860  * the given id for all other policies.
1861  *
1862  * policy_node() is always coupled with policy_nodemask(), which
1863  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1864  */
1865 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1866 {
1867 	if (policy->mode == MPOL_PREFERRED) {
1868 		nd = first_node(policy->nodes);
1869 	} else {
1870 		/*
1871 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1872 		 * because we might easily break the expectation to stay on the
1873 		 * requested node and not break the policy.
1874 		 */
1875 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1876 	}
1877 
1878 	if ((policy->mode == MPOL_BIND ||
1879 	     policy->mode == MPOL_PREFERRED_MANY) &&
1880 	    policy->home_node != NUMA_NO_NODE)
1881 		return policy->home_node;
1882 
1883 	return nd;
1884 }
1885 
1886 /* Do dynamic interleaving for a process */
1887 static unsigned interleave_nodes(struct mempolicy *policy)
1888 {
1889 	unsigned next;
1890 	struct task_struct *me = current;
1891 
1892 	next = next_node_in(me->il_prev, policy->nodes);
1893 	if (next < MAX_NUMNODES)
1894 		me->il_prev = next;
1895 	return next;
1896 }
1897 
1898 /*
1899  * Depending on the memory policy provide a node from which to allocate the
1900  * next slab entry.
1901  */
1902 unsigned int mempolicy_slab_node(void)
1903 {
1904 	struct mempolicy *policy;
1905 	int node = numa_mem_id();
1906 
1907 	if (!in_task())
1908 		return node;
1909 
1910 	policy = current->mempolicy;
1911 	if (!policy)
1912 		return node;
1913 
1914 	switch (policy->mode) {
1915 	case MPOL_PREFERRED:
1916 		return first_node(policy->nodes);
1917 
1918 	case MPOL_INTERLEAVE:
1919 		return interleave_nodes(policy);
1920 
1921 	case MPOL_BIND:
1922 	case MPOL_PREFERRED_MANY:
1923 	{
1924 		struct zoneref *z;
1925 
1926 		/*
1927 		 * Follow bind policy behavior and start allocation at the
1928 		 * first node.
1929 		 */
1930 		struct zonelist *zonelist;
1931 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1932 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1933 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1934 							&policy->nodes);
1935 		return z->zone ? zone_to_nid(z->zone) : node;
1936 	}
1937 	case MPOL_LOCAL:
1938 		return node;
1939 
1940 	default:
1941 		BUG();
1942 	}
1943 }
1944 
1945 /*
1946  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1947  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1948  * number of present nodes.
1949  */
1950 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1951 {
1952 	nodemask_t nodemask = pol->nodes;
1953 	unsigned int target, nnodes;
1954 	int i;
1955 	int nid;
1956 	/*
1957 	 * The barrier will stabilize the nodemask in a register or on
1958 	 * the stack so that it will stop changing under the code.
1959 	 *
1960 	 * Between first_node() and next_node(), pol->nodes could be changed
1961 	 * by other threads. So we put pol->nodes in a local stack.
1962 	 */
1963 	barrier();
1964 
1965 	nnodes = nodes_weight(nodemask);
1966 	if (!nnodes)
1967 		return numa_node_id();
1968 	target = (unsigned int)n % nnodes;
1969 	nid = first_node(nodemask);
1970 	for (i = 0; i < target; i++)
1971 		nid = next_node(nid, nodemask);
1972 	return nid;
1973 }
1974 
1975 /* Determine a node number for interleave */
1976 static inline unsigned interleave_nid(struct mempolicy *pol,
1977 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1978 {
1979 	if (vma) {
1980 		unsigned long off;
1981 
1982 		/*
1983 		 * for small pages, there is no difference between
1984 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1985 		 * for huge pages, since vm_pgoff is in units of small
1986 		 * pages, we need to shift off the always 0 bits to get
1987 		 * a useful offset.
1988 		 */
1989 		BUG_ON(shift < PAGE_SHIFT);
1990 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1991 		off += (addr - vma->vm_start) >> shift;
1992 		return offset_il_node(pol, off);
1993 	} else
1994 		return interleave_nodes(pol);
1995 }
1996 
1997 #ifdef CONFIG_HUGETLBFS
1998 /*
1999  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2000  * @vma: virtual memory area whose policy is sought
2001  * @addr: address in @vma for shared policy lookup and interleave policy
2002  * @gfp_flags: for requested zone
2003  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2004  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2005  *
2006  * Returns a nid suitable for a huge page allocation and a pointer
2007  * to the struct mempolicy for conditional unref after allocation.
2008  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2009  * to the mempolicy's @nodemask for filtering the zonelist.
2010  *
2011  * Must be protected by read_mems_allowed_begin()
2012  */
2013 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2014 				struct mempolicy **mpol, nodemask_t **nodemask)
2015 {
2016 	int nid;
2017 	int mode;
2018 
2019 	*mpol = get_vma_policy(vma, addr);
2020 	*nodemask = NULL;
2021 	mode = (*mpol)->mode;
2022 
2023 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2024 		nid = interleave_nid(*mpol, vma, addr,
2025 					huge_page_shift(hstate_vma(vma)));
2026 	} else {
2027 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2028 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2029 			*nodemask = &(*mpol)->nodes;
2030 	}
2031 	return nid;
2032 }
2033 
2034 /*
2035  * init_nodemask_of_mempolicy
2036  *
2037  * If the current task's mempolicy is "default" [NULL], return 'false'
2038  * to indicate default policy.  Otherwise, extract the policy nodemask
2039  * for 'bind' or 'interleave' policy into the argument nodemask, or
2040  * initialize the argument nodemask to contain the single node for
2041  * 'preferred' or 'local' policy and return 'true' to indicate presence
2042  * of non-default mempolicy.
2043  *
2044  * We don't bother with reference counting the mempolicy [mpol_get/put]
2045  * because the current task is examining it's own mempolicy and a task's
2046  * mempolicy is only ever changed by the task itself.
2047  *
2048  * N.B., it is the caller's responsibility to free a returned nodemask.
2049  */
2050 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2051 {
2052 	struct mempolicy *mempolicy;
2053 
2054 	if (!(mask && current->mempolicy))
2055 		return false;
2056 
2057 	task_lock(current);
2058 	mempolicy = current->mempolicy;
2059 	switch (mempolicy->mode) {
2060 	case MPOL_PREFERRED:
2061 	case MPOL_PREFERRED_MANY:
2062 	case MPOL_BIND:
2063 	case MPOL_INTERLEAVE:
2064 		*mask = mempolicy->nodes;
2065 		break;
2066 
2067 	case MPOL_LOCAL:
2068 		init_nodemask_of_node(mask, numa_node_id());
2069 		break;
2070 
2071 	default:
2072 		BUG();
2073 	}
2074 	task_unlock(current);
2075 
2076 	return true;
2077 }
2078 #endif
2079 
2080 /*
2081  * mempolicy_in_oom_domain
2082  *
2083  * If tsk's mempolicy is "bind", check for intersection between mask and
2084  * the policy nodemask. Otherwise, return true for all other policies
2085  * including "interleave", as a tsk with "interleave" policy may have
2086  * memory allocated from all nodes in system.
2087  *
2088  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2089  */
2090 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2091 					const nodemask_t *mask)
2092 {
2093 	struct mempolicy *mempolicy;
2094 	bool ret = true;
2095 
2096 	if (!mask)
2097 		return ret;
2098 
2099 	task_lock(tsk);
2100 	mempolicy = tsk->mempolicy;
2101 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2102 		ret = nodes_intersects(mempolicy->nodes, *mask);
2103 	task_unlock(tsk);
2104 
2105 	return ret;
2106 }
2107 
2108 /* Allocate a page in interleaved policy.
2109    Own path because it needs to do special accounting. */
2110 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2111 					unsigned nid)
2112 {
2113 	struct page *page;
2114 
2115 	page = __alloc_pages(gfp, order, nid, NULL);
2116 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2117 	if (!static_branch_likely(&vm_numa_stat_key))
2118 		return page;
2119 	if (page && page_to_nid(page) == nid) {
2120 		preempt_disable();
2121 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2122 		preempt_enable();
2123 	}
2124 	return page;
2125 }
2126 
2127 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2128 						int nid, struct mempolicy *pol)
2129 {
2130 	struct page *page;
2131 	gfp_t preferred_gfp;
2132 
2133 	/*
2134 	 * This is a two pass approach. The first pass will only try the
2135 	 * preferred nodes but skip the direct reclaim and allow the
2136 	 * allocation to fail, while the second pass will try all the
2137 	 * nodes in system.
2138 	 */
2139 	preferred_gfp = gfp | __GFP_NOWARN;
2140 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2141 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2142 	if (!page)
2143 		page = __alloc_pages(gfp, order, nid, NULL);
2144 
2145 	return page;
2146 }
2147 
2148 /**
2149  * vma_alloc_folio - Allocate a folio for a VMA.
2150  * @gfp: GFP flags.
2151  * @order: Order of the folio.
2152  * @vma: Pointer to VMA or NULL if not available.
2153  * @addr: Virtual address of the allocation.  Must be inside @vma.
2154  * @hugepage: For hugepages try only the preferred node if possible.
2155  *
2156  * Allocate a folio for a specific address in @vma, using the appropriate
2157  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2158  * of the mm_struct of the VMA to prevent it from going away.  Should be
2159  * used for all allocations for folios that will be mapped into user space.
2160  *
2161  * Return: The folio on success or NULL if allocation fails.
2162  */
2163 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2164 		unsigned long addr, bool hugepage)
2165 {
2166 	struct mempolicy *pol;
2167 	int node = numa_node_id();
2168 	struct folio *folio;
2169 	int preferred_nid;
2170 	nodemask_t *nmask;
2171 
2172 	pol = get_vma_policy(vma, addr);
2173 
2174 	if (pol->mode == MPOL_INTERLEAVE) {
2175 		struct page *page;
2176 		unsigned nid;
2177 
2178 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2179 		mpol_cond_put(pol);
2180 		gfp |= __GFP_COMP;
2181 		page = alloc_page_interleave(gfp, order, nid);
2182 		if (page && order > 1)
2183 			prep_transhuge_page(page);
2184 		folio = (struct folio *)page;
2185 		goto out;
2186 	}
2187 
2188 	if (pol->mode == MPOL_PREFERRED_MANY) {
2189 		struct page *page;
2190 
2191 		node = policy_node(gfp, pol, node);
2192 		gfp |= __GFP_COMP;
2193 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2194 		mpol_cond_put(pol);
2195 		if (page && order > 1)
2196 			prep_transhuge_page(page);
2197 		folio = (struct folio *)page;
2198 		goto out;
2199 	}
2200 
2201 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2202 		int hpage_node = node;
2203 
2204 		/*
2205 		 * For hugepage allocation and non-interleave policy which
2206 		 * allows the current node (or other explicitly preferred
2207 		 * node) we only try to allocate from the current/preferred
2208 		 * node and don't fall back to other nodes, as the cost of
2209 		 * remote accesses would likely offset THP benefits.
2210 		 *
2211 		 * If the policy is interleave or does not allow the current
2212 		 * node in its nodemask, we allocate the standard way.
2213 		 */
2214 		if (pol->mode == MPOL_PREFERRED)
2215 			hpage_node = first_node(pol->nodes);
2216 
2217 		nmask = policy_nodemask(gfp, pol);
2218 		if (!nmask || node_isset(hpage_node, *nmask)) {
2219 			mpol_cond_put(pol);
2220 			/*
2221 			 * First, try to allocate THP only on local node, but
2222 			 * don't reclaim unnecessarily, just compact.
2223 			 */
2224 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2225 					__GFP_NORETRY, order, hpage_node);
2226 
2227 			/*
2228 			 * If hugepage allocations are configured to always
2229 			 * synchronous compact or the vma has been madvised
2230 			 * to prefer hugepage backing, retry allowing remote
2231 			 * memory with both reclaim and compact as well.
2232 			 */
2233 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2234 				folio = __folio_alloc(gfp, order, hpage_node,
2235 						      nmask);
2236 
2237 			goto out;
2238 		}
2239 	}
2240 
2241 	nmask = policy_nodemask(gfp, pol);
2242 	preferred_nid = policy_node(gfp, pol, node);
2243 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2244 	mpol_cond_put(pol);
2245 out:
2246 	return folio;
2247 }
2248 EXPORT_SYMBOL(vma_alloc_folio);
2249 
2250 /**
2251  * alloc_pages - Allocate pages.
2252  * @gfp: GFP flags.
2253  * @order: Power of two of number of pages to allocate.
2254  *
2255  * Allocate 1 << @order contiguous pages.  The physical address of the
2256  * first page is naturally aligned (eg an order-3 allocation will be aligned
2257  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2258  * process is honoured when in process context.
2259  *
2260  * Context: Can be called from any context, providing the appropriate GFP
2261  * flags are used.
2262  * Return: The page on success or NULL if allocation fails.
2263  */
2264 struct page *alloc_pages(gfp_t gfp, unsigned order)
2265 {
2266 	struct mempolicy *pol = &default_policy;
2267 	struct page *page;
2268 
2269 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2270 		pol = get_task_policy(current);
2271 
2272 	/*
2273 	 * No reference counting needed for current->mempolicy
2274 	 * nor system default_policy
2275 	 */
2276 	if (pol->mode == MPOL_INTERLEAVE)
2277 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2278 	else if (pol->mode == MPOL_PREFERRED_MANY)
2279 		page = alloc_pages_preferred_many(gfp, order,
2280 				  policy_node(gfp, pol, numa_node_id()), pol);
2281 	else
2282 		page = __alloc_pages(gfp, order,
2283 				policy_node(gfp, pol, numa_node_id()),
2284 				policy_nodemask(gfp, pol));
2285 
2286 	return page;
2287 }
2288 EXPORT_SYMBOL(alloc_pages);
2289 
2290 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2291 {
2292 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2293 
2294 	if (page && order > 1)
2295 		prep_transhuge_page(page);
2296 	return (struct folio *)page;
2297 }
2298 EXPORT_SYMBOL(folio_alloc);
2299 
2300 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2301 		struct mempolicy *pol, unsigned long nr_pages,
2302 		struct page **page_array)
2303 {
2304 	int nodes;
2305 	unsigned long nr_pages_per_node;
2306 	int delta;
2307 	int i;
2308 	unsigned long nr_allocated;
2309 	unsigned long total_allocated = 0;
2310 
2311 	nodes = nodes_weight(pol->nodes);
2312 	nr_pages_per_node = nr_pages / nodes;
2313 	delta = nr_pages - nodes * nr_pages_per_node;
2314 
2315 	for (i = 0; i < nodes; i++) {
2316 		if (delta) {
2317 			nr_allocated = __alloc_pages_bulk(gfp,
2318 					interleave_nodes(pol), NULL,
2319 					nr_pages_per_node + 1, NULL,
2320 					page_array);
2321 			delta--;
2322 		} else {
2323 			nr_allocated = __alloc_pages_bulk(gfp,
2324 					interleave_nodes(pol), NULL,
2325 					nr_pages_per_node, NULL, page_array);
2326 		}
2327 
2328 		page_array += nr_allocated;
2329 		total_allocated += nr_allocated;
2330 	}
2331 
2332 	return total_allocated;
2333 }
2334 
2335 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2336 		struct mempolicy *pol, unsigned long nr_pages,
2337 		struct page **page_array)
2338 {
2339 	gfp_t preferred_gfp;
2340 	unsigned long nr_allocated = 0;
2341 
2342 	preferred_gfp = gfp | __GFP_NOWARN;
2343 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2344 
2345 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2346 					   nr_pages, NULL, page_array);
2347 
2348 	if (nr_allocated < nr_pages)
2349 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2350 				nr_pages - nr_allocated, NULL,
2351 				page_array + nr_allocated);
2352 	return nr_allocated;
2353 }
2354 
2355 /* alloc pages bulk and mempolicy should be considered at the
2356  * same time in some situation such as vmalloc.
2357  *
2358  * It can accelerate memory allocation especially interleaving
2359  * allocate memory.
2360  */
2361 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2362 		unsigned long nr_pages, struct page **page_array)
2363 {
2364 	struct mempolicy *pol = &default_policy;
2365 
2366 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2367 		pol = get_task_policy(current);
2368 
2369 	if (pol->mode == MPOL_INTERLEAVE)
2370 		return alloc_pages_bulk_array_interleave(gfp, pol,
2371 							 nr_pages, page_array);
2372 
2373 	if (pol->mode == MPOL_PREFERRED_MANY)
2374 		return alloc_pages_bulk_array_preferred_many(gfp,
2375 				numa_node_id(), pol, nr_pages, page_array);
2376 
2377 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2378 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2379 				  page_array);
2380 }
2381 
2382 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2383 {
2384 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2385 
2386 	if (IS_ERR(pol))
2387 		return PTR_ERR(pol);
2388 	dst->vm_policy = pol;
2389 	return 0;
2390 }
2391 
2392 /*
2393  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2394  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2395  * with the mems_allowed returned by cpuset_mems_allowed().  This
2396  * keeps mempolicies cpuset relative after its cpuset moves.  See
2397  * further kernel/cpuset.c update_nodemask().
2398  *
2399  * current's mempolicy may be rebinded by the other task(the task that changes
2400  * cpuset's mems), so we needn't do rebind work for current task.
2401  */
2402 
2403 /* Slow path of a mempolicy duplicate */
2404 struct mempolicy *__mpol_dup(struct mempolicy *old)
2405 {
2406 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2407 
2408 	if (!new)
2409 		return ERR_PTR(-ENOMEM);
2410 
2411 	/* task's mempolicy is protected by alloc_lock */
2412 	if (old == current->mempolicy) {
2413 		task_lock(current);
2414 		*new = *old;
2415 		task_unlock(current);
2416 	} else
2417 		*new = *old;
2418 
2419 	if (current_cpuset_is_being_rebound()) {
2420 		nodemask_t mems = cpuset_mems_allowed(current);
2421 		mpol_rebind_policy(new, &mems);
2422 	}
2423 	atomic_set(&new->refcnt, 1);
2424 	return new;
2425 }
2426 
2427 /* Slow path of a mempolicy comparison */
2428 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2429 {
2430 	if (!a || !b)
2431 		return false;
2432 	if (a->mode != b->mode)
2433 		return false;
2434 	if (a->flags != b->flags)
2435 		return false;
2436 	if (a->home_node != b->home_node)
2437 		return false;
2438 	if (mpol_store_user_nodemask(a))
2439 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2440 			return false;
2441 
2442 	switch (a->mode) {
2443 	case MPOL_BIND:
2444 	case MPOL_INTERLEAVE:
2445 	case MPOL_PREFERRED:
2446 	case MPOL_PREFERRED_MANY:
2447 		return !!nodes_equal(a->nodes, b->nodes);
2448 	case MPOL_LOCAL:
2449 		return true;
2450 	default:
2451 		BUG();
2452 		return false;
2453 	}
2454 }
2455 
2456 /*
2457  * Shared memory backing store policy support.
2458  *
2459  * Remember policies even when nobody has shared memory mapped.
2460  * The policies are kept in Red-Black tree linked from the inode.
2461  * They are protected by the sp->lock rwlock, which should be held
2462  * for any accesses to the tree.
2463  */
2464 
2465 /*
2466  * lookup first element intersecting start-end.  Caller holds sp->lock for
2467  * reading or for writing
2468  */
2469 static struct sp_node *
2470 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2471 {
2472 	struct rb_node *n = sp->root.rb_node;
2473 
2474 	while (n) {
2475 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2476 
2477 		if (start >= p->end)
2478 			n = n->rb_right;
2479 		else if (end <= p->start)
2480 			n = n->rb_left;
2481 		else
2482 			break;
2483 	}
2484 	if (!n)
2485 		return NULL;
2486 	for (;;) {
2487 		struct sp_node *w = NULL;
2488 		struct rb_node *prev = rb_prev(n);
2489 		if (!prev)
2490 			break;
2491 		w = rb_entry(prev, struct sp_node, nd);
2492 		if (w->end <= start)
2493 			break;
2494 		n = prev;
2495 	}
2496 	return rb_entry(n, struct sp_node, nd);
2497 }
2498 
2499 /*
2500  * Insert a new shared policy into the list.  Caller holds sp->lock for
2501  * writing.
2502  */
2503 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2504 {
2505 	struct rb_node **p = &sp->root.rb_node;
2506 	struct rb_node *parent = NULL;
2507 	struct sp_node *nd;
2508 
2509 	while (*p) {
2510 		parent = *p;
2511 		nd = rb_entry(parent, struct sp_node, nd);
2512 		if (new->start < nd->start)
2513 			p = &(*p)->rb_left;
2514 		else if (new->end > nd->end)
2515 			p = &(*p)->rb_right;
2516 		else
2517 			BUG();
2518 	}
2519 	rb_link_node(&new->nd, parent, p);
2520 	rb_insert_color(&new->nd, &sp->root);
2521 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2522 		 new->policy ? new->policy->mode : 0);
2523 }
2524 
2525 /* Find shared policy intersecting idx */
2526 struct mempolicy *
2527 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2528 {
2529 	struct mempolicy *pol = NULL;
2530 	struct sp_node *sn;
2531 
2532 	if (!sp->root.rb_node)
2533 		return NULL;
2534 	read_lock(&sp->lock);
2535 	sn = sp_lookup(sp, idx, idx+1);
2536 	if (sn) {
2537 		mpol_get(sn->policy);
2538 		pol = sn->policy;
2539 	}
2540 	read_unlock(&sp->lock);
2541 	return pol;
2542 }
2543 
2544 static void sp_free(struct sp_node *n)
2545 {
2546 	mpol_put(n->policy);
2547 	kmem_cache_free(sn_cache, n);
2548 }
2549 
2550 /**
2551  * mpol_misplaced - check whether current page node is valid in policy
2552  *
2553  * @page: page to be checked
2554  * @vma: vm area where page mapped
2555  * @addr: virtual address where page mapped
2556  *
2557  * Lookup current policy node id for vma,addr and "compare to" page's
2558  * node id.  Policy determination "mimics" alloc_page_vma().
2559  * Called from fault path where we know the vma and faulting address.
2560  *
2561  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2562  * policy, or a suitable node ID to allocate a replacement page from.
2563  */
2564 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2565 {
2566 	struct mempolicy *pol;
2567 	struct zoneref *z;
2568 	int curnid = page_to_nid(page);
2569 	unsigned long pgoff;
2570 	int thiscpu = raw_smp_processor_id();
2571 	int thisnid = cpu_to_node(thiscpu);
2572 	int polnid = NUMA_NO_NODE;
2573 	int ret = NUMA_NO_NODE;
2574 
2575 	pol = get_vma_policy(vma, addr);
2576 	if (!(pol->flags & MPOL_F_MOF))
2577 		goto out;
2578 
2579 	switch (pol->mode) {
2580 	case MPOL_INTERLEAVE:
2581 		pgoff = vma->vm_pgoff;
2582 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2583 		polnid = offset_il_node(pol, pgoff);
2584 		break;
2585 
2586 	case MPOL_PREFERRED:
2587 		if (node_isset(curnid, pol->nodes))
2588 			goto out;
2589 		polnid = first_node(pol->nodes);
2590 		break;
2591 
2592 	case MPOL_LOCAL:
2593 		polnid = numa_node_id();
2594 		break;
2595 
2596 	case MPOL_BIND:
2597 		/* Optimize placement among multiple nodes via NUMA balancing */
2598 		if (pol->flags & MPOL_F_MORON) {
2599 			if (node_isset(thisnid, pol->nodes))
2600 				break;
2601 			goto out;
2602 		}
2603 		fallthrough;
2604 
2605 	case MPOL_PREFERRED_MANY:
2606 		/*
2607 		 * use current page if in policy nodemask,
2608 		 * else select nearest allowed node, if any.
2609 		 * If no allowed nodes, use current [!misplaced].
2610 		 */
2611 		if (node_isset(curnid, pol->nodes))
2612 			goto out;
2613 		z = first_zones_zonelist(
2614 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2615 				gfp_zone(GFP_HIGHUSER),
2616 				&pol->nodes);
2617 		polnid = zone_to_nid(z->zone);
2618 		break;
2619 
2620 	default:
2621 		BUG();
2622 	}
2623 
2624 	/* Migrate the page towards the node whose CPU is referencing it */
2625 	if (pol->flags & MPOL_F_MORON) {
2626 		polnid = thisnid;
2627 
2628 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2629 			goto out;
2630 	}
2631 
2632 	if (curnid != polnid)
2633 		ret = polnid;
2634 out:
2635 	mpol_cond_put(pol);
2636 
2637 	return ret;
2638 }
2639 
2640 /*
2641  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2642  * dropped after task->mempolicy is set to NULL so that any allocation done as
2643  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2644  * policy.
2645  */
2646 void mpol_put_task_policy(struct task_struct *task)
2647 {
2648 	struct mempolicy *pol;
2649 
2650 	task_lock(task);
2651 	pol = task->mempolicy;
2652 	task->mempolicy = NULL;
2653 	task_unlock(task);
2654 	mpol_put(pol);
2655 }
2656 
2657 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2658 {
2659 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2660 	rb_erase(&n->nd, &sp->root);
2661 	sp_free(n);
2662 }
2663 
2664 static void sp_node_init(struct sp_node *node, unsigned long start,
2665 			unsigned long end, struct mempolicy *pol)
2666 {
2667 	node->start = start;
2668 	node->end = end;
2669 	node->policy = pol;
2670 }
2671 
2672 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2673 				struct mempolicy *pol)
2674 {
2675 	struct sp_node *n;
2676 	struct mempolicy *newpol;
2677 
2678 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2679 	if (!n)
2680 		return NULL;
2681 
2682 	newpol = mpol_dup(pol);
2683 	if (IS_ERR(newpol)) {
2684 		kmem_cache_free(sn_cache, n);
2685 		return NULL;
2686 	}
2687 	newpol->flags |= MPOL_F_SHARED;
2688 	sp_node_init(n, start, end, newpol);
2689 
2690 	return n;
2691 }
2692 
2693 /* Replace a policy range. */
2694 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2695 				 unsigned long end, struct sp_node *new)
2696 {
2697 	struct sp_node *n;
2698 	struct sp_node *n_new = NULL;
2699 	struct mempolicy *mpol_new = NULL;
2700 	int ret = 0;
2701 
2702 restart:
2703 	write_lock(&sp->lock);
2704 	n = sp_lookup(sp, start, end);
2705 	/* Take care of old policies in the same range. */
2706 	while (n && n->start < end) {
2707 		struct rb_node *next = rb_next(&n->nd);
2708 		if (n->start >= start) {
2709 			if (n->end <= end)
2710 				sp_delete(sp, n);
2711 			else
2712 				n->start = end;
2713 		} else {
2714 			/* Old policy spanning whole new range. */
2715 			if (n->end > end) {
2716 				if (!n_new)
2717 					goto alloc_new;
2718 
2719 				*mpol_new = *n->policy;
2720 				atomic_set(&mpol_new->refcnt, 1);
2721 				sp_node_init(n_new, end, n->end, mpol_new);
2722 				n->end = start;
2723 				sp_insert(sp, n_new);
2724 				n_new = NULL;
2725 				mpol_new = NULL;
2726 				break;
2727 			} else
2728 				n->end = start;
2729 		}
2730 		if (!next)
2731 			break;
2732 		n = rb_entry(next, struct sp_node, nd);
2733 	}
2734 	if (new)
2735 		sp_insert(sp, new);
2736 	write_unlock(&sp->lock);
2737 	ret = 0;
2738 
2739 err_out:
2740 	if (mpol_new)
2741 		mpol_put(mpol_new);
2742 	if (n_new)
2743 		kmem_cache_free(sn_cache, n_new);
2744 
2745 	return ret;
2746 
2747 alloc_new:
2748 	write_unlock(&sp->lock);
2749 	ret = -ENOMEM;
2750 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2751 	if (!n_new)
2752 		goto err_out;
2753 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2754 	if (!mpol_new)
2755 		goto err_out;
2756 	atomic_set(&mpol_new->refcnt, 1);
2757 	goto restart;
2758 }
2759 
2760 /**
2761  * mpol_shared_policy_init - initialize shared policy for inode
2762  * @sp: pointer to inode shared policy
2763  * @mpol:  struct mempolicy to install
2764  *
2765  * Install non-NULL @mpol in inode's shared policy rb-tree.
2766  * On entry, the current task has a reference on a non-NULL @mpol.
2767  * This must be released on exit.
2768  * This is called at get_inode() calls and we can use GFP_KERNEL.
2769  */
2770 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2771 {
2772 	int ret;
2773 
2774 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2775 	rwlock_init(&sp->lock);
2776 
2777 	if (mpol) {
2778 		struct vm_area_struct pvma;
2779 		struct mempolicy *new;
2780 		NODEMASK_SCRATCH(scratch);
2781 
2782 		if (!scratch)
2783 			goto put_mpol;
2784 		/* contextualize the tmpfs mount point mempolicy */
2785 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2786 		if (IS_ERR(new))
2787 			goto free_scratch; /* no valid nodemask intersection */
2788 
2789 		task_lock(current);
2790 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2791 		task_unlock(current);
2792 		if (ret)
2793 			goto put_new;
2794 
2795 		/* Create pseudo-vma that contains just the policy */
2796 		vma_init(&pvma, NULL);
2797 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2798 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2799 
2800 put_new:
2801 		mpol_put(new);			/* drop initial ref */
2802 free_scratch:
2803 		NODEMASK_SCRATCH_FREE(scratch);
2804 put_mpol:
2805 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2806 	}
2807 }
2808 
2809 int mpol_set_shared_policy(struct shared_policy *info,
2810 			struct vm_area_struct *vma, struct mempolicy *npol)
2811 {
2812 	int err;
2813 	struct sp_node *new = NULL;
2814 	unsigned long sz = vma_pages(vma);
2815 
2816 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2817 		 vma->vm_pgoff,
2818 		 sz, npol ? npol->mode : -1,
2819 		 npol ? npol->flags : -1,
2820 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2821 
2822 	if (npol) {
2823 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2824 		if (!new)
2825 			return -ENOMEM;
2826 	}
2827 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2828 	if (err && new)
2829 		sp_free(new);
2830 	return err;
2831 }
2832 
2833 /* Free a backing policy store on inode delete. */
2834 void mpol_free_shared_policy(struct shared_policy *p)
2835 {
2836 	struct sp_node *n;
2837 	struct rb_node *next;
2838 
2839 	if (!p->root.rb_node)
2840 		return;
2841 	write_lock(&p->lock);
2842 	next = rb_first(&p->root);
2843 	while (next) {
2844 		n = rb_entry(next, struct sp_node, nd);
2845 		next = rb_next(&n->nd);
2846 		sp_delete(p, n);
2847 	}
2848 	write_unlock(&p->lock);
2849 }
2850 
2851 #ifdef CONFIG_NUMA_BALANCING
2852 static int __initdata numabalancing_override;
2853 
2854 static void __init check_numabalancing_enable(void)
2855 {
2856 	bool numabalancing_default = false;
2857 
2858 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2859 		numabalancing_default = true;
2860 
2861 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2862 	if (numabalancing_override)
2863 		set_numabalancing_state(numabalancing_override == 1);
2864 
2865 	if (num_online_nodes() > 1 && !numabalancing_override) {
2866 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2867 			numabalancing_default ? "Enabling" : "Disabling");
2868 		set_numabalancing_state(numabalancing_default);
2869 	}
2870 }
2871 
2872 static int __init setup_numabalancing(char *str)
2873 {
2874 	int ret = 0;
2875 	if (!str)
2876 		goto out;
2877 
2878 	if (!strcmp(str, "enable")) {
2879 		numabalancing_override = 1;
2880 		ret = 1;
2881 	} else if (!strcmp(str, "disable")) {
2882 		numabalancing_override = -1;
2883 		ret = 1;
2884 	}
2885 out:
2886 	if (!ret)
2887 		pr_warn("Unable to parse numa_balancing=\n");
2888 
2889 	return ret;
2890 }
2891 __setup("numa_balancing=", setup_numabalancing);
2892 #else
2893 static inline void __init check_numabalancing_enable(void)
2894 {
2895 }
2896 #endif /* CONFIG_NUMA_BALANCING */
2897 
2898 /* assumes fs == KERNEL_DS */
2899 void __init numa_policy_init(void)
2900 {
2901 	nodemask_t interleave_nodes;
2902 	unsigned long largest = 0;
2903 	int nid, prefer = 0;
2904 
2905 	policy_cache = kmem_cache_create("numa_policy",
2906 					 sizeof(struct mempolicy),
2907 					 0, SLAB_PANIC, NULL);
2908 
2909 	sn_cache = kmem_cache_create("shared_policy_node",
2910 				     sizeof(struct sp_node),
2911 				     0, SLAB_PANIC, NULL);
2912 
2913 	for_each_node(nid) {
2914 		preferred_node_policy[nid] = (struct mempolicy) {
2915 			.refcnt = ATOMIC_INIT(1),
2916 			.mode = MPOL_PREFERRED,
2917 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2918 			.nodes = nodemask_of_node(nid),
2919 		};
2920 	}
2921 
2922 	/*
2923 	 * Set interleaving policy for system init. Interleaving is only
2924 	 * enabled across suitably sized nodes (default is >= 16MB), or
2925 	 * fall back to the largest node if they're all smaller.
2926 	 */
2927 	nodes_clear(interleave_nodes);
2928 	for_each_node_state(nid, N_MEMORY) {
2929 		unsigned long total_pages = node_present_pages(nid);
2930 
2931 		/* Preserve the largest node */
2932 		if (largest < total_pages) {
2933 			largest = total_pages;
2934 			prefer = nid;
2935 		}
2936 
2937 		/* Interleave this node? */
2938 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2939 			node_set(nid, interleave_nodes);
2940 	}
2941 
2942 	/* All too small, use the largest */
2943 	if (unlikely(nodes_empty(interleave_nodes)))
2944 		node_set(prefer, interleave_nodes);
2945 
2946 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2947 		pr_err("%s: interleaving failed\n", __func__);
2948 
2949 	check_numabalancing_enable();
2950 }
2951 
2952 /* Reset policy of current process to default */
2953 void numa_default_policy(void)
2954 {
2955 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2956 }
2957 
2958 /*
2959  * Parse and format mempolicy from/to strings
2960  */
2961 
2962 static const char * const policy_modes[] =
2963 {
2964 	[MPOL_DEFAULT]    = "default",
2965 	[MPOL_PREFERRED]  = "prefer",
2966 	[MPOL_BIND]       = "bind",
2967 	[MPOL_INTERLEAVE] = "interleave",
2968 	[MPOL_LOCAL]      = "local",
2969 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2970 };
2971 
2972 
2973 #ifdef CONFIG_TMPFS
2974 /**
2975  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2976  * @str:  string containing mempolicy to parse
2977  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2978  *
2979  * Format of input:
2980  *	<mode>[=<flags>][:<nodelist>]
2981  *
2982  * Return: %0 on success, else %1
2983  */
2984 int mpol_parse_str(char *str, struct mempolicy **mpol)
2985 {
2986 	struct mempolicy *new = NULL;
2987 	unsigned short mode_flags;
2988 	nodemask_t nodes;
2989 	char *nodelist = strchr(str, ':');
2990 	char *flags = strchr(str, '=');
2991 	int err = 1, mode;
2992 
2993 	if (flags)
2994 		*flags++ = '\0';	/* terminate mode string */
2995 
2996 	if (nodelist) {
2997 		/* NUL-terminate mode or flags string */
2998 		*nodelist++ = '\0';
2999 		if (nodelist_parse(nodelist, nodes))
3000 			goto out;
3001 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3002 			goto out;
3003 	} else
3004 		nodes_clear(nodes);
3005 
3006 	mode = match_string(policy_modes, MPOL_MAX, str);
3007 	if (mode < 0)
3008 		goto out;
3009 
3010 	switch (mode) {
3011 	case MPOL_PREFERRED:
3012 		/*
3013 		 * Insist on a nodelist of one node only, although later
3014 		 * we use first_node(nodes) to grab a single node, so here
3015 		 * nodelist (or nodes) cannot be empty.
3016 		 */
3017 		if (nodelist) {
3018 			char *rest = nodelist;
3019 			while (isdigit(*rest))
3020 				rest++;
3021 			if (*rest)
3022 				goto out;
3023 			if (nodes_empty(nodes))
3024 				goto out;
3025 		}
3026 		break;
3027 	case MPOL_INTERLEAVE:
3028 		/*
3029 		 * Default to online nodes with memory if no nodelist
3030 		 */
3031 		if (!nodelist)
3032 			nodes = node_states[N_MEMORY];
3033 		break;
3034 	case MPOL_LOCAL:
3035 		/*
3036 		 * Don't allow a nodelist;  mpol_new() checks flags
3037 		 */
3038 		if (nodelist)
3039 			goto out;
3040 		break;
3041 	case MPOL_DEFAULT:
3042 		/*
3043 		 * Insist on a empty nodelist
3044 		 */
3045 		if (!nodelist)
3046 			err = 0;
3047 		goto out;
3048 	case MPOL_PREFERRED_MANY:
3049 	case MPOL_BIND:
3050 		/*
3051 		 * Insist on a nodelist
3052 		 */
3053 		if (!nodelist)
3054 			goto out;
3055 	}
3056 
3057 	mode_flags = 0;
3058 	if (flags) {
3059 		/*
3060 		 * Currently, we only support two mutually exclusive
3061 		 * mode flags.
3062 		 */
3063 		if (!strcmp(flags, "static"))
3064 			mode_flags |= MPOL_F_STATIC_NODES;
3065 		else if (!strcmp(flags, "relative"))
3066 			mode_flags |= MPOL_F_RELATIVE_NODES;
3067 		else
3068 			goto out;
3069 	}
3070 
3071 	new = mpol_new(mode, mode_flags, &nodes);
3072 	if (IS_ERR(new))
3073 		goto out;
3074 
3075 	/*
3076 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3077 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3078 	 */
3079 	if (mode != MPOL_PREFERRED) {
3080 		new->nodes = nodes;
3081 	} else if (nodelist) {
3082 		nodes_clear(new->nodes);
3083 		node_set(first_node(nodes), new->nodes);
3084 	} else {
3085 		new->mode = MPOL_LOCAL;
3086 	}
3087 
3088 	/*
3089 	 * Save nodes for contextualization: this will be used to "clone"
3090 	 * the mempolicy in a specific context [cpuset] at a later time.
3091 	 */
3092 	new->w.user_nodemask = nodes;
3093 
3094 	err = 0;
3095 
3096 out:
3097 	/* Restore string for error message */
3098 	if (nodelist)
3099 		*--nodelist = ':';
3100 	if (flags)
3101 		*--flags = '=';
3102 	if (!err)
3103 		*mpol = new;
3104 	return err;
3105 }
3106 #endif /* CONFIG_TMPFS */
3107 
3108 /**
3109  * mpol_to_str - format a mempolicy structure for printing
3110  * @buffer:  to contain formatted mempolicy string
3111  * @maxlen:  length of @buffer
3112  * @pol:  pointer to mempolicy to be formatted
3113  *
3114  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3115  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3116  * longest flag, "relative", and to display at least a few node ids.
3117  */
3118 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3119 {
3120 	char *p = buffer;
3121 	nodemask_t nodes = NODE_MASK_NONE;
3122 	unsigned short mode = MPOL_DEFAULT;
3123 	unsigned short flags = 0;
3124 
3125 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3126 		mode = pol->mode;
3127 		flags = pol->flags;
3128 	}
3129 
3130 	switch (mode) {
3131 	case MPOL_DEFAULT:
3132 	case MPOL_LOCAL:
3133 		break;
3134 	case MPOL_PREFERRED:
3135 	case MPOL_PREFERRED_MANY:
3136 	case MPOL_BIND:
3137 	case MPOL_INTERLEAVE:
3138 		nodes = pol->nodes;
3139 		break;
3140 	default:
3141 		WARN_ON_ONCE(1);
3142 		snprintf(p, maxlen, "unknown");
3143 		return;
3144 	}
3145 
3146 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3147 
3148 	if (flags & MPOL_MODE_FLAGS) {
3149 		p += snprintf(p, buffer + maxlen - p, "=");
3150 
3151 		/*
3152 		 * Currently, the only defined flags are mutually exclusive
3153 		 */
3154 		if (flags & MPOL_F_STATIC_NODES)
3155 			p += snprintf(p, buffer + maxlen - p, "static");
3156 		else if (flags & MPOL_F_RELATIVE_NODES)
3157 			p += snprintf(p, buffer + maxlen - p, "relative");
3158 	}
3159 
3160 	if (!nodes_empty(nodes))
3161 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3162 			       nodemask_pr_args(&nodes));
3163 }
3164