xref: /openbmc/linux/mm/mempolicy.c (revision 37c881cd18f428b08cf46c5a9d67cfd2db2c4a32)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte, *mapped_pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(mapped_pte, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_lock held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_lock */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	if (flags & MPOL_F_NUMA_BALANCING) {
879 		if (new && new->mode == MPOL_BIND) {
880 			new->flags |= (MPOL_F_MOF | MPOL_F_MORON);
881 		} else {
882 			ret = -EINVAL;
883 			mpol_put(new);
884 			goto out;
885 		}
886 	}
887 
888 	ret = mpol_set_nodemask(new, nodes, scratch);
889 	if (ret) {
890 		mpol_put(new);
891 		goto out;
892 	}
893 	task_lock(current);
894 	old = current->mempolicy;
895 	current->mempolicy = new;
896 	if (new && new->mode == MPOL_INTERLEAVE)
897 		current->il_prev = MAX_NUMNODES-1;
898 	task_unlock(current);
899 	mpol_put(old);
900 	ret = 0;
901 out:
902 	NODEMASK_SCRATCH_FREE(scratch);
903 	return ret;
904 }
905 
906 /*
907  * Return nodemask for policy for get_mempolicy() query
908  *
909  * Called with task's alloc_lock held
910  */
911 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
912 {
913 	nodes_clear(*nodes);
914 	if (p == &default_policy)
915 		return;
916 
917 	switch (p->mode) {
918 	case MPOL_BIND:
919 	case MPOL_INTERLEAVE:
920 		*nodes = p->v.nodes;
921 		break;
922 	case MPOL_PREFERRED:
923 		if (!(p->flags & MPOL_F_LOCAL))
924 			node_set(p->v.preferred_node, *nodes);
925 		/* else return empty node mask for local allocation */
926 		break;
927 	default:
928 		BUG();
929 	}
930 }
931 
932 static int lookup_node(struct mm_struct *mm, unsigned long addr)
933 {
934 	struct page *p = NULL;
935 	int err;
936 
937 	int locked = 1;
938 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
939 	if (err > 0) {
940 		err = page_to_nid(p);
941 		put_page(p);
942 	}
943 	if (locked)
944 		mmap_read_unlock(mm);
945 	return err;
946 }
947 
948 /* Retrieve NUMA policy */
949 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
950 			     unsigned long addr, unsigned long flags)
951 {
952 	int err;
953 	struct mm_struct *mm = current->mm;
954 	struct vm_area_struct *vma = NULL;
955 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
956 
957 	if (flags &
958 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
959 		return -EINVAL;
960 
961 	if (flags & MPOL_F_MEMS_ALLOWED) {
962 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
963 			return -EINVAL;
964 		*policy = 0;	/* just so it's initialized */
965 		task_lock(current);
966 		*nmask  = cpuset_current_mems_allowed;
967 		task_unlock(current);
968 		return 0;
969 	}
970 
971 	if (flags & MPOL_F_ADDR) {
972 		/*
973 		 * Do NOT fall back to task policy if the
974 		 * vma/shared policy at addr is NULL.  We
975 		 * want to return MPOL_DEFAULT in this case.
976 		 */
977 		mmap_read_lock(mm);
978 		vma = find_vma_intersection(mm, addr, addr+1);
979 		if (!vma) {
980 			mmap_read_unlock(mm);
981 			return -EFAULT;
982 		}
983 		if (vma->vm_ops && vma->vm_ops->get_policy)
984 			pol = vma->vm_ops->get_policy(vma, addr);
985 		else
986 			pol = vma->vm_policy;
987 	} else if (addr)
988 		return -EINVAL;
989 
990 	if (!pol)
991 		pol = &default_policy;	/* indicates default behavior */
992 
993 	if (flags & MPOL_F_NODE) {
994 		if (flags & MPOL_F_ADDR) {
995 			/*
996 			 * Take a refcount on the mpol, lookup_node()
997 			 * will drop the mmap_lock, so after calling
998 			 * lookup_node() only "pol" remains valid, "vma"
999 			 * is stale.
1000 			 */
1001 			pol_refcount = pol;
1002 			vma = NULL;
1003 			mpol_get(pol);
1004 			err = lookup_node(mm, addr);
1005 			if (err < 0)
1006 				goto out;
1007 			*policy = err;
1008 		} else if (pol == current->mempolicy &&
1009 				pol->mode == MPOL_INTERLEAVE) {
1010 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1011 		} else {
1012 			err = -EINVAL;
1013 			goto out;
1014 		}
1015 	} else {
1016 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1017 						pol->mode;
1018 		/*
1019 		 * Internal mempolicy flags must be masked off before exposing
1020 		 * the policy to userspace.
1021 		 */
1022 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1023 	}
1024 
1025 	err = 0;
1026 	if (nmask) {
1027 		if (mpol_store_user_nodemask(pol)) {
1028 			*nmask = pol->w.user_nodemask;
1029 		} else {
1030 			task_lock(current);
1031 			get_policy_nodemask(pol, nmask);
1032 			task_unlock(current);
1033 		}
1034 	}
1035 
1036  out:
1037 	mpol_cond_put(pol);
1038 	if (vma)
1039 		mmap_read_unlock(mm);
1040 	if (pol_refcount)
1041 		mpol_put(pol_refcount);
1042 	return err;
1043 }
1044 
1045 #ifdef CONFIG_MIGRATION
1046 /*
1047  * page migration, thp tail pages can be passed.
1048  */
1049 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1050 				unsigned long flags)
1051 {
1052 	struct page *head = compound_head(page);
1053 	/*
1054 	 * Avoid migrating a page that is shared with others.
1055 	 */
1056 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1057 		if (!isolate_lru_page(head)) {
1058 			list_add_tail(&head->lru, pagelist);
1059 			mod_node_page_state(page_pgdat(head),
1060 				NR_ISOLATED_ANON + page_is_file_lru(head),
1061 				thp_nr_pages(head));
1062 		} else if (flags & MPOL_MF_STRICT) {
1063 			/*
1064 			 * Non-movable page may reach here.  And, there may be
1065 			 * temporary off LRU pages or non-LRU movable pages.
1066 			 * Treat them as unmovable pages since they can't be
1067 			 * isolated, so they can't be moved at the moment.  It
1068 			 * should return -EIO for this case too.
1069 			 */
1070 			return -EIO;
1071 		}
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Migrate pages from one node to a target node.
1079  * Returns error or the number of pages not migrated.
1080  */
1081 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1082 			   int flags)
1083 {
1084 	nodemask_t nmask;
1085 	LIST_HEAD(pagelist);
1086 	int err = 0;
1087 	struct migration_target_control mtc = {
1088 		.nid = dest,
1089 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1090 	};
1091 
1092 	nodes_clear(nmask);
1093 	node_set(source, nmask);
1094 
1095 	/*
1096 	 * This does not "check" the range but isolates all pages that
1097 	 * need migration.  Between passing in the full user address
1098 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1099 	 */
1100 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1101 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1102 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1103 
1104 	if (!list_empty(&pagelist)) {
1105 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1106 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1107 		if (err)
1108 			putback_movable_pages(&pagelist);
1109 	}
1110 
1111 	return err;
1112 }
1113 
1114 /*
1115  * Move pages between the two nodesets so as to preserve the physical
1116  * layout as much as possible.
1117  *
1118  * Returns the number of page that could not be moved.
1119  */
1120 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1121 		     const nodemask_t *to, int flags)
1122 {
1123 	int busy = 0;
1124 	int err = 0;
1125 	nodemask_t tmp;
1126 
1127 	lru_cache_disable();
1128 
1129 	mmap_read_lock(mm);
1130 
1131 	/*
1132 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1133 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1134 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1135 	 * The pair of nodemasks 'to' and 'from' define the map.
1136 	 *
1137 	 * If no pair of bits is found that way, fallback to picking some
1138 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1139 	 * 'source' and 'dest' bits are the same, this represents a node
1140 	 * that will be migrating to itself, so no pages need move.
1141 	 *
1142 	 * If no bits are left in 'tmp', or if all remaining bits left
1143 	 * in 'tmp' correspond to the same bit in 'to', return false
1144 	 * (nothing left to migrate).
1145 	 *
1146 	 * This lets us pick a pair of nodes to migrate between, such that
1147 	 * if possible the dest node is not already occupied by some other
1148 	 * source node, minimizing the risk of overloading the memory on a
1149 	 * node that would happen if we migrated incoming memory to a node
1150 	 * before migrating outgoing memory source that same node.
1151 	 *
1152 	 * A single scan of tmp is sufficient.  As we go, we remember the
1153 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1154 	 * that not only moved, but what's better, moved to an empty slot
1155 	 * (d is not set in tmp), then we break out then, with that pair.
1156 	 * Otherwise when we finish scanning from_tmp, we at least have the
1157 	 * most recent <s, d> pair that moved.  If we get all the way through
1158 	 * the scan of tmp without finding any node that moved, much less
1159 	 * moved to an empty node, then there is nothing left worth migrating.
1160 	 */
1161 
1162 	tmp = *from;
1163 	while (!nodes_empty(tmp)) {
1164 		int s, d;
1165 		int source = NUMA_NO_NODE;
1166 		int dest = 0;
1167 
1168 		for_each_node_mask(s, tmp) {
1169 
1170 			/*
1171 			 * do_migrate_pages() tries to maintain the relative
1172 			 * node relationship of the pages established between
1173 			 * threads and memory areas.
1174                          *
1175 			 * However if the number of source nodes is not equal to
1176 			 * the number of destination nodes we can not preserve
1177 			 * this node relative relationship.  In that case, skip
1178 			 * copying memory from a node that is in the destination
1179 			 * mask.
1180 			 *
1181 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1182 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1183 			 */
1184 
1185 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1186 						(node_isset(s, *to)))
1187 				continue;
1188 
1189 			d = node_remap(s, *from, *to);
1190 			if (s == d)
1191 				continue;
1192 
1193 			source = s;	/* Node moved. Memorize */
1194 			dest = d;
1195 
1196 			/* dest not in remaining from nodes? */
1197 			if (!node_isset(dest, tmp))
1198 				break;
1199 		}
1200 		if (source == NUMA_NO_NODE)
1201 			break;
1202 
1203 		node_clear(source, tmp);
1204 		err = migrate_to_node(mm, source, dest, flags);
1205 		if (err > 0)
1206 			busy += err;
1207 		if (err < 0)
1208 			break;
1209 	}
1210 	mmap_read_unlock(mm);
1211 
1212 	lru_cache_enable();
1213 	if (err < 0)
1214 		return err;
1215 	return busy;
1216 
1217 }
1218 
1219 /*
1220  * Allocate a new page for page migration based on vma policy.
1221  * Start by assuming the page is mapped by the same vma as contains @start.
1222  * Search forward from there, if not.  N.B., this assumes that the
1223  * list of pages handed to migrate_pages()--which is how we get here--
1224  * is in virtual address order.
1225  */
1226 static struct page *new_page(struct page *page, unsigned long start)
1227 {
1228 	struct vm_area_struct *vma;
1229 	unsigned long address;
1230 
1231 	vma = find_vma(current->mm, start);
1232 	while (vma) {
1233 		address = page_address_in_vma(page, vma);
1234 		if (address != -EFAULT)
1235 			break;
1236 		vma = vma->vm_next;
1237 	}
1238 
1239 	if (PageHuge(page)) {
1240 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1241 				vma, address);
1242 	} else if (PageTransHuge(page)) {
1243 		struct page *thp;
1244 
1245 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1246 					 HPAGE_PMD_ORDER);
1247 		if (!thp)
1248 			return NULL;
1249 		prep_transhuge_page(thp);
1250 		return thp;
1251 	}
1252 	/*
1253 	 * if !vma, alloc_page_vma() will use task or system default policy
1254 	 */
1255 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1256 			vma, address);
1257 }
1258 #else
1259 
1260 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1261 				unsigned long flags)
1262 {
1263 	return -EIO;
1264 }
1265 
1266 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1267 		     const nodemask_t *to, int flags)
1268 {
1269 	return -ENOSYS;
1270 }
1271 
1272 static struct page *new_page(struct page *page, unsigned long start)
1273 {
1274 	return NULL;
1275 }
1276 #endif
1277 
1278 static long do_mbind(unsigned long start, unsigned long len,
1279 		     unsigned short mode, unsigned short mode_flags,
1280 		     nodemask_t *nmask, unsigned long flags)
1281 {
1282 	struct mm_struct *mm = current->mm;
1283 	struct mempolicy *new;
1284 	unsigned long end;
1285 	int err;
1286 	int ret;
1287 	LIST_HEAD(pagelist);
1288 
1289 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1290 		return -EINVAL;
1291 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1292 		return -EPERM;
1293 
1294 	if (start & ~PAGE_MASK)
1295 		return -EINVAL;
1296 
1297 	if (mode == MPOL_DEFAULT)
1298 		flags &= ~MPOL_MF_STRICT;
1299 
1300 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1301 	end = start + len;
1302 
1303 	if (end < start)
1304 		return -EINVAL;
1305 	if (end == start)
1306 		return 0;
1307 
1308 	new = mpol_new(mode, mode_flags, nmask);
1309 	if (IS_ERR(new))
1310 		return PTR_ERR(new);
1311 
1312 	if (flags & MPOL_MF_LAZY)
1313 		new->flags |= MPOL_F_MOF;
1314 
1315 	/*
1316 	 * If we are using the default policy then operation
1317 	 * on discontinuous address spaces is okay after all
1318 	 */
1319 	if (!new)
1320 		flags |= MPOL_MF_DISCONTIG_OK;
1321 
1322 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1323 		 start, start + len, mode, mode_flags,
1324 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1325 
1326 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1327 
1328 		lru_cache_disable();
1329 	}
1330 	{
1331 		NODEMASK_SCRATCH(scratch);
1332 		if (scratch) {
1333 			mmap_write_lock(mm);
1334 			err = mpol_set_nodemask(new, nmask, scratch);
1335 			if (err)
1336 				mmap_write_unlock(mm);
1337 		} else
1338 			err = -ENOMEM;
1339 		NODEMASK_SCRATCH_FREE(scratch);
1340 	}
1341 	if (err)
1342 		goto mpol_out;
1343 
1344 	ret = queue_pages_range(mm, start, end, nmask,
1345 			  flags | MPOL_MF_INVERT, &pagelist);
1346 
1347 	if (ret < 0) {
1348 		err = ret;
1349 		goto up_out;
1350 	}
1351 
1352 	err = mbind_range(mm, start, end, new);
1353 
1354 	if (!err) {
1355 		int nr_failed = 0;
1356 
1357 		if (!list_empty(&pagelist)) {
1358 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1359 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1360 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1361 			if (nr_failed)
1362 				putback_movable_pages(&pagelist);
1363 		}
1364 
1365 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1366 			err = -EIO;
1367 	} else {
1368 up_out:
1369 		if (!list_empty(&pagelist))
1370 			putback_movable_pages(&pagelist);
1371 	}
1372 
1373 	mmap_write_unlock(mm);
1374 mpol_out:
1375 	mpol_put(new);
1376 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1377 		lru_cache_enable();
1378 	return err;
1379 }
1380 
1381 /*
1382  * User space interface with variable sized bitmaps for nodelists.
1383  */
1384 
1385 /* Copy a node mask from user space. */
1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 		     unsigned long maxnode)
1388 {
1389 	unsigned long k;
1390 	unsigned long t;
1391 	unsigned long nlongs;
1392 	unsigned long endmask;
1393 
1394 	--maxnode;
1395 	nodes_clear(*nodes);
1396 	if (maxnode == 0 || !nmask)
1397 		return 0;
1398 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1399 		return -EINVAL;
1400 
1401 	nlongs = BITS_TO_LONGS(maxnode);
1402 	if ((maxnode % BITS_PER_LONG) == 0)
1403 		endmask = ~0UL;
1404 	else
1405 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1406 
1407 	/*
1408 	 * When the user specified more nodes than supported just check
1409 	 * if the non supported part is all zero.
1410 	 *
1411 	 * If maxnode have more longs than MAX_NUMNODES, check
1412 	 * the bits in that area first. And then go through to
1413 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1414 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1415 	 */
1416 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1417 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1418 			if (get_user(t, nmask + k))
1419 				return -EFAULT;
1420 			if (k == nlongs - 1) {
1421 				if (t & endmask)
1422 					return -EINVAL;
1423 			} else if (t)
1424 				return -EINVAL;
1425 		}
1426 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1427 		endmask = ~0UL;
1428 	}
1429 
1430 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1431 		unsigned long valid_mask = endmask;
1432 
1433 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1434 		if (get_user(t, nmask + nlongs - 1))
1435 			return -EFAULT;
1436 		if (t & valid_mask)
1437 			return -EINVAL;
1438 	}
1439 
1440 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1441 		return -EFAULT;
1442 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1443 	return 0;
1444 }
1445 
1446 /* Copy a kernel node mask to user space */
1447 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1448 			      nodemask_t *nodes)
1449 {
1450 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1451 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1452 
1453 	if (copy > nbytes) {
1454 		if (copy > PAGE_SIZE)
1455 			return -EINVAL;
1456 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1457 			return -EFAULT;
1458 		copy = nbytes;
1459 	}
1460 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1461 }
1462 
1463 static long kernel_mbind(unsigned long start, unsigned long len,
1464 			 unsigned long mode, const unsigned long __user *nmask,
1465 			 unsigned long maxnode, unsigned int flags)
1466 {
1467 	nodemask_t nodes;
1468 	int err;
1469 	unsigned short mode_flags;
1470 
1471 	start = untagged_addr(start);
1472 	mode_flags = mode & MPOL_MODE_FLAGS;
1473 	mode &= ~MPOL_MODE_FLAGS;
1474 	if (mode >= MPOL_MAX)
1475 		return -EINVAL;
1476 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1477 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1478 		return -EINVAL;
1479 	err = get_nodes(&nodes, nmask, maxnode);
1480 	if (err)
1481 		return err;
1482 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1483 }
1484 
1485 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1486 		unsigned long, mode, const unsigned long __user *, nmask,
1487 		unsigned long, maxnode, unsigned int, flags)
1488 {
1489 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1490 }
1491 
1492 /* Set the process memory policy */
1493 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1494 				 unsigned long maxnode)
1495 {
1496 	int err;
1497 	nodemask_t nodes;
1498 	unsigned short flags;
1499 
1500 	flags = mode & MPOL_MODE_FLAGS;
1501 	mode &= ~MPOL_MODE_FLAGS;
1502 	if ((unsigned int)mode >= MPOL_MAX)
1503 		return -EINVAL;
1504 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1505 		return -EINVAL;
1506 	err = get_nodes(&nodes, nmask, maxnode);
1507 	if (err)
1508 		return err;
1509 	return do_set_mempolicy(mode, flags, &nodes);
1510 }
1511 
1512 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1513 		unsigned long, maxnode)
1514 {
1515 	return kernel_set_mempolicy(mode, nmask, maxnode);
1516 }
1517 
1518 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1519 				const unsigned long __user *old_nodes,
1520 				const unsigned long __user *new_nodes)
1521 {
1522 	struct mm_struct *mm = NULL;
1523 	struct task_struct *task;
1524 	nodemask_t task_nodes;
1525 	int err;
1526 	nodemask_t *old;
1527 	nodemask_t *new;
1528 	NODEMASK_SCRATCH(scratch);
1529 
1530 	if (!scratch)
1531 		return -ENOMEM;
1532 
1533 	old = &scratch->mask1;
1534 	new = &scratch->mask2;
1535 
1536 	err = get_nodes(old, old_nodes, maxnode);
1537 	if (err)
1538 		goto out;
1539 
1540 	err = get_nodes(new, new_nodes, maxnode);
1541 	if (err)
1542 		goto out;
1543 
1544 	/* Find the mm_struct */
1545 	rcu_read_lock();
1546 	task = pid ? find_task_by_vpid(pid) : current;
1547 	if (!task) {
1548 		rcu_read_unlock();
1549 		err = -ESRCH;
1550 		goto out;
1551 	}
1552 	get_task_struct(task);
1553 
1554 	err = -EINVAL;
1555 
1556 	/*
1557 	 * Check if this process has the right to modify the specified process.
1558 	 * Use the regular "ptrace_may_access()" checks.
1559 	 */
1560 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1561 		rcu_read_unlock();
1562 		err = -EPERM;
1563 		goto out_put;
1564 	}
1565 	rcu_read_unlock();
1566 
1567 	task_nodes = cpuset_mems_allowed(task);
1568 	/* Is the user allowed to access the target nodes? */
1569 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1570 		err = -EPERM;
1571 		goto out_put;
1572 	}
1573 
1574 	task_nodes = cpuset_mems_allowed(current);
1575 	nodes_and(*new, *new, task_nodes);
1576 	if (nodes_empty(*new))
1577 		goto out_put;
1578 
1579 	err = security_task_movememory(task);
1580 	if (err)
1581 		goto out_put;
1582 
1583 	mm = get_task_mm(task);
1584 	put_task_struct(task);
1585 
1586 	if (!mm) {
1587 		err = -EINVAL;
1588 		goto out;
1589 	}
1590 
1591 	err = do_migrate_pages(mm, old, new,
1592 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1593 
1594 	mmput(mm);
1595 out:
1596 	NODEMASK_SCRATCH_FREE(scratch);
1597 
1598 	return err;
1599 
1600 out_put:
1601 	put_task_struct(task);
1602 	goto out;
1603 
1604 }
1605 
1606 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1607 		const unsigned long __user *, old_nodes,
1608 		const unsigned long __user *, new_nodes)
1609 {
1610 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1611 }
1612 
1613 
1614 /* Retrieve NUMA policy */
1615 static int kernel_get_mempolicy(int __user *policy,
1616 				unsigned long __user *nmask,
1617 				unsigned long maxnode,
1618 				unsigned long addr,
1619 				unsigned long flags)
1620 {
1621 	int err;
1622 	int pval;
1623 	nodemask_t nodes;
1624 
1625 	if (nmask != NULL && maxnode < nr_node_ids)
1626 		return -EINVAL;
1627 
1628 	addr = untagged_addr(addr);
1629 
1630 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1631 
1632 	if (err)
1633 		return err;
1634 
1635 	if (policy && put_user(pval, policy))
1636 		return -EFAULT;
1637 
1638 	if (nmask)
1639 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1640 
1641 	return err;
1642 }
1643 
1644 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1645 		unsigned long __user *, nmask, unsigned long, maxnode,
1646 		unsigned long, addr, unsigned long, flags)
1647 {
1648 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1649 }
1650 
1651 #ifdef CONFIG_COMPAT
1652 
1653 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1654 		       compat_ulong_t __user *, nmask,
1655 		       compat_ulong_t, maxnode,
1656 		       compat_ulong_t, addr, compat_ulong_t, flags)
1657 {
1658 	long err;
1659 	unsigned long __user *nm = NULL;
1660 	unsigned long nr_bits, alloc_size;
1661 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1662 
1663 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1664 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1665 
1666 	if (nmask)
1667 		nm = compat_alloc_user_space(alloc_size);
1668 
1669 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1670 
1671 	if (!err && nmask) {
1672 		unsigned long copy_size;
1673 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1674 		err = copy_from_user(bm, nm, copy_size);
1675 		/* ensure entire bitmap is zeroed */
1676 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1677 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1678 	}
1679 
1680 	return err;
1681 }
1682 
1683 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1684 		       compat_ulong_t, maxnode)
1685 {
1686 	unsigned long __user *nm = NULL;
1687 	unsigned long nr_bits, alloc_size;
1688 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1689 
1690 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1691 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1692 
1693 	if (nmask) {
1694 		if (compat_get_bitmap(bm, nmask, nr_bits))
1695 			return -EFAULT;
1696 		nm = compat_alloc_user_space(alloc_size);
1697 		if (copy_to_user(nm, bm, alloc_size))
1698 			return -EFAULT;
1699 	}
1700 
1701 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1702 }
1703 
1704 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1705 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1706 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1707 {
1708 	unsigned long __user *nm = NULL;
1709 	unsigned long nr_bits, alloc_size;
1710 	nodemask_t bm;
1711 
1712 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1713 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1714 
1715 	if (nmask) {
1716 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1717 			return -EFAULT;
1718 		nm = compat_alloc_user_space(alloc_size);
1719 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1720 			return -EFAULT;
1721 	}
1722 
1723 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1724 }
1725 
1726 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1727 		       compat_ulong_t, maxnode,
1728 		       const compat_ulong_t __user *, old_nodes,
1729 		       const compat_ulong_t __user *, new_nodes)
1730 {
1731 	unsigned long __user *old = NULL;
1732 	unsigned long __user *new = NULL;
1733 	nodemask_t tmp_mask;
1734 	unsigned long nr_bits;
1735 	unsigned long size;
1736 
1737 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1738 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1739 	if (old_nodes) {
1740 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1741 			return -EFAULT;
1742 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1743 		if (new_nodes)
1744 			new = old + size / sizeof(unsigned long);
1745 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1746 			return -EFAULT;
1747 	}
1748 	if (new_nodes) {
1749 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1750 			return -EFAULT;
1751 		if (new == NULL)
1752 			new = compat_alloc_user_space(size);
1753 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1754 			return -EFAULT;
1755 	}
1756 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1757 }
1758 
1759 #endif /* CONFIG_COMPAT */
1760 
1761 bool vma_migratable(struct vm_area_struct *vma)
1762 {
1763 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1764 		return false;
1765 
1766 	/*
1767 	 * DAX device mappings require predictable access latency, so avoid
1768 	 * incurring periodic faults.
1769 	 */
1770 	if (vma_is_dax(vma))
1771 		return false;
1772 
1773 	if (is_vm_hugetlb_page(vma) &&
1774 		!hugepage_migration_supported(hstate_vma(vma)))
1775 		return false;
1776 
1777 	/*
1778 	 * Migration allocates pages in the highest zone. If we cannot
1779 	 * do so then migration (at least from node to node) is not
1780 	 * possible.
1781 	 */
1782 	if (vma->vm_file &&
1783 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1784 			< policy_zone)
1785 		return false;
1786 	return true;
1787 }
1788 
1789 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1790 						unsigned long addr)
1791 {
1792 	struct mempolicy *pol = NULL;
1793 
1794 	if (vma) {
1795 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1796 			pol = vma->vm_ops->get_policy(vma, addr);
1797 		} else if (vma->vm_policy) {
1798 			pol = vma->vm_policy;
1799 
1800 			/*
1801 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1802 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1803 			 * count on these policies which will be dropped by
1804 			 * mpol_cond_put() later
1805 			 */
1806 			if (mpol_needs_cond_ref(pol))
1807 				mpol_get(pol);
1808 		}
1809 	}
1810 
1811 	return pol;
1812 }
1813 
1814 /*
1815  * get_vma_policy(@vma, @addr)
1816  * @vma: virtual memory area whose policy is sought
1817  * @addr: address in @vma for shared policy lookup
1818  *
1819  * Returns effective policy for a VMA at specified address.
1820  * Falls back to current->mempolicy or system default policy, as necessary.
1821  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1822  * count--added by the get_policy() vm_op, as appropriate--to protect against
1823  * freeing by another task.  It is the caller's responsibility to free the
1824  * extra reference for shared policies.
1825  */
1826 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1827 						unsigned long addr)
1828 {
1829 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1830 
1831 	if (!pol)
1832 		pol = get_task_policy(current);
1833 
1834 	return pol;
1835 }
1836 
1837 bool vma_policy_mof(struct vm_area_struct *vma)
1838 {
1839 	struct mempolicy *pol;
1840 
1841 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1842 		bool ret = false;
1843 
1844 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1845 		if (pol && (pol->flags & MPOL_F_MOF))
1846 			ret = true;
1847 		mpol_cond_put(pol);
1848 
1849 		return ret;
1850 	}
1851 
1852 	pol = vma->vm_policy;
1853 	if (!pol)
1854 		pol = get_task_policy(current);
1855 
1856 	return pol->flags & MPOL_F_MOF;
1857 }
1858 
1859 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1860 {
1861 	enum zone_type dynamic_policy_zone = policy_zone;
1862 
1863 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1864 
1865 	/*
1866 	 * if policy->v.nodes has movable memory only,
1867 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1868 	 *
1869 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1870 	 * so if the following test fails, it implies
1871 	 * policy->v.nodes has movable memory only.
1872 	 */
1873 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1874 		dynamic_policy_zone = ZONE_MOVABLE;
1875 
1876 	return zone >= dynamic_policy_zone;
1877 }
1878 
1879 /*
1880  * Return a nodemask representing a mempolicy for filtering nodes for
1881  * page allocation
1882  */
1883 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1884 {
1885 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1886 	if (unlikely(policy->mode == MPOL_BIND) &&
1887 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1888 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1889 		return &policy->v.nodes;
1890 
1891 	return NULL;
1892 }
1893 
1894 /* Return the node id preferred by the given mempolicy, or the given id */
1895 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1896 {
1897 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1898 		nd = policy->v.preferred_node;
1899 	else {
1900 		/*
1901 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1902 		 * because we might easily break the expectation to stay on the
1903 		 * requested node and not break the policy.
1904 		 */
1905 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1906 	}
1907 
1908 	return nd;
1909 }
1910 
1911 /* Do dynamic interleaving for a process */
1912 static unsigned interleave_nodes(struct mempolicy *policy)
1913 {
1914 	unsigned next;
1915 	struct task_struct *me = current;
1916 
1917 	next = next_node_in(me->il_prev, policy->v.nodes);
1918 	if (next < MAX_NUMNODES)
1919 		me->il_prev = next;
1920 	return next;
1921 }
1922 
1923 /*
1924  * Depending on the memory policy provide a node from which to allocate the
1925  * next slab entry.
1926  */
1927 unsigned int mempolicy_slab_node(void)
1928 {
1929 	struct mempolicy *policy;
1930 	int node = numa_mem_id();
1931 
1932 	if (in_interrupt())
1933 		return node;
1934 
1935 	policy = current->mempolicy;
1936 	if (!policy || policy->flags & MPOL_F_LOCAL)
1937 		return node;
1938 
1939 	switch (policy->mode) {
1940 	case MPOL_PREFERRED:
1941 		/*
1942 		 * handled MPOL_F_LOCAL above
1943 		 */
1944 		return policy->v.preferred_node;
1945 
1946 	case MPOL_INTERLEAVE:
1947 		return interleave_nodes(policy);
1948 
1949 	case MPOL_BIND: {
1950 		struct zoneref *z;
1951 
1952 		/*
1953 		 * Follow bind policy behavior and start allocation at the
1954 		 * first node.
1955 		 */
1956 		struct zonelist *zonelist;
1957 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1958 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1959 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1960 							&policy->v.nodes);
1961 		return z->zone ? zone_to_nid(z->zone) : node;
1962 	}
1963 
1964 	default:
1965 		BUG();
1966 	}
1967 }
1968 
1969 /*
1970  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1971  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1972  * number of present nodes.
1973  */
1974 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1975 {
1976 	unsigned nnodes = nodes_weight(pol->v.nodes);
1977 	unsigned target;
1978 	int i;
1979 	int nid;
1980 
1981 	if (!nnodes)
1982 		return numa_node_id();
1983 	target = (unsigned int)n % nnodes;
1984 	nid = first_node(pol->v.nodes);
1985 	for (i = 0; i < target; i++)
1986 		nid = next_node(nid, pol->v.nodes);
1987 	return nid;
1988 }
1989 
1990 /* Determine a node number for interleave */
1991 static inline unsigned interleave_nid(struct mempolicy *pol,
1992 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1993 {
1994 	if (vma) {
1995 		unsigned long off;
1996 
1997 		/*
1998 		 * for small pages, there is no difference between
1999 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2000 		 * for huge pages, since vm_pgoff is in units of small
2001 		 * pages, we need to shift off the always 0 bits to get
2002 		 * a useful offset.
2003 		 */
2004 		BUG_ON(shift < PAGE_SHIFT);
2005 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2006 		off += (addr - vma->vm_start) >> shift;
2007 		return offset_il_node(pol, off);
2008 	} else
2009 		return interleave_nodes(pol);
2010 }
2011 
2012 #ifdef CONFIG_HUGETLBFS
2013 /*
2014  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2015  * @vma: virtual memory area whose policy is sought
2016  * @addr: address in @vma for shared policy lookup and interleave policy
2017  * @gfp_flags: for requested zone
2018  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2019  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2020  *
2021  * Returns a nid suitable for a huge page allocation and a pointer
2022  * to the struct mempolicy for conditional unref after allocation.
2023  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2024  * @nodemask for filtering the zonelist.
2025  *
2026  * Must be protected by read_mems_allowed_begin()
2027  */
2028 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2029 				struct mempolicy **mpol, nodemask_t **nodemask)
2030 {
2031 	int nid;
2032 
2033 	*mpol = get_vma_policy(vma, addr);
2034 	*nodemask = NULL;	/* assume !MPOL_BIND */
2035 
2036 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2037 		nid = interleave_nid(*mpol, vma, addr,
2038 					huge_page_shift(hstate_vma(vma)));
2039 	} else {
2040 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2041 		if ((*mpol)->mode == MPOL_BIND)
2042 			*nodemask = &(*mpol)->v.nodes;
2043 	}
2044 	return nid;
2045 }
2046 
2047 /*
2048  * init_nodemask_of_mempolicy
2049  *
2050  * If the current task's mempolicy is "default" [NULL], return 'false'
2051  * to indicate default policy.  Otherwise, extract the policy nodemask
2052  * for 'bind' or 'interleave' policy into the argument nodemask, or
2053  * initialize the argument nodemask to contain the single node for
2054  * 'preferred' or 'local' policy and return 'true' to indicate presence
2055  * of non-default mempolicy.
2056  *
2057  * We don't bother with reference counting the mempolicy [mpol_get/put]
2058  * because the current task is examining it's own mempolicy and a task's
2059  * mempolicy is only ever changed by the task itself.
2060  *
2061  * N.B., it is the caller's responsibility to free a returned nodemask.
2062  */
2063 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2064 {
2065 	struct mempolicy *mempolicy;
2066 	int nid;
2067 
2068 	if (!(mask && current->mempolicy))
2069 		return false;
2070 
2071 	task_lock(current);
2072 	mempolicy = current->mempolicy;
2073 	switch (mempolicy->mode) {
2074 	case MPOL_PREFERRED:
2075 		if (mempolicy->flags & MPOL_F_LOCAL)
2076 			nid = numa_node_id();
2077 		else
2078 			nid = mempolicy->v.preferred_node;
2079 		init_nodemask_of_node(mask, nid);
2080 		break;
2081 
2082 	case MPOL_BIND:
2083 	case MPOL_INTERLEAVE:
2084 		*mask =  mempolicy->v.nodes;
2085 		break;
2086 
2087 	default:
2088 		BUG();
2089 	}
2090 	task_unlock(current);
2091 
2092 	return true;
2093 }
2094 #endif
2095 
2096 /*
2097  * mempolicy_nodemask_intersects
2098  *
2099  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2100  * policy.  Otherwise, check for intersection between mask and the policy
2101  * nodemask for 'bind' or 'interleave' policy.  For 'preferred' or 'local'
2102  * policy, always return true since it may allocate elsewhere on fallback.
2103  *
2104  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2105  */
2106 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2107 					const nodemask_t *mask)
2108 {
2109 	struct mempolicy *mempolicy;
2110 	bool ret = true;
2111 
2112 	if (!mask)
2113 		return ret;
2114 	task_lock(tsk);
2115 	mempolicy = tsk->mempolicy;
2116 	if (!mempolicy)
2117 		goto out;
2118 
2119 	switch (mempolicy->mode) {
2120 	case MPOL_PREFERRED:
2121 		/*
2122 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2123 		 * allocate from, they may fallback to other nodes when oom.
2124 		 * Thus, it's possible for tsk to have allocated memory from
2125 		 * nodes in mask.
2126 		 */
2127 		break;
2128 	case MPOL_BIND:
2129 	case MPOL_INTERLEAVE:
2130 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2131 		break;
2132 	default:
2133 		BUG();
2134 	}
2135 out:
2136 	task_unlock(tsk);
2137 	return ret;
2138 }
2139 
2140 /* Allocate a page in interleaved policy.
2141    Own path because it needs to do special accounting. */
2142 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2143 					unsigned nid)
2144 {
2145 	struct page *page;
2146 
2147 	page = __alloc_pages(gfp, order, nid, NULL);
2148 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2149 	if (!static_branch_likely(&vm_numa_stat_key))
2150 		return page;
2151 	if (page && page_to_nid(page) == nid) {
2152 		preempt_disable();
2153 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2154 		preempt_enable();
2155 	}
2156 	return page;
2157 }
2158 
2159 /**
2160  * alloc_pages_vma - Allocate a page for a VMA.
2161  * @gfp: GFP flags.
2162  * @order: Order of the GFP allocation.
2163  * @vma: Pointer to VMA or NULL if not available.
2164  * @addr: Virtual address of the allocation.  Must be inside @vma.
2165  * @node: Which node to prefer for allocation (modulo policy).
2166  * @hugepage: For hugepages try only the preferred node if possible.
2167  *
2168  * Allocate a page for a specific address in @vma, using the appropriate
2169  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2170  * of the mm_struct of the VMA to prevent it from going away.  Should be
2171  * used for all allocations for pages that will be mapped into user space.
2172  *
2173  * Return: The page on success or NULL if allocation fails.
2174  */
2175 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2176 		unsigned long addr, int node, bool hugepage)
2177 {
2178 	struct mempolicy *pol;
2179 	struct page *page;
2180 	int preferred_nid;
2181 	nodemask_t *nmask;
2182 
2183 	pol = get_vma_policy(vma, addr);
2184 
2185 	if (pol->mode == MPOL_INTERLEAVE) {
2186 		unsigned nid;
2187 
2188 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2189 		mpol_cond_put(pol);
2190 		page = alloc_page_interleave(gfp, order, nid);
2191 		goto out;
2192 	}
2193 
2194 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2195 		int hpage_node = node;
2196 
2197 		/*
2198 		 * For hugepage allocation and non-interleave policy which
2199 		 * allows the current node (or other explicitly preferred
2200 		 * node) we only try to allocate from the current/preferred
2201 		 * node and don't fall back to other nodes, as the cost of
2202 		 * remote accesses would likely offset THP benefits.
2203 		 *
2204 		 * If the policy is interleave, or does not allow the current
2205 		 * node in its nodemask, we allocate the standard way.
2206 		 */
2207 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2208 			hpage_node = pol->v.preferred_node;
2209 
2210 		nmask = policy_nodemask(gfp, pol);
2211 		if (!nmask || node_isset(hpage_node, *nmask)) {
2212 			mpol_cond_put(pol);
2213 			/*
2214 			 * First, try to allocate THP only on local node, but
2215 			 * don't reclaim unnecessarily, just compact.
2216 			 */
2217 			page = __alloc_pages_node(hpage_node,
2218 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2219 
2220 			/*
2221 			 * If hugepage allocations are configured to always
2222 			 * synchronous compact or the vma has been madvised
2223 			 * to prefer hugepage backing, retry allowing remote
2224 			 * memory with both reclaim and compact as well.
2225 			 */
2226 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2227 				page = __alloc_pages_node(hpage_node,
2228 								gfp, order);
2229 
2230 			goto out;
2231 		}
2232 	}
2233 
2234 	nmask = policy_nodemask(gfp, pol);
2235 	preferred_nid = policy_node(gfp, pol, node);
2236 	page = __alloc_pages(gfp, order, preferred_nid, nmask);
2237 	mpol_cond_put(pol);
2238 out:
2239 	return page;
2240 }
2241 EXPORT_SYMBOL(alloc_pages_vma);
2242 
2243 /**
2244  * alloc_pages - Allocate pages.
2245  * @gfp: GFP flags.
2246  * @order: Power of two of number of pages to allocate.
2247  *
2248  * Allocate 1 << @order contiguous pages.  The physical address of the
2249  * first page is naturally aligned (eg an order-3 allocation will be aligned
2250  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2251  * process is honoured when in process context.
2252  *
2253  * Context: Can be called from any context, providing the appropriate GFP
2254  * flags are used.
2255  * Return: The page on success or NULL if allocation fails.
2256  */
2257 struct page *alloc_pages(gfp_t gfp, unsigned order)
2258 {
2259 	struct mempolicy *pol = &default_policy;
2260 	struct page *page;
2261 
2262 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2263 		pol = get_task_policy(current);
2264 
2265 	/*
2266 	 * No reference counting needed for current->mempolicy
2267 	 * nor system default_policy
2268 	 */
2269 	if (pol->mode == MPOL_INTERLEAVE)
2270 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2271 	else
2272 		page = __alloc_pages(gfp, order,
2273 				policy_node(gfp, pol, numa_node_id()),
2274 				policy_nodemask(gfp, pol));
2275 
2276 	return page;
2277 }
2278 EXPORT_SYMBOL(alloc_pages);
2279 
2280 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2281 {
2282 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2283 
2284 	if (IS_ERR(pol))
2285 		return PTR_ERR(pol);
2286 	dst->vm_policy = pol;
2287 	return 0;
2288 }
2289 
2290 /*
2291  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2292  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2293  * with the mems_allowed returned by cpuset_mems_allowed().  This
2294  * keeps mempolicies cpuset relative after its cpuset moves.  See
2295  * further kernel/cpuset.c update_nodemask().
2296  *
2297  * current's mempolicy may be rebinded by the other task(the task that changes
2298  * cpuset's mems), so we needn't do rebind work for current task.
2299  */
2300 
2301 /* Slow path of a mempolicy duplicate */
2302 struct mempolicy *__mpol_dup(struct mempolicy *old)
2303 {
2304 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2305 
2306 	if (!new)
2307 		return ERR_PTR(-ENOMEM);
2308 
2309 	/* task's mempolicy is protected by alloc_lock */
2310 	if (old == current->mempolicy) {
2311 		task_lock(current);
2312 		*new = *old;
2313 		task_unlock(current);
2314 	} else
2315 		*new = *old;
2316 
2317 	if (current_cpuset_is_being_rebound()) {
2318 		nodemask_t mems = cpuset_mems_allowed(current);
2319 		mpol_rebind_policy(new, &mems);
2320 	}
2321 	atomic_set(&new->refcnt, 1);
2322 	return new;
2323 }
2324 
2325 /* Slow path of a mempolicy comparison */
2326 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2327 {
2328 	if (!a || !b)
2329 		return false;
2330 	if (a->mode != b->mode)
2331 		return false;
2332 	if (a->flags != b->flags)
2333 		return false;
2334 	if (mpol_store_user_nodemask(a))
2335 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2336 			return false;
2337 
2338 	switch (a->mode) {
2339 	case MPOL_BIND:
2340 	case MPOL_INTERLEAVE:
2341 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2342 	case MPOL_PREFERRED:
2343 		/* a's ->flags is the same as b's */
2344 		if (a->flags & MPOL_F_LOCAL)
2345 			return true;
2346 		return a->v.preferred_node == b->v.preferred_node;
2347 	default:
2348 		BUG();
2349 		return false;
2350 	}
2351 }
2352 
2353 /*
2354  * Shared memory backing store policy support.
2355  *
2356  * Remember policies even when nobody has shared memory mapped.
2357  * The policies are kept in Red-Black tree linked from the inode.
2358  * They are protected by the sp->lock rwlock, which should be held
2359  * for any accesses to the tree.
2360  */
2361 
2362 /*
2363  * lookup first element intersecting start-end.  Caller holds sp->lock for
2364  * reading or for writing
2365  */
2366 static struct sp_node *
2367 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2368 {
2369 	struct rb_node *n = sp->root.rb_node;
2370 
2371 	while (n) {
2372 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2373 
2374 		if (start >= p->end)
2375 			n = n->rb_right;
2376 		else if (end <= p->start)
2377 			n = n->rb_left;
2378 		else
2379 			break;
2380 	}
2381 	if (!n)
2382 		return NULL;
2383 	for (;;) {
2384 		struct sp_node *w = NULL;
2385 		struct rb_node *prev = rb_prev(n);
2386 		if (!prev)
2387 			break;
2388 		w = rb_entry(prev, struct sp_node, nd);
2389 		if (w->end <= start)
2390 			break;
2391 		n = prev;
2392 	}
2393 	return rb_entry(n, struct sp_node, nd);
2394 }
2395 
2396 /*
2397  * Insert a new shared policy into the list.  Caller holds sp->lock for
2398  * writing.
2399  */
2400 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2401 {
2402 	struct rb_node **p = &sp->root.rb_node;
2403 	struct rb_node *parent = NULL;
2404 	struct sp_node *nd;
2405 
2406 	while (*p) {
2407 		parent = *p;
2408 		nd = rb_entry(parent, struct sp_node, nd);
2409 		if (new->start < nd->start)
2410 			p = &(*p)->rb_left;
2411 		else if (new->end > nd->end)
2412 			p = &(*p)->rb_right;
2413 		else
2414 			BUG();
2415 	}
2416 	rb_link_node(&new->nd, parent, p);
2417 	rb_insert_color(&new->nd, &sp->root);
2418 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2419 		 new->policy ? new->policy->mode : 0);
2420 }
2421 
2422 /* Find shared policy intersecting idx */
2423 struct mempolicy *
2424 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2425 {
2426 	struct mempolicy *pol = NULL;
2427 	struct sp_node *sn;
2428 
2429 	if (!sp->root.rb_node)
2430 		return NULL;
2431 	read_lock(&sp->lock);
2432 	sn = sp_lookup(sp, idx, idx+1);
2433 	if (sn) {
2434 		mpol_get(sn->policy);
2435 		pol = sn->policy;
2436 	}
2437 	read_unlock(&sp->lock);
2438 	return pol;
2439 }
2440 
2441 static void sp_free(struct sp_node *n)
2442 {
2443 	mpol_put(n->policy);
2444 	kmem_cache_free(sn_cache, n);
2445 }
2446 
2447 /**
2448  * mpol_misplaced - check whether current page node is valid in policy
2449  *
2450  * @page: page to be checked
2451  * @vma: vm area where page mapped
2452  * @addr: virtual address where page mapped
2453  *
2454  * Lookup current policy node id for vma,addr and "compare to" page's
2455  * node id.  Policy determination "mimics" alloc_page_vma().
2456  * Called from fault path where we know the vma and faulting address.
2457  *
2458  * Return: -1 if the page is in a node that is valid for this policy, or a
2459  * suitable node ID to allocate a replacement page from.
2460  */
2461 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2462 {
2463 	struct mempolicy *pol;
2464 	struct zoneref *z;
2465 	int curnid = page_to_nid(page);
2466 	unsigned long pgoff;
2467 	int thiscpu = raw_smp_processor_id();
2468 	int thisnid = cpu_to_node(thiscpu);
2469 	int polnid = NUMA_NO_NODE;
2470 	int ret = -1;
2471 
2472 	pol = get_vma_policy(vma, addr);
2473 	if (!(pol->flags & MPOL_F_MOF))
2474 		goto out;
2475 
2476 	switch (pol->mode) {
2477 	case MPOL_INTERLEAVE:
2478 		pgoff = vma->vm_pgoff;
2479 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2480 		polnid = offset_il_node(pol, pgoff);
2481 		break;
2482 
2483 	case MPOL_PREFERRED:
2484 		if (pol->flags & MPOL_F_LOCAL)
2485 			polnid = numa_node_id();
2486 		else
2487 			polnid = pol->v.preferred_node;
2488 		break;
2489 
2490 	case MPOL_BIND:
2491 		/* Optimize placement among multiple nodes via NUMA balancing */
2492 		if (pol->flags & MPOL_F_MORON) {
2493 			if (node_isset(thisnid, pol->v.nodes))
2494 				break;
2495 			goto out;
2496 		}
2497 
2498 		/*
2499 		 * allows binding to multiple nodes.
2500 		 * use current page if in policy nodemask,
2501 		 * else select nearest allowed node, if any.
2502 		 * If no allowed nodes, use current [!misplaced].
2503 		 */
2504 		if (node_isset(curnid, pol->v.nodes))
2505 			goto out;
2506 		z = first_zones_zonelist(
2507 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2508 				gfp_zone(GFP_HIGHUSER),
2509 				&pol->v.nodes);
2510 		polnid = zone_to_nid(z->zone);
2511 		break;
2512 
2513 	default:
2514 		BUG();
2515 	}
2516 
2517 	/* Migrate the page towards the node whose CPU is referencing it */
2518 	if (pol->flags & MPOL_F_MORON) {
2519 		polnid = thisnid;
2520 
2521 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2522 			goto out;
2523 	}
2524 
2525 	if (curnid != polnid)
2526 		ret = polnid;
2527 out:
2528 	mpol_cond_put(pol);
2529 
2530 	return ret;
2531 }
2532 
2533 /*
2534  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2535  * dropped after task->mempolicy is set to NULL so that any allocation done as
2536  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2537  * policy.
2538  */
2539 void mpol_put_task_policy(struct task_struct *task)
2540 {
2541 	struct mempolicy *pol;
2542 
2543 	task_lock(task);
2544 	pol = task->mempolicy;
2545 	task->mempolicy = NULL;
2546 	task_unlock(task);
2547 	mpol_put(pol);
2548 }
2549 
2550 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2551 {
2552 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2553 	rb_erase(&n->nd, &sp->root);
2554 	sp_free(n);
2555 }
2556 
2557 static void sp_node_init(struct sp_node *node, unsigned long start,
2558 			unsigned long end, struct mempolicy *pol)
2559 {
2560 	node->start = start;
2561 	node->end = end;
2562 	node->policy = pol;
2563 }
2564 
2565 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2566 				struct mempolicy *pol)
2567 {
2568 	struct sp_node *n;
2569 	struct mempolicy *newpol;
2570 
2571 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2572 	if (!n)
2573 		return NULL;
2574 
2575 	newpol = mpol_dup(pol);
2576 	if (IS_ERR(newpol)) {
2577 		kmem_cache_free(sn_cache, n);
2578 		return NULL;
2579 	}
2580 	newpol->flags |= MPOL_F_SHARED;
2581 	sp_node_init(n, start, end, newpol);
2582 
2583 	return n;
2584 }
2585 
2586 /* Replace a policy range. */
2587 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2588 				 unsigned long end, struct sp_node *new)
2589 {
2590 	struct sp_node *n;
2591 	struct sp_node *n_new = NULL;
2592 	struct mempolicy *mpol_new = NULL;
2593 	int ret = 0;
2594 
2595 restart:
2596 	write_lock(&sp->lock);
2597 	n = sp_lookup(sp, start, end);
2598 	/* Take care of old policies in the same range. */
2599 	while (n && n->start < end) {
2600 		struct rb_node *next = rb_next(&n->nd);
2601 		if (n->start >= start) {
2602 			if (n->end <= end)
2603 				sp_delete(sp, n);
2604 			else
2605 				n->start = end;
2606 		} else {
2607 			/* Old policy spanning whole new range. */
2608 			if (n->end > end) {
2609 				if (!n_new)
2610 					goto alloc_new;
2611 
2612 				*mpol_new = *n->policy;
2613 				atomic_set(&mpol_new->refcnt, 1);
2614 				sp_node_init(n_new, end, n->end, mpol_new);
2615 				n->end = start;
2616 				sp_insert(sp, n_new);
2617 				n_new = NULL;
2618 				mpol_new = NULL;
2619 				break;
2620 			} else
2621 				n->end = start;
2622 		}
2623 		if (!next)
2624 			break;
2625 		n = rb_entry(next, struct sp_node, nd);
2626 	}
2627 	if (new)
2628 		sp_insert(sp, new);
2629 	write_unlock(&sp->lock);
2630 	ret = 0;
2631 
2632 err_out:
2633 	if (mpol_new)
2634 		mpol_put(mpol_new);
2635 	if (n_new)
2636 		kmem_cache_free(sn_cache, n_new);
2637 
2638 	return ret;
2639 
2640 alloc_new:
2641 	write_unlock(&sp->lock);
2642 	ret = -ENOMEM;
2643 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2644 	if (!n_new)
2645 		goto err_out;
2646 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2647 	if (!mpol_new)
2648 		goto err_out;
2649 	goto restart;
2650 }
2651 
2652 /**
2653  * mpol_shared_policy_init - initialize shared policy for inode
2654  * @sp: pointer to inode shared policy
2655  * @mpol:  struct mempolicy to install
2656  *
2657  * Install non-NULL @mpol in inode's shared policy rb-tree.
2658  * On entry, the current task has a reference on a non-NULL @mpol.
2659  * This must be released on exit.
2660  * This is called at get_inode() calls and we can use GFP_KERNEL.
2661  */
2662 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2663 {
2664 	int ret;
2665 
2666 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2667 	rwlock_init(&sp->lock);
2668 
2669 	if (mpol) {
2670 		struct vm_area_struct pvma;
2671 		struct mempolicy *new;
2672 		NODEMASK_SCRATCH(scratch);
2673 
2674 		if (!scratch)
2675 			goto put_mpol;
2676 		/* contextualize the tmpfs mount point mempolicy */
2677 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2678 		if (IS_ERR(new))
2679 			goto free_scratch; /* no valid nodemask intersection */
2680 
2681 		task_lock(current);
2682 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2683 		task_unlock(current);
2684 		if (ret)
2685 			goto put_new;
2686 
2687 		/* Create pseudo-vma that contains just the policy */
2688 		vma_init(&pvma, NULL);
2689 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2690 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2691 
2692 put_new:
2693 		mpol_put(new);			/* drop initial ref */
2694 free_scratch:
2695 		NODEMASK_SCRATCH_FREE(scratch);
2696 put_mpol:
2697 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2698 	}
2699 }
2700 
2701 int mpol_set_shared_policy(struct shared_policy *info,
2702 			struct vm_area_struct *vma, struct mempolicy *npol)
2703 {
2704 	int err;
2705 	struct sp_node *new = NULL;
2706 	unsigned long sz = vma_pages(vma);
2707 
2708 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2709 		 vma->vm_pgoff,
2710 		 sz, npol ? npol->mode : -1,
2711 		 npol ? npol->flags : -1,
2712 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2713 
2714 	if (npol) {
2715 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2716 		if (!new)
2717 			return -ENOMEM;
2718 	}
2719 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2720 	if (err && new)
2721 		sp_free(new);
2722 	return err;
2723 }
2724 
2725 /* Free a backing policy store on inode delete. */
2726 void mpol_free_shared_policy(struct shared_policy *p)
2727 {
2728 	struct sp_node *n;
2729 	struct rb_node *next;
2730 
2731 	if (!p->root.rb_node)
2732 		return;
2733 	write_lock(&p->lock);
2734 	next = rb_first(&p->root);
2735 	while (next) {
2736 		n = rb_entry(next, struct sp_node, nd);
2737 		next = rb_next(&n->nd);
2738 		sp_delete(p, n);
2739 	}
2740 	write_unlock(&p->lock);
2741 }
2742 
2743 #ifdef CONFIG_NUMA_BALANCING
2744 static int __initdata numabalancing_override;
2745 
2746 static void __init check_numabalancing_enable(void)
2747 {
2748 	bool numabalancing_default = false;
2749 
2750 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2751 		numabalancing_default = true;
2752 
2753 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2754 	if (numabalancing_override)
2755 		set_numabalancing_state(numabalancing_override == 1);
2756 
2757 	if (num_online_nodes() > 1 && !numabalancing_override) {
2758 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2759 			numabalancing_default ? "Enabling" : "Disabling");
2760 		set_numabalancing_state(numabalancing_default);
2761 	}
2762 }
2763 
2764 static int __init setup_numabalancing(char *str)
2765 {
2766 	int ret = 0;
2767 	if (!str)
2768 		goto out;
2769 
2770 	if (!strcmp(str, "enable")) {
2771 		numabalancing_override = 1;
2772 		ret = 1;
2773 	} else if (!strcmp(str, "disable")) {
2774 		numabalancing_override = -1;
2775 		ret = 1;
2776 	}
2777 out:
2778 	if (!ret)
2779 		pr_warn("Unable to parse numa_balancing=\n");
2780 
2781 	return ret;
2782 }
2783 __setup("numa_balancing=", setup_numabalancing);
2784 #else
2785 static inline void __init check_numabalancing_enable(void)
2786 {
2787 }
2788 #endif /* CONFIG_NUMA_BALANCING */
2789 
2790 /* assumes fs == KERNEL_DS */
2791 void __init numa_policy_init(void)
2792 {
2793 	nodemask_t interleave_nodes;
2794 	unsigned long largest = 0;
2795 	int nid, prefer = 0;
2796 
2797 	policy_cache = kmem_cache_create("numa_policy",
2798 					 sizeof(struct mempolicy),
2799 					 0, SLAB_PANIC, NULL);
2800 
2801 	sn_cache = kmem_cache_create("shared_policy_node",
2802 				     sizeof(struct sp_node),
2803 				     0, SLAB_PANIC, NULL);
2804 
2805 	for_each_node(nid) {
2806 		preferred_node_policy[nid] = (struct mempolicy) {
2807 			.refcnt = ATOMIC_INIT(1),
2808 			.mode = MPOL_PREFERRED,
2809 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2810 			.v = { .preferred_node = nid, },
2811 		};
2812 	}
2813 
2814 	/*
2815 	 * Set interleaving policy for system init. Interleaving is only
2816 	 * enabled across suitably sized nodes (default is >= 16MB), or
2817 	 * fall back to the largest node if they're all smaller.
2818 	 */
2819 	nodes_clear(interleave_nodes);
2820 	for_each_node_state(nid, N_MEMORY) {
2821 		unsigned long total_pages = node_present_pages(nid);
2822 
2823 		/* Preserve the largest node */
2824 		if (largest < total_pages) {
2825 			largest = total_pages;
2826 			prefer = nid;
2827 		}
2828 
2829 		/* Interleave this node? */
2830 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2831 			node_set(nid, interleave_nodes);
2832 	}
2833 
2834 	/* All too small, use the largest */
2835 	if (unlikely(nodes_empty(interleave_nodes)))
2836 		node_set(prefer, interleave_nodes);
2837 
2838 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2839 		pr_err("%s: interleaving failed\n", __func__);
2840 
2841 	check_numabalancing_enable();
2842 }
2843 
2844 /* Reset policy of current process to default */
2845 void numa_default_policy(void)
2846 {
2847 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2848 }
2849 
2850 /*
2851  * Parse and format mempolicy from/to strings
2852  */
2853 
2854 /*
2855  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2856  */
2857 static const char * const policy_modes[] =
2858 {
2859 	[MPOL_DEFAULT]    = "default",
2860 	[MPOL_PREFERRED]  = "prefer",
2861 	[MPOL_BIND]       = "bind",
2862 	[MPOL_INTERLEAVE] = "interleave",
2863 	[MPOL_LOCAL]      = "local",
2864 };
2865 
2866 
2867 #ifdef CONFIG_TMPFS
2868 /**
2869  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2870  * @str:  string containing mempolicy to parse
2871  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2872  *
2873  * Format of input:
2874  *	<mode>[=<flags>][:<nodelist>]
2875  *
2876  * On success, returns 0, else 1
2877  */
2878 int mpol_parse_str(char *str, struct mempolicy **mpol)
2879 {
2880 	struct mempolicy *new = NULL;
2881 	unsigned short mode_flags;
2882 	nodemask_t nodes;
2883 	char *nodelist = strchr(str, ':');
2884 	char *flags = strchr(str, '=');
2885 	int err = 1, mode;
2886 
2887 	if (flags)
2888 		*flags++ = '\0';	/* terminate mode string */
2889 
2890 	if (nodelist) {
2891 		/* NUL-terminate mode or flags string */
2892 		*nodelist++ = '\0';
2893 		if (nodelist_parse(nodelist, nodes))
2894 			goto out;
2895 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2896 			goto out;
2897 	} else
2898 		nodes_clear(nodes);
2899 
2900 	mode = match_string(policy_modes, MPOL_MAX, str);
2901 	if (mode < 0)
2902 		goto out;
2903 
2904 	switch (mode) {
2905 	case MPOL_PREFERRED:
2906 		/*
2907 		 * Insist on a nodelist of one node only, although later
2908 		 * we use first_node(nodes) to grab a single node, so here
2909 		 * nodelist (or nodes) cannot be empty.
2910 		 */
2911 		if (nodelist) {
2912 			char *rest = nodelist;
2913 			while (isdigit(*rest))
2914 				rest++;
2915 			if (*rest)
2916 				goto out;
2917 			if (nodes_empty(nodes))
2918 				goto out;
2919 		}
2920 		break;
2921 	case MPOL_INTERLEAVE:
2922 		/*
2923 		 * Default to online nodes with memory if no nodelist
2924 		 */
2925 		if (!nodelist)
2926 			nodes = node_states[N_MEMORY];
2927 		break;
2928 	case MPOL_LOCAL:
2929 		/*
2930 		 * Don't allow a nodelist;  mpol_new() checks flags
2931 		 */
2932 		if (nodelist)
2933 			goto out;
2934 		mode = MPOL_PREFERRED;
2935 		break;
2936 	case MPOL_DEFAULT:
2937 		/*
2938 		 * Insist on a empty nodelist
2939 		 */
2940 		if (!nodelist)
2941 			err = 0;
2942 		goto out;
2943 	case MPOL_BIND:
2944 		/*
2945 		 * Insist on a nodelist
2946 		 */
2947 		if (!nodelist)
2948 			goto out;
2949 	}
2950 
2951 	mode_flags = 0;
2952 	if (flags) {
2953 		/*
2954 		 * Currently, we only support two mutually exclusive
2955 		 * mode flags.
2956 		 */
2957 		if (!strcmp(flags, "static"))
2958 			mode_flags |= MPOL_F_STATIC_NODES;
2959 		else if (!strcmp(flags, "relative"))
2960 			mode_flags |= MPOL_F_RELATIVE_NODES;
2961 		else
2962 			goto out;
2963 	}
2964 
2965 	new = mpol_new(mode, mode_flags, &nodes);
2966 	if (IS_ERR(new))
2967 		goto out;
2968 
2969 	/*
2970 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2971 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2972 	 */
2973 	if (mode != MPOL_PREFERRED)
2974 		new->v.nodes = nodes;
2975 	else if (nodelist)
2976 		new->v.preferred_node = first_node(nodes);
2977 	else
2978 		new->flags |= MPOL_F_LOCAL;
2979 
2980 	/*
2981 	 * Save nodes for contextualization: this will be used to "clone"
2982 	 * the mempolicy in a specific context [cpuset] at a later time.
2983 	 */
2984 	new->w.user_nodemask = nodes;
2985 
2986 	err = 0;
2987 
2988 out:
2989 	/* Restore string for error message */
2990 	if (nodelist)
2991 		*--nodelist = ':';
2992 	if (flags)
2993 		*--flags = '=';
2994 	if (!err)
2995 		*mpol = new;
2996 	return err;
2997 }
2998 #endif /* CONFIG_TMPFS */
2999 
3000 /**
3001  * mpol_to_str - format a mempolicy structure for printing
3002  * @buffer:  to contain formatted mempolicy string
3003  * @maxlen:  length of @buffer
3004  * @pol:  pointer to mempolicy to be formatted
3005  *
3006  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3007  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3008  * longest flag, "relative", and to display at least a few node ids.
3009  */
3010 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3011 {
3012 	char *p = buffer;
3013 	nodemask_t nodes = NODE_MASK_NONE;
3014 	unsigned short mode = MPOL_DEFAULT;
3015 	unsigned short flags = 0;
3016 
3017 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3018 		mode = pol->mode;
3019 		flags = pol->flags;
3020 	}
3021 
3022 	switch (mode) {
3023 	case MPOL_DEFAULT:
3024 		break;
3025 	case MPOL_PREFERRED:
3026 		if (flags & MPOL_F_LOCAL)
3027 			mode = MPOL_LOCAL;
3028 		else
3029 			node_set(pol->v.preferred_node, nodes);
3030 		break;
3031 	case MPOL_BIND:
3032 	case MPOL_INTERLEAVE:
3033 		nodes = pol->v.nodes;
3034 		break;
3035 	default:
3036 		WARN_ON_ONCE(1);
3037 		snprintf(p, maxlen, "unknown");
3038 		return;
3039 	}
3040 
3041 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3042 
3043 	if (flags & MPOL_MODE_FLAGS) {
3044 		p += snprintf(p, buffer + maxlen - p, "=");
3045 
3046 		/*
3047 		 * Currently, the only defined flags are mutually exclusive
3048 		 */
3049 		if (flags & MPOL_F_STATIC_NODES)
3050 			p += snprintf(p, buffer + maxlen - p, "static");
3051 		else if (flags & MPOL_F_RELATIVE_NODES)
3052 			p += snprintf(p, buffer + maxlen - p, "relative");
3053 	}
3054 
3055 	if (!nodes_empty(nodes))
3056 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3057 			       nodemask_pr_args(&nodes));
3058 }
3059