xref: /openbmc/linux/mm/memory_hotplug.c (revision d0dc12e86b3197a14a908d4fe7cb35b73dda82b5)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
101 {
102 	struct resource *res, *conflict;
103 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 	if (!res)
105 		return ERR_PTR(-ENOMEM);
106 
107 	res->name = "System RAM";
108 	res->start = start;
109 	res->end = start + size - 1;
110 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 	conflict =  request_resource_conflict(&iomem_resource, res);
112 	if (conflict) {
113 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 			pr_debug("Device unaddressable memory block "
115 				 "memory hotplug at %#010llx !\n",
116 				 (unsigned long long)start);
117 		}
118 		pr_debug("System RAM resource %pR cannot be added\n", res);
119 		kfree(res);
120 		return ERR_PTR(-EEXIST);
121 	}
122 	return res;
123 }
124 
125 static void release_memory_resource(struct resource *res)
126 {
127 	if (!res)
128 		return;
129 	release_resource(res);
130 	kfree(res);
131 	return;
132 }
133 
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info,  struct page *page,
136 		      unsigned long type)
137 {
138 	page->freelist = (void *)type;
139 	SetPagePrivate(page);
140 	set_page_private(page, info);
141 	page_ref_inc(page);
142 }
143 
144 void put_page_bootmem(struct page *page)
145 {
146 	unsigned long type;
147 
148 	type = (unsigned long) page->freelist;
149 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
151 
152 	if (page_ref_dec_return(page) == 1) {
153 		page->freelist = NULL;
154 		ClearPagePrivate(page);
155 		set_page_private(page, 0);
156 		INIT_LIST_HEAD(&page->lru);
157 		free_reserved_page(page);
158 	}
159 }
160 
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn)
164 {
165 	unsigned long *usemap, mapsize, section_nr, i;
166 	struct mem_section *ms;
167 	struct page *page, *memmap;
168 
169 	section_nr = pfn_to_section_nr(start_pfn);
170 	ms = __nr_to_section(section_nr);
171 
172 	/* Get section's memmap address */
173 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
174 
175 	/*
176 	 * Get page for the memmap's phys address
177 	 * XXX: need more consideration for sparse_vmemmap...
178 	 */
179 	page = virt_to_page(memmap);
180 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
182 
183 	/* remember memmap's page */
184 	for (i = 0; i < mapsize; i++, page++)
185 		get_page_bootmem(section_nr, page, SECTION_INFO);
186 
187 	usemap = ms->pageblock_flags;
188 	page = virt_to_page(usemap);
189 
190 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
191 
192 	for (i = 0; i < mapsize; i++, page++)
193 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
194 
195 }
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn)
198 {
199 	unsigned long *usemap, mapsize, section_nr, i;
200 	struct mem_section *ms;
201 	struct page *page, *memmap;
202 
203 	section_nr = pfn_to_section_nr(start_pfn);
204 	ms = __nr_to_section(section_nr);
205 
206 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
207 
208 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
209 
210 	usemap = ms->pageblock_flags;
211 	page = virt_to_page(usemap);
212 
213 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
214 
215 	for (i = 0; i < mapsize; i++, page++)
216 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217 }
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
219 
220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
221 {
222 	unsigned long i, pfn, end_pfn, nr_pages;
223 	int node = pgdat->node_id;
224 	struct page *page;
225 
226 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 	page = virt_to_page(pgdat);
228 
229 	for (i = 0; i < nr_pages; i++, page++)
230 		get_page_bootmem(node, page, NODE_INFO);
231 
232 	pfn = pgdat->node_start_pfn;
233 	end_pfn = pgdat_end_pfn(pgdat);
234 
235 	/* register section info */
236 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
237 		/*
238 		 * Some platforms can assign the same pfn to multiple nodes - on
239 		 * node0 as well as nodeN.  To avoid registering a pfn against
240 		 * multiple nodes we check that this pfn does not already
241 		 * reside in some other nodes.
242 		 */
243 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 			register_page_bootmem_info_section(pfn);
245 	}
246 }
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
248 
249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 		struct vmem_altmap *altmap, bool want_memblock)
251 {
252 	int ret;
253 
254 	if (pfn_valid(phys_start_pfn))
255 		return -EEXIST;
256 
257 	ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
258 	if (ret < 0)
259 		return ret;
260 
261 	if (!want_memblock)
262 		return 0;
263 
264 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
265 }
266 
267 /*
268  * Reasonably generic function for adding memory.  It is
269  * expected that archs that support memory hotplug will
270  * call this function after deciding the zone to which to
271  * add the new pages.
272  */
273 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
274 		unsigned long nr_pages, struct vmem_altmap *altmap,
275 		bool want_memblock)
276 {
277 	unsigned long i;
278 	int err = 0;
279 	int start_sec, end_sec;
280 
281 	/* during initialize mem_map, align hot-added range to section */
282 	start_sec = pfn_to_section_nr(phys_start_pfn);
283 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
284 
285 	if (altmap) {
286 		/*
287 		 * Validate altmap is within bounds of the total request
288 		 */
289 		if (altmap->base_pfn != phys_start_pfn
290 				|| vmem_altmap_offset(altmap) > nr_pages) {
291 			pr_warn_once("memory add fail, invalid altmap\n");
292 			err = -EINVAL;
293 			goto out;
294 		}
295 		altmap->alloc = 0;
296 	}
297 
298 	for (i = start_sec; i <= end_sec; i++) {
299 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
300 				want_memblock);
301 
302 		/*
303 		 * EEXIST is finally dealt with by ioresource collision
304 		 * check. see add_memory() => register_memory_resource()
305 		 * Warning will be printed if there is collision.
306 		 */
307 		if (err && (err != -EEXIST))
308 			break;
309 		err = 0;
310 		cond_resched();
311 	}
312 	vmemmap_populate_print_last();
313 out:
314 	return err;
315 }
316 
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
320 				     unsigned long start_pfn,
321 				     unsigned long end_pfn)
322 {
323 	struct mem_section *ms;
324 
325 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
326 		ms = __pfn_to_section(start_pfn);
327 
328 		if (unlikely(!valid_section(ms)))
329 			continue;
330 
331 		if (unlikely(pfn_to_nid(start_pfn) != nid))
332 			continue;
333 
334 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
335 			continue;
336 
337 		return start_pfn;
338 	}
339 
340 	return 0;
341 }
342 
343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
345 				    unsigned long start_pfn,
346 				    unsigned long end_pfn)
347 {
348 	struct mem_section *ms;
349 	unsigned long pfn;
350 
351 	/* pfn is the end pfn of a memory section. */
352 	pfn = end_pfn - 1;
353 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
354 		ms = __pfn_to_section(pfn);
355 
356 		if (unlikely(!valid_section(ms)))
357 			continue;
358 
359 		if (unlikely(pfn_to_nid(pfn) != nid))
360 			continue;
361 
362 		if (zone && zone != page_zone(pfn_to_page(pfn)))
363 			continue;
364 
365 		return pfn;
366 	}
367 
368 	return 0;
369 }
370 
371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
372 			     unsigned long end_pfn)
373 {
374 	unsigned long zone_start_pfn = zone->zone_start_pfn;
375 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
376 	unsigned long zone_end_pfn = z;
377 	unsigned long pfn;
378 	struct mem_section *ms;
379 	int nid = zone_to_nid(zone);
380 
381 	zone_span_writelock(zone);
382 	if (zone_start_pfn == start_pfn) {
383 		/*
384 		 * If the section is smallest section in the zone, it need
385 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 		 * In this case, we find second smallest valid mem_section
387 		 * for shrinking zone.
388 		 */
389 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
390 						zone_end_pfn);
391 		if (pfn) {
392 			zone->zone_start_pfn = pfn;
393 			zone->spanned_pages = zone_end_pfn - pfn;
394 		}
395 	} else if (zone_end_pfn == end_pfn) {
396 		/*
397 		 * If the section is biggest section in the zone, it need
398 		 * shrink zone->spanned_pages.
399 		 * In this case, we find second biggest valid mem_section for
400 		 * shrinking zone.
401 		 */
402 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
403 					       start_pfn);
404 		if (pfn)
405 			zone->spanned_pages = pfn - zone_start_pfn + 1;
406 	}
407 
408 	/*
409 	 * The section is not biggest or smallest mem_section in the zone, it
410 	 * only creates a hole in the zone. So in this case, we need not
411 	 * change the zone. But perhaps, the zone has only hole data. Thus
412 	 * it check the zone has only hole or not.
413 	 */
414 	pfn = zone_start_pfn;
415 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
416 		ms = __pfn_to_section(pfn);
417 
418 		if (unlikely(!valid_section(ms)))
419 			continue;
420 
421 		if (page_zone(pfn_to_page(pfn)) != zone)
422 			continue;
423 
424 		 /* If the section is current section, it continues the loop */
425 		if (start_pfn == pfn)
426 			continue;
427 
428 		/* If we find valid section, we have nothing to do */
429 		zone_span_writeunlock(zone);
430 		return;
431 	}
432 
433 	/* The zone has no valid section */
434 	zone->zone_start_pfn = 0;
435 	zone->spanned_pages = 0;
436 	zone_span_writeunlock(zone);
437 }
438 
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 			      unsigned long start_pfn, unsigned long end_pfn)
441 {
442 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 	unsigned long pgdat_end_pfn = p;
445 	unsigned long pfn;
446 	struct mem_section *ms;
447 	int nid = pgdat->node_id;
448 
449 	if (pgdat_start_pfn == start_pfn) {
450 		/*
451 		 * If the section is smallest section in the pgdat, it need
452 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 		 * In this case, we find second smallest valid mem_section
454 		 * for shrinking zone.
455 		 */
456 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 						pgdat_end_pfn);
458 		if (pfn) {
459 			pgdat->node_start_pfn = pfn;
460 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
461 		}
462 	} else if (pgdat_end_pfn == end_pfn) {
463 		/*
464 		 * If the section is biggest section in the pgdat, it need
465 		 * shrink pgdat->node_spanned_pages.
466 		 * In this case, we find second biggest valid mem_section for
467 		 * shrinking zone.
468 		 */
469 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 					       start_pfn);
471 		if (pfn)
472 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
473 	}
474 
475 	/*
476 	 * If the section is not biggest or smallest mem_section in the pgdat,
477 	 * it only creates a hole in the pgdat. So in this case, we need not
478 	 * change the pgdat.
479 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 	 * has only hole or not.
481 	 */
482 	pfn = pgdat_start_pfn;
483 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
484 		ms = __pfn_to_section(pfn);
485 
486 		if (unlikely(!valid_section(ms)))
487 			continue;
488 
489 		if (pfn_to_nid(pfn) != nid)
490 			continue;
491 
492 		 /* If the section is current section, it continues the loop */
493 		if (start_pfn == pfn)
494 			continue;
495 
496 		/* If we find valid section, we have nothing to do */
497 		return;
498 	}
499 
500 	/* The pgdat has no valid section */
501 	pgdat->node_start_pfn = 0;
502 	pgdat->node_spanned_pages = 0;
503 }
504 
505 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
506 {
507 	struct pglist_data *pgdat = zone->zone_pgdat;
508 	int nr_pages = PAGES_PER_SECTION;
509 	unsigned long flags;
510 
511 	pgdat_resize_lock(zone->zone_pgdat, &flags);
512 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
514 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
515 }
516 
517 static int __remove_section(struct zone *zone, struct mem_section *ms,
518 		unsigned long map_offset, struct vmem_altmap *altmap)
519 {
520 	unsigned long start_pfn;
521 	int scn_nr;
522 	int ret = -EINVAL;
523 
524 	if (!valid_section(ms))
525 		return ret;
526 
527 	ret = unregister_memory_section(ms);
528 	if (ret)
529 		return ret;
530 
531 	scn_nr = __section_nr(ms);
532 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 	__remove_zone(zone, start_pfn);
534 
535 	sparse_remove_one_section(zone, ms, map_offset, altmap);
536 	return 0;
537 }
538 
539 /**
540  * __remove_pages() - remove sections of pages from a zone
541  * @zone: zone from which pages need to be removed
542  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543  * @nr_pages: number of pages to remove (must be multiple of section size)
544  *
545  * Generic helper function to remove section mappings and sysfs entries
546  * for the section of the memory we are removing. Caller needs to make
547  * sure that pages are marked reserved and zones are adjust properly by
548  * calling offline_pages().
549  */
550 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
551 		 unsigned long nr_pages, struct vmem_altmap *altmap)
552 {
553 	unsigned long i;
554 	unsigned long map_offset = 0;
555 	int sections_to_remove, ret = 0;
556 
557 	/* In the ZONE_DEVICE case device driver owns the memory region */
558 	if (is_dev_zone(zone)) {
559 		if (altmap)
560 			map_offset = vmem_altmap_offset(altmap);
561 	} else {
562 		resource_size_t start, size;
563 
564 		start = phys_start_pfn << PAGE_SHIFT;
565 		size = nr_pages * PAGE_SIZE;
566 
567 		ret = release_mem_region_adjustable(&iomem_resource, start,
568 					size);
569 		if (ret) {
570 			resource_size_t endres = start + size - 1;
571 
572 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
573 					&start, &endres, ret);
574 		}
575 	}
576 
577 	clear_zone_contiguous(zone);
578 
579 	/*
580 	 * We can only remove entire sections
581 	 */
582 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
583 	BUG_ON(nr_pages % PAGES_PER_SECTION);
584 
585 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
586 	for (i = 0; i < sections_to_remove; i++) {
587 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
588 
589 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
590 				altmap);
591 		map_offset = 0;
592 		if (ret)
593 			break;
594 	}
595 
596 	set_zone_contiguous(zone);
597 
598 	return ret;
599 }
600 #endif /* CONFIG_MEMORY_HOTREMOVE */
601 
602 int set_online_page_callback(online_page_callback_t callback)
603 {
604 	int rc = -EINVAL;
605 
606 	get_online_mems();
607 	mutex_lock(&online_page_callback_lock);
608 
609 	if (online_page_callback == generic_online_page) {
610 		online_page_callback = callback;
611 		rc = 0;
612 	}
613 
614 	mutex_unlock(&online_page_callback_lock);
615 	put_online_mems();
616 
617 	return rc;
618 }
619 EXPORT_SYMBOL_GPL(set_online_page_callback);
620 
621 int restore_online_page_callback(online_page_callback_t callback)
622 {
623 	int rc = -EINVAL;
624 
625 	get_online_mems();
626 	mutex_lock(&online_page_callback_lock);
627 
628 	if (online_page_callback == callback) {
629 		online_page_callback = generic_online_page;
630 		rc = 0;
631 	}
632 
633 	mutex_unlock(&online_page_callback_lock);
634 	put_online_mems();
635 
636 	return rc;
637 }
638 EXPORT_SYMBOL_GPL(restore_online_page_callback);
639 
640 void __online_page_set_limits(struct page *page)
641 {
642 }
643 EXPORT_SYMBOL_GPL(__online_page_set_limits);
644 
645 void __online_page_increment_counters(struct page *page)
646 {
647 	adjust_managed_page_count(page, 1);
648 }
649 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
650 
651 void __online_page_free(struct page *page)
652 {
653 	__free_reserved_page(page);
654 }
655 EXPORT_SYMBOL_GPL(__online_page_free);
656 
657 static void generic_online_page(struct page *page)
658 {
659 	__online_page_set_limits(page);
660 	__online_page_increment_counters(page);
661 	__online_page_free(page);
662 }
663 
664 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
665 			void *arg)
666 {
667 	unsigned long i;
668 	unsigned long onlined_pages = *(unsigned long *)arg;
669 	struct page *page;
670 
671 	if (PageReserved(pfn_to_page(start_pfn)))
672 		for (i = 0; i < nr_pages; i++) {
673 			page = pfn_to_page(start_pfn + i);
674 			(*online_page_callback)(page);
675 			onlined_pages++;
676 		}
677 
678 	online_mem_sections(start_pfn, start_pfn + nr_pages);
679 
680 	*(unsigned long *)arg = onlined_pages;
681 	return 0;
682 }
683 
684 /* check which state of node_states will be changed when online memory */
685 static void node_states_check_changes_online(unsigned long nr_pages,
686 	struct zone *zone, struct memory_notify *arg)
687 {
688 	int nid = zone_to_nid(zone);
689 	enum zone_type zone_last = ZONE_NORMAL;
690 
691 	/*
692 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
693 	 * contains nodes which have zones of 0...ZONE_NORMAL,
694 	 * set zone_last to ZONE_NORMAL.
695 	 *
696 	 * If we don't have HIGHMEM nor movable node,
697 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
698 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
699 	 */
700 	if (N_MEMORY == N_NORMAL_MEMORY)
701 		zone_last = ZONE_MOVABLE;
702 
703 	/*
704 	 * if the memory to be online is in a zone of 0...zone_last, and
705 	 * the zones of 0...zone_last don't have memory before online, we will
706 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
707 	 * the memory is online.
708 	 */
709 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
710 		arg->status_change_nid_normal = nid;
711 	else
712 		arg->status_change_nid_normal = -1;
713 
714 #ifdef CONFIG_HIGHMEM
715 	/*
716 	 * If we have movable node, node_states[N_HIGH_MEMORY]
717 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
718 	 * set zone_last to ZONE_HIGHMEM.
719 	 *
720 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
721 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
722 	 * set zone_last to ZONE_MOVABLE.
723 	 */
724 	zone_last = ZONE_HIGHMEM;
725 	if (N_MEMORY == N_HIGH_MEMORY)
726 		zone_last = ZONE_MOVABLE;
727 
728 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
729 		arg->status_change_nid_high = nid;
730 	else
731 		arg->status_change_nid_high = -1;
732 #else
733 	arg->status_change_nid_high = arg->status_change_nid_normal;
734 #endif
735 
736 	/*
737 	 * if the node don't have memory befor online, we will need to
738 	 * set the node to node_states[N_MEMORY] after the memory
739 	 * is online.
740 	 */
741 	if (!node_state(nid, N_MEMORY))
742 		arg->status_change_nid = nid;
743 	else
744 		arg->status_change_nid = -1;
745 }
746 
747 static void node_states_set_node(int node, struct memory_notify *arg)
748 {
749 	if (arg->status_change_nid_normal >= 0)
750 		node_set_state(node, N_NORMAL_MEMORY);
751 
752 	if (arg->status_change_nid_high >= 0)
753 		node_set_state(node, N_HIGH_MEMORY);
754 
755 	node_set_state(node, N_MEMORY);
756 }
757 
758 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
759 		unsigned long nr_pages)
760 {
761 	unsigned long old_end_pfn = zone_end_pfn(zone);
762 
763 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
764 		zone->zone_start_pfn = start_pfn;
765 
766 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
767 }
768 
769 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
770                                      unsigned long nr_pages)
771 {
772 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
773 
774 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
775 		pgdat->node_start_pfn = start_pfn;
776 
777 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
778 }
779 
780 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
781 		unsigned long nr_pages, struct vmem_altmap *altmap)
782 {
783 	struct pglist_data *pgdat = zone->zone_pgdat;
784 	int nid = pgdat->node_id;
785 	unsigned long flags;
786 
787 	if (zone_is_empty(zone))
788 		init_currently_empty_zone(zone, start_pfn, nr_pages);
789 
790 	clear_zone_contiguous(zone);
791 
792 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
793 	pgdat_resize_lock(pgdat, &flags);
794 	zone_span_writelock(zone);
795 	resize_zone_range(zone, start_pfn, nr_pages);
796 	zone_span_writeunlock(zone);
797 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
798 	pgdat_resize_unlock(pgdat, &flags);
799 
800 	/*
801 	 * TODO now we have a visible range of pages which are not associated
802 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
803 	 * expects the zone spans the pfn range. All the pages in the range
804 	 * are reserved so nobody should be touching them so we should be safe
805 	 */
806 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
807 			MEMMAP_HOTPLUG, altmap);
808 
809 	set_zone_contiguous(zone);
810 }
811 
812 /*
813  * Returns a default kernel memory zone for the given pfn range.
814  * If no kernel zone covers this pfn range it will automatically go
815  * to the ZONE_NORMAL.
816  */
817 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
818 		unsigned long nr_pages)
819 {
820 	struct pglist_data *pgdat = NODE_DATA(nid);
821 	int zid;
822 
823 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
824 		struct zone *zone = &pgdat->node_zones[zid];
825 
826 		if (zone_intersects(zone, start_pfn, nr_pages))
827 			return zone;
828 	}
829 
830 	return &pgdat->node_zones[ZONE_NORMAL];
831 }
832 
833 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
834 		unsigned long nr_pages)
835 {
836 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
837 			nr_pages);
838 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
839 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
840 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
841 
842 	/*
843 	 * We inherit the existing zone in a simple case where zones do not
844 	 * overlap in the given range
845 	 */
846 	if (in_kernel ^ in_movable)
847 		return (in_kernel) ? kernel_zone : movable_zone;
848 
849 	/*
850 	 * If the range doesn't belong to any zone or two zones overlap in the
851 	 * given range then we use movable zone only if movable_node is
852 	 * enabled because we always online to a kernel zone by default.
853 	 */
854 	return movable_node_enabled ? movable_zone : kernel_zone;
855 }
856 
857 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
858 		unsigned long nr_pages)
859 {
860 	if (online_type == MMOP_ONLINE_KERNEL)
861 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
862 
863 	if (online_type == MMOP_ONLINE_MOVABLE)
864 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
865 
866 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
867 }
868 
869 /*
870  * Associates the given pfn range with the given node and the zone appropriate
871  * for the given online type.
872  */
873 static struct zone * __meminit move_pfn_range(int online_type, int nid,
874 		unsigned long start_pfn, unsigned long nr_pages)
875 {
876 	struct zone *zone;
877 
878 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
879 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
880 	return zone;
881 }
882 
883 /* Must be protected by mem_hotplug_begin() or a device_lock */
884 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
885 {
886 	unsigned long flags;
887 	unsigned long onlined_pages = 0;
888 	struct zone *zone;
889 	int need_zonelists_rebuild = 0;
890 	int nid;
891 	int ret;
892 	struct memory_notify arg;
893 	struct memory_block *mem;
894 
895 	/*
896 	 * We can't use pfn_to_nid() because nid might be stored in struct page
897 	 * which is not yet initialized. Instead, we find nid from memory block.
898 	 */
899 	mem = find_memory_block(__pfn_to_section(pfn));
900 	nid = mem->nid;
901 
902 	/* associate pfn range with the zone */
903 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
904 
905 	arg.start_pfn = pfn;
906 	arg.nr_pages = nr_pages;
907 	node_states_check_changes_online(nr_pages, zone, &arg);
908 
909 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
910 	ret = notifier_to_errno(ret);
911 	if (ret)
912 		goto failed_addition;
913 
914 	/*
915 	 * If this zone is not populated, then it is not in zonelist.
916 	 * This means the page allocator ignores this zone.
917 	 * So, zonelist must be updated after online.
918 	 */
919 	if (!populated_zone(zone)) {
920 		need_zonelists_rebuild = 1;
921 		setup_zone_pageset(zone);
922 	}
923 
924 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
925 		online_pages_range);
926 	if (ret) {
927 		if (need_zonelists_rebuild)
928 			zone_pcp_reset(zone);
929 		goto failed_addition;
930 	}
931 
932 	zone->present_pages += onlined_pages;
933 
934 	pgdat_resize_lock(zone->zone_pgdat, &flags);
935 	zone->zone_pgdat->node_present_pages += onlined_pages;
936 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
937 
938 	if (onlined_pages) {
939 		node_states_set_node(nid, &arg);
940 		if (need_zonelists_rebuild)
941 			build_all_zonelists(NULL);
942 		else
943 			zone_pcp_update(zone);
944 	}
945 
946 	init_per_zone_wmark_min();
947 
948 	if (onlined_pages) {
949 		kswapd_run(nid);
950 		kcompactd_run(nid);
951 	}
952 
953 	vm_total_pages = nr_free_pagecache_pages();
954 
955 	writeback_set_ratelimit();
956 
957 	if (onlined_pages)
958 		memory_notify(MEM_ONLINE, &arg);
959 	return 0;
960 
961 failed_addition:
962 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
963 		 (unsigned long long) pfn << PAGE_SHIFT,
964 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
965 	memory_notify(MEM_CANCEL_ONLINE, &arg);
966 	return ret;
967 }
968 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
969 
970 static void reset_node_present_pages(pg_data_t *pgdat)
971 {
972 	struct zone *z;
973 
974 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
975 		z->present_pages = 0;
976 
977 	pgdat->node_present_pages = 0;
978 }
979 
980 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
981 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
982 {
983 	struct pglist_data *pgdat;
984 	unsigned long zones_size[MAX_NR_ZONES] = {0};
985 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
986 	unsigned long start_pfn = PFN_DOWN(start);
987 
988 	pgdat = NODE_DATA(nid);
989 	if (!pgdat) {
990 		pgdat = arch_alloc_nodedata(nid);
991 		if (!pgdat)
992 			return NULL;
993 
994 		arch_refresh_nodedata(nid, pgdat);
995 	} else {
996 		/*
997 		 * Reset the nr_zones, order and classzone_idx before reuse.
998 		 * Note that kswapd will init kswapd_classzone_idx properly
999 		 * when it starts in the near future.
1000 		 */
1001 		pgdat->nr_zones = 0;
1002 		pgdat->kswapd_order = 0;
1003 		pgdat->kswapd_classzone_idx = 0;
1004 	}
1005 
1006 	/* we can use NODE_DATA(nid) from here */
1007 
1008 	/* init node's zones as empty zones, we don't have any present pages.*/
1009 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1010 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1011 
1012 	/*
1013 	 * The node we allocated has no zone fallback lists. For avoiding
1014 	 * to access not-initialized zonelist, build here.
1015 	 */
1016 	build_all_zonelists(pgdat);
1017 
1018 	/*
1019 	 * zone->managed_pages is set to an approximate value in
1020 	 * free_area_init_core(), which will cause
1021 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1022 	 * So reset it to 0 before any memory is onlined.
1023 	 */
1024 	reset_node_managed_pages(pgdat);
1025 
1026 	/*
1027 	 * When memory is hot-added, all the memory is in offline state. So
1028 	 * clear all zones' present_pages because they will be updated in
1029 	 * online_pages() and offline_pages().
1030 	 */
1031 	reset_node_present_pages(pgdat);
1032 
1033 	return pgdat;
1034 }
1035 
1036 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1037 {
1038 	arch_refresh_nodedata(nid, NULL);
1039 	free_percpu(pgdat->per_cpu_nodestats);
1040 	arch_free_nodedata(pgdat);
1041 	return;
1042 }
1043 
1044 
1045 /**
1046  * try_online_node - online a node if offlined
1047  *
1048  * called by cpu_up() to online a node without onlined memory.
1049  */
1050 int try_online_node(int nid)
1051 {
1052 	pg_data_t	*pgdat;
1053 	int	ret;
1054 
1055 	if (node_online(nid))
1056 		return 0;
1057 
1058 	mem_hotplug_begin();
1059 	pgdat = hotadd_new_pgdat(nid, 0);
1060 	if (!pgdat) {
1061 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1062 		ret = -ENOMEM;
1063 		goto out;
1064 	}
1065 	node_set_online(nid);
1066 	ret = register_one_node(nid);
1067 	BUG_ON(ret);
1068 out:
1069 	mem_hotplug_done();
1070 	return ret;
1071 }
1072 
1073 static int check_hotplug_memory_range(u64 start, u64 size)
1074 {
1075 	unsigned long block_sz = memory_block_size_bytes();
1076 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1077 	u64 nr_pages = size >> PAGE_SHIFT;
1078 	u64 start_pfn = PFN_DOWN(start);
1079 
1080 	/* memory range must be block size aligned */
1081 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1082 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1083 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1084 		       block_sz, start, size);
1085 		return -EINVAL;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int online_memory_block(struct memory_block *mem, void *arg)
1092 {
1093 	return device_online(&mem->dev);
1094 }
1095 
1096 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1097 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1098 {
1099 	u64 start, size;
1100 	pg_data_t *pgdat = NULL;
1101 	bool new_pgdat;
1102 	bool new_node;
1103 	int ret;
1104 
1105 	start = res->start;
1106 	size = resource_size(res);
1107 
1108 	ret = check_hotplug_memory_range(start, size);
1109 	if (ret)
1110 		return ret;
1111 
1112 	{	/* Stupid hack to suppress address-never-null warning */
1113 		void *p = NODE_DATA(nid);
1114 		new_pgdat = !p;
1115 	}
1116 
1117 	mem_hotplug_begin();
1118 
1119 	/*
1120 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1121 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1122 	 * this new range and calculate total pages correctly.  The range will
1123 	 * be removed at hot-remove time.
1124 	 */
1125 	memblock_add_node(start, size, nid);
1126 
1127 	new_node = !node_online(nid);
1128 	if (new_node) {
1129 		pgdat = hotadd_new_pgdat(nid, start);
1130 		ret = -ENOMEM;
1131 		if (!pgdat)
1132 			goto error;
1133 	}
1134 
1135 	/* call arch's memory hotadd */
1136 	ret = arch_add_memory(nid, start, size, NULL, true);
1137 
1138 	if (ret < 0)
1139 		goto error;
1140 
1141 	/* we online node here. we can't roll back from here. */
1142 	node_set_online(nid);
1143 
1144 	if (new_node) {
1145 		unsigned long start_pfn = start >> PAGE_SHIFT;
1146 		unsigned long nr_pages = size >> PAGE_SHIFT;
1147 
1148 		ret = __register_one_node(nid);
1149 		if (ret)
1150 			goto register_fail;
1151 
1152 		/*
1153 		 * link memory sections under this node. This is already
1154 		 * done when creatig memory section in register_new_memory
1155 		 * but that depends to have the node registered so offline
1156 		 * nodes have to go through register_node.
1157 		 * TODO clean up this mess.
1158 		 */
1159 		ret = link_mem_sections(nid, start_pfn, nr_pages);
1160 register_fail:
1161 		/*
1162 		 * If sysfs file of new node can't create, cpu on the node
1163 		 * can't be hot-added. There is no rollback way now.
1164 		 * So, check by BUG_ON() to catch it reluctantly..
1165 		 */
1166 		BUG_ON(ret);
1167 	}
1168 
1169 	/* create new memmap entry */
1170 	firmware_map_add_hotplug(start, start + size, "System RAM");
1171 
1172 	/* online pages if requested */
1173 	if (online)
1174 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1175 				  NULL, online_memory_block);
1176 
1177 	goto out;
1178 
1179 error:
1180 	/* rollback pgdat allocation and others */
1181 	if (new_pgdat && pgdat)
1182 		rollback_node_hotadd(nid, pgdat);
1183 	memblock_remove(start, size);
1184 
1185 out:
1186 	mem_hotplug_done();
1187 	return ret;
1188 }
1189 EXPORT_SYMBOL_GPL(add_memory_resource);
1190 
1191 int __ref add_memory(int nid, u64 start, u64 size)
1192 {
1193 	struct resource *res;
1194 	int ret;
1195 
1196 	res = register_memory_resource(start, size);
1197 	if (IS_ERR(res))
1198 		return PTR_ERR(res);
1199 
1200 	ret = add_memory_resource(nid, res, memhp_auto_online);
1201 	if (ret < 0)
1202 		release_memory_resource(res);
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL_GPL(add_memory);
1206 
1207 #ifdef CONFIG_MEMORY_HOTREMOVE
1208 /*
1209  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1210  * set and the size of the free page is given by page_order(). Using this,
1211  * the function determines if the pageblock contains only free pages.
1212  * Due to buddy contraints, a free page at least the size of a pageblock will
1213  * be located at the start of the pageblock
1214  */
1215 static inline int pageblock_free(struct page *page)
1216 {
1217 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1218 }
1219 
1220 /* Return the start of the next active pageblock after a given page */
1221 static struct page *next_active_pageblock(struct page *page)
1222 {
1223 	/* Ensure the starting page is pageblock-aligned */
1224 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1225 
1226 	/* If the entire pageblock is free, move to the end of free page */
1227 	if (pageblock_free(page)) {
1228 		int order;
1229 		/* be careful. we don't have locks, page_order can be changed.*/
1230 		order = page_order(page);
1231 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1232 			return page + (1 << order);
1233 	}
1234 
1235 	return page + pageblock_nr_pages;
1236 }
1237 
1238 /* Checks if this range of memory is likely to be hot-removable. */
1239 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1240 {
1241 	struct page *page = pfn_to_page(start_pfn);
1242 	struct page *end_page = page + nr_pages;
1243 
1244 	/* Check the starting page of each pageblock within the range */
1245 	for (; page < end_page; page = next_active_pageblock(page)) {
1246 		if (!is_pageblock_removable_nolock(page))
1247 			return false;
1248 		cond_resched();
1249 	}
1250 
1251 	/* All pageblocks in the memory block are likely to be hot-removable */
1252 	return true;
1253 }
1254 
1255 /*
1256  * Confirm all pages in a range [start, end) belong to the same zone.
1257  * When true, return its valid [start, end).
1258  */
1259 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1260 			 unsigned long *valid_start, unsigned long *valid_end)
1261 {
1262 	unsigned long pfn, sec_end_pfn;
1263 	unsigned long start, end;
1264 	struct zone *zone = NULL;
1265 	struct page *page;
1266 	int i;
1267 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1268 	     pfn < end_pfn;
1269 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1270 		/* Make sure the memory section is present first */
1271 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1272 			continue;
1273 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1274 		     pfn += MAX_ORDER_NR_PAGES) {
1275 			i = 0;
1276 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1277 			while ((i < MAX_ORDER_NR_PAGES) &&
1278 				!pfn_valid_within(pfn + i))
1279 				i++;
1280 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1281 				continue;
1282 			page = pfn_to_page(pfn + i);
1283 			if (zone && page_zone(page) != zone)
1284 				return 0;
1285 			if (!zone)
1286 				start = pfn + i;
1287 			zone = page_zone(page);
1288 			end = pfn + MAX_ORDER_NR_PAGES;
1289 		}
1290 	}
1291 
1292 	if (zone) {
1293 		*valid_start = start;
1294 		*valid_end = min(end, end_pfn);
1295 		return 1;
1296 	} else {
1297 		return 0;
1298 	}
1299 }
1300 
1301 /*
1302  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1303  * non-lru movable pages and hugepages). We scan pfn because it's much
1304  * easier than scanning over linked list. This function returns the pfn
1305  * of the first found movable page if it's found, otherwise 0.
1306  */
1307 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1308 {
1309 	unsigned long pfn;
1310 	struct page *page;
1311 	for (pfn = start; pfn < end; pfn++) {
1312 		if (pfn_valid(pfn)) {
1313 			page = pfn_to_page(pfn);
1314 			if (PageLRU(page))
1315 				return pfn;
1316 			if (__PageMovable(page))
1317 				return pfn;
1318 			if (PageHuge(page)) {
1319 				if (page_huge_active(page))
1320 					return pfn;
1321 				else
1322 					pfn = round_up(pfn + 1,
1323 						1 << compound_order(page)) - 1;
1324 			}
1325 		}
1326 	}
1327 	return 0;
1328 }
1329 
1330 static struct page *new_node_page(struct page *page, unsigned long private,
1331 		int **result)
1332 {
1333 	int nid = page_to_nid(page);
1334 	nodemask_t nmask = node_states[N_MEMORY];
1335 
1336 	/*
1337 	 * try to allocate from a different node but reuse this node if there
1338 	 * are no other online nodes to be used (e.g. we are offlining a part
1339 	 * of the only existing node)
1340 	 */
1341 	node_clear(nid, nmask);
1342 	if (nodes_empty(nmask))
1343 		node_set(nid, nmask);
1344 
1345 	return new_page_nodemask(page, nid, &nmask);
1346 }
1347 
1348 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1349 static int
1350 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1351 {
1352 	unsigned long pfn;
1353 	struct page *page;
1354 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1355 	int not_managed = 0;
1356 	int ret = 0;
1357 	LIST_HEAD(source);
1358 
1359 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1360 		if (!pfn_valid(pfn))
1361 			continue;
1362 		page = pfn_to_page(pfn);
1363 
1364 		if (PageHuge(page)) {
1365 			struct page *head = compound_head(page);
1366 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1367 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1368 				ret = -EBUSY;
1369 				break;
1370 			}
1371 			if (isolate_huge_page(page, &source))
1372 				move_pages -= 1 << compound_order(head);
1373 			continue;
1374 		} else if (thp_migration_supported() && PageTransHuge(page))
1375 			pfn = page_to_pfn(compound_head(page))
1376 				+ hpage_nr_pages(page) - 1;
1377 
1378 		if (!get_page_unless_zero(page))
1379 			continue;
1380 		/*
1381 		 * We can skip free pages. And we can deal with pages on
1382 		 * LRU and non-lru movable pages.
1383 		 */
1384 		if (PageLRU(page))
1385 			ret = isolate_lru_page(page);
1386 		else
1387 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1388 		if (!ret) { /* Success */
1389 			put_page(page);
1390 			list_add_tail(&page->lru, &source);
1391 			move_pages--;
1392 			if (!__PageMovable(page))
1393 				inc_node_page_state(page, NR_ISOLATED_ANON +
1394 						    page_is_file_cache(page));
1395 
1396 		} else {
1397 #ifdef CONFIG_DEBUG_VM
1398 			pr_alert("failed to isolate pfn %lx\n", pfn);
1399 			dump_page(page, "isolation failed");
1400 #endif
1401 			put_page(page);
1402 			/* Because we don't have big zone->lock. we should
1403 			   check this again here. */
1404 			if (page_count(page)) {
1405 				not_managed++;
1406 				ret = -EBUSY;
1407 				break;
1408 			}
1409 		}
1410 	}
1411 	if (!list_empty(&source)) {
1412 		if (not_managed) {
1413 			putback_movable_pages(&source);
1414 			goto out;
1415 		}
1416 
1417 		/* Allocate a new page from the nearest neighbor node */
1418 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1419 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1420 		if (ret)
1421 			putback_movable_pages(&source);
1422 	}
1423 out:
1424 	return ret;
1425 }
1426 
1427 /*
1428  * remove from free_area[] and mark all as Reserved.
1429  */
1430 static int
1431 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1432 			void *data)
1433 {
1434 	__offline_isolated_pages(start, start + nr_pages);
1435 	return 0;
1436 }
1437 
1438 static void
1439 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1440 {
1441 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1442 				offline_isolated_pages_cb);
1443 }
1444 
1445 /*
1446  * Check all pages in range, recoreded as memory resource, are isolated.
1447  */
1448 static int
1449 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1450 			void *data)
1451 {
1452 	int ret;
1453 	long offlined = *(long *)data;
1454 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1455 	offlined = nr_pages;
1456 	if (!ret)
1457 		*(long *)data += offlined;
1458 	return ret;
1459 }
1460 
1461 static long
1462 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1463 {
1464 	long offlined = 0;
1465 	int ret;
1466 
1467 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1468 			check_pages_isolated_cb);
1469 	if (ret < 0)
1470 		offlined = (long)ret;
1471 	return offlined;
1472 }
1473 
1474 static int __init cmdline_parse_movable_node(char *p)
1475 {
1476 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1477 	movable_node_enabled = true;
1478 #else
1479 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1480 #endif
1481 	return 0;
1482 }
1483 early_param("movable_node", cmdline_parse_movable_node);
1484 
1485 /* check which state of node_states will be changed when offline memory */
1486 static void node_states_check_changes_offline(unsigned long nr_pages,
1487 		struct zone *zone, struct memory_notify *arg)
1488 {
1489 	struct pglist_data *pgdat = zone->zone_pgdat;
1490 	unsigned long present_pages = 0;
1491 	enum zone_type zt, zone_last = ZONE_NORMAL;
1492 
1493 	/*
1494 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1495 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1496 	 * set zone_last to ZONE_NORMAL.
1497 	 *
1498 	 * If we don't have HIGHMEM nor movable node,
1499 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1500 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1501 	 */
1502 	if (N_MEMORY == N_NORMAL_MEMORY)
1503 		zone_last = ZONE_MOVABLE;
1504 
1505 	/*
1506 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1507 	 * If the memory to be offline is in a zone of 0...zone_last,
1508 	 * and it is the last present memory, 0...zone_last will
1509 	 * become empty after offline , thus we can determind we will
1510 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1511 	 */
1512 	for (zt = 0; zt <= zone_last; zt++)
1513 		present_pages += pgdat->node_zones[zt].present_pages;
1514 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1515 		arg->status_change_nid_normal = zone_to_nid(zone);
1516 	else
1517 		arg->status_change_nid_normal = -1;
1518 
1519 #ifdef CONFIG_HIGHMEM
1520 	/*
1521 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1522 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1523 	 * set zone_last to ZONE_HIGHMEM.
1524 	 *
1525 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1526 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1527 	 * set zone_last to ZONE_MOVABLE.
1528 	 */
1529 	zone_last = ZONE_HIGHMEM;
1530 	if (N_MEMORY == N_HIGH_MEMORY)
1531 		zone_last = ZONE_MOVABLE;
1532 
1533 	for (; zt <= zone_last; zt++)
1534 		present_pages += pgdat->node_zones[zt].present_pages;
1535 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1536 		arg->status_change_nid_high = zone_to_nid(zone);
1537 	else
1538 		arg->status_change_nid_high = -1;
1539 #else
1540 	arg->status_change_nid_high = arg->status_change_nid_normal;
1541 #endif
1542 
1543 	/*
1544 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1545 	 */
1546 	zone_last = ZONE_MOVABLE;
1547 
1548 	/*
1549 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1550 	 * If we try to offline the last present @nr_pages from the node,
1551 	 * we can determind we will need to clear the node from
1552 	 * node_states[N_HIGH_MEMORY].
1553 	 */
1554 	for (; zt <= zone_last; zt++)
1555 		present_pages += pgdat->node_zones[zt].present_pages;
1556 	if (nr_pages >= present_pages)
1557 		arg->status_change_nid = zone_to_nid(zone);
1558 	else
1559 		arg->status_change_nid = -1;
1560 }
1561 
1562 static void node_states_clear_node(int node, struct memory_notify *arg)
1563 {
1564 	if (arg->status_change_nid_normal >= 0)
1565 		node_clear_state(node, N_NORMAL_MEMORY);
1566 
1567 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1568 	    (arg->status_change_nid_high >= 0))
1569 		node_clear_state(node, N_HIGH_MEMORY);
1570 
1571 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1572 	    (arg->status_change_nid >= 0))
1573 		node_clear_state(node, N_MEMORY);
1574 }
1575 
1576 static int __ref __offline_pages(unsigned long start_pfn,
1577 		  unsigned long end_pfn)
1578 {
1579 	unsigned long pfn, nr_pages;
1580 	long offlined_pages;
1581 	int ret, node;
1582 	unsigned long flags;
1583 	unsigned long valid_start, valid_end;
1584 	struct zone *zone;
1585 	struct memory_notify arg;
1586 
1587 	/* at least, alignment against pageblock is necessary */
1588 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1589 		return -EINVAL;
1590 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1591 		return -EINVAL;
1592 	/* This makes hotplug much easier...and readable.
1593 	   we assume this for now. .*/
1594 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1595 		return -EINVAL;
1596 
1597 	zone = page_zone(pfn_to_page(valid_start));
1598 	node = zone_to_nid(zone);
1599 	nr_pages = end_pfn - start_pfn;
1600 
1601 	/* set above range as isolated */
1602 	ret = start_isolate_page_range(start_pfn, end_pfn,
1603 				       MIGRATE_MOVABLE, true);
1604 	if (ret)
1605 		return ret;
1606 
1607 	arg.start_pfn = start_pfn;
1608 	arg.nr_pages = nr_pages;
1609 	node_states_check_changes_offline(nr_pages, zone, &arg);
1610 
1611 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1612 	ret = notifier_to_errno(ret);
1613 	if (ret)
1614 		goto failed_removal;
1615 
1616 	pfn = start_pfn;
1617 repeat:
1618 	/* start memory hot removal */
1619 	ret = -EINTR;
1620 	if (signal_pending(current))
1621 		goto failed_removal;
1622 
1623 	cond_resched();
1624 	lru_add_drain_all();
1625 	drain_all_pages(zone);
1626 
1627 	pfn = scan_movable_pages(start_pfn, end_pfn);
1628 	if (pfn) { /* We have movable pages */
1629 		ret = do_migrate_range(pfn, end_pfn);
1630 		goto repeat;
1631 	}
1632 
1633 	/*
1634 	 * dissolve free hugepages in the memory block before doing offlining
1635 	 * actually in order to make hugetlbfs's object counting consistent.
1636 	 */
1637 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1638 	if (ret)
1639 		goto failed_removal;
1640 	/* check again */
1641 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1642 	if (offlined_pages < 0)
1643 		goto repeat;
1644 	pr_info("Offlined Pages %ld\n", offlined_pages);
1645 	/* Ok, all of our target is isolated.
1646 	   We cannot do rollback at this point. */
1647 	offline_isolated_pages(start_pfn, end_pfn);
1648 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1649 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1650 	/* removal success */
1651 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1652 	zone->present_pages -= offlined_pages;
1653 
1654 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1655 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1656 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1657 
1658 	init_per_zone_wmark_min();
1659 
1660 	if (!populated_zone(zone)) {
1661 		zone_pcp_reset(zone);
1662 		build_all_zonelists(NULL);
1663 	} else
1664 		zone_pcp_update(zone);
1665 
1666 	node_states_clear_node(node, &arg);
1667 	if (arg.status_change_nid >= 0) {
1668 		kswapd_stop(node);
1669 		kcompactd_stop(node);
1670 	}
1671 
1672 	vm_total_pages = nr_free_pagecache_pages();
1673 	writeback_set_ratelimit();
1674 
1675 	memory_notify(MEM_OFFLINE, &arg);
1676 	return 0;
1677 
1678 failed_removal:
1679 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1680 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1681 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1682 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1683 	/* pushback to free area */
1684 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1685 	return ret;
1686 }
1687 
1688 /* Must be protected by mem_hotplug_begin() or a device_lock */
1689 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1690 {
1691 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1692 }
1693 #endif /* CONFIG_MEMORY_HOTREMOVE */
1694 
1695 /**
1696  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1697  * @start_pfn: start pfn of the memory range
1698  * @end_pfn: end pfn of the memory range
1699  * @arg: argument passed to func
1700  * @func: callback for each memory section walked
1701  *
1702  * This function walks through all present mem sections in range
1703  * [start_pfn, end_pfn) and call func on each mem section.
1704  *
1705  * Returns the return value of func.
1706  */
1707 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1708 		void *arg, int (*func)(struct memory_block *, void *))
1709 {
1710 	struct memory_block *mem = NULL;
1711 	struct mem_section *section;
1712 	unsigned long pfn, section_nr;
1713 	int ret;
1714 
1715 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1716 		section_nr = pfn_to_section_nr(pfn);
1717 		if (!present_section_nr(section_nr))
1718 			continue;
1719 
1720 		section = __nr_to_section(section_nr);
1721 		/* same memblock? */
1722 		if (mem)
1723 			if ((section_nr >= mem->start_section_nr) &&
1724 			    (section_nr <= mem->end_section_nr))
1725 				continue;
1726 
1727 		mem = find_memory_block_hinted(section, mem);
1728 		if (!mem)
1729 			continue;
1730 
1731 		ret = func(mem, arg);
1732 		if (ret) {
1733 			kobject_put(&mem->dev.kobj);
1734 			return ret;
1735 		}
1736 	}
1737 
1738 	if (mem)
1739 		kobject_put(&mem->dev.kobj);
1740 
1741 	return 0;
1742 }
1743 
1744 #ifdef CONFIG_MEMORY_HOTREMOVE
1745 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1746 {
1747 	int ret = !is_memblock_offlined(mem);
1748 
1749 	if (unlikely(ret)) {
1750 		phys_addr_t beginpa, endpa;
1751 
1752 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1753 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1754 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1755 			&beginpa, &endpa);
1756 	}
1757 
1758 	return ret;
1759 }
1760 
1761 static int check_cpu_on_node(pg_data_t *pgdat)
1762 {
1763 	int cpu;
1764 
1765 	for_each_present_cpu(cpu) {
1766 		if (cpu_to_node(cpu) == pgdat->node_id)
1767 			/*
1768 			 * the cpu on this node isn't removed, and we can't
1769 			 * offline this node.
1770 			 */
1771 			return -EBUSY;
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static void unmap_cpu_on_node(pg_data_t *pgdat)
1778 {
1779 #ifdef CONFIG_ACPI_NUMA
1780 	int cpu;
1781 
1782 	for_each_possible_cpu(cpu)
1783 		if (cpu_to_node(cpu) == pgdat->node_id)
1784 			numa_clear_node(cpu);
1785 #endif
1786 }
1787 
1788 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1789 {
1790 	int ret;
1791 
1792 	ret = check_cpu_on_node(pgdat);
1793 	if (ret)
1794 		return ret;
1795 
1796 	/*
1797 	 * the node will be offlined when we come here, so we can clear
1798 	 * the cpu_to_node() now.
1799 	 */
1800 
1801 	unmap_cpu_on_node(pgdat);
1802 	return 0;
1803 }
1804 
1805 /**
1806  * try_offline_node
1807  *
1808  * Offline a node if all memory sections and cpus of the node are removed.
1809  *
1810  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1811  * and online/offline operations before this call.
1812  */
1813 void try_offline_node(int nid)
1814 {
1815 	pg_data_t *pgdat = NODE_DATA(nid);
1816 	unsigned long start_pfn = pgdat->node_start_pfn;
1817 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1818 	unsigned long pfn;
1819 
1820 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1821 		unsigned long section_nr = pfn_to_section_nr(pfn);
1822 
1823 		if (!present_section_nr(section_nr))
1824 			continue;
1825 
1826 		if (pfn_to_nid(pfn) != nid)
1827 			continue;
1828 
1829 		/*
1830 		 * some memory sections of this node are not removed, and we
1831 		 * can't offline node now.
1832 		 */
1833 		return;
1834 	}
1835 
1836 	if (check_and_unmap_cpu_on_node(pgdat))
1837 		return;
1838 
1839 	/*
1840 	 * all memory/cpu of this node are removed, we can offline this
1841 	 * node now.
1842 	 */
1843 	node_set_offline(nid);
1844 	unregister_one_node(nid);
1845 }
1846 EXPORT_SYMBOL(try_offline_node);
1847 
1848 /**
1849  * remove_memory
1850  *
1851  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1852  * and online/offline operations before this call, as required by
1853  * try_offline_node().
1854  */
1855 void __ref remove_memory(int nid, u64 start, u64 size)
1856 {
1857 	int ret;
1858 
1859 	BUG_ON(check_hotplug_memory_range(start, size));
1860 
1861 	mem_hotplug_begin();
1862 
1863 	/*
1864 	 * All memory blocks must be offlined before removing memory.  Check
1865 	 * whether all memory blocks in question are offline and trigger a BUG()
1866 	 * if this is not the case.
1867 	 */
1868 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1869 				check_memblock_offlined_cb);
1870 	if (ret)
1871 		BUG();
1872 
1873 	/* remove memmap entry */
1874 	firmware_map_remove(start, start + size, "System RAM");
1875 	memblock_free(start, size);
1876 	memblock_remove(start, size);
1877 
1878 	arch_remove_memory(start, size, NULL);
1879 
1880 	try_offline_node(nid);
1881 
1882 	mem_hotplug_done();
1883 }
1884 EXPORT_SYMBOL_GPL(remove_memory);
1885 #endif /* CONFIG_MEMORY_HOTREMOVE */
1886