1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 #include "shuffle.h" 43 44 45 /* 46 * memory_hotplug.memmap_on_memory parameter 47 */ 48 static bool memmap_on_memory __ro_after_init; 49 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 50 module_param(memmap_on_memory, bool, 0444); 51 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug"); 52 #endif 53 54 enum { 55 ONLINE_POLICY_CONTIG_ZONES = 0, 56 ONLINE_POLICY_AUTO_MOVABLE, 57 }; 58 59 static const char * const online_policy_to_str[] = { 60 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 61 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 62 }; 63 64 static int set_online_policy(const char *val, const struct kernel_param *kp) 65 { 66 int ret = sysfs_match_string(online_policy_to_str, val); 67 68 if (ret < 0) 69 return ret; 70 *((int *)kp->arg) = ret; 71 return 0; 72 } 73 74 static int get_online_policy(char *buffer, const struct kernel_param *kp) 75 { 76 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 77 } 78 79 /* 80 * memory_hotplug.online_policy: configure online behavior when onlining without 81 * specifying a zone (MMOP_ONLINE) 82 * 83 * "contig-zones": keep zone contiguous 84 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 85 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 86 */ 87 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 88 static const struct kernel_param_ops online_policy_ops = { 89 .set = set_online_policy, 90 .get = get_online_policy, 91 }; 92 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 93 MODULE_PARM_DESC(online_policy, 94 "Set the online policy (\"contig-zones\", \"auto-movable\") " 95 "Default: \"contig-zones\""); 96 97 /* 98 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 99 * 100 * The ratio represent an upper limit and the kernel might decide to not 101 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 102 * doesn't allow for more MOVABLE memory. 103 */ 104 static unsigned int auto_movable_ratio __read_mostly = 301; 105 module_param(auto_movable_ratio, uint, 0644); 106 MODULE_PARM_DESC(auto_movable_ratio, 107 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 108 "in percent for \"auto-movable\" online policy. Default: 301"); 109 110 /* 111 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 112 */ 113 #ifdef CONFIG_NUMA 114 static bool auto_movable_numa_aware __read_mostly = true; 115 module_param(auto_movable_numa_aware, bool, 0644); 116 MODULE_PARM_DESC(auto_movable_numa_aware, 117 "Consider numa node stats in addition to global stats in " 118 "\"auto-movable\" online policy. Default: true"); 119 #endif /* CONFIG_NUMA */ 120 121 /* 122 * online_page_callback contains pointer to current page onlining function. 123 * Initially it is generic_online_page(). If it is required it could be 124 * changed by calling set_online_page_callback() for callback registration 125 * and restore_online_page_callback() for generic callback restore. 126 */ 127 128 static online_page_callback_t online_page_callback = generic_online_page; 129 static DEFINE_MUTEX(online_page_callback_lock); 130 131 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 132 133 void get_online_mems(void) 134 { 135 percpu_down_read(&mem_hotplug_lock); 136 } 137 138 void put_online_mems(void) 139 { 140 percpu_up_read(&mem_hotplug_lock); 141 } 142 143 bool movable_node_enabled = false; 144 145 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 146 int mhp_default_online_type = MMOP_OFFLINE; 147 #else 148 int mhp_default_online_type = MMOP_ONLINE; 149 #endif 150 151 static int __init setup_memhp_default_state(char *str) 152 { 153 const int online_type = mhp_online_type_from_str(str); 154 155 if (online_type >= 0) 156 mhp_default_online_type = online_type; 157 158 return 1; 159 } 160 __setup("memhp_default_state=", setup_memhp_default_state); 161 162 void mem_hotplug_begin(void) 163 { 164 cpus_read_lock(); 165 percpu_down_write(&mem_hotplug_lock); 166 } 167 168 void mem_hotplug_done(void) 169 { 170 percpu_up_write(&mem_hotplug_lock); 171 cpus_read_unlock(); 172 } 173 174 u64 max_mem_size = U64_MAX; 175 176 /* add this memory to iomem resource */ 177 static struct resource *register_memory_resource(u64 start, u64 size, 178 const char *resource_name) 179 { 180 struct resource *res; 181 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 182 183 if (strcmp(resource_name, "System RAM")) 184 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 185 186 if (!mhp_range_allowed(start, size, true)) 187 return ERR_PTR(-E2BIG); 188 189 /* 190 * Make sure value parsed from 'mem=' only restricts memory adding 191 * while booting, so that memory hotplug won't be impacted. Please 192 * refer to document of 'mem=' in kernel-parameters.txt for more 193 * details. 194 */ 195 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 196 return ERR_PTR(-E2BIG); 197 198 /* 199 * Request ownership of the new memory range. This might be 200 * a child of an existing resource that was present but 201 * not marked as busy. 202 */ 203 res = __request_region(&iomem_resource, start, size, 204 resource_name, flags); 205 206 if (!res) { 207 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 208 start, start + size); 209 return ERR_PTR(-EEXIST); 210 } 211 return res; 212 } 213 214 static void release_memory_resource(struct resource *res) 215 { 216 if (!res) 217 return; 218 release_resource(res); 219 kfree(res); 220 } 221 222 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 223 const char *reason) 224 { 225 /* 226 * Disallow all operations smaller than a sub-section and only 227 * allow operations smaller than a section for 228 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 229 * enforces a larger memory_block_size_bytes() granularity for 230 * memory that will be marked online, so this check should only 231 * fire for direct arch_{add,remove}_memory() users outside of 232 * add_memory_resource(). 233 */ 234 unsigned long min_align; 235 236 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 237 min_align = PAGES_PER_SUBSECTION; 238 else 239 min_align = PAGES_PER_SECTION; 240 if (!IS_ALIGNED(pfn, min_align) 241 || !IS_ALIGNED(nr_pages, min_align)) { 242 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 243 reason, pfn, pfn + nr_pages - 1); 244 return -EINVAL; 245 } 246 return 0; 247 } 248 249 /* 250 * Return page for the valid pfn only if the page is online. All pfn 251 * walkers which rely on the fully initialized page->flags and others 252 * should use this rather than pfn_valid && pfn_to_page 253 */ 254 struct page *pfn_to_online_page(unsigned long pfn) 255 { 256 unsigned long nr = pfn_to_section_nr(pfn); 257 struct dev_pagemap *pgmap; 258 struct mem_section *ms; 259 260 if (nr >= NR_MEM_SECTIONS) 261 return NULL; 262 263 ms = __nr_to_section(nr); 264 if (!online_section(ms)) 265 return NULL; 266 267 /* 268 * Save some code text when online_section() + 269 * pfn_section_valid() are sufficient. 270 */ 271 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 272 return NULL; 273 274 if (!pfn_section_valid(ms, pfn)) 275 return NULL; 276 277 if (!online_device_section(ms)) 278 return pfn_to_page(pfn); 279 280 /* 281 * Slowpath: when ZONE_DEVICE collides with 282 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 283 * the section may be 'offline' but 'valid'. Only 284 * get_dev_pagemap() can determine sub-section online status. 285 */ 286 pgmap = get_dev_pagemap(pfn, NULL); 287 put_dev_pagemap(pgmap); 288 289 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 290 if (pgmap) 291 return NULL; 292 293 return pfn_to_page(pfn); 294 } 295 EXPORT_SYMBOL_GPL(pfn_to_online_page); 296 297 /* 298 * Reasonably generic function for adding memory. It is 299 * expected that archs that support memory hotplug will 300 * call this function after deciding the zone to which to 301 * add the new pages. 302 */ 303 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 304 struct mhp_params *params) 305 { 306 const unsigned long end_pfn = pfn + nr_pages; 307 unsigned long cur_nr_pages; 308 int err; 309 struct vmem_altmap *altmap = params->altmap; 310 311 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 312 return -EINVAL; 313 314 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 315 316 if (altmap) { 317 /* 318 * Validate altmap is within bounds of the total request 319 */ 320 if (altmap->base_pfn != pfn 321 || vmem_altmap_offset(altmap) > nr_pages) { 322 pr_warn_once("memory add fail, invalid altmap\n"); 323 return -EINVAL; 324 } 325 altmap->alloc = 0; 326 } 327 328 err = check_pfn_span(pfn, nr_pages, "add"); 329 if (err) 330 return err; 331 332 for (; pfn < end_pfn; pfn += cur_nr_pages) { 333 /* Select all remaining pages up to the next section boundary */ 334 cur_nr_pages = min(end_pfn - pfn, 335 SECTION_ALIGN_UP(pfn + 1) - pfn); 336 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 337 if (err) 338 break; 339 cond_resched(); 340 } 341 vmemmap_populate_print_last(); 342 return err; 343 } 344 345 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 346 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 347 unsigned long start_pfn, 348 unsigned long end_pfn) 349 { 350 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 351 if (unlikely(!pfn_to_online_page(start_pfn))) 352 continue; 353 354 if (unlikely(pfn_to_nid(start_pfn) != nid)) 355 continue; 356 357 if (zone != page_zone(pfn_to_page(start_pfn))) 358 continue; 359 360 return start_pfn; 361 } 362 363 return 0; 364 } 365 366 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 367 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 368 unsigned long start_pfn, 369 unsigned long end_pfn) 370 { 371 unsigned long pfn; 372 373 /* pfn is the end pfn of a memory section. */ 374 pfn = end_pfn - 1; 375 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 376 if (unlikely(!pfn_to_online_page(pfn))) 377 continue; 378 379 if (unlikely(pfn_to_nid(pfn) != nid)) 380 continue; 381 382 if (zone != page_zone(pfn_to_page(pfn))) 383 continue; 384 385 return pfn; 386 } 387 388 return 0; 389 } 390 391 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 392 unsigned long end_pfn) 393 { 394 unsigned long pfn; 395 int nid = zone_to_nid(zone); 396 397 if (zone->zone_start_pfn == start_pfn) { 398 /* 399 * If the section is smallest section in the zone, it need 400 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 401 * In this case, we find second smallest valid mem_section 402 * for shrinking zone. 403 */ 404 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 405 zone_end_pfn(zone)); 406 if (pfn) { 407 zone->spanned_pages = zone_end_pfn(zone) - pfn; 408 zone->zone_start_pfn = pfn; 409 } else { 410 zone->zone_start_pfn = 0; 411 zone->spanned_pages = 0; 412 } 413 } else if (zone_end_pfn(zone) == end_pfn) { 414 /* 415 * If the section is biggest section in the zone, it need 416 * shrink zone->spanned_pages. 417 * In this case, we find second biggest valid mem_section for 418 * shrinking zone. 419 */ 420 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 421 start_pfn); 422 if (pfn) 423 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 424 else { 425 zone->zone_start_pfn = 0; 426 zone->spanned_pages = 0; 427 } 428 } 429 } 430 431 static void update_pgdat_span(struct pglist_data *pgdat) 432 { 433 unsigned long node_start_pfn = 0, node_end_pfn = 0; 434 struct zone *zone; 435 436 for (zone = pgdat->node_zones; 437 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 438 unsigned long end_pfn = zone_end_pfn(zone); 439 440 /* No need to lock the zones, they can't change. */ 441 if (!zone->spanned_pages) 442 continue; 443 if (!node_end_pfn) { 444 node_start_pfn = zone->zone_start_pfn; 445 node_end_pfn = end_pfn; 446 continue; 447 } 448 449 if (end_pfn > node_end_pfn) 450 node_end_pfn = end_pfn; 451 if (zone->zone_start_pfn < node_start_pfn) 452 node_start_pfn = zone->zone_start_pfn; 453 } 454 455 pgdat->node_start_pfn = node_start_pfn; 456 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 457 } 458 459 void __ref remove_pfn_range_from_zone(struct zone *zone, 460 unsigned long start_pfn, 461 unsigned long nr_pages) 462 { 463 const unsigned long end_pfn = start_pfn + nr_pages; 464 struct pglist_data *pgdat = zone->zone_pgdat; 465 unsigned long pfn, cur_nr_pages; 466 467 /* Poison struct pages because they are now uninitialized again. */ 468 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 469 cond_resched(); 470 471 /* Select all remaining pages up to the next section boundary */ 472 cur_nr_pages = 473 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 474 page_init_poison(pfn_to_page(pfn), 475 sizeof(struct page) * cur_nr_pages); 476 } 477 478 /* 479 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 480 * we will not try to shrink the zones - which is okay as 481 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 482 */ 483 if (zone_is_zone_device(zone)) 484 return; 485 486 clear_zone_contiguous(zone); 487 488 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 489 update_pgdat_span(pgdat); 490 491 set_zone_contiguous(zone); 492 } 493 494 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 495 unsigned long map_offset, 496 struct vmem_altmap *altmap) 497 { 498 struct mem_section *ms = __pfn_to_section(pfn); 499 500 if (WARN_ON_ONCE(!valid_section(ms))) 501 return; 502 503 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 504 } 505 506 /** 507 * __remove_pages() - remove sections of pages 508 * @pfn: starting pageframe (must be aligned to start of a section) 509 * @nr_pages: number of pages to remove (must be multiple of section size) 510 * @altmap: alternative device page map or %NULL if default memmap is used 511 * 512 * Generic helper function to remove section mappings and sysfs entries 513 * for the section of the memory we are removing. Caller needs to make 514 * sure that pages are marked reserved and zones are adjust properly by 515 * calling offline_pages(). 516 */ 517 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 518 struct vmem_altmap *altmap) 519 { 520 const unsigned long end_pfn = pfn + nr_pages; 521 unsigned long cur_nr_pages; 522 unsigned long map_offset = 0; 523 524 map_offset = vmem_altmap_offset(altmap); 525 526 if (check_pfn_span(pfn, nr_pages, "remove")) 527 return; 528 529 for (; pfn < end_pfn; pfn += cur_nr_pages) { 530 cond_resched(); 531 /* Select all remaining pages up to the next section boundary */ 532 cur_nr_pages = min(end_pfn - pfn, 533 SECTION_ALIGN_UP(pfn + 1) - pfn); 534 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 535 map_offset = 0; 536 } 537 } 538 539 int set_online_page_callback(online_page_callback_t callback) 540 { 541 int rc = -EINVAL; 542 543 get_online_mems(); 544 mutex_lock(&online_page_callback_lock); 545 546 if (online_page_callback == generic_online_page) { 547 online_page_callback = callback; 548 rc = 0; 549 } 550 551 mutex_unlock(&online_page_callback_lock); 552 put_online_mems(); 553 554 return rc; 555 } 556 EXPORT_SYMBOL_GPL(set_online_page_callback); 557 558 int restore_online_page_callback(online_page_callback_t callback) 559 { 560 int rc = -EINVAL; 561 562 get_online_mems(); 563 mutex_lock(&online_page_callback_lock); 564 565 if (online_page_callback == callback) { 566 online_page_callback = generic_online_page; 567 rc = 0; 568 } 569 570 mutex_unlock(&online_page_callback_lock); 571 put_online_mems(); 572 573 return rc; 574 } 575 EXPORT_SYMBOL_GPL(restore_online_page_callback); 576 577 void generic_online_page(struct page *page, unsigned int order) 578 { 579 /* 580 * Freeing the page with debug_pagealloc enabled will try to unmap it, 581 * so we should map it first. This is better than introducing a special 582 * case in page freeing fast path. 583 */ 584 debug_pagealloc_map_pages(page, 1 << order); 585 __free_pages_core(page, order); 586 totalram_pages_add(1UL << order); 587 } 588 EXPORT_SYMBOL_GPL(generic_online_page); 589 590 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 591 { 592 const unsigned long end_pfn = start_pfn + nr_pages; 593 unsigned long pfn; 594 595 /* 596 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 597 * decide to not expose all pages to the buddy (e.g., expose them 598 * later). We account all pages as being online and belonging to this 599 * zone ("present"). 600 * When using memmap_on_memory, the range might not be aligned to 601 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 602 * this and the first chunk to online will be pageblock_nr_pages. 603 */ 604 for (pfn = start_pfn; pfn < end_pfn;) { 605 int order = min(MAX_ORDER - 1UL, __ffs(pfn)); 606 607 (*online_page_callback)(pfn_to_page(pfn), order); 608 pfn += (1UL << order); 609 } 610 611 /* mark all involved sections as online */ 612 online_mem_sections(start_pfn, end_pfn); 613 } 614 615 /* check which state of node_states will be changed when online memory */ 616 static void node_states_check_changes_online(unsigned long nr_pages, 617 struct zone *zone, struct memory_notify *arg) 618 { 619 int nid = zone_to_nid(zone); 620 621 arg->status_change_nid = NUMA_NO_NODE; 622 arg->status_change_nid_normal = NUMA_NO_NODE; 623 624 if (!node_state(nid, N_MEMORY)) 625 arg->status_change_nid = nid; 626 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 627 arg->status_change_nid_normal = nid; 628 } 629 630 static void node_states_set_node(int node, struct memory_notify *arg) 631 { 632 if (arg->status_change_nid_normal >= 0) 633 node_set_state(node, N_NORMAL_MEMORY); 634 635 if (arg->status_change_nid >= 0) 636 node_set_state(node, N_MEMORY); 637 } 638 639 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 640 unsigned long nr_pages) 641 { 642 unsigned long old_end_pfn = zone_end_pfn(zone); 643 644 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 645 zone->zone_start_pfn = start_pfn; 646 647 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 648 } 649 650 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 651 unsigned long nr_pages) 652 { 653 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 654 655 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 656 pgdat->node_start_pfn = start_pfn; 657 658 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 659 660 } 661 662 static void section_taint_zone_device(unsigned long pfn) 663 { 664 struct mem_section *ms = __pfn_to_section(pfn); 665 666 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 667 } 668 669 /* 670 * Associate the pfn range with the given zone, initializing the memmaps 671 * and resizing the pgdat/zone data to span the added pages. After this 672 * call, all affected pages are PG_reserved. 673 * 674 * All aligned pageblocks are initialized to the specified migratetype 675 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 676 * zone stats (e.g., nr_isolate_pageblock) are touched. 677 */ 678 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 679 unsigned long nr_pages, 680 struct vmem_altmap *altmap, int migratetype) 681 { 682 struct pglist_data *pgdat = zone->zone_pgdat; 683 int nid = pgdat->node_id; 684 685 clear_zone_contiguous(zone); 686 687 if (zone_is_empty(zone)) 688 init_currently_empty_zone(zone, start_pfn, nr_pages); 689 resize_zone_range(zone, start_pfn, nr_pages); 690 resize_pgdat_range(pgdat, start_pfn, nr_pages); 691 692 /* 693 * Subsection population requires care in pfn_to_online_page(). 694 * Set the taint to enable the slow path detection of 695 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 696 * section. 697 */ 698 if (zone_is_zone_device(zone)) { 699 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 700 section_taint_zone_device(start_pfn); 701 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 702 section_taint_zone_device(start_pfn + nr_pages); 703 } 704 705 /* 706 * TODO now we have a visible range of pages which are not associated 707 * with their zone properly. Not nice but set_pfnblock_flags_mask 708 * expects the zone spans the pfn range. All the pages in the range 709 * are reserved so nobody should be touching them so we should be safe 710 */ 711 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 712 MEMINIT_HOTPLUG, altmap, migratetype); 713 714 set_zone_contiguous(zone); 715 } 716 717 struct auto_movable_stats { 718 unsigned long kernel_early_pages; 719 unsigned long movable_pages; 720 }; 721 722 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 723 struct zone *zone) 724 { 725 if (zone_idx(zone) == ZONE_MOVABLE) { 726 stats->movable_pages += zone->present_pages; 727 } else { 728 stats->kernel_early_pages += zone->present_early_pages; 729 #ifdef CONFIG_CMA 730 /* 731 * CMA pages (never on hotplugged memory) behave like 732 * ZONE_MOVABLE. 733 */ 734 stats->movable_pages += zone->cma_pages; 735 stats->kernel_early_pages -= zone->cma_pages; 736 #endif /* CONFIG_CMA */ 737 } 738 } 739 struct auto_movable_group_stats { 740 unsigned long movable_pages; 741 unsigned long req_kernel_early_pages; 742 }; 743 744 static int auto_movable_stats_account_group(struct memory_group *group, 745 void *arg) 746 { 747 const int ratio = READ_ONCE(auto_movable_ratio); 748 struct auto_movable_group_stats *stats = arg; 749 long pages; 750 751 /* 752 * We don't support modifying the config while the auto-movable online 753 * policy is already enabled. Just avoid the division by zero below. 754 */ 755 if (!ratio) 756 return 0; 757 758 /* 759 * Calculate how many early kernel pages this group requires to 760 * satisfy the configured zone ratio. 761 */ 762 pages = group->present_movable_pages * 100 / ratio; 763 pages -= group->present_kernel_pages; 764 765 if (pages > 0) 766 stats->req_kernel_early_pages += pages; 767 stats->movable_pages += group->present_movable_pages; 768 return 0; 769 } 770 771 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 772 unsigned long nr_pages) 773 { 774 unsigned long kernel_early_pages, movable_pages; 775 struct auto_movable_group_stats group_stats = {}; 776 struct auto_movable_stats stats = {}; 777 pg_data_t *pgdat = NODE_DATA(nid); 778 struct zone *zone; 779 int i; 780 781 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 782 if (nid == NUMA_NO_NODE) { 783 /* TODO: cache values */ 784 for_each_populated_zone(zone) 785 auto_movable_stats_account_zone(&stats, zone); 786 } else { 787 for (i = 0; i < MAX_NR_ZONES; i++) { 788 zone = pgdat->node_zones + i; 789 if (populated_zone(zone)) 790 auto_movable_stats_account_zone(&stats, zone); 791 } 792 } 793 794 kernel_early_pages = stats.kernel_early_pages; 795 movable_pages = stats.movable_pages; 796 797 /* 798 * Kernel memory inside dynamic memory group allows for more MOVABLE 799 * memory within the same group. Remove the effect of all but the 800 * current group from the stats. 801 */ 802 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 803 group, &group_stats); 804 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 805 return false; 806 kernel_early_pages -= group_stats.req_kernel_early_pages; 807 movable_pages -= group_stats.movable_pages; 808 809 if (group && group->is_dynamic) 810 kernel_early_pages += group->present_kernel_pages; 811 812 /* 813 * Test if we could online the given number of pages to ZONE_MOVABLE 814 * and still stay in the configured ratio. 815 */ 816 movable_pages += nr_pages; 817 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 818 } 819 820 /* 821 * Returns a default kernel memory zone for the given pfn range. 822 * If no kernel zone covers this pfn range it will automatically go 823 * to the ZONE_NORMAL. 824 */ 825 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 826 unsigned long nr_pages) 827 { 828 struct pglist_data *pgdat = NODE_DATA(nid); 829 int zid; 830 831 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 832 struct zone *zone = &pgdat->node_zones[zid]; 833 834 if (zone_intersects(zone, start_pfn, nr_pages)) 835 return zone; 836 } 837 838 return &pgdat->node_zones[ZONE_NORMAL]; 839 } 840 841 /* 842 * Determine to which zone to online memory dynamically based on user 843 * configuration and system stats. We care about the following ratio: 844 * 845 * MOVABLE : KERNEL 846 * 847 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 848 * one of the kernel zones. CMA pages inside one of the kernel zones really 849 * behaves like ZONE_MOVABLE, so we treat them accordingly. 850 * 851 * We don't allow for hotplugged memory in a KERNEL zone to increase the 852 * amount of MOVABLE memory we can have, so we end up with: 853 * 854 * MOVABLE : KERNEL_EARLY 855 * 856 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 857 * boot. We base our calculation on KERNEL_EARLY internally, because: 858 * 859 * a) Hotplugged memory in one of the kernel zones can sometimes still get 860 * hotunplugged, especially when hot(un)plugging individual memory blocks. 861 * There is no coordination across memory devices, therefore "automatic" 862 * hotunplugging, as implemented in hypervisors, could result in zone 863 * imbalances. 864 * b) Early/boot memory in one of the kernel zones can usually not get 865 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 866 * with unmovable allocations). While there are corner cases where it might 867 * still work, it is barely relevant in practice. 868 * 869 * Exceptions are dynamic memory groups, which allow for more MOVABLE 870 * memory within the same memory group -- because in that case, there is 871 * coordination within the single memory device managed by a single driver. 872 * 873 * We rely on "present pages" instead of "managed pages", as the latter is 874 * highly unreliable and dynamic in virtualized environments, and does not 875 * consider boot time allocations. For example, memory ballooning adjusts the 876 * managed pages when inflating/deflating the balloon, and balloon compaction 877 * can even migrate inflated pages between zones. 878 * 879 * Using "present pages" is better but some things to keep in mind are: 880 * 881 * a) Some memblock allocations, such as for the crashkernel area, are 882 * effectively unused by the kernel, yet they account to "present pages". 883 * Fortunately, these allocations are comparatively small in relevant setups 884 * (e.g., fraction of system memory). 885 * b) Some hotplugged memory blocks in virtualized environments, esecially 886 * hotplugged by virtio-mem, look like they are completely present, however, 887 * only parts of the memory block are actually currently usable. 888 * "present pages" is an upper limit that can get reached at runtime. As 889 * we base our calculations on KERNEL_EARLY, this is not an issue. 890 */ 891 static struct zone *auto_movable_zone_for_pfn(int nid, 892 struct memory_group *group, 893 unsigned long pfn, 894 unsigned long nr_pages) 895 { 896 unsigned long online_pages = 0, max_pages, end_pfn; 897 struct page *page; 898 899 if (!auto_movable_ratio) 900 goto kernel_zone; 901 902 if (group && !group->is_dynamic) { 903 max_pages = group->s.max_pages; 904 online_pages = group->present_movable_pages; 905 906 /* If anything is !MOVABLE online the rest !MOVABLE. */ 907 if (group->present_kernel_pages) 908 goto kernel_zone; 909 } else if (!group || group->d.unit_pages == nr_pages) { 910 max_pages = nr_pages; 911 } else { 912 max_pages = group->d.unit_pages; 913 /* 914 * Take a look at all online sections in the current unit. 915 * We can safely assume that all pages within a section belong 916 * to the same zone, because dynamic memory groups only deal 917 * with hotplugged memory. 918 */ 919 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 920 end_pfn = pfn + group->d.unit_pages; 921 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 922 page = pfn_to_online_page(pfn); 923 if (!page) 924 continue; 925 /* If anything is !MOVABLE online the rest !MOVABLE. */ 926 if (page_zonenum(page) != ZONE_MOVABLE) 927 goto kernel_zone; 928 online_pages += PAGES_PER_SECTION; 929 } 930 } 931 932 /* 933 * Online MOVABLE if we could *currently* online all remaining parts 934 * MOVABLE. We expect to (add+) online them immediately next, so if 935 * nobody interferes, all will be MOVABLE if possible. 936 */ 937 nr_pages = max_pages - online_pages; 938 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 939 goto kernel_zone; 940 941 #ifdef CONFIG_NUMA 942 if (auto_movable_numa_aware && 943 !auto_movable_can_online_movable(nid, group, nr_pages)) 944 goto kernel_zone; 945 #endif /* CONFIG_NUMA */ 946 947 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 948 kernel_zone: 949 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 950 } 951 952 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 953 unsigned long nr_pages) 954 { 955 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 956 nr_pages); 957 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 958 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 959 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 960 961 /* 962 * We inherit the existing zone in a simple case where zones do not 963 * overlap in the given range 964 */ 965 if (in_kernel ^ in_movable) 966 return (in_kernel) ? kernel_zone : movable_zone; 967 968 /* 969 * If the range doesn't belong to any zone or two zones overlap in the 970 * given range then we use movable zone only if movable_node is 971 * enabled because we always online to a kernel zone by default. 972 */ 973 return movable_node_enabled ? movable_zone : kernel_zone; 974 } 975 976 struct zone *zone_for_pfn_range(int online_type, int nid, 977 struct memory_group *group, unsigned long start_pfn, 978 unsigned long nr_pages) 979 { 980 if (online_type == MMOP_ONLINE_KERNEL) 981 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 982 983 if (online_type == MMOP_ONLINE_MOVABLE) 984 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 985 986 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 987 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 988 989 return default_zone_for_pfn(nid, start_pfn, nr_pages); 990 } 991 992 /* 993 * This function should only be called by memory_block_{online,offline}, 994 * and {online,offline}_pages. 995 */ 996 void adjust_present_page_count(struct page *page, struct memory_group *group, 997 long nr_pages) 998 { 999 struct zone *zone = page_zone(page); 1000 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1001 1002 /* 1003 * We only support onlining/offlining/adding/removing of complete 1004 * memory blocks; therefore, either all is either early or hotplugged. 1005 */ 1006 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1007 zone->present_early_pages += nr_pages; 1008 zone->present_pages += nr_pages; 1009 zone->zone_pgdat->node_present_pages += nr_pages; 1010 1011 if (group && movable) 1012 group->present_movable_pages += nr_pages; 1013 else if (group && !movable) 1014 group->present_kernel_pages += nr_pages; 1015 } 1016 1017 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1018 struct zone *zone) 1019 { 1020 unsigned long end_pfn = pfn + nr_pages; 1021 int ret; 1022 1023 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1024 if (ret) 1025 return ret; 1026 1027 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1028 1029 /* 1030 * It might be that the vmemmap_pages fully span sections. If that is 1031 * the case, mark those sections online here as otherwise they will be 1032 * left offline. 1033 */ 1034 if (nr_pages >= PAGES_PER_SECTION) 1035 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1036 1037 return ret; 1038 } 1039 1040 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1041 { 1042 unsigned long end_pfn = pfn + nr_pages; 1043 1044 /* 1045 * It might be that the vmemmap_pages fully span sections. If that is 1046 * the case, mark those sections offline here as otherwise they will be 1047 * left online. 1048 */ 1049 if (nr_pages >= PAGES_PER_SECTION) 1050 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1051 1052 /* 1053 * The pages associated with this vmemmap have been offlined, so 1054 * we can reset its state here. 1055 */ 1056 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1057 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1058 } 1059 1060 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1061 struct zone *zone, struct memory_group *group) 1062 { 1063 unsigned long flags; 1064 int need_zonelists_rebuild = 0; 1065 const int nid = zone_to_nid(zone); 1066 int ret; 1067 struct memory_notify arg; 1068 1069 /* 1070 * {on,off}lining is constrained to full memory sections (or more 1071 * precisely to memory blocks from the user space POV). 1072 * memmap_on_memory is an exception because it reserves initial part 1073 * of the physical memory space for vmemmaps. That space is pageblock 1074 * aligned. 1075 */ 1076 if (WARN_ON_ONCE(!nr_pages || 1077 !IS_ALIGNED(pfn, pageblock_nr_pages) || 1078 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1079 return -EINVAL; 1080 1081 mem_hotplug_begin(); 1082 1083 /* associate pfn range with the zone */ 1084 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1085 1086 arg.start_pfn = pfn; 1087 arg.nr_pages = nr_pages; 1088 node_states_check_changes_online(nr_pages, zone, &arg); 1089 1090 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1091 ret = notifier_to_errno(ret); 1092 if (ret) 1093 goto failed_addition; 1094 1095 /* 1096 * Fixup the number of isolated pageblocks before marking the sections 1097 * onlining, such that undo_isolate_page_range() works correctly. 1098 */ 1099 spin_lock_irqsave(&zone->lock, flags); 1100 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1101 spin_unlock_irqrestore(&zone->lock, flags); 1102 1103 /* 1104 * If this zone is not populated, then it is not in zonelist. 1105 * This means the page allocator ignores this zone. 1106 * So, zonelist must be updated after online. 1107 */ 1108 if (!populated_zone(zone)) { 1109 need_zonelists_rebuild = 1; 1110 setup_zone_pageset(zone); 1111 } 1112 1113 online_pages_range(pfn, nr_pages); 1114 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1115 1116 node_states_set_node(nid, &arg); 1117 if (need_zonelists_rebuild) 1118 build_all_zonelists(NULL); 1119 1120 /* Basic onlining is complete, allow allocation of onlined pages. */ 1121 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1122 1123 /* 1124 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1125 * the tail of the freelist when undoing isolation). Shuffle the whole 1126 * zone to make sure the just onlined pages are properly distributed 1127 * across the whole freelist - to create an initial shuffle. 1128 */ 1129 shuffle_zone(zone); 1130 1131 /* reinitialise watermarks and update pcp limits */ 1132 init_per_zone_wmark_min(); 1133 1134 kswapd_run(nid); 1135 kcompactd_run(nid); 1136 1137 writeback_set_ratelimit(); 1138 1139 memory_notify(MEM_ONLINE, &arg); 1140 mem_hotplug_done(); 1141 return 0; 1142 1143 failed_addition: 1144 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1145 (unsigned long long) pfn << PAGE_SHIFT, 1146 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1147 memory_notify(MEM_CANCEL_ONLINE, &arg); 1148 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1149 mem_hotplug_done(); 1150 return ret; 1151 } 1152 1153 static void reset_node_present_pages(pg_data_t *pgdat) 1154 { 1155 struct zone *z; 1156 1157 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1158 z->present_pages = 0; 1159 1160 pgdat->node_present_pages = 0; 1161 } 1162 1163 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1164 static pg_data_t __ref *hotadd_new_pgdat(int nid) 1165 { 1166 struct pglist_data *pgdat; 1167 1168 pgdat = NODE_DATA(nid); 1169 if (!pgdat) { 1170 pgdat = arch_alloc_nodedata(nid); 1171 if (!pgdat) 1172 return NULL; 1173 1174 pgdat->per_cpu_nodestats = 1175 alloc_percpu(struct per_cpu_nodestat); 1176 arch_refresh_nodedata(nid, pgdat); 1177 } else { 1178 int cpu; 1179 /* 1180 * Reset the nr_zones, order and highest_zoneidx before reuse. 1181 * Note that kswapd will init kswapd_highest_zoneidx properly 1182 * when it starts in the near future. 1183 */ 1184 pgdat->nr_zones = 0; 1185 pgdat->kswapd_order = 0; 1186 pgdat->kswapd_highest_zoneidx = 0; 1187 for_each_online_cpu(cpu) { 1188 struct per_cpu_nodestat *p; 1189 1190 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1191 memset(p, 0, sizeof(*p)); 1192 } 1193 } 1194 1195 /* we can use NODE_DATA(nid) from here */ 1196 pgdat->node_id = nid; 1197 pgdat->node_start_pfn = 0; 1198 1199 /* init node's zones as empty zones, we don't have any present pages.*/ 1200 free_area_init_core_hotplug(nid); 1201 1202 /* 1203 * The node we allocated has no zone fallback lists. For avoiding 1204 * to access not-initialized zonelist, build here. 1205 */ 1206 build_all_zonelists(pgdat); 1207 1208 /* 1209 * When memory is hot-added, all the memory is in offline state. So 1210 * clear all zones' present_pages because they will be updated in 1211 * online_pages() and offline_pages(). 1212 */ 1213 reset_node_managed_pages(pgdat); 1214 reset_node_present_pages(pgdat); 1215 1216 return pgdat; 1217 } 1218 1219 static void rollback_node_hotadd(int nid) 1220 { 1221 pg_data_t *pgdat = NODE_DATA(nid); 1222 1223 arch_refresh_nodedata(nid, NULL); 1224 free_percpu(pgdat->per_cpu_nodestats); 1225 arch_free_nodedata(pgdat); 1226 } 1227 1228 1229 /* 1230 * __try_online_node - online a node if offlined 1231 * @nid: the node ID 1232 * @set_node_online: Whether we want to online the node 1233 * called by cpu_up() to online a node without onlined memory. 1234 * 1235 * Returns: 1236 * 1 -> a new node has been allocated 1237 * 0 -> the node is already online 1238 * -ENOMEM -> the node could not be allocated 1239 */ 1240 static int __try_online_node(int nid, bool set_node_online) 1241 { 1242 pg_data_t *pgdat; 1243 int ret = 1; 1244 1245 if (node_online(nid)) 1246 return 0; 1247 1248 pgdat = hotadd_new_pgdat(nid); 1249 if (!pgdat) { 1250 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1251 ret = -ENOMEM; 1252 goto out; 1253 } 1254 1255 if (set_node_online) { 1256 node_set_online(nid); 1257 ret = register_one_node(nid); 1258 BUG_ON(ret); 1259 } 1260 out: 1261 return ret; 1262 } 1263 1264 /* 1265 * Users of this function always want to online/register the node 1266 */ 1267 int try_online_node(int nid) 1268 { 1269 int ret; 1270 1271 mem_hotplug_begin(); 1272 ret = __try_online_node(nid, true); 1273 mem_hotplug_done(); 1274 return ret; 1275 } 1276 1277 static int check_hotplug_memory_range(u64 start, u64 size) 1278 { 1279 /* memory range must be block size aligned */ 1280 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1281 !IS_ALIGNED(size, memory_block_size_bytes())) { 1282 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1283 memory_block_size_bytes(), start, size); 1284 return -EINVAL; 1285 } 1286 1287 return 0; 1288 } 1289 1290 static int online_memory_block(struct memory_block *mem, void *arg) 1291 { 1292 mem->online_type = mhp_default_online_type; 1293 return device_online(&mem->dev); 1294 } 1295 1296 bool mhp_supports_memmap_on_memory(unsigned long size) 1297 { 1298 unsigned long nr_vmemmap_pages = size / PAGE_SIZE; 1299 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page); 1300 unsigned long remaining_size = size - vmemmap_size; 1301 1302 /* 1303 * Besides having arch support and the feature enabled at runtime, we 1304 * need a few more assumptions to hold true: 1305 * 1306 * a) We span a single memory block: memory onlining/offlinin;g happens 1307 * in memory block granularity. We don't want the vmemmap of online 1308 * memory blocks to reside on offline memory blocks. In the future, 1309 * we might want to support variable-sized memory blocks to make the 1310 * feature more versatile. 1311 * 1312 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1313 * to populate memory from the altmap for unrelated parts (i.e., 1314 * other memory blocks) 1315 * 1316 * c) The vmemmap pages (and thereby the pages that will be exposed to 1317 * the buddy) have to cover full pageblocks: memory onlining/offlining 1318 * code requires applicable ranges to be page-aligned, for example, to 1319 * set the migratetypes properly. 1320 * 1321 * TODO: Although we have a check here to make sure that vmemmap pages 1322 * fully populate a PMD, it is not the right place to check for 1323 * this. A much better solution involves improving vmemmap code 1324 * to fallback to base pages when trying to populate vmemmap using 1325 * altmap as an alternative source of memory, and we do not exactly 1326 * populate a single PMD. 1327 */ 1328 return memmap_on_memory && 1329 !hugetlb_free_vmemmap_enabled && 1330 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) && 1331 size == memory_block_size_bytes() && 1332 IS_ALIGNED(vmemmap_size, PMD_SIZE) && 1333 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT)); 1334 } 1335 1336 /* 1337 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1338 * and online/offline operations (triggered e.g. by sysfs). 1339 * 1340 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1341 */ 1342 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1343 { 1344 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1345 struct vmem_altmap mhp_altmap = {}; 1346 struct memory_group *group = NULL; 1347 u64 start, size; 1348 bool new_node = false; 1349 int ret; 1350 1351 start = res->start; 1352 size = resource_size(res); 1353 1354 ret = check_hotplug_memory_range(start, size); 1355 if (ret) 1356 return ret; 1357 1358 if (mhp_flags & MHP_NID_IS_MGID) { 1359 group = memory_group_find_by_id(nid); 1360 if (!group) 1361 return -EINVAL; 1362 nid = group->nid; 1363 } 1364 1365 if (!node_possible(nid)) { 1366 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1367 return -EINVAL; 1368 } 1369 1370 mem_hotplug_begin(); 1371 1372 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1373 ret = memblock_add_node(start, size, nid, MEMBLOCK_NONE); 1374 if (ret) 1375 goto error_mem_hotplug_end; 1376 } 1377 1378 ret = __try_online_node(nid, false); 1379 if (ret < 0) 1380 goto error; 1381 new_node = ret; 1382 1383 /* 1384 * Self hosted memmap array 1385 */ 1386 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1387 if (!mhp_supports_memmap_on_memory(size)) { 1388 ret = -EINVAL; 1389 goto error; 1390 } 1391 mhp_altmap.free = PHYS_PFN(size); 1392 mhp_altmap.base_pfn = PHYS_PFN(start); 1393 params.altmap = &mhp_altmap; 1394 } 1395 1396 /* call arch's memory hotadd */ 1397 ret = arch_add_memory(nid, start, size, ¶ms); 1398 if (ret < 0) 1399 goto error; 1400 1401 /* create memory block devices after memory was added */ 1402 ret = create_memory_block_devices(start, size, mhp_altmap.alloc, 1403 group); 1404 if (ret) { 1405 arch_remove_memory(start, size, NULL); 1406 goto error; 1407 } 1408 1409 if (new_node) { 1410 /* If sysfs file of new node can't be created, cpu on the node 1411 * can't be hot-added. There is no rollback way now. 1412 * So, check by BUG_ON() to catch it reluctantly.. 1413 * We online node here. We can't roll back from here. 1414 */ 1415 node_set_online(nid); 1416 ret = __register_one_node(nid); 1417 BUG_ON(ret); 1418 } 1419 1420 /* link memory sections under this node.*/ 1421 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), 1422 MEMINIT_HOTPLUG); 1423 1424 /* create new memmap entry */ 1425 if (!strcmp(res->name, "System RAM")) 1426 firmware_map_add_hotplug(start, start + size, "System RAM"); 1427 1428 /* device_online() will take the lock when calling online_pages() */ 1429 mem_hotplug_done(); 1430 1431 /* 1432 * In case we're allowed to merge the resource, flag it and trigger 1433 * merging now that adding succeeded. 1434 */ 1435 if (mhp_flags & MHP_MERGE_RESOURCE) 1436 merge_system_ram_resource(res); 1437 1438 /* online pages if requested */ 1439 if (mhp_default_online_type != MMOP_OFFLINE) 1440 walk_memory_blocks(start, size, NULL, online_memory_block); 1441 1442 return ret; 1443 error: 1444 /* rollback pgdat allocation and others */ 1445 if (new_node) 1446 rollback_node_hotadd(nid); 1447 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1448 memblock_remove(start, size); 1449 error_mem_hotplug_end: 1450 mem_hotplug_done(); 1451 return ret; 1452 } 1453 1454 /* requires device_hotplug_lock, see add_memory_resource() */ 1455 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1456 { 1457 struct resource *res; 1458 int ret; 1459 1460 res = register_memory_resource(start, size, "System RAM"); 1461 if (IS_ERR(res)) 1462 return PTR_ERR(res); 1463 1464 ret = add_memory_resource(nid, res, mhp_flags); 1465 if (ret < 0) 1466 release_memory_resource(res); 1467 return ret; 1468 } 1469 1470 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1471 { 1472 int rc; 1473 1474 lock_device_hotplug(); 1475 rc = __add_memory(nid, start, size, mhp_flags); 1476 unlock_device_hotplug(); 1477 1478 return rc; 1479 } 1480 EXPORT_SYMBOL_GPL(add_memory); 1481 1482 /* 1483 * Add special, driver-managed memory to the system as system RAM. Such 1484 * memory is not exposed via the raw firmware-provided memmap as system 1485 * RAM, instead, it is detected and added by a driver - during cold boot, 1486 * after a reboot, and after kexec. 1487 * 1488 * Reasons why this memory should not be used for the initial memmap of a 1489 * kexec kernel or for placing kexec images: 1490 * - The booting kernel is in charge of determining how this memory will be 1491 * used (e.g., use persistent memory as system RAM) 1492 * - Coordination with a hypervisor is required before this memory 1493 * can be used (e.g., inaccessible parts). 1494 * 1495 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1496 * memory map") are created. Also, the created memory resource is flagged 1497 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1498 * this memory as well (esp., not place kexec images onto it). 1499 * 1500 * The resource_name (visible via /proc/iomem) has to have the format 1501 * "System RAM ($DRIVER)". 1502 */ 1503 int add_memory_driver_managed(int nid, u64 start, u64 size, 1504 const char *resource_name, mhp_t mhp_flags) 1505 { 1506 struct resource *res; 1507 int rc; 1508 1509 if (!resource_name || 1510 strstr(resource_name, "System RAM (") != resource_name || 1511 resource_name[strlen(resource_name) - 1] != ')') 1512 return -EINVAL; 1513 1514 lock_device_hotplug(); 1515 1516 res = register_memory_resource(start, size, resource_name); 1517 if (IS_ERR(res)) { 1518 rc = PTR_ERR(res); 1519 goto out_unlock; 1520 } 1521 1522 rc = add_memory_resource(nid, res, mhp_flags); 1523 if (rc < 0) 1524 release_memory_resource(res); 1525 1526 out_unlock: 1527 unlock_device_hotplug(); 1528 return rc; 1529 } 1530 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1531 1532 /* 1533 * Platforms should define arch_get_mappable_range() that provides 1534 * maximum possible addressable physical memory range for which the 1535 * linear mapping could be created. The platform returned address 1536 * range must adhere to these following semantics. 1537 * 1538 * - range.start <= range.end 1539 * - Range includes both end points [range.start..range.end] 1540 * 1541 * There is also a fallback definition provided here, allowing the 1542 * entire possible physical address range in case any platform does 1543 * not define arch_get_mappable_range(). 1544 */ 1545 struct range __weak arch_get_mappable_range(void) 1546 { 1547 struct range mhp_range = { 1548 .start = 0UL, 1549 .end = -1ULL, 1550 }; 1551 return mhp_range; 1552 } 1553 1554 struct range mhp_get_pluggable_range(bool need_mapping) 1555 { 1556 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1557 struct range mhp_range; 1558 1559 if (need_mapping) { 1560 mhp_range = arch_get_mappable_range(); 1561 if (mhp_range.start > max_phys) { 1562 mhp_range.start = 0; 1563 mhp_range.end = 0; 1564 } 1565 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1566 } else { 1567 mhp_range.start = 0; 1568 mhp_range.end = max_phys; 1569 } 1570 return mhp_range; 1571 } 1572 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1573 1574 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1575 { 1576 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1577 u64 end = start + size; 1578 1579 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1580 return true; 1581 1582 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1583 start, end, mhp_range.start, mhp_range.end); 1584 return false; 1585 } 1586 1587 #ifdef CONFIG_MEMORY_HOTREMOVE 1588 /* 1589 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1590 * memory holes). When true, return the zone. 1591 */ 1592 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1593 unsigned long end_pfn) 1594 { 1595 unsigned long pfn, sec_end_pfn; 1596 struct zone *zone = NULL; 1597 struct page *page; 1598 1599 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1600 pfn < end_pfn; 1601 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1602 /* Make sure the memory section is present first */ 1603 if (!present_section_nr(pfn_to_section_nr(pfn))) 1604 continue; 1605 for (; pfn < sec_end_pfn && pfn < end_pfn; 1606 pfn += MAX_ORDER_NR_PAGES) { 1607 /* Check if we got outside of the zone */ 1608 if (zone && !zone_spans_pfn(zone, pfn)) 1609 return NULL; 1610 page = pfn_to_page(pfn); 1611 if (zone && page_zone(page) != zone) 1612 return NULL; 1613 zone = page_zone(page); 1614 } 1615 } 1616 1617 return zone; 1618 } 1619 1620 /* 1621 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1622 * non-lru movable pages and hugepages). Will skip over most unmovable 1623 * pages (esp., pages that can be skipped when offlining), but bail out on 1624 * definitely unmovable pages. 1625 * 1626 * Returns: 1627 * 0 in case a movable page is found and movable_pfn was updated. 1628 * -ENOENT in case no movable page was found. 1629 * -EBUSY in case a definitely unmovable page was found. 1630 */ 1631 static int scan_movable_pages(unsigned long start, unsigned long end, 1632 unsigned long *movable_pfn) 1633 { 1634 unsigned long pfn; 1635 1636 for (pfn = start; pfn < end; pfn++) { 1637 struct page *page, *head; 1638 unsigned long skip; 1639 1640 if (!pfn_valid(pfn)) 1641 continue; 1642 page = pfn_to_page(pfn); 1643 if (PageLRU(page)) 1644 goto found; 1645 if (__PageMovable(page)) 1646 goto found; 1647 1648 /* 1649 * PageOffline() pages that are not marked __PageMovable() and 1650 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1651 * definitely unmovable. If their reference count would be 0, 1652 * they could at least be skipped when offlining memory. 1653 */ 1654 if (PageOffline(page) && page_count(page)) 1655 return -EBUSY; 1656 1657 if (!PageHuge(page)) 1658 continue; 1659 head = compound_head(page); 1660 /* 1661 * This test is racy as we hold no reference or lock. The 1662 * hugetlb page could have been free'ed and head is no longer 1663 * a hugetlb page before the following check. In such unlikely 1664 * cases false positives and negatives are possible. Calling 1665 * code must deal with these scenarios. 1666 */ 1667 if (HPageMigratable(head)) 1668 goto found; 1669 skip = compound_nr(head) - (page - head); 1670 pfn += skip - 1; 1671 } 1672 return -ENOENT; 1673 found: 1674 *movable_pfn = pfn; 1675 return 0; 1676 } 1677 1678 static int 1679 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1680 { 1681 unsigned long pfn; 1682 struct page *page, *head; 1683 int ret = 0; 1684 LIST_HEAD(source); 1685 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1686 DEFAULT_RATELIMIT_BURST); 1687 1688 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1689 if (!pfn_valid(pfn)) 1690 continue; 1691 page = pfn_to_page(pfn); 1692 head = compound_head(page); 1693 1694 if (PageHuge(page)) { 1695 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1696 isolate_huge_page(head, &source); 1697 continue; 1698 } else if (PageTransHuge(page)) 1699 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1700 1701 /* 1702 * HWPoison pages have elevated reference counts so the migration would 1703 * fail on them. It also doesn't make any sense to migrate them in the 1704 * first place. Still try to unmap such a page in case it is still mapped 1705 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1706 * the unmap as the catch all safety net). 1707 */ 1708 if (PageHWPoison(page)) { 1709 if (WARN_ON(PageLRU(page))) 1710 isolate_lru_page(page); 1711 if (page_mapped(page)) 1712 try_to_unmap(page, TTU_IGNORE_MLOCK); 1713 continue; 1714 } 1715 1716 if (!get_page_unless_zero(page)) 1717 continue; 1718 /* 1719 * We can skip free pages. And we can deal with pages on 1720 * LRU and non-lru movable pages. 1721 */ 1722 if (PageLRU(page)) 1723 ret = isolate_lru_page(page); 1724 else 1725 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1726 if (!ret) { /* Success */ 1727 list_add_tail(&page->lru, &source); 1728 if (!__PageMovable(page)) 1729 inc_node_page_state(page, NR_ISOLATED_ANON + 1730 page_is_file_lru(page)); 1731 1732 } else { 1733 if (__ratelimit(&migrate_rs)) { 1734 pr_warn("failed to isolate pfn %lx\n", pfn); 1735 dump_page(page, "isolation failed"); 1736 } 1737 } 1738 put_page(page); 1739 } 1740 if (!list_empty(&source)) { 1741 nodemask_t nmask = node_states[N_MEMORY]; 1742 struct migration_target_control mtc = { 1743 .nmask = &nmask, 1744 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1745 }; 1746 1747 /* 1748 * We have checked that migration range is on a single zone so 1749 * we can use the nid of the first page to all the others. 1750 */ 1751 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1752 1753 /* 1754 * try to allocate from a different node but reuse this node 1755 * if there are no other online nodes to be used (e.g. we are 1756 * offlining a part of the only existing node) 1757 */ 1758 node_clear(mtc.nid, nmask); 1759 if (nodes_empty(nmask)) 1760 node_set(mtc.nid, nmask); 1761 ret = migrate_pages(&source, alloc_migration_target, NULL, 1762 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1763 if (ret) { 1764 list_for_each_entry(page, &source, lru) { 1765 if (__ratelimit(&migrate_rs)) { 1766 pr_warn("migrating pfn %lx failed ret:%d\n", 1767 page_to_pfn(page), ret); 1768 dump_page(page, "migration failure"); 1769 } 1770 } 1771 putback_movable_pages(&source); 1772 } 1773 } 1774 1775 return ret; 1776 } 1777 1778 static int __init cmdline_parse_movable_node(char *p) 1779 { 1780 movable_node_enabled = true; 1781 return 0; 1782 } 1783 early_param("movable_node", cmdline_parse_movable_node); 1784 1785 /* check which state of node_states will be changed when offline memory */ 1786 static void node_states_check_changes_offline(unsigned long nr_pages, 1787 struct zone *zone, struct memory_notify *arg) 1788 { 1789 struct pglist_data *pgdat = zone->zone_pgdat; 1790 unsigned long present_pages = 0; 1791 enum zone_type zt; 1792 1793 arg->status_change_nid = NUMA_NO_NODE; 1794 arg->status_change_nid_normal = NUMA_NO_NODE; 1795 1796 /* 1797 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1798 * If the memory to be offline is within the range 1799 * [0..ZONE_NORMAL], and it is the last present memory there, 1800 * the zones in that range will become empty after the offlining, 1801 * thus we can determine that we need to clear the node from 1802 * node_states[N_NORMAL_MEMORY]. 1803 */ 1804 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1805 present_pages += pgdat->node_zones[zt].present_pages; 1806 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1807 arg->status_change_nid_normal = zone_to_nid(zone); 1808 1809 /* 1810 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1811 * does not apply as we don't support 32bit. 1812 * Here we count the possible pages from ZONE_MOVABLE. 1813 * If after having accounted all the pages, we see that the nr_pages 1814 * to be offlined is over or equal to the accounted pages, 1815 * we know that the node will become empty, and so, we can clear 1816 * it for N_MEMORY as well. 1817 */ 1818 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1819 1820 if (nr_pages >= present_pages) 1821 arg->status_change_nid = zone_to_nid(zone); 1822 } 1823 1824 static void node_states_clear_node(int node, struct memory_notify *arg) 1825 { 1826 if (arg->status_change_nid_normal >= 0) 1827 node_clear_state(node, N_NORMAL_MEMORY); 1828 1829 if (arg->status_change_nid >= 0) 1830 node_clear_state(node, N_MEMORY); 1831 } 1832 1833 static int count_system_ram_pages_cb(unsigned long start_pfn, 1834 unsigned long nr_pages, void *data) 1835 { 1836 unsigned long *nr_system_ram_pages = data; 1837 1838 *nr_system_ram_pages += nr_pages; 1839 return 0; 1840 } 1841 1842 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1843 struct memory_group *group) 1844 { 1845 const unsigned long end_pfn = start_pfn + nr_pages; 1846 unsigned long pfn, system_ram_pages = 0; 1847 unsigned long flags; 1848 struct zone *zone; 1849 struct memory_notify arg; 1850 int ret, node; 1851 char *reason; 1852 1853 /* 1854 * {on,off}lining is constrained to full memory sections (or more 1855 * precisely to memory blocks from the user space POV). 1856 * memmap_on_memory is an exception because it reserves initial part 1857 * of the physical memory space for vmemmaps. That space is pageblock 1858 * aligned. 1859 */ 1860 if (WARN_ON_ONCE(!nr_pages || 1861 !IS_ALIGNED(start_pfn, pageblock_nr_pages) || 1862 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1863 return -EINVAL; 1864 1865 mem_hotplug_begin(); 1866 1867 /* 1868 * Don't allow to offline memory blocks that contain holes. 1869 * Consequently, memory blocks with holes can never get onlined 1870 * via the hotplug path - online_pages() - as hotplugged memory has 1871 * no holes. This way, we e.g., don't have to worry about marking 1872 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1873 * avoid using walk_system_ram_range() later. 1874 */ 1875 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1876 count_system_ram_pages_cb); 1877 if (system_ram_pages != nr_pages) { 1878 ret = -EINVAL; 1879 reason = "memory holes"; 1880 goto failed_removal; 1881 } 1882 1883 /* This makes hotplug much easier...and readable. 1884 we assume this for now. .*/ 1885 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1886 if (!zone) { 1887 ret = -EINVAL; 1888 reason = "multizone range"; 1889 goto failed_removal; 1890 } 1891 node = zone_to_nid(zone); 1892 1893 /* 1894 * Disable pcplists so that page isolation cannot race with freeing 1895 * in a way that pages from isolated pageblock are left on pcplists. 1896 */ 1897 zone_pcp_disable(zone); 1898 lru_cache_disable(); 1899 1900 /* set above range as isolated */ 1901 ret = start_isolate_page_range(start_pfn, end_pfn, 1902 MIGRATE_MOVABLE, 1903 MEMORY_OFFLINE | REPORT_FAILURE); 1904 if (ret) { 1905 reason = "failure to isolate range"; 1906 goto failed_removal_pcplists_disabled; 1907 } 1908 1909 arg.start_pfn = start_pfn; 1910 arg.nr_pages = nr_pages; 1911 node_states_check_changes_offline(nr_pages, zone, &arg); 1912 1913 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1914 ret = notifier_to_errno(ret); 1915 if (ret) { 1916 reason = "notifier failure"; 1917 goto failed_removal_isolated; 1918 } 1919 1920 do { 1921 pfn = start_pfn; 1922 do { 1923 if (signal_pending(current)) { 1924 ret = -EINTR; 1925 reason = "signal backoff"; 1926 goto failed_removal_isolated; 1927 } 1928 1929 cond_resched(); 1930 1931 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1932 if (!ret) { 1933 /* 1934 * TODO: fatal migration failures should bail 1935 * out 1936 */ 1937 do_migrate_range(pfn, end_pfn); 1938 } 1939 } while (!ret); 1940 1941 if (ret != -ENOENT) { 1942 reason = "unmovable page"; 1943 goto failed_removal_isolated; 1944 } 1945 1946 /* 1947 * Dissolve free hugepages in the memory block before doing 1948 * offlining actually in order to make hugetlbfs's object 1949 * counting consistent. 1950 */ 1951 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1952 if (ret) { 1953 reason = "failure to dissolve huge pages"; 1954 goto failed_removal_isolated; 1955 } 1956 1957 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1958 1959 } while (ret); 1960 1961 /* Mark all sections offline and remove free pages from the buddy. */ 1962 __offline_isolated_pages(start_pfn, end_pfn); 1963 pr_debug("Offlined Pages %ld\n", nr_pages); 1964 1965 /* 1966 * The memory sections are marked offline, and the pageblock flags 1967 * effectively stale; nobody should be touching them. Fixup the number 1968 * of isolated pageblocks, memory onlining will properly revert this. 1969 */ 1970 spin_lock_irqsave(&zone->lock, flags); 1971 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 1972 spin_unlock_irqrestore(&zone->lock, flags); 1973 1974 lru_cache_enable(); 1975 zone_pcp_enable(zone); 1976 1977 /* removal success */ 1978 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 1979 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 1980 1981 /* reinitialise watermarks and update pcp limits */ 1982 init_per_zone_wmark_min(); 1983 1984 if (!populated_zone(zone)) { 1985 zone_pcp_reset(zone); 1986 build_all_zonelists(NULL); 1987 } 1988 1989 node_states_clear_node(node, &arg); 1990 if (arg.status_change_nid >= 0) { 1991 kswapd_stop(node); 1992 kcompactd_stop(node); 1993 } 1994 1995 writeback_set_ratelimit(); 1996 1997 memory_notify(MEM_OFFLINE, &arg); 1998 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1999 mem_hotplug_done(); 2000 return 0; 2001 2002 failed_removal_isolated: 2003 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2004 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2005 failed_removal_pcplists_disabled: 2006 lru_cache_enable(); 2007 zone_pcp_enable(zone); 2008 failed_removal: 2009 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2010 (unsigned long long) start_pfn << PAGE_SHIFT, 2011 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2012 reason); 2013 /* pushback to free area */ 2014 mem_hotplug_done(); 2015 return ret; 2016 } 2017 2018 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2019 { 2020 int ret = !is_memblock_offlined(mem); 2021 int *nid = arg; 2022 2023 *nid = mem->nid; 2024 if (unlikely(ret)) { 2025 phys_addr_t beginpa, endpa; 2026 2027 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2028 endpa = beginpa + memory_block_size_bytes() - 1; 2029 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2030 &beginpa, &endpa); 2031 2032 return -EBUSY; 2033 } 2034 return 0; 2035 } 2036 2037 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg) 2038 { 2039 /* 2040 * If not set, continue with the next block. 2041 */ 2042 return mem->nr_vmemmap_pages; 2043 } 2044 2045 static int check_cpu_on_node(pg_data_t *pgdat) 2046 { 2047 int cpu; 2048 2049 for_each_present_cpu(cpu) { 2050 if (cpu_to_node(cpu) == pgdat->node_id) 2051 /* 2052 * the cpu on this node isn't removed, and we can't 2053 * offline this node. 2054 */ 2055 return -EBUSY; 2056 } 2057 2058 return 0; 2059 } 2060 2061 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2062 { 2063 int nid = *(int *)arg; 2064 2065 /* 2066 * If a memory block belongs to multiple nodes, the stored nid is not 2067 * reliable. However, such blocks are always online (e.g., cannot get 2068 * offlined) and, therefore, are still spanned by the node. 2069 */ 2070 return mem->nid == nid ? -EEXIST : 0; 2071 } 2072 2073 /** 2074 * try_offline_node 2075 * @nid: the node ID 2076 * 2077 * Offline a node if all memory sections and cpus of the node are removed. 2078 * 2079 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2080 * and online/offline operations before this call. 2081 */ 2082 void try_offline_node(int nid) 2083 { 2084 pg_data_t *pgdat = NODE_DATA(nid); 2085 int rc; 2086 2087 /* 2088 * If the node still spans pages (especially ZONE_DEVICE), don't 2089 * offline it. A node spans memory after move_pfn_range_to_zone(), 2090 * e.g., after the memory block was onlined. 2091 */ 2092 if (pgdat->node_spanned_pages) 2093 return; 2094 2095 /* 2096 * Especially offline memory blocks might not be spanned by the 2097 * node. They will get spanned by the node once they get onlined. 2098 * However, they link to the node in sysfs and can get onlined later. 2099 */ 2100 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2101 if (rc) 2102 return; 2103 2104 if (check_cpu_on_node(pgdat)) 2105 return; 2106 2107 /* 2108 * all memory/cpu of this node are removed, we can offline this 2109 * node now. 2110 */ 2111 node_set_offline(nid); 2112 unregister_one_node(nid); 2113 } 2114 EXPORT_SYMBOL(try_offline_node); 2115 2116 static int __ref try_remove_memory(u64 start, u64 size) 2117 { 2118 struct vmem_altmap mhp_altmap = {}; 2119 struct vmem_altmap *altmap = NULL; 2120 unsigned long nr_vmemmap_pages; 2121 int rc = 0, nid = NUMA_NO_NODE; 2122 2123 BUG_ON(check_hotplug_memory_range(start, size)); 2124 2125 /* 2126 * All memory blocks must be offlined before removing memory. Check 2127 * whether all memory blocks in question are offline and return error 2128 * if this is not the case. 2129 * 2130 * While at it, determine the nid. Note that if we'd have mixed nodes, 2131 * we'd only try to offline the last determined one -- which is good 2132 * enough for the cases we care about. 2133 */ 2134 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2135 if (rc) 2136 return rc; 2137 2138 /* 2139 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2140 * the same granularity it was added - a single memory block. 2141 */ 2142 if (memmap_on_memory) { 2143 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL, 2144 get_nr_vmemmap_pages_cb); 2145 if (nr_vmemmap_pages) { 2146 if (size != memory_block_size_bytes()) { 2147 pr_warn("Refuse to remove %#llx - %#llx," 2148 "wrong granularity\n", 2149 start, start + size); 2150 return -EINVAL; 2151 } 2152 2153 /* 2154 * Let remove_pmd_table->free_hugepage_table do the 2155 * right thing if we used vmem_altmap when hot-adding 2156 * the range. 2157 */ 2158 mhp_altmap.alloc = nr_vmemmap_pages; 2159 altmap = &mhp_altmap; 2160 } 2161 } 2162 2163 /* remove memmap entry */ 2164 firmware_map_remove(start, start + size, "System RAM"); 2165 2166 /* 2167 * Memory block device removal under the device_hotplug_lock is 2168 * a barrier against racing online attempts. 2169 */ 2170 remove_memory_block_devices(start, size); 2171 2172 mem_hotplug_begin(); 2173 2174 arch_remove_memory(start, size, altmap); 2175 2176 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2177 memblock_phys_free(start, size); 2178 memblock_remove(start, size); 2179 } 2180 2181 release_mem_region_adjustable(start, size); 2182 2183 if (nid != NUMA_NO_NODE) 2184 try_offline_node(nid); 2185 2186 mem_hotplug_done(); 2187 return 0; 2188 } 2189 2190 /** 2191 * __remove_memory - Remove memory if every memory block is offline 2192 * @start: physical address of the region to remove 2193 * @size: size of the region to remove 2194 * 2195 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2196 * and online/offline operations before this call, as required by 2197 * try_offline_node(). 2198 */ 2199 void __remove_memory(u64 start, u64 size) 2200 { 2201 2202 /* 2203 * trigger BUG() if some memory is not offlined prior to calling this 2204 * function 2205 */ 2206 if (try_remove_memory(start, size)) 2207 BUG(); 2208 } 2209 2210 /* 2211 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2212 * some memory is not offline 2213 */ 2214 int remove_memory(u64 start, u64 size) 2215 { 2216 int rc; 2217 2218 lock_device_hotplug(); 2219 rc = try_remove_memory(start, size); 2220 unlock_device_hotplug(); 2221 2222 return rc; 2223 } 2224 EXPORT_SYMBOL_GPL(remove_memory); 2225 2226 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2227 { 2228 uint8_t online_type = MMOP_ONLINE_KERNEL; 2229 uint8_t **online_types = arg; 2230 struct page *page; 2231 int rc; 2232 2233 /* 2234 * Sense the online_type via the zone of the memory block. Offlining 2235 * with multiple zones within one memory block will be rejected 2236 * by offlining code ... so we don't care about that. 2237 */ 2238 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2239 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2240 online_type = MMOP_ONLINE_MOVABLE; 2241 2242 rc = device_offline(&mem->dev); 2243 /* 2244 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2245 * so try_reonline_memory_block() can do the right thing. 2246 */ 2247 if (!rc) 2248 **online_types = online_type; 2249 2250 (*online_types)++; 2251 /* Ignore if already offline. */ 2252 return rc < 0 ? rc : 0; 2253 } 2254 2255 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2256 { 2257 uint8_t **online_types = arg; 2258 int rc; 2259 2260 if (**online_types != MMOP_OFFLINE) { 2261 mem->online_type = **online_types; 2262 rc = device_online(&mem->dev); 2263 if (rc < 0) 2264 pr_warn("%s: Failed to re-online memory: %d", 2265 __func__, rc); 2266 } 2267 2268 /* Continue processing all remaining memory blocks. */ 2269 (*online_types)++; 2270 return 0; 2271 } 2272 2273 /* 2274 * Try to offline and remove memory. Might take a long time to finish in case 2275 * memory is still in use. Primarily useful for memory devices that logically 2276 * unplugged all memory (so it's no longer in use) and want to offline + remove 2277 * that memory. 2278 */ 2279 int offline_and_remove_memory(u64 start, u64 size) 2280 { 2281 const unsigned long mb_count = size / memory_block_size_bytes(); 2282 uint8_t *online_types, *tmp; 2283 int rc; 2284 2285 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2286 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2287 return -EINVAL; 2288 2289 /* 2290 * We'll remember the old online type of each memory block, so we can 2291 * try to revert whatever we did when offlining one memory block fails 2292 * after offlining some others succeeded. 2293 */ 2294 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2295 GFP_KERNEL); 2296 if (!online_types) 2297 return -ENOMEM; 2298 /* 2299 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2300 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2301 * try_reonline_memory_block(). 2302 */ 2303 memset(online_types, MMOP_OFFLINE, mb_count); 2304 2305 lock_device_hotplug(); 2306 2307 tmp = online_types; 2308 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2309 2310 /* 2311 * In case we succeeded to offline all memory, remove it. 2312 * This cannot fail as it cannot get onlined in the meantime. 2313 */ 2314 if (!rc) { 2315 rc = try_remove_memory(start, size); 2316 if (rc) 2317 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2318 } 2319 2320 /* 2321 * Rollback what we did. While memory onlining might theoretically fail 2322 * (nacked by a notifier), it barely ever happens. 2323 */ 2324 if (rc) { 2325 tmp = online_types; 2326 walk_memory_blocks(start, size, &tmp, 2327 try_reonline_memory_block); 2328 } 2329 unlock_device_hotplug(); 2330 2331 kfree(online_types); 2332 return rc; 2333 } 2334 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2335 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2336