1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 52 #include <asm/pgalloc.h> 53 #include <asm/uaccess.h> 54 #include <asm/tlb.h> 55 #include <asm/tlbflush.h> 56 #include <asm/pgtable.h> 57 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 61 #ifndef CONFIG_DISCONTIGMEM 62 /* use the per-pgdat data instead for discontigmem - mbligh */ 63 unsigned long max_mapnr; 64 struct page *mem_map; 65 66 EXPORT_SYMBOL(max_mapnr); 67 EXPORT_SYMBOL(mem_map); 68 #endif 69 70 unsigned long num_physpages; 71 /* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78 void * high_memory; 79 unsigned long vmalloc_earlyreserve; 80 81 EXPORT_SYMBOL(num_physpages); 82 EXPORT_SYMBOL(high_memory); 83 EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85 /* 86 * If a p?d_bad entry is found while walking page tables, report 87 * the error, before resetting entry to p?d_none. Usually (but 88 * very seldom) called out from the p?d_none_or_clear_bad macros. 89 */ 90 91 void pgd_clear_bad(pgd_t *pgd) 92 { 93 pgd_ERROR(*pgd); 94 pgd_clear(pgd); 95 } 96 97 void pud_clear_bad(pud_t *pud) 98 { 99 pud_ERROR(*pud); 100 pud_clear(pud); 101 } 102 103 void pmd_clear_bad(pmd_t *pmd) 104 { 105 pmd_ERROR(*pmd); 106 pmd_clear(pmd); 107 } 108 109 /* 110 * Note: this doesn't free the actual pages themselves. That 111 * has been handled earlier when unmapping all the memory regions. 112 */ 113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 114 { 115 struct page *page = pmd_page(*pmd); 116 pmd_clear(pmd); 117 pte_free_tlb(tlb, page); 118 dec_page_state(nr_page_table_pages); 119 tlb->mm->nr_ptes--; 120 } 121 122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 123 unsigned long addr, unsigned long end, 124 unsigned long floor, unsigned long ceiling) 125 { 126 pmd_t *pmd; 127 unsigned long next; 128 unsigned long start; 129 130 start = addr; 131 pmd = pmd_offset(pud, addr); 132 do { 133 next = pmd_addr_end(addr, end); 134 if (pmd_none_or_clear_bad(pmd)) 135 continue; 136 free_pte_range(tlb, pmd); 137 } while (pmd++, addr = next, addr != end); 138 139 start &= PUD_MASK; 140 if (start < floor) 141 return; 142 if (ceiling) { 143 ceiling &= PUD_MASK; 144 if (!ceiling) 145 return; 146 } 147 if (end - 1 > ceiling - 1) 148 return; 149 150 pmd = pmd_offset(pud, start); 151 pud_clear(pud); 152 pmd_free_tlb(tlb, pmd); 153 } 154 155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 156 unsigned long addr, unsigned long end, 157 unsigned long floor, unsigned long ceiling) 158 { 159 pud_t *pud; 160 unsigned long next; 161 unsigned long start; 162 163 start = addr; 164 pud = pud_offset(pgd, addr); 165 do { 166 next = pud_addr_end(addr, end); 167 if (pud_none_or_clear_bad(pud)) 168 continue; 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 170 } while (pud++, addr = next, addr != end); 171 172 start &= PGDIR_MASK; 173 if (start < floor) 174 return; 175 if (ceiling) { 176 ceiling &= PGDIR_MASK; 177 if (!ceiling) 178 return; 179 } 180 if (end - 1 > ceiling - 1) 181 return; 182 183 pud = pud_offset(pgd, start); 184 pgd_clear(pgd); 185 pud_free_tlb(tlb, pud); 186 } 187 188 /* 189 * This function frees user-level page tables of a process. 190 * 191 * Must be called with pagetable lock held. 192 */ 193 static inline void free_pgd_range(struct mmu_gather *tlb, 194 unsigned long addr, unsigned long end, 195 unsigned long floor, unsigned long ceiling) 196 { 197 pgd_t *pgd; 198 unsigned long next; 199 unsigned long start; 200 201 /* 202 * The next few lines have given us lots of grief... 203 * 204 * Why are we testing PMD* at this top level? Because often 205 * there will be no work to do at all, and we'd prefer not to 206 * go all the way down to the bottom just to discover that. 207 * 208 * Why all these "- 1"s? Because 0 represents both the bottom 209 * of the address space and the top of it (using -1 for the 210 * top wouldn't help much: the masks would do the wrong thing). 211 * The rule is that addr 0 and floor 0 refer to the bottom of 212 * the address space, but end 0 and ceiling 0 refer to the top 213 * Comparisons need to use "end - 1" and "ceiling - 1" (though 214 * that end 0 case should be mythical). 215 * 216 * Wherever addr is brought up or ceiling brought down, we must 217 * be careful to reject "the opposite 0" before it confuses the 218 * subsequent tests. But what about where end is brought down 219 * by PMD_SIZE below? no, end can't go down to 0 there. 220 * 221 * Whereas we round start (addr) and ceiling down, by different 222 * masks at different levels, in order to test whether a table 223 * now has no other vmas using it, so can be freed, we don't 224 * bother to round floor or end up - the tests don't need that. 225 */ 226 227 addr &= PMD_MASK; 228 if (addr < floor) { 229 addr += PMD_SIZE; 230 if (!addr) 231 return; 232 } 233 if (ceiling) { 234 ceiling &= PMD_MASK; 235 if (!ceiling) 236 return; 237 } 238 if (end - 1 > ceiling - 1) 239 end -= PMD_SIZE; 240 if (addr > end - 1) 241 return; 242 243 start = addr; 244 pgd = pgd_offset(tlb->mm, addr); 245 do { 246 next = pgd_addr_end(addr, end); 247 if (pgd_none_or_clear_bad(pgd)) 248 continue; 249 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 250 } while (pgd++, addr = next, addr != end); 251 252 if (!tlb_is_full_mm(tlb)) 253 flush_tlb_pgtables(tlb->mm, start, end); 254 } 255 256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 257 unsigned long floor, unsigned long ceiling) 258 { 259 while (vma) { 260 struct vm_area_struct *next = vma->vm_next; 261 unsigned long addr = vma->vm_start; 262 263 /* Optimization: gather nearby vmas into a single call down */ 264 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 265 vma = next; 266 next = vma->vm_next; 267 } 268 free_pgd_range(*tlb, addr, vma->vm_end, 269 floor, next? next->vm_start: ceiling); 270 vma = next; 271 } 272 } 273 274 pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 275 { 276 if (!pmd_present(*pmd)) { 277 struct page *new; 278 279 spin_unlock(&mm->page_table_lock); 280 new = pte_alloc_one(mm, address); 281 spin_lock(&mm->page_table_lock); 282 if (!new) 283 return NULL; 284 /* 285 * Because we dropped the lock, we should re-check the 286 * entry, as somebody else could have populated it.. 287 */ 288 if (pmd_present(*pmd)) { 289 pte_free(new); 290 goto out; 291 } 292 mm->nr_ptes++; 293 inc_page_state(nr_page_table_pages); 294 pmd_populate(mm, pmd, new); 295 } 296 out: 297 return pte_offset_map(pmd, address); 298 } 299 300 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 301 { 302 if (!pmd_present(*pmd)) { 303 pte_t *new; 304 305 spin_unlock(&mm->page_table_lock); 306 new = pte_alloc_one_kernel(mm, address); 307 spin_lock(&mm->page_table_lock); 308 if (!new) 309 return NULL; 310 311 /* 312 * Because we dropped the lock, we should re-check the 313 * entry, as somebody else could have populated it.. 314 */ 315 if (pmd_present(*pmd)) { 316 pte_free_kernel(new); 317 goto out; 318 } 319 pmd_populate_kernel(mm, pmd, new); 320 } 321 out: 322 return pte_offset_kernel(pmd, address); 323 } 324 325 /* 326 * copy one vm_area from one task to the other. Assumes the page tables 327 * already present in the new task to be cleared in the whole range 328 * covered by this vma. 329 * 330 * dst->page_table_lock is held on entry and exit, 331 * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). 332 */ 333 334 static inline void 335 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 336 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, 337 unsigned long addr) 338 { 339 pte_t pte = *src_pte; 340 struct page *page; 341 unsigned long pfn; 342 343 /* pte contains position in swap or file, so copy. */ 344 if (unlikely(!pte_present(pte))) { 345 if (!pte_file(pte)) { 346 swap_duplicate(pte_to_swp_entry(pte)); 347 /* make sure dst_mm is on swapoff's mmlist. */ 348 if (unlikely(list_empty(&dst_mm->mmlist))) { 349 spin_lock(&mmlist_lock); 350 list_add(&dst_mm->mmlist, &src_mm->mmlist); 351 spin_unlock(&mmlist_lock); 352 } 353 } 354 set_pte_at(dst_mm, addr, dst_pte, pte); 355 return; 356 } 357 358 pfn = pte_pfn(pte); 359 /* the pte points outside of valid memory, the 360 * mapping is assumed to be good, meaningful 361 * and not mapped via rmap - duplicate the 362 * mapping as is. 363 */ 364 page = NULL; 365 if (pfn_valid(pfn)) 366 page = pfn_to_page(pfn); 367 368 if (!page || PageReserved(page)) { 369 set_pte_at(dst_mm, addr, dst_pte, pte); 370 return; 371 } 372 373 /* 374 * If it's a COW mapping, write protect it both 375 * in the parent and the child 376 */ 377 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { 378 ptep_set_wrprotect(src_mm, addr, src_pte); 379 pte = *src_pte; 380 } 381 382 /* 383 * If it's a shared mapping, mark it clean in 384 * the child 385 */ 386 if (vm_flags & VM_SHARED) 387 pte = pte_mkclean(pte); 388 pte = pte_mkold(pte); 389 get_page(page); 390 inc_mm_counter(dst_mm, rss); 391 if (PageAnon(page)) 392 inc_mm_counter(dst_mm, anon_rss); 393 set_pte_at(dst_mm, addr, dst_pte, pte); 394 page_dup_rmap(page); 395 } 396 397 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 398 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 399 unsigned long addr, unsigned long end) 400 { 401 pte_t *src_pte, *dst_pte; 402 unsigned long vm_flags = vma->vm_flags; 403 int progress; 404 405 again: 406 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); 407 if (!dst_pte) 408 return -ENOMEM; 409 src_pte = pte_offset_map_nested(src_pmd, addr); 410 411 progress = 0; 412 spin_lock(&src_mm->page_table_lock); 413 do { 414 /* 415 * We are holding two locks at this point - either of them 416 * could generate latencies in another task on another CPU. 417 */ 418 if (progress >= 32 && (need_resched() || 419 need_lockbreak(&src_mm->page_table_lock) || 420 need_lockbreak(&dst_mm->page_table_lock))) 421 break; 422 if (pte_none(*src_pte)) { 423 progress++; 424 continue; 425 } 426 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); 427 progress += 8; 428 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 429 spin_unlock(&src_mm->page_table_lock); 430 431 pte_unmap_nested(src_pte - 1); 432 pte_unmap(dst_pte - 1); 433 cond_resched_lock(&dst_mm->page_table_lock); 434 if (addr != end) 435 goto again; 436 return 0; 437 } 438 439 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 440 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 441 unsigned long addr, unsigned long end) 442 { 443 pmd_t *src_pmd, *dst_pmd; 444 unsigned long next; 445 446 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 447 if (!dst_pmd) 448 return -ENOMEM; 449 src_pmd = pmd_offset(src_pud, addr); 450 do { 451 next = pmd_addr_end(addr, end); 452 if (pmd_none_or_clear_bad(src_pmd)) 453 continue; 454 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 455 vma, addr, next)) 456 return -ENOMEM; 457 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 458 return 0; 459 } 460 461 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 462 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 463 unsigned long addr, unsigned long end) 464 { 465 pud_t *src_pud, *dst_pud; 466 unsigned long next; 467 468 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 469 if (!dst_pud) 470 return -ENOMEM; 471 src_pud = pud_offset(src_pgd, addr); 472 do { 473 next = pud_addr_end(addr, end); 474 if (pud_none_or_clear_bad(src_pud)) 475 continue; 476 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 477 vma, addr, next)) 478 return -ENOMEM; 479 } while (dst_pud++, src_pud++, addr = next, addr != end); 480 return 0; 481 } 482 483 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 484 struct vm_area_struct *vma) 485 { 486 pgd_t *src_pgd, *dst_pgd; 487 unsigned long next; 488 unsigned long addr = vma->vm_start; 489 unsigned long end = vma->vm_end; 490 491 if (is_vm_hugetlb_page(vma)) 492 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 493 494 dst_pgd = pgd_offset(dst_mm, addr); 495 src_pgd = pgd_offset(src_mm, addr); 496 do { 497 next = pgd_addr_end(addr, end); 498 if (pgd_none_or_clear_bad(src_pgd)) 499 continue; 500 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 501 vma, addr, next)) 502 return -ENOMEM; 503 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 504 return 0; 505 } 506 507 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 508 unsigned long addr, unsigned long end, 509 struct zap_details *details) 510 { 511 pte_t *pte; 512 513 pte = pte_offset_map(pmd, addr); 514 do { 515 pte_t ptent = *pte; 516 if (pte_none(ptent)) 517 continue; 518 if (pte_present(ptent)) { 519 struct page *page = NULL; 520 unsigned long pfn = pte_pfn(ptent); 521 if (pfn_valid(pfn)) { 522 page = pfn_to_page(pfn); 523 if (PageReserved(page)) 524 page = NULL; 525 } 526 if (unlikely(details) && page) { 527 /* 528 * unmap_shared_mapping_pages() wants to 529 * invalidate cache without truncating: 530 * unmap shared but keep private pages. 531 */ 532 if (details->check_mapping && 533 details->check_mapping != page->mapping) 534 continue; 535 /* 536 * Each page->index must be checked when 537 * invalidating or truncating nonlinear. 538 */ 539 if (details->nonlinear_vma && 540 (page->index < details->first_index || 541 page->index > details->last_index)) 542 continue; 543 } 544 ptent = ptep_get_and_clear(tlb->mm, addr, pte); 545 tlb_remove_tlb_entry(tlb, pte, addr); 546 if (unlikely(!page)) 547 continue; 548 if (unlikely(details) && details->nonlinear_vma 549 && linear_page_index(details->nonlinear_vma, 550 addr) != page->index) 551 set_pte_at(tlb->mm, addr, pte, 552 pgoff_to_pte(page->index)); 553 if (pte_dirty(ptent)) 554 set_page_dirty(page); 555 if (PageAnon(page)) 556 dec_mm_counter(tlb->mm, anon_rss); 557 else if (pte_young(ptent)) 558 mark_page_accessed(page); 559 tlb->freed++; 560 page_remove_rmap(page); 561 tlb_remove_page(tlb, page); 562 continue; 563 } 564 /* 565 * If details->check_mapping, we leave swap entries; 566 * if details->nonlinear_vma, we leave file entries. 567 */ 568 if (unlikely(details)) 569 continue; 570 if (!pte_file(ptent)) 571 free_swap_and_cache(pte_to_swp_entry(ptent)); 572 pte_clear(tlb->mm, addr, pte); 573 } while (pte++, addr += PAGE_SIZE, addr != end); 574 pte_unmap(pte - 1); 575 } 576 577 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, 578 unsigned long addr, unsigned long end, 579 struct zap_details *details) 580 { 581 pmd_t *pmd; 582 unsigned long next; 583 584 pmd = pmd_offset(pud, addr); 585 do { 586 next = pmd_addr_end(addr, end); 587 if (pmd_none_or_clear_bad(pmd)) 588 continue; 589 zap_pte_range(tlb, pmd, addr, next, details); 590 } while (pmd++, addr = next, addr != end); 591 } 592 593 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 594 unsigned long addr, unsigned long end, 595 struct zap_details *details) 596 { 597 pud_t *pud; 598 unsigned long next; 599 600 pud = pud_offset(pgd, addr); 601 do { 602 next = pud_addr_end(addr, end); 603 if (pud_none_or_clear_bad(pud)) 604 continue; 605 zap_pmd_range(tlb, pud, addr, next, details); 606 } while (pud++, addr = next, addr != end); 607 } 608 609 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 610 unsigned long addr, unsigned long end, 611 struct zap_details *details) 612 { 613 pgd_t *pgd; 614 unsigned long next; 615 616 if (details && !details->check_mapping && !details->nonlinear_vma) 617 details = NULL; 618 619 BUG_ON(addr >= end); 620 tlb_start_vma(tlb, vma); 621 pgd = pgd_offset(vma->vm_mm, addr); 622 do { 623 next = pgd_addr_end(addr, end); 624 if (pgd_none_or_clear_bad(pgd)) 625 continue; 626 zap_pud_range(tlb, pgd, addr, next, details); 627 } while (pgd++, addr = next, addr != end); 628 tlb_end_vma(tlb, vma); 629 } 630 631 #ifdef CONFIG_PREEMPT 632 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 633 #else 634 /* No preempt: go for improved straight-line efficiency */ 635 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 636 #endif 637 638 /** 639 * unmap_vmas - unmap a range of memory covered by a list of vma's 640 * @tlbp: address of the caller's struct mmu_gather 641 * @mm: the controlling mm_struct 642 * @vma: the starting vma 643 * @start_addr: virtual address at which to start unmapping 644 * @end_addr: virtual address at which to end unmapping 645 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 646 * @details: details of nonlinear truncation or shared cache invalidation 647 * 648 * Returns the end address of the unmapping (restart addr if interrupted). 649 * 650 * Unmap all pages in the vma list. Called under page_table_lock. 651 * 652 * We aim to not hold page_table_lock for too long (for scheduling latency 653 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 654 * return the ending mmu_gather to the caller. 655 * 656 * Only addresses between `start' and `end' will be unmapped. 657 * 658 * The VMA list must be sorted in ascending virtual address order. 659 * 660 * unmap_vmas() assumes that the caller will flush the whole unmapped address 661 * range after unmap_vmas() returns. So the only responsibility here is to 662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 663 * drops the lock and schedules. 664 */ 665 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, 666 struct vm_area_struct *vma, unsigned long start_addr, 667 unsigned long end_addr, unsigned long *nr_accounted, 668 struct zap_details *details) 669 { 670 unsigned long zap_bytes = ZAP_BLOCK_SIZE; 671 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 672 int tlb_start_valid = 0; 673 unsigned long start = start_addr; 674 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 675 int fullmm = tlb_is_full_mm(*tlbp); 676 677 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 678 unsigned long end; 679 680 start = max(vma->vm_start, start_addr); 681 if (start >= vma->vm_end) 682 continue; 683 end = min(vma->vm_end, end_addr); 684 if (end <= vma->vm_start) 685 continue; 686 687 if (vma->vm_flags & VM_ACCOUNT) 688 *nr_accounted += (end - start) >> PAGE_SHIFT; 689 690 while (start != end) { 691 unsigned long block; 692 693 if (!tlb_start_valid) { 694 tlb_start = start; 695 tlb_start_valid = 1; 696 } 697 698 if (is_vm_hugetlb_page(vma)) { 699 block = end - start; 700 unmap_hugepage_range(vma, start, end); 701 } else { 702 block = min(zap_bytes, end - start); 703 unmap_page_range(*tlbp, vma, start, 704 start + block, details); 705 } 706 707 start += block; 708 zap_bytes -= block; 709 if ((long)zap_bytes > 0) 710 continue; 711 712 tlb_finish_mmu(*tlbp, tlb_start, start); 713 714 if (need_resched() || 715 need_lockbreak(&mm->page_table_lock) || 716 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 717 if (i_mmap_lock) { 718 /* must reset count of rss freed */ 719 *tlbp = tlb_gather_mmu(mm, fullmm); 720 goto out; 721 } 722 spin_unlock(&mm->page_table_lock); 723 cond_resched(); 724 spin_lock(&mm->page_table_lock); 725 } 726 727 *tlbp = tlb_gather_mmu(mm, fullmm); 728 tlb_start_valid = 0; 729 zap_bytes = ZAP_BLOCK_SIZE; 730 } 731 } 732 out: 733 return start; /* which is now the end (or restart) address */ 734 } 735 736 /** 737 * zap_page_range - remove user pages in a given range 738 * @vma: vm_area_struct holding the applicable pages 739 * @address: starting address of pages to zap 740 * @size: number of bytes to zap 741 * @details: details of nonlinear truncation or shared cache invalidation 742 */ 743 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 744 unsigned long size, struct zap_details *details) 745 { 746 struct mm_struct *mm = vma->vm_mm; 747 struct mmu_gather *tlb; 748 unsigned long end = address + size; 749 unsigned long nr_accounted = 0; 750 751 if (is_vm_hugetlb_page(vma)) { 752 zap_hugepage_range(vma, address, size); 753 return end; 754 } 755 756 lru_add_drain(); 757 spin_lock(&mm->page_table_lock); 758 tlb = tlb_gather_mmu(mm, 0); 759 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); 760 tlb_finish_mmu(tlb, address, end); 761 spin_unlock(&mm->page_table_lock); 762 return end; 763 } 764 765 /* 766 * Do a quick page-table lookup for a single page. 767 * mm->page_table_lock must be held. 768 */ 769 static struct page * 770 __follow_page(struct mm_struct *mm, unsigned long address, int read, int write) 771 { 772 pgd_t *pgd; 773 pud_t *pud; 774 pmd_t *pmd; 775 pte_t *ptep, pte; 776 unsigned long pfn; 777 struct page *page; 778 779 page = follow_huge_addr(mm, address, write); 780 if (! IS_ERR(page)) 781 return page; 782 783 pgd = pgd_offset(mm, address); 784 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 785 goto out; 786 787 pud = pud_offset(pgd, address); 788 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 789 goto out; 790 791 pmd = pmd_offset(pud, address); 792 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 793 goto out; 794 if (pmd_huge(*pmd)) 795 return follow_huge_pmd(mm, address, pmd, write); 796 797 ptep = pte_offset_map(pmd, address); 798 if (!ptep) 799 goto out; 800 801 pte = *ptep; 802 pte_unmap(ptep); 803 if (pte_present(pte)) { 804 if (write && !pte_write(pte)) 805 goto out; 806 if (read && !pte_read(pte)) 807 goto out; 808 pfn = pte_pfn(pte); 809 if (pfn_valid(pfn)) { 810 page = pfn_to_page(pfn); 811 if (write && !pte_dirty(pte) && !PageDirty(page)) 812 set_page_dirty(page); 813 mark_page_accessed(page); 814 return page; 815 } 816 } 817 818 out: 819 return NULL; 820 } 821 822 struct page * 823 follow_page(struct mm_struct *mm, unsigned long address, int write) 824 { 825 return __follow_page(mm, address, /*read*/0, write); 826 } 827 828 int 829 check_user_page_readable(struct mm_struct *mm, unsigned long address) 830 { 831 return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL; 832 } 833 834 EXPORT_SYMBOL(check_user_page_readable); 835 836 /* 837 * Given a physical address, is there a useful struct page pointing to 838 * it? This may become more complex in the future if we start dealing 839 * with IO-aperture pages for direct-IO. 840 */ 841 842 static inline struct page *get_page_map(struct page *page) 843 { 844 if (!pfn_valid(page_to_pfn(page))) 845 return NULL; 846 return page; 847 } 848 849 850 static inline int 851 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, 852 unsigned long address) 853 { 854 pgd_t *pgd; 855 pud_t *pud; 856 pmd_t *pmd; 857 858 /* Check if the vma is for an anonymous mapping. */ 859 if (vma->vm_ops && vma->vm_ops->nopage) 860 return 0; 861 862 /* Check if page directory entry exists. */ 863 pgd = pgd_offset(mm, address); 864 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 865 return 1; 866 867 pud = pud_offset(pgd, address); 868 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 869 return 1; 870 871 /* Check if page middle directory entry exists. */ 872 pmd = pmd_offset(pud, address); 873 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 874 return 1; 875 876 /* There is a pte slot for 'address' in 'mm'. */ 877 return 0; 878 } 879 880 881 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 882 unsigned long start, int len, int write, int force, 883 struct page **pages, struct vm_area_struct **vmas) 884 { 885 int i; 886 unsigned int flags; 887 888 /* 889 * Require read or write permissions. 890 * If 'force' is set, we only require the "MAY" flags. 891 */ 892 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 893 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 894 i = 0; 895 896 do { 897 struct vm_area_struct * vma; 898 899 vma = find_extend_vma(mm, start); 900 if (!vma && in_gate_area(tsk, start)) { 901 unsigned long pg = start & PAGE_MASK; 902 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 903 pgd_t *pgd; 904 pud_t *pud; 905 pmd_t *pmd; 906 pte_t *pte; 907 if (write) /* user gate pages are read-only */ 908 return i ? : -EFAULT; 909 if (pg > TASK_SIZE) 910 pgd = pgd_offset_k(pg); 911 else 912 pgd = pgd_offset_gate(mm, pg); 913 BUG_ON(pgd_none(*pgd)); 914 pud = pud_offset(pgd, pg); 915 BUG_ON(pud_none(*pud)); 916 pmd = pmd_offset(pud, pg); 917 BUG_ON(pmd_none(*pmd)); 918 pte = pte_offset_map(pmd, pg); 919 BUG_ON(pte_none(*pte)); 920 if (pages) { 921 pages[i] = pte_page(*pte); 922 get_page(pages[i]); 923 } 924 pte_unmap(pte); 925 if (vmas) 926 vmas[i] = gate_vma; 927 i++; 928 start += PAGE_SIZE; 929 len--; 930 continue; 931 } 932 933 if (!vma || (vma->vm_flags & VM_IO) 934 || !(flags & vma->vm_flags)) 935 return i ? : -EFAULT; 936 937 if (is_vm_hugetlb_page(vma)) { 938 i = follow_hugetlb_page(mm, vma, pages, vmas, 939 &start, &len, i); 940 continue; 941 } 942 spin_lock(&mm->page_table_lock); 943 do { 944 struct page *map; 945 int lookup_write = write; 946 947 cond_resched_lock(&mm->page_table_lock); 948 while (!(map = follow_page(mm, start, lookup_write))) { 949 /* 950 * Shortcut for anonymous pages. We don't want 951 * to force the creation of pages tables for 952 * insanly big anonymously mapped areas that 953 * nobody touched so far. This is important 954 * for doing a core dump for these mappings. 955 */ 956 if (!lookup_write && 957 untouched_anonymous_page(mm,vma,start)) { 958 map = ZERO_PAGE(start); 959 break; 960 } 961 spin_unlock(&mm->page_table_lock); 962 switch (handle_mm_fault(mm,vma,start,write)) { 963 case VM_FAULT_MINOR: 964 tsk->min_flt++; 965 break; 966 case VM_FAULT_MAJOR: 967 tsk->maj_flt++; 968 break; 969 case VM_FAULT_SIGBUS: 970 return i ? i : -EFAULT; 971 case VM_FAULT_OOM: 972 return i ? i : -ENOMEM; 973 default: 974 BUG(); 975 } 976 /* 977 * Now that we have performed a write fault 978 * and surely no longer have a shared page we 979 * shouldn't write, we shouldn't ignore an 980 * unwritable page in the page table if 981 * we are forcing write access. 982 */ 983 lookup_write = write && !force; 984 spin_lock(&mm->page_table_lock); 985 } 986 if (pages) { 987 pages[i] = get_page_map(map); 988 if (!pages[i]) { 989 spin_unlock(&mm->page_table_lock); 990 while (i--) 991 page_cache_release(pages[i]); 992 i = -EFAULT; 993 goto out; 994 } 995 flush_dcache_page(pages[i]); 996 if (!PageReserved(pages[i])) 997 page_cache_get(pages[i]); 998 } 999 if (vmas) 1000 vmas[i] = vma; 1001 i++; 1002 start += PAGE_SIZE; 1003 len--; 1004 } while(len && start < vma->vm_end); 1005 spin_unlock(&mm->page_table_lock); 1006 } while(len); 1007 out: 1008 return i; 1009 } 1010 1011 EXPORT_SYMBOL(get_user_pages); 1012 1013 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1014 unsigned long addr, unsigned long end, pgprot_t prot) 1015 { 1016 pte_t *pte; 1017 1018 pte = pte_alloc_map(mm, pmd, addr); 1019 if (!pte) 1020 return -ENOMEM; 1021 do { 1022 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); 1023 BUG_ON(!pte_none(*pte)); 1024 set_pte_at(mm, addr, pte, zero_pte); 1025 } while (pte++, addr += PAGE_SIZE, addr != end); 1026 pte_unmap(pte - 1); 1027 return 0; 1028 } 1029 1030 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1031 unsigned long addr, unsigned long end, pgprot_t prot) 1032 { 1033 pmd_t *pmd; 1034 unsigned long next; 1035 1036 pmd = pmd_alloc(mm, pud, addr); 1037 if (!pmd) 1038 return -ENOMEM; 1039 do { 1040 next = pmd_addr_end(addr, end); 1041 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1042 return -ENOMEM; 1043 } while (pmd++, addr = next, addr != end); 1044 return 0; 1045 } 1046 1047 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1048 unsigned long addr, unsigned long end, pgprot_t prot) 1049 { 1050 pud_t *pud; 1051 unsigned long next; 1052 1053 pud = pud_alloc(mm, pgd, addr); 1054 if (!pud) 1055 return -ENOMEM; 1056 do { 1057 next = pud_addr_end(addr, end); 1058 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1059 return -ENOMEM; 1060 } while (pud++, addr = next, addr != end); 1061 return 0; 1062 } 1063 1064 int zeromap_page_range(struct vm_area_struct *vma, 1065 unsigned long addr, unsigned long size, pgprot_t prot) 1066 { 1067 pgd_t *pgd; 1068 unsigned long next; 1069 unsigned long end = addr + size; 1070 struct mm_struct *mm = vma->vm_mm; 1071 int err; 1072 1073 BUG_ON(addr >= end); 1074 pgd = pgd_offset(mm, addr); 1075 flush_cache_range(vma, addr, end); 1076 spin_lock(&mm->page_table_lock); 1077 do { 1078 next = pgd_addr_end(addr, end); 1079 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1080 if (err) 1081 break; 1082 } while (pgd++, addr = next, addr != end); 1083 spin_unlock(&mm->page_table_lock); 1084 return err; 1085 } 1086 1087 /* 1088 * maps a range of physical memory into the requested pages. the old 1089 * mappings are removed. any references to nonexistent pages results 1090 * in null mappings (currently treated as "copy-on-access") 1091 */ 1092 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1093 unsigned long addr, unsigned long end, 1094 unsigned long pfn, pgprot_t prot) 1095 { 1096 pte_t *pte; 1097 1098 pte = pte_alloc_map(mm, pmd, addr); 1099 if (!pte) 1100 return -ENOMEM; 1101 do { 1102 BUG_ON(!pte_none(*pte)); 1103 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) 1104 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1105 pfn++; 1106 } while (pte++, addr += PAGE_SIZE, addr != end); 1107 pte_unmap(pte - 1); 1108 return 0; 1109 } 1110 1111 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1112 unsigned long addr, unsigned long end, 1113 unsigned long pfn, pgprot_t prot) 1114 { 1115 pmd_t *pmd; 1116 unsigned long next; 1117 1118 pfn -= addr >> PAGE_SHIFT; 1119 pmd = pmd_alloc(mm, pud, addr); 1120 if (!pmd) 1121 return -ENOMEM; 1122 do { 1123 next = pmd_addr_end(addr, end); 1124 if (remap_pte_range(mm, pmd, addr, next, 1125 pfn + (addr >> PAGE_SHIFT), prot)) 1126 return -ENOMEM; 1127 } while (pmd++, addr = next, addr != end); 1128 return 0; 1129 } 1130 1131 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1132 unsigned long addr, unsigned long end, 1133 unsigned long pfn, pgprot_t prot) 1134 { 1135 pud_t *pud; 1136 unsigned long next; 1137 1138 pfn -= addr >> PAGE_SHIFT; 1139 pud = pud_alloc(mm, pgd, addr); 1140 if (!pud) 1141 return -ENOMEM; 1142 do { 1143 next = pud_addr_end(addr, end); 1144 if (remap_pmd_range(mm, pud, addr, next, 1145 pfn + (addr >> PAGE_SHIFT), prot)) 1146 return -ENOMEM; 1147 } while (pud++, addr = next, addr != end); 1148 return 0; 1149 } 1150 1151 /* Note: this is only safe if the mm semaphore is held when called. */ 1152 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1153 unsigned long pfn, unsigned long size, pgprot_t prot) 1154 { 1155 pgd_t *pgd; 1156 unsigned long next; 1157 unsigned long end = addr + size; 1158 struct mm_struct *mm = vma->vm_mm; 1159 int err; 1160 1161 /* 1162 * Physically remapped pages are special. Tell the 1163 * rest of the world about it: 1164 * VM_IO tells people not to look at these pages 1165 * (accesses can have side effects). 1166 * VM_RESERVED tells swapout not to try to touch 1167 * this region. 1168 */ 1169 vma->vm_flags |= VM_IO | VM_RESERVED; 1170 1171 BUG_ON(addr >= end); 1172 pfn -= addr >> PAGE_SHIFT; 1173 pgd = pgd_offset(mm, addr); 1174 flush_cache_range(vma, addr, end); 1175 spin_lock(&mm->page_table_lock); 1176 do { 1177 next = pgd_addr_end(addr, end); 1178 err = remap_pud_range(mm, pgd, addr, next, 1179 pfn + (addr >> PAGE_SHIFT), prot); 1180 if (err) 1181 break; 1182 } while (pgd++, addr = next, addr != end); 1183 spin_unlock(&mm->page_table_lock); 1184 return err; 1185 } 1186 EXPORT_SYMBOL(remap_pfn_range); 1187 1188 /* 1189 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1190 * servicing faults for write access. In the normal case, do always want 1191 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1192 * that do not have writing enabled, when used by access_process_vm. 1193 */ 1194 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1195 { 1196 if (likely(vma->vm_flags & VM_WRITE)) 1197 pte = pte_mkwrite(pte); 1198 return pte; 1199 } 1200 1201 /* 1202 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock 1203 */ 1204 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 1205 pte_t *page_table) 1206 { 1207 pte_t entry; 1208 1209 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), 1210 vma); 1211 ptep_establish(vma, address, page_table, entry); 1212 update_mmu_cache(vma, address, entry); 1213 lazy_mmu_prot_update(entry); 1214 } 1215 1216 /* 1217 * This routine handles present pages, when users try to write 1218 * to a shared page. It is done by copying the page to a new address 1219 * and decrementing the shared-page counter for the old page. 1220 * 1221 * Goto-purists beware: the only reason for goto's here is that it results 1222 * in better assembly code.. The "default" path will see no jumps at all. 1223 * 1224 * Note that this routine assumes that the protection checks have been 1225 * done by the caller (the low-level page fault routine in most cases). 1226 * Thus we can safely just mark it writable once we've done any necessary 1227 * COW. 1228 * 1229 * We also mark the page dirty at this point even though the page will 1230 * change only once the write actually happens. This avoids a few races, 1231 * and potentially makes it more efficient. 1232 * 1233 * We hold the mm semaphore and the page_table_lock on entry and exit 1234 * with the page_table_lock released. 1235 */ 1236 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, 1237 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) 1238 { 1239 struct page *old_page, *new_page; 1240 unsigned long pfn = pte_pfn(pte); 1241 pte_t entry; 1242 1243 if (unlikely(!pfn_valid(pfn))) { 1244 /* 1245 * This should really halt the system so it can be debugged or 1246 * at least the kernel stops what it's doing before it corrupts 1247 * data, but for the moment just pretend this is OOM. 1248 */ 1249 pte_unmap(page_table); 1250 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", 1251 address); 1252 spin_unlock(&mm->page_table_lock); 1253 return VM_FAULT_OOM; 1254 } 1255 old_page = pfn_to_page(pfn); 1256 1257 if (!TestSetPageLocked(old_page)) { 1258 int reuse = can_share_swap_page(old_page); 1259 unlock_page(old_page); 1260 if (reuse) { 1261 flush_cache_page(vma, address, pfn); 1262 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), 1263 vma); 1264 ptep_set_access_flags(vma, address, page_table, entry, 1); 1265 update_mmu_cache(vma, address, entry); 1266 lazy_mmu_prot_update(entry); 1267 pte_unmap(page_table); 1268 spin_unlock(&mm->page_table_lock); 1269 return VM_FAULT_MINOR; 1270 } 1271 } 1272 pte_unmap(page_table); 1273 1274 /* 1275 * Ok, we need to copy. Oh, well.. 1276 */ 1277 if (!PageReserved(old_page)) 1278 page_cache_get(old_page); 1279 spin_unlock(&mm->page_table_lock); 1280 1281 if (unlikely(anon_vma_prepare(vma))) 1282 goto no_new_page; 1283 if (old_page == ZERO_PAGE(address)) { 1284 new_page = alloc_zeroed_user_highpage(vma, address); 1285 if (!new_page) 1286 goto no_new_page; 1287 } else { 1288 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1289 if (!new_page) 1290 goto no_new_page; 1291 copy_user_highpage(new_page, old_page, address); 1292 } 1293 /* 1294 * Re-check the pte - we dropped the lock 1295 */ 1296 spin_lock(&mm->page_table_lock); 1297 page_table = pte_offset_map(pmd, address); 1298 if (likely(pte_same(*page_table, pte))) { 1299 if (PageAnon(old_page)) 1300 dec_mm_counter(mm, anon_rss); 1301 if (PageReserved(old_page)) 1302 inc_mm_counter(mm, rss); 1303 else 1304 page_remove_rmap(old_page); 1305 flush_cache_page(vma, address, pfn); 1306 break_cow(vma, new_page, address, page_table); 1307 lru_cache_add_active(new_page); 1308 page_add_anon_rmap(new_page, vma, address); 1309 1310 /* Free the old page.. */ 1311 new_page = old_page; 1312 } 1313 pte_unmap(page_table); 1314 page_cache_release(new_page); 1315 page_cache_release(old_page); 1316 spin_unlock(&mm->page_table_lock); 1317 return VM_FAULT_MINOR; 1318 1319 no_new_page: 1320 page_cache_release(old_page); 1321 return VM_FAULT_OOM; 1322 } 1323 1324 /* 1325 * Helper functions for unmap_mapping_range(). 1326 * 1327 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1328 * 1329 * We have to restart searching the prio_tree whenever we drop the lock, 1330 * since the iterator is only valid while the lock is held, and anyway 1331 * a later vma might be split and reinserted earlier while lock dropped. 1332 * 1333 * The list of nonlinear vmas could be handled more efficiently, using 1334 * a placeholder, but handle it in the same way until a need is shown. 1335 * It is important to search the prio_tree before nonlinear list: a vma 1336 * may become nonlinear and be shifted from prio_tree to nonlinear list 1337 * while the lock is dropped; but never shifted from list to prio_tree. 1338 * 1339 * In order to make forward progress despite restarting the search, 1340 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1341 * quickly skip it next time around. Since the prio_tree search only 1342 * shows us those vmas affected by unmapping the range in question, we 1343 * can't efficiently keep all vmas in step with mapping->truncate_count: 1344 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1345 * mapping->truncate_count and vma->vm_truncate_count are protected by 1346 * i_mmap_lock. 1347 * 1348 * In order to make forward progress despite repeatedly restarting some 1349 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1350 * and restart from that address when we reach that vma again. It might 1351 * have been split or merged, shrunk or extended, but never shifted: so 1352 * restart_addr remains valid so long as it remains in the vma's range. 1353 * unmap_mapping_range forces truncate_count to leap over page-aligned 1354 * values so we can save vma's restart_addr in its truncate_count field. 1355 */ 1356 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1357 1358 static void reset_vma_truncate_counts(struct address_space *mapping) 1359 { 1360 struct vm_area_struct *vma; 1361 struct prio_tree_iter iter; 1362 1363 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1364 vma->vm_truncate_count = 0; 1365 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1366 vma->vm_truncate_count = 0; 1367 } 1368 1369 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1370 unsigned long start_addr, unsigned long end_addr, 1371 struct zap_details *details) 1372 { 1373 unsigned long restart_addr; 1374 int need_break; 1375 1376 again: 1377 restart_addr = vma->vm_truncate_count; 1378 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1379 start_addr = restart_addr; 1380 if (start_addr >= end_addr) { 1381 /* Top of vma has been split off since last time */ 1382 vma->vm_truncate_count = details->truncate_count; 1383 return 0; 1384 } 1385 } 1386 1387 restart_addr = zap_page_range(vma, start_addr, 1388 end_addr - start_addr, details); 1389 1390 /* 1391 * We cannot rely on the break test in unmap_vmas: 1392 * on the one hand, we don't want to restart our loop 1393 * just because that broke out for the page_table_lock; 1394 * on the other hand, it does no test when vma is small. 1395 */ 1396 need_break = need_resched() || 1397 need_lockbreak(details->i_mmap_lock); 1398 1399 if (restart_addr >= end_addr) { 1400 /* We have now completed this vma: mark it so */ 1401 vma->vm_truncate_count = details->truncate_count; 1402 if (!need_break) 1403 return 0; 1404 } else { 1405 /* Note restart_addr in vma's truncate_count field */ 1406 vma->vm_truncate_count = restart_addr; 1407 if (!need_break) 1408 goto again; 1409 } 1410 1411 spin_unlock(details->i_mmap_lock); 1412 cond_resched(); 1413 spin_lock(details->i_mmap_lock); 1414 return -EINTR; 1415 } 1416 1417 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1418 struct zap_details *details) 1419 { 1420 struct vm_area_struct *vma; 1421 struct prio_tree_iter iter; 1422 pgoff_t vba, vea, zba, zea; 1423 1424 restart: 1425 vma_prio_tree_foreach(vma, &iter, root, 1426 details->first_index, details->last_index) { 1427 /* Skip quickly over those we have already dealt with */ 1428 if (vma->vm_truncate_count == details->truncate_count) 1429 continue; 1430 1431 vba = vma->vm_pgoff; 1432 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1433 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1434 zba = details->first_index; 1435 if (zba < vba) 1436 zba = vba; 1437 zea = details->last_index; 1438 if (zea > vea) 1439 zea = vea; 1440 1441 if (unmap_mapping_range_vma(vma, 1442 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1443 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1444 details) < 0) 1445 goto restart; 1446 } 1447 } 1448 1449 static inline void unmap_mapping_range_list(struct list_head *head, 1450 struct zap_details *details) 1451 { 1452 struct vm_area_struct *vma; 1453 1454 /* 1455 * In nonlinear VMAs there is no correspondence between virtual address 1456 * offset and file offset. So we must perform an exhaustive search 1457 * across *all* the pages in each nonlinear VMA, not just the pages 1458 * whose virtual address lies outside the file truncation point. 1459 */ 1460 restart: 1461 list_for_each_entry(vma, head, shared.vm_set.list) { 1462 /* Skip quickly over those we have already dealt with */ 1463 if (vma->vm_truncate_count == details->truncate_count) 1464 continue; 1465 details->nonlinear_vma = vma; 1466 if (unmap_mapping_range_vma(vma, vma->vm_start, 1467 vma->vm_end, details) < 0) 1468 goto restart; 1469 } 1470 } 1471 1472 /** 1473 * unmap_mapping_range - unmap the portion of all mmaps 1474 * in the specified address_space corresponding to the specified 1475 * page range in the underlying file. 1476 * @address_space: the address space containing mmaps to be unmapped. 1477 * @holebegin: byte in first page to unmap, relative to the start of 1478 * the underlying file. This will be rounded down to a PAGE_SIZE 1479 * boundary. Note that this is different from vmtruncate(), which 1480 * must keep the partial page. In contrast, we must get rid of 1481 * partial pages. 1482 * @holelen: size of prospective hole in bytes. This will be rounded 1483 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1484 * end of the file. 1485 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1486 * but 0 when invalidating pagecache, don't throw away private data. 1487 */ 1488 void unmap_mapping_range(struct address_space *mapping, 1489 loff_t const holebegin, loff_t const holelen, int even_cows) 1490 { 1491 struct zap_details details; 1492 pgoff_t hba = holebegin >> PAGE_SHIFT; 1493 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1494 1495 /* Check for overflow. */ 1496 if (sizeof(holelen) > sizeof(hlen)) { 1497 long long holeend = 1498 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1499 if (holeend & ~(long long)ULONG_MAX) 1500 hlen = ULONG_MAX - hba + 1; 1501 } 1502 1503 details.check_mapping = even_cows? NULL: mapping; 1504 details.nonlinear_vma = NULL; 1505 details.first_index = hba; 1506 details.last_index = hba + hlen - 1; 1507 if (details.last_index < details.first_index) 1508 details.last_index = ULONG_MAX; 1509 details.i_mmap_lock = &mapping->i_mmap_lock; 1510 1511 spin_lock(&mapping->i_mmap_lock); 1512 1513 /* serialize i_size write against truncate_count write */ 1514 smp_wmb(); 1515 /* Protect against page faults, and endless unmapping loops */ 1516 mapping->truncate_count++; 1517 /* 1518 * For archs where spin_lock has inclusive semantics like ia64 1519 * this smp_mb() will prevent to read pagetable contents 1520 * before the truncate_count increment is visible to 1521 * other cpus. 1522 */ 1523 smp_mb(); 1524 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1525 if (mapping->truncate_count == 0) 1526 reset_vma_truncate_counts(mapping); 1527 mapping->truncate_count++; 1528 } 1529 details.truncate_count = mapping->truncate_count; 1530 1531 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1532 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1533 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1534 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1535 spin_unlock(&mapping->i_mmap_lock); 1536 } 1537 EXPORT_SYMBOL(unmap_mapping_range); 1538 1539 /* 1540 * Handle all mappings that got truncated by a "truncate()" 1541 * system call. 1542 * 1543 * NOTE! We have to be ready to update the memory sharing 1544 * between the file and the memory map for a potential last 1545 * incomplete page. Ugly, but necessary. 1546 */ 1547 int vmtruncate(struct inode * inode, loff_t offset) 1548 { 1549 struct address_space *mapping = inode->i_mapping; 1550 unsigned long limit; 1551 1552 if (inode->i_size < offset) 1553 goto do_expand; 1554 /* 1555 * truncation of in-use swapfiles is disallowed - it would cause 1556 * subsequent swapout to scribble on the now-freed blocks. 1557 */ 1558 if (IS_SWAPFILE(inode)) 1559 goto out_busy; 1560 i_size_write(inode, offset); 1561 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1562 truncate_inode_pages(mapping, offset); 1563 goto out_truncate; 1564 1565 do_expand: 1566 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1567 if (limit != RLIM_INFINITY && offset > limit) 1568 goto out_sig; 1569 if (offset > inode->i_sb->s_maxbytes) 1570 goto out_big; 1571 i_size_write(inode, offset); 1572 1573 out_truncate: 1574 if (inode->i_op && inode->i_op->truncate) 1575 inode->i_op->truncate(inode); 1576 return 0; 1577 out_sig: 1578 send_sig(SIGXFSZ, current, 0); 1579 out_big: 1580 return -EFBIG; 1581 out_busy: 1582 return -ETXTBSY; 1583 } 1584 1585 EXPORT_SYMBOL(vmtruncate); 1586 1587 /* 1588 * Primitive swap readahead code. We simply read an aligned block of 1589 * (1 << page_cluster) entries in the swap area. This method is chosen 1590 * because it doesn't cost us any seek time. We also make sure to queue 1591 * the 'original' request together with the readahead ones... 1592 * 1593 * This has been extended to use the NUMA policies from the mm triggering 1594 * the readahead. 1595 * 1596 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1597 */ 1598 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1599 { 1600 #ifdef CONFIG_NUMA 1601 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1602 #endif 1603 int i, num; 1604 struct page *new_page; 1605 unsigned long offset; 1606 1607 /* 1608 * Get the number of handles we should do readahead io to. 1609 */ 1610 num = valid_swaphandles(entry, &offset); 1611 for (i = 0; i < num; offset++, i++) { 1612 /* Ok, do the async read-ahead now */ 1613 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1614 offset), vma, addr); 1615 if (!new_page) 1616 break; 1617 page_cache_release(new_page); 1618 #ifdef CONFIG_NUMA 1619 /* 1620 * Find the next applicable VMA for the NUMA policy. 1621 */ 1622 addr += PAGE_SIZE; 1623 if (addr == 0) 1624 vma = NULL; 1625 if (vma) { 1626 if (addr >= vma->vm_end) { 1627 vma = next_vma; 1628 next_vma = vma ? vma->vm_next : NULL; 1629 } 1630 if (vma && addr < vma->vm_start) 1631 vma = NULL; 1632 } else { 1633 if (next_vma && addr >= next_vma->vm_start) { 1634 vma = next_vma; 1635 next_vma = vma->vm_next; 1636 } 1637 } 1638 #endif 1639 } 1640 lru_add_drain(); /* Push any new pages onto the LRU now */ 1641 } 1642 1643 /* 1644 * We hold the mm semaphore and the page_table_lock on entry and 1645 * should release the pagetable lock on exit.. 1646 */ 1647 static int do_swap_page(struct mm_struct * mm, 1648 struct vm_area_struct * vma, unsigned long address, 1649 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) 1650 { 1651 struct page *page; 1652 swp_entry_t entry = pte_to_swp_entry(orig_pte); 1653 pte_t pte; 1654 int ret = VM_FAULT_MINOR; 1655 1656 pte_unmap(page_table); 1657 spin_unlock(&mm->page_table_lock); 1658 page = lookup_swap_cache(entry); 1659 if (!page) { 1660 swapin_readahead(entry, address, vma); 1661 page = read_swap_cache_async(entry, vma, address); 1662 if (!page) { 1663 /* 1664 * Back out if somebody else faulted in this pte while 1665 * we released the page table lock. 1666 */ 1667 spin_lock(&mm->page_table_lock); 1668 page_table = pte_offset_map(pmd, address); 1669 if (likely(pte_same(*page_table, orig_pte))) 1670 ret = VM_FAULT_OOM; 1671 else 1672 ret = VM_FAULT_MINOR; 1673 pte_unmap(page_table); 1674 spin_unlock(&mm->page_table_lock); 1675 goto out; 1676 } 1677 1678 /* Had to read the page from swap area: Major fault */ 1679 ret = VM_FAULT_MAJOR; 1680 inc_page_state(pgmajfault); 1681 grab_swap_token(); 1682 } 1683 1684 mark_page_accessed(page); 1685 lock_page(page); 1686 1687 /* 1688 * Back out if somebody else faulted in this pte while we 1689 * released the page table lock. 1690 */ 1691 spin_lock(&mm->page_table_lock); 1692 page_table = pte_offset_map(pmd, address); 1693 if (unlikely(!pte_same(*page_table, orig_pte))) { 1694 pte_unmap(page_table); 1695 spin_unlock(&mm->page_table_lock); 1696 unlock_page(page); 1697 page_cache_release(page); 1698 ret = VM_FAULT_MINOR; 1699 goto out; 1700 } 1701 1702 /* The page isn't present yet, go ahead with the fault. */ 1703 1704 swap_free(entry); 1705 if (vm_swap_full()) 1706 remove_exclusive_swap_page(page); 1707 1708 inc_mm_counter(mm, rss); 1709 pte = mk_pte(page, vma->vm_page_prot); 1710 if (write_access && can_share_swap_page(page)) { 1711 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1712 write_access = 0; 1713 } 1714 unlock_page(page); 1715 1716 flush_icache_page(vma, page); 1717 set_pte_at(mm, address, page_table, pte); 1718 page_add_anon_rmap(page, vma, address); 1719 1720 if (write_access) { 1721 if (do_wp_page(mm, vma, address, 1722 page_table, pmd, pte) == VM_FAULT_OOM) 1723 ret = VM_FAULT_OOM; 1724 goto out; 1725 } 1726 1727 /* No need to invalidate - it was non-present before */ 1728 update_mmu_cache(vma, address, pte); 1729 lazy_mmu_prot_update(pte); 1730 pte_unmap(page_table); 1731 spin_unlock(&mm->page_table_lock); 1732 out: 1733 return ret; 1734 } 1735 1736 /* 1737 * We are called with the MM semaphore and page_table_lock 1738 * spinlock held to protect against concurrent faults in 1739 * multithreaded programs. 1740 */ 1741 static int 1742 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 1743 pte_t *page_table, pmd_t *pmd, int write_access, 1744 unsigned long addr) 1745 { 1746 pte_t entry; 1747 struct page * page = ZERO_PAGE(addr); 1748 1749 /* Read-only mapping of ZERO_PAGE. */ 1750 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); 1751 1752 /* ..except if it's a write access */ 1753 if (write_access) { 1754 /* Allocate our own private page. */ 1755 pte_unmap(page_table); 1756 spin_unlock(&mm->page_table_lock); 1757 1758 if (unlikely(anon_vma_prepare(vma))) 1759 goto no_mem; 1760 page = alloc_zeroed_user_highpage(vma, addr); 1761 if (!page) 1762 goto no_mem; 1763 1764 spin_lock(&mm->page_table_lock); 1765 page_table = pte_offset_map(pmd, addr); 1766 1767 if (!pte_none(*page_table)) { 1768 pte_unmap(page_table); 1769 page_cache_release(page); 1770 spin_unlock(&mm->page_table_lock); 1771 goto out; 1772 } 1773 inc_mm_counter(mm, rss); 1774 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, 1775 vma->vm_page_prot)), 1776 vma); 1777 lru_cache_add_active(page); 1778 SetPageReferenced(page); 1779 page_add_anon_rmap(page, vma, addr); 1780 } 1781 1782 set_pte_at(mm, addr, page_table, entry); 1783 pte_unmap(page_table); 1784 1785 /* No need to invalidate - it was non-present before */ 1786 update_mmu_cache(vma, addr, entry); 1787 lazy_mmu_prot_update(entry); 1788 spin_unlock(&mm->page_table_lock); 1789 out: 1790 return VM_FAULT_MINOR; 1791 no_mem: 1792 return VM_FAULT_OOM; 1793 } 1794 1795 /* 1796 * do_no_page() tries to create a new page mapping. It aggressively 1797 * tries to share with existing pages, but makes a separate copy if 1798 * the "write_access" parameter is true in order to avoid the next 1799 * page fault. 1800 * 1801 * As this is called only for pages that do not currently exist, we 1802 * do not need to flush old virtual caches or the TLB. 1803 * 1804 * This is called with the MM semaphore held and the page table 1805 * spinlock held. Exit with the spinlock released. 1806 */ 1807 static int 1808 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1809 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) 1810 { 1811 struct page * new_page; 1812 struct address_space *mapping = NULL; 1813 pte_t entry; 1814 unsigned int sequence = 0; 1815 int ret = VM_FAULT_MINOR; 1816 int anon = 0; 1817 1818 if (!vma->vm_ops || !vma->vm_ops->nopage) 1819 return do_anonymous_page(mm, vma, page_table, 1820 pmd, write_access, address); 1821 pte_unmap(page_table); 1822 spin_unlock(&mm->page_table_lock); 1823 1824 if (vma->vm_file) { 1825 mapping = vma->vm_file->f_mapping; 1826 sequence = mapping->truncate_count; 1827 smp_rmb(); /* serializes i_size against truncate_count */ 1828 } 1829 retry: 1830 cond_resched(); 1831 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 1832 /* 1833 * No smp_rmb is needed here as long as there's a full 1834 * spin_lock/unlock sequence inside the ->nopage callback 1835 * (for the pagecache lookup) that acts as an implicit 1836 * smp_mb() and prevents the i_size read to happen 1837 * after the next truncate_count read. 1838 */ 1839 1840 /* no page was available -- either SIGBUS or OOM */ 1841 if (new_page == NOPAGE_SIGBUS) 1842 return VM_FAULT_SIGBUS; 1843 if (new_page == NOPAGE_OOM) 1844 return VM_FAULT_OOM; 1845 1846 /* 1847 * Should we do an early C-O-W break? 1848 */ 1849 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1850 struct page *page; 1851 1852 if (unlikely(anon_vma_prepare(vma))) 1853 goto oom; 1854 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1855 if (!page) 1856 goto oom; 1857 copy_user_highpage(page, new_page, address); 1858 page_cache_release(new_page); 1859 new_page = page; 1860 anon = 1; 1861 } 1862 1863 spin_lock(&mm->page_table_lock); 1864 /* 1865 * For a file-backed vma, someone could have truncated or otherwise 1866 * invalidated this page. If unmap_mapping_range got called, 1867 * retry getting the page. 1868 */ 1869 if (mapping && unlikely(sequence != mapping->truncate_count)) { 1870 sequence = mapping->truncate_count; 1871 spin_unlock(&mm->page_table_lock); 1872 page_cache_release(new_page); 1873 goto retry; 1874 } 1875 page_table = pte_offset_map(pmd, address); 1876 1877 /* 1878 * This silly early PAGE_DIRTY setting removes a race 1879 * due to the bad i386 page protection. But it's valid 1880 * for other architectures too. 1881 * 1882 * Note that if write_access is true, we either now have 1883 * an exclusive copy of the page, or this is a shared mapping, 1884 * so we can make it writable and dirty to avoid having to 1885 * handle that later. 1886 */ 1887 /* Only go through if we didn't race with anybody else... */ 1888 if (pte_none(*page_table)) { 1889 if (!PageReserved(new_page)) 1890 inc_mm_counter(mm, rss); 1891 1892 flush_icache_page(vma, new_page); 1893 entry = mk_pte(new_page, vma->vm_page_prot); 1894 if (write_access) 1895 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1896 set_pte_at(mm, address, page_table, entry); 1897 if (anon) { 1898 lru_cache_add_active(new_page); 1899 page_add_anon_rmap(new_page, vma, address); 1900 } else 1901 page_add_file_rmap(new_page); 1902 pte_unmap(page_table); 1903 } else { 1904 /* One of our sibling threads was faster, back out. */ 1905 pte_unmap(page_table); 1906 page_cache_release(new_page); 1907 spin_unlock(&mm->page_table_lock); 1908 goto out; 1909 } 1910 1911 /* no need to invalidate: a not-present page shouldn't be cached */ 1912 update_mmu_cache(vma, address, entry); 1913 lazy_mmu_prot_update(entry); 1914 spin_unlock(&mm->page_table_lock); 1915 out: 1916 return ret; 1917 oom: 1918 page_cache_release(new_page); 1919 ret = VM_FAULT_OOM; 1920 goto out; 1921 } 1922 1923 /* 1924 * Fault of a previously existing named mapping. Repopulate the pte 1925 * from the encoded file_pte if possible. This enables swappable 1926 * nonlinear vmas. 1927 */ 1928 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, 1929 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) 1930 { 1931 unsigned long pgoff; 1932 int err; 1933 1934 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); 1935 /* 1936 * Fall back to the linear mapping if the fs does not support 1937 * ->populate: 1938 */ 1939 if (!vma->vm_ops || !vma->vm_ops->populate || 1940 (write_access && !(vma->vm_flags & VM_SHARED))) { 1941 pte_clear(mm, address, pte); 1942 return do_no_page(mm, vma, address, write_access, pte, pmd); 1943 } 1944 1945 pgoff = pte_to_pgoff(*pte); 1946 1947 pte_unmap(pte); 1948 spin_unlock(&mm->page_table_lock); 1949 1950 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); 1951 if (err == -ENOMEM) 1952 return VM_FAULT_OOM; 1953 if (err) 1954 return VM_FAULT_SIGBUS; 1955 return VM_FAULT_MAJOR; 1956 } 1957 1958 /* 1959 * These routines also need to handle stuff like marking pages dirty 1960 * and/or accessed for architectures that don't do it in hardware (most 1961 * RISC architectures). The early dirtying is also good on the i386. 1962 * 1963 * There is also a hook called "update_mmu_cache()" that architectures 1964 * with external mmu caches can use to update those (ie the Sparc or 1965 * PowerPC hashed page tables that act as extended TLBs). 1966 * 1967 * Note the "page_table_lock". It is to protect against kswapd removing 1968 * pages from under us. Note that kswapd only ever _removes_ pages, never 1969 * adds them. As such, once we have noticed that the page is not present, 1970 * we can drop the lock early. 1971 * 1972 * The adding of pages is protected by the MM semaphore (which we hold), 1973 * so we don't need to worry about a page being suddenly been added into 1974 * our VM. 1975 * 1976 * We enter with the pagetable spinlock held, we are supposed to 1977 * release it when done. 1978 */ 1979 static inline int handle_pte_fault(struct mm_struct *mm, 1980 struct vm_area_struct * vma, unsigned long address, 1981 int write_access, pte_t *pte, pmd_t *pmd) 1982 { 1983 pte_t entry; 1984 1985 entry = *pte; 1986 if (!pte_present(entry)) { 1987 /* 1988 * If it truly wasn't present, we know that kswapd 1989 * and the PTE updates will not touch it later. So 1990 * drop the lock. 1991 */ 1992 if (pte_none(entry)) 1993 return do_no_page(mm, vma, address, write_access, pte, pmd); 1994 if (pte_file(entry)) 1995 return do_file_page(mm, vma, address, write_access, pte, pmd); 1996 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); 1997 } 1998 1999 if (write_access) { 2000 if (!pte_write(entry)) 2001 return do_wp_page(mm, vma, address, pte, pmd, entry); 2002 2003 entry = pte_mkdirty(entry); 2004 } 2005 entry = pte_mkyoung(entry); 2006 ptep_set_access_flags(vma, address, pte, entry, write_access); 2007 update_mmu_cache(vma, address, entry); 2008 lazy_mmu_prot_update(entry); 2009 pte_unmap(pte); 2010 spin_unlock(&mm->page_table_lock); 2011 return VM_FAULT_MINOR; 2012 } 2013 2014 /* 2015 * By the time we get here, we already hold the mm semaphore 2016 */ 2017 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, 2018 unsigned long address, int write_access) 2019 { 2020 pgd_t *pgd; 2021 pud_t *pud; 2022 pmd_t *pmd; 2023 pte_t *pte; 2024 2025 __set_current_state(TASK_RUNNING); 2026 2027 inc_page_state(pgfault); 2028 2029 if (is_vm_hugetlb_page(vma)) 2030 return VM_FAULT_SIGBUS; /* mapping truncation does this. */ 2031 2032 /* 2033 * We need the page table lock to synchronize with kswapd 2034 * and the SMP-safe atomic PTE updates. 2035 */ 2036 pgd = pgd_offset(mm, address); 2037 spin_lock(&mm->page_table_lock); 2038 2039 pud = pud_alloc(mm, pgd, address); 2040 if (!pud) 2041 goto oom; 2042 2043 pmd = pmd_alloc(mm, pud, address); 2044 if (!pmd) 2045 goto oom; 2046 2047 pte = pte_alloc_map(mm, pmd, address); 2048 if (!pte) 2049 goto oom; 2050 2051 return handle_pte_fault(mm, vma, address, write_access, pte, pmd); 2052 2053 oom: 2054 spin_unlock(&mm->page_table_lock); 2055 return VM_FAULT_OOM; 2056 } 2057 2058 #ifndef __PAGETABLE_PUD_FOLDED 2059 /* 2060 * Allocate page upper directory. 2061 * 2062 * We've already handled the fast-path in-line, and we own the 2063 * page table lock. 2064 */ 2065 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2066 { 2067 pud_t *new; 2068 2069 spin_unlock(&mm->page_table_lock); 2070 new = pud_alloc_one(mm, address); 2071 spin_lock(&mm->page_table_lock); 2072 if (!new) 2073 return NULL; 2074 2075 /* 2076 * Because we dropped the lock, we should re-check the 2077 * entry, as somebody else could have populated it.. 2078 */ 2079 if (pgd_present(*pgd)) { 2080 pud_free(new); 2081 goto out; 2082 } 2083 pgd_populate(mm, pgd, new); 2084 out: 2085 return pud_offset(pgd, address); 2086 } 2087 #endif /* __PAGETABLE_PUD_FOLDED */ 2088 2089 #ifndef __PAGETABLE_PMD_FOLDED 2090 /* 2091 * Allocate page middle directory. 2092 * 2093 * We've already handled the fast-path in-line, and we own the 2094 * page table lock. 2095 */ 2096 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2097 { 2098 pmd_t *new; 2099 2100 spin_unlock(&mm->page_table_lock); 2101 new = pmd_alloc_one(mm, address); 2102 spin_lock(&mm->page_table_lock); 2103 if (!new) 2104 return NULL; 2105 2106 /* 2107 * Because we dropped the lock, we should re-check the 2108 * entry, as somebody else could have populated it.. 2109 */ 2110 #ifndef __ARCH_HAS_4LEVEL_HACK 2111 if (pud_present(*pud)) { 2112 pmd_free(new); 2113 goto out; 2114 } 2115 pud_populate(mm, pud, new); 2116 #else 2117 if (pgd_present(*pud)) { 2118 pmd_free(new); 2119 goto out; 2120 } 2121 pgd_populate(mm, pud, new); 2122 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2123 2124 out: 2125 return pmd_offset(pud, address); 2126 } 2127 #endif /* __PAGETABLE_PMD_FOLDED */ 2128 2129 int make_pages_present(unsigned long addr, unsigned long end) 2130 { 2131 int ret, len, write; 2132 struct vm_area_struct * vma; 2133 2134 vma = find_vma(current->mm, addr); 2135 if (!vma) 2136 return -1; 2137 write = (vma->vm_flags & VM_WRITE) != 0; 2138 if (addr >= end) 2139 BUG(); 2140 if (end > vma->vm_end) 2141 BUG(); 2142 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2143 ret = get_user_pages(current, current->mm, addr, 2144 len, write, 0, NULL, NULL); 2145 if (ret < 0) 2146 return ret; 2147 return ret == len ? 0 : -1; 2148 } 2149 2150 /* 2151 * Map a vmalloc()-space virtual address to the physical page. 2152 */ 2153 struct page * vmalloc_to_page(void * vmalloc_addr) 2154 { 2155 unsigned long addr = (unsigned long) vmalloc_addr; 2156 struct page *page = NULL; 2157 pgd_t *pgd = pgd_offset_k(addr); 2158 pud_t *pud; 2159 pmd_t *pmd; 2160 pte_t *ptep, pte; 2161 2162 if (!pgd_none(*pgd)) { 2163 pud = pud_offset(pgd, addr); 2164 if (!pud_none(*pud)) { 2165 pmd = pmd_offset(pud, addr); 2166 if (!pmd_none(*pmd)) { 2167 ptep = pte_offset_map(pmd, addr); 2168 pte = *ptep; 2169 if (pte_present(pte)) 2170 page = pte_page(pte); 2171 pte_unmap(ptep); 2172 } 2173 } 2174 } 2175 return page; 2176 } 2177 2178 EXPORT_SYMBOL(vmalloc_to_page); 2179 2180 /* 2181 * Map a vmalloc()-space virtual address to the physical page frame number. 2182 */ 2183 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2184 { 2185 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2186 } 2187 2188 EXPORT_SYMBOL(vmalloc_to_pfn); 2189 2190 /* 2191 * update_mem_hiwater 2192 * - update per process rss and vm high water data 2193 */ 2194 void update_mem_hiwater(struct task_struct *tsk) 2195 { 2196 if (tsk->mm) { 2197 unsigned long rss = get_mm_counter(tsk->mm, rss); 2198 2199 if (tsk->mm->hiwater_rss < rss) 2200 tsk->mm->hiwater_rss = rss; 2201 if (tsk->mm->hiwater_vm < tsk->mm->total_vm) 2202 tsk->mm->hiwater_vm = tsk->mm->total_vm; 2203 } 2204 } 2205 2206 #if !defined(__HAVE_ARCH_GATE_AREA) 2207 2208 #if defined(AT_SYSINFO_EHDR) 2209 struct vm_area_struct gate_vma; 2210 2211 static int __init gate_vma_init(void) 2212 { 2213 gate_vma.vm_mm = NULL; 2214 gate_vma.vm_start = FIXADDR_USER_START; 2215 gate_vma.vm_end = FIXADDR_USER_END; 2216 gate_vma.vm_page_prot = PAGE_READONLY; 2217 gate_vma.vm_flags = 0; 2218 return 0; 2219 } 2220 __initcall(gate_vma_init); 2221 #endif 2222 2223 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2224 { 2225 #ifdef AT_SYSINFO_EHDR 2226 return &gate_vma; 2227 #else 2228 return NULL; 2229 #endif 2230 } 2231 2232 int in_gate_area_no_task(unsigned long addr) 2233 { 2234 #ifdef AT_SYSINFO_EHDR 2235 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2236 return 1; 2237 #endif 2238 return 0; 2239 } 2240 2241 #endif /* __HAVE_ARCH_GATE_AREA */ 2242