xref: /openbmc/linux/mm/memory_hotplug.c (revision aa47228a18e6d49369df877463095b899aff495f)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/tlbflush.h>
35 
36 #include "internal.h"
37 
38 /*
39  * online_page_callback contains pointer to current page onlining function.
40  * Initially it is generic_online_page(). If it is required it could be
41  * changed by calling set_online_page_callback() for callback registration
42  * and restore_online_page_callback() for generic callback restore.
43  */
44 
45 static void generic_online_page(struct page *page);
46 
47 static online_page_callback_t online_page_callback = generic_online_page;
48 
49 DEFINE_MUTEX(mem_hotplug_mutex);
50 
51 void lock_memory_hotplug(void)
52 {
53 	mutex_lock(&mem_hotplug_mutex);
54 
55 	/* for exclusive hibernation if CONFIG_HIBERNATION=y */
56 	lock_system_sleep();
57 }
58 
59 void unlock_memory_hotplug(void)
60 {
61 	unlock_system_sleep();
62 	mutex_unlock(&mem_hotplug_mutex);
63 }
64 
65 
66 /* add this memory to iomem resource */
67 static struct resource *register_memory_resource(u64 start, u64 size)
68 {
69 	struct resource *res;
70 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
71 	BUG_ON(!res);
72 
73 	res->name = "System RAM";
74 	res->start = start;
75 	res->end = start + size - 1;
76 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
77 	if (request_resource(&iomem_resource, res) < 0) {
78 		printk("System RAM resource %pR cannot be added\n", res);
79 		kfree(res);
80 		res = NULL;
81 	}
82 	return res;
83 }
84 
85 static void release_memory_resource(struct resource *res)
86 {
87 	if (!res)
88 		return;
89 	release_resource(res);
90 	kfree(res);
91 	return;
92 }
93 
94 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
95 void get_page_bootmem(unsigned long info,  struct page *page,
96 		      unsigned long type)
97 {
98 	page->lru.next = (struct list_head *) type;
99 	SetPagePrivate(page);
100 	set_page_private(page, info);
101 	atomic_inc(&page->_count);
102 }
103 
104 /* reference to __meminit __free_pages_bootmem is valid
105  * so use __ref to tell modpost not to generate a warning */
106 void __ref put_page_bootmem(struct page *page)
107 {
108 	unsigned long type;
109 	static DEFINE_MUTEX(ppb_lock);
110 
111 	type = (unsigned long) page->lru.next;
112 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
113 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
114 
115 	if (atomic_dec_return(&page->_count) == 1) {
116 		ClearPagePrivate(page);
117 		set_page_private(page, 0);
118 		INIT_LIST_HEAD(&page->lru);
119 
120 		/*
121 		 * Please refer to comment for __free_pages_bootmem()
122 		 * for why we serialize here.
123 		 */
124 		mutex_lock(&ppb_lock);
125 		__free_pages_bootmem(page, 0);
126 		mutex_unlock(&ppb_lock);
127 		totalram_pages++;
128 	}
129 
130 }
131 
132 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
133 #ifndef CONFIG_SPARSEMEM_VMEMMAP
134 static void register_page_bootmem_info_section(unsigned long start_pfn)
135 {
136 	unsigned long *usemap, mapsize, section_nr, i;
137 	struct mem_section *ms;
138 	struct page *page, *memmap;
139 
140 	section_nr = pfn_to_section_nr(start_pfn);
141 	ms = __nr_to_section(section_nr);
142 
143 	/* Get section's memmap address */
144 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
145 
146 	/*
147 	 * Get page for the memmap's phys address
148 	 * XXX: need more consideration for sparse_vmemmap...
149 	 */
150 	page = virt_to_page(memmap);
151 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
152 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
153 
154 	/* remember memmap's page */
155 	for (i = 0; i < mapsize; i++, page++)
156 		get_page_bootmem(section_nr, page, SECTION_INFO);
157 
158 	usemap = __nr_to_section(section_nr)->pageblock_flags;
159 	page = virt_to_page(usemap);
160 
161 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
162 
163 	for (i = 0; i < mapsize; i++, page++)
164 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
165 
166 }
167 #else /* CONFIG_SPARSEMEM_VMEMMAP */
168 static void register_page_bootmem_info_section(unsigned long start_pfn)
169 {
170 	unsigned long *usemap, mapsize, section_nr, i;
171 	struct mem_section *ms;
172 	struct page *page, *memmap;
173 
174 	if (!pfn_valid(start_pfn))
175 		return;
176 
177 	section_nr = pfn_to_section_nr(start_pfn);
178 	ms = __nr_to_section(section_nr);
179 
180 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
181 
182 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
183 
184 	usemap = __nr_to_section(section_nr)->pageblock_flags;
185 	page = virt_to_page(usemap);
186 
187 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
188 
189 	for (i = 0; i < mapsize; i++, page++)
190 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
191 }
192 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
193 
194 void register_page_bootmem_info_node(struct pglist_data *pgdat)
195 {
196 	unsigned long i, pfn, end_pfn, nr_pages;
197 	int node = pgdat->node_id;
198 	struct page *page;
199 	struct zone *zone;
200 
201 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
202 	page = virt_to_page(pgdat);
203 
204 	for (i = 0; i < nr_pages; i++, page++)
205 		get_page_bootmem(node, page, NODE_INFO);
206 
207 	zone = &pgdat->node_zones[0];
208 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
209 		if (zone->wait_table) {
210 			nr_pages = zone->wait_table_hash_nr_entries
211 				* sizeof(wait_queue_head_t);
212 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
213 			page = virt_to_page(zone->wait_table);
214 
215 			for (i = 0; i < nr_pages; i++, page++)
216 				get_page_bootmem(node, page, NODE_INFO);
217 		}
218 	}
219 
220 	pfn = pgdat->node_start_pfn;
221 	end_pfn = pgdat_end_pfn(pgdat);
222 
223 	/* register_section info */
224 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
225 		/*
226 		 * Some platforms can assign the same pfn to multiple nodes - on
227 		 * node0 as well as nodeN.  To avoid registering a pfn against
228 		 * multiple nodes we check that this pfn does not already
229 		 * reside in some other node.
230 		 */
231 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
232 			register_page_bootmem_info_section(pfn);
233 	}
234 }
235 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
236 
237 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
238 			   unsigned long end_pfn)
239 {
240 	unsigned long old_zone_end_pfn;
241 
242 	zone_span_writelock(zone);
243 
244 	old_zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
245 	if (!zone->spanned_pages || start_pfn < zone->zone_start_pfn)
246 		zone->zone_start_pfn = start_pfn;
247 
248 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
249 				zone->zone_start_pfn;
250 
251 	zone_span_writeunlock(zone);
252 }
253 
254 static void resize_zone(struct zone *zone, unsigned long start_pfn,
255 		unsigned long end_pfn)
256 {
257 	zone_span_writelock(zone);
258 
259 	if (end_pfn - start_pfn) {
260 		zone->zone_start_pfn = start_pfn;
261 		zone->spanned_pages = end_pfn - start_pfn;
262 	} else {
263 		/*
264 		 * make it consist as free_area_init_core(),
265 		 * if spanned_pages = 0, then keep start_pfn = 0
266 		 */
267 		zone->zone_start_pfn = 0;
268 		zone->spanned_pages = 0;
269 	}
270 
271 	zone_span_writeunlock(zone);
272 }
273 
274 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
275 		unsigned long end_pfn)
276 {
277 	enum zone_type zid = zone_idx(zone);
278 	int nid = zone->zone_pgdat->node_id;
279 	unsigned long pfn;
280 
281 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
282 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
283 }
284 
285 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
286  * alloc_bootmem_node_nopanic() */
287 static int __ref ensure_zone_is_initialized(struct zone *zone,
288 			unsigned long start_pfn, unsigned long num_pages)
289 {
290 	if (!zone_is_initialized(zone))
291 		return init_currently_empty_zone(zone, start_pfn, num_pages,
292 						 MEMMAP_HOTPLUG);
293 	return 0;
294 }
295 
296 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
297 		unsigned long start_pfn, unsigned long end_pfn)
298 {
299 	int ret;
300 	unsigned long flags;
301 	unsigned long z1_start_pfn;
302 
303 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
304 	if (ret)
305 		return ret;
306 
307 	pgdat_resize_lock(z1->zone_pgdat, &flags);
308 
309 	/* can't move pfns which are higher than @z2 */
310 	if (end_pfn > zone_end_pfn(z2))
311 		goto out_fail;
312 	/* the move out part mast at the left most of @z2 */
313 	if (start_pfn > z2->zone_start_pfn)
314 		goto out_fail;
315 	/* must included/overlap */
316 	if (end_pfn <= z2->zone_start_pfn)
317 		goto out_fail;
318 
319 	/* use start_pfn for z1's start_pfn if z1 is empty */
320 	if (z1->spanned_pages)
321 		z1_start_pfn = z1->zone_start_pfn;
322 	else
323 		z1_start_pfn = start_pfn;
324 
325 	resize_zone(z1, z1_start_pfn, end_pfn);
326 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
327 
328 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
329 
330 	fix_zone_id(z1, start_pfn, end_pfn);
331 
332 	return 0;
333 out_fail:
334 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
335 	return -1;
336 }
337 
338 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
339 		unsigned long start_pfn, unsigned long end_pfn)
340 {
341 	int ret;
342 	unsigned long flags;
343 	unsigned long z2_end_pfn;
344 
345 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
346 	if (ret)
347 		return ret;
348 
349 	pgdat_resize_lock(z1->zone_pgdat, &flags);
350 
351 	/* can't move pfns which are lower than @z1 */
352 	if (z1->zone_start_pfn > start_pfn)
353 		goto out_fail;
354 	/* the move out part mast at the right most of @z1 */
355 	if (zone_end_pfn(z1) >  end_pfn)
356 		goto out_fail;
357 	/* must included/overlap */
358 	if (start_pfn >= zone_end_pfn(z1))
359 		goto out_fail;
360 
361 	/* use end_pfn for z2's end_pfn if z2 is empty */
362 	if (z2->spanned_pages)
363 		z2_end_pfn = zone_end_pfn(z2);
364 	else
365 		z2_end_pfn = end_pfn;
366 
367 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
368 	resize_zone(z2, start_pfn, z2_end_pfn);
369 
370 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
371 
372 	fix_zone_id(z2, start_pfn, end_pfn);
373 
374 	return 0;
375 out_fail:
376 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
377 	return -1;
378 }
379 
380 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
381 			    unsigned long end_pfn)
382 {
383 	unsigned long old_pgdat_end_pfn =
384 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
385 
386 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
387 		pgdat->node_start_pfn = start_pfn;
388 
389 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
390 					pgdat->node_start_pfn;
391 }
392 
393 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
394 {
395 	struct pglist_data *pgdat = zone->zone_pgdat;
396 	int nr_pages = PAGES_PER_SECTION;
397 	int nid = pgdat->node_id;
398 	int zone_type;
399 	unsigned long flags;
400 	int ret;
401 
402 	zone_type = zone - pgdat->node_zones;
403 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
404 	if (ret)
405 		return ret;
406 
407 	pgdat_resize_lock(zone->zone_pgdat, &flags);
408 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
409 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
410 			phys_start_pfn + nr_pages);
411 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
412 	memmap_init_zone(nr_pages, nid, zone_type,
413 			 phys_start_pfn, MEMMAP_HOTPLUG);
414 	return 0;
415 }
416 
417 static int __meminit __add_section(int nid, struct zone *zone,
418 					unsigned long phys_start_pfn)
419 {
420 	int nr_pages = PAGES_PER_SECTION;
421 	int ret;
422 
423 	if (pfn_valid(phys_start_pfn))
424 		return -EEXIST;
425 
426 	ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
427 
428 	if (ret < 0)
429 		return ret;
430 
431 	ret = __add_zone(zone, phys_start_pfn);
432 
433 	if (ret < 0)
434 		return ret;
435 
436 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
437 }
438 
439 /*
440  * Reasonably generic function for adding memory.  It is
441  * expected that archs that support memory hotplug will
442  * call this function after deciding the zone to which to
443  * add the new pages.
444  */
445 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
446 			unsigned long nr_pages)
447 {
448 	unsigned long i;
449 	int err = 0;
450 	int start_sec, end_sec;
451 	/* during initialize mem_map, align hot-added range to section */
452 	start_sec = pfn_to_section_nr(phys_start_pfn);
453 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
454 
455 	for (i = start_sec; i <= end_sec; i++) {
456 		err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
457 
458 		/*
459 		 * EEXIST is finally dealt with by ioresource collision
460 		 * check. see add_memory() => register_memory_resource()
461 		 * Warning will be printed if there is collision.
462 		 */
463 		if (err && (err != -EEXIST))
464 			break;
465 		err = 0;
466 	}
467 
468 	return err;
469 }
470 EXPORT_SYMBOL_GPL(__add_pages);
471 
472 #ifdef CONFIG_MEMORY_HOTREMOVE
473 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
474 static int find_smallest_section_pfn(int nid, struct zone *zone,
475 				     unsigned long start_pfn,
476 				     unsigned long end_pfn)
477 {
478 	struct mem_section *ms;
479 
480 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
481 		ms = __pfn_to_section(start_pfn);
482 
483 		if (unlikely(!valid_section(ms)))
484 			continue;
485 
486 		if (unlikely(pfn_to_nid(start_pfn) != nid))
487 			continue;
488 
489 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
490 			continue;
491 
492 		return start_pfn;
493 	}
494 
495 	return 0;
496 }
497 
498 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
499 static int find_biggest_section_pfn(int nid, struct zone *zone,
500 				    unsigned long start_pfn,
501 				    unsigned long end_pfn)
502 {
503 	struct mem_section *ms;
504 	unsigned long pfn;
505 
506 	/* pfn is the end pfn of a memory section. */
507 	pfn = end_pfn - 1;
508 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
509 		ms = __pfn_to_section(pfn);
510 
511 		if (unlikely(!valid_section(ms)))
512 			continue;
513 
514 		if (unlikely(pfn_to_nid(pfn) != nid))
515 			continue;
516 
517 		if (zone && zone != page_zone(pfn_to_page(pfn)))
518 			continue;
519 
520 		return pfn;
521 	}
522 
523 	return 0;
524 }
525 
526 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
527 			     unsigned long end_pfn)
528 {
529 	unsigned long zone_start_pfn =  zone->zone_start_pfn;
530 	unsigned long zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
531 	unsigned long pfn;
532 	struct mem_section *ms;
533 	int nid = zone_to_nid(zone);
534 
535 	zone_span_writelock(zone);
536 	if (zone_start_pfn == start_pfn) {
537 		/*
538 		 * If the section is smallest section in the zone, it need
539 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
540 		 * In this case, we find second smallest valid mem_section
541 		 * for shrinking zone.
542 		 */
543 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
544 						zone_end_pfn);
545 		if (pfn) {
546 			zone->zone_start_pfn = pfn;
547 			zone->spanned_pages = zone_end_pfn - pfn;
548 		}
549 	} else if (zone_end_pfn == end_pfn) {
550 		/*
551 		 * If the section is biggest section in the zone, it need
552 		 * shrink zone->spanned_pages.
553 		 * In this case, we find second biggest valid mem_section for
554 		 * shrinking zone.
555 		 */
556 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
557 					       start_pfn);
558 		if (pfn)
559 			zone->spanned_pages = pfn - zone_start_pfn + 1;
560 	}
561 
562 	/*
563 	 * The section is not biggest or smallest mem_section in the zone, it
564 	 * only creates a hole in the zone. So in this case, we need not
565 	 * change the zone. But perhaps, the zone has only hole data. Thus
566 	 * it check the zone has only hole or not.
567 	 */
568 	pfn = zone_start_pfn;
569 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
570 		ms = __pfn_to_section(pfn);
571 
572 		if (unlikely(!valid_section(ms)))
573 			continue;
574 
575 		if (page_zone(pfn_to_page(pfn)) != zone)
576 			continue;
577 
578 		 /* If the section is current section, it continues the loop */
579 		if (start_pfn == pfn)
580 			continue;
581 
582 		/* If we find valid section, we have nothing to do */
583 		zone_span_writeunlock(zone);
584 		return;
585 	}
586 
587 	/* The zone has no valid section */
588 	zone->zone_start_pfn = 0;
589 	zone->spanned_pages = 0;
590 	zone_span_writeunlock(zone);
591 }
592 
593 static void shrink_pgdat_span(struct pglist_data *pgdat,
594 			      unsigned long start_pfn, unsigned long end_pfn)
595 {
596 	unsigned long pgdat_start_pfn =  pgdat->node_start_pfn;
597 	unsigned long pgdat_end_pfn =
598 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
599 	unsigned long pfn;
600 	struct mem_section *ms;
601 	int nid = pgdat->node_id;
602 
603 	if (pgdat_start_pfn == start_pfn) {
604 		/*
605 		 * If the section is smallest section in the pgdat, it need
606 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
607 		 * In this case, we find second smallest valid mem_section
608 		 * for shrinking zone.
609 		 */
610 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
611 						pgdat_end_pfn);
612 		if (pfn) {
613 			pgdat->node_start_pfn = pfn;
614 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
615 		}
616 	} else if (pgdat_end_pfn == end_pfn) {
617 		/*
618 		 * If the section is biggest section in the pgdat, it need
619 		 * shrink pgdat->node_spanned_pages.
620 		 * In this case, we find second biggest valid mem_section for
621 		 * shrinking zone.
622 		 */
623 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
624 					       start_pfn);
625 		if (pfn)
626 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
627 	}
628 
629 	/*
630 	 * If the section is not biggest or smallest mem_section in the pgdat,
631 	 * it only creates a hole in the pgdat. So in this case, we need not
632 	 * change the pgdat.
633 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
634 	 * has only hole or not.
635 	 */
636 	pfn = pgdat_start_pfn;
637 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
638 		ms = __pfn_to_section(pfn);
639 
640 		if (unlikely(!valid_section(ms)))
641 			continue;
642 
643 		if (pfn_to_nid(pfn) != nid)
644 			continue;
645 
646 		 /* If the section is current section, it continues the loop */
647 		if (start_pfn == pfn)
648 			continue;
649 
650 		/* If we find valid section, we have nothing to do */
651 		return;
652 	}
653 
654 	/* The pgdat has no valid section */
655 	pgdat->node_start_pfn = 0;
656 	pgdat->node_spanned_pages = 0;
657 }
658 
659 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
660 {
661 	struct pglist_data *pgdat = zone->zone_pgdat;
662 	int nr_pages = PAGES_PER_SECTION;
663 	int zone_type;
664 	unsigned long flags;
665 
666 	zone_type = zone - pgdat->node_zones;
667 
668 	pgdat_resize_lock(zone->zone_pgdat, &flags);
669 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
670 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
671 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
672 }
673 
674 static int __remove_section(struct zone *zone, struct mem_section *ms)
675 {
676 	unsigned long start_pfn;
677 	int scn_nr;
678 	int ret = -EINVAL;
679 
680 	if (!valid_section(ms))
681 		return ret;
682 
683 	ret = unregister_memory_section(ms);
684 	if (ret)
685 		return ret;
686 
687 	scn_nr = __section_nr(ms);
688 	start_pfn = section_nr_to_pfn(scn_nr);
689 	__remove_zone(zone, start_pfn);
690 
691 	sparse_remove_one_section(zone, ms);
692 	return 0;
693 }
694 
695 /**
696  * __remove_pages() - remove sections of pages from a zone
697  * @zone: zone from which pages need to be removed
698  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
699  * @nr_pages: number of pages to remove (must be multiple of section size)
700  *
701  * Generic helper function to remove section mappings and sysfs entries
702  * for the section of the memory we are removing. Caller needs to make
703  * sure that pages are marked reserved and zones are adjust properly by
704  * calling offline_pages().
705  */
706 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
707 		 unsigned long nr_pages)
708 {
709 	unsigned long i;
710 	int sections_to_remove;
711 	resource_size_t start, size;
712 	int ret = 0;
713 
714 	/*
715 	 * We can only remove entire sections
716 	 */
717 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
718 	BUG_ON(nr_pages % PAGES_PER_SECTION);
719 
720 	start = phys_start_pfn << PAGE_SHIFT;
721 	size = nr_pages * PAGE_SIZE;
722 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
723 	if (ret) {
724 		resource_size_t endres = start + size - 1;
725 
726 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
727 				&start, &endres, ret);
728 	}
729 
730 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
731 	for (i = 0; i < sections_to_remove; i++) {
732 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
733 		ret = __remove_section(zone, __pfn_to_section(pfn));
734 		if (ret)
735 			break;
736 	}
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(__remove_pages);
740 #endif /* CONFIG_MEMORY_HOTREMOVE */
741 
742 int set_online_page_callback(online_page_callback_t callback)
743 {
744 	int rc = -EINVAL;
745 
746 	lock_memory_hotplug();
747 
748 	if (online_page_callback == generic_online_page) {
749 		online_page_callback = callback;
750 		rc = 0;
751 	}
752 
753 	unlock_memory_hotplug();
754 
755 	return rc;
756 }
757 EXPORT_SYMBOL_GPL(set_online_page_callback);
758 
759 int restore_online_page_callback(online_page_callback_t callback)
760 {
761 	int rc = -EINVAL;
762 
763 	lock_memory_hotplug();
764 
765 	if (online_page_callback == callback) {
766 		online_page_callback = generic_online_page;
767 		rc = 0;
768 	}
769 
770 	unlock_memory_hotplug();
771 
772 	return rc;
773 }
774 EXPORT_SYMBOL_GPL(restore_online_page_callback);
775 
776 void __online_page_set_limits(struct page *page)
777 {
778 	unsigned long pfn = page_to_pfn(page);
779 
780 	if (pfn >= num_physpages)
781 		num_physpages = pfn + 1;
782 }
783 EXPORT_SYMBOL_GPL(__online_page_set_limits);
784 
785 void __online_page_increment_counters(struct page *page)
786 {
787 	totalram_pages++;
788 
789 #ifdef CONFIG_HIGHMEM
790 	if (PageHighMem(page))
791 		totalhigh_pages++;
792 #endif
793 }
794 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
795 
796 void __online_page_free(struct page *page)
797 {
798 	ClearPageReserved(page);
799 	init_page_count(page);
800 	__free_page(page);
801 }
802 EXPORT_SYMBOL_GPL(__online_page_free);
803 
804 static void generic_online_page(struct page *page)
805 {
806 	__online_page_set_limits(page);
807 	__online_page_increment_counters(page);
808 	__online_page_free(page);
809 }
810 
811 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
812 			void *arg)
813 {
814 	unsigned long i;
815 	unsigned long onlined_pages = *(unsigned long *)arg;
816 	struct page *page;
817 	if (PageReserved(pfn_to_page(start_pfn)))
818 		for (i = 0; i < nr_pages; i++) {
819 			page = pfn_to_page(start_pfn + i);
820 			(*online_page_callback)(page);
821 			onlined_pages++;
822 		}
823 	*(unsigned long *)arg = onlined_pages;
824 	return 0;
825 }
826 
827 #ifdef CONFIG_MOVABLE_NODE
828 /*
829  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
830  * normal memory.
831  */
832 static bool can_online_high_movable(struct zone *zone)
833 {
834 	return true;
835 }
836 #else /* CONFIG_MOVABLE_NODE */
837 /* ensure every online node has NORMAL memory */
838 static bool can_online_high_movable(struct zone *zone)
839 {
840 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
841 }
842 #endif /* CONFIG_MOVABLE_NODE */
843 
844 /* check which state of node_states will be changed when online memory */
845 static void node_states_check_changes_online(unsigned long nr_pages,
846 	struct zone *zone, struct memory_notify *arg)
847 {
848 	int nid = zone_to_nid(zone);
849 	enum zone_type zone_last = ZONE_NORMAL;
850 
851 	/*
852 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
853 	 * contains nodes which have zones of 0...ZONE_NORMAL,
854 	 * set zone_last to ZONE_NORMAL.
855 	 *
856 	 * If we don't have HIGHMEM nor movable node,
857 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
858 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
859 	 */
860 	if (N_MEMORY == N_NORMAL_MEMORY)
861 		zone_last = ZONE_MOVABLE;
862 
863 	/*
864 	 * if the memory to be online is in a zone of 0...zone_last, and
865 	 * the zones of 0...zone_last don't have memory before online, we will
866 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
867 	 * the memory is online.
868 	 */
869 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
870 		arg->status_change_nid_normal = nid;
871 	else
872 		arg->status_change_nid_normal = -1;
873 
874 #ifdef CONFIG_HIGHMEM
875 	/*
876 	 * If we have movable node, node_states[N_HIGH_MEMORY]
877 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
878 	 * set zone_last to ZONE_HIGHMEM.
879 	 *
880 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
881 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
882 	 * set zone_last to ZONE_MOVABLE.
883 	 */
884 	zone_last = ZONE_HIGHMEM;
885 	if (N_MEMORY == N_HIGH_MEMORY)
886 		zone_last = ZONE_MOVABLE;
887 
888 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
889 		arg->status_change_nid_high = nid;
890 	else
891 		arg->status_change_nid_high = -1;
892 #else
893 	arg->status_change_nid_high = arg->status_change_nid_normal;
894 #endif
895 
896 	/*
897 	 * if the node don't have memory befor online, we will need to
898 	 * set the node to node_states[N_MEMORY] after the memory
899 	 * is online.
900 	 */
901 	if (!node_state(nid, N_MEMORY))
902 		arg->status_change_nid = nid;
903 	else
904 		arg->status_change_nid = -1;
905 }
906 
907 static void node_states_set_node(int node, struct memory_notify *arg)
908 {
909 	if (arg->status_change_nid_normal >= 0)
910 		node_set_state(node, N_NORMAL_MEMORY);
911 
912 	if (arg->status_change_nid_high >= 0)
913 		node_set_state(node, N_HIGH_MEMORY);
914 
915 	node_set_state(node, N_MEMORY);
916 }
917 
918 
919 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
920 {
921 	unsigned long flags;
922 	unsigned long onlined_pages = 0;
923 	struct zone *zone;
924 	int need_zonelists_rebuild = 0;
925 	int nid;
926 	int ret;
927 	struct memory_notify arg;
928 
929 	lock_memory_hotplug();
930 	/*
931 	 * This doesn't need a lock to do pfn_to_page().
932 	 * The section can't be removed here because of the
933 	 * memory_block->state_mutex.
934 	 */
935 	zone = page_zone(pfn_to_page(pfn));
936 
937 	if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
938 	    !can_online_high_movable(zone)) {
939 		unlock_memory_hotplug();
940 		return -1;
941 	}
942 
943 	if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
944 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
945 			unlock_memory_hotplug();
946 			return -1;
947 		}
948 	}
949 	if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
950 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
951 			unlock_memory_hotplug();
952 			return -1;
953 		}
954 	}
955 
956 	/* Previous code may changed the zone of the pfn range */
957 	zone = page_zone(pfn_to_page(pfn));
958 
959 	arg.start_pfn = pfn;
960 	arg.nr_pages = nr_pages;
961 	node_states_check_changes_online(nr_pages, zone, &arg);
962 
963 	nid = page_to_nid(pfn_to_page(pfn));
964 
965 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
966 	ret = notifier_to_errno(ret);
967 	if (ret) {
968 		memory_notify(MEM_CANCEL_ONLINE, &arg);
969 		unlock_memory_hotplug();
970 		return ret;
971 	}
972 	/*
973 	 * If this zone is not populated, then it is not in zonelist.
974 	 * This means the page allocator ignores this zone.
975 	 * So, zonelist must be updated after online.
976 	 */
977 	mutex_lock(&zonelists_mutex);
978 	if (!populated_zone(zone)) {
979 		need_zonelists_rebuild = 1;
980 		build_all_zonelists(NULL, zone);
981 	}
982 
983 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
984 		online_pages_range);
985 	if (ret) {
986 		if (need_zonelists_rebuild)
987 			zone_pcp_reset(zone);
988 		mutex_unlock(&zonelists_mutex);
989 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
990 		       (unsigned long long) pfn << PAGE_SHIFT,
991 		       (((unsigned long long) pfn + nr_pages)
992 			    << PAGE_SHIFT) - 1);
993 		memory_notify(MEM_CANCEL_ONLINE, &arg);
994 		unlock_memory_hotplug();
995 		return ret;
996 	}
997 
998 	zone->managed_pages += onlined_pages;
999 	zone->present_pages += onlined_pages;
1000 
1001 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1002 	zone->zone_pgdat->node_present_pages += onlined_pages;
1003 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1004 
1005 	if (onlined_pages) {
1006 		node_states_set_node(zone_to_nid(zone), &arg);
1007 		if (need_zonelists_rebuild)
1008 			build_all_zonelists(NULL, NULL);
1009 		else
1010 			zone_pcp_update(zone);
1011 	}
1012 
1013 	mutex_unlock(&zonelists_mutex);
1014 
1015 	init_per_zone_wmark_min();
1016 
1017 	if (onlined_pages)
1018 		kswapd_run(zone_to_nid(zone));
1019 
1020 	vm_total_pages = nr_free_pagecache_pages();
1021 
1022 	writeback_set_ratelimit();
1023 
1024 	if (onlined_pages)
1025 		memory_notify(MEM_ONLINE, &arg);
1026 	unlock_memory_hotplug();
1027 
1028 	return 0;
1029 }
1030 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1031 
1032 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1033 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1034 {
1035 	struct pglist_data *pgdat;
1036 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1037 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1038 	unsigned long start_pfn = start >> PAGE_SHIFT;
1039 
1040 	pgdat = NODE_DATA(nid);
1041 	if (!pgdat) {
1042 		pgdat = arch_alloc_nodedata(nid);
1043 		if (!pgdat)
1044 			return NULL;
1045 
1046 		arch_refresh_nodedata(nid, pgdat);
1047 	}
1048 
1049 	/* we can use NODE_DATA(nid) from here */
1050 
1051 	/* init node's zones as empty zones, we don't have any present pages.*/
1052 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1053 
1054 	/*
1055 	 * The node we allocated has no zone fallback lists. For avoiding
1056 	 * to access not-initialized zonelist, build here.
1057 	 */
1058 	mutex_lock(&zonelists_mutex);
1059 	build_all_zonelists(pgdat, NULL);
1060 	mutex_unlock(&zonelists_mutex);
1061 
1062 	return pgdat;
1063 }
1064 
1065 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1066 {
1067 	arch_refresh_nodedata(nid, NULL);
1068 	arch_free_nodedata(pgdat);
1069 	return;
1070 }
1071 
1072 
1073 /*
1074  * called by cpu_up() to online a node without onlined memory.
1075  */
1076 int mem_online_node(int nid)
1077 {
1078 	pg_data_t	*pgdat;
1079 	int	ret;
1080 
1081 	lock_memory_hotplug();
1082 	pgdat = hotadd_new_pgdat(nid, 0);
1083 	if (!pgdat) {
1084 		ret = -ENOMEM;
1085 		goto out;
1086 	}
1087 	node_set_online(nid);
1088 	ret = register_one_node(nid);
1089 	BUG_ON(ret);
1090 
1091 out:
1092 	unlock_memory_hotplug();
1093 	return ret;
1094 }
1095 
1096 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1097 int __ref add_memory(int nid, u64 start, u64 size)
1098 {
1099 	pg_data_t *pgdat = NULL;
1100 	bool new_pgdat;
1101 	bool new_node;
1102 	struct resource *res;
1103 	int ret;
1104 
1105 	lock_memory_hotplug();
1106 
1107 	res = register_memory_resource(start, size);
1108 	ret = -EEXIST;
1109 	if (!res)
1110 		goto out;
1111 
1112 	{	/* Stupid hack to suppress address-never-null warning */
1113 		void *p = NODE_DATA(nid);
1114 		new_pgdat = !p;
1115 	}
1116 	new_node = !node_online(nid);
1117 	if (new_node) {
1118 		pgdat = hotadd_new_pgdat(nid, start);
1119 		ret = -ENOMEM;
1120 		if (!pgdat)
1121 			goto error;
1122 	}
1123 
1124 	/* call arch's memory hotadd */
1125 	ret = arch_add_memory(nid, start, size);
1126 
1127 	if (ret < 0)
1128 		goto error;
1129 
1130 	/* we online node here. we can't roll back from here. */
1131 	node_set_online(nid);
1132 
1133 	if (new_node) {
1134 		ret = register_one_node(nid);
1135 		/*
1136 		 * If sysfs file of new node can't create, cpu on the node
1137 		 * can't be hot-added. There is no rollback way now.
1138 		 * So, check by BUG_ON() to catch it reluctantly..
1139 		 */
1140 		BUG_ON(ret);
1141 	}
1142 
1143 	/* create new memmap entry */
1144 	firmware_map_add_hotplug(start, start + size, "System RAM");
1145 
1146 	goto out;
1147 
1148 error:
1149 	/* rollback pgdat allocation and others */
1150 	if (new_pgdat)
1151 		rollback_node_hotadd(nid, pgdat);
1152 	release_memory_resource(res);
1153 
1154 out:
1155 	unlock_memory_hotplug();
1156 	return ret;
1157 }
1158 EXPORT_SYMBOL_GPL(add_memory);
1159 
1160 #ifdef CONFIG_MEMORY_HOTREMOVE
1161 /*
1162  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1163  * set and the size of the free page is given by page_order(). Using this,
1164  * the function determines if the pageblock contains only free pages.
1165  * Due to buddy contraints, a free page at least the size of a pageblock will
1166  * be located at the start of the pageblock
1167  */
1168 static inline int pageblock_free(struct page *page)
1169 {
1170 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1171 }
1172 
1173 /* Return the start of the next active pageblock after a given page */
1174 static struct page *next_active_pageblock(struct page *page)
1175 {
1176 	/* Ensure the starting page is pageblock-aligned */
1177 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1178 
1179 	/* If the entire pageblock is free, move to the end of free page */
1180 	if (pageblock_free(page)) {
1181 		int order;
1182 		/* be careful. we don't have locks, page_order can be changed.*/
1183 		order = page_order(page);
1184 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1185 			return page + (1 << order);
1186 	}
1187 
1188 	return page + pageblock_nr_pages;
1189 }
1190 
1191 /* Checks if this range of memory is likely to be hot-removable. */
1192 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1193 {
1194 	struct page *page = pfn_to_page(start_pfn);
1195 	struct page *end_page = page + nr_pages;
1196 
1197 	/* Check the starting page of each pageblock within the range */
1198 	for (; page < end_page; page = next_active_pageblock(page)) {
1199 		if (!is_pageblock_removable_nolock(page))
1200 			return 0;
1201 		cond_resched();
1202 	}
1203 
1204 	/* All pageblocks in the memory block are likely to be hot-removable */
1205 	return 1;
1206 }
1207 
1208 /*
1209  * Confirm all pages in a range [start, end) is belongs to the same zone.
1210  */
1211 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1212 {
1213 	unsigned long pfn;
1214 	struct zone *zone = NULL;
1215 	struct page *page;
1216 	int i;
1217 	for (pfn = start_pfn;
1218 	     pfn < end_pfn;
1219 	     pfn += MAX_ORDER_NR_PAGES) {
1220 		i = 0;
1221 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1222 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1223 			i++;
1224 		if (i == MAX_ORDER_NR_PAGES)
1225 			continue;
1226 		page = pfn_to_page(pfn + i);
1227 		if (zone && page_zone(page) != zone)
1228 			return 0;
1229 		zone = page_zone(page);
1230 	}
1231 	return 1;
1232 }
1233 
1234 /*
1235  * Scanning pfn is much easier than scanning lru list.
1236  * Scan pfn from start to end and Find LRU page.
1237  */
1238 static unsigned long scan_lru_pages(unsigned long start, unsigned long end)
1239 {
1240 	unsigned long pfn;
1241 	struct page *page;
1242 	for (pfn = start; pfn < end; pfn++) {
1243 		if (pfn_valid(pfn)) {
1244 			page = pfn_to_page(pfn);
1245 			if (PageLRU(page))
1246 				return pfn;
1247 		}
1248 	}
1249 	return 0;
1250 }
1251 
1252 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1253 static int
1254 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1255 {
1256 	unsigned long pfn;
1257 	struct page *page;
1258 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1259 	int not_managed = 0;
1260 	int ret = 0;
1261 	LIST_HEAD(source);
1262 
1263 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1264 		if (!pfn_valid(pfn))
1265 			continue;
1266 		page = pfn_to_page(pfn);
1267 		if (!get_page_unless_zero(page))
1268 			continue;
1269 		/*
1270 		 * We can skip free pages. And we can only deal with pages on
1271 		 * LRU.
1272 		 */
1273 		ret = isolate_lru_page(page);
1274 		if (!ret) { /* Success */
1275 			put_page(page);
1276 			list_add_tail(&page->lru, &source);
1277 			move_pages--;
1278 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1279 					    page_is_file_cache(page));
1280 
1281 		} else {
1282 #ifdef CONFIG_DEBUG_VM
1283 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1284 			       pfn);
1285 			dump_page(page);
1286 #endif
1287 			put_page(page);
1288 			/* Because we don't have big zone->lock. we should
1289 			   check this again here. */
1290 			if (page_count(page)) {
1291 				not_managed++;
1292 				ret = -EBUSY;
1293 				break;
1294 			}
1295 		}
1296 	}
1297 	if (!list_empty(&source)) {
1298 		if (not_managed) {
1299 			putback_lru_pages(&source);
1300 			goto out;
1301 		}
1302 
1303 		/*
1304 		 * alloc_migrate_target should be improooooved!!
1305 		 * migrate_pages returns # of failed pages.
1306 		 */
1307 		ret = migrate_pages(&source, alloc_migrate_target, 0,
1308 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1309 		if (ret)
1310 			putback_lru_pages(&source);
1311 	}
1312 out:
1313 	return ret;
1314 }
1315 
1316 /*
1317  * remove from free_area[] and mark all as Reserved.
1318  */
1319 static int
1320 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1321 			void *data)
1322 {
1323 	__offline_isolated_pages(start, start + nr_pages);
1324 	return 0;
1325 }
1326 
1327 static void
1328 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1329 {
1330 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1331 				offline_isolated_pages_cb);
1332 }
1333 
1334 /*
1335  * Check all pages in range, recoreded as memory resource, are isolated.
1336  */
1337 static int
1338 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1339 			void *data)
1340 {
1341 	int ret;
1342 	long offlined = *(long *)data;
1343 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1344 	offlined = nr_pages;
1345 	if (!ret)
1346 		*(long *)data += offlined;
1347 	return ret;
1348 }
1349 
1350 static long
1351 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1352 {
1353 	long offlined = 0;
1354 	int ret;
1355 
1356 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1357 			check_pages_isolated_cb);
1358 	if (ret < 0)
1359 		offlined = (long)ret;
1360 	return offlined;
1361 }
1362 
1363 #ifdef CONFIG_MOVABLE_NODE
1364 /*
1365  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1366  * normal memory.
1367  */
1368 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1369 {
1370 	return true;
1371 }
1372 #else /* CONFIG_MOVABLE_NODE */
1373 /* ensure the node has NORMAL memory if it is still online */
1374 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1375 {
1376 	struct pglist_data *pgdat = zone->zone_pgdat;
1377 	unsigned long present_pages = 0;
1378 	enum zone_type zt;
1379 
1380 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1381 		present_pages += pgdat->node_zones[zt].present_pages;
1382 
1383 	if (present_pages > nr_pages)
1384 		return true;
1385 
1386 	present_pages = 0;
1387 	for (; zt <= ZONE_MOVABLE; zt++)
1388 		present_pages += pgdat->node_zones[zt].present_pages;
1389 
1390 	/*
1391 	 * we can't offline the last normal memory until all
1392 	 * higher memory is offlined.
1393 	 */
1394 	return present_pages == 0;
1395 }
1396 #endif /* CONFIG_MOVABLE_NODE */
1397 
1398 /* check which state of node_states will be changed when offline memory */
1399 static void node_states_check_changes_offline(unsigned long nr_pages,
1400 		struct zone *zone, struct memory_notify *arg)
1401 {
1402 	struct pglist_data *pgdat = zone->zone_pgdat;
1403 	unsigned long present_pages = 0;
1404 	enum zone_type zt, zone_last = ZONE_NORMAL;
1405 
1406 	/*
1407 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1408 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1409 	 * set zone_last to ZONE_NORMAL.
1410 	 *
1411 	 * If we don't have HIGHMEM nor movable node,
1412 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1413 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1414 	 */
1415 	if (N_MEMORY == N_NORMAL_MEMORY)
1416 		zone_last = ZONE_MOVABLE;
1417 
1418 	/*
1419 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1420 	 * If the memory to be offline is in a zone of 0...zone_last,
1421 	 * and it is the last present memory, 0...zone_last will
1422 	 * become empty after offline , thus we can determind we will
1423 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1424 	 */
1425 	for (zt = 0; zt <= zone_last; zt++)
1426 		present_pages += pgdat->node_zones[zt].present_pages;
1427 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1428 		arg->status_change_nid_normal = zone_to_nid(zone);
1429 	else
1430 		arg->status_change_nid_normal = -1;
1431 
1432 #ifdef CONFIG_HIGHMEM
1433 	/*
1434 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1435 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1436 	 * set zone_last to ZONE_HIGHMEM.
1437 	 *
1438 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1439 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1440 	 * set zone_last to ZONE_MOVABLE.
1441 	 */
1442 	zone_last = ZONE_HIGHMEM;
1443 	if (N_MEMORY == N_HIGH_MEMORY)
1444 		zone_last = ZONE_MOVABLE;
1445 
1446 	for (; zt <= zone_last; zt++)
1447 		present_pages += pgdat->node_zones[zt].present_pages;
1448 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1449 		arg->status_change_nid_high = zone_to_nid(zone);
1450 	else
1451 		arg->status_change_nid_high = -1;
1452 #else
1453 	arg->status_change_nid_high = arg->status_change_nid_normal;
1454 #endif
1455 
1456 	/*
1457 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1458 	 */
1459 	zone_last = ZONE_MOVABLE;
1460 
1461 	/*
1462 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1463 	 * If we try to offline the last present @nr_pages from the node,
1464 	 * we can determind we will need to clear the node from
1465 	 * node_states[N_HIGH_MEMORY].
1466 	 */
1467 	for (; zt <= zone_last; zt++)
1468 		present_pages += pgdat->node_zones[zt].present_pages;
1469 	if (nr_pages >= present_pages)
1470 		arg->status_change_nid = zone_to_nid(zone);
1471 	else
1472 		arg->status_change_nid = -1;
1473 }
1474 
1475 static void node_states_clear_node(int node, struct memory_notify *arg)
1476 {
1477 	if (arg->status_change_nid_normal >= 0)
1478 		node_clear_state(node, N_NORMAL_MEMORY);
1479 
1480 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1481 	    (arg->status_change_nid_high >= 0))
1482 		node_clear_state(node, N_HIGH_MEMORY);
1483 
1484 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1485 	    (arg->status_change_nid >= 0))
1486 		node_clear_state(node, N_MEMORY);
1487 }
1488 
1489 static int __ref __offline_pages(unsigned long start_pfn,
1490 		  unsigned long end_pfn, unsigned long timeout)
1491 {
1492 	unsigned long pfn, nr_pages, expire;
1493 	long offlined_pages;
1494 	int ret, drain, retry_max, node;
1495 	struct zone *zone;
1496 	struct memory_notify arg;
1497 
1498 	BUG_ON(start_pfn >= end_pfn);
1499 	/* at least, alignment against pageblock is necessary */
1500 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1501 		return -EINVAL;
1502 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1503 		return -EINVAL;
1504 	/* This makes hotplug much easier...and readable.
1505 	   we assume this for now. .*/
1506 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1507 		return -EINVAL;
1508 
1509 	lock_memory_hotplug();
1510 
1511 	zone = page_zone(pfn_to_page(start_pfn));
1512 	node = zone_to_nid(zone);
1513 	nr_pages = end_pfn - start_pfn;
1514 
1515 	ret = -EINVAL;
1516 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1517 		goto out;
1518 
1519 	/* set above range as isolated */
1520 	ret = start_isolate_page_range(start_pfn, end_pfn,
1521 				       MIGRATE_MOVABLE, true);
1522 	if (ret)
1523 		goto out;
1524 
1525 	arg.start_pfn = start_pfn;
1526 	arg.nr_pages = nr_pages;
1527 	node_states_check_changes_offline(nr_pages, zone, &arg);
1528 
1529 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1530 	ret = notifier_to_errno(ret);
1531 	if (ret)
1532 		goto failed_removal;
1533 
1534 	pfn = start_pfn;
1535 	expire = jiffies + timeout;
1536 	drain = 0;
1537 	retry_max = 5;
1538 repeat:
1539 	/* start memory hot removal */
1540 	ret = -EAGAIN;
1541 	if (time_after(jiffies, expire))
1542 		goto failed_removal;
1543 	ret = -EINTR;
1544 	if (signal_pending(current))
1545 		goto failed_removal;
1546 	ret = 0;
1547 	if (drain) {
1548 		lru_add_drain_all();
1549 		cond_resched();
1550 		drain_all_pages();
1551 	}
1552 
1553 	pfn = scan_lru_pages(start_pfn, end_pfn);
1554 	if (pfn) { /* We have page on LRU */
1555 		ret = do_migrate_range(pfn, end_pfn);
1556 		if (!ret) {
1557 			drain = 1;
1558 			goto repeat;
1559 		} else {
1560 			if (ret < 0)
1561 				if (--retry_max == 0)
1562 					goto failed_removal;
1563 			yield();
1564 			drain = 1;
1565 			goto repeat;
1566 		}
1567 	}
1568 	/* drain all zone's lru pagevec, this is asynchronous... */
1569 	lru_add_drain_all();
1570 	yield();
1571 	/* drain pcp pages, this is synchronous. */
1572 	drain_all_pages();
1573 	/* check again */
1574 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1575 	if (offlined_pages < 0) {
1576 		ret = -EBUSY;
1577 		goto failed_removal;
1578 	}
1579 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1580 	/* Ok, all of our target is isolated.
1581 	   We cannot do rollback at this point. */
1582 	offline_isolated_pages(start_pfn, end_pfn);
1583 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1584 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1585 	/* removal success */
1586 	zone->managed_pages -= offlined_pages;
1587 	zone->present_pages -= offlined_pages;
1588 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1589 	totalram_pages -= offlined_pages;
1590 
1591 	init_per_zone_wmark_min();
1592 
1593 	if (!populated_zone(zone)) {
1594 		zone_pcp_reset(zone);
1595 		mutex_lock(&zonelists_mutex);
1596 		build_all_zonelists(NULL, NULL);
1597 		mutex_unlock(&zonelists_mutex);
1598 	} else
1599 		zone_pcp_update(zone);
1600 
1601 	node_states_clear_node(node, &arg);
1602 	if (arg.status_change_nid >= 0)
1603 		kswapd_stop(node);
1604 
1605 	vm_total_pages = nr_free_pagecache_pages();
1606 	writeback_set_ratelimit();
1607 
1608 	memory_notify(MEM_OFFLINE, &arg);
1609 	unlock_memory_hotplug();
1610 	return 0;
1611 
1612 failed_removal:
1613 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1614 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1615 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1616 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1617 	/* pushback to free area */
1618 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1619 
1620 out:
1621 	unlock_memory_hotplug();
1622 	return ret;
1623 }
1624 
1625 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1626 {
1627 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1628 }
1629 
1630 /**
1631  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1632  * @start_pfn: start pfn of the memory range
1633  * @end_pfn: end pfn of the memory range
1634  * @arg: argument passed to func
1635  * @func: callback for each memory section walked
1636  *
1637  * This function walks through all present mem sections in range
1638  * [start_pfn, end_pfn) and call func on each mem section.
1639  *
1640  * Returns the return value of func.
1641  */
1642 static int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1643 		void *arg, int (*func)(struct memory_block *, void *))
1644 {
1645 	struct memory_block *mem = NULL;
1646 	struct mem_section *section;
1647 	unsigned long pfn, section_nr;
1648 	int ret;
1649 
1650 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1651 		section_nr = pfn_to_section_nr(pfn);
1652 		if (!present_section_nr(section_nr))
1653 			continue;
1654 
1655 		section = __nr_to_section(section_nr);
1656 		/* same memblock? */
1657 		if (mem)
1658 			if ((section_nr >= mem->start_section_nr) &&
1659 			    (section_nr <= mem->end_section_nr))
1660 				continue;
1661 
1662 		mem = find_memory_block_hinted(section, mem);
1663 		if (!mem)
1664 			continue;
1665 
1666 		ret = func(mem, arg);
1667 		if (ret) {
1668 			kobject_put(&mem->dev.kobj);
1669 			return ret;
1670 		}
1671 	}
1672 
1673 	if (mem)
1674 		kobject_put(&mem->dev.kobj);
1675 
1676 	return 0;
1677 }
1678 
1679 /**
1680  * offline_memory_block_cb - callback function for offlining memory block
1681  * @mem: the memory block to be offlined
1682  * @arg: buffer to hold error msg
1683  *
1684  * Always return 0, and put the error msg in arg if any.
1685  */
1686 static int offline_memory_block_cb(struct memory_block *mem, void *arg)
1687 {
1688 	int *ret = arg;
1689 	int error = offline_memory_block(mem);
1690 
1691 	if (error != 0 && *ret == 0)
1692 		*ret = error;
1693 
1694 	return 0;
1695 }
1696 
1697 static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
1698 {
1699 	int ret = !is_memblock_offlined(mem);
1700 
1701 	if (unlikely(ret)) {
1702 		phys_addr_t beginpa, endpa;
1703 
1704 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1705 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1706 		pr_warn("removing memory fails, because memory "
1707 			"[%pa-%pa] is onlined\n",
1708 			&beginpa, &endpa);
1709 	}
1710 
1711 	return ret;
1712 }
1713 
1714 static int check_cpu_on_node(void *data)
1715 {
1716 	struct pglist_data *pgdat = data;
1717 	int cpu;
1718 
1719 	for_each_present_cpu(cpu) {
1720 		if (cpu_to_node(cpu) == pgdat->node_id)
1721 			/*
1722 			 * the cpu on this node isn't removed, and we can't
1723 			 * offline this node.
1724 			 */
1725 			return -EBUSY;
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 static void unmap_cpu_on_node(void *data)
1732 {
1733 #ifdef CONFIG_ACPI_NUMA
1734 	struct pglist_data *pgdat = data;
1735 	int cpu;
1736 
1737 	for_each_possible_cpu(cpu)
1738 		if (cpu_to_node(cpu) == pgdat->node_id)
1739 			numa_clear_node(cpu);
1740 #endif
1741 }
1742 
1743 static int check_and_unmap_cpu_on_node(void *data)
1744 {
1745 	int ret = check_cpu_on_node(data);
1746 
1747 	if (ret)
1748 		return ret;
1749 
1750 	/*
1751 	 * the node will be offlined when we come here, so we can clear
1752 	 * the cpu_to_node() now.
1753 	 */
1754 
1755 	unmap_cpu_on_node(data);
1756 	return 0;
1757 }
1758 
1759 /* offline the node if all memory sections of this node are removed */
1760 void try_offline_node(int nid)
1761 {
1762 	pg_data_t *pgdat = NODE_DATA(nid);
1763 	unsigned long start_pfn = pgdat->node_start_pfn;
1764 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1765 	unsigned long pfn;
1766 	struct page *pgdat_page = virt_to_page(pgdat);
1767 	int i;
1768 
1769 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1770 		unsigned long section_nr = pfn_to_section_nr(pfn);
1771 
1772 		if (!present_section_nr(section_nr))
1773 			continue;
1774 
1775 		if (pfn_to_nid(pfn) != nid)
1776 			continue;
1777 
1778 		/*
1779 		 * some memory sections of this node are not removed, and we
1780 		 * can't offline node now.
1781 		 */
1782 		return;
1783 	}
1784 
1785 	if (stop_machine(check_and_unmap_cpu_on_node, pgdat, NULL))
1786 		return;
1787 
1788 	/*
1789 	 * all memory/cpu of this node are removed, we can offline this
1790 	 * node now.
1791 	 */
1792 	node_set_offline(nid);
1793 	unregister_one_node(nid);
1794 
1795 	if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1796 		/* node data is allocated from boot memory */
1797 		return;
1798 
1799 	/* free waittable in each zone */
1800 	for (i = 0; i < MAX_NR_ZONES; i++) {
1801 		struct zone *zone = pgdat->node_zones + i;
1802 
1803 		/*
1804 		 * wait_table may be allocated from boot memory,
1805 		 * here only free if it's allocated by vmalloc.
1806 		 */
1807 		if (is_vmalloc_addr(zone->wait_table))
1808 			vfree(zone->wait_table);
1809 	}
1810 
1811 	/*
1812 	 * Since there is no way to guarentee the address of pgdat/zone is not
1813 	 * on stack of any kernel threads or used by other kernel objects
1814 	 * without reference counting or other symchronizing method, do not
1815 	 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1816 	 * the memory when the node is online again.
1817 	 */
1818 	memset(pgdat, 0, sizeof(*pgdat));
1819 }
1820 EXPORT_SYMBOL(try_offline_node);
1821 
1822 int __ref remove_memory(int nid, u64 start, u64 size)
1823 {
1824 	unsigned long start_pfn, end_pfn;
1825 	int ret = 0;
1826 	int retry = 1;
1827 
1828 	start_pfn = PFN_DOWN(start);
1829 	end_pfn = PFN_UP(start + size - 1);
1830 
1831 	/*
1832 	 * When CONFIG_MEMCG is on, one memory block may be used by other
1833 	 * blocks to store page cgroup when onlining pages. But we don't know
1834 	 * in what order pages are onlined. So we iterate twice to offline
1835 	 * memory:
1836 	 * 1st iterate: offline every non primary memory block.
1837 	 * 2nd iterate: offline primary (i.e. first added) memory block.
1838 	 */
1839 repeat:
1840 	walk_memory_range(start_pfn, end_pfn, &ret,
1841 			  offline_memory_block_cb);
1842 	if (ret) {
1843 		if (!retry)
1844 			return ret;
1845 
1846 		retry = 0;
1847 		ret = 0;
1848 		goto repeat;
1849 	}
1850 
1851 	lock_memory_hotplug();
1852 
1853 	/*
1854 	 * we have offlined all memory blocks like this:
1855 	 *   1. lock memory hotplug
1856 	 *   2. offline a memory block
1857 	 *   3. unlock memory hotplug
1858 	 *
1859 	 * repeat step1-3 to offline the memory block. All memory blocks
1860 	 * must be offlined before removing memory. But we don't hold the
1861 	 * lock in the whole operation. So we should check whether all
1862 	 * memory blocks are offlined.
1863 	 */
1864 
1865 	ret = walk_memory_range(start_pfn, end_pfn, NULL,
1866 				is_memblock_offlined_cb);
1867 	if (ret) {
1868 		unlock_memory_hotplug();
1869 		return ret;
1870 	}
1871 
1872 	/* remove memmap entry */
1873 	firmware_map_remove(start, start + size, "System RAM");
1874 
1875 	arch_remove_memory(start, size);
1876 
1877 	try_offline_node(nid);
1878 
1879 	unlock_memory_hotplug();
1880 
1881 	return 0;
1882 }
1883 #else
1884 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1885 {
1886 	return -EINVAL;
1887 }
1888 int remove_memory(int nid, u64 start, u64 size)
1889 {
1890 	return -EINVAL;
1891 }
1892 #endif /* CONFIG_MEMORY_HOTREMOVE */
1893 EXPORT_SYMBOL_GPL(remove_memory);
1894