xref: /openbmc/linux/mm/memory_hotplug.c (revision a08b9f2f2267421092bf4b882a9461858216ed47)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int mhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int mhp_default_online_type = MMOP_ONLINE;
73 #endif
74 
75 static int __init setup_memhp_default_state(char *str)
76 {
77 	const int online_type = mhp_online_type_from_str(str);
78 
79 	if (online_type >= 0)
80 		mhp_default_online_type = online_type;
81 
82 	return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85 
86 void mem_hotplug_begin(void)
87 {
88 	cpus_read_lock();
89 	percpu_down_write(&mem_hotplug_lock);
90 }
91 
92 void mem_hotplug_done(void)
93 {
94 	percpu_up_write(&mem_hotplug_lock);
95 	cpus_read_unlock();
96 }
97 
98 u64 max_mem_size = U64_MAX;
99 
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size,
102 						 const char *resource_name)
103 {
104 	struct resource *res;
105 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 
107 	if (strcmp(resource_name, "System RAM"))
108 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
109 
110 	if (!mhp_range_allowed(start, size, true))
111 		return ERR_PTR(-E2BIG);
112 
113 	/*
114 	 * Make sure value parsed from 'mem=' only restricts memory adding
115 	 * while booting, so that memory hotplug won't be impacted. Please
116 	 * refer to document of 'mem=' in kernel-parameters.txt for more
117 	 * details.
118 	 */
119 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
120 		return ERR_PTR(-E2BIG);
121 
122 	/*
123 	 * Request ownership of the new memory range.  This might be
124 	 * a child of an existing resource that was present but
125 	 * not marked as busy.
126 	 */
127 	res = __request_region(&iomem_resource, start, size,
128 			       resource_name, flags);
129 
130 	if (!res) {
131 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
132 				start, start + size);
133 		return ERR_PTR(-EEXIST);
134 	}
135 	return res;
136 }
137 
138 static void release_memory_resource(struct resource *res)
139 {
140 	if (!res)
141 		return;
142 	release_resource(res);
143 	kfree(res);
144 }
145 
146 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
147 void get_page_bootmem(unsigned long info,  struct page *page,
148 		      unsigned long type)
149 {
150 	page->freelist = (void *)type;
151 	SetPagePrivate(page);
152 	set_page_private(page, info);
153 	page_ref_inc(page);
154 }
155 
156 void put_page_bootmem(struct page *page)
157 {
158 	unsigned long type;
159 
160 	type = (unsigned long) page->freelist;
161 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
162 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
163 
164 	if (page_ref_dec_return(page) == 1) {
165 		page->freelist = NULL;
166 		ClearPagePrivate(page);
167 		set_page_private(page, 0);
168 		INIT_LIST_HEAD(&page->lru);
169 		free_reserved_page(page);
170 	}
171 }
172 
173 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
174 #ifndef CONFIG_SPARSEMEM_VMEMMAP
175 static void register_page_bootmem_info_section(unsigned long start_pfn)
176 {
177 	unsigned long mapsize, section_nr, i;
178 	struct mem_section *ms;
179 	struct page *page, *memmap;
180 	struct mem_section_usage *usage;
181 
182 	section_nr = pfn_to_section_nr(start_pfn);
183 	ms = __nr_to_section(section_nr);
184 
185 	/* Get section's memmap address */
186 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
187 
188 	/*
189 	 * Get page for the memmap's phys address
190 	 * XXX: need more consideration for sparse_vmemmap...
191 	 */
192 	page = virt_to_page(memmap);
193 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
194 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
195 
196 	/* remember memmap's page */
197 	for (i = 0; i < mapsize; i++, page++)
198 		get_page_bootmem(section_nr, page, SECTION_INFO);
199 
200 	usage = ms->usage;
201 	page = virt_to_page(usage);
202 
203 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
204 
205 	for (i = 0; i < mapsize; i++, page++)
206 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
207 
208 }
209 #else /* CONFIG_SPARSEMEM_VMEMMAP */
210 static void register_page_bootmem_info_section(unsigned long start_pfn)
211 {
212 	unsigned long mapsize, section_nr, i;
213 	struct mem_section *ms;
214 	struct page *page, *memmap;
215 	struct mem_section_usage *usage;
216 
217 	section_nr = pfn_to_section_nr(start_pfn);
218 	ms = __nr_to_section(section_nr);
219 
220 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
221 
222 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
223 
224 	usage = ms->usage;
225 	page = virt_to_page(usage);
226 
227 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
228 
229 	for (i = 0; i < mapsize; i++, page++)
230 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
231 }
232 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
233 
234 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
235 {
236 	unsigned long i, pfn, end_pfn, nr_pages;
237 	int node = pgdat->node_id;
238 	struct page *page;
239 
240 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
241 	page = virt_to_page(pgdat);
242 
243 	for (i = 0; i < nr_pages; i++, page++)
244 		get_page_bootmem(node, page, NODE_INFO);
245 
246 	pfn = pgdat->node_start_pfn;
247 	end_pfn = pgdat_end_pfn(pgdat);
248 
249 	/* register section info */
250 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
251 		/*
252 		 * Some platforms can assign the same pfn to multiple nodes - on
253 		 * node0 as well as nodeN.  To avoid registering a pfn against
254 		 * multiple nodes we check that this pfn does not already
255 		 * reside in some other nodes.
256 		 */
257 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
258 			register_page_bootmem_info_section(pfn);
259 	}
260 }
261 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
262 
263 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
264 		const char *reason)
265 {
266 	/*
267 	 * Disallow all operations smaller than a sub-section and only
268 	 * allow operations smaller than a section for
269 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
270 	 * enforces a larger memory_block_size_bytes() granularity for
271 	 * memory that will be marked online, so this check should only
272 	 * fire for direct arch_{add,remove}_memory() users outside of
273 	 * add_memory_resource().
274 	 */
275 	unsigned long min_align;
276 
277 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
278 		min_align = PAGES_PER_SUBSECTION;
279 	else
280 		min_align = PAGES_PER_SECTION;
281 	if (!IS_ALIGNED(pfn, min_align)
282 			|| !IS_ALIGNED(nr_pages, min_align)) {
283 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
284 				reason, pfn, pfn + nr_pages - 1);
285 		return -EINVAL;
286 	}
287 	return 0;
288 }
289 
290 /*
291  * Return page for the valid pfn only if the page is online. All pfn
292  * walkers which rely on the fully initialized page->flags and others
293  * should use this rather than pfn_valid && pfn_to_page
294  */
295 struct page *pfn_to_online_page(unsigned long pfn)
296 {
297 	unsigned long nr = pfn_to_section_nr(pfn);
298 	struct dev_pagemap *pgmap;
299 	struct mem_section *ms;
300 
301 	if (nr >= NR_MEM_SECTIONS)
302 		return NULL;
303 
304 	ms = __nr_to_section(nr);
305 	if (!online_section(ms))
306 		return NULL;
307 
308 	/*
309 	 * Save some code text when online_section() +
310 	 * pfn_section_valid() are sufficient.
311 	 */
312 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
313 		return NULL;
314 
315 	if (!pfn_section_valid(ms, pfn))
316 		return NULL;
317 
318 	if (!online_device_section(ms))
319 		return pfn_to_page(pfn);
320 
321 	/*
322 	 * Slowpath: when ZONE_DEVICE collides with
323 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
324 	 * the section may be 'offline' but 'valid'. Only
325 	 * get_dev_pagemap() can determine sub-section online status.
326 	 */
327 	pgmap = get_dev_pagemap(pfn, NULL);
328 	put_dev_pagemap(pgmap);
329 
330 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
331 	if (pgmap)
332 		return NULL;
333 
334 	return pfn_to_page(pfn);
335 }
336 EXPORT_SYMBOL_GPL(pfn_to_online_page);
337 
338 /*
339  * Reasonably generic function for adding memory.  It is
340  * expected that archs that support memory hotplug will
341  * call this function after deciding the zone to which to
342  * add the new pages.
343  */
344 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
345 		struct mhp_params *params)
346 {
347 	const unsigned long end_pfn = pfn + nr_pages;
348 	unsigned long cur_nr_pages;
349 	int err;
350 	struct vmem_altmap *altmap = params->altmap;
351 
352 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
353 		return -EINVAL;
354 
355 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
356 
357 	if (altmap) {
358 		/*
359 		 * Validate altmap is within bounds of the total request
360 		 */
361 		if (altmap->base_pfn != pfn
362 				|| vmem_altmap_offset(altmap) > nr_pages) {
363 			pr_warn_once("memory add fail, invalid altmap\n");
364 			return -EINVAL;
365 		}
366 		altmap->alloc = 0;
367 	}
368 
369 	err = check_pfn_span(pfn, nr_pages, "add");
370 	if (err)
371 		return err;
372 
373 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
374 		/* Select all remaining pages up to the next section boundary */
375 		cur_nr_pages = min(end_pfn - pfn,
376 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
377 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
378 		if (err)
379 			break;
380 		cond_resched();
381 	}
382 	vmemmap_populate_print_last();
383 	return err;
384 }
385 
386 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
387 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
388 				     unsigned long start_pfn,
389 				     unsigned long end_pfn)
390 {
391 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
392 		if (unlikely(!pfn_to_online_page(start_pfn)))
393 			continue;
394 
395 		if (unlikely(pfn_to_nid(start_pfn) != nid))
396 			continue;
397 
398 		if (zone != page_zone(pfn_to_page(start_pfn)))
399 			continue;
400 
401 		return start_pfn;
402 	}
403 
404 	return 0;
405 }
406 
407 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
408 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
409 				    unsigned long start_pfn,
410 				    unsigned long end_pfn)
411 {
412 	unsigned long pfn;
413 
414 	/* pfn is the end pfn of a memory section. */
415 	pfn = end_pfn - 1;
416 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
417 		if (unlikely(!pfn_to_online_page(pfn)))
418 			continue;
419 
420 		if (unlikely(pfn_to_nid(pfn) != nid))
421 			continue;
422 
423 		if (zone != page_zone(pfn_to_page(pfn)))
424 			continue;
425 
426 		return pfn;
427 	}
428 
429 	return 0;
430 }
431 
432 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
433 			     unsigned long end_pfn)
434 {
435 	unsigned long pfn;
436 	int nid = zone_to_nid(zone);
437 
438 	zone_span_writelock(zone);
439 	if (zone->zone_start_pfn == start_pfn) {
440 		/*
441 		 * If the section is smallest section in the zone, it need
442 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
443 		 * In this case, we find second smallest valid mem_section
444 		 * for shrinking zone.
445 		 */
446 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
447 						zone_end_pfn(zone));
448 		if (pfn) {
449 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
450 			zone->zone_start_pfn = pfn;
451 		} else {
452 			zone->zone_start_pfn = 0;
453 			zone->spanned_pages = 0;
454 		}
455 	} else if (zone_end_pfn(zone) == end_pfn) {
456 		/*
457 		 * If the section is biggest section in the zone, it need
458 		 * shrink zone->spanned_pages.
459 		 * In this case, we find second biggest valid mem_section for
460 		 * shrinking zone.
461 		 */
462 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
463 					       start_pfn);
464 		if (pfn)
465 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
466 		else {
467 			zone->zone_start_pfn = 0;
468 			zone->spanned_pages = 0;
469 		}
470 	}
471 	zone_span_writeunlock(zone);
472 }
473 
474 static void update_pgdat_span(struct pglist_data *pgdat)
475 {
476 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
477 	struct zone *zone;
478 
479 	for (zone = pgdat->node_zones;
480 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
481 		unsigned long end_pfn = zone_end_pfn(zone);
482 
483 		/* No need to lock the zones, they can't change. */
484 		if (!zone->spanned_pages)
485 			continue;
486 		if (!node_end_pfn) {
487 			node_start_pfn = zone->zone_start_pfn;
488 			node_end_pfn = end_pfn;
489 			continue;
490 		}
491 
492 		if (end_pfn > node_end_pfn)
493 			node_end_pfn = end_pfn;
494 		if (zone->zone_start_pfn < node_start_pfn)
495 			node_start_pfn = zone->zone_start_pfn;
496 	}
497 
498 	pgdat->node_start_pfn = node_start_pfn;
499 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
500 }
501 
502 void __ref remove_pfn_range_from_zone(struct zone *zone,
503 				      unsigned long start_pfn,
504 				      unsigned long nr_pages)
505 {
506 	const unsigned long end_pfn = start_pfn + nr_pages;
507 	struct pglist_data *pgdat = zone->zone_pgdat;
508 	unsigned long pfn, cur_nr_pages, flags;
509 
510 	/* Poison struct pages because they are now uninitialized again. */
511 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
512 		cond_resched();
513 
514 		/* Select all remaining pages up to the next section boundary */
515 		cur_nr_pages =
516 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
517 		page_init_poison(pfn_to_page(pfn),
518 				 sizeof(struct page) * cur_nr_pages);
519 	}
520 
521 #ifdef CONFIG_ZONE_DEVICE
522 	/*
523 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
524 	 * we will not try to shrink the zones - which is okay as
525 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
526 	 */
527 	if (zone_idx(zone) == ZONE_DEVICE)
528 		return;
529 #endif
530 
531 	clear_zone_contiguous(zone);
532 
533 	pgdat_resize_lock(zone->zone_pgdat, &flags);
534 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
535 	update_pgdat_span(pgdat);
536 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
537 
538 	set_zone_contiguous(zone);
539 }
540 
541 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
542 			     unsigned long map_offset,
543 			     struct vmem_altmap *altmap)
544 {
545 	struct mem_section *ms = __pfn_to_section(pfn);
546 
547 	if (WARN_ON_ONCE(!valid_section(ms)))
548 		return;
549 
550 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
551 }
552 
553 /**
554  * __remove_pages() - remove sections of pages
555  * @pfn: starting pageframe (must be aligned to start of a section)
556  * @nr_pages: number of pages to remove (must be multiple of section size)
557  * @altmap: alternative device page map or %NULL if default memmap is used
558  *
559  * Generic helper function to remove section mappings and sysfs entries
560  * for the section of the memory we are removing. Caller needs to make
561  * sure that pages are marked reserved and zones are adjust properly by
562  * calling offline_pages().
563  */
564 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
565 		    struct vmem_altmap *altmap)
566 {
567 	const unsigned long end_pfn = pfn + nr_pages;
568 	unsigned long cur_nr_pages;
569 	unsigned long map_offset = 0;
570 
571 	map_offset = vmem_altmap_offset(altmap);
572 
573 	if (check_pfn_span(pfn, nr_pages, "remove"))
574 		return;
575 
576 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
577 		cond_resched();
578 		/* Select all remaining pages up to the next section boundary */
579 		cur_nr_pages = min(end_pfn - pfn,
580 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
581 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
582 		map_offset = 0;
583 	}
584 }
585 
586 int set_online_page_callback(online_page_callback_t callback)
587 {
588 	int rc = -EINVAL;
589 
590 	get_online_mems();
591 	mutex_lock(&online_page_callback_lock);
592 
593 	if (online_page_callback == generic_online_page) {
594 		online_page_callback = callback;
595 		rc = 0;
596 	}
597 
598 	mutex_unlock(&online_page_callback_lock);
599 	put_online_mems();
600 
601 	return rc;
602 }
603 EXPORT_SYMBOL_GPL(set_online_page_callback);
604 
605 int restore_online_page_callback(online_page_callback_t callback)
606 {
607 	int rc = -EINVAL;
608 
609 	get_online_mems();
610 	mutex_lock(&online_page_callback_lock);
611 
612 	if (online_page_callback == callback) {
613 		online_page_callback = generic_online_page;
614 		rc = 0;
615 	}
616 
617 	mutex_unlock(&online_page_callback_lock);
618 	put_online_mems();
619 
620 	return rc;
621 }
622 EXPORT_SYMBOL_GPL(restore_online_page_callback);
623 
624 void generic_online_page(struct page *page, unsigned int order)
625 {
626 	/*
627 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
628 	 * so we should map it first. This is better than introducing a special
629 	 * case in page freeing fast path.
630 	 */
631 	debug_pagealloc_map_pages(page, 1 << order);
632 	__free_pages_core(page, order);
633 	totalram_pages_add(1UL << order);
634 #ifdef CONFIG_HIGHMEM
635 	if (PageHighMem(page))
636 		totalhigh_pages_add(1UL << order);
637 #endif
638 }
639 EXPORT_SYMBOL_GPL(generic_online_page);
640 
641 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
642 {
643 	const unsigned long end_pfn = start_pfn + nr_pages;
644 	unsigned long pfn;
645 
646 	/*
647 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
648 	 * decide to not expose all pages to the buddy (e.g., expose them
649 	 * later). We account all pages as being online and belonging to this
650 	 * zone ("present").
651 	 */
652 	for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES)
653 		(*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1);
654 
655 	/* mark all involved sections as online */
656 	online_mem_sections(start_pfn, end_pfn);
657 }
658 
659 /* check which state of node_states will be changed when online memory */
660 static void node_states_check_changes_online(unsigned long nr_pages,
661 	struct zone *zone, struct memory_notify *arg)
662 {
663 	int nid = zone_to_nid(zone);
664 
665 	arg->status_change_nid = NUMA_NO_NODE;
666 	arg->status_change_nid_normal = NUMA_NO_NODE;
667 	arg->status_change_nid_high = NUMA_NO_NODE;
668 
669 	if (!node_state(nid, N_MEMORY))
670 		arg->status_change_nid = nid;
671 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
672 		arg->status_change_nid_normal = nid;
673 #ifdef CONFIG_HIGHMEM
674 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
675 		arg->status_change_nid_high = nid;
676 #endif
677 }
678 
679 static void node_states_set_node(int node, struct memory_notify *arg)
680 {
681 	if (arg->status_change_nid_normal >= 0)
682 		node_set_state(node, N_NORMAL_MEMORY);
683 
684 	if (arg->status_change_nid_high >= 0)
685 		node_set_state(node, N_HIGH_MEMORY);
686 
687 	if (arg->status_change_nid >= 0)
688 		node_set_state(node, N_MEMORY);
689 }
690 
691 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
692 		unsigned long nr_pages)
693 {
694 	unsigned long old_end_pfn = zone_end_pfn(zone);
695 
696 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
697 		zone->zone_start_pfn = start_pfn;
698 
699 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
700 }
701 
702 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
703                                      unsigned long nr_pages)
704 {
705 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
706 
707 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
708 		pgdat->node_start_pfn = start_pfn;
709 
710 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
711 
712 }
713 
714 static void section_taint_zone_device(unsigned long pfn)
715 {
716 	struct mem_section *ms = __pfn_to_section(pfn);
717 
718 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
719 }
720 
721 /*
722  * Associate the pfn range with the given zone, initializing the memmaps
723  * and resizing the pgdat/zone data to span the added pages. After this
724  * call, all affected pages are PG_reserved.
725  *
726  * All aligned pageblocks are initialized to the specified migratetype
727  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
728  * zone stats (e.g., nr_isolate_pageblock) are touched.
729  */
730 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
731 				  unsigned long nr_pages,
732 				  struct vmem_altmap *altmap, int migratetype)
733 {
734 	struct pglist_data *pgdat = zone->zone_pgdat;
735 	int nid = pgdat->node_id;
736 	unsigned long flags;
737 
738 	clear_zone_contiguous(zone);
739 
740 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
741 	pgdat_resize_lock(pgdat, &flags);
742 	zone_span_writelock(zone);
743 	if (zone_is_empty(zone))
744 		init_currently_empty_zone(zone, start_pfn, nr_pages);
745 	resize_zone_range(zone, start_pfn, nr_pages);
746 	zone_span_writeunlock(zone);
747 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
748 	pgdat_resize_unlock(pgdat, &flags);
749 
750 	/*
751 	 * Subsection population requires care in pfn_to_online_page().
752 	 * Set the taint to enable the slow path detection of
753 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
754 	 * section.
755 	 */
756 	if (zone_is_zone_device(zone)) {
757 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
758 			section_taint_zone_device(start_pfn);
759 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
760 			section_taint_zone_device(start_pfn + nr_pages);
761 	}
762 
763 	/*
764 	 * TODO now we have a visible range of pages which are not associated
765 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
766 	 * expects the zone spans the pfn range. All the pages in the range
767 	 * are reserved so nobody should be touching them so we should be safe
768 	 */
769 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
770 			 MEMINIT_HOTPLUG, altmap, migratetype);
771 
772 	set_zone_contiguous(zone);
773 }
774 
775 /*
776  * Returns a default kernel memory zone for the given pfn range.
777  * If no kernel zone covers this pfn range it will automatically go
778  * to the ZONE_NORMAL.
779  */
780 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
781 		unsigned long nr_pages)
782 {
783 	struct pglist_data *pgdat = NODE_DATA(nid);
784 	int zid;
785 
786 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
787 		struct zone *zone = &pgdat->node_zones[zid];
788 
789 		if (zone_intersects(zone, start_pfn, nr_pages))
790 			return zone;
791 	}
792 
793 	return &pgdat->node_zones[ZONE_NORMAL];
794 }
795 
796 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
797 		unsigned long nr_pages)
798 {
799 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
800 			nr_pages);
801 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
802 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
803 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
804 
805 	/*
806 	 * We inherit the existing zone in a simple case where zones do not
807 	 * overlap in the given range
808 	 */
809 	if (in_kernel ^ in_movable)
810 		return (in_kernel) ? kernel_zone : movable_zone;
811 
812 	/*
813 	 * If the range doesn't belong to any zone or two zones overlap in the
814 	 * given range then we use movable zone only if movable_node is
815 	 * enabled because we always online to a kernel zone by default.
816 	 */
817 	return movable_node_enabled ? movable_zone : kernel_zone;
818 }
819 
820 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
821 		unsigned long nr_pages)
822 {
823 	if (online_type == MMOP_ONLINE_KERNEL)
824 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
825 
826 	if (online_type == MMOP_ONLINE_MOVABLE)
827 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
828 
829 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
830 }
831 
832 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
833 		       int online_type, int nid)
834 {
835 	unsigned long flags;
836 	struct zone *zone;
837 	int need_zonelists_rebuild = 0;
838 	int ret;
839 	struct memory_notify arg;
840 
841 	/* We can only online full sections (e.g., SECTION_IS_ONLINE) */
842 	if (WARN_ON_ONCE(!nr_pages ||
843 			 !IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION)))
844 		return -EINVAL;
845 
846 	mem_hotplug_begin();
847 
848 	/* associate pfn range with the zone */
849 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
850 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
851 
852 	arg.start_pfn = pfn;
853 	arg.nr_pages = nr_pages;
854 	node_states_check_changes_online(nr_pages, zone, &arg);
855 
856 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
857 	ret = notifier_to_errno(ret);
858 	if (ret)
859 		goto failed_addition;
860 
861 	/*
862 	 * Fixup the number of isolated pageblocks before marking the sections
863 	 * onlining, such that undo_isolate_page_range() works correctly.
864 	 */
865 	spin_lock_irqsave(&zone->lock, flags);
866 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
867 	spin_unlock_irqrestore(&zone->lock, flags);
868 
869 	/*
870 	 * If this zone is not populated, then it is not in zonelist.
871 	 * This means the page allocator ignores this zone.
872 	 * So, zonelist must be updated after online.
873 	 */
874 	if (!populated_zone(zone)) {
875 		need_zonelists_rebuild = 1;
876 		setup_zone_pageset(zone);
877 	}
878 
879 	online_pages_range(pfn, nr_pages);
880 	zone->present_pages += nr_pages;
881 
882 	pgdat_resize_lock(zone->zone_pgdat, &flags);
883 	zone->zone_pgdat->node_present_pages += nr_pages;
884 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
885 
886 	node_states_set_node(nid, &arg);
887 	if (need_zonelists_rebuild)
888 		build_all_zonelists(NULL);
889 	zone_pcp_update(zone);
890 
891 	/* Basic onlining is complete, allow allocation of onlined pages. */
892 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
893 
894 	/*
895 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
896 	 * the tail of the freelist when undoing isolation). Shuffle the whole
897 	 * zone to make sure the just onlined pages are properly distributed
898 	 * across the whole freelist - to create an initial shuffle.
899 	 */
900 	shuffle_zone(zone);
901 
902 	init_per_zone_wmark_min();
903 
904 	kswapd_run(nid);
905 	kcompactd_run(nid);
906 
907 	writeback_set_ratelimit();
908 
909 	memory_notify(MEM_ONLINE, &arg);
910 	mem_hotplug_done();
911 	return 0;
912 
913 failed_addition:
914 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
915 		 (unsigned long long) pfn << PAGE_SHIFT,
916 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
917 	memory_notify(MEM_CANCEL_ONLINE, &arg);
918 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
919 	mem_hotplug_done();
920 	return ret;
921 }
922 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
923 
924 static void reset_node_present_pages(pg_data_t *pgdat)
925 {
926 	struct zone *z;
927 
928 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
929 		z->present_pages = 0;
930 
931 	pgdat->node_present_pages = 0;
932 }
933 
934 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
935 static pg_data_t __ref *hotadd_new_pgdat(int nid)
936 {
937 	struct pglist_data *pgdat;
938 
939 	pgdat = NODE_DATA(nid);
940 	if (!pgdat) {
941 		pgdat = arch_alloc_nodedata(nid);
942 		if (!pgdat)
943 			return NULL;
944 
945 		pgdat->per_cpu_nodestats =
946 			alloc_percpu(struct per_cpu_nodestat);
947 		arch_refresh_nodedata(nid, pgdat);
948 	} else {
949 		int cpu;
950 		/*
951 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
952 		 * Note that kswapd will init kswapd_highest_zoneidx properly
953 		 * when it starts in the near future.
954 		 */
955 		pgdat->nr_zones = 0;
956 		pgdat->kswapd_order = 0;
957 		pgdat->kswapd_highest_zoneidx = 0;
958 		for_each_online_cpu(cpu) {
959 			struct per_cpu_nodestat *p;
960 
961 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
962 			memset(p, 0, sizeof(*p));
963 		}
964 	}
965 
966 	/* we can use NODE_DATA(nid) from here */
967 	pgdat->node_id = nid;
968 	pgdat->node_start_pfn = 0;
969 
970 	/* init node's zones as empty zones, we don't have any present pages.*/
971 	free_area_init_core_hotplug(nid);
972 
973 	/*
974 	 * The node we allocated has no zone fallback lists. For avoiding
975 	 * to access not-initialized zonelist, build here.
976 	 */
977 	build_all_zonelists(pgdat);
978 
979 	/*
980 	 * When memory is hot-added, all the memory is in offline state. So
981 	 * clear all zones' present_pages because they will be updated in
982 	 * online_pages() and offline_pages().
983 	 */
984 	reset_node_managed_pages(pgdat);
985 	reset_node_present_pages(pgdat);
986 
987 	return pgdat;
988 }
989 
990 static void rollback_node_hotadd(int nid)
991 {
992 	pg_data_t *pgdat = NODE_DATA(nid);
993 
994 	arch_refresh_nodedata(nid, NULL);
995 	free_percpu(pgdat->per_cpu_nodestats);
996 	arch_free_nodedata(pgdat);
997 }
998 
999 
1000 /**
1001  * try_online_node - online a node if offlined
1002  * @nid: the node ID
1003  * @set_node_online: Whether we want to online the node
1004  * called by cpu_up() to online a node without onlined memory.
1005  *
1006  * Returns:
1007  * 1 -> a new node has been allocated
1008  * 0 -> the node is already online
1009  * -ENOMEM -> the node could not be allocated
1010  */
1011 static int __try_online_node(int nid, bool set_node_online)
1012 {
1013 	pg_data_t *pgdat;
1014 	int ret = 1;
1015 
1016 	if (node_online(nid))
1017 		return 0;
1018 
1019 	pgdat = hotadd_new_pgdat(nid);
1020 	if (!pgdat) {
1021 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1022 		ret = -ENOMEM;
1023 		goto out;
1024 	}
1025 
1026 	if (set_node_online) {
1027 		node_set_online(nid);
1028 		ret = register_one_node(nid);
1029 		BUG_ON(ret);
1030 	}
1031 out:
1032 	return ret;
1033 }
1034 
1035 /*
1036  * Users of this function always want to online/register the node
1037  */
1038 int try_online_node(int nid)
1039 {
1040 	int ret;
1041 
1042 	mem_hotplug_begin();
1043 	ret =  __try_online_node(nid, true);
1044 	mem_hotplug_done();
1045 	return ret;
1046 }
1047 
1048 static int check_hotplug_memory_range(u64 start, u64 size)
1049 {
1050 	/* memory range must be block size aligned */
1051 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1052 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1053 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1054 		       memory_block_size_bytes(), start, size);
1055 		return -EINVAL;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static int online_memory_block(struct memory_block *mem, void *arg)
1062 {
1063 	mem->online_type = mhp_default_online_type;
1064 	return device_online(&mem->dev);
1065 }
1066 
1067 /*
1068  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1069  * and online/offline operations (triggered e.g. by sysfs).
1070  *
1071  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1072  */
1073 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1074 {
1075 	struct mhp_params params = { .pgprot = PAGE_KERNEL };
1076 	u64 start, size;
1077 	bool new_node = false;
1078 	int ret;
1079 
1080 	start = res->start;
1081 	size = resource_size(res);
1082 
1083 	ret = check_hotplug_memory_range(start, size);
1084 	if (ret)
1085 		return ret;
1086 
1087 	if (!node_possible(nid)) {
1088 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1089 		return -EINVAL;
1090 	}
1091 
1092 	mem_hotplug_begin();
1093 
1094 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1095 		memblock_add_node(start, size, nid);
1096 
1097 	ret = __try_online_node(nid, false);
1098 	if (ret < 0)
1099 		goto error;
1100 	new_node = ret;
1101 
1102 	/* call arch's memory hotadd */
1103 	ret = arch_add_memory(nid, start, size, &params);
1104 	if (ret < 0)
1105 		goto error;
1106 
1107 	/* create memory block devices after memory was added */
1108 	ret = create_memory_block_devices(start, size);
1109 	if (ret) {
1110 		arch_remove_memory(nid, start, size, NULL);
1111 		goto error;
1112 	}
1113 
1114 	if (new_node) {
1115 		/* If sysfs file of new node can't be created, cpu on the node
1116 		 * can't be hot-added. There is no rollback way now.
1117 		 * So, check by BUG_ON() to catch it reluctantly..
1118 		 * We online node here. We can't roll back from here.
1119 		 */
1120 		node_set_online(nid);
1121 		ret = __register_one_node(nid);
1122 		BUG_ON(ret);
1123 	}
1124 
1125 	/* link memory sections under this node.*/
1126 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1127 			  MEMINIT_HOTPLUG);
1128 
1129 	/* create new memmap entry */
1130 	if (!strcmp(res->name, "System RAM"))
1131 		firmware_map_add_hotplug(start, start + size, "System RAM");
1132 
1133 	/* device_online() will take the lock when calling online_pages() */
1134 	mem_hotplug_done();
1135 
1136 	/*
1137 	 * In case we're allowed to merge the resource, flag it and trigger
1138 	 * merging now that adding succeeded.
1139 	 */
1140 	if (mhp_flags & MHP_MERGE_RESOURCE)
1141 		merge_system_ram_resource(res);
1142 
1143 	/* online pages if requested */
1144 	if (mhp_default_online_type != MMOP_OFFLINE)
1145 		walk_memory_blocks(start, size, NULL, online_memory_block);
1146 
1147 	return ret;
1148 error:
1149 	/* rollback pgdat allocation and others */
1150 	if (new_node)
1151 		rollback_node_hotadd(nid);
1152 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1153 		memblock_remove(start, size);
1154 	mem_hotplug_done();
1155 	return ret;
1156 }
1157 
1158 /* requires device_hotplug_lock, see add_memory_resource() */
1159 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1160 {
1161 	struct resource *res;
1162 	int ret;
1163 
1164 	res = register_memory_resource(start, size, "System RAM");
1165 	if (IS_ERR(res))
1166 		return PTR_ERR(res);
1167 
1168 	ret = add_memory_resource(nid, res, mhp_flags);
1169 	if (ret < 0)
1170 		release_memory_resource(res);
1171 	return ret;
1172 }
1173 
1174 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1175 {
1176 	int rc;
1177 
1178 	lock_device_hotplug();
1179 	rc = __add_memory(nid, start, size, mhp_flags);
1180 	unlock_device_hotplug();
1181 
1182 	return rc;
1183 }
1184 EXPORT_SYMBOL_GPL(add_memory);
1185 
1186 /*
1187  * Add special, driver-managed memory to the system as system RAM. Such
1188  * memory is not exposed via the raw firmware-provided memmap as system
1189  * RAM, instead, it is detected and added by a driver - during cold boot,
1190  * after a reboot, and after kexec.
1191  *
1192  * Reasons why this memory should not be used for the initial memmap of a
1193  * kexec kernel or for placing kexec images:
1194  * - The booting kernel is in charge of determining how this memory will be
1195  *   used (e.g., use persistent memory as system RAM)
1196  * - Coordination with a hypervisor is required before this memory
1197  *   can be used (e.g., inaccessible parts).
1198  *
1199  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1200  * memory map") are created. Also, the created memory resource is flagged
1201  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1202  * this memory as well (esp., not place kexec images onto it).
1203  *
1204  * The resource_name (visible via /proc/iomem) has to have the format
1205  * "System RAM ($DRIVER)".
1206  */
1207 int add_memory_driver_managed(int nid, u64 start, u64 size,
1208 			      const char *resource_name, mhp_t mhp_flags)
1209 {
1210 	struct resource *res;
1211 	int rc;
1212 
1213 	if (!resource_name ||
1214 	    strstr(resource_name, "System RAM (") != resource_name ||
1215 	    resource_name[strlen(resource_name) - 1] != ')')
1216 		return -EINVAL;
1217 
1218 	lock_device_hotplug();
1219 
1220 	res = register_memory_resource(start, size, resource_name);
1221 	if (IS_ERR(res)) {
1222 		rc = PTR_ERR(res);
1223 		goto out_unlock;
1224 	}
1225 
1226 	rc = add_memory_resource(nid, res, mhp_flags);
1227 	if (rc < 0)
1228 		release_memory_resource(res);
1229 
1230 out_unlock:
1231 	unlock_device_hotplug();
1232 	return rc;
1233 }
1234 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1235 
1236 /*
1237  * Platforms should define arch_get_mappable_range() that provides
1238  * maximum possible addressable physical memory range for which the
1239  * linear mapping could be created. The platform returned address
1240  * range must adhere to these following semantics.
1241  *
1242  * - range.start <= range.end
1243  * - Range includes both end points [range.start..range.end]
1244  *
1245  * There is also a fallback definition provided here, allowing the
1246  * entire possible physical address range in case any platform does
1247  * not define arch_get_mappable_range().
1248  */
1249 struct range __weak arch_get_mappable_range(void)
1250 {
1251 	struct range mhp_range = {
1252 		.start = 0UL,
1253 		.end = -1ULL,
1254 	};
1255 	return mhp_range;
1256 }
1257 
1258 struct range mhp_get_pluggable_range(bool need_mapping)
1259 {
1260 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1261 	struct range mhp_range;
1262 
1263 	if (need_mapping) {
1264 		mhp_range = arch_get_mappable_range();
1265 		if (mhp_range.start > max_phys) {
1266 			mhp_range.start = 0;
1267 			mhp_range.end = 0;
1268 		}
1269 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1270 	} else {
1271 		mhp_range.start = 0;
1272 		mhp_range.end = max_phys;
1273 	}
1274 	return mhp_range;
1275 }
1276 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1277 
1278 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1279 {
1280 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1281 	u64 end = start + size;
1282 
1283 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1284 		return true;
1285 
1286 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1287 		start, end, mhp_range.start, mhp_range.end);
1288 	return false;
1289 }
1290 
1291 #ifdef CONFIG_MEMORY_HOTREMOVE
1292 /*
1293  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1294  * memory holes). When true, return the zone.
1295  */
1296 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1297 				  unsigned long end_pfn)
1298 {
1299 	unsigned long pfn, sec_end_pfn;
1300 	struct zone *zone = NULL;
1301 	struct page *page;
1302 	int i;
1303 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1304 	     pfn < end_pfn;
1305 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1306 		/* Make sure the memory section is present first */
1307 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1308 			continue;
1309 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1310 		     pfn += MAX_ORDER_NR_PAGES) {
1311 			i = 0;
1312 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1313 			while ((i < MAX_ORDER_NR_PAGES) &&
1314 				!pfn_valid_within(pfn + i))
1315 				i++;
1316 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1317 				continue;
1318 			/* Check if we got outside of the zone */
1319 			if (zone && !zone_spans_pfn(zone, pfn + i))
1320 				return NULL;
1321 			page = pfn_to_page(pfn + i);
1322 			if (zone && page_zone(page) != zone)
1323 				return NULL;
1324 			zone = page_zone(page);
1325 		}
1326 	}
1327 
1328 	return zone;
1329 }
1330 
1331 /*
1332  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1333  * non-lru movable pages and hugepages). Will skip over most unmovable
1334  * pages (esp., pages that can be skipped when offlining), but bail out on
1335  * definitely unmovable pages.
1336  *
1337  * Returns:
1338  *	0 in case a movable page is found and movable_pfn was updated.
1339  *	-ENOENT in case no movable page was found.
1340  *	-EBUSY in case a definitely unmovable page was found.
1341  */
1342 static int scan_movable_pages(unsigned long start, unsigned long end,
1343 			      unsigned long *movable_pfn)
1344 {
1345 	unsigned long pfn;
1346 
1347 	for (pfn = start; pfn < end; pfn++) {
1348 		struct page *page, *head;
1349 		unsigned long skip;
1350 
1351 		if (!pfn_valid(pfn))
1352 			continue;
1353 		page = pfn_to_page(pfn);
1354 		if (PageLRU(page))
1355 			goto found;
1356 		if (__PageMovable(page))
1357 			goto found;
1358 
1359 		/*
1360 		 * PageOffline() pages that are not marked __PageMovable() and
1361 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1362 		 * definitely unmovable. If their reference count would be 0,
1363 		 * they could at least be skipped when offlining memory.
1364 		 */
1365 		if (PageOffline(page) && page_count(page))
1366 			return -EBUSY;
1367 
1368 		if (!PageHuge(page))
1369 			continue;
1370 		head = compound_head(page);
1371 		/*
1372 		 * This test is racy as we hold no reference or lock.  The
1373 		 * hugetlb page could have been free'ed and head is no longer
1374 		 * a hugetlb page before the following check.  In such unlikely
1375 		 * cases false positives and negatives are possible.  Calling
1376 		 * code must deal with these scenarios.
1377 		 */
1378 		if (HPageMigratable(head))
1379 			goto found;
1380 		skip = compound_nr(head) - (page - head);
1381 		pfn += skip - 1;
1382 	}
1383 	return -ENOENT;
1384 found:
1385 	*movable_pfn = pfn;
1386 	return 0;
1387 }
1388 
1389 static int
1390 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1391 {
1392 	unsigned long pfn;
1393 	struct page *page, *head;
1394 	int ret = 0;
1395 	LIST_HEAD(source);
1396 
1397 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1398 		if (!pfn_valid(pfn))
1399 			continue;
1400 		page = pfn_to_page(pfn);
1401 		head = compound_head(page);
1402 
1403 		if (PageHuge(page)) {
1404 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1405 			isolate_huge_page(head, &source);
1406 			continue;
1407 		} else if (PageTransHuge(page))
1408 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1409 
1410 		/*
1411 		 * HWPoison pages have elevated reference counts so the migration would
1412 		 * fail on them. It also doesn't make any sense to migrate them in the
1413 		 * first place. Still try to unmap such a page in case it is still mapped
1414 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1415 		 * the unmap as the catch all safety net).
1416 		 */
1417 		if (PageHWPoison(page)) {
1418 			if (WARN_ON(PageLRU(page)))
1419 				isolate_lru_page(page);
1420 			if (page_mapped(page))
1421 				try_to_unmap(page, TTU_IGNORE_MLOCK);
1422 			continue;
1423 		}
1424 
1425 		if (!get_page_unless_zero(page))
1426 			continue;
1427 		/*
1428 		 * We can skip free pages. And we can deal with pages on
1429 		 * LRU and non-lru movable pages.
1430 		 */
1431 		if (PageLRU(page))
1432 			ret = isolate_lru_page(page);
1433 		else
1434 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1435 		if (!ret) { /* Success */
1436 			list_add_tail(&page->lru, &source);
1437 			if (!__PageMovable(page))
1438 				inc_node_page_state(page, NR_ISOLATED_ANON +
1439 						    page_is_file_lru(page));
1440 
1441 		} else {
1442 			pr_warn("failed to isolate pfn %lx\n", pfn);
1443 			dump_page(page, "isolation failed");
1444 		}
1445 		put_page(page);
1446 	}
1447 	if (!list_empty(&source)) {
1448 		nodemask_t nmask = node_states[N_MEMORY];
1449 		struct migration_target_control mtc = {
1450 			.nmask = &nmask,
1451 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1452 		};
1453 
1454 		/*
1455 		 * We have checked that migration range is on a single zone so
1456 		 * we can use the nid of the first page to all the others.
1457 		 */
1458 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1459 
1460 		/*
1461 		 * try to allocate from a different node but reuse this node
1462 		 * if there are no other online nodes to be used (e.g. we are
1463 		 * offlining a part of the only existing node)
1464 		 */
1465 		node_clear(mtc.nid, nmask);
1466 		if (nodes_empty(nmask))
1467 			node_set(mtc.nid, nmask);
1468 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1469 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1470 		if (ret) {
1471 			list_for_each_entry(page, &source, lru) {
1472 				pr_warn("migrating pfn %lx failed ret:%d ",
1473 				       page_to_pfn(page), ret);
1474 				dump_page(page, "migration failure");
1475 			}
1476 			putback_movable_pages(&source);
1477 		}
1478 	}
1479 
1480 	return ret;
1481 }
1482 
1483 static int __init cmdline_parse_movable_node(char *p)
1484 {
1485 	movable_node_enabled = true;
1486 	return 0;
1487 }
1488 early_param("movable_node", cmdline_parse_movable_node);
1489 
1490 /* check which state of node_states will be changed when offline memory */
1491 static void node_states_check_changes_offline(unsigned long nr_pages,
1492 		struct zone *zone, struct memory_notify *arg)
1493 {
1494 	struct pglist_data *pgdat = zone->zone_pgdat;
1495 	unsigned long present_pages = 0;
1496 	enum zone_type zt;
1497 
1498 	arg->status_change_nid = NUMA_NO_NODE;
1499 	arg->status_change_nid_normal = NUMA_NO_NODE;
1500 	arg->status_change_nid_high = NUMA_NO_NODE;
1501 
1502 	/*
1503 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1504 	 * If the memory to be offline is within the range
1505 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1506 	 * the zones in that range will become empty after the offlining,
1507 	 * thus we can determine that we need to clear the node from
1508 	 * node_states[N_NORMAL_MEMORY].
1509 	 */
1510 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1511 		present_pages += pgdat->node_zones[zt].present_pages;
1512 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1513 		arg->status_change_nid_normal = zone_to_nid(zone);
1514 
1515 #ifdef CONFIG_HIGHMEM
1516 	/*
1517 	 * node_states[N_HIGH_MEMORY] contains nodes which
1518 	 * have normal memory or high memory.
1519 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1520 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1521 	 * we determine that the zones in that range become empty,
1522 	 * we need to clear the node for N_HIGH_MEMORY.
1523 	 */
1524 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1525 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1526 		arg->status_change_nid_high = zone_to_nid(zone);
1527 #endif
1528 
1529 	/*
1530 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1531 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1532 	 * as well.
1533 	 * Here we count the possible pages from ZONE_MOVABLE.
1534 	 * If after having accounted all the pages, we see that the nr_pages
1535 	 * to be offlined is over or equal to the accounted pages,
1536 	 * we know that the node will become empty, and so, we can clear
1537 	 * it for N_MEMORY as well.
1538 	 */
1539 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1540 
1541 	if (nr_pages >= present_pages)
1542 		arg->status_change_nid = zone_to_nid(zone);
1543 }
1544 
1545 static void node_states_clear_node(int node, struct memory_notify *arg)
1546 {
1547 	if (arg->status_change_nid_normal >= 0)
1548 		node_clear_state(node, N_NORMAL_MEMORY);
1549 
1550 	if (arg->status_change_nid_high >= 0)
1551 		node_clear_state(node, N_HIGH_MEMORY);
1552 
1553 	if (arg->status_change_nid >= 0)
1554 		node_clear_state(node, N_MEMORY);
1555 }
1556 
1557 static int count_system_ram_pages_cb(unsigned long start_pfn,
1558 				     unsigned long nr_pages, void *data)
1559 {
1560 	unsigned long *nr_system_ram_pages = data;
1561 
1562 	*nr_system_ram_pages += nr_pages;
1563 	return 0;
1564 }
1565 
1566 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1567 {
1568 	const unsigned long end_pfn = start_pfn + nr_pages;
1569 	unsigned long pfn, system_ram_pages = 0;
1570 	unsigned long flags;
1571 	struct zone *zone;
1572 	struct memory_notify arg;
1573 	int ret, node;
1574 	char *reason;
1575 
1576 	/* We can only offline full sections (e.g., SECTION_IS_ONLINE) */
1577 	if (WARN_ON_ONCE(!nr_pages ||
1578 			 !IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION)))
1579 		return -EINVAL;
1580 
1581 	mem_hotplug_begin();
1582 
1583 	/*
1584 	 * Don't allow to offline memory blocks that contain holes.
1585 	 * Consequently, memory blocks with holes can never get onlined
1586 	 * via the hotplug path - online_pages() - as hotplugged memory has
1587 	 * no holes. This way, we e.g., don't have to worry about marking
1588 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1589 	 * avoid using walk_system_ram_range() later.
1590 	 */
1591 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1592 			      count_system_ram_pages_cb);
1593 	if (system_ram_pages != nr_pages) {
1594 		ret = -EINVAL;
1595 		reason = "memory holes";
1596 		goto failed_removal;
1597 	}
1598 
1599 	/* This makes hotplug much easier...and readable.
1600 	   we assume this for now. .*/
1601 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1602 	if (!zone) {
1603 		ret = -EINVAL;
1604 		reason = "multizone range";
1605 		goto failed_removal;
1606 	}
1607 	node = zone_to_nid(zone);
1608 
1609 	/*
1610 	 * Disable pcplists so that page isolation cannot race with freeing
1611 	 * in a way that pages from isolated pageblock are left on pcplists.
1612 	 */
1613 	zone_pcp_disable(zone);
1614 
1615 	/* set above range as isolated */
1616 	ret = start_isolate_page_range(start_pfn, end_pfn,
1617 				       MIGRATE_MOVABLE,
1618 				       MEMORY_OFFLINE | REPORT_FAILURE);
1619 	if (ret) {
1620 		reason = "failure to isolate range";
1621 		goto failed_removal_pcplists_disabled;
1622 	}
1623 
1624 	arg.start_pfn = start_pfn;
1625 	arg.nr_pages = nr_pages;
1626 	node_states_check_changes_offline(nr_pages, zone, &arg);
1627 
1628 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1629 	ret = notifier_to_errno(ret);
1630 	if (ret) {
1631 		reason = "notifier failure";
1632 		goto failed_removal_isolated;
1633 	}
1634 
1635 	do {
1636 		pfn = start_pfn;
1637 		do {
1638 			if (signal_pending(current)) {
1639 				ret = -EINTR;
1640 				reason = "signal backoff";
1641 				goto failed_removal_isolated;
1642 			}
1643 
1644 			cond_resched();
1645 			lru_add_drain_all();
1646 
1647 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1648 			if (!ret) {
1649 				/*
1650 				 * TODO: fatal migration failures should bail
1651 				 * out
1652 				 */
1653 				do_migrate_range(pfn, end_pfn);
1654 			}
1655 		} while (!ret);
1656 
1657 		if (ret != -ENOENT) {
1658 			reason = "unmovable page";
1659 			goto failed_removal_isolated;
1660 		}
1661 
1662 		/*
1663 		 * Dissolve free hugepages in the memory block before doing
1664 		 * offlining actually in order to make hugetlbfs's object
1665 		 * counting consistent.
1666 		 */
1667 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1668 		if (ret) {
1669 			reason = "failure to dissolve huge pages";
1670 			goto failed_removal_isolated;
1671 		}
1672 
1673 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1674 
1675 	} while (ret);
1676 
1677 	/* Mark all sections offline and remove free pages from the buddy. */
1678 	__offline_isolated_pages(start_pfn, end_pfn);
1679 	pr_debug("Offlined Pages %ld\n", nr_pages);
1680 
1681 	/*
1682 	 * The memory sections are marked offline, and the pageblock flags
1683 	 * effectively stale; nobody should be touching them. Fixup the number
1684 	 * of isolated pageblocks, memory onlining will properly revert this.
1685 	 */
1686 	spin_lock_irqsave(&zone->lock, flags);
1687 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1688 	spin_unlock_irqrestore(&zone->lock, flags);
1689 
1690 	zone_pcp_enable(zone);
1691 
1692 	/* removal success */
1693 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1694 	zone->present_pages -= nr_pages;
1695 
1696 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1697 	zone->zone_pgdat->node_present_pages -= nr_pages;
1698 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1699 
1700 	init_per_zone_wmark_min();
1701 
1702 	if (!populated_zone(zone)) {
1703 		zone_pcp_reset(zone);
1704 		build_all_zonelists(NULL);
1705 	} else
1706 		zone_pcp_update(zone);
1707 
1708 	node_states_clear_node(node, &arg);
1709 	if (arg.status_change_nid >= 0) {
1710 		kswapd_stop(node);
1711 		kcompactd_stop(node);
1712 	}
1713 
1714 	writeback_set_ratelimit();
1715 
1716 	memory_notify(MEM_OFFLINE, &arg);
1717 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1718 	mem_hotplug_done();
1719 	return 0;
1720 
1721 failed_removal_isolated:
1722 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1723 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1724 failed_removal_pcplists_disabled:
1725 	zone_pcp_enable(zone);
1726 failed_removal:
1727 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1728 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1729 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1730 		 reason);
1731 	/* pushback to free area */
1732 	mem_hotplug_done();
1733 	return ret;
1734 }
1735 
1736 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1737 {
1738 	int ret = !is_memblock_offlined(mem);
1739 
1740 	if (unlikely(ret)) {
1741 		phys_addr_t beginpa, endpa;
1742 
1743 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1744 		endpa = beginpa + memory_block_size_bytes() - 1;
1745 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1746 			&beginpa, &endpa);
1747 
1748 		return -EBUSY;
1749 	}
1750 	return 0;
1751 }
1752 
1753 static int check_cpu_on_node(pg_data_t *pgdat)
1754 {
1755 	int cpu;
1756 
1757 	for_each_present_cpu(cpu) {
1758 		if (cpu_to_node(cpu) == pgdat->node_id)
1759 			/*
1760 			 * the cpu on this node isn't removed, and we can't
1761 			 * offline this node.
1762 			 */
1763 			return -EBUSY;
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1770 {
1771 	int nid = *(int *)arg;
1772 
1773 	/*
1774 	 * If a memory block belongs to multiple nodes, the stored nid is not
1775 	 * reliable. However, such blocks are always online (e.g., cannot get
1776 	 * offlined) and, therefore, are still spanned by the node.
1777 	 */
1778 	return mem->nid == nid ? -EEXIST : 0;
1779 }
1780 
1781 /**
1782  * try_offline_node
1783  * @nid: the node ID
1784  *
1785  * Offline a node if all memory sections and cpus of the node are removed.
1786  *
1787  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1788  * and online/offline operations before this call.
1789  */
1790 void try_offline_node(int nid)
1791 {
1792 	pg_data_t *pgdat = NODE_DATA(nid);
1793 	int rc;
1794 
1795 	/*
1796 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1797 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1798 	 * e.g., after the memory block was onlined.
1799 	 */
1800 	if (pgdat->node_spanned_pages)
1801 		return;
1802 
1803 	/*
1804 	 * Especially offline memory blocks might not be spanned by the
1805 	 * node. They will get spanned by the node once they get onlined.
1806 	 * However, they link to the node in sysfs and can get onlined later.
1807 	 */
1808 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1809 	if (rc)
1810 		return;
1811 
1812 	if (check_cpu_on_node(pgdat))
1813 		return;
1814 
1815 	/*
1816 	 * all memory/cpu of this node are removed, we can offline this
1817 	 * node now.
1818 	 */
1819 	node_set_offline(nid);
1820 	unregister_one_node(nid);
1821 }
1822 EXPORT_SYMBOL(try_offline_node);
1823 
1824 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1825 {
1826 	int rc = 0;
1827 
1828 	BUG_ON(check_hotplug_memory_range(start, size));
1829 
1830 	/*
1831 	 * All memory blocks must be offlined before removing memory.  Check
1832 	 * whether all memory blocks in question are offline and return error
1833 	 * if this is not the case.
1834 	 */
1835 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1836 	if (rc)
1837 		return rc;
1838 
1839 	/* remove memmap entry */
1840 	firmware_map_remove(start, start + size, "System RAM");
1841 
1842 	/*
1843 	 * Memory block device removal under the device_hotplug_lock is
1844 	 * a barrier against racing online attempts.
1845 	 */
1846 	remove_memory_block_devices(start, size);
1847 
1848 	mem_hotplug_begin();
1849 
1850 	arch_remove_memory(nid, start, size, NULL);
1851 
1852 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1853 		memblock_free(start, size);
1854 		memblock_remove(start, size);
1855 	}
1856 
1857 	release_mem_region_adjustable(start, size);
1858 
1859 	try_offline_node(nid);
1860 
1861 	mem_hotplug_done();
1862 	return 0;
1863 }
1864 
1865 /**
1866  * remove_memory
1867  * @nid: the node ID
1868  * @start: physical address of the region to remove
1869  * @size: size of the region to remove
1870  *
1871  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1872  * and online/offline operations before this call, as required by
1873  * try_offline_node().
1874  */
1875 void __remove_memory(int nid, u64 start, u64 size)
1876 {
1877 
1878 	/*
1879 	 * trigger BUG() if some memory is not offlined prior to calling this
1880 	 * function
1881 	 */
1882 	if (try_remove_memory(nid, start, size))
1883 		BUG();
1884 }
1885 
1886 /*
1887  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1888  * some memory is not offline
1889  */
1890 int remove_memory(int nid, u64 start, u64 size)
1891 {
1892 	int rc;
1893 
1894 	lock_device_hotplug();
1895 	rc  = try_remove_memory(nid, start, size);
1896 	unlock_device_hotplug();
1897 
1898 	return rc;
1899 }
1900 EXPORT_SYMBOL_GPL(remove_memory);
1901 
1902 static int try_offline_memory_block(struct memory_block *mem, void *arg)
1903 {
1904 	uint8_t online_type = MMOP_ONLINE_KERNEL;
1905 	uint8_t **online_types = arg;
1906 	struct page *page;
1907 	int rc;
1908 
1909 	/*
1910 	 * Sense the online_type via the zone of the memory block. Offlining
1911 	 * with multiple zones within one memory block will be rejected
1912 	 * by offlining code ... so we don't care about that.
1913 	 */
1914 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1915 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1916 		online_type = MMOP_ONLINE_MOVABLE;
1917 
1918 	rc = device_offline(&mem->dev);
1919 	/*
1920 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1921 	 * so try_reonline_memory_block() can do the right thing.
1922 	 */
1923 	if (!rc)
1924 		**online_types = online_type;
1925 
1926 	(*online_types)++;
1927 	/* Ignore if already offline. */
1928 	return rc < 0 ? rc : 0;
1929 }
1930 
1931 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1932 {
1933 	uint8_t **online_types = arg;
1934 	int rc;
1935 
1936 	if (**online_types != MMOP_OFFLINE) {
1937 		mem->online_type = **online_types;
1938 		rc = device_online(&mem->dev);
1939 		if (rc < 0)
1940 			pr_warn("%s: Failed to re-online memory: %d",
1941 				__func__, rc);
1942 	}
1943 
1944 	/* Continue processing all remaining memory blocks. */
1945 	(*online_types)++;
1946 	return 0;
1947 }
1948 
1949 /*
1950  * Try to offline and remove memory. Might take a long time to finish in case
1951  * memory is still in use. Primarily useful for memory devices that logically
1952  * unplugged all memory (so it's no longer in use) and want to offline + remove
1953  * that memory.
1954  */
1955 int offline_and_remove_memory(int nid, u64 start, u64 size)
1956 {
1957 	const unsigned long mb_count = size / memory_block_size_bytes();
1958 	uint8_t *online_types, *tmp;
1959 	int rc;
1960 
1961 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1962 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
1963 		return -EINVAL;
1964 
1965 	/*
1966 	 * We'll remember the old online type of each memory block, so we can
1967 	 * try to revert whatever we did when offlining one memory block fails
1968 	 * after offlining some others succeeded.
1969 	 */
1970 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
1971 				     GFP_KERNEL);
1972 	if (!online_types)
1973 		return -ENOMEM;
1974 	/*
1975 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
1976 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
1977 	 * try_reonline_memory_block().
1978 	 */
1979 	memset(online_types, MMOP_OFFLINE, mb_count);
1980 
1981 	lock_device_hotplug();
1982 
1983 	tmp = online_types;
1984 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
1985 
1986 	/*
1987 	 * In case we succeeded to offline all memory, remove it.
1988 	 * This cannot fail as it cannot get onlined in the meantime.
1989 	 */
1990 	if (!rc) {
1991 		rc = try_remove_memory(nid, start, size);
1992 		if (rc)
1993 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
1994 	}
1995 
1996 	/*
1997 	 * Rollback what we did. While memory onlining might theoretically fail
1998 	 * (nacked by a notifier), it barely ever happens.
1999 	 */
2000 	if (rc) {
2001 		tmp = online_types;
2002 		walk_memory_blocks(start, size, &tmp,
2003 				   try_reonline_memory_block);
2004 	}
2005 	unlock_device_hotplug();
2006 
2007 	kfree(online_types);
2008 	return rc;
2009 }
2010 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2011 #endif /* CONFIG_MEMORY_HOTREMOVE */
2012