1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 108 /* 109 * A number of key systems in x86 including ioremap() rely on the assumption 110 * that high_memory defines the upper bound on direct map memory, then end 111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 113 * and ZONE_HIGHMEM. 114 */ 115 void *high_memory; 116 EXPORT_SYMBOL(high_memory); 117 118 /* 119 * Randomize the address space (stacks, mmaps, brk, etc.). 120 * 121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 122 * as ancient (libc5 based) binaries can segfault. ) 123 */ 124 int randomize_va_space __read_mostly = 125 #ifdef CONFIG_COMPAT_BRK 126 1; 127 #else 128 2; 129 #endif 130 131 #ifndef arch_wants_old_prefaulted_pte 132 static inline bool arch_wants_old_prefaulted_pte(void) 133 { 134 /* 135 * Transitioning a PTE from 'old' to 'young' can be expensive on 136 * some architectures, even if it's performed in hardware. By 137 * default, "false" means prefaulted entries will be 'young'. 138 */ 139 return false; 140 } 141 #endif 142 143 static int __init disable_randmaps(char *s) 144 { 145 randomize_va_space = 0; 146 return 1; 147 } 148 __setup("norandmaps", disable_randmaps); 149 150 unsigned long zero_pfn __read_mostly; 151 EXPORT_SYMBOL(zero_pfn); 152 153 unsigned long highest_memmap_pfn __read_mostly; 154 155 /* 156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 157 */ 158 static int __init init_zero_pfn(void) 159 { 160 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 161 return 0; 162 } 163 early_initcall(init_zero_pfn); 164 165 void mm_trace_rss_stat(struct mm_struct *mm, int member) 166 { 167 trace_rss_stat(mm, member); 168 } 169 170 /* 171 * Note: this doesn't free the actual pages themselves. That 172 * has been handled earlier when unmapping all the memory regions. 173 */ 174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 175 unsigned long addr) 176 { 177 pgtable_t token = pmd_pgtable(*pmd); 178 pmd_clear(pmd); 179 pte_free_tlb(tlb, token, addr); 180 mm_dec_nr_ptes(tlb->mm); 181 } 182 183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 184 unsigned long addr, unsigned long end, 185 unsigned long floor, unsigned long ceiling) 186 { 187 pmd_t *pmd; 188 unsigned long next; 189 unsigned long start; 190 191 start = addr; 192 pmd = pmd_offset(pud, addr); 193 do { 194 next = pmd_addr_end(addr, end); 195 if (pmd_none_or_clear_bad(pmd)) 196 continue; 197 free_pte_range(tlb, pmd, addr); 198 } while (pmd++, addr = next, addr != end); 199 200 start &= PUD_MASK; 201 if (start < floor) 202 return; 203 if (ceiling) { 204 ceiling &= PUD_MASK; 205 if (!ceiling) 206 return; 207 } 208 if (end - 1 > ceiling - 1) 209 return; 210 211 pmd = pmd_offset(pud, start); 212 pud_clear(pud); 213 pmd_free_tlb(tlb, pmd, start); 214 mm_dec_nr_pmds(tlb->mm); 215 } 216 217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pud_t *pud; 222 unsigned long next; 223 unsigned long start; 224 225 start = addr; 226 pud = pud_offset(p4d, addr); 227 do { 228 next = pud_addr_end(addr, end); 229 if (pud_none_or_clear_bad(pud)) 230 continue; 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 232 } while (pud++, addr = next, addr != end); 233 234 start &= P4D_MASK; 235 if (start < floor) 236 return; 237 if (ceiling) { 238 ceiling &= P4D_MASK; 239 if (!ceiling) 240 return; 241 } 242 if (end - 1 > ceiling - 1) 243 return; 244 245 pud = pud_offset(p4d, start); 246 p4d_clear(p4d); 247 pud_free_tlb(tlb, pud, start); 248 mm_dec_nr_puds(tlb->mm); 249 } 250 251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 252 unsigned long addr, unsigned long end, 253 unsigned long floor, unsigned long ceiling) 254 { 255 p4d_t *p4d; 256 unsigned long next; 257 unsigned long start; 258 259 start = addr; 260 p4d = p4d_offset(pgd, addr); 261 do { 262 next = p4d_addr_end(addr, end); 263 if (p4d_none_or_clear_bad(p4d)) 264 continue; 265 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 266 } while (p4d++, addr = next, addr != end); 267 268 start &= PGDIR_MASK; 269 if (start < floor) 270 return; 271 if (ceiling) { 272 ceiling &= PGDIR_MASK; 273 if (!ceiling) 274 return; 275 } 276 if (end - 1 > ceiling - 1) 277 return; 278 279 p4d = p4d_offset(pgd, start); 280 pgd_clear(pgd); 281 p4d_free_tlb(tlb, p4d, start); 282 } 283 284 /* 285 * This function frees user-level page tables of a process. 286 */ 287 void free_pgd_range(struct mmu_gather *tlb, 288 unsigned long addr, unsigned long end, 289 unsigned long floor, unsigned long ceiling) 290 { 291 pgd_t *pgd; 292 unsigned long next; 293 294 /* 295 * The next few lines have given us lots of grief... 296 * 297 * Why are we testing PMD* at this top level? Because often 298 * there will be no work to do at all, and we'd prefer not to 299 * go all the way down to the bottom just to discover that. 300 * 301 * Why all these "- 1"s? Because 0 represents both the bottom 302 * of the address space and the top of it (using -1 for the 303 * top wouldn't help much: the masks would do the wrong thing). 304 * The rule is that addr 0 and floor 0 refer to the bottom of 305 * the address space, but end 0 and ceiling 0 refer to the top 306 * Comparisons need to use "end - 1" and "ceiling - 1" (though 307 * that end 0 case should be mythical). 308 * 309 * Wherever addr is brought up or ceiling brought down, we must 310 * be careful to reject "the opposite 0" before it confuses the 311 * subsequent tests. But what about where end is brought down 312 * by PMD_SIZE below? no, end can't go down to 0 there. 313 * 314 * Whereas we round start (addr) and ceiling down, by different 315 * masks at different levels, in order to test whether a table 316 * now has no other vmas using it, so can be freed, we don't 317 * bother to round floor or end up - the tests don't need that. 318 */ 319 320 addr &= PMD_MASK; 321 if (addr < floor) { 322 addr += PMD_SIZE; 323 if (!addr) 324 return; 325 } 326 if (ceiling) { 327 ceiling &= PMD_MASK; 328 if (!ceiling) 329 return; 330 } 331 if (end - 1 > ceiling - 1) 332 end -= PMD_SIZE; 333 if (addr > end - 1) 334 return; 335 /* 336 * We add page table cache pages with PAGE_SIZE, 337 * (see pte_free_tlb()), flush the tlb if we need 338 */ 339 tlb_change_page_size(tlb, PAGE_SIZE); 340 pgd = pgd_offset(tlb->mm, addr); 341 do { 342 next = pgd_addr_end(addr, end); 343 if (pgd_none_or_clear_bad(pgd)) 344 continue; 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 346 } while (pgd++, addr = next, addr != end); 347 } 348 349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 350 struct vm_area_struct *vma, unsigned long floor, 351 unsigned long ceiling) 352 { 353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 354 355 do { 356 unsigned long addr = vma->vm_start; 357 struct vm_area_struct *next; 358 359 /* 360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 361 * be 0. This will underflow and is okay. 362 */ 363 next = mas_find(&mas, ceiling - 1); 364 365 /* 366 * Hide vma from rmap and truncate_pagecache before freeing 367 * pgtables 368 */ 369 unlink_anon_vmas(vma); 370 unlink_file_vma(vma); 371 372 if (is_vm_hugetlb_page(vma)) { 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 374 floor, next ? next->vm_start : ceiling); 375 } else { 376 /* 377 * Optimization: gather nearby vmas into one call down 378 */ 379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 380 && !is_vm_hugetlb_page(next)) { 381 vma = next; 382 next = mas_find(&mas, ceiling - 1); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 } 386 free_pgd_range(tlb, addr, vma->vm_end, 387 floor, next ? next->vm_start : ceiling); 388 } 389 vma = next; 390 } while (vma); 391 } 392 393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 394 { 395 spinlock_t *ptl = pmd_lock(mm, pmd); 396 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 398 mm_inc_nr_ptes(mm); 399 /* 400 * Ensure all pte setup (eg. pte page lock and page clearing) are 401 * visible before the pte is made visible to other CPUs by being 402 * put into page tables. 403 * 404 * The other side of the story is the pointer chasing in the page 405 * table walking code (when walking the page table without locking; 406 * ie. most of the time). Fortunately, these data accesses consist 407 * of a chain of data-dependent loads, meaning most CPUs (alpha 408 * being the notable exception) will already guarantee loads are 409 * seen in-order. See the alpha page table accessors for the 410 * smp_rmb() barriers in page table walking code. 411 */ 412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 413 pmd_populate(mm, pmd, *pte); 414 *pte = NULL; 415 } 416 spin_unlock(ptl); 417 } 418 419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 420 { 421 pgtable_t new = pte_alloc_one(mm); 422 if (!new) 423 return -ENOMEM; 424 425 pmd_install(mm, pmd, &new); 426 if (new) 427 pte_free(mm, new); 428 return 0; 429 } 430 431 int __pte_alloc_kernel(pmd_t *pmd) 432 { 433 pte_t *new = pte_alloc_one_kernel(&init_mm); 434 if (!new) 435 return -ENOMEM; 436 437 spin_lock(&init_mm.page_table_lock); 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 439 smp_wmb(); /* See comment in pmd_install() */ 440 pmd_populate_kernel(&init_mm, pmd, new); 441 new = NULL; 442 } 443 spin_unlock(&init_mm.page_table_lock); 444 if (new) 445 pte_free_kernel(&init_mm, new); 446 return 0; 447 } 448 449 static inline void init_rss_vec(int *rss) 450 { 451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 452 } 453 454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 455 { 456 int i; 457 458 if (current->mm == mm) 459 sync_mm_rss(mm); 460 for (i = 0; i < NR_MM_COUNTERS; i++) 461 if (rss[i]) 462 add_mm_counter(mm, i, rss[i]); 463 } 464 465 /* 466 * This function is called to print an error when a bad pte 467 * is found. For example, we might have a PFN-mapped pte in 468 * a region that doesn't allow it. 469 * 470 * The calling function must still handle the error. 471 */ 472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 473 pte_t pte, struct page *page) 474 { 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 476 p4d_t *p4d = p4d_offset(pgd, addr); 477 pud_t *pud = pud_offset(p4d, addr); 478 pmd_t *pmd = pmd_offset(pud, addr); 479 struct address_space *mapping; 480 pgoff_t index; 481 static unsigned long resume; 482 static unsigned long nr_shown; 483 static unsigned long nr_unshown; 484 485 /* 486 * Allow a burst of 60 reports, then keep quiet for that minute; 487 * or allow a steady drip of one report per second. 488 */ 489 if (nr_shown == 60) { 490 if (time_before(jiffies, resume)) { 491 nr_unshown++; 492 return; 493 } 494 if (nr_unshown) { 495 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 496 nr_unshown); 497 nr_unshown = 0; 498 } 499 nr_shown = 0; 500 } 501 if (nr_shown++ == 0) 502 resume = jiffies + 60 * HZ; 503 504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 505 index = linear_page_index(vma, addr); 506 507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 508 current->comm, 509 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 510 if (page) 511 dump_page(page, "bad pte"); 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 515 vma->vm_file, 516 vma->vm_ops ? vma->vm_ops->fault : NULL, 517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 518 mapping ? mapping->a_ops->read_folio : NULL); 519 dump_stack(); 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 521 } 522 523 /* 524 * vm_normal_page -- This function gets the "struct page" associated with a pte. 525 * 526 * "Special" mappings do not wish to be associated with a "struct page" (either 527 * it doesn't exist, or it exists but they don't want to touch it). In this 528 * case, NULL is returned here. "Normal" mappings do have a struct page. 529 * 530 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 531 * pte bit, in which case this function is trivial. Secondly, an architecture 532 * may not have a spare pte bit, which requires a more complicated scheme, 533 * described below. 534 * 535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 536 * special mapping (even if there are underlying and valid "struct pages"). 537 * COWed pages of a VM_PFNMAP are always normal. 538 * 539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 542 * mapping will always honor the rule 543 * 544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 545 * 546 * And for normal mappings this is false. 547 * 548 * This restricts such mappings to be a linear translation from virtual address 549 * to pfn. To get around this restriction, we allow arbitrary mappings so long 550 * as the vma is not a COW mapping; in that case, we know that all ptes are 551 * special (because none can have been COWed). 552 * 553 * 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 555 * 556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 557 * page" backing, however the difference is that _all_ pages with a struct 558 * page (that is, those where pfn_valid is true) are refcounted and considered 559 * normal pages by the VM. The disadvantage is that pages are refcounted 560 * (which can be slower and simply not an option for some PFNMAP users). The 561 * advantage is that we don't have to follow the strict linearity rule of 562 * PFNMAP mappings in order to support COWable mappings. 563 * 564 */ 565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 566 pte_t pte) 567 { 568 unsigned long pfn = pte_pfn(pte); 569 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 571 if (likely(!pte_special(pte))) 572 goto check_pfn; 573 if (vma->vm_ops && vma->vm_ops->find_special_page) 574 return vma->vm_ops->find_special_page(vma, addr); 575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 576 return NULL; 577 if (is_zero_pfn(pfn)) 578 return NULL; 579 if (pte_devmap(pte)) 580 /* 581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 582 * and will have refcounts incremented on their struct pages 583 * when they are inserted into PTEs, thus they are safe to 584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 585 * do not have refcounts. Example of legacy ZONE_DEVICE is 586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 587 */ 588 return NULL; 589 590 print_bad_pte(vma, addr, pte, NULL); 591 return NULL; 592 } 593 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 595 596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 597 if (vma->vm_flags & VM_MIXEDMAP) { 598 if (!pfn_valid(pfn)) 599 return NULL; 600 goto out; 601 } else { 602 unsigned long off; 603 off = (addr - vma->vm_start) >> PAGE_SHIFT; 604 if (pfn == vma->vm_pgoff + off) 605 return NULL; 606 if (!is_cow_mapping(vma->vm_flags)) 607 return NULL; 608 } 609 } 610 611 if (is_zero_pfn(pfn)) 612 return NULL; 613 614 check_pfn: 615 if (unlikely(pfn > highest_memmap_pfn)) { 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* 621 * NOTE! We still have PageReserved() pages in the page tables. 622 * eg. VDSO mappings can cause them to exist. 623 */ 624 out: 625 return pfn_to_page(pfn); 626 } 627 628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 629 pte_t pte) 630 { 631 struct page *page = vm_normal_page(vma, addr, pte); 632 633 if (page) 634 return page_folio(page); 635 return NULL; 636 } 637 638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 640 pmd_t pmd) 641 { 642 unsigned long pfn = pmd_pfn(pmd); 643 644 /* 645 * There is no pmd_special() but there may be special pmds, e.g. 646 * in a direct-access (dax) mapping, so let's just replicate the 647 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 648 */ 649 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 650 if (vma->vm_flags & VM_MIXEDMAP) { 651 if (!pfn_valid(pfn)) 652 return NULL; 653 goto out; 654 } else { 655 unsigned long off; 656 off = (addr - vma->vm_start) >> PAGE_SHIFT; 657 if (pfn == vma->vm_pgoff + off) 658 return NULL; 659 if (!is_cow_mapping(vma->vm_flags)) 660 return NULL; 661 } 662 } 663 664 if (pmd_devmap(pmd)) 665 return NULL; 666 if (is_huge_zero_pmd(pmd)) 667 return NULL; 668 if (unlikely(pfn > highest_memmap_pfn)) 669 return NULL; 670 671 /* 672 * NOTE! We still have PageReserved() pages in the page tables. 673 * eg. VDSO mappings can cause them to exist. 674 */ 675 out: 676 return pfn_to_page(pfn); 677 } 678 #endif 679 680 static void restore_exclusive_pte(struct vm_area_struct *vma, 681 struct page *page, unsigned long address, 682 pte_t *ptep) 683 { 684 pte_t pte; 685 swp_entry_t entry; 686 687 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 688 if (pte_swp_soft_dirty(*ptep)) 689 pte = pte_mksoft_dirty(pte); 690 691 entry = pte_to_swp_entry(*ptep); 692 if (pte_swp_uffd_wp(*ptep)) 693 pte = pte_mkuffd_wp(pte); 694 else if (is_writable_device_exclusive_entry(entry)) 695 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 696 697 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 698 699 /* 700 * No need to take a page reference as one was already 701 * created when the swap entry was made. 702 */ 703 if (PageAnon(page)) 704 page_add_anon_rmap(page, vma, address, RMAP_NONE); 705 else 706 /* 707 * Currently device exclusive access only supports anonymous 708 * memory so the entry shouldn't point to a filebacked page. 709 */ 710 WARN_ON_ONCE(1); 711 712 set_pte_at(vma->vm_mm, address, ptep, pte); 713 714 /* 715 * No need to invalidate - it was non-present before. However 716 * secondary CPUs may have mappings that need invalidating. 717 */ 718 update_mmu_cache(vma, address, ptep); 719 } 720 721 /* 722 * Tries to restore an exclusive pte if the page lock can be acquired without 723 * sleeping. 724 */ 725 static int 726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 727 unsigned long addr) 728 { 729 swp_entry_t entry = pte_to_swp_entry(*src_pte); 730 struct page *page = pfn_swap_entry_to_page(entry); 731 732 if (trylock_page(page)) { 733 restore_exclusive_pte(vma, page, addr, src_pte); 734 unlock_page(page); 735 return 0; 736 } 737 738 return -EBUSY; 739 } 740 741 /* 742 * copy one vm_area from one task to the other. Assumes the page tables 743 * already present in the new task to be cleared in the whole range 744 * covered by this vma. 745 */ 746 747 static unsigned long 748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 749 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 750 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 751 { 752 unsigned long vm_flags = dst_vma->vm_flags; 753 pte_t pte = *src_pte; 754 struct page *page; 755 swp_entry_t entry = pte_to_swp_entry(pte); 756 757 if (likely(!non_swap_entry(entry))) { 758 if (swap_duplicate(entry) < 0) 759 return -EIO; 760 761 /* make sure dst_mm is on swapoff's mmlist. */ 762 if (unlikely(list_empty(&dst_mm->mmlist))) { 763 spin_lock(&mmlist_lock); 764 if (list_empty(&dst_mm->mmlist)) 765 list_add(&dst_mm->mmlist, 766 &src_mm->mmlist); 767 spin_unlock(&mmlist_lock); 768 } 769 /* Mark the swap entry as shared. */ 770 if (pte_swp_exclusive(*src_pte)) { 771 pte = pte_swp_clear_exclusive(*src_pte); 772 set_pte_at(src_mm, addr, src_pte, pte); 773 } 774 rss[MM_SWAPENTS]++; 775 } else if (is_migration_entry(entry)) { 776 page = pfn_swap_entry_to_page(entry); 777 778 rss[mm_counter(page)]++; 779 780 if (!is_readable_migration_entry(entry) && 781 is_cow_mapping(vm_flags)) { 782 /* 783 * COW mappings require pages in both parent and child 784 * to be set to read. A previously exclusive entry is 785 * now shared. 786 */ 787 entry = make_readable_migration_entry( 788 swp_offset(entry)); 789 pte = swp_entry_to_pte(entry); 790 if (pte_swp_soft_dirty(*src_pte)) 791 pte = pte_swp_mksoft_dirty(pte); 792 if (pte_swp_uffd_wp(*src_pte)) 793 pte = pte_swp_mkuffd_wp(pte); 794 set_pte_at(src_mm, addr, src_pte, pte); 795 } 796 } else if (is_device_private_entry(entry)) { 797 page = pfn_swap_entry_to_page(entry); 798 799 /* 800 * Update rss count even for unaddressable pages, as 801 * they should treated just like normal pages in this 802 * respect. 803 * 804 * We will likely want to have some new rss counters 805 * for unaddressable pages, at some point. But for now 806 * keep things as they are. 807 */ 808 get_page(page); 809 rss[mm_counter(page)]++; 810 /* Cannot fail as these pages cannot get pinned. */ 811 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 812 813 /* 814 * We do not preserve soft-dirty information, because so 815 * far, checkpoint/restore is the only feature that 816 * requires that. And checkpoint/restore does not work 817 * when a device driver is involved (you cannot easily 818 * save and restore device driver state). 819 */ 820 if (is_writable_device_private_entry(entry) && 821 is_cow_mapping(vm_flags)) { 822 entry = make_readable_device_private_entry( 823 swp_offset(entry)); 824 pte = swp_entry_to_pte(entry); 825 if (pte_swp_uffd_wp(*src_pte)) 826 pte = pte_swp_mkuffd_wp(pte); 827 set_pte_at(src_mm, addr, src_pte, pte); 828 } 829 } else if (is_device_exclusive_entry(entry)) { 830 /* 831 * Make device exclusive entries present by restoring the 832 * original entry then copying as for a present pte. Device 833 * exclusive entries currently only support private writable 834 * (ie. COW) mappings. 835 */ 836 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 837 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 838 return -EBUSY; 839 return -ENOENT; 840 } else if (is_pte_marker_entry(entry)) { 841 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 842 set_pte_at(dst_mm, addr, dst_pte, pte); 843 return 0; 844 } 845 if (!userfaultfd_wp(dst_vma)) 846 pte = pte_swp_clear_uffd_wp(pte); 847 set_pte_at(dst_mm, addr, dst_pte, pte); 848 return 0; 849 } 850 851 /* 852 * Copy a present and normal page. 853 * 854 * NOTE! The usual case is that this isn't required; 855 * instead, the caller can just increase the page refcount 856 * and re-use the pte the traditional way. 857 * 858 * And if we need a pre-allocated page but don't yet have 859 * one, return a negative error to let the preallocation 860 * code know so that it can do so outside the page table 861 * lock. 862 */ 863 static inline int 864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 865 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 866 struct page **prealloc, struct page *page) 867 { 868 struct page *new_page; 869 pte_t pte; 870 871 new_page = *prealloc; 872 if (!new_page) 873 return -EAGAIN; 874 875 /* 876 * We have a prealloc page, all good! Take it 877 * over and copy the page & arm it. 878 */ 879 *prealloc = NULL; 880 copy_user_highpage(new_page, page, addr, src_vma); 881 __SetPageUptodate(new_page); 882 page_add_new_anon_rmap(new_page, dst_vma, addr); 883 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 884 rss[mm_counter(new_page)]++; 885 886 /* All done, just insert the new page copy in the child */ 887 pte = mk_pte(new_page, dst_vma->vm_page_prot); 888 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 889 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 890 /* Uffd-wp needs to be delivered to dest pte as well */ 891 pte = pte_mkuffd_wp(pte); 892 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 893 return 0; 894 } 895 896 /* 897 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 898 * is required to copy this pte. 899 */ 900 static inline int 901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 903 struct page **prealloc) 904 { 905 struct mm_struct *src_mm = src_vma->vm_mm; 906 unsigned long vm_flags = src_vma->vm_flags; 907 pte_t pte = *src_pte; 908 struct page *page; 909 910 page = vm_normal_page(src_vma, addr, pte); 911 if (page && PageAnon(page)) { 912 /* 913 * If this page may have been pinned by the parent process, 914 * copy the page immediately for the child so that we'll always 915 * guarantee the pinned page won't be randomly replaced in the 916 * future. 917 */ 918 get_page(page); 919 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 920 /* Page maybe pinned, we have to copy. */ 921 put_page(page); 922 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 923 addr, rss, prealloc, page); 924 } 925 rss[mm_counter(page)]++; 926 } else if (page) { 927 get_page(page); 928 page_dup_file_rmap(page, false); 929 rss[mm_counter(page)]++; 930 } 931 932 /* 933 * If it's a COW mapping, write protect it both 934 * in the parent and the child 935 */ 936 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 937 ptep_set_wrprotect(src_mm, addr, src_pte); 938 pte = pte_wrprotect(pte); 939 } 940 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); 941 942 /* 943 * If it's a shared mapping, mark it clean in 944 * the child 945 */ 946 if (vm_flags & VM_SHARED) 947 pte = pte_mkclean(pte); 948 pte = pte_mkold(pte); 949 950 if (!userfaultfd_wp(dst_vma)) 951 pte = pte_clear_uffd_wp(pte); 952 953 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 954 return 0; 955 } 956 957 static inline struct page * 958 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 959 unsigned long addr) 960 { 961 struct page *new_page; 962 963 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 964 if (!new_page) 965 return NULL; 966 967 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { 968 put_page(new_page); 969 return NULL; 970 } 971 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 972 973 return new_page; 974 } 975 976 static int 977 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 978 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 979 unsigned long end) 980 { 981 struct mm_struct *dst_mm = dst_vma->vm_mm; 982 struct mm_struct *src_mm = src_vma->vm_mm; 983 pte_t *orig_src_pte, *orig_dst_pte; 984 pte_t *src_pte, *dst_pte; 985 spinlock_t *src_ptl, *dst_ptl; 986 int progress, ret = 0; 987 int rss[NR_MM_COUNTERS]; 988 swp_entry_t entry = (swp_entry_t){0}; 989 struct page *prealloc = NULL; 990 991 again: 992 progress = 0; 993 init_rss_vec(rss); 994 995 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 996 if (!dst_pte) { 997 ret = -ENOMEM; 998 goto out; 999 } 1000 src_pte = pte_offset_map(src_pmd, addr); 1001 src_ptl = pte_lockptr(src_mm, src_pmd); 1002 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1003 orig_src_pte = src_pte; 1004 orig_dst_pte = dst_pte; 1005 arch_enter_lazy_mmu_mode(); 1006 1007 do { 1008 /* 1009 * We are holding two locks at this point - either of them 1010 * could generate latencies in another task on another CPU. 1011 */ 1012 if (progress >= 32) { 1013 progress = 0; 1014 if (need_resched() || 1015 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1016 break; 1017 } 1018 if (pte_none(*src_pte)) { 1019 progress++; 1020 continue; 1021 } 1022 if (unlikely(!pte_present(*src_pte))) { 1023 ret = copy_nonpresent_pte(dst_mm, src_mm, 1024 dst_pte, src_pte, 1025 dst_vma, src_vma, 1026 addr, rss); 1027 if (ret == -EIO) { 1028 entry = pte_to_swp_entry(*src_pte); 1029 break; 1030 } else if (ret == -EBUSY) { 1031 break; 1032 } else if (!ret) { 1033 progress += 8; 1034 continue; 1035 } 1036 1037 /* 1038 * Device exclusive entry restored, continue by copying 1039 * the now present pte. 1040 */ 1041 WARN_ON_ONCE(ret != -ENOENT); 1042 } 1043 /* copy_present_pte() will clear `*prealloc' if consumed */ 1044 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1045 addr, rss, &prealloc); 1046 /* 1047 * If we need a pre-allocated page for this pte, drop the 1048 * locks, allocate, and try again. 1049 */ 1050 if (unlikely(ret == -EAGAIN)) 1051 break; 1052 if (unlikely(prealloc)) { 1053 /* 1054 * pre-alloc page cannot be reused by next time so as 1055 * to strictly follow mempolicy (e.g., alloc_page_vma() 1056 * will allocate page according to address). This 1057 * could only happen if one pinned pte changed. 1058 */ 1059 put_page(prealloc); 1060 prealloc = NULL; 1061 } 1062 progress += 8; 1063 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1064 1065 arch_leave_lazy_mmu_mode(); 1066 spin_unlock(src_ptl); 1067 pte_unmap(orig_src_pte); 1068 add_mm_rss_vec(dst_mm, rss); 1069 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1070 cond_resched(); 1071 1072 if (ret == -EIO) { 1073 VM_WARN_ON_ONCE(!entry.val); 1074 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1075 ret = -ENOMEM; 1076 goto out; 1077 } 1078 entry.val = 0; 1079 } else if (ret == -EBUSY) { 1080 goto out; 1081 } else if (ret == -EAGAIN) { 1082 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1083 if (!prealloc) 1084 return -ENOMEM; 1085 } else if (ret) { 1086 VM_WARN_ON_ONCE(1); 1087 } 1088 1089 /* We've captured and resolved the error. Reset, try again. */ 1090 ret = 0; 1091 1092 if (addr != end) 1093 goto again; 1094 out: 1095 if (unlikely(prealloc)) 1096 put_page(prealloc); 1097 return ret; 1098 } 1099 1100 static inline int 1101 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1102 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1103 unsigned long end) 1104 { 1105 struct mm_struct *dst_mm = dst_vma->vm_mm; 1106 struct mm_struct *src_mm = src_vma->vm_mm; 1107 pmd_t *src_pmd, *dst_pmd; 1108 unsigned long next; 1109 1110 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1111 if (!dst_pmd) 1112 return -ENOMEM; 1113 src_pmd = pmd_offset(src_pud, addr); 1114 do { 1115 next = pmd_addr_end(addr, end); 1116 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1117 || pmd_devmap(*src_pmd)) { 1118 int err; 1119 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1120 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1121 addr, dst_vma, src_vma); 1122 if (err == -ENOMEM) 1123 return -ENOMEM; 1124 if (!err) 1125 continue; 1126 /* fall through */ 1127 } 1128 if (pmd_none_or_clear_bad(src_pmd)) 1129 continue; 1130 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1131 addr, next)) 1132 return -ENOMEM; 1133 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1134 return 0; 1135 } 1136 1137 static inline int 1138 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pud_t *src_pud, *dst_pud; 1145 unsigned long next; 1146 1147 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1148 if (!dst_pud) 1149 return -ENOMEM; 1150 src_pud = pud_offset(src_p4d, addr); 1151 do { 1152 next = pud_addr_end(addr, end); 1153 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1154 int err; 1155 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1157 err = copy_huge_pud(dst_mm, src_mm, 1158 dst_pud, src_pud, addr, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pud_none_or_clear_bad(src_pud)) 1166 continue; 1167 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pud++, src_pud++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 p4d_t *src_p4d, *dst_p4d; 1181 unsigned long next; 1182 1183 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1184 if (!dst_p4d) 1185 return -ENOMEM; 1186 src_p4d = p4d_offset(src_pgd, addr); 1187 do { 1188 next = p4d_addr_end(addr, end); 1189 if (p4d_none_or_clear_bad(src_p4d)) 1190 continue; 1191 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1192 addr, next)) 1193 return -ENOMEM; 1194 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1195 return 0; 1196 } 1197 1198 /* 1199 * Return true if the vma needs to copy the pgtable during this fork(). Return 1200 * false when we can speed up fork() by allowing lazy page faults later until 1201 * when the child accesses the memory range. 1202 */ 1203 static bool 1204 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1205 { 1206 /* 1207 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1208 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1209 * contains uffd-wp protection information, that's something we can't 1210 * retrieve from page cache, and skip copying will lose those info. 1211 */ 1212 if (userfaultfd_wp(dst_vma)) 1213 return true; 1214 1215 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1216 return true; 1217 1218 if (src_vma->anon_vma) 1219 return true; 1220 1221 /* 1222 * Don't copy ptes where a page fault will fill them correctly. Fork 1223 * becomes much lighter when there are big shared or private readonly 1224 * mappings. The tradeoff is that copy_page_range is more efficient 1225 * than faulting. 1226 */ 1227 return false; 1228 } 1229 1230 int 1231 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1232 { 1233 pgd_t *src_pgd, *dst_pgd; 1234 unsigned long next; 1235 unsigned long addr = src_vma->vm_start; 1236 unsigned long end = src_vma->vm_end; 1237 struct mm_struct *dst_mm = dst_vma->vm_mm; 1238 struct mm_struct *src_mm = src_vma->vm_mm; 1239 struct mmu_notifier_range range; 1240 bool is_cow; 1241 int ret; 1242 1243 if (!vma_needs_copy(dst_vma, src_vma)) 1244 return 0; 1245 1246 if (is_vm_hugetlb_page(src_vma)) 1247 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1248 1249 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1250 /* 1251 * We do not free on error cases below as remove_vma 1252 * gets called on error from higher level routine 1253 */ 1254 ret = track_pfn_copy(src_vma); 1255 if (ret) 1256 return ret; 1257 } 1258 1259 /* 1260 * We need to invalidate the secondary MMU mappings only when 1261 * there could be a permission downgrade on the ptes of the 1262 * parent mm. And a permission downgrade will only happen if 1263 * is_cow_mapping() returns true. 1264 */ 1265 is_cow = is_cow_mapping(src_vma->vm_flags); 1266 1267 if (is_cow) { 1268 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1269 0, src_vma, src_mm, addr, end); 1270 mmu_notifier_invalidate_range_start(&range); 1271 /* 1272 * Disabling preemption is not needed for the write side, as 1273 * the read side doesn't spin, but goes to the mmap_lock. 1274 * 1275 * Use the raw variant of the seqcount_t write API to avoid 1276 * lockdep complaining about preemptibility. 1277 */ 1278 mmap_assert_write_locked(src_mm); 1279 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1280 } 1281 1282 ret = 0; 1283 dst_pgd = pgd_offset(dst_mm, addr); 1284 src_pgd = pgd_offset(src_mm, addr); 1285 do { 1286 next = pgd_addr_end(addr, end); 1287 if (pgd_none_or_clear_bad(src_pgd)) 1288 continue; 1289 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1290 addr, next))) { 1291 ret = -ENOMEM; 1292 break; 1293 } 1294 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1295 1296 if (is_cow) { 1297 raw_write_seqcount_end(&src_mm->write_protect_seq); 1298 mmu_notifier_invalidate_range_end(&range); 1299 } 1300 return ret; 1301 } 1302 1303 /* Whether we should zap all COWed (private) pages too */ 1304 static inline bool should_zap_cows(struct zap_details *details) 1305 { 1306 /* By default, zap all pages */ 1307 if (!details) 1308 return true; 1309 1310 /* Or, we zap COWed pages only if the caller wants to */ 1311 return details->even_cows; 1312 } 1313 1314 /* Decides whether we should zap this page with the page pointer specified */ 1315 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1316 { 1317 /* If we can make a decision without *page.. */ 1318 if (should_zap_cows(details)) 1319 return true; 1320 1321 /* E.g. the caller passes NULL for the case of a zero page */ 1322 if (!page) 1323 return true; 1324 1325 /* Otherwise we should only zap non-anon pages */ 1326 return !PageAnon(page); 1327 } 1328 1329 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1330 { 1331 if (!details) 1332 return false; 1333 1334 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1335 } 1336 1337 /* 1338 * This function makes sure that we'll replace the none pte with an uffd-wp 1339 * swap special pte marker when necessary. Must be with the pgtable lock held. 1340 */ 1341 static inline void 1342 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1343 unsigned long addr, pte_t *pte, 1344 struct zap_details *details, pte_t pteval) 1345 { 1346 if (zap_drop_file_uffd_wp(details)) 1347 return; 1348 1349 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1350 } 1351 1352 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1353 struct vm_area_struct *vma, pmd_t *pmd, 1354 unsigned long addr, unsigned long end, 1355 struct zap_details *details) 1356 { 1357 struct mm_struct *mm = tlb->mm; 1358 int force_flush = 0; 1359 int rss[NR_MM_COUNTERS]; 1360 spinlock_t *ptl; 1361 pte_t *start_pte; 1362 pte_t *pte; 1363 swp_entry_t entry; 1364 1365 tlb_change_page_size(tlb, PAGE_SIZE); 1366 again: 1367 init_rss_vec(rss); 1368 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1369 pte = start_pte; 1370 flush_tlb_batched_pending(mm); 1371 arch_enter_lazy_mmu_mode(); 1372 do { 1373 pte_t ptent = *pte; 1374 struct page *page; 1375 1376 if (pte_none(ptent)) 1377 continue; 1378 1379 if (need_resched()) 1380 break; 1381 1382 if (pte_present(ptent)) { 1383 unsigned int delay_rmap; 1384 1385 page = vm_normal_page(vma, addr, ptent); 1386 if (unlikely(!should_zap_page(details, page))) 1387 continue; 1388 ptent = ptep_get_and_clear_full(mm, addr, pte, 1389 tlb->fullmm); 1390 tlb_remove_tlb_entry(tlb, pte, addr); 1391 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1392 ptent); 1393 if (unlikely(!page)) 1394 continue; 1395 1396 delay_rmap = 0; 1397 if (!PageAnon(page)) { 1398 if (pte_dirty(ptent)) { 1399 set_page_dirty(page); 1400 if (tlb_delay_rmap(tlb)) { 1401 delay_rmap = 1; 1402 force_flush = 1; 1403 } 1404 } 1405 if (pte_young(ptent) && 1406 likely(!(vma->vm_flags & VM_SEQ_READ))) 1407 mark_page_accessed(page); 1408 } 1409 rss[mm_counter(page)]--; 1410 if (!delay_rmap) { 1411 page_remove_rmap(page, vma, false); 1412 if (unlikely(page_mapcount(page) < 0)) 1413 print_bad_pte(vma, addr, ptent, page); 1414 } 1415 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1416 force_flush = 1; 1417 addr += PAGE_SIZE; 1418 break; 1419 } 1420 continue; 1421 } 1422 1423 entry = pte_to_swp_entry(ptent); 1424 if (is_device_private_entry(entry) || 1425 is_device_exclusive_entry(entry)) { 1426 page = pfn_swap_entry_to_page(entry); 1427 if (unlikely(!should_zap_page(details, page))) 1428 continue; 1429 /* 1430 * Both device private/exclusive mappings should only 1431 * work with anonymous page so far, so we don't need to 1432 * consider uffd-wp bit when zap. For more information, 1433 * see zap_install_uffd_wp_if_needed(). 1434 */ 1435 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1436 rss[mm_counter(page)]--; 1437 if (is_device_private_entry(entry)) 1438 page_remove_rmap(page, vma, false); 1439 put_page(page); 1440 } else if (!non_swap_entry(entry)) { 1441 /* Genuine swap entry, hence a private anon page */ 1442 if (!should_zap_cows(details)) 1443 continue; 1444 rss[MM_SWAPENTS]--; 1445 if (unlikely(!free_swap_and_cache(entry))) 1446 print_bad_pte(vma, addr, ptent, NULL); 1447 } else if (is_migration_entry(entry)) { 1448 page = pfn_swap_entry_to_page(entry); 1449 if (!should_zap_page(details, page)) 1450 continue; 1451 rss[mm_counter(page)]--; 1452 } else if (pte_marker_entry_uffd_wp(entry)) { 1453 /* Only drop the uffd-wp marker if explicitly requested */ 1454 if (!zap_drop_file_uffd_wp(details)) 1455 continue; 1456 } else if (is_hwpoison_entry(entry) || 1457 is_swapin_error_entry(entry)) { 1458 if (!should_zap_cows(details)) 1459 continue; 1460 } else { 1461 /* We should have covered all the swap entry types */ 1462 WARN_ON_ONCE(1); 1463 } 1464 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1465 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1466 } while (pte++, addr += PAGE_SIZE, addr != end); 1467 1468 add_mm_rss_vec(mm, rss); 1469 arch_leave_lazy_mmu_mode(); 1470 1471 /* Do the actual TLB flush before dropping ptl */ 1472 if (force_flush) { 1473 tlb_flush_mmu_tlbonly(tlb); 1474 tlb_flush_rmaps(tlb, vma); 1475 } 1476 pte_unmap_unlock(start_pte, ptl); 1477 1478 /* 1479 * If we forced a TLB flush (either due to running out of 1480 * batch buffers or because we needed to flush dirty TLB 1481 * entries before releasing the ptl), free the batched 1482 * memory too. Restart if we didn't do everything. 1483 */ 1484 if (force_flush) { 1485 force_flush = 0; 1486 tlb_flush_mmu(tlb); 1487 } 1488 1489 if (addr != end) { 1490 cond_resched(); 1491 goto again; 1492 } 1493 1494 return addr; 1495 } 1496 1497 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1498 struct vm_area_struct *vma, pud_t *pud, 1499 unsigned long addr, unsigned long end, 1500 struct zap_details *details) 1501 { 1502 pmd_t *pmd; 1503 unsigned long next; 1504 1505 pmd = pmd_offset(pud, addr); 1506 do { 1507 next = pmd_addr_end(addr, end); 1508 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1509 if (next - addr != HPAGE_PMD_SIZE) 1510 __split_huge_pmd(vma, pmd, addr, false, NULL); 1511 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1512 goto next; 1513 /* fall through */ 1514 } else if (details && details->single_folio && 1515 folio_test_pmd_mappable(details->single_folio) && 1516 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1517 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1518 /* 1519 * Take and drop THP pmd lock so that we cannot return 1520 * prematurely, while zap_huge_pmd() has cleared *pmd, 1521 * but not yet decremented compound_mapcount(). 1522 */ 1523 spin_unlock(ptl); 1524 } 1525 1526 /* 1527 * Here there can be other concurrent MADV_DONTNEED or 1528 * trans huge page faults running, and if the pmd is 1529 * none or trans huge it can change under us. This is 1530 * because MADV_DONTNEED holds the mmap_lock in read 1531 * mode. 1532 */ 1533 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1534 goto next; 1535 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1536 next: 1537 cond_resched(); 1538 } while (pmd++, addr = next, addr != end); 1539 1540 return addr; 1541 } 1542 1543 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1544 struct vm_area_struct *vma, p4d_t *p4d, 1545 unsigned long addr, unsigned long end, 1546 struct zap_details *details) 1547 { 1548 pud_t *pud; 1549 unsigned long next; 1550 1551 pud = pud_offset(p4d, addr); 1552 do { 1553 next = pud_addr_end(addr, end); 1554 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1555 if (next - addr != HPAGE_PUD_SIZE) { 1556 mmap_assert_locked(tlb->mm); 1557 split_huge_pud(vma, pud, addr); 1558 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1559 goto next; 1560 /* fall through */ 1561 } 1562 if (pud_none_or_clear_bad(pud)) 1563 continue; 1564 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1565 next: 1566 cond_resched(); 1567 } while (pud++, addr = next, addr != end); 1568 1569 return addr; 1570 } 1571 1572 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1573 struct vm_area_struct *vma, pgd_t *pgd, 1574 unsigned long addr, unsigned long end, 1575 struct zap_details *details) 1576 { 1577 p4d_t *p4d; 1578 unsigned long next; 1579 1580 p4d = p4d_offset(pgd, addr); 1581 do { 1582 next = p4d_addr_end(addr, end); 1583 if (p4d_none_or_clear_bad(p4d)) 1584 continue; 1585 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1586 } while (p4d++, addr = next, addr != end); 1587 1588 return addr; 1589 } 1590 1591 void unmap_page_range(struct mmu_gather *tlb, 1592 struct vm_area_struct *vma, 1593 unsigned long addr, unsigned long end, 1594 struct zap_details *details) 1595 { 1596 pgd_t *pgd; 1597 unsigned long next; 1598 1599 BUG_ON(addr >= end); 1600 tlb_start_vma(tlb, vma); 1601 pgd = pgd_offset(vma->vm_mm, addr); 1602 do { 1603 next = pgd_addr_end(addr, end); 1604 if (pgd_none_or_clear_bad(pgd)) 1605 continue; 1606 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1607 } while (pgd++, addr = next, addr != end); 1608 tlb_end_vma(tlb, vma); 1609 } 1610 1611 1612 static void unmap_single_vma(struct mmu_gather *tlb, 1613 struct vm_area_struct *vma, unsigned long start_addr, 1614 unsigned long end_addr, 1615 struct zap_details *details) 1616 { 1617 unsigned long start = max(vma->vm_start, start_addr); 1618 unsigned long end; 1619 1620 if (start >= vma->vm_end) 1621 return; 1622 end = min(vma->vm_end, end_addr); 1623 if (end <= vma->vm_start) 1624 return; 1625 1626 if (vma->vm_file) 1627 uprobe_munmap(vma, start, end); 1628 1629 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1630 untrack_pfn(vma, 0, 0); 1631 1632 if (start != end) { 1633 if (unlikely(is_vm_hugetlb_page(vma))) { 1634 /* 1635 * It is undesirable to test vma->vm_file as it 1636 * should be non-null for valid hugetlb area. 1637 * However, vm_file will be NULL in the error 1638 * cleanup path of mmap_region. When 1639 * hugetlbfs ->mmap method fails, 1640 * mmap_region() nullifies vma->vm_file 1641 * before calling this function to clean up. 1642 * Since no pte has actually been setup, it is 1643 * safe to do nothing in this case. 1644 */ 1645 if (vma->vm_file) { 1646 zap_flags_t zap_flags = details ? 1647 details->zap_flags : 0; 1648 __unmap_hugepage_range_final(tlb, vma, start, end, 1649 NULL, zap_flags); 1650 } 1651 } else 1652 unmap_page_range(tlb, vma, start, end, details); 1653 } 1654 } 1655 1656 /** 1657 * unmap_vmas - unmap a range of memory covered by a list of vma's 1658 * @tlb: address of the caller's struct mmu_gather 1659 * @mt: the maple tree 1660 * @vma: the starting vma 1661 * @start_addr: virtual address at which to start unmapping 1662 * @end_addr: virtual address at which to end unmapping 1663 * 1664 * Unmap all pages in the vma list. 1665 * 1666 * Only addresses between `start' and `end' will be unmapped. 1667 * 1668 * The VMA list must be sorted in ascending virtual address order. 1669 * 1670 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1671 * range after unmap_vmas() returns. So the only responsibility here is to 1672 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1673 * drops the lock and schedules. 1674 */ 1675 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1676 struct vm_area_struct *vma, unsigned long start_addr, 1677 unsigned long end_addr) 1678 { 1679 struct mmu_notifier_range range; 1680 struct zap_details details = { 1681 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1682 /* Careful - we need to zap private pages too! */ 1683 .even_cows = true, 1684 }; 1685 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1686 1687 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1688 start_addr, end_addr); 1689 mmu_notifier_invalidate_range_start(&range); 1690 do { 1691 unmap_single_vma(tlb, vma, start_addr, end_addr, &details); 1692 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1693 mmu_notifier_invalidate_range_end(&range); 1694 } 1695 1696 /** 1697 * zap_page_range_single - remove user pages in a given range 1698 * @vma: vm_area_struct holding the applicable pages 1699 * @address: starting address of pages to zap 1700 * @size: number of bytes to zap 1701 * @details: details of shared cache invalidation 1702 * 1703 * The range must fit into one VMA. 1704 */ 1705 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1706 unsigned long size, struct zap_details *details) 1707 { 1708 const unsigned long end = address + size; 1709 struct mmu_notifier_range range; 1710 struct mmu_gather tlb; 1711 1712 lru_add_drain(); 1713 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1714 address, end); 1715 if (is_vm_hugetlb_page(vma)) 1716 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1717 &range.end); 1718 tlb_gather_mmu(&tlb, vma->vm_mm); 1719 update_hiwater_rss(vma->vm_mm); 1720 mmu_notifier_invalidate_range_start(&range); 1721 /* 1722 * unmap 'address-end' not 'range.start-range.end' as range 1723 * could have been expanded for hugetlb pmd sharing. 1724 */ 1725 unmap_single_vma(&tlb, vma, address, end, details); 1726 mmu_notifier_invalidate_range_end(&range); 1727 tlb_finish_mmu(&tlb); 1728 } 1729 1730 /** 1731 * zap_vma_ptes - remove ptes mapping the vma 1732 * @vma: vm_area_struct holding ptes to be zapped 1733 * @address: starting address of pages to zap 1734 * @size: number of bytes to zap 1735 * 1736 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1737 * 1738 * The entire address range must be fully contained within the vma. 1739 * 1740 */ 1741 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1742 unsigned long size) 1743 { 1744 if (!range_in_vma(vma, address, address + size) || 1745 !(vma->vm_flags & VM_PFNMAP)) 1746 return; 1747 1748 zap_page_range_single(vma, address, size, NULL); 1749 } 1750 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1751 1752 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1753 { 1754 pgd_t *pgd; 1755 p4d_t *p4d; 1756 pud_t *pud; 1757 pmd_t *pmd; 1758 1759 pgd = pgd_offset(mm, addr); 1760 p4d = p4d_alloc(mm, pgd, addr); 1761 if (!p4d) 1762 return NULL; 1763 pud = pud_alloc(mm, p4d, addr); 1764 if (!pud) 1765 return NULL; 1766 pmd = pmd_alloc(mm, pud, addr); 1767 if (!pmd) 1768 return NULL; 1769 1770 VM_BUG_ON(pmd_trans_huge(*pmd)); 1771 return pmd; 1772 } 1773 1774 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1775 spinlock_t **ptl) 1776 { 1777 pmd_t *pmd = walk_to_pmd(mm, addr); 1778 1779 if (!pmd) 1780 return NULL; 1781 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1782 } 1783 1784 static int validate_page_before_insert(struct page *page) 1785 { 1786 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1787 return -EINVAL; 1788 flush_dcache_page(page); 1789 return 0; 1790 } 1791 1792 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1793 unsigned long addr, struct page *page, pgprot_t prot) 1794 { 1795 if (!pte_none(*pte)) 1796 return -EBUSY; 1797 /* Ok, finally just insert the thing.. */ 1798 get_page(page); 1799 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1800 page_add_file_rmap(page, vma, false); 1801 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1802 return 0; 1803 } 1804 1805 /* 1806 * This is the old fallback for page remapping. 1807 * 1808 * For historical reasons, it only allows reserved pages. Only 1809 * old drivers should use this, and they needed to mark their 1810 * pages reserved for the old functions anyway. 1811 */ 1812 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1813 struct page *page, pgprot_t prot) 1814 { 1815 int retval; 1816 pte_t *pte; 1817 spinlock_t *ptl; 1818 1819 retval = validate_page_before_insert(page); 1820 if (retval) 1821 goto out; 1822 retval = -ENOMEM; 1823 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1824 if (!pte) 1825 goto out; 1826 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1827 pte_unmap_unlock(pte, ptl); 1828 out: 1829 return retval; 1830 } 1831 1832 #ifdef pte_index 1833 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1834 unsigned long addr, struct page *page, pgprot_t prot) 1835 { 1836 int err; 1837 1838 if (!page_count(page)) 1839 return -EINVAL; 1840 err = validate_page_before_insert(page); 1841 if (err) 1842 return err; 1843 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1844 } 1845 1846 /* insert_pages() amortizes the cost of spinlock operations 1847 * when inserting pages in a loop. Arch *must* define pte_index. 1848 */ 1849 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1850 struct page **pages, unsigned long *num, pgprot_t prot) 1851 { 1852 pmd_t *pmd = NULL; 1853 pte_t *start_pte, *pte; 1854 spinlock_t *pte_lock; 1855 struct mm_struct *const mm = vma->vm_mm; 1856 unsigned long curr_page_idx = 0; 1857 unsigned long remaining_pages_total = *num; 1858 unsigned long pages_to_write_in_pmd; 1859 int ret; 1860 more: 1861 ret = -EFAULT; 1862 pmd = walk_to_pmd(mm, addr); 1863 if (!pmd) 1864 goto out; 1865 1866 pages_to_write_in_pmd = min_t(unsigned long, 1867 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1868 1869 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1870 ret = -ENOMEM; 1871 if (pte_alloc(mm, pmd)) 1872 goto out; 1873 1874 while (pages_to_write_in_pmd) { 1875 int pte_idx = 0; 1876 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1877 1878 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1879 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1880 int err = insert_page_in_batch_locked(vma, pte, 1881 addr, pages[curr_page_idx], prot); 1882 if (unlikely(err)) { 1883 pte_unmap_unlock(start_pte, pte_lock); 1884 ret = err; 1885 remaining_pages_total -= pte_idx; 1886 goto out; 1887 } 1888 addr += PAGE_SIZE; 1889 ++curr_page_idx; 1890 } 1891 pte_unmap_unlock(start_pte, pte_lock); 1892 pages_to_write_in_pmd -= batch_size; 1893 remaining_pages_total -= batch_size; 1894 } 1895 if (remaining_pages_total) 1896 goto more; 1897 ret = 0; 1898 out: 1899 *num = remaining_pages_total; 1900 return ret; 1901 } 1902 #endif /* ifdef pte_index */ 1903 1904 /** 1905 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1906 * @vma: user vma to map to 1907 * @addr: target start user address of these pages 1908 * @pages: source kernel pages 1909 * @num: in: number of pages to map. out: number of pages that were *not* 1910 * mapped. (0 means all pages were successfully mapped). 1911 * 1912 * Preferred over vm_insert_page() when inserting multiple pages. 1913 * 1914 * In case of error, we may have mapped a subset of the provided 1915 * pages. It is the caller's responsibility to account for this case. 1916 * 1917 * The same restrictions apply as in vm_insert_page(). 1918 */ 1919 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1920 struct page **pages, unsigned long *num) 1921 { 1922 #ifdef pte_index 1923 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1924 1925 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1926 return -EFAULT; 1927 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1928 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1929 BUG_ON(vma->vm_flags & VM_PFNMAP); 1930 vma->vm_flags |= VM_MIXEDMAP; 1931 } 1932 /* Defer page refcount checking till we're about to map that page. */ 1933 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1934 #else 1935 unsigned long idx = 0, pgcount = *num; 1936 int err = -EINVAL; 1937 1938 for (; idx < pgcount; ++idx) { 1939 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1940 if (err) 1941 break; 1942 } 1943 *num = pgcount - idx; 1944 return err; 1945 #endif /* ifdef pte_index */ 1946 } 1947 EXPORT_SYMBOL(vm_insert_pages); 1948 1949 /** 1950 * vm_insert_page - insert single page into user vma 1951 * @vma: user vma to map to 1952 * @addr: target user address of this page 1953 * @page: source kernel page 1954 * 1955 * This allows drivers to insert individual pages they've allocated 1956 * into a user vma. 1957 * 1958 * The page has to be a nice clean _individual_ kernel allocation. 1959 * If you allocate a compound page, you need to have marked it as 1960 * such (__GFP_COMP), or manually just split the page up yourself 1961 * (see split_page()). 1962 * 1963 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1964 * took an arbitrary page protection parameter. This doesn't allow 1965 * that. Your vma protection will have to be set up correctly, which 1966 * means that if you want a shared writable mapping, you'd better 1967 * ask for a shared writable mapping! 1968 * 1969 * The page does not need to be reserved. 1970 * 1971 * Usually this function is called from f_op->mmap() handler 1972 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1973 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1974 * function from other places, for example from page-fault handler. 1975 * 1976 * Return: %0 on success, negative error code otherwise. 1977 */ 1978 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1979 struct page *page) 1980 { 1981 if (addr < vma->vm_start || addr >= vma->vm_end) 1982 return -EFAULT; 1983 if (!page_count(page)) 1984 return -EINVAL; 1985 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1986 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1987 BUG_ON(vma->vm_flags & VM_PFNMAP); 1988 vma->vm_flags |= VM_MIXEDMAP; 1989 } 1990 return insert_page(vma, addr, page, vma->vm_page_prot); 1991 } 1992 EXPORT_SYMBOL(vm_insert_page); 1993 1994 /* 1995 * __vm_map_pages - maps range of kernel pages into user vma 1996 * @vma: user vma to map to 1997 * @pages: pointer to array of source kernel pages 1998 * @num: number of pages in page array 1999 * @offset: user's requested vm_pgoff 2000 * 2001 * This allows drivers to map range of kernel pages into a user vma. 2002 * 2003 * Return: 0 on success and error code otherwise. 2004 */ 2005 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2006 unsigned long num, unsigned long offset) 2007 { 2008 unsigned long count = vma_pages(vma); 2009 unsigned long uaddr = vma->vm_start; 2010 int ret, i; 2011 2012 /* Fail if the user requested offset is beyond the end of the object */ 2013 if (offset >= num) 2014 return -ENXIO; 2015 2016 /* Fail if the user requested size exceeds available object size */ 2017 if (count > num - offset) 2018 return -ENXIO; 2019 2020 for (i = 0; i < count; i++) { 2021 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2022 if (ret < 0) 2023 return ret; 2024 uaddr += PAGE_SIZE; 2025 } 2026 2027 return 0; 2028 } 2029 2030 /** 2031 * vm_map_pages - maps range of kernel pages starts with non zero offset 2032 * @vma: user vma to map to 2033 * @pages: pointer to array of source kernel pages 2034 * @num: number of pages in page array 2035 * 2036 * Maps an object consisting of @num pages, catering for the user's 2037 * requested vm_pgoff 2038 * 2039 * If we fail to insert any page into the vma, the function will return 2040 * immediately leaving any previously inserted pages present. Callers 2041 * from the mmap handler may immediately return the error as their caller 2042 * will destroy the vma, removing any successfully inserted pages. Other 2043 * callers should make their own arrangements for calling unmap_region(). 2044 * 2045 * Context: Process context. Called by mmap handlers. 2046 * Return: 0 on success and error code otherwise. 2047 */ 2048 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2049 unsigned long num) 2050 { 2051 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2052 } 2053 EXPORT_SYMBOL(vm_map_pages); 2054 2055 /** 2056 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2057 * @vma: user vma to map to 2058 * @pages: pointer to array of source kernel pages 2059 * @num: number of pages in page array 2060 * 2061 * Similar to vm_map_pages(), except that it explicitly sets the offset 2062 * to 0. This function is intended for the drivers that did not consider 2063 * vm_pgoff. 2064 * 2065 * Context: Process context. Called by mmap handlers. 2066 * Return: 0 on success and error code otherwise. 2067 */ 2068 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2069 unsigned long num) 2070 { 2071 return __vm_map_pages(vma, pages, num, 0); 2072 } 2073 EXPORT_SYMBOL(vm_map_pages_zero); 2074 2075 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2076 pfn_t pfn, pgprot_t prot, bool mkwrite) 2077 { 2078 struct mm_struct *mm = vma->vm_mm; 2079 pte_t *pte, entry; 2080 spinlock_t *ptl; 2081 2082 pte = get_locked_pte(mm, addr, &ptl); 2083 if (!pte) 2084 return VM_FAULT_OOM; 2085 if (!pte_none(*pte)) { 2086 if (mkwrite) { 2087 /* 2088 * For read faults on private mappings the PFN passed 2089 * in may not match the PFN we have mapped if the 2090 * mapped PFN is a writeable COW page. In the mkwrite 2091 * case we are creating a writable PTE for a shared 2092 * mapping and we expect the PFNs to match. If they 2093 * don't match, we are likely racing with block 2094 * allocation and mapping invalidation so just skip the 2095 * update. 2096 */ 2097 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2098 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2099 goto out_unlock; 2100 } 2101 entry = pte_mkyoung(*pte); 2102 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2103 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2104 update_mmu_cache(vma, addr, pte); 2105 } 2106 goto out_unlock; 2107 } 2108 2109 /* Ok, finally just insert the thing.. */ 2110 if (pfn_t_devmap(pfn)) 2111 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2112 else 2113 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2114 2115 if (mkwrite) { 2116 entry = pte_mkyoung(entry); 2117 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2118 } 2119 2120 set_pte_at(mm, addr, pte, entry); 2121 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2122 2123 out_unlock: 2124 pte_unmap_unlock(pte, ptl); 2125 return VM_FAULT_NOPAGE; 2126 } 2127 2128 /** 2129 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2130 * @vma: user vma to map to 2131 * @addr: target user address of this page 2132 * @pfn: source kernel pfn 2133 * @pgprot: pgprot flags for the inserted page 2134 * 2135 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2136 * to override pgprot on a per-page basis. 2137 * 2138 * This only makes sense for IO mappings, and it makes no sense for 2139 * COW mappings. In general, using multiple vmas is preferable; 2140 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2141 * impractical. 2142 * 2143 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2144 * a value of @pgprot different from that of @vma->vm_page_prot. 2145 * 2146 * Context: Process context. May allocate using %GFP_KERNEL. 2147 * Return: vm_fault_t value. 2148 */ 2149 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2150 unsigned long pfn, pgprot_t pgprot) 2151 { 2152 /* 2153 * Technically, architectures with pte_special can avoid all these 2154 * restrictions (same for remap_pfn_range). However we would like 2155 * consistency in testing and feature parity among all, so we should 2156 * try to keep these invariants in place for everybody. 2157 */ 2158 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2159 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2160 (VM_PFNMAP|VM_MIXEDMAP)); 2161 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2162 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2163 2164 if (addr < vma->vm_start || addr >= vma->vm_end) 2165 return VM_FAULT_SIGBUS; 2166 2167 if (!pfn_modify_allowed(pfn, pgprot)) 2168 return VM_FAULT_SIGBUS; 2169 2170 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2171 2172 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2173 false); 2174 } 2175 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2176 2177 /** 2178 * vmf_insert_pfn - insert single pfn into user vma 2179 * @vma: user vma to map to 2180 * @addr: target user address of this page 2181 * @pfn: source kernel pfn 2182 * 2183 * Similar to vm_insert_page, this allows drivers to insert individual pages 2184 * they've allocated into a user vma. Same comments apply. 2185 * 2186 * This function should only be called from a vm_ops->fault handler, and 2187 * in that case the handler should return the result of this function. 2188 * 2189 * vma cannot be a COW mapping. 2190 * 2191 * As this is called only for pages that do not currently exist, we 2192 * do not need to flush old virtual caches or the TLB. 2193 * 2194 * Context: Process context. May allocate using %GFP_KERNEL. 2195 * Return: vm_fault_t value. 2196 */ 2197 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2198 unsigned long pfn) 2199 { 2200 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2201 } 2202 EXPORT_SYMBOL(vmf_insert_pfn); 2203 2204 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2205 { 2206 /* these checks mirror the abort conditions in vm_normal_page */ 2207 if (vma->vm_flags & VM_MIXEDMAP) 2208 return true; 2209 if (pfn_t_devmap(pfn)) 2210 return true; 2211 if (pfn_t_special(pfn)) 2212 return true; 2213 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2214 return true; 2215 return false; 2216 } 2217 2218 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2219 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2220 bool mkwrite) 2221 { 2222 int err; 2223 2224 BUG_ON(!vm_mixed_ok(vma, pfn)); 2225 2226 if (addr < vma->vm_start || addr >= vma->vm_end) 2227 return VM_FAULT_SIGBUS; 2228 2229 track_pfn_insert(vma, &pgprot, pfn); 2230 2231 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2232 return VM_FAULT_SIGBUS; 2233 2234 /* 2235 * If we don't have pte special, then we have to use the pfn_valid() 2236 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2237 * refcount the page if pfn_valid is true (hence insert_page rather 2238 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2239 * without pte special, it would there be refcounted as a normal page. 2240 */ 2241 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2242 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2243 struct page *page; 2244 2245 /* 2246 * At this point we are committed to insert_page() 2247 * regardless of whether the caller specified flags that 2248 * result in pfn_t_has_page() == false. 2249 */ 2250 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2251 err = insert_page(vma, addr, page, pgprot); 2252 } else { 2253 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2254 } 2255 2256 if (err == -ENOMEM) 2257 return VM_FAULT_OOM; 2258 if (err < 0 && err != -EBUSY) 2259 return VM_FAULT_SIGBUS; 2260 2261 return VM_FAULT_NOPAGE; 2262 } 2263 2264 /** 2265 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2266 * @vma: user vma to map to 2267 * @addr: target user address of this page 2268 * @pfn: source kernel pfn 2269 * @pgprot: pgprot flags for the inserted page 2270 * 2271 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2272 * to override pgprot on a per-page basis. 2273 * 2274 * Typically this function should be used by drivers to set caching- and 2275 * encryption bits different than those of @vma->vm_page_prot, because 2276 * the caching- or encryption mode may not be known at mmap() time. 2277 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2278 * to set caching and encryption bits for those vmas (except for COW pages). 2279 * This is ensured by core vm only modifying these page table entries using 2280 * functions that don't touch caching- or encryption bits, using pte_modify() 2281 * if needed. (See for example mprotect()). 2282 * Also when new page-table entries are created, this is only done using the 2283 * fault() callback, and never using the value of vma->vm_page_prot, 2284 * except for page-table entries that point to anonymous pages as the result 2285 * of COW. 2286 * 2287 * Context: Process context. May allocate using %GFP_KERNEL. 2288 * Return: vm_fault_t value. 2289 */ 2290 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2291 pfn_t pfn, pgprot_t pgprot) 2292 { 2293 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2294 } 2295 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2296 2297 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2298 pfn_t pfn) 2299 { 2300 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2301 } 2302 EXPORT_SYMBOL(vmf_insert_mixed); 2303 2304 /* 2305 * If the insertion of PTE failed because someone else already added a 2306 * different entry in the mean time, we treat that as success as we assume 2307 * the same entry was actually inserted. 2308 */ 2309 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2310 unsigned long addr, pfn_t pfn) 2311 { 2312 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2313 } 2314 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2315 2316 /* 2317 * maps a range of physical memory into the requested pages. the old 2318 * mappings are removed. any references to nonexistent pages results 2319 * in null mappings (currently treated as "copy-on-access") 2320 */ 2321 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2322 unsigned long addr, unsigned long end, 2323 unsigned long pfn, pgprot_t prot) 2324 { 2325 pte_t *pte, *mapped_pte; 2326 spinlock_t *ptl; 2327 int err = 0; 2328 2329 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2330 if (!pte) 2331 return -ENOMEM; 2332 arch_enter_lazy_mmu_mode(); 2333 do { 2334 BUG_ON(!pte_none(*pte)); 2335 if (!pfn_modify_allowed(pfn, prot)) { 2336 err = -EACCES; 2337 break; 2338 } 2339 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2340 pfn++; 2341 } while (pte++, addr += PAGE_SIZE, addr != end); 2342 arch_leave_lazy_mmu_mode(); 2343 pte_unmap_unlock(mapped_pte, ptl); 2344 return err; 2345 } 2346 2347 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2348 unsigned long addr, unsigned long end, 2349 unsigned long pfn, pgprot_t prot) 2350 { 2351 pmd_t *pmd; 2352 unsigned long next; 2353 int err; 2354 2355 pfn -= addr >> PAGE_SHIFT; 2356 pmd = pmd_alloc(mm, pud, addr); 2357 if (!pmd) 2358 return -ENOMEM; 2359 VM_BUG_ON(pmd_trans_huge(*pmd)); 2360 do { 2361 next = pmd_addr_end(addr, end); 2362 err = remap_pte_range(mm, pmd, addr, next, 2363 pfn + (addr >> PAGE_SHIFT), prot); 2364 if (err) 2365 return err; 2366 } while (pmd++, addr = next, addr != end); 2367 return 0; 2368 } 2369 2370 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2371 unsigned long addr, unsigned long end, 2372 unsigned long pfn, pgprot_t prot) 2373 { 2374 pud_t *pud; 2375 unsigned long next; 2376 int err; 2377 2378 pfn -= addr >> PAGE_SHIFT; 2379 pud = pud_alloc(mm, p4d, addr); 2380 if (!pud) 2381 return -ENOMEM; 2382 do { 2383 next = pud_addr_end(addr, end); 2384 err = remap_pmd_range(mm, pud, addr, next, 2385 pfn + (addr >> PAGE_SHIFT), prot); 2386 if (err) 2387 return err; 2388 } while (pud++, addr = next, addr != end); 2389 return 0; 2390 } 2391 2392 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2393 unsigned long addr, unsigned long end, 2394 unsigned long pfn, pgprot_t prot) 2395 { 2396 p4d_t *p4d; 2397 unsigned long next; 2398 int err; 2399 2400 pfn -= addr >> PAGE_SHIFT; 2401 p4d = p4d_alloc(mm, pgd, addr); 2402 if (!p4d) 2403 return -ENOMEM; 2404 do { 2405 next = p4d_addr_end(addr, end); 2406 err = remap_pud_range(mm, p4d, addr, next, 2407 pfn + (addr >> PAGE_SHIFT), prot); 2408 if (err) 2409 return err; 2410 } while (p4d++, addr = next, addr != end); 2411 return 0; 2412 } 2413 2414 /* 2415 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2416 * must have pre-validated the caching bits of the pgprot_t. 2417 */ 2418 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2419 unsigned long pfn, unsigned long size, pgprot_t prot) 2420 { 2421 pgd_t *pgd; 2422 unsigned long next; 2423 unsigned long end = addr + PAGE_ALIGN(size); 2424 struct mm_struct *mm = vma->vm_mm; 2425 int err; 2426 2427 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2428 return -EINVAL; 2429 2430 /* 2431 * Physically remapped pages are special. Tell the 2432 * rest of the world about it: 2433 * VM_IO tells people not to look at these pages 2434 * (accesses can have side effects). 2435 * VM_PFNMAP tells the core MM that the base pages are just 2436 * raw PFN mappings, and do not have a "struct page" associated 2437 * with them. 2438 * VM_DONTEXPAND 2439 * Disable vma merging and expanding with mremap(). 2440 * VM_DONTDUMP 2441 * Omit vma from core dump, even when VM_IO turned off. 2442 * 2443 * There's a horrible special case to handle copy-on-write 2444 * behaviour that some programs depend on. We mark the "original" 2445 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2446 * See vm_normal_page() for details. 2447 */ 2448 if (is_cow_mapping(vma->vm_flags)) { 2449 if (addr != vma->vm_start || end != vma->vm_end) 2450 return -EINVAL; 2451 vma->vm_pgoff = pfn; 2452 } 2453 2454 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2455 2456 BUG_ON(addr >= end); 2457 pfn -= addr >> PAGE_SHIFT; 2458 pgd = pgd_offset(mm, addr); 2459 flush_cache_range(vma, addr, end); 2460 do { 2461 next = pgd_addr_end(addr, end); 2462 err = remap_p4d_range(mm, pgd, addr, next, 2463 pfn + (addr >> PAGE_SHIFT), prot); 2464 if (err) 2465 return err; 2466 } while (pgd++, addr = next, addr != end); 2467 2468 return 0; 2469 } 2470 2471 /** 2472 * remap_pfn_range - remap kernel memory to userspace 2473 * @vma: user vma to map to 2474 * @addr: target page aligned user address to start at 2475 * @pfn: page frame number of kernel physical memory address 2476 * @size: size of mapping area 2477 * @prot: page protection flags for this mapping 2478 * 2479 * Note: this is only safe if the mm semaphore is held when called. 2480 * 2481 * Return: %0 on success, negative error code otherwise. 2482 */ 2483 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2484 unsigned long pfn, unsigned long size, pgprot_t prot) 2485 { 2486 int err; 2487 2488 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2489 if (err) 2490 return -EINVAL; 2491 2492 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2493 if (err) 2494 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2495 return err; 2496 } 2497 EXPORT_SYMBOL(remap_pfn_range); 2498 2499 /** 2500 * vm_iomap_memory - remap memory to userspace 2501 * @vma: user vma to map to 2502 * @start: start of the physical memory to be mapped 2503 * @len: size of area 2504 * 2505 * This is a simplified io_remap_pfn_range() for common driver use. The 2506 * driver just needs to give us the physical memory range to be mapped, 2507 * we'll figure out the rest from the vma information. 2508 * 2509 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2510 * whatever write-combining details or similar. 2511 * 2512 * Return: %0 on success, negative error code otherwise. 2513 */ 2514 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2515 { 2516 unsigned long vm_len, pfn, pages; 2517 2518 /* Check that the physical memory area passed in looks valid */ 2519 if (start + len < start) 2520 return -EINVAL; 2521 /* 2522 * You *really* shouldn't map things that aren't page-aligned, 2523 * but we've historically allowed it because IO memory might 2524 * just have smaller alignment. 2525 */ 2526 len += start & ~PAGE_MASK; 2527 pfn = start >> PAGE_SHIFT; 2528 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2529 if (pfn + pages < pfn) 2530 return -EINVAL; 2531 2532 /* We start the mapping 'vm_pgoff' pages into the area */ 2533 if (vma->vm_pgoff > pages) 2534 return -EINVAL; 2535 pfn += vma->vm_pgoff; 2536 pages -= vma->vm_pgoff; 2537 2538 /* Can we fit all of the mapping? */ 2539 vm_len = vma->vm_end - vma->vm_start; 2540 if (vm_len >> PAGE_SHIFT > pages) 2541 return -EINVAL; 2542 2543 /* Ok, let it rip */ 2544 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2545 } 2546 EXPORT_SYMBOL(vm_iomap_memory); 2547 2548 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2549 unsigned long addr, unsigned long end, 2550 pte_fn_t fn, void *data, bool create, 2551 pgtbl_mod_mask *mask) 2552 { 2553 pte_t *pte, *mapped_pte; 2554 int err = 0; 2555 spinlock_t *ptl; 2556 2557 if (create) { 2558 mapped_pte = pte = (mm == &init_mm) ? 2559 pte_alloc_kernel_track(pmd, addr, mask) : 2560 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2561 if (!pte) 2562 return -ENOMEM; 2563 } else { 2564 mapped_pte = pte = (mm == &init_mm) ? 2565 pte_offset_kernel(pmd, addr) : 2566 pte_offset_map_lock(mm, pmd, addr, &ptl); 2567 } 2568 2569 BUG_ON(pmd_huge(*pmd)); 2570 2571 arch_enter_lazy_mmu_mode(); 2572 2573 if (fn) { 2574 do { 2575 if (create || !pte_none(*pte)) { 2576 err = fn(pte++, addr, data); 2577 if (err) 2578 break; 2579 } 2580 } while (addr += PAGE_SIZE, addr != end); 2581 } 2582 *mask |= PGTBL_PTE_MODIFIED; 2583 2584 arch_leave_lazy_mmu_mode(); 2585 2586 if (mm != &init_mm) 2587 pte_unmap_unlock(mapped_pte, ptl); 2588 return err; 2589 } 2590 2591 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2592 unsigned long addr, unsigned long end, 2593 pte_fn_t fn, void *data, bool create, 2594 pgtbl_mod_mask *mask) 2595 { 2596 pmd_t *pmd; 2597 unsigned long next; 2598 int err = 0; 2599 2600 BUG_ON(pud_huge(*pud)); 2601 2602 if (create) { 2603 pmd = pmd_alloc_track(mm, pud, addr, mask); 2604 if (!pmd) 2605 return -ENOMEM; 2606 } else { 2607 pmd = pmd_offset(pud, addr); 2608 } 2609 do { 2610 next = pmd_addr_end(addr, end); 2611 if (pmd_none(*pmd) && !create) 2612 continue; 2613 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2614 return -EINVAL; 2615 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2616 if (!create) 2617 continue; 2618 pmd_clear_bad(pmd); 2619 } 2620 err = apply_to_pte_range(mm, pmd, addr, next, 2621 fn, data, create, mask); 2622 if (err) 2623 break; 2624 } while (pmd++, addr = next, addr != end); 2625 2626 return err; 2627 } 2628 2629 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2630 unsigned long addr, unsigned long end, 2631 pte_fn_t fn, void *data, bool create, 2632 pgtbl_mod_mask *mask) 2633 { 2634 pud_t *pud; 2635 unsigned long next; 2636 int err = 0; 2637 2638 if (create) { 2639 pud = pud_alloc_track(mm, p4d, addr, mask); 2640 if (!pud) 2641 return -ENOMEM; 2642 } else { 2643 pud = pud_offset(p4d, addr); 2644 } 2645 do { 2646 next = pud_addr_end(addr, end); 2647 if (pud_none(*pud) && !create) 2648 continue; 2649 if (WARN_ON_ONCE(pud_leaf(*pud))) 2650 return -EINVAL; 2651 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2652 if (!create) 2653 continue; 2654 pud_clear_bad(pud); 2655 } 2656 err = apply_to_pmd_range(mm, pud, addr, next, 2657 fn, data, create, mask); 2658 if (err) 2659 break; 2660 } while (pud++, addr = next, addr != end); 2661 2662 return err; 2663 } 2664 2665 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2666 unsigned long addr, unsigned long end, 2667 pte_fn_t fn, void *data, bool create, 2668 pgtbl_mod_mask *mask) 2669 { 2670 p4d_t *p4d; 2671 unsigned long next; 2672 int err = 0; 2673 2674 if (create) { 2675 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2676 if (!p4d) 2677 return -ENOMEM; 2678 } else { 2679 p4d = p4d_offset(pgd, addr); 2680 } 2681 do { 2682 next = p4d_addr_end(addr, end); 2683 if (p4d_none(*p4d) && !create) 2684 continue; 2685 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2686 return -EINVAL; 2687 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2688 if (!create) 2689 continue; 2690 p4d_clear_bad(p4d); 2691 } 2692 err = apply_to_pud_range(mm, p4d, addr, next, 2693 fn, data, create, mask); 2694 if (err) 2695 break; 2696 } while (p4d++, addr = next, addr != end); 2697 2698 return err; 2699 } 2700 2701 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2702 unsigned long size, pte_fn_t fn, 2703 void *data, bool create) 2704 { 2705 pgd_t *pgd; 2706 unsigned long start = addr, next; 2707 unsigned long end = addr + size; 2708 pgtbl_mod_mask mask = 0; 2709 int err = 0; 2710 2711 if (WARN_ON(addr >= end)) 2712 return -EINVAL; 2713 2714 pgd = pgd_offset(mm, addr); 2715 do { 2716 next = pgd_addr_end(addr, end); 2717 if (pgd_none(*pgd) && !create) 2718 continue; 2719 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2720 return -EINVAL; 2721 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2722 if (!create) 2723 continue; 2724 pgd_clear_bad(pgd); 2725 } 2726 err = apply_to_p4d_range(mm, pgd, addr, next, 2727 fn, data, create, &mask); 2728 if (err) 2729 break; 2730 } while (pgd++, addr = next, addr != end); 2731 2732 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2733 arch_sync_kernel_mappings(start, start + size); 2734 2735 return err; 2736 } 2737 2738 /* 2739 * Scan a region of virtual memory, filling in page tables as necessary 2740 * and calling a provided function on each leaf page table. 2741 */ 2742 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2743 unsigned long size, pte_fn_t fn, void *data) 2744 { 2745 return __apply_to_page_range(mm, addr, size, fn, data, true); 2746 } 2747 EXPORT_SYMBOL_GPL(apply_to_page_range); 2748 2749 /* 2750 * Scan a region of virtual memory, calling a provided function on 2751 * each leaf page table where it exists. 2752 * 2753 * Unlike apply_to_page_range, this does _not_ fill in page tables 2754 * where they are absent. 2755 */ 2756 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2757 unsigned long size, pte_fn_t fn, void *data) 2758 { 2759 return __apply_to_page_range(mm, addr, size, fn, data, false); 2760 } 2761 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2762 2763 /* 2764 * handle_pte_fault chooses page fault handler according to an entry which was 2765 * read non-atomically. Before making any commitment, on those architectures 2766 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2767 * parts, do_swap_page must check under lock before unmapping the pte and 2768 * proceeding (but do_wp_page is only called after already making such a check; 2769 * and do_anonymous_page can safely check later on). 2770 */ 2771 static inline int pte_unmap_same(struct vm_fault *vmf) 2772 { 2773 int same = 1; 2774 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2775 if (sizeof(pte_t) > sizeof(unsigned long)) { 2776 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2777 spin_lock(ptl); 2778 same = pte_same(*vmf->pte, vmf->orig_pte); 2779 spin_unlock(ptl); 2780 } 2781 #endif 2782 pte_unmap(vmf->pte); 2783 vmf->pte = NULL; 2784 return same; 2785 } 2786 2787 /* 2788 * Return: 2789 * 0: copied succeeded 2790 * -EHWPOISON: copy failed due to hwpoison in source page 2791 * -EAGAIN: copied failed (some other reason) 2792 */ 2793 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2794 struct vm_fault *vmf) 2795 { 2796 int ret; 2797 void *kaddr; 2798 void __user *uaddr; 2799 bool locked = false; 2800 struct vm_area_struct *vma = vmf->vma; 2801 struct mm_struct *mm = vma->vm_mm; 2802 unsigned long addr = vmf->address; 2803 2804 if (likely(src)) { 2805 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2806 memory_failure_queue(page_to_pfn(src), 0); 2807 return -EHWPOISON; 2808 } 2809 return 0; 2810 } 2811 2812 /* 2813 * If the source page was a PFN mapping, we don't have 2814 * a "struct page" for it. We do a best-effort copy by 2815 * just copying from the original user address. If that 2816 * fails, we just zero-fill it. Live with it. 2817 */ 2818 kaddr = kmap_atomic(dst); 2819 uaddr = (void __user *)(addr & PAGE_MASK); 2820 2821 /* 2822 * On architectures with software "accessed" bits, we would 2823 * take a double page fault, so mark it accessed here. 2824 */ 2825 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2826 pte_t entry; 2827 2828 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2829 locked = true; 2830 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2831 /* 2832 * Other thread has already handled the fault 2833 * and update local tlb only 2834 */ 2835 update_mmu_tlb(vma, addr, vmf->pte); 2836 ret = -EAGAIN; 2837 goto pte_unlock; 2838 } 2839 2840 entry = pte_mkyoung(vmf->orig_pte); 2841 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2842 update_mmu_cache(vma, addr, vmf->pte); 2843 } 2844 2845 /* 2846 * This really shouldn't fail, because the page is there 2847 * in the page tables. But it might just be unreadable, 2848 * in which case we just give up and fill the result with 2849 * zeroes. 2850 */ 2851 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2852 if (locked) 2853 goto warn; 2854 2855 /* Re-validate under PTL if the page is still mapped */ 2856 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2857 locked = true; 2858 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2859 /* The PTE changed under us, update local tlb */ 2860 update_mmu_tlb(vma, addr, vmf->pte); 2861 ret = -EAGAIN; 2862 goto pte_unlock; 2863 } 2864 2865 /* 2866 * The same page can be mapped back since last copy attempt. 2867 * Try to copy again under PTL. 2868 */ 2869 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2870 /* 2871 * Give a warn in case there can be some obscure 2872 * use-case 2873 */ 2874 warn: 2875 WARN_ON_ONCE(1); 2876 clear_page(kaddr); 2877 } 2878 } 2879 2880 ret = 0; 2881 2882 pte_unlock: 2883 if (locked) 2884 pte_unmap_unlock(vmf->pte, vmf->ptl); 2885 kunmap_atomic(kaddr); 2886 flush_dcache_page(dst); 2887 2888 return ret; 2889 } 2890 2891 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2892 { 2893 struct file *vm_file = vma->vm_file; 2894 2895 if (vm_file) 2896 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2897 2898 /* 2899 * Special mappings (e.g. VDSO) do not have any file so fake 2900 * a default GFP_KERNEL for them. 2901 */ 2902 return GFP_KERNEL; 2903 } 2904 2905 /* 2906 * Notify the address space that the page is about to become writable so that 2907 * it can prohibit this or wait for the page to get into an appropriate state. 2908 * 2909 * We do this without the lock held, so that it can sleep if it needs to. 2910 */ 2911 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2912 { 2913 vm_fault_t ret; 2914 struct page *page = vmf->page; 2915 unsigned int old_flags = vmf->flags; 2916 2917 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2918 2919 if (vmf->vma->vm_file && 2920 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2921 return VM_FAULT_SIGBUS; 2922 2923 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2924 /* Restore original flags so that caller is not surprised */ 2925 vmf->flags = old_flags; 2926 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2927 return ret; 2928 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2929 lock_page(page); 2930 if (!page->mapping) { 2931 unlock_page(page); 2932 return 0; /* retry */ 2933 } 2934 ret |= VM_FAULT_LOCKED; 2935 } else 2936 VM_BUG_ON_PAGE(!PageLocked(page), page); 2937 return ret; 2938 } 2939 2940 /* 2941 * Handle dirtying of a page in shared file mapping on a write fault. 2942 * 2943 * The function expects the page to be locked and unlocks it. 2944 */ 2945 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2946 { 2947 struct vm_area_struct *vma = vmf->vma; 2948 struct address_space *mapping; 2949 struct page *page = vmf->page; 2950 bool dirtied; 2951 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2952 2953 dirtied = set_page_dirty(page); 2954 VM_BUG_ON_PAGE(PageAnon(page), page); 2955 /* 2956 * Take a local copy of the address_space - page.mapping may be zeroed 2957 * by truncate after unlock_page(). The address_space itself remains 2958 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2959 * release semantics to prevent the compiler from undoing this copying. 2960 */ 2961 mapping = page_rmapping(page); 2962 unlock_page(page); 2963 2964 if (!page_mkwrite) 2965 file_update_time(vma->vm_file); 2966 2967 /* 2968 * Throttle page dirtying rate down to writeback speed. 2969 * 2970 * mapping may be NULL here because some device drivers do not 2971 * set page.mapping but still dirty their pages 2972 * 2973 * Drop the mmap_lock before waiting on IO, if we can. The file 2974 * is pinning the mapping, as per above. 2975 */ 2976 if ((dirtied || page_mkwrite) && mapping) { 2977 struct file *fpin; 2978 2979 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2980 balance_dirty_pages_ratelimited(mapping); 2981 if (fpin) { 2982 fput(fpin); 2983 return VM_FAULT_COMPLETED; 2984 } 2985 } 2986 2987 return 0; 2988 } 2989 2990 /* 2991 * Handle write page faults for pages that can be reused in the current vma 2992 * 2993 * This can happen either due to the mapping being with the VM_SHARED flag, 2994 * or due to us being the last reference standing to the page. In either 2995 * case, all we need to do here is to mark the page as writable and update 2996 * any related book-keeping. 2997 */ 2998 static inline void wp_page_reuse(struct vm_fault *vmf) 2999 __releases(vmf->ptl) 3000 { 3001 struct vm_area_struct *vma = vmf->vma; 3002 struct page *page = vmf->page; 3003 pte_t entry; 3004 3005 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3006 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3007 3008 /* 3009 * Clear the pages cpupid information as the existing 3010 * information potentially belongs to a now completely 3011 * unrelated process. 3012 */ 3013 if (page) 3014 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3015 3016 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3017 entry = pte_mkyoung(vmf->orig_pte); 3018 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3019 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3020 update_mmu_cache(vma, vmf->address, vmf->pte); 3021 pte_unmap_unlock(vmf->pte, vmf->ptl); 3022 count_vm_event(PGREUSE); 3023 } 3024 3025 /* 3026 * Handle the case of a page which we actually need to copy to a new page, 3027 * either due to COW or unsharing. 3028 * 3029 * Called with mmap_lock locked and the old page referenced, but 3030 * without the ptl held. 3031 * 3032 * High level logic flow: 3033 * 3034 * - Allocate a page, copy the content of the old page to the new one. 3035 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3036 * - Take the PTL. If the pte changed, bail out and release the allocated page 3037 * - If the pte is still the way we remember it, update the page table and all 3038 * relevant references. This includes dropping the reference the page-table 3039 * held to the old page, as well as updating the rmap. 3040 * - In any case, unlock the PTL and drop the reference we took to the old page. 3041 */ 3042 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3043 { 3044 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3045 struct vm_area_struct *vma = vmf->vma; 3046 struct mm_struct *mm = vma->vm_mm; 3047 struct page *old_page = vmf->page; 3048 struct page *new_page = NULL; 3049 pte_t entry; 3050 int page_copied = 0; 3051 struct mmu_notifier_range range; 3052 int ret; 3053 3054 delayacct_wpcopy_start(); 3055 3056 if (unlikely(anon_vma_prepare(vma))) 3057 goto oom; 3058 3059 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3060 new_page = alloc_zeroed_user_highpage_movable(vma, 3061 vmf->address); 3062 if (!new_page) 3063 goto oom; 3064 } else { 3065 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3066 vmf->address); 3067 if (!new_page) 3068 goto oom; 3069 3070 ret = __wp_page_copy_user(new_page, old_page, vmf); 3071 if (ret) { 3072 /* 3073 * COW failed, if the fault was solved by other, 3074 * it's fine. If not, userspace would re-fault on 3075 * the same address and we will handle the fault 3076 * from the second attempt. 3077 * The -EHWPOISON case will not be retried. 3078 */ 3079 put_page(new_page); 3080 if (old_page) 3081 put_page(old_page); 3082 3083 delayacct_wpcopy_end(); 3084 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3085 } 3086 kmsan_copy_page_meta(new_page, old_page); 3087 } 3088 3089 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) 3090 goto oom_free_new; 3091 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3092 3093 __SetPageUptodate(new_page); 3094 3095 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3096 vmf->address & PAGE_MASK, 3097 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3098 mmu_notifier_invalidate_range_start(&range); 3099 3100 /* 3101 * Re-check the pte - we dropped the lock 3102 */ 3103 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3104 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3105 if (old_page) { 3106 if (!PageAnon(old_page)) { 3107 dec_mm_counter(mm, mm_counter_file(old_page)); 3108 inc_mm_counter(mm, MM_ANONPAGES); 3109 } 3110 } else { 3111 inc_mm_counter(mm, MM_ANONPAGES); 3112 } 3113 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3114 entry = mk_pte(new_page, vma->vm_page_prot); 3115 entry = pte_sw_mkyoung(entry); 3116 if (unlikely(unshare)) { 3117 if (pte_soft_dirty(vmf->orig_pte)) 3118 entry = pte_mksoft_dirty(entry); 3119 if (pte_uffd_wp(vmf->orig_pte)) 3120 entry = pte_mkuffd_wp(entry); 3121 } else { 3122 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3123 } 3124 3125 /* 3126 * Clear the pte entry and flush it first, before updating the 3127 * pte with the new entry, to keep TLBs on different CPUs in 3128 * sync. This code used to set the new PTE then flush TLBs, but 3129 * that left a window where the new PTE could be loaded into 3130 * some TLBs while the old PTE remains in others. 3131 */ 3132 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3133 page_add_new_anon_rmap(new_page, vma, vmf->address); 3134 lru_cache_add_inactive_or_unevictable(new_page, vma); 3135 /* 3136 * We call the notify macro here because, when using secondary 3137 * mmu page tables (such as kvm shadow page tables), we want the 3138 * new page to be mapped directly into the secondary page table. 3139 */ 3140 BUG_ON(unshare && pte_write(entry)); 3141 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3142 update_mmu_cache(vma, vmf->address, vmf->pte); 3143 if (old_page) { 3144 /* 3145 * Only after switching the pte to the new page may 3146 * we remove the mapcount here. Otherwise another 3147 * process may come and find the rmap count decremented 3148 * before the pte is switched to the new page, and 3149 * "reuse" the old page writing into it while our pte 3150 * here still points into it and can be read by other 3151 * threads. 3152 * 3153 * The critical issue is to order this 3154 * page_remove_rmap with the ptp_clear_flush above. 3155 * Those stores are ordered by (if nothing else,) 3156 * the barrier present in the atomic_add_negative 3157 * in page_remove_rmap. 3158 * 3159 * Then the TLB flush in ptep_clear_flush ensures that 3160 * no process can access the old page before the 3161 * decremented mapcount is visible. And the old page 3162 * cannot be reused until after the decremented 3163 * mapcount is visible. So transitively, TLBs to 3164 * old page will be flushed before it can be reused. 3165 */ 3166 page_remove_rmap(old_page, vma, false); 3167 } 3168 3169 /* Free the old page.. */ 3170 new_page = old_page; 3171 page_copied = 1; 3172 } else { 3173 update_mmu_tlb(vma, vmf->address, vmf->pte); 3174 } 3175 3176 if (new_page) 3177 put_page(new_page); 3178 3179 pte_unmap_unlock(vmf->pte, vmf->ptl); 3180 /* 3181 * No need to double call mmu_notifier->invalidate_range() callback as 3182 * the above ptep_clear_flush_notify() did already call it. 3183 */ 3184 mmu_notifier_invalidate_range_only_end(&range); 3185 if (old_page) { 3186 if (page_copied) 3187 free_swap_cache(old_page); 3188 put_page(old_page); 3189 } 3190 3191 delayacct_wpcopy_end(); 3192 return 0; 3193 oom_free_new: 3194 put_page(new_page); 3195 oom: 3196 if (old_page) 3197 put_page(old_page); 3198 3199 delayacct_wpcopy_end(); 3200 return VM_FAULT_OOM; 3201 } 3202 3203 /** 3204 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3205 * writeable once the page is prepared 3206 * 3207 * @vmf: structure describing the fault 3208 * 3209 * This function handles all that is needed to finish a write page fault in a 3210 * shared mapping due to PTE being read-only once the mapped page is prepared. 3211 * It handles locking of PTE and modifying it. 3212 * 3213 * The function expects the page to be locked or other protection against 3214 * concurrent faults / writeback (such as DAX radix tree locks). 3215 * 3216 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3217 * we acquired PTE lock. 3218 */ 3219 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3220 { 3221 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3222 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3223 &vmf->ptl); 3224 /* 3225 * We might have raced with another page fault while we released the 3226 * pte_offset_map_lock. 3227 */ 3228 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3229 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3230 pte_unmap_unlock(vmf->pte, vmf->ptl); 3231 return VM_FAULT_NOPAGE; 3232 } 3233 wp_page_reuse(vmf); 3234 return 0; 3235 } 3236 3237 /* 3238 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3239 * mapping 3240 */ 3241 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3242 { 3243 struct vm_area_struct *vma = vmf->vma; 3244 3245 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3246 vm_fault_t ret; 3247 3248 pte_unmap_unlock(vmf->pte, vmf->ptl); 3249 vmf->flags |= FAULT_FLAG_MKWRITE; 3250 ret = vma->vm_ops->pfn_mkwrite(vmf); 3251 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3252 return ret; 3253 return finish_mkwrite_fault(vmf); 3254 } 3255 wp_page_reuse(vmf); 3256 return 0; 3257 } 3258 3259 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3260 __releases(vmf->ptl) 3261 { 3262 struct vm_area_struct *vma = vmf->vma; 3263 vm_fault_t ret = 0; 3264 3265 get_page(vmf->page); 3266 3267 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3268 vm_fault_t tmp; 3269 3270 pte_unmap_unlock(vmf->pte, vmf->ptl); 3271 tmp = do_page_mkwrite(vmf); 3272 if (unlikely(!tmp || (tmp & 3273 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3274 put_page(vmf->page); 3275 return tmp; 3276 } 3277 tmp = finish_mkwrite_fault(vmf); 3278 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3279 unlock_page(vmf->page); 3280 put_page(vmf->page); 3281 return tmp; 3282 } 3283 } else { 3284 wp_page_reuse(vmf); 3285 lock_page(vmf->page); 3286 } 3287 ret |= fault_dirty_shared_page(vmf); 3288 put_page(vmf->page); 3289 3290 return ret; 3291 } 3292 3293 /* 3294 * This routine handles present pages, when 3295 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3296 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3297 * (FAULT_FLAG_UNSHARE) 3298 * 3299 * It is done by copying the page to a new address and decrementing the 3300 * shared-page counter for the old page. 3301 * 3302 * Note that this routine assumes that the protection checks have been 3303 * done by the caller (the low-level page fault routine in most cases). 3304 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3305 * done any necessary COW. 3306 * 3307 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3308 * though the page will change only once the write actually happens. This 3309 * avoids a few races, and potentially makes it more efficient. 3310 * 3311 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3312 * but allow concurrent faults), with pte both mapped and locked. 3313 * We return with mmap_lock still held, but pte unmapped and unlocked. 3314 */ 3315 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3316 __releases(vmf->ptl) 3317 { 3318 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3319 struct vm_area_struct *vma = vmf->vma; 3320 struct folio *folio = NULL; 3321 3322 if (likely(!unshare)) { 3323 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3324 pte_unmap_unlock(vmf->pte, vmf->ptl); 3325 return handle_userfault(vmf, VM_UFFD_WP); 3326 } 3327 3328 /* 3329 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3330 * is flushed in this case before copying. 3331 */ 3332 if (unlikely(userfaultfd_wp(vmf->vma) && 3333 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3334 flush_tlb_page(vmf->vma, vmf->address); 3335 } 3336 3337 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3338 3339 /* 3340 * Shared mapping: we are guaranteed to have VM_WRITE and 3341 * FAULT_FLAG_WRITE set at this point. 3342 */ 3343 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3344 /* 3345 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3346 * VM_PFNMAP VMA. 3347 * 3348 * We should not cow pages in a shared writeable mapping. 3349 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3350 */ 3351 if (!vmf->page) 3352 return wp_pfn_shared(vmf); 3353 return wp_page_shared(vmf); 3354 } 3355 3356 if (vmf->page) 3357 folio = page_folio(vmf->page); 3358 3359 /* 3360 * Private mapping: create an exclusive anonymous page copy if reuse 3361 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3362 */ 3363 if (folio && folio_test_anon(folio)) { 3364 /* 3365 * If the page is exclusive to this process we must reuse the 3366 * page without further checks. 3367 */ 3368 if (PageAnonExclusive(vmf->page)) 3369 goto reuse; 3370 3371 /* 3372 * We have to verify under folio lock: these early checks are 3373 * just an optimization to avoid locking the folio and freeing 3374 * the swapcache if there is little hope that we can reuse. 3375 * 3376 * KSM doesn't necessarily raise the folio refcount. 3377 */ 3378 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3379 goto copy; 3380 if (!folio_test_lru(folio)) 3381 /* 3382 * Note: We cannot easily detect+handle references from 3383 * remote LRU pagevecs or references to LRU folios. 3384 */ 3385 lru_add_drain(); 3386 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3387 goto copy; 3388 if (!folio_trylock(folio)) 3389 goto copy; 3390 if (folio_test_swapcache(folio)) 3391 folio_free_swap(folio); 3392 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3393 folio_unlock(folio); 3394 goto copy; 3395 } 3396 /* 3397 * Ok, we've got the only folio reference from our mapping 3398 * and the folio is locked, it's dark out, and we're wearing 3399 * sunglasses. Hit it. 3400 */ 3401 page_move_anon_rmap(vmf->page, vma); 3402 folio_unlock(folio); 3403 reuse: 3404 if (unlikely(unshare)) { 3405 pte_unmap_unlock(vmf->pte, vmf->ptl); 3406 return 0; 3407 } 3408 wp_page_reuse(vmf); 3409 return 0; 3410 } 3411 copy: 3412 /* 3413 * Ok, we need to copy. Oh, well.. 3414 */ 3415 if (folio) 3416 folio_get(folio); 3417 3418 pte_unmap_unlock(vmf->pte, vmf->ptl); 3419 #ifdef CONFIG_KSM 3420 if (folio && folio_test_ksm(folio)) 3421 count_vm_event(COW_KSM); 3422 #endif 3423 return wp_page_copy(vmf); 3424 } 3425 3426 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3427 unsigned long start_addr, unsigned long end_addr, 3428 struct zap_details *details) 3429 { 3430 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3431 } 3432 3433 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3434 pgoff_t first_index, 3435 pgoff_t last_index, 3436 struct zap_details *details) 3437 { 3438 struct vm_area_struct *vma; 3439 pgoff_t vba, vea, zba, zea; 3440 3441 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3442 vba = vma->vm_pgoff; 3443 vea = vba + vma_pages(vma) - 1; 3444 zba = max(first_index, vba); 3445 zea = min(last_index, vea); 3446 3447 unmap_mapping_range_vma(vma, 3448 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3449 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3450 details); 3451 } 3452 } 3453 3454 /** 3455 * unmap_mapping_folio() - Unmap single folio from processes. 3456 * @folio: The locked folio to be unmapped. 3457 * 3458 * Unmap this folio from any userspace process which still has it mmaped. 3459 * Typically, for efficiency, the range of nearby pages has already been 3460 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3461 * truncation or invalidation holds the lock on a folio, it may find that 3462 * the page has been remapped again: and then uses unmap_mapping_folio() 3463 * to unmap it finally. 3464 */ 3465 void unmap_mapping_folio(struct folio *folio) 3466 { 3467 struct address_space *mapping = folio->mapping; 3468 struct zap_details details = { }; 3469 pgoff_t first_index; 3470 pgoff_t last_index; 3471 3472 VM_BUG_ON(!folio_test_locked(folio)); 3473 3474 first_index = folio->index; 3475 last_index = folio->index + folio_nr_pages(folio) - 1; 3476 3477 details.even_cows = false; 3478 details.single_folio = folio; 3479 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3480 3481 i_mmap_lock_read(mapping); 3482 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3483 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3484 last_index, &details); 3485 i_mmap_unlock_read(mapping); 3486 } 3487 3488 /** 3489 * unmap_mapping_pages() - Unmap pages from processes. 3490 * @mapping: The address space containing pages to be unmapped. 3491 * @start: Index of first page to be unmapped. 3492 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3493 * @even_cows: Whether to unmap even private COWed pages. 3494 * 3495 * Unmap the pages in this address space from any userspace process which 3496 * has them mmaped. Generally, you want to remove COWed pages as well when 3497 * a file is being truncated, but not when invalidating pages from the page 3498 * cache. 3499 */ 3500 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3501 pgoff_t nr, bool even_cows) 3502 { 3503 struct zap_details details = { }; 3504 pgoff_t first_index = start; 3505 pgoff_t last_index = start + nr - 1; 3506 3507 details.even_cows = even_cows; 3508 if (last_index < first_index) 3509 last_index = ULONG_MAX; 3510 3511 i_mmap_lock_read(mapping); 3512 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3513 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3514 last_index, &details); 3515 i_mmap_unlock_read(mapping); 3516 } 3517 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3518 3519 /** 3520 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3521 * address_space corresponding to the specified byte range in the underlying 3522 * file. 3523 * 3524 * @mapping: the address space containing mmaps to be unmapped. 3525 * @holebegin: byte in first page to unmap, relative to the start of 3526 * the underlying file. This will be rounded down to a PAGE_SIZE 3527 * boundary. Note that this is different from truncate_pagecache(), which 3528 * must keep the partial page. In contrast, we must get rid of 3529 * partial pages. 3530 * @holelen: size of prospective hole in bytes. This will be rounded 3531 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3532 * end of the file. 3533 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3534 * but 0 when invalidating pagecache, don't throw away private data. 3535 */ 3536 void unmap_mapping_range(struct address_space *mapping, 3537 loff_t const holebegin, loff_t const holelen, int even_cows) 3538 { 3539 pgoff_t hba = holebegin >> PAGE_SHIFT; 3540 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3541 3542 /* Check for overflow. */ 3543 if (sizeof(holelen) > sizeof(hlen)) { 3544 long long holeend = 3545 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3546 if (holeend & ~(long long)ULONG_MAX) 3547 hlen = ULONG_MAX - hba + 1; 3548 } 3549 3550 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3551 } 3552 EXPORT_SYMBOL(unmap_mapping_range); 3553 3554 /* 3555 * Restore a potential device exclusive pte to a working pte entry 3556 */ 3557 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3558 { 3559 struct folio *folio = page_folio(vmf->page); 3560 struct vm_area_struct *vma = vmf->vma; 3561 struct mmu_notifier_range range; 3562 3563 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) 3564 return VM_FAULT_RETRY; 3565 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3566 vma->vm_mm, vmf->address & PAGE_MASK, 3567 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3568 mmu_notifier_invalidate_range_start(&range); 3569 3570 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3571 &vmf->ptl); 3572 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3573 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3574 3575 pte_unmap_unlock(vmf->pte, vmf->ptl); 3576 folio_unlock(folio); 3577 3578 mmu_notifier_invalidate_range_end(&range); 3579 return 0; 3580 } 3581 3582 static inline bool should_try_to_free_swap(struct folio *folio, 3583 struct vm_area_struct *vma, 3584 unsigned int fault_flags) 3585 { 3586 if (!folio_test_swapcache(folio)) 3587 return false; 3588 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3589 folio_test_mlocked(folio)) 3590 return true; 3591 /* 3592 * If we want to map a page that's in the swapcache writable, we 3593 * have to detect via the refcount if we're really the exclusive 3594 * user. Try freeing the swapcache to get rid of the swapcache 3595 * reference only in case it's likely that we'll be the exlusive user. 3596 */ 3597 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3598 folio_ref_count(folio) == 2; 3599 } 3600 3601 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3602 { 3603 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3604 vmf->address, &vmf->ptl); 3605 /* 3606 * Be careful so that we will only recover a special uffd-wp pte into a 3607 * none pte. Otherwise it means the pte could have changed, so retry. 3608 * 3609 * This should also cover the case where e.g. the pte changed 3610 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3611 * So is_pte_marker() check is not enough to safely drop the pte. 3612 */ 3613 if (pte_same(vmf->orig_pte, *vmf->pte)) 3614 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3615 pte_unmap_unlock(vmf->pte, vmf->ptl); 3616 return 0; 3617 } 3618 3619 /* 3620 * This is actually a page-missing access, but with uffd-wp special pte 3621 * installed. It means this pte was wr-protected before being unmapped. 3622 */ 3623 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3624 { 3625 /* 3626 * Just in case there're leftover special ptes even after the region 3627 * got unregistered - we can simply clear them. We can also do that 3628 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp 3629 * ranges, but it should be more efficient to be done lazily here. 3630 */ 3631 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) 3632 return pte_marker_clear(vmf); 3633 3634 /* do_fault() can handle pte markers too like none pte */ 3635 return do_fault(vmf); 3636 } 3637 3638 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3639 { 3640 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3641 unsigned long marker = pte_marker_get(entry); 3642 3643 /* 3644 * PTE markers should never be empty. If anything weird happened, 3645 * the best thing to do is to kill the process along with its mm. 3646 */ 3647 if (WARN_ON_ONCE(!marker)) 3648 return VM_FAULT_SIGBUS; 3649 3650 /* Higher priority than uffd-wp when data corrupted */ 3651 if (marker & PTE_MARKER_SWAPIN_ERROR) 3652 return VM_FAULT_SIGBUS; 3653 3654 if (pte_marker_entry_uffd_wp(entry)) 3655 return pte_marker_handle_uffd_wp(vmf); 3656 3657 /* This is an unknown pte marker */ 3658 return VM_FAULT_SIGBUS; 3659 } 3660 3661 /* 3662 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3663 * but allow concurrent faults), and pte mapped but not yet locked. 3664 * We return with pte unmapped and unlocked. 3665 * 3666 * We return with the mmap_lock locked or unlocked in the same cases 3667 * as does filemap_fault(). 3668 */ 3669 vm_fault_t do_swap_page(struct vm_fault *vmf) 3670 { 3671 struct vm_area_struct *vma = vmf->vma; 3672 struct folio *swapcache, *folio = NULL; 3673 struct page *page; 3674 struct swap_info_struct *si = NULL; 3675 rmap_t rmap_flags = RMAP_NONE; 3676 bool exclusive = false; 3677 swp_entry_t entry; 3678 pte_t pte; 3679 int locked; 3680 vm_fault_t ret = 0; 3681 void *shadow = NULL; 3682 3683 if (!pte_unmap_same(vmf)) 3684 goto out; 3685 3686 entry = pte_to_swp_entry(vmf->orig_pte); 3687 if (unlikely(non_swap_entry(entry))) { 3688 if (is_migration_entry(entry)) { 3689 migration_entry_wait(vma->vm_mm, vmf->pmd, 3690 vmf->address); 3691 } else if (is_device_exclusive_entry(entry)) { 3692 vmf->page = pfn_swap_entry_to_page(entry); 3693 ret = remove_device_exclusive_entry(vmf); 3694 } else if (is_device_private_entry(entry)) { 3695 vmf->page = pfn_swap_entry_to_page(entry); 3696 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3697 vmf->address, &vmf->ptl); 3698 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3699 spin_unlock(vmf->ptl); 3700 goto out; 3701 } 3702 3703 /* 3704 * Get a page reference while we know the page can't be 3705 * freed. 3706 */ 3707 get_page(vmf->page); 3708 pte_unmap_unlock(vmf->pte, vmf->ptl); 3709 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3710 put_page(vmf->page); 3711 } else if (is_hwpoison_entry(entry)) { 3712 ret = VM_FAULT_HWPOISON; 3713 } else if (is_pte_marker_entry(entry)) { 3714 ret = handle_pte_marker(vmf); 3715 } else { 3716 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3717 ret = VM_FAULT_SIGBUS; 3718 } 3719 goto out; 3720 } 3721 3722 /* Prevent swapoff from happening to us. */ 3723 si = get_swap_device(entry); 3724 if (unlikely(!si)) 3725 goto out; 3726 3727 folio = swap_cache_get_folio(entry, vma, vmf->address); 3728 if (folio) 3729 page = folio_file_page(folio, swp_offset(entry)); 3730 swapcache = folio; 3731 3732 if (!folio) { 3733 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3734 __swap_count(entry) == 1) { 3735 /* skip swapcache */ 3736 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3737 vma, vmf->address, false); 3738 page = &folio->page; 3739 if (folio) { 3740 __folio_set_locked(folio); 3741 __folio_set_swapbacked(folio); 3742 3743 if (mem_cgroup_swapin_charge_folio(folio, 3744 vma->vm_mm, GFP_KERNEL, 3745 entry)) { 3746 ret = VM_FAULT_OOM; 3747 goto out_page; 3748 } 3749 mem_cgroup_swapin_uncharge_swap(entry); 3750 3751 shadow = get_shadow_from_swap_cache(entry); 3752 if (shadow) 3753 workingset_refault(folio, shadow); 3754 3755 folio_add_lru(folio); 3756 3757 /* To provide entry to swap_readpage() */ 3758 folio_set_swap_entry(folio, entry); 3759 swap_readpage(page, true, NULL); 3760 folio->private = NULL; 3761 } 3762 } else { 3763 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3764 vmf); 3765 if (page) 3766 folio = page_folio(page); 3767 swapcache = folio; 3768 } 3769 3770 if (!folio) { 3771 /* 3772 * Back out if somebody else faulted in this pte 3773 * while we released the pte lock. 3774 */ 3775 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3776 vmf->address, &vmf->ptl); 3777 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3778 ret = VM_FAULT_OOM; 3779 goto unlock; 3780 } 3781 3782 /* Had to read the page from swap area: Major fault */ 3783 ret = VM_FAULT_MAJOR; 3784 count_vm_event(PGMAJFAULT); 3785 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3786 } else if (PageHWPoison(page)) { 3787 /* 3788 * hwpoisoned dirty swapcache pages are kept for killing 3789 * owner processes (which may be unknown at hwpoison time) 3790 */ 3791 ret = VM_FAULT_HWPOISON; 3792 goto out_release; 3793 } 3794 3795 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3796 3797 if (!locked) { 3798 ret |= VM_FAULT_RETRY; 3799 goto out_release; 3800 } 3801 3802 if (swapcache) { 3803 /* 3804 * Make sure folio_free_swap() or swapoff did not release the 3805 * swapcache from under us. The page pin, and pte_same test 3806 * below, are not enough to exclude that. Even if it is still 3807 * swapcache, we need to check that the page's swap has not 3808 * changed. 3809 */ 3810 if (unlikely(!folio_test_swapcache(folio) || 3811 page_private(page) != entry.val)) 3812 goto out_page; 3813 3814 /* 3815 * KSM sometimes has to copy on read faults, for example, if 3816 * page->index of !PageKSM() pages would be nonlinear inside the 3817 * anon VMA -- PageKSM() is lost on actual swapout. 3818 */ 3819 page = ksm_might_need_to_copy(page, vma, vmf->address); 3820 if (unlikely(!page)) { 3821 ret = VM_FAULT_OOM; 3822 goto out_page; 3823 } 3824 folio = page_folio(page); 3825 3826 /* 3827 * If we want to map a page that's in the swapcache writable, we 3828 * have to detect via the refcount if we're really the exclusive 3829 * owner. Try removing the extra reference from the local LRU 3830 * pagevecs if required. 3831 */ 3832 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3833 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3834 lru_add_drain(); 3835 } 3836 3837 cgroup_throttle_swaprate(page, GFP_KERNEL); 3838 3839 /* 3840 * Back out if somebody else already faulted in this pte. 3841 */ 3842 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3843 &vmf->ptl); 3844 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3845 goto out_nomap; 3846 3847 if (unlikely(!folio_test_uptodate(folio))) { 3848 ret = VM_FAULT_SIGBUS; 3849 goto out_nomap; 3850 } 3851 3852 /* 3853 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3854 * must never point at an anonymous page in the swapcache that is 3855 * PG_anon_exclusive. Sanity check that this holds and especially, that 3856 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3857 * check after taking the PT lock and making sure that nobody 3858 * concurrently faulted in this page and set PG_anon_exclusive. 3859 */ 3860 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3861 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3862 3863 /* 3864 * Check under PT lock (to protect against concurrent fork() sharing 3865 * the swap entry concurrently) for certainly exclusive pages. 3866 */ 3867 if (!folio_test_ksm(folio)) { 3868 /* 3869 * Note that pte_swp_exclusive() == false for architectures 3870 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. 3871 */ 3872 exclusive = pte_swp_exclusive(vmf->orig_pte); 3873 if (folio != swapcache) { 3874 /* 3875 * We have a fresh page that is not exposed to the 3876 * swapcache -> certainly exclusive. 3877 */ 3878 exclusive = true; 3879 } else if (exclusive && folio_test_writeback(folio) && 3880 data_race(si->flags & SWP_STABLE_WRITES)) { 3881 /* 3882 * This is tricky: not all swap backends support 3883 * concurrent page modifications while under writeback. 3884 * 3885 * So if we stumble over such a page in the swapcache 3886 * we must not set the page exclusive, otherwise we can 3887 * map it writable without further checks and modify it 3888 * while still under writeback. 3889 * 3890 * For these problematic swap backends, simply drop the 3891 * exclusive marker: this is perfectly fine as we start 3892 * writeback only if we fully unmapped the page and 3893 * there are no unexpected references on the page after 3894 * unmapping succeeded. After fully unmapped, no 3895 * further GUP references (FOLL_GET and FOLL_PIN) can 3896 * appear, so dropping the exclusive marker and mapping 3897 * it only R/O is fine. 3898 */ 3899 exclusive = false; 3900 } 3901 } 3902 3903 /* 3904 * Remove the swap entry and conditionally try to free up the swapcache. 3905 * We're already holding a reference on the page but haven't mapped it 3906 * yet. 3907 */ 3908 swap_free(entry); 3909 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3910 folio_free_swap(folio); 3911 3912 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3913 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3914 pte = mk_pte(page, vma->vm_page_prot); 3915 3916 /* 3917 * Same logic as in do_wp_page(); however, optimize for pages that are 3918 * certainly not shared either because we just allocated them without 3919 * exposing them to the swapcache or because the swap entry indicates 3920 * exclusivity. 3921 */ 3922 if (!folio_test_ksm(folio) && 3923 (exclusive || folio_ref_count(folio) == 1)) { 3924 if (vmf->flags & FAULT_FLAG_WRITE) { 3925 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3926 vmf->flags &= ~FAULT_FLAG_WRITE; 3927 } 3928 rmap_flags |= RMAP_EXCLUSIVE; 3929 } 3930 flush_icache_page(vma, page); 3931 if (pte_swp_soft_dirty(vmf->orig_pte)) 3932 pte = pte_mksoft_dirty(pte); 3933 if (pte_swp_uffd_wp(vmf->orig_pte)) 3934 pte = pte_mkuffd_wp(pte); 3935 vmf->orig_pte = pte; 3936 3937 /* ksm created a completely new copy */ 3938 if (unlikely(folio != swapcache && swapcache)) { 3939 page_add_new_anon_rmap(page, vma, vmf->address); 3940 folio_add_lru_vma(folio, vma); 3941 } else { 3942 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3943 } 3944 3945 VM_BUG_ON(!folio_test_anon(folio) || 3946 (pte_write(pte) && !PageAnonExclusive(page))); 3947 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3948 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3949 3950 folio_unlock(folio); 3951 if (folio != swapcache && swapcache) { 3952 /* 3953 * Hold the lock to avoid the swap entry to be reused 3954 * until we take the PT lock for the pte_same() check 3955 * (to avoid false positives from pte_same). For 3956 * further safety release the lock after the swap_free 3957 * so that the swap count won't change under a 3958 * parallel locked swapcache. 3959 */ 3960 folio_unlock(swapcache); 3961 folio_put(swapcache); 3962 } 3963 3964 if (vmf->flags & FAULT_FLAG_WRITE) { 3965 ret |= do_wp_page(vmf); 3966 if (ret & VM_FAULT_ERROR) 3967 ret &= VM_FAULT_ERROR; 3968 goto out; 3969 } 3970 3971 /* No need to invalidate - it was non-present before */ 3972 update_mmu_cache(vma, vmf->address, vmf->pte); 3973 unlock: 3974 pte_unmap_unlock(vmf->pte, vmf->ptl); 3975 out: 3976 if (si) 3977 put_swap_device(si); 3978 return ret; 3979 out_nomap: 3980 pte_unmap_unlock(vmf->pte, vmf->ptl); 3981 out_page: 3982 folio_unlock(folio); 3983 out_release: 3984 folio_put(folio); 3985 if (folio != swapcache && swapcache) { 3986 folio_unlock(swapcache); 3987 folio_put(swapcache); 3988 } 3989 if (si) 3990 put_swap_device(si); 3991 return ret; 3992 } 3993 3994 /* 3995 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3996 * but allow concurrent faults), and pte mapped but not yet locked. 3997 * We return with mmap_lock still held, but pte unmapped and unlocked. 3998 */ 3999 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4000 { 4001 struct vm_area_struct *vma = vmf->vma; 4002 struct page *page; 4003 vm_fault_t ret = 0; 4004 pte_t entry; 4005 4006 /* File mapping without ->vm_ops ? */ 4007 if (vma->vm_flags & VM_SHARED) 4008 return VM_FAULT_SIGBUS; 4009 4010 /* 4011 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4012 * pte_offset_map() on pmds where a huge pmd might be created 4013 * from a different thread. 4014 * 4015 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4016 * parallel threads are excluded by other means. 4017 * 4018 * Here we only have mmap_read_lock(mm). 4019 */ 4020 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4021 return VM_FAULT_OOM; 4022 4023 /* See comment in handle_pte_fault() */ 4024 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4025 return 0; 4026 4027 /* Use the zero-page for reads */ 4028 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4029 !mm_forbids_zeropage(vma->vm_mm)) { 4030 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4031 vma->vm_page_prot)); 4032 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4033 vmf->address, &vmf->ptl); 4034 if (!pte_none(*vmf->pte)) { 4035 update_mmu_tlb(vma, vmf->address, vmf->pte); 4036 goto unlock; 4037 } 4038 ret = check_stable_address_space(vma->vm_mm); 4039 if (ret) 4040 goto unlock; 4041 /* Deliver the page fault to userland, check inside PT lock */ 4042 if (userfaultfd_missing(vma)) { 4043 pte_unmap_unlock(vmf->pte, vmf->ptl); 4044 return handle_userfault(vmf, VM_UFFD_MISSING); 4045 } 4046 goto setpte; 4047 } 4048 4049 /* Allocate our own private page. */ 4050 if (unlikely(anon_vma_prepare(vma))) 4051 goto oom; 4052 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 4053 if (!page) 4054 goto oom; 4055 4056 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 4057 goto oom_free_page; 4058 cgroup_throttle_swaprate(page, GFP_KERNEL); 4059 4060 /* 4061 * The memory barrier inside __SetPageUptodate makes sure that 4062 * preceding stores to the page contents become visible before 4063 * the set_pte_at() write. 4064 */ 4065 __SetPageUptodate(page); 4066 4067 entry = mk_pte(page, vma->vm_page_prot); 4068 entry = pte_sw_mkyoung(entry); 4069 if (vma->vm_flags & VM_WRITE) 4070 entry = pte_mkwrite(pte_mkdirty(entry)); 4071 4072 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4073 &vmf->ptl); 4074 if (!pte_none(*vmf->pte)) { 4075 update_mmu_tlb(vma, vmf->address, vmf->pte); 4076 goto release; 4077 } 4078 4079 ret = check_stable_address_space(vma->vm_mm); 4080 if (ret) 4081 goto release; 4082 4083 /* Deliver the page fault to userland, check inside PT lock */ 4084 if (userfaultfd_missing(vma)) { 4085 pte_unmap_unlock(vmf->pte, vmf->ptl); 4086 put_page(page); 4087 return handle_userfault(vmf, VM_UFFD_MISSING); 4088 } 4089 4090 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4091 page_add_new_anon_rmap(page, vma, vmf->address); 4092 lru_cache_add_inactive_or_unevictable(page, vma); 4093 setpte: 4094 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4095 4096 /* No need to invalidate - it was non-present before */ 4097 update_mmu_cache(vma, vmf->address, vmf->pte); 4098 unlock: 4099 pte_unmap_unlock(vmf->pte, vmf->ptl); 4100 return ret; 4101 release: 4102 put_page(page); 4103 goto unlock; 4104 oom_free_page: 4105 put_page(page); 4106 oom: 4107 return VM_FAULT_OOM; 4108 } 4109 4110 /* 4111 * The mmap_lock must have been held on entry, and may have been 4112 * released depending on flags and vma->vm_ops->fault() return value. 4113 * See filemap_fault() and __lock_page_retry(). 4114 */ 4115 static vm_fault_t __do_fault(struct vm_fault *vmf) 4116 { 4117 struct vm_area_struct *vma = vmf->vma; 4118 vm_fault_t ret; 4119 4120 /* 4121 * Preallocate pte before we take page_lock because this might lead to 4122 * deadlocks for memcg reclaim which waits for pages under writeback: 4123 * lock_page(A) 4124 * SetPageWriteback(A) 4125 * unlock_page(A) 4126 * lock_page(B) 4127 * lock_page(B) 4128 * pte_alloc_one 4129 * shrink_page_list 4130 * wait_on_page_writeback(A) 4131 * SetPageWriteback(B) 4132 * unlock_page(B) 4133 * # flush A, B to clear the writeback 4134 */ 4135 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4136 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4137 if (!vmf->prealloc_pte) 4138 return VM_FAULT_OOM; 4139 } 4140 4141 ret = vma->vm_ops->fault(vmf); 4142 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4143 VM_FAULT_DONE_COW))) 4144 return ret; 4145 4146 if (unlikely(PageHWPoison(vmf->page))) { 4147 struct page *page = vmf->page; 4148 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4149 if (ret & VM_FAULT_LOCKED) { 4150 if (page_mapped(page)) 4151 unmap_mapping_pages(page_mapping(page), 4152 page->index, 1, false); 4153 /* Retry if a clean page was removed from the cache. */ 4154 if (invalidate_inode_page(page)) 4155 poisonret = VM_FAULT_NOPAGE; 4156 unlock_page(page); 4157 } 4158 put_page(page); 4159 vmf->page = NULL; 4160 return poisonret; 4161 } 4162 4163 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4164 lock_page(vmf->page); 4165 else 4166 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4167 4168 return ret; 4169 } 4170 4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4172 static void deposit_prealloc_pte(struct vm_fault *vmf) 4173 { 4174 struct vm_area_struct *vma = vmf->vma; 4175 4176 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4177 /* 4178 * We are going to consume the prealloc table, 4179 * count that as nr_ptes. 4180 */ 4181 mm_inc_nr_ptes(vma->vm_mm); 4182 vmf->prealloc_pte = NULL; 4183 } 4184 4185 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4186 { 4187 struct vm_area_struct *vma = vmf->vma; 4188 bool write = vmf->flags & FAULT_FLAG_WRITE; 4189 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4190 pmd_t entry; 4191 int i; 4192 vm_fault_t ret = VM_FAULT_FALLBACK; 4193 4194 if (!transhuge_vma_suitable(vma, haddr)) 4195 return ret; 4196 4197 page = compound_head(page); 4198 if (compound_order(page) != HPAGE_PMD_ORDER) 4199 return ret; 4200 4201 /* 4202 * Just backoff if any subpage of a THP is corrupted otherwise 4203 * the corrupted page may mapped by PMD silently to escape the 4204 * check. This kind of THP just can be PTE mapped. Access to 4205 * the corrupted subpage should trigger SIGBUS as expected. 4206 */ 4207 if (unlikely(PageHasHWPoisoned(page))) 4208 return ret; 4209 4210 /* 4211 * Archs like ppc64 need additional space to store information 4212 * related to pte entry. Use the preallocated table for that. 4213 */ 4214 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4215 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4216 if (!vmf->prealloc_pte) 4217 return VM_FAULT_OOM; 4218 } 4219 4220 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4221 if (unlikely(!pmd_none(*vmf->pmd))) 4222 goto out; 4223 4224 for (i = 0; i < HPAGE_PMD_NR; i++) 4225 flush_icache_page(vma, page + i); 4226 4227 entry = mk_huge_pmd(page, vma->vm_page_prot); 4228 if (write) 4229 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4230 4231 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4232 page_add_file_rmap(page, vma, true); 4233 4234 /* 4235 * deposit and withdraw with pmd lock held 4236 */ 4237 if (arch_needs_pgtable_deposit()) 4238 deposit_prealloc_pte(vmf); 4239 4240 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4241 4242 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4243 4244 /* fault is handled */ 4245 ret = 0; 4246 count_vm_event(THP_FILE_MAPPED); 4247 out: 4248 spin_unlock(vmf->ptl); 4249 return ret; 4250 } 4251 #else 4252 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4253 { 4254 return VM_FAULT_FALLBACK; 4255 } 4256 #endif 4257 4258 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4259 { 4260 struct vm_area_struct *vma = vmf->vma; 4261 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); 4262 bool write = vmf->flags & FAULT_FLAG_WRITE; 4263 bool prefault = vmf->address != addr; 4264 pte_t entry; 4265 4266 flush_icache_page(vma, page); 4267 entry = mk_pte(page, vma->vm_page_prot); 4268 4269 if (prefault && arch_wants_old_prefaulted_pte()) 4270 entry = pte_mkold(entry); 4271 else 4272 entry = pte_sw_mkyoung(entry); 4273 4274 if (write) 4275 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4276 if (unlikely(uffd_wp)) 4277 entry = pte_mkuffd_wp(entry); 4278 /* copy-on-write page */ 4279 if (write && !(vma->vm_flags & VM_SHARED)) { 4280 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4281 page_add_new_anon_rmap(page, vma, addr); 4282 lru_cache_add_inactive_or_unevictable(page, vma); 4283 } else { 4284 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4285 page_add_file_rmap(page, vma, false); 4286 } 4287 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4288 } 4289 4290 static bool vmf_pte_changed(struct vm_fault *vmf) 4291 { 4292 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4293 return !pte_same(*vmf->pte, vmf->orig_pte); 4294 4295 return !pte_none(*vmf->pte); 4296 } 4297 4298 /** 4299 * finish_fault - finish page fault once we have prepared the page to fault 4300 * 4301 * @vmf: structure describing the fault 4302 * 4303 * This function handles all that is needed to finish a page fault once the 4304 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4305 * given page, adds reverse page mapping, handles memcg charges and LRU 4306 * addition. 4307 * 4308 * The function expects the page to be locked and on success it consumes a 4309 * reference of a page being mapped (for the PTE which maps it). 4310 * 4311 * Return: %0 on success, %VM_FAULT_ code in case of error. 4312 */ 4313 vm_fault_t finish_fault(struct vm_fault *vmf) 4314 { 4315 struct vm_area_struct *vma = vmf->vma; 4316 struct page *page; 4317 vm_fault_t ret; 4318 4319 /* Did we COW the page? */ 4320 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4321 page = vmf->cow_page; 4322 else 4323 page = vmf->page; 4324 4325 /* 4326 * check even for read faults because we might have lost our CoWed 4327 * page 4328 */ 4329 if (!(vma->vm_flags & VM_SHARED)) { 4330 ret = check_stable_address_space(vma->vm_mm); 4331 if (ret) 4332 return ret; 4333 } 4334 4335 if (pmd_none(*vmf->pmd)) { 4336 if (PageTransCompound(page)) { 4337 ret = do_set_pmd(vmf, page); 4338 if (ret != VM_FAULT_FALLBACK) 4339 return ret; 4340 } 4341 4342 if (vmf->prealloc_pte) 4343 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4344 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4345 return VM_FAULT_OOM; 4346 } 4347 4348 /* 4349 * See comment in handle_pte_fault() for how this scenario happens, we 4350 * need to return NOPAGE so that we drop this page. 4351 */ 4352 if (pmd_devmap_trans_unstable(vmf->pmd)) 4353 return VM_FAULT_NOPAGE; 4354 4355 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4356 vmf->address, &vmf->ptl); 4357 4358 /* Re-check under ptl */ 4359 if (likely(!vmf_pte_changed(vmf))) { 4360 do_set_pte(vmf, page, vmf->address); 4361 4362 /* no need to invalidate: a not-present page won't be cached */ 4363 update_mmu_cache(vma, vmf->address, vmf->pte); 4364 4365 ret = 0; 4366 } else { 4367 update_mmu_tlb(vma, vmf->address, vmf->pte); 4368 ret = VM_FAULT_NOPAGE; 4369 } 4370 4371 pte_unmap_unlock(vmf->pte, vmf->ptl); 4372 return ret; 4373 } 4374 4375 static unsigned long fault_around_bytes __read_mostly = 4376 rounddown_pow_of_two(65536); 4377 4378 #ifdef CONFIG_DEBUG_FS 4379 static int fault_around_bytes_get(void *data, u64 *val) 4380 { 4381 *val = fault_around_bytes; 4382 return 0; 4383 } 4384 4385 /* 4386 * fault_around_bytes must be rounded down to the nearest page order as it's 4387 * what do_fault_around() expects to see. 4388 */ 4389 static int fault_around_bytes_set(void *data, u64 val) 4390 { 4391 if (val / PAGE_SIZE > PTRS_PER_PTE) 4392 return -EINVAL; 4393 if (val > PAGE_SIZE) 4394 fault_around_bytes = rounddown_pow_of_two(val); 4395 else 4396 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4397 return 0; 4398 } 4399 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4400 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4401 4402 static int __init fault_around_debugfs(void) 4403 { 4404 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4405 &fault_around_bytes_fops); 4406 return 0; 4407 } 4408 late_initcall(fault_around_debugfs); 4409 #endif 4410 4411 /* 4412 * do_fault_around() tries to map few pages around the fault address. The hope 4413 * is that the pages will be needed soon and this will lower the number of 4414 * faults to handle. 4415 * 4416 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4417 * not ready to be mapped: not up-to-date, locked, etc. 4418 * 4419 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4420 * only once. 4421 * 4422 * fault_around_bytes defines how many bytes we'll try to map. 4423 * do_fault_around() expects it to be set to a power of two less than or equal 4424 * to PTRS_PER_PTE. 4425 * 4426 * The virtual address of the area that we map is naturally aligned to 4427 * fault_around_bytes rounded down to the machine page size 4428 * (and therefore to page order). This way it's easier to guarantee 4429 * that we don't cross page table boundaries. 4430 */ 4431 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4432 { 4433 unsigned long address = vmf->address, nr_pages, mask; 4434 pgoff_t start_pgoff = vmf->pgoff; 4435 pgoff_t end_pgoff; 4436 int off; 4437 4438 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4439 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4440 4441 address = max(address & mask, vmf->vma->vm_start); 4442 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4443 start_pgoff -= off; 4444 4445 /* 4446 * end_pgoff is either the end of the page table, the end of 4447 * the vma or nr_pages from start_pgoff, depending what is nearest. 4448 */ 4449 end_pgoff = start_pgoff - 4450 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4451 PTRS_PER_PTE - 1; 4452 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4453 start_pgoff + nr_pages - 1); 4454 4455 if (pmd_none(*vmf->pmd)) { 4456 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4457 if (!vmf->prealloc_pte) 4458 return VM_FAULT_OOM; 4459 } 4460 4461 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4462 } 4463 4464 /* Return true if we should do read fault-around, false otherwise */ 4465 static inline bool should_fault_around(struct vm_fault *vmf) 4466 { 4467 /* No ->map_pages? No way to fault around... */ 4468 if (!vmf->vma->vm_ops->map_pages) 4469 return false; 4470 4471 if (uffd_disable_fault_around(vmf->vma)) 4472 return false; 4473 4474 return fault_around_bytes >> PAGE_SHIFT > 1; 4475 } 4476 4477 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4478 { 4479 vm_fault_t ret = 0; 4480 4481 /* 4482 * Let's call ->map_pages() first and use ->fault() as fallback 4483 * if page by the offset is not ready to be mapped (cold cache or 4484 * something). 4485 */ 4486 if (should_fault_around(vmf)) { 4487 ret = do_fault_around(vmf); 4488 if (ret) 4489 return ret; 4490 } 4491 4492 ret = __do_fault(vmf); 4493 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4494 return ret; 4495 4496 ret |= finish_fault(vmf); 4497 unlock_page(vmf->page); 4498 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4499 put_page(vmf->page); 4500 return ret; 4501 } 4502 4503 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4504 { 4505 struct vm_area_struct *vma = vmf->vma; 4506 vm_fault_t ret; 4507 4508 if (unlikely(anon_vma_prepare(vma))) 4509 return VM_FAULT_OOM; 4510 4511 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4512 if (!vmf->cow_page) 4513 return VM_FAULT_OOM; 4514 4515 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4516 GFP_KERNEL)) { 4517 put_page(vmf->cow_page); 4518 return VM_FAULT_OOM; 4519 } 4520 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4521 4522 ret = __do_fault(vmf); 4523 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4524 goto uncharge_out; 4525 if (ret & VM_FAULT_DONE_COW) 4526 return ret; 4527 4528 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4529 __SetPageUptodate(vmf->cow_page); 4530 4531 ret |= finish_fault(vmf); 4532 unlock_page(vmf->page); 4533 put_page(vmf->page); 4534 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4535 goto uncharge_out; 4536 return ret; 4537 uncharge_out: 4538 put_page(vmf->cow_page); 4539 return ret; 4540 } 4541 4542 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4543 { 4544 struct vm_area_struct *vma = vmf->vma; 4545 vm_fault_t ret, tmp; 4546 4547 ret = __do_fault(vmf); 4548 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4549 return ret; 4550 4551 /* 4552 * Check if the backing address space wants to know that the page is 4553 * about to become writable 4554 */ 4555 if (vma->vm_ops->page_mkwrite) { 4556 unlock_page(vmf->page); 4557 tmp = do_page_mkwrite(vmf); 4558 if (unlikely(!tmp || 4559 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4560 put_page(vmf->page); 4561 return tmp; 4562 } 4563 } 4564 4565 ret |= finish_fault(vmf); 4566 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4567 VM_FAULT_RETRY))) { 4568 unlock_page(vmf->page); 4569 put_page(vmf->page); 4570 return ret; 4571 } 4572 4573 ret |= fault_dirty_shared_page(vmf); 4574 return ret; 4575 } 4576 4577 /* 4578 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4579 * but allow concurrent faults). 4580 * The mmap_lock may have been released depending on flags and our 4581 * return value. See filemap_fault() and __folio_lock_or_retry(). 4582 * If mmap_lock is released, vma may become invalid (for example 4583 * by other thread calling munmap()). 4584 */ 4585 static vm_fault_t do_fault(struct vm_fault *vmf) 4586 { 4587 struct vm_area_struct *vma = vmf->vma; 4588 struct mm_struct *vm_mm = vma->vm_mm; 4589 vm_fault_t ret; 4590 4591 /* 4592 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4593 */ 4594 if (!vma->vm_ops->fault) { 4595 /* 4596 * If we find a migration pmd entry or a none pmd entry, which 4597 * should never happen, return SIGBUS 4598 */ 4599 if (unlikely(!pmd_present(*vmf->pmd))) 4600 ret = VM_FAULT_SIGBUS; 4601 else { 4602 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4603 vmf->pmd, 4604 vmf->address, 4605 &vmf->ptl); 4606 /* 4607 * Make sure this is not a temporary clearing of pte 4608 * by holding ptl and checking again. A R/M/W update 4609 * of pte involves: take ptl, clearing the pte so that 4610 * we don't have concurrent modification by hardware 4611 * followed by an update. 4612 */ 4613 if (unlikely(pte_none(*vmf->pte))) 4614 ret = VM_FAULT_SIGBUS; 4615 else 4616 ret = VM_FAULT_NOPAGE; 4617 4618 pte_unmap_unlock(vmf->pte, vmf->ptl); 4619 } 4620 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4621 ret = do_read_fault(vmf); 4622 else if (!(vma->vm_flags & VM_SHARED)) 4623 ret = do_cow_fault(vmf); 4624 else 4625 ret = do_shared_fault(vmf); 4626 4627 /* preallocated pagetable is unused: free it */ 4628 if (vmf->prealloc_pte) { 4629 pte_free(vm_mm, vmf->prealloc_pte); 4630 vmf->prealloc_pte = NULL; 4631 } 4632 return ret; 4633 } 4634 4635 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4636 unsigned long addr, int page_nid, int *flags) 4637 { 4638 get_page(page); 4639 4640 count_vm_numa_event(NUMA_HINT_FAULTS); 4641 if (page_nid == numa_node_id()) { 4642 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4643 *flags |= TNF_FAULT_LOCAL; 4644 } 4645 4646 return mpol_misplaced(page, vma, addr); 4647 } 4648 4649 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4650 { 4651 struct vm_area_struct *vma = vmf->vma; 4652 struct page *page = NULL; 4653 int page_nid = NUMA_NO_NODE; 4654 bool writable = false; 4655 int last_cpupid; 4656 int target_nid; 4657 pte_t pte, old_pte; 4658 int flags = 0; 4659 4660 /* 4661 * The "pte" at this point cannot be used safely without 4662 * validation through pte_unmap_same(). It's of NUMA type but 4663 * the pfn may be screwed if the read is non atomic. 4664 */ 4665 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4666 spin_lock(vmf->ptl); 4667 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4668 pte_unmap_unlock(vmf->pte, vmf->ptl); 4669 goto out; 4670 } 4671 4672 /* Get the normal PTE */ 4673 old_pte = ptep_get(vmf->pte); 4674 pte = pte_modify(old_pte, vma->vm_page_prot); 4675 4676 /* 4677 * Detect now whether the PTE could be writable; this information 4678 * is only valid while holding the PT lock. 4679 */ 4680 writable = pte_write(pte); 4681 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4682 can_change_pte_writable(vma, vmf->address, pte)) 4683 writable = true; 4684 4685 page = vm_normal_page(vma, vmf->address, pte); 4686 if (!page || is_zone_device_page(page)) 4687 goto out_map; 4688 4689 /* TODO: handle PTE-mapped THP */ 4690 if (PageCompound(page)) 4691 goto out_map; 4692 4693 /* 4694 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4695 * much anyway since they can be in shared cache state. This misses 4696 * the case where a mapping is writable but the process never writes 4697 * to it but pte_write gets cleared during protection updates and 4698 * pte_dirty has unpredictable behaviour between PTE scan updates, 4699 * background writeback, dirty balancing and application behaviour. 4700 */ 4701 if (!writable) 4702 flags |= TNF_NO_GROUP; 4703 4704 /* 4705 * Flag if the page is shared between multiple address spaces. This 4706 * is later used when determining whether to group tasks together 4707 */ 4708 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4709 flags |= TNF_SHARED; 4710 4711 page_nid = page_to_nid(page); 4712 /* 4713 * For memory tiering mode, cpupid of slow memory page is used 4714 * to record page access time. So use default value. 4715 */ 4716 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4717 !node_is_toptier(page_nid)) 4718 last_cpupid = (-1 & LAST_CPUPID_MASK); 4719 else 4720 last_cpupid = page_cpupid_last(page); 4721 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4722 &flags); 4723 if (target_nid == NUMA_NO_NODE) { 4724 put_page(page); 4725 goto out_map; 4726 } 4727 pte_unmap_unlock(vmf->pte, vmf->ptl); 4728 writable = false; 4729 4730 /* Migrate to the requested node */ 4731 if (migrate_misplaced_page(page, vma, target_nid)) { 4732 page_nid = target_nid; 4733 flags |= TNF_MIGRATED; 4734 } else { 4735 flags |= TNF_MIGRATE_FAIL; 4736 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4737 spin_lock(vmf->ptl); 4738 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4739 pte_unmap_unlock(vmf->pte, vmf->ptl); 4740 goto out; 4741 } 4742 goto out_map; 4743 } 4744 4745 out: 4746 if (page_nid != NUMA_NO_NODE) 4747 task_numa_fault(last_cpupid, page_nid, 1, flags); 4748 return 0; 4749 out_map: 4750 /* 4751 * Make it present again, depending on how arch implements 4752 * non-accessible ptes, some can allow access by kernel mode. 4753 */ 4754 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4755 pte = pte_modify(old_pte, vma->vm_page_prot); 4756 pte = pte_mkyoung(pte); 4757 if (writable) 4758 pte = pte_mkwrite(pte); 4759 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4760 update_mmu_cache(vma, vmf->address, vmf->pte); 4761 pte_unmap_unlock(vmf->pte, vmf->ptl); 4762 goto out; 4763 } 4764 4765 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4766 { 4767 if (vma_is_anonymous(vmf->vma)) 4768 return do_huge_pmd_anonymous_page(vmf); 4769 if (vmf->vma->vm_ops->huge_fault) 4770 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4771 return VM_FAULT_FALLBACK; 4772 } 4773 4774 /* `inline' is required to avoid gcc 4.1.2 build error */ 4775 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4776 { 4777 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4778 vm_fault_t ret; 4779 4780 if (vma_is_anonymous(vmf->vma)) { 4781 if (likely(!unshare) && 4782 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4783 return handle_userfault(vmf, VM_UFFD_WP); 4784 return do_huge_pmd_wp_page(vmf); 4785 } 4786 4787 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4788 if (vmf->vma->vm_ops->huge_fault) { 4789 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4790 if (!(ret & VM_FAULT_FALLBACK)) 4791 return ret; 4792 } 4793 } 4794 4795 /* COW or write-notify handled on pte level: split pmd. */ 4796 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4797 4798 return VM_FAULT_FALLBACK; 4799 } 4800 4801 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4802 { 4803 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4804 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4805 /* No support for anonymous transparent PUD pages yet */ 4806 if (vma_is_anonymous(vmf->vma)) 4807 return VM_FAULT_FALLBACK; 4808 if (vmf->vma->vm_ops->huge_fault) 4809 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4811 return VM_FAULT_FALLBACK; 4812 } 4813 4814 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4815 { 4816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4817 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4818 vm_fault_t ret; 4819 4820 /* No support for anonymous transparent PUD pages yet */ 4821 if (vma_is_anonymous(vmf->vma)) 4822 goto split; 4823 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4824 if (vmf->vma->vm_ops->huge_fault) { 4825 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4826 if (!(ret & VM_FAULT_FALLBACK)) 4827 return ret; 4828 } 4829 } 4830 split: 4831 /* COW or write-notify not handled on PUD level: split pud.*/ 4832 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4834 return VM_FAULT_FALLBACK; 4835 } 4836 4837 /* 4838 * These routines also need to handle stuff like marking pages dirty 4839 * and/or accessed for architectures that don't do it in hardware (most 4840 * RISC architectures). The early dirtying is also good on the i386. 4841 * 4842 * There is also a hook called "update_mmu_cache()" that architectures 4843 * with external mmu caches can use to update those (ie the Sparc or 4844 * PowerPC hashed page tables that act as extended TLBs). 4845 * 4846 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4847 * concurrent faults). 4848 * 4849 * The mmap_lock may have been released depending on flags and our return value. 4850 * See filemap_fault() and __folio_lock_or_retry(). 4851 */ 4852 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4853 { 4854 pte_t entry; 4855 4856 if (unlikely(pmd_none(*vmf->pmd))) { 4857 /* 4858 * Leave __pte_alloc() until later: because vm_ops->fault may 4859 * want to allocate huge page, and if we expose page table 4860 * for an instant, it will be difficult to retract from 4861 * concurrent faults and from rmap lookups. 4862 */ 4863 vmf->pte = NULL; 4864 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4865 } else { 4866 /* 4867 * If a huge pmd materialized under us just retry later. Use 4868 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4869 * of pmd_trans_huge() to ensure the pmd didn't become 4870 * pmd_trans_huge under us and then back to pmd_none, as a 4871 * result of MADV_DONTNEED running immediately after a huge pmd 4872 * fault in a different thread of this mm, in turn leading to a 4873 * misleading pmd_trans_huge() retval. All we have to ensure is 4874 * that it is a regular pmd that we can walk with 4875 * pte_offset_map() and we can do that through an atomic read 4876 * in C, which is what pmd_trans_unstable() provides. 4877 */ 4878 if (pmd_devmap_trans_unstable(vmf->pmd)) 4879 return 0; 4880 /* 4881 * A regular pmd is established and it can't morph into a huge 4882 * pmd from under us anymore at this point because we hold the 4883 * mmap_lock read mode and khugepaged takes it in write mode. 4884 * So now it's safe to run pte_offset_map(). 4885 */ 4886 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4887 vmf->orig_pte = *vmf->pte; 4888 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4889 4890 /* 4891 * some architectures can have larger ptes than wordsize, 4892 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4893 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4894 * accesses. The code below just needs a consistent view 4895 * for the ifs and we later double check anyway with the 4896 * ptl lock held. So here a barrier will do. 4897 */ 4898 barrier(); 4899 if (pte_none(vmf->orig_pte)) { 4900 pte_unmap(vmf->pte); 4901 vmf->pte = NULL; 4902 } 4903 } 4904 4905 if (!vmf->pte) { 4906 if (vma_is_anonymous(vmf->vma)) 4907 return do_anonymous_page(vmf); 4908 else 4909 return do_fault(vmf); 4910 } 4911 4912 if (!pte_present(vmf->orig_pte)) 4913 return do_swap_page(vmf); 4914 4915 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4916 return do_numa_page(vmf); 4917 4918 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4919 spin_lock(vmf->ptl); 4920 entry = vmf->orig_pte; 4921 if (unlikely(!pte_same(*vmf->pte, entry))) { 4922 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4923 goto unlock; 4924 } 4925 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4926 if (!pte_write(entry)) 4927 return do_wp_page(vmf); 4928 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4929 entry = pte_mkdirty(entry); 4930 } 4931 entry = pte_mkyoung(entry); 4932 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4933 vmf->flags & FAULT_FLAG_WRITE)) { 4934 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4935 } else { 4936 /* Skip spurious TLB flush for retried page fault */ 4937 if (vmf->flags & FAULT_FLAG_TRIED) 4938 goto unlock; 4939 /* 4940 * This is needed only for protection faults but the arch code 4941 * is not yet telling us if this is a protection fault or not. 4942 * This still avoids useless tlb flushes for .text page faults 4943 * with threads. 4944 */ 4945 if (vmf->flags & FAULT_FLAG_WRITE) 4946 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4947 } 4948 unlock: 4949 pte_unmap_unlock(vmf->pte, vmf->ptl); 4950 return 0; 4951 } 4952 4953 /* 4954 * By the time we get here, we already hold the mm semaphore 4955 * 4956 * The mmap_lock may have been released depending on flags and our 4957 * return value. See filemap_fault() and __folio_lock_or_retry(). 4958 */ 4959 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4960 unsigned long address, unsigned int flags) 4961 { 4962 struct vm_fault vmf = { 4963 .vma = vma, 4964 .address = address & PAGE_MASK, 4965 .real_address = address, 4966 .flags = flags, 4967 .pgoff = linear_page_index(vma, address), 4968 .gfp_mask = __get_fault_gfp_mask(vma), 4969 }; 4970 struct mm_struct *mm = vma->vm_mm; 4971 unsigned long vm_flags = vma->vm_flags; 4972 pgd_t *pgd; 4973 p4d_t *p4d; 4974 vm_fault_t ret; 4975 4976 pgd = pgd_offset(mm, address); 4977 p4d = p4d_alloc(mm, pgd, address); 4978 if (!p4d) 4979 return VM_FAULT_OOM; 4980 4981 vmf.pud = pud_alloc(mm, p4d, address); 4982 if (!vmf.pud) 4983 return VM_FAULT_OOM; 4984 retry_pud: 4985 if (pud_none(*vmf.pud) && 4986 hugepage_vma_check(vma, vm_flags, false, true, true)) { 4987 ret = create_huge_pud(&vmf); 4988 if (!(ret & VM_FAULT_FALLBACK)) 4989 return ret; 4990 } else { 4991 pud_t orig_pud = *vmf.pud; 4992 4993 barrier(); 4994 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4995 4996 /* 4997 * TODO once we support anonymous PUDs: NUMA case and 4998 * FAULT_FLAG_UNSHARE handling. 4999 */ 5000 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5001 ret = wp_huge_pud(&vmf, orig_pud); 5002 if (!(ret & VM_FAULT_FALLBACK)) 5003 return ret; 5004 } else { 5005 huge_pud_set_accessed(&vmf, orig_pud); 5006 return 0; 5007 } 5008 } 5009 } 5010 5011 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5012 if (!vmf.pmd) 5013 return VM_FAULT_OOM; 5014 5015 /* Huge pud page fault raced with pmd_alloc? */ 5016 if (pud_trans_unstable(vmf.pud)) 5017 goto retry_pud; 5018 5019 if (pmd_none(*vmf.pmd) && 5020 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5021 ret = create_huge_pmd(&vmf); 5022 if (!(ret & VM_FAULT_FALLBACK)) 5023 return ret; 5024 } else { 5025 vmf.orig_pmd = *vmf.pmd; 5026 5027 barrier(); 5028 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5029 VM_BUG_ON(thp_migration_supported() && 5030 !is_pmd_migration_entry(vmf.orig_pmd)); 5031 if (is_pmd_migration_entry(vmf.orig_pmd)) 5032 pmd_migration_entry_wait(mm, vmf.pmd); 5033 return 0; 5034 } 5035 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5036 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5037 return do_huge_pmd_numa_page(&vmf); 5038 5039 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5040 !pmd_write(vmf.orig_pmd)) { 5041 ret = wp_huge_pmd(&vmf); 5042 if (!(ret & VM_FAULT_FALLBACK)) 5043 return ret; 5044 } else { 5045 huge_pmd_set_accessed(&vmf); 5046 return 0; 5047 } 5048 } 5049 } 5050 5051 return handle_pte_fault(&vmf); 5052 } 5053 5054 /** 5055 * mm_account_fault - Do page fault accounting 5056 * 5057 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5058 * of perf event counters, but we'll still do the per-task accounting to 5059 * the task who triggered this page fault. 5060 * @address: the faulted address. 5061 * @flags: the fault flags. 5062 * @ret: the fault retcode. 5063 * 5064 * This will take care of most of the page fault accounting. Meanwhile, it 5065 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5066 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5067 * still be in per-arch page fault handlers at the entry of page fault. 5068 */ 5069 static inline void mm_account_fault(struct pt_regs *regs, 5070 unsigned long address, unsigned int flags, 5071 vm_fault_t ret) 5072 { 5073 bool major; 5074 5075 /* 5076 * We don't do accounting for some specific faults: 5077 * 5078 * - Unsuccessful faults (e.g. when the address wasn't valid). That 5079 * includes arch_vma_access_permitted() failing before reaching here. 5080 * So this is not a "this many hardware page faults" counter. We 5081 * should use the hw profiling for that. 5082 * 5083 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 5084 * once they're completed. 5085 */ 5086 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 5087 return; 5088 5089 /* 5090 * We define the fault as a major fault when the final successful fault 5091 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5092 * handle it immediately previously). 5093 */ 5094 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5095 5096 if (major) 5097 current->maj_flt++; 5098 else 5099 current->min_flt++; 5100 5101 /* 5102 * If the fault is done for GUP, regs will be NULL. We only do the 5103 * accounting for the per thread fault counters who triggered the 5104 * fault, and we skip the perf event updates. 5105 */ 5106 if (!regs) 5107 return; 5108 5109 if (major) 5110 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5111 else 5112 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5113 } 5114 5115 #ifdef CONFIG_LRU_GEN 5116 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5117 { 5118 /* the LRU algorithm doesn't apply to sequential or random reads */ 5119 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ)); 5120 } 5121 5122 static void lru_gen_exit_fault(void) 5123 { 5124 current->in_lru_fault = false; 5125 } 5126 #else 5127 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5128 { 5129 } 5130 5131 static void lru_gen_exit_fault(void) 5132 { 5133 } 5134 #endif /* CONFIG_LRU_GEN */ 5135 5136 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5137 unsigned int *flags) 5138 { 5139 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5140 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5141 return VM_FAULT_SIGSEGV; 5142 /* 5143 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5144 * just treat it like an ordinary read-fault otherwise. 5145 */ 5146 if (!is_cow_mapping(vma->vm_flags)) 5147 *flags &= ~FAULT_FLAG_UNSHARE; 5148 } else if (*flags & FAULT_FLAG_WRITE) { 5149 /* Write faults on read-only mappings are impossible ... */ 5150 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5151 return VM_FAULT_SIGSEGV; 5152 /* ... and FOLL_FORCE only applies to COW mappings. */ 5153 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5154 !is_cow_mapping(vma->vm_flags))) 5155 return VM_FAULT_SIGSEGV; 5156 } 5157 return 0; 5158 } 5159 5160 /* 5161 * By the time we get here, we already hold the mm semaphore 5162 * 5163 * The mmap_lock may have been released depending on flags and our 5164 * return value. See filemap_fault() and __folio_lock_or_retry(). 5165 */ 5166 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5167 unsigned int flags, struct pt_regs *regs) 5168 { 5169 vm_fault_t ret; 5170 5171 __set_current_state(TASK_RUNNING); 5172 5173 count_vm_event(PGFAULT); 5174 count_memcg_event_mm(vma->vm_mm, PGFAULT); 5175 5176 ret = sanitize_fault_flags(vma, &flags); 5177 if (ret) 5178 return ret; 5179 5180 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5181 flags & FAULT_FLAG_INSTRUCTION, 5182 flags & FAULT_FLAG_REMOTE)) 5183 return VM_FAULT_SIGSEGV; 5184 5185 /* 5186 * Enable the memcg OOM handling for faults triggered in user 5187 * space. Kernel faults are handled more gracefully. 5188 */ 5189 if (flags & FAULT_FLAG_USER) 5190 mem_cgroup_enter_user_fault(); 5191 5192 lru_gen_enter_fault(vma); 5193 5194 if (unlikely(is_vm_hugetlb_page(vma))) 5195 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5196 else 5197 ret = __handle_mm_fault(vma, address, flags); 5198 5199 lru_gen_exit_fault(); 5200 5201 if (flags & FAULT_FLAG_USER) { 5202 mem_cgroup_exit_user_fault(); 5203 /* 5204 * The task may have entered a memcg OOM situation but 5205 * if the allocation error was handled gracefully (no 5206 * VM_FAULT_OOM), there is no need to kill anything. 5207 * Just clean up the OOM state peacefully. 5208 */ 5209 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5210 mem_cgroup_oom_synchronize(false); 5211 } 5212 5213 mm_account_fault(regs, address, flags, ret); 5214 5215 return ret; 5216 } 5217 EXPORT_SYMBOL_GPL(handle_mm_fault); 5218 5219 #ifndef __PAGETABLE_P4D_FOLDED 5220 /* 5221 * Allocate p4d page table. 5222 * We've already handled the fast-path in-line. 5223 */ 5224 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5225 { 5226 p4d_t *new = p4d_alloc_one(mm, address); 5227 if (!new) 5228 return -ENOMEM; 5229 5230 spin_lock(&mm->page_table_lock); 5231 if (pgd_present(*pgd)) { /* Another has populated it */ 5232 p4d_free(mm, new); 5233 } else { 5234 smp_wmb(); /* See comment in pmd_install() */ 5235 pgd_populate(mm, pgd, new); 5236 } 5237 spin_unlock(&mm->page_table_lock); 5238 return 0; 5239 } 5240 #endif /* __PAGETABLE_P4D_FOLDED */ 5241 5242 #ifndef __PAGETABLE_PUD_FOLDED 5243 /* 5244 * Allocate page upper directory. 5245 * We've already handled the fast-path in-line. 5246 */ 5247 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5248 { 5249 pud_t *new = pud_alloc_one(mm, address); 5250 if (!new) 5251 return -ENOMEM; 5252 5253 spin_lock(&mm->page_table_lock); 5254 if (!p4d_present(*p4d)) { 5255 mm_inc_nr_puds(mm); 5256 smp_wmb(); /* See comment in pmd_install() */ 5257 p4d_populate(mm, p4d, new); 5258 } else /* Another has populated it */ 5259 pud_free(mm, new); 5260 spin_unlock(&mm->page_table_lock); 5261 return 0; 5262 } 5263 #endif /* __PAGETABLE_PUD_FOLDED */ 5264 5265 #ifndef __PAGETABLE_PMD_FOLDED 5266 /* 5267 * Allocate page middle directory. 5268 * We've already handled the fast-path in-line. 5269 */ 5270 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5271 { 5272 spinlock_t *ptl; 5273 pmd_t *new = pmd_alloc_one(mm, address); 5274 if (!new) 5275 return -ENOMEM; 5276 5277 ptl = pud_lock(mm, pud); 5278 if (!pud_present(*pud)) { 5279 mm_inc_nr_pmds(mm); 5280 smp_wmb(); /* See comment in pmd_install() */ 5281 pud_populate(mm, pud, new); 5282 } else { /* Another has populated it */ 5283 pmd_free(mm, new); 5284 } 5285 spin_unlock(ptl); 5286 return 0; 5287 } 5288 #endif /* __PAGETABLE_PMD_FOLDED */ 5289 5290 /** 5291 * follow_pte - look up PTE at a user virtual address 5292 * @mm: the mm_struct of the target address space 5293 * @address: user virtual address 5294 * @ptepp: location to store found PTE 5295 * @ptlp: location to store the lock for the PTE 5296 * 5297 * On a successful return, the pointer to the PTE is stored in @ptepp; 5298 * the corresponding lock is taken and its location is stored in @ptlp. 5299 * The contents of the PTE are only stable until @ptlp is released; 5300 * any further use, if any, must be protected against invalidation 5301 * with MMU notifiers. 5302 * 5303 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5304 * should be taken for read. 5305 * 5306 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5307 * it is not a good general-purpose API. 5308 * 5309 * Return: zero on success, -ve otherwise. 5310 */ 5311 int follow_pte(struct mm_struct *mm, unsigned long address, 5312 pte_t **ptepp, spinlock_t **ptlp) 5313 { 5314 pgd_t *pgd; 5315 p4d_t *p4d; 5316 pud_t *pud; 5317 pmd_t *pmd; 5318 pte_t *ptep; 5319 5320 pgd = pgd_offset(mm, address); 5321 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5322 goto out; 5323 5324 p4d = p4d_offset(pgd, address); 5325 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5326 goto out; 5327 5328 pud = pud_offset(p4d, address); 5329 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5330 goto out; 5331 5332 pmd = pmd_offset(pud, address); 5333 VM_BUG_ON(pmd_trans_huge(*pmd)); 5334 5335 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5336 goto out; 5337 5338 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5339 if (!pte_present(*ptep)) 5340 goto unlock; 5341 *ptepp = ptep; 5342 return 0; 5343 unlock: 5344 pte_unmap_unlock(ptep, *ptlp); 5345 out: 5346 return -EINVAL; 5347 } 5348 EXPORT_SYMBOL_GPL(follow_pte); 5349 5350 /** 5351 * follow_pfn - look up PFN at a user virtual address 5352 * @vma: memory mapping 5353 * @address: user virtual address 5354 * @pfn: location to store found PFN 5355 * 5356 * Only IO mappings and raw PFN mappings are allowed. 5357 * 5358 * This function does not allow the caller to read the permissions 5359 * of the PTE. Do not use it. 5360 * 5361 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5362 */ 5363 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5364 unsigned long *pfn) 5365 { 5366 int ret = -EINVAL; 5367 spinlock_t *ptl; 5368 pte_t *ptep; 5369 5370 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5371 return ret; 5372 5373 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5374 if (ret) 5375 return ret; 5376 *pfn = pte_pfn(*ptep); 5377 pte_unmap_unlock(ptep, ptl); 5378 return 0; 5379 } 5380 EXPORT_SYMBOL(follow_pfn); 5381 5382 #ifdef CONFIG_HAVE_IOREMAP_PROT 5383 int follow_phys(struct vm_area_struct *vma, 5384 unsigned long address, unsigned int flags, 5385 unsigned long *prot, resource_size_t *phys) 5386 { 5387 int ret = -EINVAL; 5388 pte_t *ptep, pte; 5389 spinlock_t *ptl; 5390 5391 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5392 goto out; 5393 5394 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5395 goto out; 5396 pte = *ptep; 5397 5398 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5399 goto unlock; 5400 5401 *prot = pgprot_val(pte_pgprot(pte)); 5402 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5403 5404 ret = 0; 5405 unlock: 5406 pte_unmap_unlock(ptep, ptl); 5407 out: 5408 return ret; 5409 } 5410 5411 /** 5412 * generic_access_phys - generic implementation for iomem mmap access 5413 * @vma: the vma to access 5414 * @addr: userspace address, not relative offset within @vma 5415 * @buf: buffer to read/write 5416 * @len: length of transfer 5417 * @write: set to FOLL_WRITE when writing, otherwise reading 5418 * 5419 * This is a generic implementation for &vm_operations_struct.access for an 5420 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5421 * not page based. 5422 */ 5423 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5424 void *buf, int len, int write) 5425 { 5426 resource_size_t phys_addr; 5427 unsigned long prot = 0; 5428 void __iomem *maddr; 5429 pte_t *ptep, pte; 5430 spinlock_t *ptl; 5431 int offset = offset_in_page(addr); 5432 int ret = -EINVAL; 5433 5434 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5435 return -EINVAL; 5436 5437 retry: 5438 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5439 return -EINVAL; 5440 pte = *ptep; 5441 pte_unmap_unlock(ptep, ptl); 5442 5443 prot = pgprot_val(pte_pgprot(pte)); 5444 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5445 5446 if ((write & FOLL_WRITE) && !pte_write(pte)) 5447 return -EINVAL; 5448 5449 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5450 if (!maddr) 5451 return -ENOMEM; 5452 5453 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5454 goto out_unmap; 5455 5456 if (!pte_same(pte, *ptep)) { 5457 pte_unmap_unlock(ptep, ptl); 5458 iounmap(maddr); 5459 5460 goto retry; 5461 } 5462 5463 if (write) 5464 memcpy_toio(maddr + offset, buf, len); 5465 else 5466 memcpy_fromio(buf, maddr + offset, len); 5467 ret = len; 5468 pte_unmap_unlock(ptep, ptl); 5469 out_unmap: 5470 iounmap(maddr); 5471 5472 return ret; 5473 } 5474 EXPORT_SYMBOL_GPL(generic_access_phys); 5475 #endif 5476 5477 /* 5478 * Access another process' address space as given in mm. 5479 */ 5480 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5481 int len, unsigned int gup_flags) 5482 { 5483 struct vm_area_struct *vma; 5484 void *old_buf = buf; 5485 int write = gup_flags & FOLL_WRITE; 5486 5487 if (mmap_read_lock_killable(mm)) 5488 return 0; 5489 5490 /* ignore errors, just check how much was successfully transferred */ 5491 while (len) { 5492 int bytes, ret, offset; 5493 void *maddr; 5494 struct page *page = NULL; 5495 5496 ret = get_user_pages_remote(mm, addr, 1, 5497 gup_flags, &page, &vma, NULL); 5498 if (ret <= 0) { 5499 #ifndef CONFIG_HAVE_IOREMAP_PROT 5500 break; 5501 #else 5502 /* 5503 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5504 * we can access using slightly different code. 5505 */ 5506 vma = vma_lookup(mm, addr); 5507 if (!vma) 5508 break; 5509 if (vma->vm_ops && vma->vm_ops->access) 5510 ret = vma->vm_ops->access(vma, addr, buf, 5511 len, write); 5512 if (ret <= 0) 5513 break; 5514 bytes = ret; 5515 #endif 5516 } else { 5517 bytes = len; 5518 offset = addr & (PAGE_SIZE-1); 5519 if (bytes > PAGE_SIZE-offset) 5520 bytes = PAGE_SIZE-offset; 5521 5522 maddr = kmap(page); 5523 if (write) { 5524 copy_to_user_page(vma, page, addr, 5525 maddr + offset, buf, bytes); 5526 set_page_dirty_lock(page); 5527 } else { 5528 copy_from_user_page(vma, page, addr, 5529 buf, maddr + offset, bytes); 5530 } 5531 kunmap(page); 5532 put_page(page); 5533 } 5534 len -= bytes; 5535 buf += bytes; 5536 addr += bytes; 5537 } 5538 mmap_read_unlock(mm); 5539 5540 return buf - old_buf; 5541 } 5542 5543 /** 5544 * access_remote_vm - access another process' address space 5545 * @mm: the mm_struct of the target address space 5546 * @addr: start address to access 5547 * @buf: source or destination buffer 5548 * @len: number of bytes to transfer 5549 * @gup_flags: flags modifying lookup behaviour 5550 * 5551 * The caller must hold a reference on @mm. 5552 * 5553 * Return: number of bytes copied from source to destination. 5554 */ 5555 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5556 void *buf, int len, unsigned int gup_flags) 5557 { 5558 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5559 } 5560 5561 /* 5562 * Access another process' address space. 5563 * Source/target buffer must be kernel space, 5564 * Do not walk the page table directly, use get_user_pages 5565 */ 5566 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5567 void *buf, int len, unsigned int gup_flags) 5568 { 5569 struct mm_struct *mm; 5570 int ret; 5571 5572 mm = get_task_mm(tsk); 5573 if (!mm) 5574 return 0; 5575 5576 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5577 5578 mmput(mm); 5579 5580 return ret; 5581 } 5582 EXPORT_SYMBOL_GPL(access_process_vm); 5583 5584 /* 5585 * Print the name of a VMA. 5586 */ 5587 void print_vma_addr(char *prefix, unsigned long ip) 5588 { 5589 struct mm_struct *mm = current->mm; 5590 struct vm_area_struct *vma; 5591 5592 /* 5593 * we might be running from an atomic context so we cannot sleep 5594 */ 5595 if (!mmap_read_trylock(mm)) 5596 return; 5597 5598 vma = find_vma(mm, ip); 5599 if (vma && vma->vm_file) { 5600 struct file *f = vma->vm_file; 5601 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5602 if (buf) { 5603 char *p; 5604 5605 p = file_path(f, buf, PAGE_SIZE); 5606 if (IS_ERR(p)) 5607 p = "?"; 5608 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5609 vma->vm_start, 5610 vma->vm_end - vma->vm_start); 5611 free_page((unsigned long)buf); 5612 } 5613 } 5614 mmap_read_unlock(mm); 5615 } 5616 5617 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5618 void __might_fault(const char *file, int line) 5619 { 5620 if (pagefault_disabled()) 5621 return; 5622 __might_sleep(file, line); 5623 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5624 if (current->mm) 5625 might_lock_read(¤t->mm->mmap_lock); 5626 #endif 5627 } 5628 EXPORT_SYMBOL(__might_fault); 5629 #endif 5630 5631 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5632 /* 5633 * Process all subpages of the specified huge page with the specified 5634 * operation. The target subpage will be processed last to keep its 5635 * cache lines hot. 5636 */ 5637 static inline void process_huge_page( 5638 unsigned long addr_hint, unsigned int pages_per_huge_page, 5639 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5640 void *arg) 5641 { 5642 int i, n, base, l; 5643 unsigned long addr = addr_hint & 5644 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5645 5646 /* Process target subpage last to keep its cache lines hot */ 5647 might_sleep(); 5648 n = (addr_hint - addr) / PAGE_SIZE; 5649 if (2 * n <= pages_per_huge_page) { 5650 /* If target subpage in first half of huge page */ 5651 base = 0; 5652 l = n; 5653 /* Process subpages at the end of huge page */ 5654 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5655 cond_resched(); 5656 process_subpage(addr + i * PAGE_SIZE, i, arg); 5657 } 5658 } else { 5659 /* If target subpage in second half of huge page */ 5660 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5661 l = pages_per_huge_page - n; 5662 /* Process subpages at the begin of huge page */ 5663 for (i = 0; i < base; i++) { 5664 cond_resched(); 5665 process_subpage(addr + i * PAGE_SIZE, i, arg); 5666 } 5667 } 5668 /* 5669 * Process remaining subpages in left-right-left-right pattern 5670 * towards the target subpage 5671 */ 5672 for (i = 0; i < l; i++) { 5673 int left_idx = base + i; 5674 int right_idx = base + 2 * l - 1 - i; 5675 5676 cond_resched(); 5677 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5678 cond_resched(); 5679 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5680 } 5681 } 5682 5683 static void clear_gigantic_page(struct page *page, 5684 unsigned long addr, 5685 unsigned int pages_per_huge_page) 5686 { 5687 int i; 5688 struct page *p; 5689 5690 might_sleep(); 5691 for (i = 0; i < pages_per_huge_page; i++) { 5692 p = nth_page(page, i); 5693 cond_resched(); 5694 clear_user_highpage(p, addr + i * PAGE_SIZE); 5695 } 5696 } 5697 5698 static void clear_subpage(unsigned long addr, int idx, void *arg) 5699 { 5700 struct page *page = arg; 5701 5702 clear_user_highpage(page + idx, addr); 5703 } 5704 5705 void clear_huge_page(struct page *page, 5706 unsigned long addr_hint, unsigned int pages_per_huge_page) 5707 { 5708 unsigned long addr = addr_hint & 5709 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5710 5711 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5712 clear_gigantic_page(page, addr, pages_per_huge_page); 5713 return; 5714 } 5715 5716 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5717 } 5718 5719 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5720 unsigned long addr, 5721 struct vm_area_struct *vma, 5722 unsigned int pages_per_huge_page) 5723 { 5724 int i; 5725 struct page *dst_base = dst; 5726 struct page *src_base = src; 5727 5728 for (i = 0; i < pages_per_huge_page; i++) { 5729 dst = nth_page(dst_base, i); 5730 src = nth_page(src_base, i); 5731 5732 cond_resched(); 5733 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5734 } 5735 } 5736 5737 struct copy_subpage_arg { 5738 struct page *dst; 5739 struct page *src; 5740 struct vm_area_struct *vma; 5741 }; 5742 5743 static void copy_subpage(unsigned long addr, int idx, void *arg) 5744 { 5745 struct copy_subpage_arg *copy_arg = arg; 5746 5747 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5748 addr, copy_arg->vma); 5749 } 5750 5751 void copy_user_huge_page(struct page *dst, struct page *src, 5752 unsigned long addr_hint, struct vm_area_struct *vma, 5753 unsigned int pages_per_huge_page) 5754 { 5755 unsigned long addr = addr_hint & 5756 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5757 struct copy_subpage_arg arg = { 5758 .dst = dst, 5759 .src = src, 5760 .vma = vma, 5761 }; 5762 5763 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5764 copy_user_gigantic_page(dst, src, addr, vma, 5765 pages_per_huge_page); 5766 return; 5767 } 5768 5769 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5770 } 5771 5772 long copy_huge_page_from_user(struct page *dst_page, 5773 const void __user *usr_src, 5774 unsigned int pages_per_huge_page, 5775 bool allow_pagefault) 5776 { 5777 void *page_kaddr; 5778 unsigned long i, rc = 0; 5779 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5780 struct page *subpage; 5781 5782 for (i = 0; i < pages_per_huge_page; i++) { 5783 subpage = nth_page(dst_page, i); 5784 if (allow_pagefault) 5785 page_kaddr = kmap(subpage); 5786 else 5787 page_kaddr = kmap_atomic(subpage); 5788 rc = copy_from_user(page_kaddr, 5789 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5790 if (allow_pagefault) 5791 kunmap(subpage); 5792 else 5793 kunmap_atomic(page_kaddr); 5794 5795 ret_val -= (PAGE_SIZE - rc); 5796 if (rc) 5797 break; 5798 5799 flush_dcache_page(subpage); 5800 5801 cond_resched(); 5802 } 5803 return ret_val; 5804 } 5805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5806 5807 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5808 5809 static struct kmem_cache *page_ptl_cachep; 5810 5811 void __init ptlock_cache_init(void) 5812 { 5813 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5814 SLAB_PANIC, NULL); 5815 } 5816 5817 bool ptlock_alloc(struct page *page) 5818 { 5819 spinlock_t *ptl; 5820 5821 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5822 if (!ptl) 5823 return false; 5824 page->ptl = ptl; 5825 return true; 5826 } 5827 5828 void ptlock_free(struct page *page) 5829 { 5830 kmem_cache_free(page_ptl_cachep, page->ptl); 5831 } 5832 #endif 5833