1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memremap.h> 21 #include <linux/memory_hotplug.h> 22 #include <linux/highmem.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/bootmem.h> 36 37 #include <asm/tlbflush.h> 38 39 #include "internal.h" 40 41 /* 42 * online_page_callback contains pointer to current page onlining function. 43 * Initially it is generic_online_page(). If it is required it could be 44 * changed by calling set_online_page_callback() for callback registration 45 * and restore_online_page_callback() for generic callback restore. 46 */ 47 48 static void generic_online_page(struct page *page); 49 50 static online_page_callback_t online_page_callback = generic_online_page; 51 static DEFINE_MUTEX(online_page_callback_lock); 52 53 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 54 static struct { 55 struct task_struct *active_writer; 56 struct mutex lock; /* Synchronizes accesses to refcount, */ 57 /* 58 * Also blocks the new readers during 59 * an ongoing mem hotplug operation. 60 */ 61 int refcount; 62 63 #ifdef CONFIG_DEBUG_LOCK_ALLOC 64 struct lockdep_map dep_map; 65 #endif 66 } mem_hotplug = { 67 .active_writer = NULL, 68 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 69 .refcount = 0, 70 #ifdef CONFIG_DEBUG_LOCK_ALLOC 71 .dep_map = {.name = "mem_hotplug.lock" }, 72 #endif 73 }; 74 75 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 76 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 77 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 78 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 79 80 bool memhp_auto_online; 81 EXPORT_SYMBOL_GPL(memhp_auto_online); 82 83 void get_online_mems(void) 84 { 85 might_sleep(); 86 if (mem_hotplug.active_writer == current) 87 return; 88 memhp_lock_acquire_read(); 89 mutex_lock(&mem_hotplug.lock); 90 mem_hotplug.refcount++; 91 mutex_unlock(&mem_hotplug.lock); 92 93 } 94 95 void put_online_mems(void) 96 { 97 if (mem_hotplug.active_writer == current) 98 return; 99 mutex_lock(&mem_hotplug.lock); 100 101 if (WARN_ON(!mem_hotplug.refcount)) 102 mem_hotplug.refcount++; /* try to fix things up */ 103 104 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 105 wake_up_process(mem_hotplug.active_writer); 106 mutex_unlock(&mem_hotplug.lock); 107 memhp_lock_release(); 108 109 } 110 111 void mem_hotplug_begin(void) 112 { 113 mem_hotplug.active_writer = current; 114 115 memhp_lock_acquire(); 116 for (;;) { 117 mutex_lock(&mem_hotplug.lock); 118 if (likely(!mem_hotplug.refcount)) 119 break; 120 __set_current_state(TASK_UNINTERRUPTIBLE); 121 mutex_unlock(&mem_hotplug.lock); 122 schedule(); 123 } 124 } 125 126 void mem_hotplug_done(void) 127 { 128 mem_hotplug.active_writer = NULL; 129 mutex_unlock(&mem_hotplug.lock); 130 memhp_lock_release(); 131 } 132 133 /* add this memory to iomem resource */ 134 static struct resource *register_memory_resource(u64 start, u64 size) 135 { 136 struct resource *res; 137 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 138 if (!res) 139 return ERR_PTR(-ENOMEM); 140 141 res->name = "System RAM"; 142 res->start = start; 143 res->end = start + size - 1; 144 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 145 if (request_resource(&iomem_resource, res) < 0) { 146 pr_debug("System RAM resource %pR cannot be added\n", res); 147 kfree(res); 148 return ERR_PTR(-EEXIST); 149 } 150 return res; 151 } 152 153 static void release_memory_resource(struct resource *res) 154 { 155 if (!res) 156 return; 157 release_resource(res); 158 kfree(res); 159 return; 160 } 161 162 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 163 void get_page_bootmem(unsigned long info, struct page *page, 164 unsigned long type) 165 { 166 page->lru.next = (struct list_head *) type; 167 SetPagePrivate(page); 168 set_page_private(page, info); 169 atomic_inc(&page->_count); 170 } 171 172 void put_page_bootmem(struct page *page) 173 { 174 unsigned long type; 175 176 type = (unsigned long) page->lru.next; 177 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 178 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 179 180 if (atomic_dec_return(&page->_count) == 1) { 181 ClearPagePrivate(page); 182 set_page_private(page, 0); 183 INIT_LIST_HEAD(&page->lru); 184 free_reserved_page(page); 185 } 186 } 187 188 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 189 #ifndef CONFIG_SPARSEMEM_VMEMMAP 190 static void register_page_bootmem_info_section(unsigned long start_pfn) 191 { 192 unsigned long *usemap, mapsize, section_nr, i; 193 struct mem_section *ms; 194 struct page *page, *memmap; 195 196 section_nr = pfn_to_section_nr(start_pfn); 197 ms = __nr_to_section(section_nr); 198 199 /* Get section's memmap address */ 200 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 201 202 /* 203 * Get page for the memmap's phys address 204 * XXX: need more consideration for sparse_vmemmap... 205 */ 206 page = virt_to_page(memmap); 207 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 208 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 209 210 /* remember memmap's page */ 211 for (i = 0; i < mapsize; i++, page++) 212 get_page_bootmem(section_nr, page, SECTION_INFO); 213 214 usemap = __nr_to_section(section_nr)->pageblock_flags; 215 page = virt_to_page(usemap); 216 217 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 218 219 for (i = 0; i < mapsize; i++, page++) 220 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 221 222 } 223 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 224 static void register_page_bootmem_info_section(unsigned long start_pfn) 225 { 226 unsigned long *usemap, mapsize, section_nr, i; 227 struct mem_section *ms; 228 struct page *page, *memmap; 229 230 if (!pfn_valid(start_pfn)) 231 return; 232 233 section_nr = pfn_to_section_nr(start_pfn); 234 ms = __nr_to_section(section_nr); 235 236 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 237 238 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 239 240 usemap = __nr_to_section(section_nr)->pageblock_flags; 241 page = virt_to_page(usemap); 242 243 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 244 245 for (i = 0; i < mapsize; i++, page++) 246 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 247 } 248 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 249 250 void register_page_bootmem_info_node(struct pglist_data *pgdat) 251 { 252 unsigned long i, pfn, end_pfn, nr_pages; 253 int node = pgdat->node_id; 254 struct page *page; 255 struct zone *zone; 256 257 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 258 page = virt_to_page(pgdat); 259 260 for (i = 0; i < nr_pages; i++, page++) 261 get_page_bootmem(node, page, NODE_INFO); 262 263 zone = &pgdat->node_zones[0]; 264 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) { 265 if (zone_is_initialized(zone)) { 266 nr_pages = zone->wait_table_hash_nr_entries 267 * sizeof(wait_queue_head_t); 268 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT; 269 page = virt_to_page(zone->wait_table); 270 271 for (i = 0; i < nr_pages; i++, page++) 272 get_page_bootmem(node, page, NODE_INFO); 273 } 274 } 275 276 pfn = pgdat->node_start_pfn; 277 end_pfn = pgdat_end_pfn(pgdat); 278 279 /* register section info */ 280 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 281 /* 282 * Some platforms can assign the same pfn to multiple nodes - on 283 * node0 as well as nodeN. To avoid registering a pfn against 284 * multiple nodes we check that this pfn does not already 285 * reside in some other nodes. 286 */ 287 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node)) 288 register_page_bootmem_info_section(pfn); 289 } 290 } 291 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 292 293 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 294 unsigned long end_pfn) 295 { 296 unsigned long old_zone_end_pfn; 297 298 zone_span_writelock(zone); 299 300 old_zone_end_pfn = zone_end_pfn(zone); 301 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 302 zone->zone_start_pfn = start_pfn; 303 304 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 305 zone->zone_start_pfn; 306 307 zone_span_writeunlock(zone); 308 } 309 310 static void resize_zone(struct zone *zone, unsigned long start_pfn, 311 unsigned long end_pfn) 312 { 313 zone_span_writelock(zone); 314 315 if (end_pfn - start_pfn) { 316 zone->zone_start_pfn = start_pfn; 317 zone->spanned_pages = end_pfn - start_pfn; 318 } else { 319 /* 320 * make it consist as free_area_init_core(), 321 * if spanned_pages = 0, then keep start_pfn = 0 322 */ 323 zone->zone_start_pfn = 0; 324 zone->spanned_pages = 0; 325 } 326 327 zone_span_writeunlock(zone); 328 } 329 330 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 331 unsigned long end_pfn) 332 { 333 enum zone_type zid = zone_idx(zone); 334 int nid = zone->zone_pgdat->node_id; 335 unsigned long pfn; 336 337 for (pfn = start_pfn; pfn < end_pfn; pfn++) 338 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 339 } 340 341 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 342 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ 343 static int __ref ensure_zone_is_initialized(struct zone *zone, 344 unsigned long start_pfn, unsigned long num_pages) 345 { 346 if (!zone_is_initialized(zone)) 347 return init_currently_empty_zone(zone, start_pfn, num_pages); 348 349 return 0; 350 } 351 352 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 353 unsigned long start_pfn, unsigned long end_pfn) 354 { 355 int ret; 356 unsigned long flags; 357 unsigned long z1_start_pfn; 358 359 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 360 if (ret) 361 return ret; 362 363 pgdat_resize_lock(z1->zone_pgdat, &flags); 364 365 /* can't move pfns which are higher than @z2 */ 366 if (end_pfn > zone_end_pfn(z2)) 367 goto out_fail; 368 /* the move out part must be at the left most of @z2 */ 369 if (start_pfn > z2->zone_start_pfn) 370 goto out_fail; 371 /* must included/overlap */ 372 if (end_pfn <= z2->zone_start_pfn) 373 goto out_fail; 374 375 /* use start_pfn for z1's start_pfn if z1 is empty */ 376 if (!zone_is_empty(z1)) 377 z1_start_pfn = z1->zone_start_pfn; 378 else 379 z1_start_pfn = start_pfn; 380 381 resize_zone(z1, z1_start_pfn, end_pfn); 382 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 383 384 pgdat_resize_unlock(z1->zone_pgdat, &flags); 385 386 fix_zone_id(z1, start_pfn, end_pfn); 387 388 return 0; 389 out_fail: 390 pgdat_resize_unlock(z1->zone_pgdat, &flags); 391 return -1; 392 } 393 394 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 395 unsigned long start_pfn, unsigned long end_pfn) 396 { 397 int ret; 398 unsigned long flags; 399 unsigned long z2_end_pfn; 400 401 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 402 if (ret) 403 return ret; 404 405 pgdat_resize_lock(z1->zone_pgdat, &flags); 406 407 /* can't move pfns which are lower than @z1 */ 408 if (z1->zone_start_pfn > start_pfn) 409 goto out_fail; 410 /* the move out part mast at the right most of @z1 */ 411 if (zone_end_pfn(z1) > end_pfn) 412 goto out_fail; 413 /* must included/overlap */ 414 if (start_pfn >= zone_end_pfn(z1)) 415 goto out_fail; 416 417 /* use end_pfn for z2's end_pfn if z2 is empty */ 418 if (!zone_is_empty(z2)) 419 z2_end_pfn = zone_end_pfn(z2); 420 else 421 z2_end_pfn = end_pfn; 422 423 resize_zone(z1, z1->zone_start_pfn, start_pfn); 424 resize_zone(z2, start_pfn, z2_end_pfn); 425 426 pgdat_resize_unlock(z1->zone_pgdat, &flags); 427 428 fix_zone_id(z2, start_pfn, end_pfn); 429 430 return 0; 431 out_fail: 432 pgdat_resize_unlock(z1->zone_pgdat, &flags); 433 return -1; 434 } 435 436 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 437 unsigned long end_pfn) 438 { 439 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 440 441 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 442 pgdat->node_start_pfn = start_pfn; 443 444 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 445 pgdat->node_start_pfn; 446 } 447 448 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 449 { 450 struct pglist_data *pgdat = zone->zone_pgdat; 451 int nr_pages = PAGES_PER_SECTION; 452 int nid = pgdat->node_id; 453 int zone_type; 454 unsigned long flags, pfn; 455 int ret; 456 457 zone_type = zone - pgdat->node_zones; 458 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 459 if (ret) 460 return ret; 461 462 pgdat_resize_lock(zone->zone_pgdat, &flags); 463 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 464 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 465 phys_start_pfn + nr_pages); 466 pgdat_resize_unlock(zone->zone_pgdat, &flags); 467 memmap_init_zone(nr_pages, nid, zone_type, 468 phys_start_pfn, MEMMAP_HOTPLUG); 469 470 /* online_page_range is called later and expects pages reserved */ 471 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) { 472 if (!pfn_valid(pfn)) 473 continue; 474 475 SetPageReserved(pfn_to_page(pfn)); 476 } 477 return 0; 478 } 479 480 static int __meminit __add_section(int nid, struct zone *zone, 481 unsigned long phys_start_pfn) 482 { 483 int ret; 484 485 if (pfn_valid(phys_start_pfn)) 486 return -EEXIST; 487 488 ret = sparse_add_one_section(zone, phys_start_pfn); 489 490 if (ret < 0) 491 return ret; 492 493 ret = __add_zone(zone, phys_start_pfn); 494 495 if (ret < 0) 496 return ret; 497 498 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 499 } 500 501 /* 502 * Reasonably generic function for adding memory. It is 503 * expected that archs that support memory hotplug will 504 * call this function after deciding the zone to which to 505 * add the new pages. 506 */ 507 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 508 unsigned long nr_pages) 509 { 510 unsigned long i; 511 int err = 0; 512 int start_sec, end_sec; 513 struct vmem_altmap *altmap; 514 515 /* during initialize mem_map, align hot-added range to section */ 516 start_sec = pfn_to_section_nr(phys_start_pfn); 517 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 518 519 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn)); 520 if (altmap) { 521 /* 522 * Validate altmap is within bounds of the total request 523 */ 524 if (altmap->base_pfn != phys_start_pfn 525 || vmem_altmap_offset(altmap) > nr_pages) { 526 pr_warn_once("memory add fail, invalid altmap\n"); 527 return -EINVAL; 528 } 529 altmap->alloc = 0; 530 } 531 532 for (i = start_sec; i <= end_sec; i++) { 533 err = __add_section(nid, zone, section_nr_to_pfn(i)); 534 535 /* 536 * EEXIST is finally dealt with by ioresource collision 537 * check. see add_memory() => register_memory_resource() 538 * Warning will be printed if there is collision. 539 */ 540 if (err && (err != -EEXIST)) 541 break; 542 err = 0; 543 } 544 vmemmap_populate_print_last(); 545 546 return err; 547 } 548 EXPORT_SYMBOL_GPL(__add_pages); 549 550 #ifdef CONFIG_MEMORY_HOTREMOVE 551 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 552 static int find_smallest_section_pfn(int nid, struct zone *zone, 553 unsigned long start_pfn, 554 unsigned long end_pfn) 555 { 556 struct mem_section *ms; 557 558 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 559 ms = __pfn_to_section(start_pfn); 560 561 if (unlikely(!valid_section(ms))) 562 continue; 563 564 if (unlikely(pfn_to_nid(start_pfn) != nid)) 565 continue; 566 567 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 568 continue; 569 570 return start_pfn; 571 } 572 573 return 0; 574 } 575 576 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 577 static int find_biggest_section_pfn(int nid, struct zone *zone, 578 unsigned long start_pfn, 579 unsigned long end_pfn) 580 { 581 struct mem_section *ms; 582 unsigned long pfn; 583 584 /* pfn is the end pfn of a memory section. */ 585 pfn = end_pfn - 1; 586 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 587 ms = __pfn_to_section(pfn); 588 589 if (unlikely(!valid_section(ms))) 590 continue; 591 592 if (unlikely(pfn_to_nid(pfn) != nid)) 593 continue; 594 595 if (zone && zone != page_zone(pfn_to_page(pfn))) 596 continue; 597 598 return pfn; 599 } 600 601 return 0; 602 } 603 604 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 605 unsigned long end_pfn) 606 { 607 unsigned long zone_start_pfn = zone->zone_start_pfn; 608 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 609 unsigned long zone_end_pfn = z; 610 unsigned long pfn; 611 struct mem_section *ms; 612 int nid = zone_to_nid(zone); 613 614 zone_span_writelock(zone); 615 if (zone_start_pfn == start_pfn) { 616 /* 617 * If the section is smallest section in the zone, it need 618 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 619 * In this case, we find second smallest valid mem_section 620 * for shrinking zone. 621 */ 622 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 623 zone_end_pfn); 624 if (pfn) { 625 zone->zone_start_pfn = pfn; 626 zone->spanned_pages = zone_end_pfn - pfn; 627 } 628 } else if (zone_end_pfn == end_pfn) { 629 /* 630 * If the section is biggest section in the zone, it need 631 * shrink zone->spanned_pages. 632 * In this case, we find second biggest valid mem_section for 633 * shrinking zone. 634 */ 635 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 636 start_pfn); 637 if (pfn) 638 zone->spanned_pages = pfn - zone_start_pfn + 1; 639 } 640 641 /* 642 * The section is not biggest or smallest mem_section in the zone, it 643 * only creates a hole in the zone. So in this case, we need not 644 * change the zone. But perhaps, the zone has only hole data. Thus 645 * it check the zone has only hole or not. 646 */ 647 pfn = zone_start_pfn; 648 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 649 ms = __pfn_to_section(pfn); 650 651 if (unlikely(!valid_section(ms))) 652 continue; 653 654 if (page_zone(pfn_to_page(pfn)) != zone) 655 continue; 656 657 /* If the section is current section, it continues the loop */ 658 if (start_pfn == pfn) 659 continue; 660 661 /* If we find valid section, we have nothing to do */ 662 zone_span_writeunlock(zone); 663 return; 664 } 665 666 /* The zone has no valid section */ 667 zone->zone_start_pfn = 0; 668 zone->spanned_pages = 0; 669 zone_span_writeunlock(zone); 670 } 671 672 static void shrink_pgdat_span(struct pglist_data *pgdat, 673 unsigned long start_pfn, unsigned long end_pfn) 674 { 675 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 676 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 677 unsigned long pgdat_end_pfn = p; 678 unsigned long pfn; 679 struct mem_section *ms; 680 int nid = pgdat->node_id; 681 682 if (pgdat_start_pfn == start_pfn) { 683 /* 684 * If the section is smallest section in the pgdat, it need 685 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 686 * In this case, we find second smallest valid mem_section 687 * for shrinking zone. 688 */ 689 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 690 pgdat_end_pfn); 691 if (pfn) { 692 pgdat->node_start_pfn = pfn; 693 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 694 } 695 } else if (pgdat_end_pfn == end_pfn) { 696 /* 697 * If the section is biggest section in the pgdat, it need 698 * shrink pgdat->node_spanned_pages. 699 * In this case, we find second biggest valid mem_section for 700 * shrinking zone. 701 */ 702 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 703 start_pfn); 704 if (pfn) 705 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 706 } 707 708 /* 709 * If the section is not biggest or smallest mem_section in the pgdat, 710 * it only creates a hole in the pgdat. So in this case, we need not 711 * change the pgdat. 712 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 713 * has only hole or not. 714 */ 715 pfn = pgdat_start_pfn; 716 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 717 ms = __pfn_to_section(pfn); 718 719 if (unlikely(!valid_section(ms))) 720 continue; 721 722 if (pfn_to_nid(pfn) != nid) 723 continue; 724 725 /* If the section is current section, it continues the loop */ 726 if (start_pfn == pfn) 727 continue; 728 729 /* If we find valid section, we have nothing to do */ 730 return; 731 } 732 733 /* The pgdat has no valid section */ 734 pgdat->node_start_pfn = 0; 735 pgdat->node_spanned_pages = 0; 736 } 737 738 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 739 { 740 struct pglist_data *pgdat = zone->zone_pgdat; 741 int nr_pages = PAGES_PER_SECTION; 742 int zone_type; 743 unsigned long flags; 744 745 zone_type = zone - pgdat->node_zones; 746 747 pgdat_resize_lock(zone->zone_pgdat, &flags); 748 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 749 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 750 pgdat_resize_unlock(zone->zone_pgdat, &flags); 751 } 752 753 static int __remove_section(struct zone *zone, struct mem_section *ms, 754 unsigned long map_offset) 755 { 756 unsigned long start_pfn; 757 int scn_nr; 758 int ret = -EINVAL; 759 760 if (!valid_section(ms)) 761 return ret; 762 763 ret = unregister_memory_section(ms); 764 if (ret) 765 return ret; 766 767 scn_nr = __section_nr(ms); 768 start_pfn = section_nr_to_pfn(scn_nr); 769 __remove_zone(zone, start_pfn); 770 771 sparse_remove_one_section(zone, ms, map_offset); 772 return 0; 773 } 774 775 /** 776 * __remove_pages() - remove sections of pages from a zone 777 * @zone: zone from which pages need to be removed 778 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 779 * @nr_pages: number of pages to remove (must be multiple of section size) 780 * 781 * Generic helper function to remove section mappings and sysfs entries 782 * for the section of the memory we are removing. Caller needs to make 783 * sure that pages are marked reserved and zones are adjust properly by 784 * calling offline_pages(). 785 */ 786 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 787 unsigned long nr_pages) 788 { 789 unsigned long i; 790 unsigned long map_offset = 0; 791 int sections_to_remove, ret = 0; 792 793 /* In the ZONE_DEVICE case device driver owns the memory region */ 794 if (is_dev_zone(zone)) { 795 struct page *page = pfn_to_page(phys_start_pfn); 796 struct vmem_altmap *altmap; 797 798 altmap = to_vmem_altmap((unsigned long) page); 799 if (altmap) 800 map_offset = vmem_altmap_offset(altmap); 801 } else { 802 resource_size_t start, size; 803 804 start = phys_start_pfn << PAGE_SHIFT; 805 size = nr_pages * PAGE_SIZE; 806 807 ret = release_mem_region_adjustable(&iomem_resource, start, 808 size); 809 if (ret) { 810 resource_size_t endres = start + size - 1; 811 812 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 813 &start, &endres, ret); 814 } 815 } 816 817 /* 818 * We can only remove entire sections 819 */ 820 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 821 BUG_ON(nr_pages % PAGES_PER_SECTION); 822 823 sections_to_remove = nr_pages / PAGES_PER_SECTION; 824 for (i = 0; i < sections_to_remove; i++) { 825 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 826 827 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset); 828 map_offset = 0; 829 if (ret) 830 break; 831 } 832 return ret; 833 } 834 EXPORT_SYMBOL_GPL(__remove_pages); 835 #endif /* CONFIG_MEMORY_HOTREMOVE */ 836 837 int set_online_page_callback(online_page_callback_t callback) 838 { 839 int rc = -EINVAL; 840 841 get_online_mems(); 842 mutex_lock(&online_page_callback_lock); 843 844 if (online_page_callback == generic_online_page) { 845 online_page_callback = callback; 846 rc = 0; 847 } 848 849 mutex_unlock(&online_page_callback_lock); 850 put_online_mems(); 851 852 return rc; 853 } 854 EXPORT_SYMBOL_GPL(set_online_page_callback); 855 856 int restore_online_page_callback(online_page_callback_t callback) 857 { 858 int rc = -EINVAL; 859 860 get_online_mems(); 861 mutex_lock(&online_page_callback_lock); 862 863 if (online_page_callback == callback) { 864 online_page_callback = generic_online_page; 865 rc = 0; 866 } 867 868 mutex_unlock(&online_page_callback_lock); 869 put_online_mems(); 870 871 return rc; 872 } 873 EXPORT_SYMBOL_GPL(restore_online_page_callback); 874 875 void __online_page_set_limits(struct page *page) 876 { 877 } 878 EXPORT_SYMBOL_GPL(__online_page_set_limits); 879 880 void __online_page_increment_counters(struct page *page) 881 { 882 adjust_managed_page_count(page, 1); 883 } 884 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 885 886 void __online_page_free(struct page *page) 887 { 888 __free_reserved_page(page); 889 } 890 EXPORT_SYMBOL_GPL(__online_page_free); 891 892 static void generic_online_page(struct page *page) 893 { 894 __online_page_set_limits(page); 895 __online_page_increment_counters(page); 896 __online_page_free(page); 897 } 898 899 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 900 void *arg) 901 { 902 unsigned long i; 903 unsigned long onlined_pages = *(unsigned long *)arg; 904 struct page *page; 905 if (PageReserved(pfn_to_page(start_pfn))) 906 for (i = 0; i < nr_pages; i++) { 907 page = pfn_to_page(start_pfn + i); 908 (*online_page_callback)(page); 909 onlined_pages++; 910 } 911 *(unsigned long *)arg = onlined_pages; 912 return 0; 913 } 914 915 #ifdef CONFIG_MOVABLE_NODE 916 /* 917 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 918 * normal memory. 919 */ 920 static bool can_online_high_movable(struct zone *zone) 921 { 922 return true; 923 } 924 #else /* CONFIG_MOVABLE_NODE */ 925 /* ensure every online node has NORMAL memory */ 926 static bool can_online_high_movable(struct zone *zone) 927 { 928 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 929 } 930 #endif /* CONFIG_MOVABLE_NODE */ 931 932 /* check which state of node_states will be changed when online memory */ 933 static void node_states_check_changes_online(unsigned long nr_pages, 934 struct zone *zone, struct memory_notify *arg) 935 { 936 int nid = zone_to_nid(zone); 937 enum zone_type zone_last = ZONE_NORMAL; 938 939 /* 940 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 941 * contains nodes which have zones of 0...ZONE_NORMAL, 942 * set zone_last to ZONE_NORMAL. 943 * 944 * If we don't have HIGHMEM nor movable node, 945 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 946 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 947 */ 948 if (N_MEMORY == N_NORMAL_MEMORY) 949 zone_last = ZONE_MOVABLE; 950 951 /* 952 * if the memory to be online is in a zone of 0...zone_last, and 953 * the zones of 0...zone_last don't have memory before online, we will 954 * need to set the node to node_states[N_NORMAL_MEMORY] after 955 * the memory is online. 956 */ 957 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 958 arg->status_change_nid_normal = nid; 959 else 960 arg->status_change_nid_normal = -1; 961 962 #ifdef CONFIG_HIGHMEM 963 /* 964 * If we have movable node, node_states[N_HIGH_MEMORY] 965 * contains nodes which have zones of 0...ZONE_HIGHMEM, 966 * set zone_last to ZONE_HIGHMEM. 967 * 968 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 969 * contains nodes which have zones of 0...ZONE_MOVABLE, 970 * set zone_last to ZONE_MOVABLE. 971 */ 972 zone_last = ZONE_HIGHMEM; 973 if (N_MEMORY == N_HIGH_MEMORY) 974 zone_last = ZONE_MOVABLE; 975 976 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 977 arg->status_change_nid_high = nid; 978 else 979 arg->status_change_nid_high = -1; 980 #else 981 arg->status_change_nid_high = arg->status_change_nid_normal; 982 #endif 983 984 /* 985 * if the node don't have memory befor online, we will need to 986 * set the node to node_states[N_MEMORY] after the memory 987 * is online. 988 */ 989 if (!node_state(nid, N_MEMORY)) 990 arg->status_change_nid = nid; 991 else 992 arg->status_change_nid = -1; 993 } 994 995 static void node_states_set_node(int node, struct memory_notify *arg) 996 { 997 if (arg->status_change_nid_normal >= 0) 998 node_set_state(node, N_NORMAL_MEMORY); 999 1000 if (arg->status_change_nid_high >= 0) 1001 node_set_state(node, N_HIGH_MEMORY); 1002 1003 node_set_state(node, N_MEMORY); 1004 } 1005 1006 1007 /* Must be protected by mem_hotplug_begin() */ 1008 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 1009 { 1010 unsigned long flags; 1011 unsigned long onlined_pages = 0; 1012 struct zone *zone; 1013 int need_zonelists_rebuild = 0; 1014 int nid; 1015 int ret; 1016 struct memory_notify arg; 1017 1018 /* 1019 * This doesn't need a lock to do pfn_to_page(). 1020 * The section can't be removed here because of the 1021 * memory_block->state_mutex. 1022 */ 1023 zone = page_zone(pfn_to_page(pfn)); 1024 1025 if ((zone_idx(zone) > ZONE_NORMAL || 1026 online_type == MMOP_ONLINE_MOVABLE) && 1027 !can_online_high_movable(zone)) 1028 return -EINVAL; 1029 1030 if (online_type == MMOP_ONLINE_KERNEL && 1031 zone_idx(zone) == ZONE_MOVABLE) { 1032 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) 1033 return -EINVAL; 1034 } 1035 if (online_type == MMOP_ONLINE_MOVABLE && 1036 zone_idx(zone) == ZONE_MOVABLE - 1) { 1037 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) 1038 return -EINVAL; 1039 } 1040 1041 /* Previous code may changed the zone of the pfn range */ 1042 zone = page_zone(pfn_to_page(pfn)); 1043 1044 arg.start_pfn = pfn; 1045 arg.nr_pages = nr_pages; 1046 node_states_check_changes_online(nr_pages, zone, &arg); 1047 1048 nid = pfn_to_nid(pfn); 1049 1050 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1051 ret = notifier_to_errno(ret); 1052 if (ret) { 1053 memory_notify(MEM_CANCEL_ONLINE, &arg); 1054 return ret; 1055 } 1056 /* 1057 * If this zone is not populated, then it is not in zonelist. 1058 * This means the page allocator ignores this zone. 1059 * So, zonelist must be updated after online. 1060 */ 1061 mutex_lock(&zonelists_mutex); 1062 if (!populated_zone(zone)) { 1063 need_zonelists_rebuild = 1; 1064 build_all_zonelists(NULL, zone); 1065 } 1066 1067 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1068 online_pages_range); 1069 if (ret) { 1070 if (need_zonelists_rebuild) 1071 zone_pcp_reset(zone); 1072 mutex_unlock(&zonelists_mutex); 1073 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n", 1074 (unsigned long long) pfn << PAGE_SHIFT, 1075 (((unsigned long long) pfn + nr_pages) 1076 << PAGE_SHIFT) - 1); 1077 memory_notify(MEM_CANCEL_ONLINE, &arg); 1078 return ret; 1079 } 1080 1081 zone->present_pages += onlined_pages; 1082 1083 pgdat_resize_lock(zone->zone_pgdat, &flags); 1084 zone->zone_pgdat->node_present_pages += onlined_pages; 1085 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1086 1087 if (onlined_pages) { 1088 node_states_set_node(zone_to_nid(zone), &arg); 1089 if (need_zonelists_rebuild) 1090 build_all_zonelists(NULL, NULL); 1091 else 1092 zone_pcp_update(zone); 1093 } 1094 1095 mutex_unlock(&zonelists_mutex); 1096 1097 init_per_zone_wmark_min(); 1098 1099 if (onlined_pages) 1100 kswapd_run(zone_to_nid(zone)); 1101 1102 vm_total_pages = nr_free_pagecache_pages(); 1103 1104 writeback_set_ratelimit(); 1105 1106 if (onlined_pages) 1107 memory_notify(MEM_ONLINE, &arg); 1108 return 0; 1109 } 1110 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1111 1112 static void reset_node_present_pages(pg_data_t *pgdat) 1113 { 1114 struct zone *z; 1115 1116 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1117 z->present_pages = 0; 1118 1119 pgdat->node_present_pages = 0; 1120 } 1121 1122 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1123 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1124 { 1125 struct pglist_data *pgdat; 1126 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1127 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1128 unsigned long start_pfn = PFN_DOWN(start); 1129 1130 pgdat = NODE_DATA(nid); 1131 if (!pgdat) { 1132 pgdat = arch_alloc_nodedata(nid); 1133 if (!pgdat) 1134 return NULL; 1135 1136 arch_refresh_nodedata(nid, pgdat); 1137 } else { 1138 /* Reset the nr_zones and classzone_idx to 0 before reuse */ 1139 pgdat->nr_zones = 0; 1140 pgdat->classzone_idx = 0; 1141 } 1142 1143 /* we can use NODE_DATA(nid) from here */ 1144 1145 /* init node's zones as empty zones, we don't have any present pages.*/ 1146 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1147 1148 /* 1149 * The node we allocated has no zone fallback lists. For avoiding 1150 * to access not-initialized zonelist, build here. 1151 */ 1152 mutex_lock(&zonelists_mutex); 1153 build_all_zonelists(pgdat, NULL); 1154 mutex_unlock(&zonelists_mutex); 1155 1156 /* 1157 * zone->managed_pages is set to an approximate value in 1158 * free_area_init_core(), which will cause 1159 * /sys/device/system/node/nodeX/meminfo has wrong data. 1160 * So reset it to 0 before any memory is onlined. 1161 */ 1162 reset_node_managed_pages(pgdat); 1163 1164 /* 1165 * When memory is hot-added, all the memory is in offline state. So 1166 * clear all zones' present_pages because they will be updated in 1167 * online_pages() and offline_pages(). 1168 */ 1169 reset_node_present_pages(pgdat); 1170 1171 return pgdat; 1172 } 1173 1174 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1175 { 1176 arch_refresh_nodedata(nid, NULL); 1177 arch_free_nodedata(pgdat); 1178 return; 1179 } 1180 1181 1182 /** 1183 * try_online_node - online a node if offlined 1184 * 1185 * called by cpu_up() to online a node without onlined memory. 1186 */ 1187 int try_online_node(int nid) 1188 { 1189 pg_data_t *pgdat; 1190 int ret; 1191 1192 if (node_online(nid)) 1193 return 0; 1194 1195 mem_hotplug_begin(); 1196 pgdat = hotadd_new_pgdat(nid, 0); 1197 if (!pgdat) { 1198 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1199 ret = -ENOMEM; 1200 goto out; 1201 } 1202 node_set_online(nid); 1203 ret = register_one_node(nid); 1204 BUG_ON(ret); 1205 1206 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1207 mutex_lock(&zonelists_mutex); 1208 build_all_zonelists(NULL, NULL); 1209 mutex_unlock(&zonelists_mutex); 1210 } 1211 1212 out: 1213 mem_hotplug_done(); 1214 return ret; 1215 } 1216 1217 static int check_hotplug_memory_range(u64 start, u64 size) 1218 { 1219 u64 start_pfn = PFN_DOWN(start); 1220 u64 nr_pages = size >> PAGE_SHIFT; 1221 1222 /* Memory range must be aligned with section */ 1223 if ((start_pfn & ~PAGE_SECTION_MASK) || 1224 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1225 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1226 (unsigned long long)start, 1227 (unsigned long long)size); 1228 return -EINVAL; 1229 } 1230 1231 return 0; 1232 } 1233 1234 /* 1235 * If movable zone has already been setup, newly added memory should be check. 1236 * If its address is higher than movable zone, it should be added as movable. 1237 * Without this check, movable zone may overlap with other zone. 1238 */ 1239 static int should_add_memory_movable(int nid, u64 start, u64 size) 1240 { 1241 unsigned long start_pfn = start >> PAGE_SHIFT; 1242 pg_data_t *pgdat = NODE_DATA(nid); 1243 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1244 1245 if (zone_is_empty(movable_zone)) 1246 return 0; 1247 1248 if (movable_zone->zone_start_pfn <= start_pfn) 1249 return 1; 1250 1251 return 0; 1252 } 1253 1254 int zone_for_memory(int nid, u64 start, u64 size, int zone_default, 1255 bool for_device) 1256 { 1257 #ifdef CONFIG_ZONE_DEVICE 1258 if (for_device) 1259 return ZONE_DEVICE; 1260 #endif 1261 if (should_add_memory_movable(nid, start, size)) 1262 return ZONE_MOVABLE; 1263 1264 return zone_default; 1265 } 1266 1267 static int online_memory_block(struct memory_block *mem, void *arg) 1268 { 1269 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 1270 } 1271 1272 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1273 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1274 { 1275 u64 start, size; 1276 pg_data_t *pgdat = NULL; 1277 bool new_pgdat; 1278 bool new_node; 1279 int ret; 1280 1281 start = res->start; 1282 size = resource_size(res); 1283 1284 ret = check_hotplug_memory_range(start, size); 1285 if (ret) 1286 return ret; 1287 1288 { /* Stupid hack to suppress address-never-null warning */ 1289 void *p = NODE_DATA(nid); 1290 new_pgdat = !p; 1291 } 1292 1293 mem_hotplug_begin(); 1294 1295 /* 1296 * Add new range to memblock so that when hotadd_new_pgdat() is called 1297 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1298 * this new range and calculate total pages correctly. The range will 1299 * be removed at hot-remove time. 1300 */ 1301 memblock_add_node(start, size, nid); 1302 1303 new_node = !node_online(nid); 1304 if (new_node) { 1305 pgdat = hotadd_new_pgdat(nid, start); 1306 ret = -ENOMEM; 1307 if (!pgdat) 1308 goto error; 1309 } 1310 1311 /* call arch's memory hotadd */ 1312 ret = arch_add_memory(nid, start, size, false); 1313 1314 if (ret < 0) 1315 goto error; 1316 1317 /* we online node here. we can't roll back from here. */ 1318 node_set_online(nid); 1319 1320 if (new_node) { 1321 ret = register_one_node(nid); 1322 /* 1323 * If sysfs file of new node can't create, cpu on the node 1324 * can't be hot-added. There is no rollback way now. 1325 * So, check by BUG_ON() to catch it reluctantly.. 1326 */ 1327 BUG_ON(ret); 1328 } 1329 1330 /* create new memmap entry */ 1331 firmware_map_add_hotplug(start, start + size, "System RAM"); 1332 1333 /* online pages if requested */ 1334 if (online) 1335 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1336 NULL, online_memory_block); 1337 1338 goto out; 1339 1340 error: 1341 /* rollback pgdat allocation and others */ 1342 if (new_pgdat) 1343 rollback_node_hotadd(nid, pgdat); 1344 memblock_remove(start, size); 1345 1346 out: 1347 mem_hotplug_done(); 1348 return ret; 1349 } 1350 EXPORT_SYMBOL_GPL(add_memory_resource); 1351 1352 int __ref add_memory(int nid, u64 start, u64 size) 1353 { 1354 struct resource *res; 1355 int ret; 1356 1357 res = register_memory_resource(start, size); 1358 if (IS_ERR(res)) 1359 return PTR_ERR(res); 1360 1361 ret = add_memory_resource(nid, res, memhp_auto_online); 1362 if (ret < 0) 1363 release_memory_resource(res); 1364 return ret; 1365 } 1366 EXPORT_SYMBOL_GPL(add_memory); 1367 1368 #ifdef CONFIG_MEMORY_HOTREMOVE 1369 /* 1370 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1371 * set and the size of the free page is given by page_order(). Using this, 1372 * the function determines if the pageblock contains only free pages. 1373 * Due to buddy contraints, a free page at least the size of a pageblock will 1374 * be located at the start of the pageblock 1375 */ 1376 static inline int pageblock_free(struct page *page) 1377 { 1378 return PageBuddy(page) && page_order(page) >= pageblock_order; 1379 } 1380 1381 /* Return the start of the next active pageblock after a given page */ 1382 static struct page *next_active_pageblock(struct page *page) 1383 { 1384 /* Ensure the starting page is pageblock-aligned */ 1385 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1386 1387 /* If the entire pageblock is free, move to the end of free page */ 1388 if (pageblock_free(page)) { 1389 int order; 1390 /* be careful. we don't have locks, page_order can be changed.*/ 1391 order = page_order(page); 1392 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1393 return page + (1 << order); 1394 } 1395 1396 return page + pageblock_nr_pages; 1397 } 1398 1399 /* Checks if this range of memory is likely to be hot-removable. */ 1400 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1401 { 1402 struct page *page = pfn_to_page(start_pfn); 1403 struct page *end_page = page + nr_pages; 1404 1405 /* Check the starting page of each pageblock within the range */ 1406 for (; page < end_page; page = next_active_pageblock(page)) { 1407 if (!is_pageblock_removable_nolock(page)) 1408 return 0; 1409 cond_resched(); 1410 } 1411 1412 /* All pageblocks in the memory block are likely to be hot-removable */ 1413 return 1; 1414 } 1415 1416 /* 1417 * Confirm all pages in a range [start, end) is belongs to the same zone. 1418 */ 1419 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) 1420 { 1421 unsigned long pfn, sec_end_pfn; 1422 struct zone *zone = NULL; 1423 struct page *page; 1424 int i; 1425 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn); 1426 pfn < end_pfn; 1427 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) { 1428 /* Make sure the memory section is present first */ 1429 if (!present_section_nr(pfn_to_section_nr(pfn))) 1430 continue; 1431 for (; pfn < sec_end_pfn && pfn < end_pfn; 1432 pfn += MAX_ORDER_NR_PAGES) { 1433 i = 0; 1434 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1435 while ((i < MAX_ORDER_NR_PAGES) && 1436 !pfn_valid_within(pfn + i)) 1437 i++; 1438 if (i == MAX_ORDER_NR_PAGES) 1439 continue; 1440 page = pfn_to_page(pfn + i); 1441 if (zone && page_zone(page) != zone) 1442 return 0; 1443 zone = page_zone(page); 1444 } 1445 } 1446 return 1; 1447 } 1448 1449 /* 1450 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages 1451 * and hugepages). We scan pfn because it's much easier than scanning over 1452 * linked list. This function returns the pfn of the first found movable 1453 * page if it's found, otherwise 0. 1454 */ 1455 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1456 { 1457 unsigned long pfn; 1458 struct page *page; 1459 for (pfn = start; pfn < end; pfn++) { 1460 if (pfn_valid(pfn)) { 1461 page = pfn_to_page(pfn); 1462 if (PageLRU(page)) 1463 return pfn; 1464 if (PageHuge(page)) { 1465 if (page_huge_active(page)) 1466 return pfn; 1467 else 1468 pfn = round_up(pfn + 1, 1469 1 << compound_order(page)) - 1; 1470 } 1471 } 1472 } 1473 return 0; 1474 } 1475 1476 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1477 static int 1478 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1479 { 1480 unsigned long pfn; 1481 struct page *page; 1482 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1483 int not_managed = 0; 1484 int ret = 0; 1485 LIST_HEAD(source); 1486 1487 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1488 if (!pfn_valid(pfn)) 1489 continue; 1490 page = pfn_to_page(pfn); 1491 1492 if (PageHuge(page)) { 1493 struct page *head = compound_head(page); 1494 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1495 if (compound_order(head) > PFN_SECTION_SHIFT) { 1496 ret = -EBUSY; 1497 break; 1498 } 1499 if (isolate_huge_page(page, &source)) 1500 move_pages -= 1 << compound_order(head); 1501 continue; 1502 } 1503 1504 if (!get_page_unless_zero(page)) 1505 continue; 1506 /* 1507 * We can skip free pages. And we can only deal with pages on 1508 * LRU. 1509 */ 1510 ret = isolate_lru_page(page); 1511 if (!ret) { /* Success */ 1512 put_page(page); 1513 list_add_tail(&page->lru, &source); 1514 move_pages--; 1515 inc_zone_page_state(page, NR_ISOLATED_ANON + 1516 page_is_file_cache(page)); 1517 1518 } else { 1519 #ifdef CONFIG_DEBUG_VM 1520 printk(KERN_ALERT "removing pfn %lx from LRU failed\n", 1521 pfn); 1522 dump_page(page, "failed to remove from LRU"); 1523 #endif 1524 put_page(page); 1525 /* Because we don't have big zone->lock. we should 1526 check this again here. */ 1527 if (page_count(page)) { 1528 not_managed++; 1529 ret = -EBUSY; 1530 break; 1531 } 1532 } 1533 } 1534 if (!list_empty(&source)) { 1535 if (not_managed) { 1536 putback_movable_pages(&source); 1537 goto out; 1538 } 1539 1540 /* 1541 * alloc_migrate_target should be improooooved!! 1542 * migrate_pages returns # of failed pages. 1543 */ 1544 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0, 1545 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1546 if (ret) 1547 putback_movable_pages(&source); 1548 } 1549 out: 1550 return ret; 1551 } 1552 1553 /* 1554 * remove from free_area[] and mark all as Reserved. 1555 */ 1556 static int 1557 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1558 void *data) 1559 { 1560 __offline_isolated_pages(start, start + nr_pages); 1561 return 0; 1562 } 1563 1564 static void 1565 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1566 { 1567 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1568 offline_isolated_pages_cb); 1569 } 1570 1571 /* 1572 * Check all pages in range, recoreded as memory resource, are isolated. 1573 */ 1574 static int 1575 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1576 void *data) 1577 { 1578 int ret; 1579 long offlined = *(long *)data; 1580 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1581 offlined = nr_pages; 1582 if (!ret) 1583 *(long *)data += offlined; 1584 return ret; 1585 } 1586 1587 static long 1588 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1589 { 1590 long offlined = 0; 1591 int ret; 1592 1593 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1594 check_pages_isolated_cb); 1595 if (ret < 0) 1596 offlined = (long)ret; 1597 return offlined; 1598 } 1599 1600 #ifdef CONFIG_MOVABLE_NODE 1601 /* 1602 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1603 * normal memory. 1604 */ 1605 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1606 { 1607 return true; 1608 } 1609 #else /* CONFIG_MOVABLE_NODE */ 1610 /* ensure the node has NORMAL memory if it is still online */ 1611 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1612 { 1613 struct pglist_data *pgdat = zone->zone_pgdat; 1614 unsigned long present_pages = 0; 1615 enum zone_type zt; 1616 1617 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1618 present_pages += pgdat->node_zones[zt].present_pages; 1619 1620 if (present_pages > nr_pages) 1621 return true; 1622 1623 present_pages = 0; 1624 for (; zt <= ZONE_MOVABLE; zt++) 1625 present_pages += pgdat->node_zones[zt].present_pages; 1626 1627 /* 1628 * we can't offline the last normal memory until all 1629 * higher memory is offlined. 1630 */ 1631 return present_pages == 0; 1632 } 1633 #endif /* CONFIG_MOVABLE_NODE */ 1634 1635 static int __init cmdline_parse_movable_node(char *p) 1636 { 1637 #ifdef CONFIG_MOVABLE_NODE 1638 /* 1639 * Memory used by the kernel cannot be hot-removed because Linux 1640 * cannot migrate the kernel pages. When memory hotplug is 1641 * enabled, we should prevent memblock from allocating memory 1642 * for the kernel. 1643 * 1644 * ACPI SRAT records all hotpluggable memory ranges. But before 1645 * SRAT is parsed, we don't know about it. 1646 * 1647 * The kernel image is loaded into memory at very early time. We 1648 * cannot prevent this anyway. So on NUMA system, we set any 1649 * node the kernel resides in as un-hotpluggable. 1650 * 1651 * Since on modern servers, one node could have double-digit 1652 * gigabytes memory, we can assume the memory around the kernel 1653 * image is also un-hotpluggable. So before SRAT is parsed, just 1654 * allocate memory near the kernel image to try the best to keep 1655 * the kernel away from hotpluggable memory. 1656 */ 1657 memblock_set_bottom_up(true); 1658 movable_node_enabled = true; 1659 #else 1660 pr_warn("movable_node option not supported\n"); 1661 #endif 1662 return 0; 1663 } 1664 early_param("movable_node", cmdline_parse_movable_node); 1665 1666 /* check which state of node_states will be changed when offline memory */ 1667 static void node_states_check_changes_offline(unsigned long nr_pages, 1668 struct zone *zone, struct memory_notify *arg) 1669 { 1670 struct pglist_data *pgdat = zone->zone_pgdat; 1671 unsigned long present_pages = 0; 1672 enum zone_type zt, zone_last = ZONE_NORMAL; 1673 1674 /* 1675 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1676 * contains nodes which have zones of 0...ZONE_NORMAL, 1677 * set zone_last to ZONE_NORMAL. 1678 * 1679 * If we don't have HIGHMEM nor movable node, 1680 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1681 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1682 */ 1683 if (N_MEMORY == N_NORMAL_MEMORY) 1684 zone_last = ZONE_MOVABLE; 1685 1686 /* 1687 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1688 * If the memory to be offline is in a zone of 0...zone_last, 1689 * and it is the last present memory, 0...zone_last will 1690 * become empty after offline , thus we can determind we will 1691 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1692 */ 1693 for (zt = 0; zt <= zone_last; zt++) 1694 present_pages += pgdat->node_zones[zt].present_pages; 1695 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1696 arg->status_change_nid_normal = zone_to_nid(zone); 1697 else 1698 arg->status_change_nid_normal = -1; 1699 1700 #ifdef CONFIG_HIGHMEM 1701 /* 1702 * If we have movable node, node_states[N_HIGH_MEMORY] 1703 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1704 * set zone_last to ZONE_HIGHMEM. 1705 * 1706 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1707 * contains nodes which have zones of 0...ZONE_MOVABLE, 1708 * set zone_last to ZONE_MOVABLE. 1709 */ 1710 zone_last = ZONE_HIGHMEM; 1711 if (N_MEMORY == N_HIGH_MEMORY) 1712 zone_last = ZONE_MOVABLE; 1713 1714 for (; zt <= zone_last; zt++) 1715 present_pages += pgdat->node_zones[zt].present_pages; 1716 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1717 arg->status_change_nid_high = zone_to_nid(zone); 1718 else 1719 arg->status_change_nid_high = -1; 1720 #else 1721 arg->status_change_nid_high = arg->status_change_nid_normal; 1722 #endif 1723 1724 /* 1725 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1726 */ 1727 zone_last = ZONE_MOVABLE; 1728 1729 /* 1730 * check whether node_states[N_HIGH_MEMORY] will be changed 1731 * If we try to offline the last present @nr_pages from the node, 1732 * we can determind we will need to clear the node from 1733 * node_states[N_HIGH_MEMORY]. 1734 */ 1735 for (; zt <= zone_last; zt++) 1736 present_pages += pgdat->node_zones[zt].present_pages; 1737 if (nr_pages >= present_pages) 1738 arg->status_change_nid = zone_to_nid(zone); 1739 else 1740 arg->status_change_nid = -1; 1741 } 1742 1743 static void node_states_clear_node(int node, struct memory_notify *arg) 1744 { 1745 if (arg->status_change_nid_normal >= 0) 1746 node_clear_state(node, N_NORMAL_MEMORY); 1747 1748 if ((N_MEMORY != N_NORMAL_MEMORY) && 1749 (arg->status_change_nid_high >= 0)) 1750 node_clear_state(node, N_HIGH_MEMORY); 1751 1752 if ((N_MEMORY != N_HIGH_MEMORY) && 1753 (arg->status_change_nid >= 0)) 1754 node_clear_state(node, N_MEMORY); 1755 } 1756 1757 static int __ref __offline_pages(unsigned long start_pfn, 1758 unsigned long end_pfn, unsigned long timeout) 1759 { 1760 unsigned long pfn, nr_pages, expire; 1761 long offlined_pages; 1762 int ret, drain, retry_max, node; 1763 unsigned long flags; 1764 struct zone *zone; 1765 struct memory_notify arg; 1766 1767 /* at least, alignment against pageblock is necessary */ 1768 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1769 return -EINVAL; 1770 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1771 return -EINVAL; 1772 /* This makes hotplug much easier...and readable. 1773 we assume this for now. .*/ 1774 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 1775 return -EINVAL; 1776 1777 zone = page_zone(pfn_to_page(start_pfn)); 1778 node = zone_to_nid(zone); 1779 nr_pages = end_pfn - start_pfn; 1780 1781 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1782 return -EINVAL; 1783 1784 /* set above range as isolated */ 1785 ret = start_isolate_page_range(start_pfn, end_pfn, 1786 MIGRATE_MOVABLE, true); 1787 if (ret) 1788 return ret; 1789 1790 arg.start_pfn = start_pfn; 1791 arg.nr_pages = nr_pages; 1792 node_states_check_changes_offline(nr_pages, zone, &arg); 1793 1794 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1795 ret = notifier_to_errno(ret); 1796 if (ret) 1797 goto failed_removal; 1798 1799 pfn = start_pfn; 1800 expire = jiffies + timeout; 1801 drain = 0; 1802 retry_max = 5; 1803 repeat: 1804 /* start memory hot removal */ 1805 ret = -EAGAIN; 1806 if (time_after(jiffies, expire)) 1807 goto failed_removal; 1808 ret = -EINTR; 1809 if (signal_pending(current)) 1810 goto failed_removal; 1811 ret = 0; 1812 if (drain) { 1813 lru_add_drain_all(); 1814 cond_resched(); 1815 drain_all_pages(zone); 1816 } 1817 1818 pfn = scan_movable_pages(start_pfn, end_pfn); 1819 if (pfn) { /* We have movable pages */ 1820 ret = do_migrate_range(pfn, end_pfn); 1821 if (!ret) { 1822 drain = 1; 1823 goto repeat; 1824 } else { 1825 if (ret < 0) 1826 if (--retry_max == 0) 1827 goto failed_removal; 1828 yield(); 1829 drain = 1; 1830 goto repeat; 1831 } 1832 } 1833 /* drain all zone's lru pagevec, this is asynchronous... */ 1834 lru_add_drain_all(); 1835 yield(); 1836 /* drain pcp pages, this is synchronous. */ 1837 drain_all_pages(zone); 1838 /* 1839 * dissolve free hugepages in the memory block before doing offlining 1840 * actually in order to make hugetlbfs's object counting consistent. 1841 */ 1842 dissolve_free_huge_pages(start_pfn, end_pfn); 1843 /* check again */ 1844 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1845 if (offlined_pages < 0) { 1846 ret = -EBUSY; 1847 goto failed_removal; 1848 } 1849 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages); 1850 /* Ok, all of our target is isolated. 1851 We cannot do rollback at this point. */ 1852 offline_isolated_pages(start_pfn, end_pfn); 1853 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1854 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1855 /* removal success */ 1856 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1857 zone->present_pages -= offlined_pages; 1858 1859 pgdat_resize_lock(zone->zone_pgdat, &flags); 1860 zone->zone_pgdat->node_present_pages -= offlined_pages; 1861 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1862 1863 init_per_zone_wmark_min(); 1864 1865 if (!populated_zone(zone)) { 1866 zone_pcp_reset(zone); 1867 mutex_lock(&zonelists_mutex); 1868 build_all_zonelists(NULL, NULL); 1869 mutex_unlock(&zonelists_mutex); 1870 } else 1871 zone_pcp_update(zone); 1872 1873 node_states_clear_node(node, &arg); 1874 if (arg.status_change_nid >= 0) 1875 kswapd_stop(node); 1876 1877 vm_total_pages = nr_free_pagecache_pages(); 1878 writeback_set_ratelimit(); 1879 1880 memory_notify(MEM_OFFLINE, &arg); 1881 return 0; 1882 1883 failed_removal: 1884 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n", 1885 (unsigned long long) start_pfn << PAGE_SHIFT, 1886 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1887 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1888 /* pushback to free area */ 1889 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1890 return ret; 1891 } 1892 1893 /* Must be protected by mem_hotplug_begin() */ 1894 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1895 { 1896 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 1897 } 1898 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1899 1900 /** 1901 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1902 * @start_pfn: start pfn of the memory range 1903 * @end_pfn: end pfn of the memory range 1904 * @arg: argument passed to func 1905 * @func: callback for each memory section walked 1906 * 1907 * This function walks through all present mem sections in range 1908 * [start_pfn, end_pfn) and call func on each mem section. 1909 * 1910 * Returns the return value of func. 1911 */ 1912 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1913 void *arg, int (*func)(struct memory_block *, void *)) 1914 { 1915 struct memory_block *mem = NULL; 1916 struct mem_section *section; 1917 unsigned long pfn, section_nr; 1918 int ret; 1919 1920 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1921 section_nr = pfn_to_section_nr(pfn); 1922 if (!present_section_nr(section_nr)) 1923 continue; 1924 1925 section = __nr_to_section(section_nr); 1926 /* same memblock? */ 1927 if (mem) 1928 if ((section_nr >= mem->start_section_nr) && 1929 (section_nr <= mem->end_section_nr)) 1930 continue; 1931 1932 mem = find_memory_block_hinted(section, mem); 1933 if (!mem) 1934 continue; 1935 1936 ret = func(mem, arg); 1937 if (ret) { 1938 kobject_put(&mem->dev.kobj); 1939 return ret; 1940 } 1941 } 1942 1943 if (mem) 1944 kobject_put(&mem->dev.kobj); 1945 1946 return 0; 1947 } 1948 1949 #ifdef CONFIG_MEMORY_HOTREMOVE 1950 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1951 { 1952 int ret = !is_memblock_offlined(mem); 1953 1954 if (unlikely(ret)) { 1955 phys_addr_t beginpa, endpa; 1956 1957 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1958 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1959 pr_warn("removing memory fails, because memory " 1960 "[%pa-%pa] is onlined\n", 1961 &beginpa, &endpa); 1962 } 1963 1964 return ret; 1965 } 1966 1967 static int check_cpu_on_node(pg_data_t *pgdat) 1968 { 1969 int cpu; 1970 1971 for_each_present_cpu(cpu) { 1972 if (cpu_to_node(cpu) == pgdat->node_id) 1973 /* 1974 * the cpu on this node isn't removed, and we can't 1975 * offline this node. 1976 */ 1977 return -EBUSY; 1978 } 1979 1980 return 0; 1981 } 1982 1983 static void unmap_cpu_on_node(pg_data_t *pgdat) 1984 { 1985 #ifdef CONFIG_ACPI_NUMA 1986 int cpu; 1987 1988 for_each_possible_cpu(cpu) 1989 if (cpu_to_node(cpu) == pgdat->node_id) 1990 numa_clear_node(cpu); 1991 #endif 1992 } 1993 1994 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1995 { 1996 int ret; 1997 1998 ret = check_cpu_on_node(pgdat); 1999 if (ret) 2000 return ret; 2001 2002 /* 2003 * the node will be offlined when we come here, so we can clear 2004 * the cpu_to_node() now. 2005 */ 2006 2007 unmap_cpu_on_node(pgdat); 2008 return 0; 2009 } 2010 2011 /** 2012 * try_offline_node 2013 * 2014 * Offline a node if all memory sections and cpus of the node are removed. 2015 * 2016 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2017 * and online/offline operations before this call. 2018 */ 2019 void try_offline_node(int nid) 2020 { 2021 pg_data_t *pgdat = NODE_DATA(nid); 2022 unsigned long start_pfn = pgdat->node_start_pfn; 2023 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 2024 unsigned long pfn; 2025 int i; 2026 2027 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2028 unsigned long section_nr = pfn_to_section_nr(pfn); 2029 2030 if (!present_section_nr(section_nr)) 2031 continue; 2032 2033 if (pfn_to_nid(pfn) != nid) 2034 continue; 2035 2036 /* 2037 * some memory sections of this node are not removed, and we 2038 * can't offline node now. 2039 */ 2040 return; 2041 } 2042 2043 if (check_and_unmap_cpu_on_node(pgdat)) 2044 return; 2045 2046 /* 2047 * all memory/cpu of this node are removed, we can offline this 2048 * node now. 2049 */ 2050 node_set_offline(nid); 2051 unregister_one_node(nid); 2052 2053 /* free waittable in each zone */ 2054 for (i = 0; i < MAX_NR_ZONES; i++) { 2055 struct zone *zone = pgdat->node_zones + i; 2056 2057 /* 2058 * wait_table may be allocated from boot memory, 2059 * here only free if it's allocated by vmalloc. 2060 */ 2061 if (is_vmalloc_addr(zone->wait_table)) { 2062 vfree(zone->wait_table); 2063 zone->wait_table = NULL; 2064 } 2065 } 2066 } 2067 EXPORT_SYMBOL(try_offline_node); 2068 2069 /** 2070 * remove_memory 2071 * 2072 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2073 * and online/offline operations before this call, as required by 2074 * try_offline_node(). 2075 */ 2076 void __ref remove_memory(int nid, u64 start, u64 size) 2077 { 2078 int ret; 2079 2080 BUG_ON(check_hotplug_memory_range(start, size)); 2081 2082 mem_hotplug_begin(); 2083 2084 /* 2085 * All memory blocks must be offlined before removing memory. Check 2086 * whether all memory blocks in question are offline and trigger a BUG() 2087 * if this is not the case. 2088 */ 2089 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2090 check_memblock_offlined_cb); 2091 if (ret) 2092 BUG(); 2093 2094 /* remove memmap entry */ 2095 firmware_map_remove(start, start + size, "System RAM"); 2096 memblock_free(start, size); 2097 memblock_remove(start, size); 2098 2099 arch_remove_memory(start, size); 2100 2101 try_offline_node(nid); 2102 2103 mem_hotplug_done(); 2104 } 2105 EXPORT_SYMBOL_GPL(remove_memory); 2106 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2107