1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = *nodes; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static int migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 struct vm_area_struct *prev; 414 }; 415 416 /* 417 * Check if the page's nid is in qp->nmask. 418 * 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 420 * in the invert of qp->nmask. 421 */ 422 static inline bool queue_pages_required(struct page *page, 423 struct queue_pages *qp) 424 { 425 int nid = page_to_nid(page); 426 unsigned long flags = qp->flags; 427 428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 429 } 430 431 /* 432 * queue_pages_pmd() has four possible return values: 433 * 0 - pages are placed on the right node or queued successfully. 434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 435 * specified. 436 * 2 - THP was split. 437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 438 * existing page was already on a node that does not follow the 439 * policy. 440 */ 441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 442 unsigned long end, struct mm_walk *walk) 443 { 444 int ret = 0; 445 struct page *page; 446 struct queue_pages *qp = walk->private; 447 unsigned long flags; 448 449 if (unlikely(is_pmd_migration_entry(*pmd))) { 450 ret = -EIO; 451 goto unlock; 452 } 453 page = pmd_page(*pmd); 454 if (is_huge_zero_page(page)) { 455 spin_unlock(ptl); 456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 457 ret = 2; 458 goto out; 459 } 460 if (!queue_pages_required(page, qp)) 461 goto unlock; 462 463 flags = qp->flags; 464 /* go to thp migration */ 465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 466 if (!vma_migratable(walk->vma) || 467 migrate_page_add(page, qp->pagelist, flags)) { 468 ret = 1; 469 goto unlock; 470 } 471 } else 472 ret = -EIO; 473 unlock: 474 spin_unlock(ptl); 475 out: 476 return ret; 477 } 478 479 /* 480 * Scan through pages checking if pages follow certain conditions, 481 * and move them to the pagelist if they do. 482 * 483 * queue_pages_pte_range() has three possible return values: 484 * 0 - pages are placed on the right node or queued successfully. 485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 486 * specified. 487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 488 * on a node that does not follow the policy. 489 */ 490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 491 unsigned long end, struct mm_walk *walk) 492 { 493 struct vm_area_struct *vma = walk->vma; 494 struct page *page; 495 struct queue_pages *qp = walk->private; 496 unsigned long flags = qp->flags; 497 int ret; 498 bool has_unmovable = false; 499 pte_t *pte; 500 spinlock_t *ptl; 501 502 ptl = pmd_trans_huge_lock(pmd, vma); 503 if (ptl) { 504 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 505 if (ret != 2) 506 return ret; 507 } 508 /* THP was split, fall through to pte walk */ 509 510 if (pmd_trans_unstable(pmd)) 511 return 0; 512 513 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 514 for (; addr != end; pte++, addr += PAGE_SIZE) { 515 if (!pte_present(*pte)) 516 continue; 517 page = vm_normal_page(vma, addr, *pte); 518 if (!page) 519 continue; 520 /* 521 * vm_normal_page() filters out zero pages, but there might 522 * still be PageReserved pages to skip, perhaps in a VDSO. 523 */ 524 if (PageReserved(page)) 525 continue; 526 if (!queue_pages_required(page, qp)) 527 continue; 528 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 529 /* MPOL_MF_STRICT must be specified if we get here */ 530 if (!vma_migratable(vma)) { 531 has_unmovable = true; 532 break; 533 } 534 535 /* 536 * Do not abort immediately since there may be 537 * temporary off LRU pages in the range. Still 538 * need migrate other LRU pages. 539 */ 540 if (migrate_page_add(page, qp->pagelist, flags)) 541 has_unmovable = true; 542 } else 543 break; 544 } 545 pte_unmap_unlock(pte - 1, ptl); 546 cond_resched(); 547 548 if (has_unmovable) 549 return 1; 550 551 return addr != end ? -EIO : 0; 552 } 553 554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 555 unsigned long addr, unsigned long end, 556 struct mm_walk *walk) 557 { 558 #ifdef CONFIG_HUGETLB_PAGE 559 struct queue_pages *qp = walk->private; 560 unsigned long flags = qp->flags; 561 struct page *page; 562 spinlock_t *ptl; 563 pte_t entry; 564 565 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 566 entry = huge_ptep_get(pte); 567 if (!pte_present(entry)) 568 goto unlock; 569 page = pte_page(entry); 570 if (!queue_pages_required(page, qp)) 571 goto unlock; 572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 573 if (flags & (MPOL_MF_MOVE_ALL) || 574 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 575 isolate_huge_page(page, qp->pagelist); 576 unlock: 577 spin_unlock(ptl); 578 #else 579 BUG(); 580 #endif 581 return 0; 582 } 583 584 #ifdef CONFIG_NUMA_BALANCING 585 /* 586 * This is used to mark a range of virtual addresses to be inaccessible. 587 * These are later cleared by a NUMA hinting fault. Depending on these 588 * faults, pages may be migrated for better NUMA placement. 589 * 590 * This is assuming that NUMA faults are handled using PROT_NONE. If 591 * an architecture makes a different choice, it will need further 592 * changes to the core. 593 */ 594 unsigned long change_prot_numa(struct vm_area_struct *vma, 595 unsigned long addr, unsigned long end) 596 { 597 int nr_updated; 598 599 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 600 if (nr_updated) 601 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 602 603 return nr_updated; 604 } 605 #else 606 static unsigned long change_prot_numa(struct vm_area_struct *vma, 607 unsigned long addr, unsigned long end) 608 { 609 return 0; 610 } 611 #endif /* CONFIG_NUMA_BALANCING */ 612 613 static int queue_pages_test_walk(unsigned long start, unsigned long end, 614 struct mm_walk *walk) 615 { 616 struct vm_area_struct *vma = walk->vma; 617 struct queue_pages *qp = walk->private; 618 unsigned long endvma = vma->vm_end; 619 unsigned long flags = qp->flags; 620 621 /* 622 * Need check MPOL_MF_STRICT to return -EIO if possible 623 * regardless of vma_migratable 624 */ 625 if (!vma_migratable(vma) && 626 !(flags & MPOL_MF_STRICT)) 627 return 1; 628 629 if (endvma > end) 630 endvma = end; 631 if (vma->vm_start > start) 632 start = vma->vm_start; 633 634 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 635 if (!vma->vm_next && vma->vm_end < end) 636 return -EFAULT; 637 if (qp->prev && qp->prev->vm_end < vma->vm_start) 638 return -EFAULT; 639 } 640 641 qp->prev = vma; 642 643 if (flags & MPOL_MF_LAZY) { 644 /* Similar to task_numa_work, skip inaccessible VMAs */ 645 if (!is_vm_hugetlb_page(vma) && 646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) && 647 !(vma->vm_flags & VM_MIXEDMAP)) 648 change_prot_numa(vma, start, endvma); 649 return 1; 650 } 651 652 /* queue pages from current vma */ 653 if (flags & MPOL_MF_VALID) 654 return 0; 655 return 1; 656 } 657 658 /* 659 * Walk through page tables and collect pages to be migrated. 660 * 661 * If pages found in a given range are on a set of nodes (determined by 662 * @nodes and @flags,) it's isolated and queued to the pagelist which is 663 * passed via @private. 664 * 665 * queue_pages_range() has three possible return values: 666 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 667 * specified. 668 * 0 - queue pages successfully or no misplaced page. 669 * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified. 670 */ 671 static int 672 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 673 nodemask_t *nodes, unsigned long flags, 674 struct list_head *pagelist) 675 { 676 struct queue_pages qp = { 677 .pagelist = pagelist, 678 .flags = flags, 679 .nmask = nodes, 680 .prev = NULL, 681 }; 682 struct mm_walk queue_pages_walk = { 683 .hugetlb_entry = queue_pages_hugetlb, 684 .pmd_entry = queue_pages_pte_range, 685 .test_walk = queue_pages_test_walk, 686 .mm = mm, 687 .private = &qp, 688 }; 689 690 return walk_page_range(start, end, &queue_pages_walk); 691 } 692 693 /* 694 * Apply policy to a single VMA 695 * This must be called with the mmap_sem held for writing. 696 */ 697 static int vma_replace_policy(struct vm_area_struct *vma, 698 struct mempolicy *pol) 699 { 700 int err; 701 struct mempolicy *old; 702 struct mempolicy *new; 703 704 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 705 vma->vm_start, vma->vm_end, vma->vm_pgoff, 706 vma->vm_ops, vma->vm_file, 707 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 708 709 new = mpol_dup(pol); 710 if (IS_ERR(new)) 711 return PTR_ERR(new); 712 713 if (vma->vm_ops && vma->vm_ops->set_policy) { 714 err = vma->vm_ops->set_policy(vma, new); 715 if (err) 716 goto err_out; 717 } 718 719 old = vma->vm_policy; 720 vma->vm_policy = new; /* protected by mmap_sem */ 721 mpol_put(old); 722 723 return 0; 724 err_out: 725 mpol_put(new); 726 return err; 727 } 728 729 /* Step 2: apply policy to a range and do splits. */ 730 static int mbind_range(struct mm_struct *mm, unsigned long start, 731 unsigned long end, struct mempolicy *new_pol) 732 { 733 struct vm_area_struct *next; 734 struct vm_area_struct *prev; 735 struct vm_area_struct *vma; 736 int err = 0; 737 pgoff_t pgoff; 738 unsigned long vmstart; 739 unsigned long vmend; 740 741 vma = find_vma(mm, start); 742 if (!vma || vma->vm_start > start) 743 return -EFAULT; 744 745 prev = vma->vm_prev; 746 if (start > vma->vm_start) 747 prev = vma; 748 749 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 750 next = vma->vm_next; 751 vmstart = max(start, vma->vm_start); 752 vmend = min(end, vma->vm_end); 753 754 if (mpol_equal(vma_policy(vma), new_pol)) 755 continue; 756 757 pgoff = vma->vm_pgoff + 758 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 759 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 760 vma->anon_vma, vma->vm_file, pgoff, 761 new_pol, vma->vm_userfaultfd_ctx); 762 if (prev) { 763 vma = prev; 764 next = vma->vm_next; 765 if (mpol_equal(vma_policy(vma), new_pol)) 766 continue; 767 /* vma_merge() joined vma && vma->next, case 8 */ 768 goto replace; 769 } 770 if (vma->vm_start != vmstart) { 771 err = split_vma(vma->vm_mm, vma, vmstart, 1); 772 if (err) 773 goto out; 774 } 775 if (vma->vm_end != vmend) { 776 err = split_vma(vma->vm_mm, vma, vmend, 0); 777 if (err) 778 goto out; 779 } 780 replace: 781 err = vma_replace_policy(vma, new_pol); 782 if (err) 783 goto out; 784 } 785 786 out: 787 return err; 788 } 789 790 /* Set the process memory policy */ 791 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 792 nodemask_t *nodes) 793 { 794 struct mempolicy *new, *old; 795 NODEMASK_SCRATCH(scratch); 796 int ret; 797 798 if (!scratch) 799 return -ENOMEM; 800 801 new = mpol_new(mode, flags, nodes); 802 if (IS_ERR(new)) { 803 ret = PTR_ERR(new); 804 goto out; 805 } 806 807 task_lock(current); 808 ret = mpol_set_nodemask(new, nodes, scratch); 809 if (ret) { 810 task_unlock(current); 811 mpol_put(new); 812 goto out; 813 } 814 old = current->mempolicy; 815 current->mempolicy = new; 816 if (new && new->mode == MPOL_INTERLEAVE) 817 current->il_prev = MAX_NUMNODES-1; 818 task_unlock(current); 819 mpol_put(old); 820 ret = 0; 821 out: 822 NODEMASK_SCRATCH_FREE(scratch); 823 return ret; 824 } 825 826 /* 827 * Return nodemask for policy for get_mempolicy() query 828 * 829 * Called with task's alloc_lock held 830 */ 831 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 832 { 833 nodes_clear(*nodes); 834 if (p == &default_policy) 835 return; 836 837 switch (p->mode) { 838 case MPOL_BIND: 839 /* Fall through */ 840 case MPOL_INTERLEAVE: 841 *nodes = p->v.nodes; 842 break; 843 case MPOL_PREFERRED: 844 if (!(p->flags & MPOL_F_LOCAL)) 845 node_set(p->v.preferred_node, *nodes); 846 /* else return empty node mask for local allocation */ 847 break; 848 default: 849 BUG(); 850 } 851 } 852 853 static int lookup_node(struct mm_struct *mm, unsigned long addr) 854 { 855 struct page *p; 856 int err; 857 858 int locked = 1; 859 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 860 if (err >= 0) { 861 err = page_to_nid(p); 862 put_page(p); 863 } 864 if (locked) 865 up_read(&mm->mmap_sem); 866 return err; 867 } 868 869 /* Retrieve NUMA policy */ 870 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 871 unsigned long addr, unsigned long flags) 872 { 873 int err; 874 struct mm_struct *mm = current->mm; 875 struct vm_area_struct *vma = NULL; 876 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 877 878 if (flags & 879 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 880 return -EINVAL; 881 882 if (flags & MPOL_F_MEMS_ALLOWED) { 883 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 884 return -EINVAL; 885 *policy = 0; /* just so it's initialized */ 886 task_lock(current); 887 *nmask = cpuset_current_mems_allowed; 888 task_unlock(current); 889 return 0; 890 } 891 892 if (flags & MPOL_F_ADDR) { 893 /* 894 * Do NOT fall back to task policy if the 895 * vma/shared policy at addr is NULL. We 896 * want to return MPOL_DEFAULT in this case. 897 */ 898 down_read(&mm->mmap_sem); 899 vma = find_vma_intersection(mm, addr, addr+1); 900 if (!vma) { 901 up_read(&mm->mmap_sem); 902 return -EFAULT; 903 } 904 if (vma->vm_ops && vma->vm_ops->get_policy) 905 pol = vma->vm_ops->get_policy(vma, addr); 906 else 907 pol = vma->vm_policy; 908 } else if (addr) 909 return -EINVAL; 910 911 if (!pol) 912 pol = &default_policy; /* indicates default behavior */ 913 914 if (flags & MPOL_F_NODE) { 915 if (flags & MPOL_F_ADDR) { 916 /* 917 * Take a refcount on the mpol, lookup_node() 918 * wil drop the mmap_sem, so after calling 919 * lookup_node() only "pol" remains valid, "vma" 920 * is stale. 921 */ 922 pol_refcount = pol; 923 vma = NULL; 924 mpol_get(pol); 925 err = lookup_node(mm, addr); 926 if (err < 0) 927 goto out; 928 *policy = err; 929 } else if (pol == current->mempolicy && 930 pol->mode == MPOL_INTERLEAVE) { 931 *policy = next_node_in(current->il_prev, pol->v.nodes); 932 } else { 933 err = -EINVAL; 934 goto out; 935 } 936 } else { 937 *policy = pol == &default_policy ? MPOL_DEFAULT : 938 pol->mode; 939 /* 940 * Internal mempolicy flags must be masked off before exposing 941 * the policy to userspace. 942 */ 943 *policy |= (pol->flags & MPOL_MODE_FLAGS); 944 } 945 946 err = 0; 947 if (nmask) { 948 if (mpol_store_user_nodemask(pol)) { 949 *nmask = pol->w.user_nodemask; 950 } else { 951 task_lock(current); 952 get_policy_nodemask(pol, nmask); 953 task_unlock(current); 954 } 955 } 956 957 out: 958 mpol_cond_put(pol); 959 if (vma) 960 up_read(&mm->mmap_sem); 961 if (pol_refcount) 962 mpol_put(pol_refcount); 963 return err; 964 } 965 966 #ifdef CONFIG_MIGRATION 967 /* 968 * page migration, thp tail pages can be passed. 969 */ 970 static int migrate_page_add(struct page *page, struct list_head *pagelist, 971 unsigned long flags) 972 { 973 struct page *head = compound_head(page); 974 /* 975 * Avoid migrating a page that is shared with others. 976 */ 977 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 978 if (!isolate_lru_page(head)) { 979 list_add_tail(&head->lru, pagelist); 980 mod_node_page_state(page_pgdat(head), 981 NR_ISOLATED_ANON + page_is_file_cache(head), 982 hpage_nr_pages(head)); 983 } else if (flags & MPOL_MF_STRICT) { 984 /* 985 * Non-movable page may reach here. And, there may be 986 * temporary off LRU pages or non-LRU movable pages. 987 * Treat them as unmovable pages since they can't be 988 * isolated, so they can't be moved at the moment. It 989 * should return -EIO for this case too. 990 */ 991 return -EIO; 992 } 993 } 994 995 return 0; 996 } 997 998 /* page allocation callback for NUMA node migration */ 999 struct page *alloc_new_node_page(struct page *page, unsigned long node) 1000 { 1001 if (PageHuge(page)) 1002 return alloc_huge_page_node(page_hstate(compound_head(page)), 1003 node); 1004 else if (PageTransHuge(page)) { 1005 struct page *thp; 1006 1007 thp = alloc_pages_node(node, 1008 (GFP_TRANSHUGE | __GFP_THISNODE), 1009 HPAGE_PMD_ORDER); 1010 if (!thp) 1011 return NULL; 1012 prep_transhuge_page(thp); 1013 return thp; 1014 } else 1015 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 1016 __GFP_THISNODE, 0); 1017 } 1018 1019 /* 1020 * Migrate pages from one node to a target node. 1021 * Returns error or the number of pages not migrated. 1022 */ 1023 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1024 int flags) 1025 { 1026 nodemask_t nmask; 1027 LIST_HEAD(pagelist); 1028 int err = 0; 1029 1030 nodes_clear(nmask); 1031 node_set(source, nmask); 1032 1033 /* 1034 * This does not "check" the range but isolates all pages that 1035 * need migration. Between passing in the full user address 1036 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1037 */ 1038 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1039 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1040 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1041 1042 if (!list_empty(&pagelist)) { 1043 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, 1044 MIGRATE_SYNC, MR_SYSCALL); 1045 if (err) 1046 putback_movable_pages(&pagelist); 1047 } 1048 1049 return err; 1050 } 1051 1052 /* 1053 * Move pages between the two nodesets so as to preserve the physical 1054 * layout as much as possible. 1055 * 1056 * Returns the number of page that could not be moved. 1057 */ 1058 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1059 const nodemask_t *to, int flags) 1060 { 1061 int busy = 0; 1062 int err; 1063 nodemask_t tmp; 1064 1065 err = migrate_prep(); 1066 if (err) 1067 return err; 1068 1069 down_read(&mm->mmap_sem); 1070 1071 /* 1072 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1073 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1074 * bit in 'tmp', and return that <source, dest> pair for migration. 1075 * The pair of nodemasks 'to' and 'from' define the map. 1076 * 1077 * If no pair of bits is found that way, fallback to picking some 1078 * pair of 'source' and 'dest' bits that are not the same. If the 1079 * 'source' and 'dest' bits are the same, this represents a node 1080 * that will be migrating to itself, so no pages need move. 1081 * 1082 * If no bits are left in 'tmp', or if all remaining bits left 1083 * in 'tmp' correspond to the same bit in 'to', return false 1084 * (nothing left to migrate). 1085 * 1086 * This lets us pick a pair of nodes to migrate between, such that 1087 * if possible the dest node is not already occupied by some other 1088 * source node, minimizing the risk of overloading the memory on a 1089 * node that would happen if we migrated incoming memory to a node 1090 * before migrating outgoing memory source that same node. 1091 * 1092 * A single scan of tmp is sufficient. As we go, we remember the 1093 * most recent <s, d> pair that moved (s != d). If we find a pair 1094 * that not only moved, but what's better, moved to an empty slot 1095 * (d is not set in tmp), then we break out then, with that pair. 1096 * Otherwise when we finish scanning from_tmp, we at least have the 1097 * most recent <s, d> pair that moved. If we get all the way through 1098 * the scan of tmp without finding any node that moved, much less 1099 * moved to an empty node, then there is nothing left worth migrating. 1100 */ 1101 1102 tmp = *from; 1103 while (!nodes_empty(tmp)) { 1104 int s,d; 1105 int source = NUMA_NO_NODE; 1106 int dest = 0; 1107 1108 for_each_node_mask(s, tmp) { 1109 1110 /* 1111 * do_migrate_pages() tries to maintain the relative 1112 * node relationship of the pages established between 1113 * threads and memory areas. 1114 * 1115 * However if the number of source nodes is not equal to 1116 * the number of destination nodes we can not preserve 1117 * this node relative relationship. In that case, skip 1118 * copying memory from a node that is in the destination 1119 * mask. 1120 * 1121 * Example: [2,3,4] -> [3,4,5] moves everything. 1122 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1123 */ 1124 1125 if ((nodes_weight(*from) != nodes_weight(*to)) && 1126 (node_isset(s, *to))) 1127 continue; 1128 1129 d = node_remap(s, *from, *to); 1130 if (s == d) 1131 continue; 1132 1133 source = s; /* Node moved. Memorize */ 1134 dest = d; 1135 1136 /* dest not in remaining from nodes? */ 1137 if (!node_isset(dest, tmp)) 1138 break; 1139 } 1140 if (source == NUMA_NO_NODE) 1141 break; 1142 1143 node_clear(source, tmp); 1144 err = migrate_to_node(mm, source, dest, flags); 1145 if (err > 0) 1146 busy += err; 1147 if (err < 0) 1148 break; 1149 } 1150 up_read(&mm->mmap_sem); 1151 if (err < 0) 1152 return err; 1153 return busy; 1154 1155 } 1156 1157 /* 1158 * Allocate a new page for page migration based on vma policy. 1159 * Start by assuming the page is mapped by the same vma as contains @start. 1160 * Search forward from there, if not. N.B., this assumes that the 1161 * list of pages handed to migrate_pages()--which is how we get here-- 1162 * is in virtual address order. 1163 */ 1164 static struct page *new_page(struct page *page, unsigned long start) 1165 { 1166 struct vm_area_struct *vma; 1167 unsigned long uninitialized_var(address); 1168 1169 vma = find_vma(current->mm, start); 1170 while (vma) { 1171 address = page_address_in_vma(page, vma); 1172 if (address != -EFAULT) 1173 break; 1174 vma = vma->vm_next; 1175 } 1176 1177 if (PageHuge(page)) { 1178 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1179 vma, address); 1180 } else if (PageTransHuge(page)) { 1181 struct page *thp; 1182 1183 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1184 HPAGE_PMD_ORDER); 1185 if (!thp) 1186 return NULL; 1187 prep_transhuge_page(thp); 1188 return thp; 1189 } 1190 /* 1191 * if !vma, alloc_page_vma() will use task or system default policy 1192 */ 1193 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1194 vma, address); 1195 } 1196 #else 1197 1198 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1199 unsigned long flags) 1200 { 1201 return -EIO; 1202 } 1203 1204 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1205 const nodemask_t *to, int flags) 1206 { 1207 return -ENOSYS; 1208 } 1209 1210 static struct page *new_page(struct page *page, unsigned long start) 1211 { 1212 return NULL; 1213 } 1214 #endif 1215 1216 static long do_mbind(unsigned long start, unsigned long len, 1217 unsigned short mode, unsigned short mode_flags, 1218 nodemask_t *nmask, unsigned long flags) 1219 { 1220 struct mm_struct *mm = current->mm; 1221 struct mempolicy *new; 1222 unsigned long end; 1223 int err; 1224 int ret; 1225 LIST_HEAD(pagelist); 1226 1227 if (flags & ~(unsigned long)MPOL_MF_VALID) 1228 return -EINVAL; 1229 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1230 return -EPERM; 1231 1232 if (start & ~PAGE_MASK) 1233 return -EINVAL; 1234 1235 if (mode == MPOL_DEFAULT) 1236 flags &= ~MPOL_MF_STRICT; 1237 1238 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1239 end = start + len; 1240 1241 if (end < start) 1242 return -EINVAL; 1243 if (end == start) 1244 return 0; 1245 1246 new = mpol_new(mode, mode_flags, nmask); 1247 if (IS_ERR(new)) 1248 return PTR_ERR(new); 1249 1250 if (flags & MPOL_MF_LAZY) 1251 new->flags |= MPOL_F_MOF; 1252 1253 /* 1254 * If we are using the default policy then operation 1255 * on discontinuous address spaces is okay after all 1256 */ 1257 if (!new) 1258 flags |= MPOL_MF_DISCONTIG_OK; 1259 1260 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1261 start, start + len, mode, mode_flags, 1262 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1263 1264 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1265 1266 err = migrate_prep(); 1267 if (err) 1268 goto mpol_out; 1269 } 1270 { 1271 NODEMASK_SCRATCH(scratch); 1272 if (scratch) { 1273 down_write(&mm->mmap_sem); 1274 task_lock(current); 1275 err = mpol_set_nodemask(new, nmask, scratch); 1276 task_unlock(current); 1277 if (err) 1278 up_write(&mm->mmap_sem); 1279 } else 1280 err = -ENOMEM; 1281 NODEMASK_SCRATCH_FREE(scratch); 1282 } 1283 if (err) 1284 goto mpol_out; 1285 1286 ret = queue_pages_range(mm, start, end, nmask, 1287 flags | MPOL_MF_INVERT, &pagelist); 1288 1289 if (ret < 0) { 1290 err = -EIO; 1291 goto up_out; 1292 } 1293 1294 err = mbind_range(mm, start, end, new); 1295 1296 if (!err) { 1297 int nr_failed = 0; 1298 1299 if (!list_empty(&pagelist)) { 1300 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1301 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1302 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1303 if (nr_failed) 1304 putback_movable_pages(&pagelist); 1305 } 1306 1307 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1308 err = -EIO; 1309 } else 1310 putback_movable_pages(&pagelist); 1311 1312 up_out: 1313 up_write(&mm->mmap_sem); 1314 mpol_out: 1315 mpol_put(new); 1316 return err; 1317 } 1318 1319 /* 1320 * User space interface with variable sized bitmaps for nodelists. 1321 */ 1322 1323 /* Copy a node mask from user space. */ 1324 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1325 unsigned long maxnode) 1326 { 1327 unsigned long k; 1328 unsigned long t; 1329 unsigned long nlongs; 1330 unsigned long endmask; 1331 1332 --maxnode; 1333 nodes_clear(*nodes); 1334 if (maxnode == 0 || !nmask) 1335 return 0; 1336 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1337 return -EINVAL; 1338 1339 nlongs = BITS_TO_LONGS(maxnode); 1340 if ((maxnode % BITS_PER_LONG) == 0) 1341 endmask = ~0UL; 1342 else 1343 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1344 1345 /* 1346 * When the user specified more nodes than supported just check 1347 * if the non supported part is all zero. 1348 * 1349 * If maxnode have more longs than MAX_NUMNODES, check 1350 * the bits in that area first. And then go through to 1351 * check the rest bits which equal or bigger than MAX_NUMNODES. 1352 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1353 */ 1354 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1355 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1356 if (get_user(t, nmask + k)) 1357 return -EFAULT; 1358 if (k == nlongs - 1) { 1359 if (t & endmask) 1360 return -EINVAL; 1361 } else if (t) 1362 return -EINVAL; 1363 } 1364 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1365 endmask = ~0UL; 1366 } 1367 1368 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1369 unsigned long valid_mask = endmask; 1370 1371 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1372 if (get_user(t, nmask + nlongs - 1)) 1373 return -EFAULT; 1374 if (t & valid_mask) 1375 return -EINVAL; 1376 } 1377 1378 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1379 return -EFAULT; 1380 nodes_addr(*nodes)[nlongs-1] &= endmask; 1381 return 0; 1382 } 1383 1384 /* Copy a kernel node mask to user space */ 1385 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1386 nodemask_t *nodes) 1387 { 1388 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1389 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1390 1391 if (copy > nbytes) { 1392 if (copy > PAGE_SIZE) 1393 return -EINVAL; 1394 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1395 return -EFAULT; 1396 copy = nbytes; 1397 } 1398 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1399 } 1400 1401 static long kernel_mbind(unsigned long start, unsigned long len, 1402 unsigned long mode, const unsigned long __user *nmask, 1403 unsigned long maxnode, unsigned int flags) 1404 { 1405 nodemask_t nodes; 1406 int err; 1407 unsigned short mode_flags; 1408 1409 mode_flags = mode & MPOL_MODE_FLAGS; 1410 mode &= ~MPOL_MODE_FLAGS; 1411 if (mode >= MPOL_MAX) 1412 return -EINVAL; 1413 if ((mode_flags & MPOL_F_STATIC_NODES) && 1414 (mode_flags & MPOL_F_RELATIVE_NODES)) 1415 return -EINVAL; 1416 err = get_nodes(&nodes, nmask, maxnode); 1417 if (err) 1418 return err; 1419 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1420 } 1421 1422 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1423 unsigned long, mode, const unsigned long __user *, nmask, 1424 unsigned long, maxnode, unsigned int, flags) 1425 { 1426 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1427 } 1428 1429 /* Set the process memory policy */ 1430 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1431 unsigned long maxnode) 1432 { 1433 int err; 1434 nodemask_t nodes; 1435 unsigned short flags; 1436 1437 flags = mode & MPOL_MODE_FLAGS; 1438 mode &= ~MPOL_MODE_FLAGS; 1439 if ((unsigned int)mode >= MPOL_MAX) 1440 return -EINVAL; 1441 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1442 return -EINVAL; 1443 err = get_nodes(&nodes, nmask, maxnode); 1444 if (err) 1445 return err; 1446 return do_set_mempolicy(mode, flags, &nodes); 1447 } 1448 1449 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1450 unsigned long, maxnode) 1451 { 1452 return kernel_set_mempolicy(mode, nmask, maxnode); 1453 } 1454 1455 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1456 const unsigned long __user *old_nodes, 1457 const unsigned long __user *new_nodes) 1458 { 1459 struct mm_struct *mm = NULL; 1460 struct task_struct *task; 1461 nodemask_t task_nodes; 1462 int err; 1463 nodemask_t *old; 1464 nodemask_t *new; 1465 NODEMASK_SCRATCH(scratch); 1466 1467 if (!scratch) 1468 return -ENOMEM; 1469 1470 old = &scratch->mask1; 1471 new = &scratch->mask2; 1472 1473 err = get_nodes(old, old_nodes, maxnode); 1474 if (err) 1475 goto out; 1476 1477 err = get_nodes(new, new_nodes, maxnode); 1478 if (err) 1479 goto out; 1480 1481 /* Find the mm_struct */ 1482 rcu_read_lock(); 1483 task = pid ? find_task_by_vpid(pid) : current; 1484 if (!task) { 1485 rcu_read_unlock(); 1486 err = -ESRCH; 1487 goto out; 1488 } 1489 get_task_struct(task); 1490 1491 err = -EINVAL; 1492 1493 /* 1494 * Check if this process has the right to modify the specified process. 1495 * Use the regular "ptrace_may_access()" checks. 1496 */ 1497 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1498 rcu_read_unlock(); 1499 err = -EPERM; 1500 goto out_put; 1501 } 1502 rcu_read_unlock(); 1503 1504 task_nodes = cpuset_mems_allowed(task); 1505 /* Is the user allowed to access the target nodes? */ 1506 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1507 err = -EPERM; 1508 goto out_put; 1509 } 1510 1511 task_nodes = cpuset_mems_allowed(current); 1512 nodes_and(*new, *new, task_nodes); 1513 if (nodes_empty(*new)) 1514 goto out_put; 1515 1516 nodes_and(*new, *new, node_states[N_MEMORY]); 1517 if (nodes_empty(*new)) 1518 goto out_put; 1519 1520 err = security_task_movememory(task); 1521 if (err) 1522 goto out_put; 1523 1524 mm = get_task_mm(task); 1525 put_task_struct(task); 1526 1527 if (!mm) { 1528 err = -EINVAL; 1529 goto out; 1530 } 1531 1532 err = do_migrate_pages(mm, old, new, 1533 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1534 1535 mmput(mm); 1536 out: 1537 NODEMASK_SCRATCH_FREE(scratch); 1538 1539 return err; 1540 1541 out_put: 1542 put_task_struct(task); 1543 goto out; 1544 1545 } 1546 1547 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1548 const unsigned long __user *, old_nodes, 1549 const unsigned long __user *, new_nodes) 1550 { 1551 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1552 } 1553 1554 1555 /* Retrieve NUMA policy */ 1556 static int kernel_get_mempolicy(int __user *policy, 1557 unsigned long __user *nmask, 1558 unsigned long maxnode, 1559 unsigned long addr, 1560 unsigned long flags) 1561 { 1562 int err; 1563 int uninitialized_var(pval); 1564 nodemask_t nodes; 1565 1566 if (nmask != NULL && maxnode < nr_node_ids) 1567 return -EINVAL; 1568 1569 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1570 1571 if (err) 1572 return err; 1573 1574 if (policy && put_user(pval, policy)) 1575 return -EFAULT; 1576 1577 if (nmask) 1578 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1579 1580 return err; 1581 } 1582 1583 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1584 unsigned long __user *, nmask, unsigned long, maxnode, 1585 unsigned long, addr, unsigned long, flags) 1586 { 1587 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1588 } 1589 1590 #ifdef CONFIG_COMPAT 1591 1592 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1593 compat_ulong_t __user *, nmask, 1594 compat_ulong_t, maxnode, 1595 compat_ulong_t, addr, compat_ulong_t, flags) 1596 { 1597 long err; 1598 unsigned long __user *nm = NULL; 1599 unsigned long nr_bits, alloc_size; 1600 DECLARE_BITMAP(bm, MAX_NUMNODES); 1601 1602 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1603 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1604 1605 if (nmask) 1606 nm = compat_alloc_user_space(alloc_size); 1607 1608 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1609 1610 if (!err && nmask) { 1611 unsigned long copy_size; 1612 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1613 err = copy_from_user(bm, nm, copy_size); 1614 /* ensure entire bitmap is zeroed */ 1615 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1616 err |= compat_put_bitmap(nmask, bm, nr_bits); 1617 } 1618 1619 return err; 1620 } 1621 1622 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1623 compat_ulong_t, maxnode) 1624 { 1625 unsigned long __user *nm = NULL; 1626 unsigned long nr_bits, alloc_size; 1627 DECLARE_BITMAP(bm, MAX_NUMNODES); 1628 1629 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1630 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1631 1632 if (nmask) { 1633 if (compat_get_bitmap(bm, nmask, nr_bits)) 1634 return -EFAULT; 1635 nm = compat_alloc_user_space(alloc_size); 1636 if (copy_to_user(nm, bm, alloc_size)) 1637 return -EFAULT; 1638 } 1639 1640 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1641 } 1642 1643 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1644 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1645 compat_ulong_t, maxnode, compat_ulong_t, flags) 1646 { 1647 unsigned long __user *nm = NULL; 1648 unsigned long nr_bits, alloc_size; 1649 nodemask_t bm; 1650 1651 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1652 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1653 1654 if (nmask) { 1655 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1656 return -EFAULT; 1657 nm = compat_alloc_user_space(alloc_size); 1658 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1659 return -EFAULT; 1660 } 1661 1662 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1663 } 1664 1665 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1666 compat_ulong_t, maxnode, 1667 const compat_ulong_t __user *, old_nodes, 1668 const compat_ulong_t __user *, new_nodes) 1669 { 1670 unsigned long __user *old = NULL; 1671 unsigned long __user *new = NULL; 1672 nodemask_t tmp_mask; 1673 unsigned long nr_bits; 1674 unsigned long size; 1675 1676 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1677 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1678 if (old_nodes) { 1679 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1680 return -EFAULT; 1681 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1682 if (new_nodes) 1683 new = old + size / sizeof(unsigned long); 1684 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1685 return -EFAULT; 1686 } 1687 if (new_nodes) { 1688 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1689 return -EFAULT; 1690 if (new == NULL) 1691 new = compat_alloc_user_space(size); 1692 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1693 return -EFAULT; 1694 } 1695 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1696 } 1697 1698 #endif /* CONFIG_COMPAT */ 1699 1700 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1701 unsigned long addr) 1702 { 1703 struct mempolicy *pol = NULL; 1704 1705 if (vma) { 1706 if (vma->vm_ops && vma->vm_ops->get_policy) { 1707 pol = vma->vm_ops->get_policy(vma, addr); 1708 } else if (vma->vm_policy) { 1709 pol = vma->vm_policy; 1710 1711 /* 1712 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1713 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1714 * count on these policies which will be dropped by 1715 * mpol_cond_put() later 1716 */ 1717 if (mpol_needs_cond_ref(pol)) 1718 mpol_get(pol); 1719 } 1720 } 1721 1722 return pol; 1723 } 1724 1725 /* 1726 * get_vma_policy(@vma, @addr) 1727 * @vma: virtual memory area whose policy is sought 1728 * @addr: address in @vma for shared policy lookup 1729 * 1730 * Returns effective policy for a VMA at specified address. 1731 * Falls back to current->mempolicy or system default policy, as necessary. 1732 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1733 * count--added by the get_policy() vm_op, as appropriate--to protect against 1734 * freeing by another task. It is the caller's responsibility to free the 1735 * extra reference for shared policies. 1736 */ 1737 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1738 unsigned long addr) 1739 { 1740 struct mempolicy *pol = __get_vma_policy(vma, addr); 1741 1742 if (!pol) 1743 pol = get_task_policy(current); 1744 1745 return pol; 1746 } 1747 1748 bool vma_policy_mof(struct vm_area_struct *vma) 1749 { 1750 struct mempolicy *pol; 1751 1752 if (vma->vm_ops && vma->vm_ops->get_policy) { 1753 bool ret = false; 1754 1755 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1756 if (pol && (pol->flags & MPOL_F_MOF)) 1757 ret = true; 1758 mpol_cond_put(pol); 1759 1760 return ret; 1761 } 1762 1763 pol = vma->vm_policy; 1764 if (!pol) 1765 pol = get_task_policy(current); 1766 1767 return pol->flags & MPOL_F_MOF; 1768 } 1769 1770 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1771 { 1772 enum zone_type dynamic_policy_zone = policy_zone; 1773 1774 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1775 1776 /* 1777 * if policy->v.nodes has movable memory only, 1778 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1779 * 1780 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1781 * so if the following test faile, it implies 1782 * policy->v.nodes has movable memory only. 1783 */ 1784 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1785 dynamic_policy_zone = ZONE_MOVABLE; 1786 1787 return zone >= dynamic_policy_zone; 1788 } 1789 1790 /* 1791 * Return a nodemask representing a mempolicy for filtering nodes for 1792 * page allocation 1793 */ 1794 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1795 { 1796 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1797 if (unlikely(policy->mode == MPOL_BIND) && 1798 apply_policy_zone(policy, gfp_zone(gfp)) && 1799 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1800 return &policy->v.nodes; 1801 1802 return NULL; 1803 } 1804 1805 /* Return the node id preferred by the given mempolicy, or the given id */ 1806 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1807 int nd) 1808 { 1809 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1810 nd = policy->v.preferred_node; 1811 else { 1812 /* 1813 * __GFP_THISNODE shouldn't even be used with the bind policy 1814 * because we might easily break the expectation to stay on the 1815 * requested node and not break the policy. 1816 */ 1817 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1818 } 1819 1820 return nd; 1821 } 1822 1823 /* Do dynamic interleaving for a process */ 1824 static unsigned interleave_nodes(struct mempolicy *policy) 1825 { 1826 unsigned next; 1827 struct task_struct *me = current; 1828 1829 next = next_node_in(me->il_prev, policy->v.nodes); 1830 if (next < MAX_NUMNODES) 1831 me->il_prev = next; 1832 return next; 1833 } 1834 1835 /* 1836 * Depending on the memory policy provide a node from which to allocate the 1837 * next slab entry. 1838 */ 1839 unsigned int mempolicy_slab_node(void) 1840 { 1841 struct mempolicy *policy; 1842 int node = numa_mem_id(); 1843 1844 if (in_interrupt()) 1845 return node; 1846 1847 policy = current->mempolicy; 1848 if (!policy || policy->flags & MPOL_F_LOCAL) 1849 return node; 1850 1851 switch (policy->mode) { 1852 case MPOL_PREFERRED: 1853 /* 1854 * handled MPOL_F_LOCAL above 1855 */ 1856 return policy->v.preferred_node; 1857 1858 case MPOL_INTERLEAVE: 1859 return interleave_nodes(policy); 1860 1861 case MPOL_BIND: { 1862 struct zoneref *z; 1863 1864 /* 1865 * Follow bind policy behavior and start allocation at the 1866 * first node. 1867 */ 1868 struct zonelist *zonelist; 1869 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1870 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1871 z = first_zones_zonelist(zonelist, highest_zoneidx, 1872 &policy->v.nodes); 1873 return z->zone ? zone_to_nid(z->zone) : node; 1874 } 1875 1876 default: 1877 BUG(); 1878 } 1879 } 1880 1881 /* 1882 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1883 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1884 * number of present nodes. 1885 */ 1886 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1887 { 1888 unsigned nnodes = nodes_weight(pol->v.nodes); 1889 unsigned target; 1890 int i; 1891 int nid; 1892 1893 if (!nnodes) 1894 return numa_node_id(); 1895 target = (unsigned int)n % nnodes; 1896 nid = first_node(pol->v.nodes); 1897 for (i = 0; i < target; i++) 1898 nid = next_node(nid, pol->v.nodes); 1899 return nid; 1900 } 1901 1902 /* Determine a node number for interleave */ 1903 static inline unsigned interleave_nid(struct mempolicy *pol, 1904 struct vm_area_struct *vma, unsigned long addr, int shift) 1905 { 1906 if (vma) { 1907 unsigned long off; 1908 1909 /* 1910 * for small pages, there is no difference between 1911 * shift and PAGE_SHIFT, so the bit-shift is safe. 1912 * for huge pages, since vm_pgoff is in units of small 1913 * pages, we need to shift off the always 0 bits to get 1914 * a useful offset. 1915 */ 1916 BUG_ON(shift < PAGE_SHIFT); 1917 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1918 off += (addr - vma->vm_start) >> shift; 1919 return offset_il_node(pol, off); 1920 } else 1921 return interleave_nodes(pol); 1922 } 1923 1924 #ifdef CONFIG_HUGETLBFS 1925 /* 1926 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1927 * @vma: virtual memory area whose policy is sought 1928 * @addr: address in @vma for shared policy lookup and interleave policy 1929 * @gfp_flags: for requested zone 1930 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1931 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1932 * 1933 * Returns a nid suitable for a huge page allocation and a pointer 1934 * to the struct mempolicy for conditional unref after allocation. 1935 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1936 * @nodemask for filtering the zonelist. 1937 * 1938 * Must be protected by read_mems_allowed_begin() 1939 */ 1940 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1941 struct mempolicy **mpol, nodemask_t **nodemask) 1942 { 1943 int nid; 1944 1945 *mpol = get_vma_policy(vma, addr); 1946 *nodemask = NULL; /* assume !MPOL_BIND */ 1947 1948 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1949 nid = interleave_nid(*mpol, vma, addr, 1950 huge_page_shift(hstate_vma(vma))); 1951 } else { 1952 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1953 if ((*mpol)->mode == MPOL_BIND) 1954 *nodemask = &(*mpol)->v.nodes; 1955 } 1956 return nid; 1957 } 1958 1959 /* 1960 * init_nodemask_of_mempolicy 1961 * 1962 * If the current task's mempolicy is "default" [NULL], return 'false' 1963 * to indicate default policy. Otherwise, extract the policy nodemask 1964 * for 'bind' or 'interleave' policy into the argument nodemask, or 1965 * initialize the argument nodemask to contain the single node for 1966 * 'preferred' or 'local' policy and return 'true' to indicate presence 1967 * of non-default mempolicy. 1968 * 1969 * We don't bother with reference counting the mempolicy [mpol_get/put] 1970 * because the current task is examining it's own mempolicy and a task's 1971 * mempolicy is only ever changed by the task itself. 1972 * 1973 * N.B., it is the caller's responsibility to free a returned nodemask. 1974 */ 1975 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1976 { 1977 struct mempolicy *mempolicy; 1978 int nid; 1979 1980 if (!(mask && current->mempolicy)) 1981 return false; 1982 1983 task_lock(current); 1984 mempolicy = current->mempolicy; 1985 switch (mempolicy->mode) { 1986 case MPOL_PREFERRED: 1987 if (mempolicy->flags & MPOL_F_LOCAL) 1988 nid = numa_node_id(); 1989 else 1990 nid = mempolicy->v.preferred_node; 1991 init_nodemask_of_node(mask, nid); 1992 break; 1993 1994 case MPOL_BIND: 1995 /* Fall through */ 1996 case MPOL_INTERLEAVE: 1997 *mask = mempolicy->v.nodes; 1998 break; 1999 2000 default: 2001 BUG(); 2002 } 2003 task_unlock(current); 2004 2005 return true; 2006 } 2007 #endif 2008 2009 /* 2010 * mempolicy_nodemask_intersects 2011 * 2012 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2013 * policy. Otherwise, check for intersection between mask and the policy 2014 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2015 * policy, always return true since it may allocate elsewhere on fallback. 2016 * 2017 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2018 */ 2019 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2020 const nodemask_t *mask) 2021 { 2022 struct mempolicy *mempolicy; 2023 bool ret = true; 2024 2025 if (!mask) 2026 return ret; 2027 task_lock(tsk); 2028 mempolicy = tsk->mempolicy; 2029 if (!mempolicy) 2030 goto out; 2031 2032 switch (mempolicy->mode) { 2033 case MPOL_PREFERRED: 2034 /* 2035 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2036 * allocate from, they may fallback to other nodes when oom. 2037 * Thus, it's possible for tsk to have allocated memory from 2038 * nodes in mask. 2039 */ 2040 break; 2041 case MPOL_BIND: 2042 case MPOL_INTERLEAVE: 2043 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2044 break; 2045 default: 2046 BUG(); 2047 } 2048 out: 2049 task_unlock(tsk); 2050 return ret; 2051 } 2052 2053 /* Allocate a page in interleaved policy. 2054 Own path because it needs to do special accounting. */ 2055 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2056 unsigned nid) 2057 { 2058 struct page *page; 2059 2060 page = __alloc_pages(gfp, order, nid); 2061 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2062 if (!static_branch_likely(&vm_numa_stat_key)) 2063 return page; 2064 if (page && page_to_nid(page) == nid) { 2065 preempt_disable(); 2066 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2067 preempt_enable(); 2068 } 2069 return page; 2070 } 2071 2072 /** 2073 * alloc_pages_vma - Allocate a page for a VMA. 2074 * 2075 * @gfp: 2076 * %GFP_USER user allocation. 2077 * %GFP_KERNEL kernel allocations, 2078 * %GFP_HIGHMEM highmem/user allocations, 2079 * %GFP_FS allocation should not call back into a file system. 2080 * %GFP_ATOMIC don't sleep. 2081 * 2082 * @order:Order of the GFP allocation. 2083 * @vma: Pointer to VMA or NULL if not available. 2084 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2085 * @node: Which node to prefer for allocation (modulo policy). 2086 * @hugepage: for hugepages try only the preferred node if possible 2087 * 2088 * This function allocates a page from the kernel page pool and applies 2089 * a NUMA policy associated with the VMA or the current process. 2090 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2091 * mm_struct of the VMA to prevent it from going away. Should be used for 2092 * all allocations for pages that will be mapped into user space. Returns 2093 * NULL when no page can be allocated. 2094 */ 2095 struct page * 2096 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2097 unsigned long addr, int node, bool hugepage) 2098 { 2099 struct mempolicy *pol; 2100 struct page *page; 2101 int preferred_nid; 2102 nodemask_t *nmask; 2103 2104 pol = get_vma_policy(vma, addr); 2105 2106 if (pol->mode == MPOL_INTERLEAVE) { 2107 unsigned nid; 2108 2109 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2110 mpol_cond_put(pol); 2111 page = alloc_page_interleave(gfp, order, nid); 2112 goto out; 2113 } 2114 2115 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2116 int hpage_node = node; 2117 2118 /* 2119 * For hugepage allocation and non-interleave policy which 2120 * allows the current node (or other explicitly preferred 2121 * node) we only try to allocate from the current/preferred 2122 * node and don't fall back to other nodes, as the cost of 2123 * remote accesses would likely offset THP benefits. 2124 * 2125 * If the policy is interleave, or does not allow the current 2126 * node in its nodemask, we allocate the standard way. 2127 */ 2128 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) 2129 hpage_node = pol->v.preferred_node; 2130 2131 nmask = policy_nodemask(gfp, pol); 2132 if (!nmask || node_isset(hpage_node, *nmask)) { 2133 mpol_cond_put(pol); 2134 page = __alloc_pages_node(hpage_node, 2135 gfp | __GFP_THISNODE, order); 2136 goto out; 2137 } 2138 } 2139 2140 nmask = policy_nodemask(gfp, pol); 2141 preferred_nid = policy_node(gfp, pol, node); 2142 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2143 mpol_cond_put(pol); 2144 out: 2145 return page; 2146 } 2147 EXPORT_SYMBOL(alloc_pages_vma); 2148 2149 /** 2150 * alloc_pages_current - Allocate pages. 2151 * 2152 * @gfp: 2153 * %GFP_USER user allocation, 2154 * %GFP_KERNEL kernel allocation, 2155 * %GFP_HIGHMEM highmem allocation, 2156 * %GFP_FS don't call back into a file system. 2157 * %GFP_ATOMIC don't sleep. 2158 * @order: Power of two of allocation size in pages. 0 is a single page. 2159 * 2160 * Allocate a page from the kernel page pool. When not in 2161 * interrupt context and apply the current process NUMA policy. 2162 * Returns NULL when no page can be allocated. 2163 */ 2164 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2165 { 2166 struct mempolicy *pol = &default_policy; 2167 struct page *page; 2168 2169 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2170 pol = get_task_policy(current); 2171 2172 /* 2173 * No reference counting needed for current->mempolicy 2174 * nor system default_policy 2175 */ 2176 if (pol->mode == MPOL_INTERLEAVE) 2177 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2178 else 2179 page = __alloc_pages_nodemask(gfp, order, 2180 policy_node(gfp, pol, numa_node_id()), 2181 policy_nodemask(gfp, pol)); 2182 2183 return page; 2184 } 2185 EXPORT_SYMBOL(alloc_pages_current); 2186 2187 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2188 { 2189 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2190 2191 if (IS_ERR(pol)) 2192 return PTR_ERR(pol); 2193 dst->vm_policy = pol; 2194 return 0; 2195 } 2196 2197 /* 2198 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2199 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2200 * with the mems_allowed returned by cpuset_mems_allowed(). This 2201 * keeps mempolicies cpuset relative after its cpuset moves. See 2202 * further kernel/cpuset.c update_nodemask(). 2203 * 2204 * current's mempolicy may be rebinded by the other task(the task that changes 2205 * cpuset's mems), so we needn't do rebind work for current task. 2206 */ 2207 2208 /* Slow path of a mempolicy duplicate */ 2209 struct mempolicy *__mpol_dup(struct mempolicy *old) 2210 { 2211 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2212 2213 if (!new) 2214 return ERR_PTR(-ENOMEM); 2215 2216 /* task's mempolicy is protected by alloc_lock */ 2217 if (old == current->mempolicy) { 2218 task_lock(current); 2219 *new = *old; 2220 task_unlock(current); 2221 } else 2222 *new = *old; 2223 2224 if (current_cpuset_is_being_rebound()) { 2225 nodemask_t mems = cpuset_mems_allowed(current); 2226 mpol_rebind_policy(new, &mems); 2227 } 2228 atomic_set(&new->refcnt, 1); 2229 return new; 2230 } 2231 2232 /* Slow path of a mempolicy comparison */ 2233 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2234 { 2235 if (!a || !b) 2236 return false; 2237 if (a->mode != b->mode) 2238 return false; 2239 if (a->flags != b->flags) 2240 return false; 2241 if (mpol_store_user_nodemask(a)) 2242 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2243 return false; 2244 2245 switch (a->mode) { 2246 case MPOL_BIND: 2247 /* Fall through */ 2248 case MPOL_INTERLEAVE: 2249 return !!nodes_equal(a->v.nodes, b->v.nodes); 2250 case MPOL_PREFERRED: 2251 /* a's ->flags is the same as b's */ 2252 if (a->flags & MPOL_F_LOCAL) 2253 return true; 2254 return a->v.preferred_node == b->v.preferred_node; 2255 default: 2256 BUG(); 2257 return false; 2258 } 2259 } 2260 2261 /* 2262 * Shared memory backing store policy support. 2263 * 2264 * Remember policies even when nobody has shared memory mapped. 2265 * The policies are kept in Red-Black tree linked from the inode. 2266 * They are protected by the sp->lock rwlock, which should be held 2267 * for any accesses to the tree. 2268 */ 2269 2270 /* 2271 * lookup first element intersecting start-end. Caller holds sp->lock for 2272 * reading or for writing 2273 */ 2274 static struct sp_node * 2275 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2276 { 2277 struct rb_node *n = sp->root.rb_node; 2278 2279 while (n) { 2280 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2281 2282 if (start >= p->end) 2283 n = n->rb_right; 2284 else if (end <= p->start) 2285 n = n->rb_left; 2286 else 2287 break; 2288 } 2289 if (!n) 2290 return NULL; 2291 for (;;) { 2292 struct sp_node *w = NULL; 2293 struct rb_node *prev = rb_prev(n); 2294 if (!prev) 2295 break; 2296 w = rb_entry(prev, struct sp_node, nd); 2297 if (w->end <= start) 2298 break; 2299 n = prev; 2300 } 2301 return rb_entry(n, struct sp_node, nd); 2302 } 2303 2304 /* 2305 * Insert a new shared policy into the list. Caller holds sp->lock for 2306 * writing. 2307 */ 2308 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2309 { 2310 struct rb_node **p = &sp->root.rb_node; 2311 struct rb_node *parent = NULL; 2312 struct sp_node *nd; 2313 2314 while (*p) { 2315 parent = *p; 2316 nd = rb_entry(parent, struct sp_node, nd); 2317 if (new->start < nd->start) 2318 p = &(*p)->rb_left; 2319 else if (new->end > nd->end) 2320 p = &(*p)->rb_right; 2321 else 2322 BUG(); 2323 } 2324 rb_link_node(&new->nd, parent, p); 2325 rb_insert_color(&new->nd, &sp->root); 2326 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2327 new->policy ? new->policy->mode : 0); 2328 } 2329 2330 /* Find shared policy intersecting idx */ 2331 struct mempolicy * 2332 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2333 { 2334 struct mempolicy *pol = NULL; 2335 struct sp_node *sn; 2336 2337 if (!sp->root.rb_node) 2338 return NULL; 2339 read_lock(&sp->lock); 2340 sn = sp_lookup(sp, idx, idx+1); 2341 if (sn) { 2342 mpol_get(sn->policy); 2343 pol = sn->policy; 2344 } 2345 read_unlock(&sp->lock); 2346 return pol; 2347 } 2348 2349 static void sp_free(struct sp_node *n) 2350 { 2351 mpol_put(n->policy); 2352 kmem_cache_free(sn_cache, n); 2353 } 2354 2355 /** 2356 * mpol_misplaced - check whether current page node is valid in policy 2357 * 2358 * @page: page to be checked 2359 * @vma: vm area where page mapped 2360 * @addr: virtual address where page mapped 2361 * 2362 * Lookup current policy node id for vma,addr and "compare to" page's 2363 * node id. 2364 * 2365 * Returns: 2366 * -1 - not misplaced, page is in the right node 2367 * node - node id where the page should be 2368 * 2369 * Policy determination "mimics" alloc_page_vma(). 2370 * Called from fault path where we know the vma and faulting address. 2371 */ 2372 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2373 { 2374 struct mempolicy *pol; 2375 struct zoneref *z; 2376 int curnid = page_to_nid(page); 2377 unsigned long pgoff; 2378 int thiscpu = raw_smp_processor_id(); 2379 int thisnid = cpu_to_node(thiscpu); 2380 int polnid = NUMA_NO_NODE; 2381 int ret = -1; 2382 2383 pol = get_vma_policy(vma, addr); 2384 if (!(pol->flags & MPOL_F_MOF)) 2385 goto out; 2386 2387 switch (pol->mode) { 2388 case MPOL_INTERLEAVE: 2389 pgoff = vma->vm_pgoff; 2390 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2391 polnid = offset_il_node(pol, pgoff); 2392 break; 2393 2394 case MPOL_PREFERRED: 2395 if (pol->flags & MPOL_F_LOCAL) 2396 polnid = numa_node_id(); 2397 else 2398 polnid = pol->v.preferred_node; 2399 break; 2400 2401 case MPOL_BIND: 2402 2403 /* 2404 * allows binding to multiple nodes. 2405 * use current page if in policy nodemask, 2406 * else select nearest allowed node, if any. 2407 * If no allowed nodes, use current [!misplaced]. 2408 */ 2409 if (node_isset(curnid, pol->v.nodes)) 2410 goto out; 2411 z = first_zones_zonelist( 2412 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2413 gfp_zone(GFP_HIGHUSER), 2414 &pol->v.nodes); 2415 polnid = zone_to_nid(z->zone); 2416 break; 2417 2418 default: 2419 BUG(); 2420 } 2421 2422 /* Migrate the page towards the node whose CPU is referencing it */ 2423 if (pol->flags & MPOL_F_MORON) { 2424 polnid = thisnid; 2425 2426 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2427 goto out; 2428 } 2429 2430 if (curnid != polnid) 2431 ret = polnid; 2432 out: 2433 mpol_cond_put(pol); 2434 2435 return ret; 2436 } 2437 2438 /* 2439 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2440 * dropped after task->mempolicy is set to NULL so that any allocation done as 2441 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2442 * policy. 2443 */ 2444 void mpol_put_task_policy(struct task_struct *task) 2445 { 2446 struct mempolicy *pol; 2447 2448 task_lock(task); 2449 pol = task->mempolicy; 2450 task->mempolicy = NULL; 2451 task_unlock(task); 2452 mpol_put(pol); 2453 } 2454 2455 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2456 { 2457 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2458 rb_erase(&n->nd, &sp->root); 2459 sp_free(n); 2460 } 2461 2462 static void sp_node_init(struct sp_node *node, unsigned long start, 2463 unsigned long end, struct mempolicy *pol) 2464 { 2465 node->start = start; 2466 node->end = end; 2467 node->policy = pol; 2468 } 2469 2470 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2471 struct mempolicy *pol) 2472 { 2473 struct sp_node *n; 2474 struct mempolicy *newpol; 2475 2476 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2477 if (!n) 2478 return NULL; 2479 2480 newpol = mpol_dup(pol); 2481 if (IS_ERR(newpol)) { 2482 kmem_cache_free(sn_cache, n); 2483 return NULL; 2484 } 2485 newpol->flags |= MPOL_F_SHARED; 2486 sp_node_init(n, start, end, newpol); 2487 2488 return n; 2489 } 2490 2491 /* Replace a policy range. */ 2492 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2493 unsigned long end, struct sp_node *new) 2494 { 2495 struct sp_node *n; 2496 struct sp_node *n_new = NULL; 2497 struct mempolicy *mpol_new = NULL; 2498 int ret = 0; 2499 2500 restart: 2501 write_lock(&sp->lock); 2502 n = sp_lookup(sp, start, end); 2503 /* Take care of old policies in the same range. */ 2504 while (n && n->start < end) { 2505 struct rb_node *next = rb_next(&n->nd); 2506 if (n->start >= start) { 2507 if (n->end <= end) 2508 sp_delete(sp, n); 2509 else 2510 n->start = end; 2511 } else { 2512 /* Old policy spanning whole new range. */ 2513 if (n->end > end) { 2514 if (!n_new) 2515 goto alloc_new; 2516 2517 *mpol_new = *n->policy; 2518 atomic_set(&mpol_new->refcnt, 1); 2519 sp_node_init(n_new, end, n->end, mpol_new); 2520 n->end = start; 2521 sp_insert(sp, n_new); 2522 n_new = NULL; 2523 mpol_new = NULL; 2524 break; 2525 } else 2526 n->end = start; 2527 } 2528 if (!next) 2529 break; 2530 n = rb_entry(next, struct sp_node, nd); 2531 } 2532 if (new) 2533 sp_insert(sp, new); 2534 write_unlock(&sp->lock); 2535 ret = 0; 2536 2537 err_out: 2538 if (mpol_new) 2539 mpol_put(mpol_new); 2540 if (n_new) 2541 kmem_cache_free(sn_cache, n_new); 2542 2543 return ret; 2544 2545 alloc_new: 2546 write_unlock(&sp->lock); 2547 ret = -ENOMEM; 2548 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2549 if (!n_new) 2550 goto err_out; 2551 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2552 if (!mpol_new) 2553 goto err_out; 2554 goto restart; 2555 } 2556 2557 /** 2558 * mpol_shared_policy_init - initialize shared policy for inode 2559 * @sp: pointer to inode shared policy 2560 * @mpol: struct mempolicy to install 2561 * 2562 * Install non-NULL @mpol in inode's shared policy rb-tree. 2563 * On entry, the current task has a reference on a non-NULL @mpol. 2564 * This must be released on exit. 2565 * This is called at get_inode() calls and we can use GFP_KERNEL. 2566 */ 2567 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2568 { 2569 int ret; 2570 2571 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2572 rwlock_init(&sp->lock); 2573 2574 if (mpol) { 2575 struct vm_area_struct pvma; 2576 struct mempolicy *new; 2577 NODEMASK_SCRATCH(scratch); 2578 2579 if (!scratch) 2580 goto put_mpol; 2581 /* contextualize the tmpfs mount point mempolicy */ 2582 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2583 if (IS_ERR(new)) 2584 goto free_scratch; /* no valid nodemask intersection */ 2585 2586 task_lock(current); 2587 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2588 task_unlock(current); 2589 if (ret) 2590 goto put_new; 2591 2592 /* Create pseudo-vma that contains just the policy */ 2593 vma_init(&pvma, NULL); 2594 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2595 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2596 2597 put_new: 2598 mpol_put(new); /* drop initial ref */ 2599 free_scratch: 2600 NODEMASK_SCRATCH_FREE(scratch); 2601 put_mpol: 2602 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2603 } 2604 } 2605 2606 int mpol_set_shared_policy(struct shared_policy *info, 2607 struct vm_area_struct *vma, struct mempolicy *npol) 2608 { 2609 int err; 2610 struct sp_node *new = NULL; 2611 unsigned long sz = vma_pages(vma); 2612 2613 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2614 vma->vm_pgoff, 2615 sz, npol ? npol->mode : -1, 2616 npol ? npol->flags : -1, 2617 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2618 2619 if (npol) { 2620 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2621 if (!new) 2622 return -ENOMEM; 2623 } 2624 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2625 if (err && new) 2626 sp_free(new); 2627 return err; 2628 } 2629 2630 /* Free a backing policy store on inode delete. */ 2631 void mpol_free_shared_policy(struct shared_policy *p) 2632 { 2633 struct sp_node *n; 2634 struct rb_node *next; 2635 2636 if (!p->root.rb_node) 2637 return; 2638 write_lock(&p->lock); 2639 next = rb_first(&p->root); 2640 while (next) { 2641 n = rb_entry(next, struct sp_node, nd); 2642 next = rb_next(&n->nd); 2643 sp_delete(p, n); 2644 } 2645 write_unlock(&p->lock); 2646 } 2647 2648 #ifdef CONFIG_NUMA_BALANCING 2649 static int __initdata numabalancing_override; 2650 2651 static void __init check_numabalancing_enable(void) 2652 { 2653 bool numabalancing_default = false; 2654 2655 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2656 numabalancing_default = true; 2657 2658 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2659 if (numabalancing_override) 2660 set_numabalancing_state(numabalancing_override == 1); 2661 2662 if (num_online_nodes() > 1 && !numabalancing_override) { 2663 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2664 numabalancing_default ? "Enabling" : "Disabling"); 2665 set_numabalancing_state(numabalancing_default); 2666 } 2667 } 2668 2669 static int __init setup_numabalancing(char *str) 2670 { 2671 int ret = 0; 2672 if (!str) 2673 goto out; 2674 2675 if (!strcmp(str, "enable")) { 2676 numabalancing_override = 1; 2677 ret = 1; 2678 } else if (!strcmp(str, "disable")) { 2679 numabalancing_override = -1; 2680 ret = 1; 2681 } 2682 out: 2683 if (!ret) 2684 pr_warn("Unable to parse numa_balancing=\n"); 2685 2686 return ret; 2687 } 2688 __setup("numa_balancing=", setup_numabalancing); 2689 #else 2690 static inline void __init check_numabalancing_enable(void) 2691 { 2692 } 2693 #endif /* CONFIG_NUMA_BALANCING */ 2694 2695 /* assumes fs == KERNEL_DS */ 2696 void __init numa_policy_init(void) 2697 { 2698 nodemask_t interleave_nodes; 2699 unsigned long largest = 0; 2700 int nid, prefer = 0; 2701 2702 policy_cache = kmem_cache_create("numa_policy", 2703 sizeof(struct mempolicy), 2704 0, SLAB_PANIC, NULL); 2705 2706 sn_cache = kmem_cache_create("shared_policy_node", 2707 sizeof(struct sp_node), 2708 0, SLAB_PANIC, NULL); 2709 2710 for_each_node(nid) { 2711 preferred_node_policy[nid] = (struct mempolicy) { 2712 .refcnt = ATOMIC_INIT(1), 2713 .mode = MPOL_PREFERRED, 2714 .flags = MPOL_F_MOF | MPOL_F_MORON, 2715 .v = { .preferred_node = nid, }, 2716 }; 2717 } 2718 2719 /* 2720 * Set interleaving policy for system init. Interleaving is only 2721 * enabled across suitably sized nodes (default is >= 16MB), or 2722 * fall back to the largest node if they're all smaller. 2723 */ 2724 nodes_clear(interleave_nodes); 2725 for_each_node_state(nid, N_MEMORY) { 2726 unsigned long total_pages = node_present_pages(nid); 2727 2728 /* Preserve the largest node */ 2729 if (largest < total_pages) { 2730 largest = total_pages; 2731 prefer = nid; 2732 } 2733 2734 /* Interleave this node? */ 2735 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2736 node_set(nid, interleave_nodes); 2737 } 2738 2739 /* All too small, use the largest */ 2740 if (unlikely(nodes_empty(interleave_nodes))) 2741 node_set(prefer, interleave_nodes); 2742 2743 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2744 pr_err("%s: interleaving failed\n", __func__); 2745 2746 check_numabalancing_enable(); 2747 } 2748 2749 /* Reset policy of current process to default */ 2750 void numa_default_policy(void) 2751 { 2752 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2753 } 2754 2755 /* 2756 * Parse and format mempolicy from/to strings 2757 */ 2758 2759 /* 2760 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2761 */ 2762 static const char * const policy_modes[] = 2763 { 2764 [MPOL_DEFAULT] = "default", 2765 [MPOL_PREFERRED] = "prefer", 2766 [MPOL_BIND] = "bind", 2767 [MPOL_INTERLEAVE] = "interleave", 2768 [MPOL_LOCAL] = "local", 2769 }; 2770 2771 2772 #ifdef CONFIG_TMPFS 2773 /** 2774 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2775 * @str: string containing mempolicy to parse 2776 * @mpol: pointer to struct mempolicy pointer, returned on success. 2777 * 2778 * Format of input: 2779 * <mode>[=<flags>][:<nodelist>] 2780 * 2781 * On success, returns 0, else 1 2782 */ 2783 int mpol_parse_str(char *str, struct mempolicy **mpol) 2784 { 2785 struct mempolicy *new = NULL; 2786 unsigned short mode_flags; 2787 nodemask_t nodes; 2788 char *nodelist = strchr(str, ':'); 2789 char *flags = strchr(str, '='); 2790 int err = 1, mode; 2791 2792 if (nodelist) { 2793 /* NUL-terminate mode or flags string */ 2794 *nodelist++ = '\0'; 2795 if (nodelist_parse(nodelist, nodes)) 2796 goto out; 2797 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2798 goto out; 2799 } else 2800 nodes_clear(nodes); 2801 2802 if (flags) 2803 *flags++ = '\0'; /* terminate mode string */ 2804 2805 mode = match_string(policy_modes, MPOL_MAX, str); 2806 if (mode < 0) 2807 goto out; 2808 2809 switch (mode) { 2810 case MPOL_PREFERRED: 2811 /* 2812 * Insist on a nodelist of one node only 2813 */ 2814 if (nodelist) { 2815 char *rest = nodelist; 2816 while (isdigit(*rest)) 2817 rest++; 2818 if (*rest) 2819 goto out; 2820 } 2821 break; 2822 case MPOL_INTERLEAVE: 2823 /* 2824 * Default to online nodes with memory if no nodelist 2825 */ 2826 if (!nodelist) 2827 nodes = node_states[N_MEMORY]; 2828 break; 2829 case MPOL_LOCAL: 2830 /* 2831 * Don't allow a nodelist; mpol_new() checks flags 2832 */ 2833 if (nodelist) 2834 goto out; 2835 mode = MPOL_PREFERRED; 2836 break; 2837 case MPOL_DEFAULT: 2838 /* 2839 * Insist on a empty nodelist 2840 */ 2841 if (!nodelist) 2842 err = 0; 2843 goto out; 2844 case MPOL_BIND: 2845 /* 2846 * Insist on a nodelist 2847 */ 2848 if (!nodelist) 2849 goto out; 2850 } 2851 2852 mode_flags = 0; 2853 if (flags) { 2854 /* 2855 * Currently, we only support two mutually exclusive 2856 * mode flags. 2857 */ 2858 if (!strcmp(flags, "static")) 2859 mode_flags |= MPOL_F_STATIC_NODES; 2860 else if (!strcmp(flags, "relative")) 2861 mode_flags |= MPOL_F_RELATIVE_NODES; 2862 else 2863 goto out; 2864 } 2865 2866 new = mpol_new(mode, mode_flags, &nodes); 2867 if (IS_ERR(new)) 2868 goto out; 2869 2870 /* 2871 * Save nodes for mpol_to_str() to show the tmpfs mount options 2872 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2873 */ 2874 if (mode != MPOL_PREFERRED) 2875 new->v.nodes = nodes; 2876 else if (nodelist) 2877 new->v.preferred_node = first_node(nodes); 2878 else 2879 new->flags |= MPOL_F_LOCAL; 2880 2881 /* 2882 * Save nodes for contextualization: this will be used to "clone" 2883 * the mempolicy in a specific context [cpuset] at a later time. 2884 */ 2885 new->w.user_nodemask = nodes; 2886 2887 err = 0; 2888 2889 out: 2890 /* Restore string for error message */ 2891 if (nodelist) 2892 *--nodelist = ':'; 2893 if (flags) 2894 *--flags = '='; 2895 if (!err) 2896 *mpol = new; 2897 return err; 2898 } 2899 #endif /* CONFIG_TMPFS */ 2900 2901 /** 2902 * mpol_to_str - format a mempolicy structure for printing 2903 * @buffer: to contain formatted mempolicy string 2904 * @maxlen: length of @buffer 2905 * @pol: pointer to mempolicy to be formatted 2906 * 2907 * Convert @pol into a string. If @buffer is too short, truncate the string. 2908 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2909 * longest flag, "relative", and to display at least a few node ids. 2910 */ 2911 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2912 { 2913 char *p = buffer; 2914 nodemask_t nodes = NODE_MASK_NONE; 2915 unsigned short mode = MPOL_DEFAULT; 2916 unsigned short flags = 0; 2917 2918 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2919 mode = pol->mode; 2920 flags = pol->flags; 2921 } 2922 2923 switch (mode) { 2924 case MPOL_DEFAULT: 2925 break; 2926 case MPOL_PREFERRED: 2927 if (flags & MPOL_F_LOCAL) 2928 mode = MPOL_LOCAL; 2929 else 2930 node_set(pol->v.preferred_node, nodes); 2931 break; 2932 case MPOL_BIND: 2933 case MPOL_INTERLEAVE: 2934 nodes = pol->v.nodes; 2935 break; 2936 default: 2937 WARN_ON_ONCE(1); 2938 snprintf(p, maxlen, "unknown"); 2939 return; 2940 } 2941 2942 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2943 2944 if (flags & MPOL_MODE_FLAGS) { 2945 p += snprintf(p, buffer + maxlen - p, "="); 2946 2947 /* 2948 * Currently, the only defined flags are mutually exclusive 2949 */ 2950 if (flags & MPOL_F_STATIC_NODES) 2951 p += snprintf(p, buffer + maxlen - p, "static"); 2952 else if (flags & MPOL_F_RELATIVE_NODES) 2953 p += snprintf(p, buffer + maxlen - p, "relative"); 2954 } 2955 2956 if (!nodes_empty(nodes)) 2957 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2958 nodemask_pr_args(&nodes)); 2959 } 2960