1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */ 116 117 static struct kmem_cache *policy_cache; 118 static struct kmem_cache *sn_cache; 119 120 /* Highest zone. An specific allocation for a zone below that is not 121 policied. */ 122 enum zone_type policy_zone = 0; 123 124 /* 125 * run-time system-wide default policy => local allocation 126 */ 127 static struct mempolicy default_policy = { 128 .refcnt = ATOMIC_INIT(1), /* never free it */ 129 .mode = MPOL_LOCAL, 130 }; 131 132 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 133 134 /** 135 * numa_nearest_node - Find nearest node by state 136 * @node: Node id to start the search 137 * @state: State to filter the search 138 * 139 * Lookup the closest node by distance if @nid is not in state. 140 * 141 * Return: this @node if it is in state, otherwise the closest node by distance 142 */ 143 int numa_nearest_node(int node, unsigned int state) 144 { 145 int min_dist = INT_MAX, dist, n, min_node; 146 147 if (state >= NR_NODE_STATES) 148 return -EINVAL; 149 150 if (node == NUMA_NO_NODE || node_state(node, state)) 151 return node; 152 153 min_node = node; 154 for_each_node_state(n, state) { 155 dist = node_distance(node, n); 156 if (dist < min_dist) { 157 min_dist = dist; 158 min_node = n; 159 } 160 } 161 162 return min_node; 163 } 164 EXPORT_SYMBOL_GPL(numa_nearest_node); 165 166 struct mempolicy *get_task_policy(struct task_struct *p) 167 { 168 struct mempolicy *pol = p->mempolicy; 169 int node; 170 171 if (pol) 172 return pol; 173 174 node = numa_node_id(); 175 if (node != NUMA_NO_NODE) { 176 pol = &preferred_node_policy[node]; 177 /* preferred_node_policy is not initialised early in boot */ 178 if (pol->mode) 179 return pol; 180 } 181 182 return &default_policy; 183 } 184 185 static const struct mempolicy_operations { 186 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 187 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 188 } mpol_ops[MPOL_MAX]; 189 190 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 191 { 192 return pol->flags & MPOL_MODE_FLAGS; 193 } 194 195 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 196 const nodemask_t *rel) 197 { 198 nodemask_t tmp; 199 nodes_fold(tmp, *orig, nodes_weight(*rel)); 200 nodes_onto(*ret, tmp, *rel); 201 } 202 203 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 204 { 205 if (nodes_empty(*nodes)) 206 return -EINVAL; 207 pol->nodes = *nodes; 208 return 0; 209 } 210 211 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 212 { 213 if (nodes_empty(*nodes)) 214 return -EINVAL; 215 216 nodes_clear(pol->nodes); 217 node_set(first_node(*nodes), pol->nodes); 218 return 0; 219 } 220 221 /* 222 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 223 * any, for the new policy. mpol_new() has already validated the nodes 224 * parameter with respect to the policy mode and flags. 225 * 226 * Must be called holding task's alloc_lock to protect task's mems_allowed 227 * and mempolicy. May also be called holding the mmap_lock for write. 228 */ 229 static int mpol_set_nodemask(struct mempolicy *pol, 230 const nodemask_t *nodes, struct nodemask_scratch *nsc) 231 { 232 int ret; 233 234 /* 235 * Default (pol==NULL) resp. local memory policies are not a 236 * subject of any remapping. They also do not need any special 237 * constructor. 238 */ 239 if (!pol || pol->mode == MPOL_LOCAL) 240 return 0; 241 242 /* Check N_MEMORY */ 243 nodes_and(nsc->mask1, 244 cpuset_current_mems_allowed, node_states[N_MEMORY]); 245 246 VM_BUG_ON(!nodes); 247 248 if (pol->flags & MPOL_F_RELATIVE_NODES) 249 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 250 else 251 nodes_and(nsc->mask2, *nodes, nsc->mask1); 252 253 if (mpol_store_user_nodemask(pol)) 254 pol->w.user_nodemask = *nodes; 255 else 256 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 257 258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 259 return ret; 260 } 261 262 /* 263 * This function just creates a new policy, does some check and simple 264 * initialization. You must invoke mpol_set_nodemask() to set nodes. 265 */ 266 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 267 nodemask_t *nodes) 268 { 269 struct mempolicy *policy; 270 271 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 272 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 273 274 if (mode == MPOL_DEFAULT) { 275 if (nodes && !nodes_empty(*nodes)) 276 return ERR_PTR(-EINVAL); 277 return NULL; 278 } 279 VM_BUG_ON(!nodes); 280 281 /* 282 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 283 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 284 * All other modes require a valid pointer to a non-empty nodemask. 285 */ 286 if (mode == MPOL_PREFERRED) { 287 if (nodes_empty(*nodes)) { 288 if (((flags & MPOL_F_STATIC_NODES) || 289 (flags & MPOL_F_RELATIVE_NODES))) 290 return ERR_PTR(-EINVAL); 291 292 mode = MPOL_LOCAL; 293 } 294 } else if (mode == MPOL_LOCAL) { 295 if (!nodes_empty(*nodes) || 296 (flags & MPOL_F_STATIC_NODES) || 297 (flags & MPOL_F_RELATIVE_NODES)) 298 return ERR_PTR(-EINVAL); 299 } else if (nodes_empty(*nodes)) 300 return ERR_PTR(-EINVAL); 301 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 302 if (!policy) 303 return ERR_PTR(-ENOMEM); 304 atomic_set(&policy->refcnt, 1); 305 policy->mode = mode; 306 policy->flags = flags; 307 policy->home_node = NUMA_NO_NODE; 308 309 return policy; 310 } 311 312 /* Slow path of a mpol destructor. */ 313 void __mpol_put(struct mempolicy *p) 314 { 315 if (!atomic_dec_and_test(&p->refcnt)) 316 return; 317 kmem_cache_free(policy_cache, p); 318 } 319 320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 321 { 322 } 323 324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 325 { 326 nodemask_t tmp; 327 328 if (pol->flags & MPOL_F_STATIC_NODES) 329 nodes_and(tmp, pol->w.user_nodemask, *nodes); 330 else if (pol->flags & MPOL_F_RELATIVE_NODES) 331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 332 else { 333 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 334 *nodes); 335 pol->w.cpuset_mems_allowed = *nodes; 336 } 337 338 if (nodes_empty(tmp)) 339 tmp = *nodes; 340 341 pol->nodes = tmp; 342 } 343 344 static void mpol_rebind_preferred(struct mempolicy *pol, 345 const nodemask_t *nodes) 346 { 347 pol->w.cpuset_mems_allowed = *nodes; 348 } 349 350 /* 351 * mpol_rebind_policy - Migrate a policy to a different set of nodes 352 * 353 * Per-vma policies are protected by mmap_lock. Allocations using per-task 354 * policies are protected by task->mems_allowed_seq to prevent a premature 355 * OOM/allocation failure due to parallel nodemask modification. 356 */ 357 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 358 { 359 if (!pol || pol->mode == MPOL_LOCAL) 360 return; 361 if (!mpol_store_user_nodemask(pol) && 362 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 363 return; 364 365 mpol_ops[pol->mode].rebind(pol, newmask); 366 } 367 368 /* 369 * Wrapper for mpol_rebind_policy() that just requires task 370 * pointer, and updates task mempolicy. 371 * 372 * Called with task's alloc_lock held. 373 */ 374 375 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 376 { 377 mpol_rebind_policy(tsk->mempolicy, new); 378 } 379 380 /* 381 * Rebind each vma in mm to new nodemask. 382 * 383 * Call holding a reference to mm. Takes mm->mmap_lock during call. 384 */ 385 386 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 387 { 388 struct vm_area_struct *vma; 389 VMA_ITERATOR(vmi, mm, 0); 390 391 mmap_write_lock(mm); 392 for_each_vma(vmi, vma) { 393 vma_start_write(vma); 394 mpol_rebind_policy(vma->vm_policy, new); 395 } 396 mmap_write_unlock(mm); 397 } 398 399 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 400 [MPOL_DEFAULT] = { 401 .rebind = mpol_rebind_default, 402 }, 403 [MPOL_INTERLEAVE] = { 404 .create = mpol_new_nodemask, 405 .rebind = mpol_rebind_nodemask, 406 }, 407 [MPOL_PREFERRED] = { 408 .create = mpol_new_preferred, 409 .rebind = mpol_rebind_preferred, 410 }, 411 [MPOL_BIND] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_nodemask, 414 }, 415 [MPOL_LOCAL] = { 416 .rebind = mpol_rebind_default, 417 }, 418 [MPOL_PREFERRED_MANY] = { 419 .create = mpol_new_nodemask, 420 .rebind = mpol_rebind_preferred, 421 }, 422 }; 423 424 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 425 unsigned long flags); 426 427 static bool strictly_unmovable(unsigned long flags) 428 { 429 /* 430 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO 431 * if any misplaced page is found. 432 */ 433 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) == 434 MPOL_MF_STRICT; 435 } 436 437 struct queue_pages { 438 struct list_head *pagelist; 439 unsigned long flags; 440 nodemask_t *nmask; 441 unsigned long start; 442 unsigned long end; 443 struct vm_area_struct *first; 444 struct folio *large; /* note last large folio encountered */ 445 long nr_failed; /* could not be isolated at this time */ 446 }; 447 448 /* 449 * Check if the folio's nid is in qp->nmask. 450 * 451 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 452 * in the invert of qp->nmask. 453 */ 454 static inline bool queue_folio_required(struct folio *folio, 455 struct queue_pages *qp) 456 { 457 int nid = folio_nid(folio); 458 unsigned long flags = qp->flags; 459 460 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 461 } 462 463 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk) 464 { 465 struct folio *folio; 466 struct queue_pages *qp = walk->private; 467 468 if (unlikely(is_pmd_migration_entry(*pmd))) { 469 qp->nr_failed++; 470 return; 471 } 472 folio = pfn_folio(pmd_pfn(*pmd)); 473 if (is_huge_zero_page(&folio->page)) { 474 walk->action = ACTION_CONTINUE; 475 return; 476 } 477 if (!queue_folio_required(folio, qp)) 478 return; 479 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 480 !vma_migratable(walk->vma) || 481 !migrate_folio_add(folio, qp->pagelist, qp->flags)) 482 qp->nr_failed++; 483 } 484 485 /* 486 * Scan through folios, checking if they satisfy the required conditions, 487 * moving them from LRU to local pagelist for migration if they do (or not). 488 * 489 * queue_folios_pte_range() has two possible return values: 490 * 0 - continue walking to scan for more, even if an existing folio on the 491 * wrong node could not be isolated and queued for migration. 492 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL, 493 * and an existing folio was on a node that does not follow the policy. 494 */ 495 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 496 unsigned long end, struct mm_walk *walk) 497 { 498 struct vm_area_struct *vma = walk->vma; 499 struct folio *folio; 500 struct queue_pages *qp = walk->private; 501 unsigned long flags = qp->flags; 502 pte_t *pte, *mapped_pte; 503 pte_t ptent; 504 spinlock_t *ptl; 505 506 ptl = pmd_trans_huge_lock(pmd, vma); 507 if (ptl) { 508 queue_folios_pmd(pmd, walk); 509 spin_unlock(ptl); 510 goto out; 511 } 512 513 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 514 if (!pte) { 515 walk->action = ACTION_AGAIN; 516 return 0; 517 } 518 for (; addr != end; pte++, addr += PAGE_SIZE) { 519 ptent = ptep_get(pte); 520 if (pte_none(ptent)) 521 continue; 522 if (!pte_present(ptent)) { 523 if (is_migration_entry(pte_to_swp_entry(ptent))) 524 qp->nr_failed++; 525 continue; 526 } 527 folio = vm_normal_folio(vma, addr, ptent); 528 if (!folio || folio_is_zone_device(folio)) 529 continue; 530 /* 531 * vm_normal_folio() filters out zero pages, but there might 532 * still be reserved folios to skip, perhaps in a VDSO. 533 */ 534 if (folio_test_reserved(folio)) 535 continue; 536 if (!queue_folio_required(folio, qp)) 537 continue; 538 if (folio_test_large(folio)) { 539 /* 540 * A large folio can only be isolated from LRU once, 541 * but may be mapped by many PTEs (and Copy-On-Write may 542 * intersperse PTEs of other, order 0, folios). This is 543 * a common case, so don't mistake it for failure (but 544 * there can be other cases of multi-mapped pages which 545 * this quick check does not help to filter out - and a 546 * search of the pagelist might grow to be prohibitive). 547 * 548 * migrate_pages(&pagelist) returns nr_failed folios, so 549 * check "large" now so that queue_pages_range() returns 550 * a comparable nr_failed folios. This does imply that 551 * if folio could not be isolated for some racy reason 552 * at its first PTE, later PTEs will not give it another 553 * chance of isolation; but keeps the accounting simple. 554 */ 555 if (folio == qp->large) 556 continue; 557 qp->large = folio; 558 } 559 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 560 !vma_migratable(vma) || 561 !migrate_folio_add(folio, qp->pagelist, flags)) { 562 qp->nr_failed++; 563 if (strictly_unmovable(flags)) 564 break; 565 } 566 } 567 pte_unmap_unlock(mapped_pte, ptl); 568 cond_resched(); 569 out: 570 if (qp->nr_failed && strictly_unmovable(flags)) 571 return -EIO; 572 return 0; 573 } 574 575 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 576 unsigned long addr, unsigned long end, 577 struct mm_walk *walk) 578 { 579 #ifdef CONFIG_HUGETLB_PAGE 580 struct queue_pages *qp = walk->private; 581 unsigned long flags = qp->flags; 582 struct folio *folio; 583 spinlock_t *ptl; 584 pte_t entry; 585 586 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 587 entry = huge_ptep_get(pte); 588 if (!pte_present(entry)) { 589 if (unlikely(is_hugetlb_entry_migration(entry))) 590 qp->nr_failed++; 591 goto unlock; 592 } 593 folio = pfn_folio(pte_pfn(entry)); 594 if (!queue_folio_required(folio, qp)) 595 goto unlock; 596 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 597 !vma_migratable(walk->vma)) { 598 qp->nr_failed++; 599 goto unlock; 600 } 601 /* 602 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 603 * Choosing not to migrate a shared folio is not counted as a failure. 604 * 605 * To check if the folio is shared, ideally we want to make sure 606 * every page is mapped to the same process. Doing that is very 607 * expensive, so check the estimated sharers of the folio instead. 608 */ 609 if ((flags & MPOL_MF_MOVE_ALL) || 610 (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte))) 611 if (!isolate_hugetlb(folio, qp->pagelist)) 612 qp->nr_failed++; 613 unlock: 614 spin_unlock(ptl); 615 if (qp->nr_failed && strictly_unmovable(flags)) 616 return -EIO; 617 #endif 618 return 0; 619 } 620 621 #ifdef CONFIG_NUMA_BALANCING 622 /* 623 * This is used to mark a range of virtual addresses to be inaccessible. 624 * These are later cleared by a NUMA hinting fault. Depending on these 625 * faults, pages may be migrated for better NUMA placement. 626 * 627 * This is assuming that NUMA faults are handled using PROT_NONE. If 628 * an architecture makes a different choice, it will need further 629 * changes to the core. 630 */ 631 unsigned long change_prot_numa(struct vm_area_struct *vma, 632 unsigned long addr, unsigned long end) 633 { 634 struct mmu_gather tlb; 635 long nr_updated; 636 637 tlb_gather_mmu(&tlb, vma->vm_mm); 638 639 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 640 if (nr_updated > 0) 641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 642 643 tlb_finish_mmu(&tlb); 644 645 return nr_updated; 646 } 647 #else 648 static unsigned long change_prot_numa(struct vm_area_struct *vma, 649 unsigned long addr, unsigned long end) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_NUMA_BALANCING */ 654 655 static int queue_pages_test_walk(unsigned long start, unsigned long end, 656 struct mm_walk *walk) 657 { 658 struct vm_area_struct *next, *vma = walk->vma; 659 struct queue_pages *qp = walk->private; 660 unsigned long endvma = vma->vm_end; 661 unsigned long flags = qp->flags; 662 663 /* range check first */ 664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 665 666 if (!qp->first) { 667 qp->first = vma; 668 if (!(flags & MPOL_MF_DISCONTIG_OK) && 669 (qp->start < vma->vm_start)) 670 /* hole at head side of range */ 671 return -EFAULT; 672 } 673 next = find_vma(vma->vm_mm, vma->vm_end); 674 if (!(flags & MPOL_MF_DISCONTIG_OK) && 675 ((vma->vm_end < qp->end) && 676 (!next || vma->vm_end < next->vm_start))) 677 /* hole at middle or tail of range */ 678 return -EFAULT; 679 680 /* 681 * Need check MPOL_MF_STRICT to return -EIO if possible 682 * regardless of vma_migratable 683 */ 684 if (!vma_migratable(vma) && 685 !(flags & MPOL_MF_STRICT)) 686 return 1; 687 688 if (endvma > end) 689 endvma = end; 690 691 if (flags & MPOL_MF_LAZY) { 692 /* Similar to task_numa_work, skip inaccessible VMAs */ 693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 694 !(vma->vm_flags & VM_MIXEDMAP)) 695 change_prot_numa(vma, start, endvma); 696 return 1; 697 } 698 699 /* 700 * Check page nodes, and queue pages to move, in the current vma. 701 * But if no moving, and no strict checking, the scan can be skipped. 702 */ 703 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 704 return 0; 705 return 1; 706 } 707 708 static const struct mm_walk_ops queue_pages_walk_ops = { 709 .hugetlb_entry = queue_folios_hugetlb, 710 .pmd_entry = queue_folios_pte_range, 711 .test_walk = queue_pages_test_walk, 712 .walk_lock = PGWALK_RDLOCK, 713 }; 714 715 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 716 .hugetlb_entry = queue_folios_hugetlb, 717 .pmd_entry = queue_folios_pte_range, 718 .test_walk = queue_pages_test_walk, 719 .walk_lock = PGWALK_WRLOCK, 720 }; 721 722 /* 723 * Walk through page tables and collect pages to be migrated. 724 * 725 * If pages found in a given range are not on the required set of @nodes, 726 * and migration is allowed, they are isolated and queued to @pagelist. 727 * 728 * queue_pages_range() may return: 729 * 0 - all pages already on the right node, or successfully queued for moving 730 * (or neither strict checking nor moving requested: only range checking). 731 * >0 - this number of misplaced folios could not be queued for moving 732 * (a hugetlbfs page or a transparent huge page being counted as 1). 733 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs. 734 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified. 735 */ 736 static long 737 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 738 nodemask_t *nodes, unsigned long flags, 739 struct list_head *pagelist) 740 { 741 int err; 742 struct queue_pages qp = { 743 .pagelist = pagelist, 744 .flags = flags, 745 .nmask = nodes, 746 .start = start, 747 .end = end, 748 .first = NULL, 749 }; 750 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ? 751 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 752 753 err = walk_page_range(mm, start, end, ops, &qp); 754 755 if (!qp.first) 756 /* whole range in hole */ 757 err = -EFAULT; 758 759 return err ? : qp.nr_failed; 760 } 761 762 /* 763 * Apply policy to a single VMA 764 * This must be called with the mmap_lock held for writing. 765 */ 766 static int vma_replace_policy(struct vm_area_struct *vma, 767 struct mempolicy *pol) 768 { 769 int err; 770 struct mempolicy *old; 771 struct mempolicy *new; 772 773 vma_assert_write_locked(vma); 774 775 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 776 vma->vm_start, vma->vm_end, vma->vm_pgoff, 777 vma->vm_ops, vma->vm_file, 778 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 779 780 new = mpol_dup(pol); 781 if (IS_ERR(new)) 782 return PTR_ERR(new); 783 784 if (vma->vm_ops && vma->vm_ops->set_policy) { 785 err = vma->vm_ops->set_policy(vma, new); 786 if (err) 787 goto err_out; 788 } 789 790 old = vma->vm_policy; 791 vma->vm_policy = new; /* protected by mmap_lock */ 792 mpol_put(old); 793 794 return 0; 795 err_out: 796 mpol_put(new); 797 return err; 798 } 799 800 /* Split or merge the VMA (if required) and apply the new policy */ 801 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 802 struct vm_area_struct **prev, unsigned long start, 803 unsigned long end, struct mempolicy *new_pol) 804 { 805 struct vm_area_struct *merged; 806 unsigned long vmstart, vmend; 807 pgoff_t pgoff; 808 int err; 809 810 vmend = min(end, vma->vm_end); 811 if (start > vma->vm_start) { 812 *prev = vma; 813 vmstart = start; 814 } else { 815 vmstart = vma->vm_start; 816 } 817 818 if (mpol_equal(vma_policy(vma), new_pol)) { 819 *prev = vma; 820 return 0; 821 } 822 823 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); 824 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags, 825 vma->anon_vma, vma->vm_file, pgoff, new_pol, 826 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 827 if (merged) { 828 *prev = merged; 829 return vma_replace_policy(merged, new_pol); 830 } 831 832 if (vma->vm_start != vmstart) { 833 err = split_vma(vmi, vma, vmstart, 1); 834 if (err) 835 return err; 836 } 837 838 if (vma->vm_end != vmend) { 839 err = split_vma(vmi, vma, vmend, 0); 840 if (err) 841 return err; 842 } 843 844 *prev = vma; 845 return vma_replace_policy(vma, new_pol); 846 } 847 848 /* Set the process memory policy */ 849 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 850 nodemask_t *nodes) 851 { 852 struct mempolicy *new, *old; 853 NODEMASK_SCRATCH(scratch); 854 int ret; 855 856 if (!scratch) 857 return -ENOMEM; 858 859 new = mpol_new(mode, flags, nodes); 860 if (IS_ERR(new)) { 861 ret = PTR_ERR(new); 862 goto out; 863 } 864 865 task_lock(current); 866 ret = mpol_set_nodemask(new, nodes, scratch); 867 if (ret) { 868 task_unlock(current); 869 mpol_put(new); 870 goto out; 871 } 872 873 old = current->mempolicy; 874 current->mempolicy = new; 875 if (new && new->mode == MPOL_INTERLEAVE) 876 current->il_prev = MAX_NUMNODES-1; 877 task_unlock(current); 878 mpol_put(old); 879 ret = 0; 880 out: 881 NODEMASK_SCRATCH_FREE(scratch); 882 return ret; 883 } 884 885 /* 886 * Return nodemask for policy for get_mempolicy() query 887 * 888 * Called with task's alloc_lock held 889 */ 890 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 891 { 892 nodes_clear(*nodes); 893 if (p == &default_policy) 894 return; 895 896 switch (p->mode) { 897 case MPOL_BIND: 898 case MPOL_INTERLEAVE: 899 case MPOL_PREFERRED: 900 case MPOL_PREFERRED_MANY: 901 *nodes = p->nodes; 902 break; 903 case MPOL_LOCAL: 904 /* return empty node mask for local allocation */ 905 break; 906 default: 907 BUG(); 908 } 909 } 910 911 static int lookup_node(struct mm_struct *mm, unsigned long addr) 912 { 913 struct page *p = NULL; 914 int ret; 915 916 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 917 if (ret > 0) { 918 ret = page_to_nid(p); 919 put_page(p); 920 } 921 return ret; 922 } 923 924 /* Retrieve NUMA policy */ 925 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 926 unsigned long addr, unsigned long flags) 927 { 928 int err; 929 struct mm_struct *mm = current->mm; 930 struct vm_area_struct *vma = NULL; 931 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 932 933 if (flags & 934 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 935 return -EINVAL; 936 937 if (flags & MPOL_F_MEMS_ALLOWED) { 938 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 939 return -EINVAL; 940 *policy = 0; /* just so it's initialized */ 941 task_lock(current); 942 *nmask = cpuset_current_mems_allowed; 943 task_unlock(current); 944 return 0; 945 } 946 947 if (flags & MPOL_F_ADDR) { 948 /* 949 * Do NOT fall back to task policy if the 950 * vma/shared policy at addr is NULL. We 951 * want to return MPOL_DEFAULT in this case. 952 */ 953 mmap_read_lock(mm); 954 vma = vma_lookup(mm, addr); 955 if (!vma) { 956 mmap_read_unlock(mm); 957 return -EFAULT; 958 } 959 if (vma->vm_ops && vma->vm_ops->get_policy) 960 pol = vma->vm_ops->get_policy(vma, addr); 961 else 962 pol = vma->vm_policy; 963 } else if (addr) 964 return -EINVAL; 965 966 if (!pol) 967 pol = &default_policy; /* indicates default behavior */ 968 969 if (flags & MPOL_F_NODE) { 970 if (flags & MPOL_F_ADDR) { 971 /* 972 * Take a refcount on the mpol, because we are about to 973 * drop the mmap_lock, after which only "pol" remains 974 * valid, "vma" is stale. 975 */ 976 pol_refcount = pol; 977 vma = NULL; 978 mpol_get(pol); 979 mmap_read_unlock(mm); 980 err = lookup_node(mm, addr); 981 if (err < 0) 982 goto out; 983 *policy = err; 984 } else if (pol == current->mempolicy && 985 pol->mode == MPOL_INTERLEAVE) { 986 *policy = next_node_in(current->il_prev, pol->nodes); 987 } else { 988 err = -EINVAL; 989 goto out; 990 } 991 } else { 992 *policy = pol == &default_policy ? MPOL_DEFAULT : 993 pol->mode; 994 /* 995 * Internal mempolicy flags must be masked off before exposing 996 * the policy to userspace. 997 */ 998 *policy |= (pol->flags & MPOL_MODE_FLAGS); 999 } 1000 1001 err = 0; 1002 if (nmask) { 1003 if (mpol_store_user_nodemask(pol)) { 1004 *nmask = pol->w.user_nodemask; 1005 } else { 1006 task_lock(current); 1007 get_policy_nodemask(pol, nmask); 1008 task_unlock(current); 1009 } 1010 } 1011 1012 out: 1013 mpol_cond_put(pol); 1014 if (vma) 1015 mmap_read_unlock(mm); 1016 if (pol_refcount) 1017 mpol_put(pol_refcount); 1018 return err; 1019 } 1020 1021 #ifdef CONFIG_MIGRATION 1022 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1023 unsigned long flags) 1024 { 1025 /* 1026 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 1027 * Choosing not to migrate a shared folio is not counted as a failure. 1028 * 1029 * To check if the folio is shared, ideally we want to make sure 1030 * every page is mapped to the same process. Doing that is very 1031 * expensive, so check the estimated sharers of the folio instead. 1032 */ 1033 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1034 if (folio_isolate_lru(folio)) { 1035 list_add_tail(&folio->lru, foliolist); 1036 node_stat_mod_folio(folio, 1037 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1038 folio_nr_pages(folio)); 1039 } else { 1040 /* 1041 * Non-movable folio may reach here. And, there may be 1042 * temporary off LRU folios or non-LRU movable folios. 1043 * Treat them as unmovable folios since they can't be 1044 * isolated, so they can't be moved at the moment. 1045 */ 1046 return false; 1047 } 1048 } 1049 return true; 1050 } 1051 1052 /* 1053 * Migrate pages from one node to a target node. 1054 * Returns error or the number of pages not migrated. 1055 */ 1056 static long migrate_to_node(struct mm_struct *mm, int source, int dest, 1057 int flags) 1058 { 1059 nodemask_t nmask; 1060 struct vm_area_struct *vma; 1061 LIST_HEAD(pagelist); 1062 long nr_failed; 1063 long err = 0; 1064 struct migration_target_control mtc = { 1065 .nid = dest, 1066 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1067 }; 1068 1069 nodes_clear(nmask); 1070 node_set(source, nmask); 1071 1072 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1073 vma = find_vma(mm, 0); 1074 1075 /* 1076 * This does not migrate the range, but isolates all pages that 1077 * need migration. Between passing in the full user address 1078 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail, 1079 * but passes back the count of pages which could not be isolated. 1080 */ 1081 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1082 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1083 1084 if (!list_empty(&pagelist)) { 1085 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1086 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1087 if (err) 1088 putback_movable_pages(&pagelist); 1089 } 1090 1091 if (err >= 0) 1092 err += nr_failed; 1093 return err; 1094 } 1095 1096 /* 1097 * Move pages between the two nodesets so as to preserve the physical 1098 * layout as much as possible. 1099 * 1100 * Returns the number of page that could not be moved. 1101 */ 1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1103 const nodemask_t *to, int flags) 1104 { 1105 long nr_failed = 0; 1106 long err = 0; 1107 nodemask_t tmp; 1108 1109 lru_cache_disable(); 1110 1111 mmap_read_lock(mm); 1112 1113 /* 1114 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1115 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1116 * bit in 'tmp', and return that <source, dest> pair for migration. 1117 * The pair of nodemasks 'to' and 'from' define the map. 1118 * 1119 * If no pair of bits is found that way, fallback to picking some 1120 * pair of 'source' and 'dest' bits that are not the same. If the 1121 * 'source' and 'dest' bits are the same, this represents a node 1122 * that will be migrating to itself, so no pages need move. 1123 * 1124 * If no bits are left in 'tmp', or if all remaining bits left 1125 * in 'tmp' correspond to the same bit in 'to', return false 1126 * (nothing left to migrate). 1127 * 1128 * This lets us pick a pair of nodes to migrate between, such that 1129 * if possible the dest node is not already occupied by some other 1130 * source node, minimizing the risk of overloading the memory on a 1131 * node that would happen if we migrated incoming memory to a node 1132 * before migrating outgoing memory source that same node. 1133 * 1134 * A single scan of tmp is sufficient. As we go, we remember the 1135 * most recent <s, d> pair that moved (s != d). If we find a pair 1136 * that not only moved, but what's better, moved to an empty slot 1137 * (d is not set in tmp), then we break out then, with that pair. 1138 * Otherwise when we finish scanning from_tmp, we at least have the 1139 * most recent <s, d> pair that moved. If we get all the way through 1140 * the scan of tmp without finding any node that moved, much less 1141 * moved to an empty node, then there is nothing left worth migrating. 1142 */ 1143 1144 tmp = *from; 1145 while (!nodes_empty(tmp)) { 1146 int s, d; 1147 int source = NUMA_NO_NODE; 1148 int dest = 0; 1149 1150 for_each_node_mask(s, tmp) { 1151 1152 /* 1153 * do_migrate_pages() tries to maintain the relative 1154 * node relationship of the pages established between 1155 * threads and memory areas. 1156 * 1157 * However if the number of source nodes is not equal to 1158 * the number of destination nodes we can not preserve 1159 * this node relative relationship. In that case, skip 1160 * copying memory from a node that is in the destination 1161 * mask. 1162 * 1163 * Example: [2,3,4] -> [3,4,5] moves everything. 1164 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1165 */ 1166 1167 if ((nodes_weight(*from) != nodes_weight(*to)) && 1168 (node_isset(s, *to))) 1169 continue; 1170 1171 d = node_remap(s, *from, *to); 1172 if (s == d) 1173 continue; 1174 1175 source = s; /* Node moved. Memorize */ 1176 dest = d; 1177 1178 /* dest not in remaining from nodes? */ 1179 if (!node_isset(dest, tmp)) 1180 break; 1181 } 1182 if (source == NUMA_NO_NODE) 1183 break; 1184 1185 node_clear(source, tmp); 1186 err = migrate_to_node(mm, source, dest, flags); 1187 if (err > 0) 1188 nr_failed += err; 1189 if (err < 0) 1190 break; 1191 } 1192 mmap_read_unlock(mm); 1193 1194 lru_cache_enable(); 1195 if (err < 0) 1196 return err; 1197 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX; 1198 } 1199 1200 /* 1201 * Allocate a new page for page migration based on vma policy. 1202 * Start by assuming the page is mapped by the same vma as contains @start. 1203 * Search forward from there, if not. N.B., this assumes that the 1204 * list of pages handed to migrate_pages()--which is how we get here-- 1205 * is in virtual address order. 1206 */ 1207 static struct folio *new_folio(struct folio *src, unsigned long start) 1208 { 1209 struct vm_area_struct *vma; 1210 unsigned long address; 1211 VMA_ITERATOR(vmi, current->mm, start); 1212 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1213 1214 for_each_vma(vmi, vma) { 1215 address = page_address_in_vma(&src->page, vma); 1216 if (address != -EFAULT) 1217 break; 1218 } 1219 1220 if (folio_test_hugetlb(src)) { 1221 return alloc_hugetlb_folio_vma(folio_hstate(src), 1222 vma, address); 1223 } 1224 1225 if (folio_test_large(src)) 1226 gfp = GFP_TRANSHUGE; 1227 1228 /* 1229 * if !vma, vma_alloc_folio() will use task or system default policy 1230 */ 1231 return vma_alloc_folio(gfp, folio_order(src), vma, address, 1232 folio_test_large(src)); 1233 } 1234 #else 1235 1236 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1237 unsigned long flags) 1238 { 1239 return false; 1240 } 1241 1242 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1243 const nodemask_t *to, int flags) 1244 { 1245 return -ENOSYS; 1246 } 1247 1248 static struct folio *new_folio(struct folio *src, unsigned long start) 1249 { 1250 return NULL; 1251 } 1252 #endif 1253 1254 static long do_mbind(unsigned long start, unsigned long len, 1255 unsigned short mode, unsigned short mode_flags, 1256 nodemask_t *nmask, unsigned long flags) 1257 { 1258 struct mm_struct *mm = current->mm; 1259 struct vm_area_struct *vma, *prev; 1260 struct vma_iterator vmi; 1261 struct mempolicy *new; 1262 unsigned long end; 1263 long err; 1264 long nr_failed; 1265 LIST_HEAD(pagelist); 1266 1267 if (flags & ~(unsigned long)MPOL_MF_VALID) 1268 return -EINVAL; 1269 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1270 return -EPERM; 1271 1272 if (start & ~PAGE_MASK) 1273 return -EINVAL; 1274 1275 if (mode == MPOL_DEFAULT) 1276 flags &= ~MPOL_MF_STRICT; 1277 1278 len = PAGE_ALIGN(len); 1279 end = start + len; 1280 1281 if (end < start) 1282 return -EINVAL; 1283 if (end == start) 1284 return 0; 1285 1286 new = mpol_new(mode, mode_flags, nmask); 1287 if (IS_ERR(new)) 1288 return PTR_ERR(new); 1289 1290 if (flags & MPOL_MF_LAZY) 1291 new->flags |= MPOL_F_MOF; 1292 1293 /* 1294 * If we are using the default policy then operation 1295 * on discontinuous address spaces is okay after all 1296 */ 1297 if (!new) 1298 flags |= MPOL_MF_DISCONTIG_OK; 1299 1300 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1301 start, start + len, mode, mode_flags, 1302 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1303 1304 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1305 lru_cache_disable(); 1306 { 1307 NODEMASK_SCRATCH(scratch); 1308 if (scratch) { 1309 mmap_write_lock(mm); 1310 err = mpol_set_nodemask(new, nmask, scratch); 1311 if (err) 1312 mmap_write_unlock(mm); 1313 } else 1314 err = -ENOMEM; 1315 NODEMASK_SCRATCH_FREE(scratch); 1316 } 1317 if (err) 1318 goto mpol_out; 1319 1320 /* 1321 * Lock the VMAs before scanning for pages to migrate, 1322 * to ensure we don't miss a concurrently inserted page. 1323 */ 1324 nr_failed = queue_pages_range(mm, start, end, nmask, 1325 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist); 1326 1327 if (nr_failed < 0) { 1328 err = nr_failed; 1329 } else { 1330 vma_iter_init(&vmi, mm, start); 1331 prev = vma_prev(&vmi); 1332 for_each_vma_range(vmi, vma, end) { 1333 err = mbind_range(&vmi, vma, &prev, start, end, new); 1334 if (err) 1335 break; 1336 } 1337 } 1338 1339 if (!err) { 1340 if (!list_empty(&pagelist)) { 1341 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1342 nr_failed |= migrate_pages(&pagelist, new_folio, NULL, 1343 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1344 } 1345 if (nr_failed && (flags & MPOL_MF_STRICT)) 1346 err = -EIO; 1347 } 1348 1349 if (!list_empty(&pagelist)) 1350 putback_movable_pages(&pagelist); 1351 1352 mmap_write_unlock(mm); 1353 mpol_out: 1354 mpol_put(new); 1355 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1356 lru_cache_enable(); 1357 return err; 1358 } 1359 1360 /* 1361 * User space interface with variable sized bitmaps for nodelists. 1362 */ 1363 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1364 unsigned long maxnode) 1365 { 1366 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1367 int ret; 1368 1369 if (in_compat_syscall()) 1370 ret = compat_get_bitmap(mask, 1371 (const compat_ulong_t __user *)nmask, 1372 maxnode); 1373 else 1374 ret = copy_from_user(mask, nmask, 1375 nlongs * sizeof(unsigned long)); 1376 1377 if (ret) 1378 return -EFAULT; 1379 1380 if (maxnode % BITS_PER_LONG) 1381 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1382 1383 return 0; 1384 } 1385 1386 /* Copy a node mask from user space. */ 1387 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1388 unsigned long maxnode) 1389 { 1390 --maxnode; 1391 nodes_clear(*nodes); 1392 if (maxnode == 0 || !nmask) 1393 return 0; 1394 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1395 return -EINVAL; 1396 1397 /* 1398 * When the user specified more nodes than supported just check 1399 * if the non supported part is all zero, one word at a time, 1400 * starting at the end. 1401 */ 1402 while (maxnode > MAX_NUMNODES) { 1403 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1404 unsigned long t; 1405 1406 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1407 return -EFAULT; 1408 1409 if (maxnode - bits >= MAX_NUMNODES) { 1410 maxnode -= bits; 1411 } else { 1412 maxnode = MAX_NUMNODES; 1413 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1414 } 1415 if (t) 1416 return -EINVAL; 1417 } 1418 1419 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1420 } 1421 1422 /* Copy a kernel node mask to user space */ 1423 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1424 nodemask_t *nodes) 1425 { 1426 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1427 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1428 bool compat = in_compat_syscall(); 1429 1430 if (compat) 1431 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1432 1433 if (copy > nbytes) { 1434 if (copy > PAGE_SIZE) 1435 return -EINVAL; 1436 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1437 return -EFAULT; 1438 copy = nbytes; 1439 maxnode = nr_node_ids; 1440 } 1441 1442 if (compat) 1443 return compat_put_bitmap((compat_ulong_t __user *)mask, 1444 nodes_addr(*nodes), maxnode); 1445 1446 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1447 } 1448 1449 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1450 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1451 { 1452 *flags = *mode & MPOL_MODE_FLAGS; 1453 *mode &= ~MPOL_MODE_FLAGS; 1454 1455 if ((unsigned int)(*mode) >= MPOL_MAX) 1456 return -EINVAL; 1457 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1458 return -EINVAL; 1459 if (*flags & MPOL_F_NUMA_BALANCING) { 1460 if (*mode != MPOL_BIND) 1461 return -EINVAL; 1462 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1463 } 1464 return 0; 1465 } 1466 1467 static long kernel_mbind(unsigned long start, unsigned long len, 1468 unsigned long mode, const unsigned long __user *nmask, 1469 unsigned long maxnode, unsigned int flags) 1470 { 1471 unsigned short mode_flags; 1472 nodemask_t nodes; 1473 int lmode = mode; 1474 int err; 1475 1476 start = untagged_addr(start); 1477 err = sanitize_mpol_flags(&lmode, &mode_flags); 1478 if (err) 1479 return err; 1480 1481 err = get_nodes(&nodes, nmask, maxnode); 1482 if (err) 1483 return err; 1484 1485 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1486 } 1487 1488 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1489 unsigned long, home_node, unsigned long, flags) 1490 { 1491 struct mm_struct *mm = current->mm; 1492 struct vm_area_struct *vma, *prev; 1493 struct mempolicy *new, *old; 1494 unsigned long end; 1495 int err = -ENOENT; 1496 VMA_ITERATOR(vmi, mm, start); 1497 1498 start = untagged_addr(start); 1499 if (start & ~PAGE_MASK) 1500 return -EINVAL; 1501 /* 1502 * flags is used for future extension if any. 1503 */ 1504 if (flags != 0) 1505 return -EINVAL; 1506 1507 /* 1508 * Check home_node is online to avoid accessing uninitialized 1509 * NODE_DATA. 1510 */ 1511 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1512 return -EINVAL; 1513 1514 len = PAGE_ALIGN(len); 1515 end = start + len; 1516 1517 if (end < start) 1518 return -EINVAL; 1519 if (end == start) 1520 return 0; 1521 mmap_write_lock(mm); 1522 prev = vma_prev(&vmi); 1523 for_each_vma_range(vmi, vma, end) { 1524 /* 1525 * If any vma in the range got policy other than MPOL_BIND 1526 * or MPOL_PREFERRED_MANY we return error. We don't reset 1527 * the home node for vmas we already updated before. 1528 */ 1529 old = vma_policy(vma); 1530 if (!old) { 1531 prev = vma; 1532 continue; 1533 } 1534 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1535 err = -EOPNOTSUPP; 1536 break; 1537 } 1538 new = mpol_dup(old); 1539 if (IS_ERR(new)) { 1540 err = PTR_ERR(new); 1541 break; 1542 } 1543 1544 vma_start_write(vma); 1545 new->home_node = home_node; 1546 err = mbind_range(&vmi, vma, &prev, start, end, new); 1547 mpol_put(new); 1548 if (err) 1549 break; 1550 } 1551 mmap_write_unlock(mm); 1552 return err; 1553 } 1554 1555 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1556 unsigned long, mode, const unsigned long __user *, nmask, 1557 unsigned long, maxnode, unsigned int, flags) 1558 { 1559 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1560 } 1561 1562 /* Set the process memory policy */ 1563 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1564 unsigned long maxnode) 1565 { 1566 unsigned short mode_flags; 1567 nodemask_t nodes; 1568 int lmode = mode; 1569 int err; 1570 1571 err = sanitize_mpol_flags(&lmode, &mode_flags); 1572 if (err) 1573 return err; 1574 1575 err = get_nodes(&nodes, nmask, maxnode); 1576 if (err) 1577 return err; 1578 1579 return do_set_mempolicy(lmode, mode_flags, &nodes); 1580 } 1581 1582 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1583 unsigned long, maxnode) 1584 { 1585 return kernel_set_mempolicy(mode, nmask, maxnode); 1586 } 1587 1588 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1589 const unsigned long __user *old_nodes, 1590 const unsigned long __user *new_nodes) 1591 { 1592 struct mm_struct *mm = NULL; 1593 struct task_struct *task; 1594 nodemask_t task_nodes; 1595 int err; 1596 nodemask_t *old; 1597 nodemask_t *new; 1598 NODEMASK_SCRATCH(scratch); 1599 1600 if (!scratch) 1601 return -ENOMEM; 1602 1603 old = &scratch->mask1; 1604 new = &scratch->mask2; 1605 1606 err = get_nodes(old, old_nodes, maxnode); 1607 if (err) 1608 goto out; 1609 1610 err = get_nodes(new, new_nodes, maxnode); 1611 if (err) 1612 goto out; 1613 1614 /* Find the mm_struct */ 1615 rcu_read_lock(); 1616 task = pid ? find_task_by_vpid(pid) : current; 1617 if (!task) { 1618 rcu_read_unlock(); 1619 err = -ESRCH; 1620 goto out; 1621 } 1622 get_task_struct(task); 1623 1624 err = -EINVAL; 1625 1626 /* 1627 * Check if this process has the right to modify the specified process. 1628 * Use the regular "ptrace_may_access()" checks. 1629 */ 1630 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1631 rcu_read_unlock(); 1632 err = -EPERM; 1633 goto out_put; 1634 } 1635 rcu_read_unlock(); 1636 1637 task_nodes = cpuset_mems_allowed(task); 1638 /* Is the user allowed to access the target nodes? */ 1639 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1640 err = -EPERM; 1641 goto out_put; 1642 } 1643 1644 task_nodes = cpuset_mems_allowed(current); 1645 nodes_and(*new, *new, task_nodes); 1646 if (nodes_empty(*new)) 1647 goto out_put; 1648 1649 err = security_task_movememory(task); 1650 if (err) 1651 goto out_put; 1652 1653 mm = get_task_mm(task); 1654 put_task_struct(task); 1655 1656 if (!mm) { 1657 err = -EINVAL; 1658 goto out; 1659 } 1660 1661 err = do_migrate_pages(mm, old, new, 1662 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1663 1664 mmput(mm); 1665 out: 1666 NODEMASK_SCRATCH_FREE(scratch); 1667 1668 return err; 1669 1670 out_put: 1671 put_task_struct(task); 1672 goto out; 1673 1674 } 1675 1676 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1677 const unsigned long __user *, old_nodes, 1678 const unsigned long __user *, new_nodes) 1679 { 1680 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1681 } 1682 1683 1684 /* Retrieve NUMA policy */ 1685 static int kernel_get_mempolicy(int __user *policy, 1686 unsigned long __user *nmask, 1687 unsigned long maxnode, 1688 unsigned long addr, 1689 unsigned long flags) 1690 { 1691 int err; 1692 int pval; 1693 nodemask_t nodes; 1694 1695 if (nmask != NULL && maxnode < nr_node_ids) 1696 return -EINVAL; 1697 1698 addr = untagged_addr(addr); 1699 1700 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1701 1702 if (err) 1703 return err; 1704 1705 if (policy && put_user(pval, policy)) 1706 return -EFAULT; 1707 1708 if (nmask) 1709 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1710 1711 return err; 1712 } 1713 1714 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1715 unsigned long __user *, nmask, unsigned long, maxnode, 1716 unsigned long, addr, unsigned long, flags) 1717 { 1718 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1719 } 1720 1721 bool vma_migratable(struct vm_area_struct *vma) 1722 { 1723 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1724 return false; 1725 1726 /* 1727 * DAX device mappings require predictable access latency, so avoid 1728 * incurring periodic faults. 1729 */ 1730 if (vma_is_dax(vma)) 1731 return false; 1732 1733 if (is_vm_hugetlb_page(vma) && 1734 !hugepage_migration_supported(hstate_vma(vma))) 1735 return false; 1736 1737 /* 1738 * Migration allocates pages in the highest zone. If we cannot 1739 * do so then migration (at least from node to node) is not 1740 * possible. 1741 */ 1742 if (vma->vm_file && 1743 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1744 < policy_zone) 1745 return false; 1746 return true; 1747 } 1748 1749 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1750 unsigned long addr) 1751 { 1752 struct mempolicy *pol = NULL; 1753 1754 if (vma) { 1755 if (vma->vm_ops && vma->vm_ops->get_policy) { 1756 pol = vma->vm_ops->get_policy(vma, addr); 1757 } else if (vma->vm_policy) { 1758 pol = vma->vm_policy; 1759 1760 /* 1761 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1762 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1763 * count on these policies which will be dropped by 1764 * mpol_cond_put() later 1765 */ 1766 if (mpol_needs_cond_ref(pol)) 1767 mpol_get(pol); 1768 } 1769 } 1770 1771 return pol; 1772 } 1773 1774 /* 1775 * get_vma_policy(@vma, @addr) 1776 * @vma: virtual memory area whose policy is sought 1777 * @addr: address in @vma for shared policy lookup 1778 * 1779 * Returns effective policy for a VMA at specified address. 1780 * Falls back to current->mempolicy or system default policy, as necessary. 1781 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1782 * count--added by the get_policy() vm_op, as appropriate--to protect against 1783 * freeing by another task. It is the caller's responsibility to free the 1784 * extra reference for shared policies. 1785 */ 1786 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1787 unsigned long addr) 1788 { 1789 struct mempolicy *pol = __get_vma_policy(vma, addr); 1790 1791 if (!pol) 1792 pol = get_task_policy(current); 1793 1794 return pol; 1795 } 1796 1797 bool vma_policy_mof(struct vm_area_struct *vma) 1798 { 1799 struct mempolicy *pol; 1800 1801 if (vma->vm_ops && vma->vm_ops->get_policy) { 1802 bool ret = false; 1803 1804 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1805 if (pol && (pol->flags & MPOL_F_MOF)) 1806 ret = true; 1807 mpol_cond_put(pol); 1808 1809 return ret; 1810 } 1811 1812 pol = vma->vm_policy; 1813 if (!pol) 1814 pol = get_task_policy(current); 1815 1816 return pol->flags & MPOL_F_MOF; 1817 } 1818 1819 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1820 { 1821 enum zone_type dynamic_policy_zone = policy_zone; 1822 1823 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1824 1825 /* 1826 * if policy->nodes has movable memory only, 1827 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1828 * 1829 * policy->nodes is intersect with node_states[N_MEMORY]. 1830 * so if the following test fails, it implies 1831 * policy->nodes has movable memory only. 1832 */ 1833 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1834 dynamic_policy_zone = ZONE_MOVABLE; 1835 1836 return zone >= dynamic_policy_zone; 1837 } 1838 1839 /* 1840 * Return a nodemask representing a mempolicy for filtering nodes for 1841 * page allocation 1842 */ 1843 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1844 { 1845 int mode = policy->mode; 1846 1847 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1848 if (unlikely(mode == MPOL_BIND) && 1849 apply_policy_zone(policy, gfp_zone(gfp)) && 1850 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1851 return &policy->nodes; 1852 1853 if (mode == MPOL_PREFERRED_MANY) 1854 return &policy->nodes; 1855 1856 return NULL; 1857 } 1858 1859 /* 1860 * Return the preferred node id for 'prefer' mempolicy, and return 1861 * the given id for all other policies. 1862 * 1863 * policy_node() is always coupled with policy_nodemask(), which 1864 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1865 */ 1866 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1867 { 1868 if (policy->mode == MPOL_PREFERRED) { 1869 nd = first_node(policy->nodes); 1870 } else { 1871 /* 1872 * __GFP_THISNODE shouldn't even be used with the bind policy 1873 * because we might easily break the expectation to stay on the 1874 * requested node and not break the policy. 1875 */ 1876 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1877 } 1878 1879 if ((policy->mode == MPOL_BIND || 1880 policy->mode == MPOL_PREFERRED_MANY) && 1881 policy->home_node != NUMA_NO_NODE) 1882 return policy->home_node; 1883 1884 return nd; 1885 } 1886 1887 /* Do dynamic interleaving for a process */ 1888 static unsigned interleave_nodes(struct mempolicy *policy) 1889 { 1890 unsigned next; 1891 struct task_struct *me = current; 1892 1893 next = next_node_in(me->il_prev, policy->nodes); 1894 if (next < MAX_NUMNODES) 1895 me->il_prev = next; 1896 return next; 1897 } 1898 1899 /* 1900 * Depending on the memory policy provide a node from which to allocate the 1901 * next slab entry. 1902 */ 1903 unsigned int mempolicy_slab_node(void) 1904 { 1905 struct mempolicy *policy; 1906 int node = numa_mem_id(); 1907 1908 if (!in_task()) 1909 return node; 1910 1911 policy = current->mempolicy; 1912 if (!policy) 1913 return node; 1914 1915 switch (policy->mode) { 1916 case MPOL_PREFERRED: 1917 return first_node(policy->nodes); 1918 1919 case MPOL_INTERLEAVE: 1920 return interleave_nodes(policy); 1921 1922 case MPOL_BIND: 1923 case MPOL_PREFERRED_MANY: 1924 { 1925 struct zoneref *z; 1926 1927 /* 1928 * Follow bind policy behavior and start allocation at the 1929 * first node. 1930 */ 1931 struct zonelist *zonelist; 1932 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1933 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1934 z = first_zones_zonelist(zonelist, highest_zoneidx, 1935 &policy->nodes); 1936 return z->zone ? zone_to_nid(z->zone) : node; 1937 } 1938 case MPOL_LOCAL: 1939 return node; 1940 1941 default: 1942 BUG(); 1943 } 1944 } 1945 1946 /* 1947 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1948 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1949 * number of present nodes. 1950 */ 1951 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1952 { 1953 nodemask_t nodemask = pol->nodes; 1954 unsigned int target, nnodes; 1955 int i; 1956 int nid; 1957 /* 1958 * The barrier will stabilize the nodemask in a register or on 1959 * the stack so that it will stop changing under the code. 1960 * 1961 * Between first_node() and next_node(), pol->nodes could be changed 1962 * by other threads. So we put pol->nodes in a local stack. 1963 */ 1964 barrier(); 1965 1966 nnodes = nodes_weight(nodemask); 1967 if (!nnodes) 1968 return numa_node_id(); 1969 target = (unsigned int)n % nnodes; 1970 nid = first_node(nodemask); 1971 for (i = 0; i < target; i++) 1972 nid = next_node(nid, nodemask); 1973 return nid; 1974 } 1975 1976 /* Determine a node number for interleave */ 1977 static inline unsigned interleave_nid(struct mempolicy *pol, 1978 struct vm_area_struct *vma, unsigned long addr, int shift) 1979 { 1980 if (vma) { 1981 unsigned long off; 1982 1983 /* 1984 * for small pages, there is no difference between 1985 * shift and PAGE_SHIFT, so the bit-shift is safe. 1986 * for huge pages, since vm_pgoff is in units of small 1987 * pages, we need to shift off the always 0 bits to get 1988 * a useful offset. 1989 */ 1990 BUG_ON(shift < PAGE_SHIFT); 1991 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1992 off += (addr - vma->vm_start) >> shift; 1993 return offset_il_node(pol, off); 1994 } else 1995 return interleave_nodes(pol); 1996 } 1997 1998 #ifdef CONFIG_HUGETLBFS 1999 /* 2000 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2001 * @vma: virtual memory area whose policy is sought 2002 * @addr: address in @vma for shared policy lookup and interleave policy 2003 * @gfp_flags: for requested zone 2004 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2005 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2006 * 2007 * Returns a nid suitable for a huge page allocation and a pointer 2008 * to the struct mempolicy for conditional unref after allocation. 2009 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2010 * to the mempolicy's @nodemask for filtering the zonelist. 2011 * 2012 * Must be protected by read_mems_allowed_begin() 2013 */ 2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2015 struct mempolicy **mpol, nodemask_t **nodemask) 2016 { 2017 int nid; 2018 int mode; 2019 2020 *mpol = get_vma_policy(vma, addr); 2021 *nodemask = NULL; 2022 mode = (*mpol)->mode; 2023 2024 if (unlikely(mode == MPOL_INTERLEAVE)) { 2025 nid = interleave_nid(*mpol, vma, addr, 2026 huge_page_shift(hstate_vma(vma))); 2027 } else { 2028 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2029 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2030 *nodemask = &(*mpol)->nodes; 2031 } 2032 return nid; 2033 } 2034 2035 /* 2036 * init_nodemask_of_mempolicy 2037 * 2038 * If the current task's mempolicy is "default" [NULL], return 'false' 2039 * to indicate default policy. Otherwise, extract the policy nodemask 2040 * for 'bind' or 'interleave' policy into the argument nodemask, or 2041 * initialize the argument nodemask to contain the single node for 2042 * 'preferred' or 'local' policy and return 'true' to indicate presence 2043 * of non-default mempolicy. 2044 * 2045 * We don't bother with reference counting the mempolicy [mpol_get/put] 2046 * because the current task is examining it's own mempolicy and a task's 2047 * mempolicy is only ever changed by the task itself. 2048 * 2049 * N.B., it is the caller's responsibility to free a returned nodemask. 2050 */ 2051 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2052 { 2053 struct mempolicy *mempolicy; 2054 2055 if (!(mask && current->mempolicy)) 2056 return false; 2057 2058 task_lock(current); 2059 mempolicy = current->mempolicy; 2060 switch (mempolicy->mode) { 2061 case MPOL_PREFERRED: 2062 case MPOL_PREFERRED_MANY: 2063 case MPOL_BIND: 2064 case MPOL_INTERLEAVE: 2065 *mask = mempolicy->nodes; 2066 break; 2067 2068 case MPOL_LOCAL: 2069 init_nodemask_of_node(mask, numa_node_id()); 2070 break; 2071 2072 default: 2073 BUG(); 2074 } 2075 task_unlock(current); 2076 2077 return true; 2078 } 2079 #endif 2080 2081 /* 2082 * mempolicy_in_oom_domain 2083 * 2084 * If tsk's mempolicy is "bind", check for intersection between mask and 2085 * the policy nodemask. Otherwise, return true for all other policies 2086 * including "interleave", as a tsk with "interleave" policy may have 2087 * memory allocated from all nodes in system. 2088 * 2089 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2090 */ 2091 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2092 const nodemask_t *mask) 2093 { 2094 struct mempolicy *mempolicy; 2095 bool ret = true; 2096 2097 if (!mask) 2098 return ret; 2099 2100 task_lock(tsk); 2101 mempolicy = tsk->mempolicy; 2102 if (mempolicy && mempolicy->mode == MPOL_BIND) 2103 ret = nodes_intersects(mempolicy->nodes, *mask); 2104 task_unlock(tsk); 2105 2106 return ret; 2107 } 2108 2109 /* Allocate a page in interleaved policy. 2110 Own path because it needs to do special accounting. */ 2111 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2112 unsigned nid) 2113 { 2114 struct page *page; 2115 2116 page = __alloc_pages(gfp, order, nid, NULL); 2117 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2118 if (!static_branch_likely(&vm_numa_stat_key)) 2119 return page; 2120 if (page && page_to_nid(page) == nid) { 2121 preempt_disable(); 2122 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2123 preempt_enable(); 2124 } 2125 return page; 2126 } 2127 2128 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2129 int nid, struct mempolicy *pol) 2130 { 2131 struct page *page; 2132 gfp_t preferred_gfp; 2133 2134 /* 2135 * This is a two pass approach. The first pass will only try the 2136 * preferred nodes but skip the direct reclaim and allow the 2137 * allocation to fail, while the second pass will try all the 2138 * nodes in system. 2139 */ 2140 preferred_gfp = gfp | __GFP_NOWARN; 2141 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2142 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2143 if (!page) 2144 page = __alloc_pages(gfp, order, nid, NULL); 2145 2146 return page; 2147 } 2148 2149 /** 2150 * vma_alloc_folio - Allocate a folio for a VMA. 2151 * @gfp: GFP flags. 2152 * @order: Order of the folio. 2153 * @vma: Pointer to VMA or NULL if not available. 2154 * @addr: Virtual address of the allocation. Must be inside @vma. 2155 * @hugepage: For hugepages try only the preferred node if possible. 2156 * 2157 * Allocate a folio for a specific address in @vma, using the appropriate 2158 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2159 * of the mm_struct of the VMA to prevent it from going away. Should be 2160 * used for all allocations for folios that will be mapped into user space. 2161 * 2162 * Return: The folio on success or NULL if allocation fails. 2163 */ 2164 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2165 unsigned long addr, bool hugepage) 2166 { 2167 struct mempolicy *pol; 2168 int node = numa_node_id(); 2169 struct folio *folio; 2170 int preferred_nid; 2171 nodemask_t *nmask; 2172 2173 pol = get_vma_policy(vma, addr); 2174 2175 if (pol->mode == MPOL_INTERLEAVE) { 2176 struct page *page; 2177 unsigned nid; 2178 2179 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2180 mpol_cond_put(pol); 2181 gfp |= __GFP_COMP; 2182 page = alloc_page_interleave(gfp, order, nid); 2183 return page_rmappable_folio(page); 2184 } 2185 2186 if (pol->mode == MPOL_PREFERRED_MANY) { 2187 struct page *page; 2188 2189 node = policy_node(gfp, pol, node); 2190 gfp |= __GFP_COMP; 2191 page = alloc_pages_preferred_many(gfp, order, node, pol); 2192 mpol_cond_put(pol); 2193 return page_rmappable_folio(page); 2194 } 2195 2196 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2197 int hpage_node = node; 2198 2199 /* 2200 * For hugepage allocation and non-interleave policy which 2201 * allows the current node (or other explicitly preferred 2202 * node) we only try to allocate from the current/preferred 2203 * node and don't fall back to other nodes, as the cost of 2204 * remote accesses would likely offset THP benefits. 2205 * 2206 * If the policy is interleave or does not allow the current 2207 * node in its nodemask, we allocate the standard way. 2208 */ 2209 if (pol->mode == MPOL_PREFERRED) 2210 hpage_node = first_node(pol->nodes); 2211 2212 nmask = policy_nodemask(gfp, pol); 2213 if (!nmask || node_isset(hpage_node, *nmask)) { 2214 mpol_cond_put(pol); 2215 /* 2216 * First, try to allocate THP only on local node, but 2217 * don't reclaim unnecessarily, just compact. 2218 */ 2219 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2220 __GFP_NORETRY, order, hpage_node); 2221 2222 /* 2223 * If hugepage allocations are configured to always 2224 * synchronous compact or the vma has been madvised 2225 * to prefer hugepage backing, retry allowing remote 2226 * memory with both reclaim and compact as well. 2227 */ 2228 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2229 folio = __folio_alloc(gfp, order, hpage_node, 2230 nmask); 2231 2232 goto out; 2233 } 2234 } 2235 2236 nmask = policy_nodemask(gfp, pol); 2237 preferred_nid = policy_node(gfp, pol, node); 2238 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2239 mpol_cond_put(pol); 2240 out: 2241 return folio; 2242 } 2243 EXPORT_SYMBOL(vma_alloc_folio); 2244 2245 /** 2246 * alloc_pages - Allocate pages. 2247 * @gfp: GFP flags. 2248 * @order: Power of two of number of pages to allocate. 2249 * 2250 * Allocate 1 << @order contiguous pages. The physical address of the 2251 * first page is naturally aligned (eg an order-3 allocation will be aligned 2252 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2253 * process is honoured when in process context. 2254 * 2255 * Context: Can be called from any context, providing the appropriate GFP 2256 * flags are used. 2257 * Return: The page on success or NULL if allocation fails. 2258 */ 2259 struct page *alloc_pages(gfp_t gfp, unsigned order) 2260 { 2261 struct mempolicy *pol = &default_policy; 2262 struct page *page; 2263 2264 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2265 pol = get_task_policy(current); 2266 2267 /* 2268 * No reference counting needed for current->mempolicy 2269 * nor system default_policy 2270 */ 2271 if (pol->mode == MPOL_INTERLEAVE) 2272 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2273 else if (pol->mode == MPOL_PREFERRED_MANY) 2274 page = alloc_pages_preferred_many(gfp, order, 2275 policy_node(gfp, pol, numa_node_id()), pol); 2276 else 2277 page = __alloc_pages(gfp, order, 2278 policy_node(gfp, pol, numa_node_id()), 2279 policy_nodemask(gfp, pol)); 2280 2281 return page; 2282 } 2283 EXPORT_SYMBOL(alloc_pages); 2284 2285 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2286 { 2287 return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order)); 2288 } 2289 EXPORT_SYMBOL(folio_alloc); 2290 2291 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2292 struct mempolicy *pol, unsigned long nr_pages, 2293 struct page **page_array) 2294 { 2295 int nodes; 2296 unsigned long nr_pages_per_node; 2297 int delta; 2298 int i; 2299 unsigned long nr_allocated; 2300 unsigned long total_allocated = 0; 2301 2302 nodes = nodes_weight(pol->nodes); 2303 nr_pages_per_node = nr_pages / nodes; 2304 delta = nr_pages - nodes * nr_pages_per_node; 2305 2306 for (i = 0; i < nodes; i++) { 2307 if (delta) { 2308 nr_allocated = __alloc_pages_bulk(gfp, 2309 interleave_nodes(pol), NULL, 2310 nr_pages_per_node + 1, NULL, 2311 page_array); 2312 delta--; 2313 } else { 2314 nr_allocated = __alloc_pages_bulk(gfp, 2315 interleave_nodes(pol), NULL, 2316 nr_pages_per_node, NULL, page_array); 2317 } 2318 2319 page_array += nr_allocated; 2320 total_allocated += nr_allocated; 2321 } 2322 2323 return total_allocated; 2324 } 2325 2326 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2327 struct mempolicy *pol, unsigned long nr_pages, 2328 struct page **page_array) 2329 { 2330 gfp_t preferred_gfp; 2331 unsigned long nr_allocated = 0; 2332 2333 preferred_gfp = gfp | __GFP_NOWARN; 2334 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2335 2336 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2337 nr_pages, NULL, page_array); 2338 2339 if (nr_allocated < nr_pages) 2340 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2341 nr_pages - nr_allocated, NULL, 2342 page_array + nr_allocated); 2343 return nr_allocated; 2344 } 2345 2346 /* alloc pages bulk and mempolicy should be considered at the 2347 * same time in some situation such as vmalloc. 2348 * 2349 * It can accelerate memory allocation especially interleaving 2350 * allocate memory. 2351 */ 2352 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2353 unsigned long nr_pages, struct page **page_array) 2354 { 2355 struct mempolicy *pol = &default_policy; 2356 2357 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2358 pol = get_task_policy(current); 2359 2360 if (pol->mode == MPOL_INTERLEAVE) 2361 return alloc_pages_bulk_array_interleave(gfp, pol, 2362 nr_pages, page_array); 2363 2364 if (pol->mode == MPOL_PREFERRED_MANY) 2365 return alloc_pages_bulk_array_preferred_many(gfp, 2366 numa_node_id(), pol, nr_pages, page_array); 2367 2368 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2369 policy_nodemask(gfp, pol), nr_pages, NULL, 2370 page_array); 2371 } 2372 2373 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2374 { 2375 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2376 2377 if (IS_ERR(pol)) 2378 return PTR_ERR(pol); 2379 dst->vm_policy = pol; 2380 return 0; 2381 } 2382 2383 /* 2384 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2385 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2386 * with the mems_allowed returned by cpuset_mems_allowed(). This 2387 * keeps mempolicies cpuset relative after its cpuset moves. See 2388 * further kernel/cpuset.c update_nodemask(). 2389 * 2390 * current's mempolicy may be rebinded by the other task(the task that changes 2391 * cpuset's mems), so we needn't do rebind work for current task. 2392 */ 2393 2394 /* Slow path of a mempolicy duplicate */ 2395 struct mempolicy *__mpol_dup(struct mempolicy *old) 2396 { 2397 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2398 2399 if (!new) 2400 return ERR_PTR(-ENOMEM); 2401 2402 /* task's mempolicy is protected by alloc_lock */ 2403 if (old == current->mempolicy) { 2404 task_lock(current); 2405 *new = *old; 2406 task_unlock(current); 2407 } else 2408 *new = *old; 2409 2410 if (current_cpuset_is_being_rebound()) { 2411 nodemask_t mems = cpuset_mems_allowed(current); 2412 mpol_rebind_policy(new, &mems); 2413 } 2414 atomic_set(&new->refcnt, 1); 2415 return new; 2416 } 2417 2418 /* Slow path of a mempolicy comparison */ 2419 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2420 { 2421 if (!a || !b) 2422 return false; 2423 if (a->mode != b->mode) 2424 return false; 2425 if (a->flags != b->flags) 2426 return false; 2427 if (a->home_node != b->home_node) 2428 return false; 2429 if (mpol_store_user_nodemask(a)) 2430 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2431 return false; 2432 2433 switch (a->mode) { 2434 case MPOL_BIND: 2435 case MPOL_INTERLEAVE: 2436 case MPOL_PREFERRED: 2437 case MPOL_PREFERRED_MANY: 2438 return !!nodes_equal(a->nodes, b->nodes); 2439 case MPOL_LOCAL: 2440 return true; 2441 default: 2442 BUG(); 2443 return false; 2444 } 2445 } 2446 2447 /* 2448 * Shared memory backing store policy support. 2449 * 2450 * Remember policies even when nobody has shared memory mapped. 2451 * The policies are kept in Red-Black tree linked from the inode. 2452 * They are protected by the sp->lock rwlock, which should be held 2453 * for any accesses to the tree. 2454 */ 2455 2456 /* 2457 * lookup first element intersecting start-end. Caller holds sp->lock for 2458 * reading or for writing 2459 */ 2460 static struct sp_node * 2461 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2462 { 2463 struct rb_node *n = sp->root.rb_node; 2464 2465 while (n) { 2466 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2467 2468 if (start >= p->end) 2469 n = n->rb_right; 2470 else if (end <= p->start) 2471 n = n->rb_left; 2472 else 2473 break; 2474 } 2475 if (!n) 2476 return NULL; 2477 for (;;) { 2478 struct sp_node *w = NULL; 2479 struct rb_node *prev = rb_prev(n); 2480 if (!prev) 2481 break; 2482 w = rb_entry(prev, struct sp_node, nd); 2483 if (w->end <= start) 2484 break; 2485 n = prev; 2486 } 2487 return rb_entry(n, struct sp_node, nd); 2488 } 2489 2490 /* 2491 * Insert a new shared policy into the list. Caller holds sp->lock for 2492 * writing. 2493 */ 2494 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2495 { 2496 struct rb_node **p = &sp->root.rb_node; 2497 struct rb_node *parent = NULL; 2498 struct sp_node *nd; 2499 2500 while (*p) { 2501 parent = *p; 2502 nd = rb_entry(parent, struct sp_node, nd); 2503 if (new->start < nd->start) 2504 p = &(*p)->rb_left; 2505 else if (new->end > nd->end) 2506 p = &(*p)->rb_right; 2507 else 2508 BUG(); 2509 } 2510 rb_link_node(&new->nd, parent, p); 2511 rb_insert_color(&new->nd, &sp->root); 2512 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2513 new->policy ? new->policy->mode : 0); 2514 } 2515 2516 /* Find shared policy intersecting idx */ 2517 struct mempolicy * 2518 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2519 { 2520 struct mempolicy *pol = NULL; 2521 struct sp_node *sn; 2522 2523 if (!sp->root.rb_node) 2524 return NULL; 2525 read_lock(&sp->lock); 2526 sn = sp_lookup(sp, idx, idx+1); 2527 if (sn) { 2528 mpol_get(sn->policy); 2529 pol = sn->policy; 2530 } 2531 read_unlock(&sp->lock); 2532 return pol; 2533 } 2534 2535 static void sp_free(struct sp_node *n) 2536 { 2537 mpol_put(n->policy); 2538 kmem_cache_free(sn_cache, n); 2539 } 2540 2541 /** 2542 * mpol_misplaced - check whether current page node is valid in policy 2543 * 2544 * @page: page to be checked 2545 * @vma: vm area where page mapped 2546 * @addr: virtual address where page mapped 2547 * 2548 * Lookup current policy node id for vma,addr and "compare to" page's 2549 * node id. Policy determination "mimics" alloc_page_vma(). 2550 * Called from fault path where we know the vma and faulting address. 2551 * 2552 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2553 * policy, or a suitable node ID to allocate a replacement page from. 2554 */ 2555 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2556 { 2557 struct mempolicy *pol; 2558 struct zoneref *z; 2559 int curnid = page_to_nid(page); 2560 unsigned long pgoff; 2561 int thiscpu = raw_smp_processor_id(); 2562 int thisnid = cpu_to_node(thiscpu); 2563 int polnid = NUMA_NO_NODE; 2564 int ret = NUMA_NO_NODE; 2565 2566 pol = get_vma_policy(vma, addr); 2567 if (!(pol->flags & MPOL_F_MOF)) 2568 goto out; 2569 2570 switch (pol->mode) { 2571 case MPOL_INTERLEAVE: 2572 pgoff = vma->vm_pgoff; 2573 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2574 polnid = offset_il_node(pol, pgoff); 2575 break; 2576 2577 case MPOL_PREFERRED: 2578 if (node_isset(curnid, pol->nodes)) 2579 goto out; 2580 polnid = first_node(pol->nodes); 2581 break; 2582 2583 case MPOL_LOCAL: 2584 polnid = numa_node_id(); 2585 break; 2586 2587 case MPOL_BIND: 2588 /* Optimize placement among multiple nodes via NUMA balancing */ 2589 if (pol->flags & MPOL_F_MORON) { 2590 if (node_isset(thisnid, pol->nodes)) 2591 break; 2592 goto out; 2593 } 2594 fallthrough; 2595 2596 case MPOL_PREFERRED_MANY: 2597 /* 2598 * use current page if in policy nodemask, 2599 * else select nearest allowed node, if any. 2600 * If no allowed nodes, use current [!misplaced]. 2601 */ 2602 if (node_isset(curnid, pol->nodes)) 2603 goto out; 2604 z = first_zones_zonelist( 2605 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2606 gfp_zone(GFP_HIGHUSER), 2607 &pol->nodes); 2608 polnid = zone_to_nid(z->zone); 2609 break; 2610 2611 default: 2612 BUG(); 2613 } 2614 2615 /* Migrate the page towards the node whose CPU is referencing it */ 2616 if (pol->flags & MPOL_F_MORON) { 2617 polnid = thisnid; 2618 2619 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2620 goto out; 2621 } 2622 2623 if (curnid != polnid) 2624 ret = polnid; 2625 out: 2626 mpol_cond_put(pol); 2627 2628 return ret; 2629 } 2630 2631 /* 2632 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2633 * dropped after task->mempolicy is set to NULL so that any allocation done as 2634 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2635 * policy. 2636 */ 2637 void mpol_put_task_policy(struct task_struct *task) 2638 { 2639 struct mempolicy *pol; 2640 2641 task_lock(task); 2642 pol = task->mempolicy; 2643 task->mempolicy = NULL; 2644 task_unlock(task); 2645 mpol_put(pol); 2646 } 2647 2648 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2649 { 2650 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2651 rb_erase(&n->nd, &sp->root); 2652 sp_free(n); 2653 } 2654 2655 static void sp_node_init(struct sp_node *node, unsigned long start, 2656 unsigned long end, struct mempolicy *pol) 2657 { 2658 node->start = start; 2659 node->end = end; 2660 node->policy = pol; 2661 } 2662 2663 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2664 struct mempolicy *pol) 2665 { 2666 struct sp_node *n; 2667 struct mempolicy *newpol; 2668 2669 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2670 if (!n) 2671 return NULL; 2672 2673 newpol = mpol_dup(pol); 2674 if (IS_ERR(newpol)) { 2675 kmem_cache_free(sn_cache, n); 2676 return NULL; 2677 } 2678 newpol->flags |= MPOL_F_SHARED; 2679 sp_node_init(n, start, end, newpol); 2680 2681 return n; 2682 } 2683 2684 /* Replace a policy range. */ 2685 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2686 unsigned long end, struct sp_node *new) 2687 { 2688 struct sp_node *n; 2689 struct sp_node *n_new = NULL; 2690 struct mempolicy *mpol_new = NULL; 2691 int ret = 0; 2692 2693 restart: 2694 write_lock(&sp->lock); 2695 n = sp_lookup(sp, start, end); 2696 /* Take care of old policies in the same range. */ 2697 while (n && n->start < end) { 2698 struct rb_node *next = rb_next(&n->nd); 2699 if (n->start >= start) { 2700 if (n->end <= end) 2701 sp_delete(sp, n); 2702 else 2703 n->start = end; 2704 } else { 2705 /* Old policy spanning whole new range. */ 2706 if (n->end > end) { 2707 if (!n_new) 2708 goto alloc_new; 2709 2710 *mpol_new = *n->policy; 2711 atomic_set(&mpol_new->refcnt, 1); 2712 sp_node_init(n_new, end, n->end, mpol_new); 2713 n->end = start; 2714 sp_insert(sp, n_new); 2715 n_new = NULL; 2716 mpol_new = NULL; 2717 break; 2718 } else 2719 n->end = start; 2720 } 2721 if (!next) 2722 break; 2723 n = rb_entry(next, struct sp_node, nd); 2724 } 2725 if (new) 2726 sp_insert(sp, new); 2727 write_unlock(&sp->lock); 2728 ret = 0; 2729 2730 err_out: 2731 if (mpol_new) 2732 mpol_put(mpol_new); 2733 if (n_new) 2734 kmem_cache_free(sn_cache, n_new); 2735 2736 return ret; 2737 2738 alloc_new: 2739 write_unlock(&sp->lock); 2740 ret = -ENOMEM; 2741 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2742 if (!n_new) 2743 goto err_out; 2744 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2745 if (!mpol_new) 2746 goto err_out; 2747 atomic_set(&mpol_new->refcnt, 1); 2748 goto restart; 2749 } 2750 2751 /** 2752 * mpol_shared_policy_init - initialize shared policy for inode 2753 * @sp: pointer to inode shared policy 2754 * @mpol: struct mempolicy to install 2755 * 2756 * Install non-NULL @mpol in inode's shared policy rb-tree. 2757 * On entry, the current task has a reference on a non-NULL @mpol. 2758 * This must be released on exit. 2759 * This is called at get_inode() calls and we can use GFP_KERNEL. 2760 */ 2761 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2762 { 2763 int ret; 2764 2765 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2766 rwlock_init(&sp->lock); 2767 2768 if (mpol) { 2769 struct vm_area_struct pvma; 2770 struct mempolicy *new; 2771 NODEMASK_SCRATCH(scratch); 2772 2773 if (!scratch) 2774 goto put_mpol; 2775 /* contextualize the tmpfs mount point mempolicy */ 2776 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2777 if (IS_ERR(new)) 2778 goto free_scratch; /* no valid nodemask intersection */ 2779 2780 task_lock(current); 2781 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2782 task_unlock(current); 2783 if (ret) 2784 goto put_new; 2785 2786 /* Create pseudo-vma that contains just the policy */ 2787 vma_init(&pvma, NULL); 2788 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2789 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2790 2791 put_new: 2792 mpol_put(new); /* drop initial ref */ 2793 free_scratch: 2794 NODEMASK_SCRATCH_FREE(scratch); 2795 put_mpol: 2796 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2797 } 2798 } 2799 2800 int mpol_set_shared_policy(struct shared_policy *info, 2801 struct vm_area_struct *vma, struct mempolicy *npol) 2802 { 2803 int err; 2804 struct sp_node *new = NULL; 2805 unsigned long sz = vma_pages(vma); 2806 2807 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2808 vma->vm_pgoff, 2809 sz, npol ? npol->mode : -1, 2810 npol ? npol->flags : -1, 2811 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2812 2813 if (npol) { 2814 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2815 if (!new) 2816 return -ENOMEM; 2817 } 2818 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2819 if (err && new) 2820 sp_free(new); 2821 return err; 2822 } 2823 2824 /* Free a backing policy store on inode delete. */ 2825 void mpol_free_shared_policy(struct shared_policy *p) 2826 { 2827 struct sp_node *n; 2828 struct rb_node *next; 2829 2830 if (!p->root.rb_node) 2831 return; 2832 write_lock(&p->lock); 2833 next = rb_first(&p->root); 2834 while (next) { 2835 n = rb_entry(next, struct sp_node, nd); 2836 next = rb_next(&n->nd); 2837 sp_delete(p, n); 2838 } 2839 write_unlock(&p->lock); 2840 } 2841 2842 #ifdef CONFIG_NUMA_BALANCING 2843 static int __initdata numabalancing_override; 2844 2845 static void __init check_numabalancing_enable(void) 2846 { 2847 bool numabalancing_default = false; 2848 2849 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2850 numabalancing_default = true; 2851 2852 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2853 if (numabalancing_override) 2854 set_numabalancing_state(numabalancing_override == 1); 2855 2856 if (num_online_nodes() > 1 && !numabalancing_override) { 2857 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2858 numabalancing_default ? "Enabling" : "Disabling"); 2859 set_numabalancing_state(numabalancing_default); 2860 } 2861 } 2862 2863 static int __init setup_numabalancing(char *str) 2864 { 2865 int ret = 0; 2866 if (!str) 2867 goto out; 2868 2869 if (!strcmp(str, "enable")) { 2870 numabalancing_override = 1; 2871 ret = 1; 2872 } else if (!strcmp(str, "disable")) { 2873 numabalancing_override = -1; 2874 ret = 1; 2875 } 2876 out: 2877 if (!ret) 2878 pr_warn("Unable to parse numa_balancing=\n"); 2879 2880 return ret; 2881 } 2882 __setup("numa_balancing=", setup_numabalancing); 2883 #else 2884 static inline void __init check_numabalancing_enable(void) 2885 { 2886 } 2887 #endif /* CONFIG_NUMA_BALANCING */ 2888 2889 /* assumes fs == KERNEL_DS */ 2890 void __init numa_policy_init(void) 2891 { 2892 nodemask_t interleave_nodes; 2893 unsigned long largest = 0; 2894 int nid, prefer = 0; 2895 2896 policy_cache = kmem_cache_create("numa_policy", 2897 sizeof(struct mempolicy), 2898 0, SLAB_PANIC, NULL); 2899 2900 sn_cache = kmem_cache_create("shared_policy_node", 2901 sizeof(struct sp_node), 2902 0, SLAB_PANIC, NULL); 2903 2904 for_each_node(nid) { 2905 preferred_node_policy[nid] = (struct mempolicy) { 2906 .refcnt = ATOMIC_INIT(1), 2907 .mode = MPOL_PREFERRED, 2908 .flags = MPOL_F_MOF | MPOL_F_MORON, 2909 .nodes = nodemask_of_node(nid), 2910 }; 2911 } 2912 2913 /* 2914 * Set interleaving policy for system init. Interleaving is only 2915 * enabled across suitably sized nodes (default is >= 16MB), or 2916 * fall back to the largest node if they're all smaller. 2917 */ 2918 nodes_clear(interleave_nodes); 2919 for_each_node_state(nid, N_MEMORY) { 2920 unsigned long total_pages = node_present_pages(nid); 2921 2922 /* Preserve the largest node */ 2923 if (largest < total_pages) { 2924 largest = total_pages; 2925 prefer = nid; 2926 } 2927 2928 /* Interleave this node? */ 2929 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2930 node_set(nid, interleave_nodes); 2931 } 2932 2933 /* All too small, use the largest */ 2934 if (unlikely(nodes_empty(interleave_nodes))) 2935 node_set(prefer, interleave_nodes); 2936 2937 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2938 pr_err("%s: interleaving failed\n", __func__); 2939 2940 check_numabalancing_enable(); 2941 } 2942 2943 /* Reset policy of current process to default */ 2944 void numa_default_policy(void) 2945 { 2946 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2947 } 2948 2949 /* 2950 * Parse and format mempolicy from/to strings 2951 */ 2952 2953 static const char * const policy_modes[] = 2954 { 2955 [MPOL_DEFAULT] = "default", 2956 [MPOL_PREFERRED] = "prefer", 2957 [MPOL_BIND] = "bind", 2958 [MPOL_INTERLEAVE] = "interleave", 2959 [MPOL_LOCAL] = "local", 2960 [MPOL_PREFERRED_MANY] = "prefer (many)", 2961 }; 2962 2963 2964 #ifdef CONFIG_TMPFS 2965 /** 2966 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2967 * @str: string containing mempolicy to parse 2968 * @mpol: pointer to struct mempolicy pointer, returned on success. 2969 * 2970 * Format of input: 2971 * <mode>[=<flags>][:<nodelist>] 2972 * 2973 * Return: %0 on success, else %1 2974 */ 2975 int mpol_parse_str(char *str, struct mempolicy **mpol) 2976 { 2977 struct mempolicy *new = NULL; 2978 unsigned short mode_flags; 2979 nodemask_t nodes; 2980 char *nodelist = strchr(str, ':'); 2981 char *flags = strchr(str, '='); 2982 int err = 1, mode; 2983 2984 if (flags) 2985 *flags++ = '\0'; /* terminate mode string */ 2986 2987 if (nodelist) { 2988 /* NUL-terminate mode or flags string */ 2989 *nodelist++ = '\0'; 2990 if (nodelist_parse(nodelist, nodes)) 2991 goto out; 2992 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2993 goto out; 2994 } else 2995 nodes_clear(nodes); 2996 2997 mode = match_string(policy_modes, MPOL_MAX, str); 2998 if (mode < 0) 2999 goto out; 3000 3001 switch (mode) { 3002 case MPOL_PREFERRED: 3003 /* 3004 * Insist on a nodelist of one node only, although later 3005 * we use first_node(nodes) to grab a single node, so here 3006 * nodelist (or nodes) cannot be empty. 3007 */ 3008 if (nodelist) { 3009 char *rest = nodelist; 3010 while (isdigit(*rest)) 3011 rest++; 3012 if (*rest) 3013 goto out; 3014 if (nodes_empty(nodes)) 3015 goto out; 3016 } 3017 break; 3018 case MPOL_INTERLEAVE: 3019 /* 3020 * Default to online nodes with memory if no nodelist 3021 */ 3022 if (!nodelist) 3023 nodes = node_states[N_MEMORY]; 3024 break; 3025 case MPOL_LOCAL: 3026 /* 3027 * Don't allow a nodelist; mpol_new() checks flags 3028 */ 3029 if (nodelist) 3030 goto out; 3031 break; 3032 case MPOL_DEFAULT: 3033 /* 3034 * Insist on a empty nodelist 3035 */ 3036 if (!nodelist) 3037 err = 0; 3038 goto out; 3039 case MPOL_PREFERRED_MANY: 3040 case MPOL_BIND: 3041 /* 3042 * Insist on a nodelist 3043 */ 3044 if (!nodelist) 3045 goto out; 3046 } 3047 3048 mode_flags = 0; 3049 if (flags) { 3050 /* 3051 * Currently, we only support two mutually exclusive 3052 * mode flags. 3053 */ 3054 if (!strcmp(flags, "static")) 3055 mode_flags |= MPOL_F_STATIC_NODES; 3056 else if (!strcmp(flags, "relative")) 3057 mode_flags |= MPOL_F_RELATIVE_NODES; 3058 else 3059 goto out; 3060 } 3061 3062 new = mpol_new(mode, mode_flags, &nodes); 3063 if (IS_ERR(new)) 3064 goto out; 3065 3066 /* 3067 * Save nodes for mpol_to_str() to show the tmpfs mount options 3068 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3069 */ 3070 if (mode != MPOL_PREFERRED) { 3071 new->nodes = nodes; 3072 } else if (nodelist) { 3073 nodes_clear(new->nodes); 3074 node_set(first_node(nodes), new->nodes); 3075 } else { 3076 new->mode = MPOL_LOCAL; 3077 } 3078 3079 /* 3080 * Save nodes for contextualization: this will be used to "clone" 3081 * the mempolicy in a specific context [cpuset] at a later time. 3082 */ 3083 new->w.user_nodemask = nodes; 3084 3085 err = 0; 3086 3087 out: 3088 /* Restore string for error message */ 3089 if (nodelist) 3090 *--nodelist = ':'; 3091 if (flags) 3092 *--flags = '='; 3093 if (!err) 3094 *mpol = new; 3095 return err; 3096 } 3097 #endif /* CONFIG_TMPFS */ 3098 3099 /** 3100 * mpol_to_str - format a mempolicy structure for printing 3101 * @buffer: to contain formatted mempolicy string 3102 * @maxlen: length of @buffer 3103 * @pol: pointer to mempolicy to be formatted 3104 * 3105 * Convert @pol into a string. If @buffer is too short, truncate the string. 3106 * Recommend a @maxlen of at least 51 for the longest mode, "weighted 3107 * interleave", plus the longest flag flags, "relative|balancing", and to 3108 * display at least a few node ids. 3109 */ 3110 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3111 { 3112 char *p = buffer; 3113 nodemask_t nodes = NODE_MASK_NONE; 3114 unsigned short mode = MPOL_DEFAULT; 3115 unsigned short flags = 0; 3116 3117 if (pol && 3118 pol != &default_policy && 3119 !(pol >= &preferred_node_policy[0] && 3120 pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) { 3121 mode = pol->mode; 3122 flags = pol->flags; 3123 } 3124 3125 switch (mode) { 3126 case MPOL_DEFAULT: 3127 case MPOL_LOCAL: 3128 break; 3129 case MPOL_PREFERRED: 3130 case MPOL_PREFERRED_MANY: 3131 case MPOL_BIND: 3132 case MPOL_INTERLEAVE: 3133 nodes = pol->nodes; 3134 break; 3135 default: 3136 WARN_ON_ONCE(1); 3137 snprintf(p, maxlen, "unknown"); 3138 return; 3139 } 3140 3141 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3142 3143 if (flags & MPOL_MODE_FLAGS) { 3144 p += snprintf(p, buffer + maxlen - p, "="); 3145 3146 /* 3147 * Static and relative are mutually exclusive. 3148 */ 3149 if (flags & MPOL_F_STATIC_NODES) 3150 p += snprintf(p, buffer + maxlen - p, "static"); 3151 else if (flags & MPOL_F_RELATIVE_NODES) 3152 p += snprintf(p, buffer + maxlen - p, "relative"); 3153 3154 if (flags & MPOL_F_NUMA_BALANCING) { 3155 if (!is_power_of_2(flags & MPOL_MODE_FLAGS)) 3156 p += snprintf(p, buffer + maxlen - p, "|"); 3157 p += snprintf(p, buffer + maxlen - p, "balancing"); 3158 } 3159 } 3160 3161 if (!nodes_empty(nodes)) 3162 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3163 nodemask_pr_args(&nodes)); 3164 } 3165