xref: /openbmc/linux/mm/memory.c (revision e9adcfecf572fcfaa9f8525904cf49c709974f73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117 
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 					1;
127 #else
128 					2;
129 #endif
130 
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 	/*
135 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 	 * some architectures, even if it's performed in hardware. By
137 	 * default, "false" means prefaulted entries will be 'young'.
138 	 */
139 	return false;
140 }
141 #endif
142 
143 static int __init disable_randmaps(char *s)
144 {
145 	randomize_va_space = 0;
146 	return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149 
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152 
153 unsigned long highest_memmap_pfn __read_mostly;
154 
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 	return 0;
162 }
163 early_initcall(init_zero_pfn);
164 
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167 	trace_rss_stat(mm, member);
168 }
169 
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 			   unsigned long addr)
176 {
177 	pgtable_t token = pmd_pgtable(*pmd);
178 	pmd_clear(pmd);
179 	pte_free_tlb(tlb, token, addr);
180 	mm_dec_nr_ptes(tlb->mm);
181 }
182 
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 				unsigned long addr, unsigned long end,
185 				unsigned long floor, unsigned long ceiling)
186 {
187 	pmd_t *pmd;
188 	unsigned long next;
189 	unsigned long start;
190 
191 	start = addr;
192 	pmd = pmd_offset(pud, addr);
193 	do {
194 		next = pmd_addr_end(addr, end);
195 		if (pmd_none_or_clear_bad(pmd))
196 			continue;
197 		free_pte_range(tlb, pmd, addr);
198 	} while (pmd++, addr = next, addr != end);
199 
200 	start &= PUD_MASK;
201 	if (start < floor)
202 		return;
203 	if (ceiling) {
204 		ceiling &= PUD_MASK;
205 		if (!ceiling)
206 			return;
207 	}
208 	if (end - 1 > ceiling - 1)
209 		return;
210 
211 	pmd = pmd_offset(pud, start);
212 	pud_clear(pud);
213 	pmd_free_tlb(tlb, pmd, start);
214 	mm_dec_nr_pmds(tlb->mm);
215 }
216 
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218 				unsigned long addr, unsigned long end,
219 				unsigned long floor, unsigned long ceiling)
220 {
221 	pud_t *pud;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	start = addr;
226 	pud = pud_offset(p4d, addr);
227 	do {
228 		next = pud_addr_end(addr, end);
229 		if (pud_none_or_clear_bad(pud))
230 			continue;
231 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232 	} while (pud++, addr = next, addr != end);
233 
234 	start &= P4D_MASK;
235 	if (start < floor)
236 		return;
237 	if (ceiling) {
238 		ceiling &= P4D_MASK;
239 		if (!ceiling)
240 			return;
241 	}
242 	if (end - 1 > ceiling - 1)
243 		return;
244 
245 	pud = pud_offset(p4d, start);
246 	p4d_clear(p4d);
247 	pud_free_tlb(tlb, pud, start);
248 	mm_dec_nr_puds(tlb->mm);
249 }
250 
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 				unsigned long addr, unsigned long end,
253 				unsigned long floor, unsigned long ceiling)
254 {
255 	p4d_t *p4d;
256 	unsigned long next;
257 	unsigned long start;
258 
259 	start = addr;
260 	p4d = p4d_offset(pgd, addr);
261 	do {
262 		next = p4d_addr_end(addr, end);
263 		if (p4d_none_or_clear_bad(p4d))
264 			continue;
265 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 	} while (p4d++, addr = next, addr != end);
267 
268 	start &= PGDIR_MASK;
269 	if (start < floor)
270 		return;
271 	if (ceiling) {
272 		ceiling &= PGDIR_MASK;
273 		if (!ceiling)
274 			return;
275 	}
276 	if (end - 1 > ceiling - 1)
277 		return;
278 
279 	p4d = p4d_offset(pgd, start);
280 	pgd_clear(pgd);
281 	p4d_free_tlb(tlb, p4d, start);
282 }
283 
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288 			unsigned long addr, unsigned long end,
289 			unsigned long floor, unsigned long ceiling)
290 {
291 	pgd_t *pgd;
292 	unsigned long next;
293 
294 	/*
295 	 * The next few lines have given us lots of grief...
296 	 *
297 	 * Why are we testing PMD* at this top level?  Because often
298 	 * there will be no work to do at all, and we'd prefer not to
299 	 * go all the way down to the bottom just to discover that.
300 	 *
301 	 * Why all these "- 1"s?  Because 0 represents both the bottom
302 	 * of the address space and the top of it (using -1 for the
303 	 * top wouldn't help much: the masks would do the wrong thing).
304 	 * The rule is that addr 0 and floor 0 refer to the bottom of
305 	 * the address space, but end 0 and ceiling 0 refer to the top
306 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 	 * that end 0 case should be mythical).
308 	 *
309 	 * Wherever addr is brought up or ceiling brought down, we must
310 	 * be careful to reject "the opposite 0" before it confuses the
311 	 * subsequent tests.  But what about where end is brought down
312 	 * by PMD_SIZE below? no, end can't go down to 0 there.
313 	 *
314 	 * Whereas we round start (addr) and ceiling down, by different
315 	 * masks at different levels, in order to test whether a table
316 	 * now has no other vmas using it, so can be freed, we don't
317 	 * bother to round floor or end up - the tests don't need that.
318 	 */
319 
320 	addr &= PMD_MASK;
321 	if (addr < floor) {
322 		addr += PMD_SIZE;
323 		if (!addr)
324 			return;
325 	}
326 	if (ceiling) {
327 		ceiling &= PMD_MASK;
328 		if (!ceiling)
329 			return;
330 	}
331 	if (end - 1 > ceiling - 1)
332 		end -= PMD_SIZE;
333 	if (addr > end - 1)
334 		return;
335 	/*
336 	 * We add page table cache pages with PAGE_SIZE,
337 	 * (see pte_free_tlb()), flush the tlb if we need
338 	 */
339 	tlb_change_page_size(tlb, PAGE_SIZE);
340 	pgd = pgd_offset(tlb->mm, addr);
341 	do {
342 		next = pgd_addr_end(addr, end);
343 		if (pgd_none_or_clear_bad(pgd))
344 			continue;
345 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346 	} while (pgd++, addr = next, addr != end);
347 }
348 
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 		   struct vm_area_struct *vma, unsigned long floor,
351 		   unsigned long ceiling)
352 {
353 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354 
355 	do {
356 		unsigned long addr = vma->vm_start;
357 		struct vm_area_struct *next;
358 
359 		/*
360 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 		 * be 0.  This will underflow and is okay.
362 		 */
363 		next = mas_find(&mas, ceiling - 1);
364 
365 		/*
366 		 * Hide vma from rmap and truncate_pagecache before freeing
367 		 * pgtables
368 		 */
369 		unlink_anon_vmas(vma);
370 		unlink_file_vma(vma);
371 
372 		if (is_vm_hugetlb_page(vma)) {
373 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374 				floor, next ? next->vm_start : ceiling);
375 		} else {
376 			/*
377 			 * Optimization: gather nearby vmas into one call down
378 			 */
379 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380 			       && !is_vm_hugetlb_page(next)) {
381 				vma = next;
382 				next = mas_find(&mas, ceiling - 1);
383 				unlink_anon_vmas(vma);
384 				unlink_file_vma(vma);
385 			}
386 			free_pgd_range(tlb, addr, vma->vm_end,
387 				floor, next ? next->vm_start : ceiling);
388 		}
389 		vma = next;
390 	} while (vma);
391 }
392 
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395 	spinlock_t *ptl = pmd_lock(mm, pmd);
396 
397 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
398 		mm_inc_nr_ptes(mm);
399 		/*
400 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 		 * visible before the pte is made visible to other CPUs by being
402 		 * put into page tables.
403 		 *
404 		 * The other side of the story is the pointer chasing in the page
405 		 * table walking code (when walking the page table without locking;
406 		 * ie. most of the time). Fortunately, these data accesses consist
407 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 		 * being the notable exception) will already guarantee loads are
409 		 * seen in-order. See the alpha page table accessors for the
410 		 * smp_rmb() barriers in page table walking code.
411 		 */
412 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413 		pmd_populate(mm, pmd, *pte);
414 		*pte = NULL;
415 	}
416 	spin_unlock(ptl);
417 }
418 
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421 	pgtable_t new = pte_alloc_one(mm);
422 	if (!new)
423 		return -ENOMEM;
424 
425 	pmd_install(mm, pmd, &new);
426 	if (new)
427 		pte_free(mm, new);
428 	return 0;
429 }
430 
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433 	pte_t *new = pte_alloc_one_kernel(&init_mm);
434 	if (!new)
435 		return -ENOMEM;
436 
437 	spin_lock(&init_mm.page_table_lock);
438 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
439 		smp_wmb(); /* See comment in pmd_install() */
440 		pmd_populate_kernel(&init_mm, pmd, new);
441 		new = NULL;
442 	}
443 	spin_unlock(&init_mm.page_table_lock);
444 	if (new)
445 		pte_free_kernel(&init_mm, new);
446 	return 0;
447 }
448 
449 static inline void init_rss_vec(int *rss)
450 {
451 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453 
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456 	int i;
457 
458 	if (current->mm == mm)
459 		sync_mm_rss(mm);
460 	for (i = 0; i < NR_MM_COUNTERS; i++)
461 		if (rss[i])
462 			add_mm_counter(mm, i, rss[i]);
463 }
464 
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 			  pte_t pte, struct page *page)
474 {
475 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 	p4d_t *p4d = p4d_offset(pgd, addr);
477 	pud_t *pud = pud_offset(p4d, addr);
478 	pmd_t *pmd = pmd_offset(pud, addr);
479 	struct address_space *mapping;
480 	pgoff_t index;
481 	static unsigned long resume;
482 	static unsigned long nr_shown;
483 	static unsigned long nr_unshown;
484 
485 	/*
486 	 * Allow a burst of 60 reports, then keep quiet for that minute;
487 	 * or allow a steady drip of one report per second.
488 	 */
489 	if (nr_shown == 60) {
490 		if (time_before(jiffies, resume)) {
491 			nr_unshown++;
492 			return;
493 		}
494 		if (nr_unshown) {
495 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 				 nr_unshown);
497 			nr_unshown = 0;
498 		}
499 		nr_shown = 0;
500 	}
501 	if (nr_shown++ == 0)
502 		resume = jiffies + 60 * HZ;
503 
504 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 	index = linear_page_index(vma, addr);
506 
507 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508 		 current->comm,
509 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
510 	if (page)
511 		dump_page(page, "bad pte");
512 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515 		 vma->vm_file,
516 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518 		 mapping ? mapping->a_ops->read_folio : NULL);
519 	dump_stack();
520 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522 
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 			    pte_t pte)
567 {
568 	unsigned long pfn = pte_pfn(pte);
569 
570 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571 		if (likely(!pte_special(pte)))
572 			goto check_pfn;
573 		if (vma->vm_ops && vma->vm_ops->find_special_page)
574 			return vma->vm_ops->find_special_page(vma, addr);
575 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 			return NULL;
577 		if (is_zero_pfn(pfn))
578 			return NULL;
579 		if (pte_devmap(pte))
580 		/*
581 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 		 * and will have refcounts incremented on their struct pages
583 		 * when they are inserted into PTEs, thus they are safe to
584 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 		 */
588 			return NULL;
589 
590 		print_bad_pte(vma, addr, pte, NULL);
591 		return NULL;
592 	}
593 
594 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595 
596 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 		if (vma->vm_flags & VM_MIXEDMAP) {
598 			if (!pfn_valid(pfn))
599 				return NULL;
600 			goto out;
601 		} else {
602 			unsigned long off;
603 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
604 			if (pfn == vma->vm_pgoff + off)
605 				return NULL;
606 			if (!is_cow_mapping(vma->vm_flags))
607 				return NULL;
608 		}
609 	}
610 
611 	if (is_zero_pfn(pfn))
612 		return NULL;
613 
614 check_pfn:
615 	if (unlikely(pfn > highest_memmap_pfn)) {
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/*
621 	 * NOTE! We still have PageReserved() pages in the page tables.
622 	 * eg. VDSO mappings can cause them to exist.
623 	 */
624 out:
625 	return pfn_to_page(pfn);
626 }
627 
628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629 			    pte_t pte)
630 {
631 	struct page *page = vm_normal_page(vma, addr, pte);
632 
633 	if (page)
634 		return page_folio(page);
635 	return NULL;
636 }
637 
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640 				pmd_t pmd)
641 {
642 	unsigned long pfn = pmd_pfn(pmd);
643 
644 	/*
645 	 * There is no pmd_special() but there may be special pmds, e.g.
646 	 * in a direct-access (dax) mapping, so let's just replicate the
647 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
648 	 */
649 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650 		if (vma->vm_flags & VM_MIXEDMAP) {
651 			if (!pfn_valid(pfn))
652 				return NULL;
653 			goto out;
654 		} else {
655 			unsigned long off;
656 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
657 			if (pfn == vma->vm_pgoff + off)
658 				return NULL;
659 			if (!is_cow_mapping(vma->vm_flags))
660 				return NULL;
661 		}
662 	}
663 
664 	if (pmd_devmap(pmd))
665 		return NULL;
666 	if (is_huge_zero_pmd(pmd))
667 		return NULL;
668 	if (unlikely(pfn > highest_memmap_pfn))
669 		return NULL;
670 
671 	/*
672 	 * NOTE! We still have PageReserved() pages in the page tables.
673 	 * eg. VDSO mappings can cause them to exist.
674 	 */
675 out:
676 	return pfn_to_page(pfn);
677 }
678 #endif
679 
680 static void restore_exclusive_pte(struct vm_area_struct *vma,
681 				  struct page *page, unsigned long address,
682 				  pte_t *ptep)
683 {
684 	pte_t pte;
685 	swp_entry_t entry;
686 
687 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688 	if (pte_swp_soft_dirty(*ptep))
689 		pte = pte_mksoft_dirty(pte);
690 
691 	entry = pte_to_swp_entry(*ptep);
692 	if (pte_swp_uffd_wp(*ptep))
693 		pte = pte_mkuffd_wp(pte);
694 	else if (is_writable_device_exclusive_entry(entry))
695 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696 
697 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698 
699 	/*
700 	 * No need to take a page reference as one was already
701 	 * created when the swap entry was made.
702 	 */
703 	if (PageAnon(page))
704 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
705 	else
706 		/*
707 		 * Currently device exclusive access only supports anonymous
708 		 * memory so the entry shouldn't point to a filebacked page.
709 		 */
710 		WARN_ON_ONCE(1);
711 
712 	set_pte_at(vma->vm_mm, address, ptep, pte);
713 
714 	/*
715 	 * No need to invalidate - it was non-present before. However
716 	 * secondary CPUs may have mappings that need invalidating.
717 	 */
718 	update_mmu_cache(vma, address, ptep);
719 }
720 
721 /*
722  * Tries to restore an exclusive pte if the page lock can be acquired without
723  * sleeping.
724  */
725 static int
726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727 			unsigned long addr)
728 {
729 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
730 	struct page *page = pfn_swap_entry_to_page(entry);
731 
732 	if (trylock_page(page)) {
733 		restore_exclusive_pte(vma, page, addr, src_pte);
734 		unlock_page(page);
735 		return 0;
736 	}
737 
738 	return -EBUSY;
739 }
740 
741 /*
742  * copy one vm_area from one task to the other. Assumes the page tables
743  * already present in the new task to be cleared in the whole range
744  * covered by this vma.
745  */
746 
747 static unsigned long
748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
749 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
751 {
752 	unsigned long vm_flags = dst_vma->vm_flags;
753 	pte_t pte = *src_pte;
754 	struct page *page;
755 	swp_entry_t entry = pte_to_swp_entry(pte);
756 
757 	if (likely(!non_swap_entry(entry))) {
758 		if (swap_duplicate(entry) < 0)
759 			return -EIO;
760 
761 		/* make sure dst_mm is on swapoff's mmlist. */
762 		if (unlikely(list_empty(&dst_mm->mmlist))) {
763 			spin_lock(&mmlist_lock);
764 			if (list_empty(&dst_mm->mmlist))
765 				list_add(&dst_mm->mmlist,
766 						&src_mm->mmlist);
767 			spin_unlock(&mmlist_lock);
768 		}
769 		/* Mark the swap entry as shared. */
770 		if (pte_swp_exclusive(*src_pte)) {
771 			pte = pte_swp_clear_exclusive(*src_pte);
772 			set_pte_at(src_mm, addr, src_pte, pte);
773 		}
774 		rss[MM_SWAPENTS]++;
775 	} else if (is_migration_entry(entry)) {
776 		page = pfn_swap_entry_to_page(entry);
777 
778 		rss[mm_counter(page)]++;
779 
780 		if (!is_readable_migration_entry(entry) &&
781 				is_cow_mapping(vm_flags)) {
782 			/*
783 			 * COW mappings require pages in both parent and child
784 			 * to be set to read. A previously exclusive entry is
785 			 * now shared.
786 			 */
787 			entry = make_readable_migration_entry(
788 							swp_offset(entry));
789 			pte = swp_entry_to_pte(entry);
790 			if (pte_swp_soft_dirty(*src_pte))
791 				pte = pte_swp_mksoft_dirty(pte);
792 			if (pte_swp_uffd_wp(*src_pte))
793 				pte = pte_swp_mkuffd_wp(pte);
794 			set_pte_at(src_mm, addr, src_pte, pte);
795 		}
796 	} else if (is_device_private_entry(entry)) {
797 		page = pfn_swap_entry_to_page(entry);
798 
799 		/*
800 		 * Update rss count even for unaddressable pages, as
801 		 * they should treated just like normal pages in this
802 		 * respect.
803 		 *
804 		 * We will likely want to have some new rss counters
805 		 * for unaddressable pages, at some point. But for now
806 		 * keep things as they are.
807 		 */
808 		get_page(page);
809 		rss[mm_counter(page)]++;
810 		/* Cannot fail as these pages cannot get pinned. */
811 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
812 
813 		/*
814 		 * We do not preserve soft-dirty information, because so
815 		 * far, checkpoint/restore is the only feature that
816 		 * requires that. And checkpoint/restore does not work
817 		 * when a device driver is involved (you cannot easily
818 		 * save and restore device driver state).
819 		 */
820 		if (is_writable_device_private_entry(entry) &&
821 		    is_cow_mapping(vm_flags)) {
822 			entry = make_readable_device_private_entry(
823 							swp_offset(entry));
824 			pte = swp_entry_to_pte(entry);
825 			if (pte_swp_uffd_wp(*src_pte))
826 				pte = pte_swp_mkuffd_wp(pte);
827 			set_pte_at(src_mm, addr, src_pte, pte);
828 		}
829 	} else if (is_device_exclusive_entry(entry)) {
830 		/*
831 		 * Make device exclusive entries present by restoring the
832 		 * original entry then copying as for a present pte. Device
833 		 * exclusive entries currently only support private writable
834 		 * (ie. COW) mappings.
835 		 */
836 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838 			return -EBUSY;
839 		return -ENOENT;
840 	} else if (is_pte_marker_entry(entry)) {
841 		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
842 			set_pte_at(dst_mm, addr, dst_pte, pte);
843 		return 0;
844 	}
845 	if (!userfaultfd_wp(dst_vma))
846 		pte = pte_swp_clear_uffd_wp(pte);
847 	set_pte_at(dst_mm, addr, dst_pte, pte);
848 	return 0;
849 }
850 
851 /*
852  * Copy a present and normal page.
853  *
854  * NOTE! The usual case is that this isn't required;
855  * instead, the caller can just increase the page refcount
856  * and re-use the pte the traditional way.
857  *
858  * And if we need a pre-allocated page but don't yet have
859  * one, return a negative error to let the preallocation
860  * code know so that it can do so outside the page table
861  * lock.
862  */
863 static inline int
864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
866 		  struct page **prealloc, struct page *page)
867 {
868 	struct page *new_page;
869 	pte_t pte;
870 
871 	new_page = *prealloc;
872 	if (!new_page)
873 		return -EAGAIN;
874 
875 	/*
876 	 * We have a prealloc page, all good!  Take it
877 	 * over and copy the page & arm it.
878 	 */
879 	*prealloc = NULL;
880 	copy_user_highpage(new_page, page, addr, src_vma);
881 	__SetPageUptodate(new_page);
882 	page_add_new_anon_rmap(new_page, dst_vma, addr);
883 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
884 	rss[mm_counter(new_page)]++;
885 
886 	/* All done, just insert the new page copy in the child */
887 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
888 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
889 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
890 		/* Uffd-wp needs to be delivered to dest pte as well */
891 		pte = pte_mkuffd_wp(pte);
892 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
893 	return 0;
894 }
895 
896 /*
897  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
898  * is required to copy this pte.
899  */
900 static inline int
901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 		 struct page **prealloc)
904 {
905 	struct mm_struct *src_mm = src_vma->vm_mm;
906 	unsigned long vm_flags = src_vma->vm_flags;
907 	pte_t pte = *src_pte;
908 	struct page *page;
909 
910 	page = vm_normal_page(src_vma, addr, pte);
911 	if (page && PageAnon(page)) {
912 		/*
913 		 * If this page may have been pinned by the parent process,
914 		 * copy the page immediately for the child so that we'll always
915 		 * guarantee the pinned page won't be randomly replaced in the
916 		 * future.
917 		 */
918 		get_page(page);
919 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
920 			/* Page maybe pinned, we have to copy. */
921 			put_page(page);
922 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
923 						 addr, rss, prealloc, page);
924 		}
925 		rss[mm_counter(page)]++;
926 	} else if (page) {
927 		get_page(page);
928 		page_dup_file_rmap(page, false);
929 		rss[mm_counter(page)]++;
930 	}
931 
932 	/*
933 	 * If it's a COW mapping, write protect it both
934 	 * in the parent and the child
935 	 */
936 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
937 		ptep_set_wrprotect(src_mm, addr, src_pte);
938 		pte = pte_wrprotect(pte);
939 	}
940 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
941 
942 	/*
943 	 * If it's a shared mapping, mark it clean in
944 	 * the child
945 	 */
946 	if (vm_flags & VM_SHARED)
947 		pte = pte_mkclean(pte);
948 	pte = pte_mkold(pte);
949 
950 	if (!userfaultfd_wp(dst_vma))
951 		pte = pte_clear_uffd_wp(pte);
952 
953 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
954 	return 0;
955 }
956 
957 static inline struct page *
958 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
959 		   unsigned long addr)
960 {
961 	struct page *new_page;
962 
963 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
964 	if (!new_page)
965 		return NULL;
966 
967 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
968 		put_page(new_page);
969 		return NULL;
970 	}
971 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
972 
973 	return new_page;
974 }
975 
976 static int
977 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
978 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
979 	       unsigned long end)
980 {
981 	struct mm_struct *dst_mm = dst_vma->vm_mm;
982 	struct mm_struct *src_mm = src_vma->vm_mm;
983 	pte_t *orig_src_pte, *orig_dst_pte;
984 	pte_t *src_pte, *dst_pte;
985 	spinlock_t *src_ptl, *dst_ptl;
986 	int progress, ret = 0;
987 	int rss[NR_MM_COUNTERS];
988 	swp_entry_t entry = (swp_entry_t){0};
989 	struct page *prealloc = NULL;
990 
991 again:
992 	progress = 0;
993 	init_rss_vec(rss);
994 
995 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
996 	if (!dst_pte) {
997 		ret = -ENOMEM;
998 		goto out;
999 	}
1000 	src_pte = pte_offset_map(src_pmd, addr);
1001 	src_ptl = pte_lockptr(src_mm, src_pmd);
1002 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1003 	orig_src_pte = src_pte;
1004 	orig_dst_pte = dst_pte;
1005 	arch_enter_lazy_mmu_mode();
1006 
1007 	do {
1008 		/*
1009 		 * We are holding two locks at this point - either of them
1010 		 * could generate latencies in another task on another CPU.
1011 		 */
1012 		if (progress >= 32) {
1013 			progress = 0;
1014 			if (need_resched() ||
1015 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1016 				break;
1017 		}
1018 		if (pte_none(*src_pte)) {
1019 			progress++;
1020 			continue;
1021 		}
1022 		if (unlikely(!pte_present(*src_pte))) {
1023 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1024 						  dst_pte, src_pte,
1025 						  dst_vma, src_vma,
1026 						  addr, rss);
1027 			if (ret == -EIO) {
1028 				entry = pte_to_swp_entry(*src_pte);
1029 				break;
1030 			} else if (ret == -EBUSY) {
1031 				break;
1032 			} else if (!ret) {
1033 				progress += 8;
1034 				continue;
1035 			}
1036 
1037 			/*
1038 			 * Device exclusive entry restored, continue by copying
1039 			 * the now present pte.
1040 			 */
1041 			WARN_ON_ONCE(ret != -ENOENT);
1042 		}
1043 		/* copy_present_pte() will clear `*prealloc' if consumed */
1044 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1045 				       addr, rss, &prealloc);
1046 		/*
1047 		 * If we need a pre-allocated page for this pte, drop the
1048 		 * locks, allocate, and try again.
1049 		 */
1050 		if (unlikely(ret == -EAGAIN))
1051 			break;
1052 		if (unlikely(prealloc)) {
1053 			/*
1054 			 * pre-alloc page cannot be reused by next time so as
1055 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1056 			 * will allocate page according to address).  This
1057 			 * could only happen if one pinned pte changed.
1058 			 */
1059 			put_page(prealloc);
1060 			prealloc = NULL;
1061 		}
1062 		progress += 8;
1063 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1064 
1065 	arch_leave_lazy_mmu_mode();
1066 	spin_unlock(src_ptl);
1067 	pte_unmap(orig_src_pte);
1068 	add_mm_rss_vec(dst_mm, rss);
1069 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1070 	cond_resched();
1071 
1072 	if (ret == -EIO) {
1073 		VM_WARN_ON_ONCE(!entry.val);
1074 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1075 			ret = -ENOMEM;
1076 			goto out;
1077 		}
1078 		entry.val = 0;
1079 	} else if (ret == -EBUSY) {
1080 		goto out;
1081 	} else if (ret ==  -EAGAIN) {
1082 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1083 		if (!prealloc)
1084 			return -ENOMEM;
1085 	} else if (ret) {
1086 		VM_WARN_ON_ONCE(1);
1087 	}
1088 
1089 	/* We've captured and resolved the error. Reset, try again. */
1090 	ret = 0;
1091 
1092 	if (addr != end)
1093 		goto again;
1094 out:
1095 	if (unlikely(prealloc))
1096 		put_page(prealloc);
1097 	return ret;
1098 }
1099 
1100 static inline int
1101 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1102 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1103 	       unsigned long end)
1104 {
1105 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1106 	struct mm_struct *src_mm = src_vma->vm_mm;
1107 	pmd_t *src_pmd, *dst_pmd;
1108 	unsigned long next;
1109 
1110 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1111 	if (!dst_pmd)
1112 		return -ENOMEM;
1113 	src_pmd = pmd_offset(src_pud, addr);
1114 	do {
1115 		next = pmd_addr_end(addr, end);
1116 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1117 			|| pmd_devmap(*src_pmd)) {
1118 			int err;
1119 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1120 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1121 					    addr, dst_vma, src_vma);
1122 			if (err == -ENOMEM)
1123 				return -ENOMEM;
1124 			if (!err)
1125 				continue;
1126 			/* fall through */
1127 		}
1128 		if (pmd_none_or_clear_bad(src_pmd))
1129 			continue;
1130 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1131 				   addr, next))
1132 			return -ENOMEM;
1133 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1134 	return 0;
1135 }
1136 
1137 static inline int
1138 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1140 	       unsigned long end)
1141 {
1142 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 	struct mm_struct *src_mm = src_vma->vm_mm;
1144 	pud_t *src_pud, *dst_pud;
1145 	unsigned long next;
1146 
1147 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1148 	if (!dst_pud)
1149 		return -ENOMEM;
1150 	src_pud = pud_offset(src_p4d, addr);
1151 	do {
1152 		next = pud_addr_end(addr, end);
1153 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1154 			int err;
1155 
1156 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1157 			err = copy_huge_pud(dst_mm, src_mm,
1158 					    dst_pud, src_pud, addr, src_vma);
1159 			if (err == -ENOMEM)
1160 				return -ENOMEM;
1161 			if (!err)
1162 				continue;
1163 			/* fall through */
1164 		}
1165 		if (pud_none_or_clear_bad(src_pud))
1166 			continue;
1167 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1168 				   addr, next))
1169 			return -ENOMEM;
1170 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1171 	return 0;
1172 }
1173 
1174 static inline int
1175 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1177 	       unsigned long end)
1178 {
1179 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 	p4d_t *src_p4d, *dst_p4d;
1181 	unsigned long next;
1182 
1183 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1184 	if (!dst_p4d)
1185 		return -ENOMEM;
1186 	src_p4d = p4d_offset(src_pgd, addr);
1187 	do {
1188 		next = p4d_addr_end(addr, end);
1189 		if (p4d_none_or_clear_bad(src_p4d))
1190 			continue;
1191 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1192 				   addr, next))
1193 			return -ENOMEM;
1194 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1195 	return 0;
1196 }
1197 
1198 /*
1199  * Return true if the vma needs to copy the pgtable during this fork().  Return
1200  * false when we can speed up fork() by allowing lazy page faults later until
1201  * when the child accesses the memory range.
1202  */
1203 static bool
1204 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1205 {
1206 	/*
1207 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1208 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1209 	 * contains uffd-wp protection information, that's something we can't
1210 	 * retrieve from page cache, and skip copying will lose those info.
1211 	 */
1212 	if (userfaultfd_wp(dst_vma))
1213 		return true;
1214 
1215 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1216 		return true;
1217 
1218 	if (src_vma->anon_vma)
1219 		return true;
1220 
1221 	/*
1222 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1223 	 * becomes much lighter when there are big shared or private readonly
1224 	 * mappings. The tradeoff is that copy_page_range is more efficient
1225 	 * than faulting.
1226 	 */
1227 	return false;
1228 }
1229 
1230 int
1231 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1232 {
1233 	pgd_t *src_pgd, *dst_pgd;
1234 	unsigned long next;
1235 	unsigned long addr = src_vma->vm_start;
1236 	unsigned long end = src_vma->vm_end;
1237 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1238 	struct mm_struct *src_mm = src_vma->vm_mm;
1239 	struct mmu_notifier_range range;
1240 	bool is_cow;
1241 	int ret;
1242 
1243 	if (!vma_needs_copy(dst_vma, src_vma))
1244 		return 0;
1245 
1246 	if (is_vm_hugetlb_page(src_vma))
1247 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1248 
1249 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1250 		/*
1251 		 * We do not free on error cases below as remove_vma
1252 		 * gets called on error from higher level routine
1253 		 */
1254 		ret = track_pfn_copy(src_vma);
1255 		if (ret)
1256 			return ret;
1257 	}
1258 
1259 	/*
1260 	 * We need to invalidate the secondary MMU mappings only when
1261 	 * there could be a permission downgrade on the ptes of the
1262 	 * parent mm. And a permission downgrade will only happen if
1263 	 * is_cow_mapping() returns true.
1264 	 */
1265 	is_cow = is_cow_mapping(src_vma->vm_flags);
1266 
1267 	if (is_cow) {
1268 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1269 					0, src_vma, src_mm, addr, end);
1270 		mmu_notifier_invalidate_range_start(&range);
1271 		/*
1272 		 * Disabling preemption is not needed for the write side, as
1273 		 * the read side doesn't spin, but goes to the mmap_lock.
1274 		 *
1275 		 * Use the raw variant of the seqcount_t write API to avoid
1276 		 * lockdep complaining about preemptibility.
1277 		 */
1278 		mmap_assert_write_locked(src_mm);
1279 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1280 	}
1281 
1282 	ret = 0;
1283 	dst_pgd = pgd_offset(dst_mm, addr);
1284 	src_pgd = pgd_offset(src_mm, addr);
1285 	do {
1286 		next = pgd_addr_end(addr, end);
1287 		if (pgd_none_or_clear_bad(src_pgd))
1288 			continue;
1289 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1290 					    addr, next))) {
1291 			ret = -ENOMEM;
1292 			break;
1293 		}
1294 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1295 
1296 	if (is_cow) {
1297 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1298 		mmu_notifier_invalidate_range_end(&range);
1299 	}
1300 	return ret;
1301 }
1302 
1303 /* Whether we should zap all COWed (private) pages too */
1304 static inline bool should_zap_cows(struct zap_details *details)
1305 {
1306 	/* By default, zap all pages */
1307 	if (!details)
1308 		return true;
1309 
1310 	/* Or, we zap COWed pages only if the caller wants to */
1311 	return details->even_cows;
1312 }
1313 
1314 /* Decides whether we should zap this page with the page pointer specified */
1315 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1316 {
1317 	/* If we can make a decision without *page.. */
1318 	if (should_zap_cows(details))
1319 		return true;
1320 
1321 	/* E.g. the caller passes NULL for the case of a zero page */
1322 	if (!page)
1323 		return true;
1324 
1325 	/* Otherwise we should only zap non-anon pages */
1326 	return !PageAnon(page);
1327 }
1328 
1329 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1330 {
1331 	if (!details)
1332 		return false;
1333 
1334 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1335 }
1336 
1337 /*
1338  * This function makes sure that we'll replace the none pte with an uffd-wp
1339  * swap special pte marker when necessary. Must be with the pgtable lock held.
1340  */
1341 static inline void
1342 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1343 			      unsigned long addr, pte_t *pte,
1344 			      struct zap_details *details, pte_t pteval)
1345 {
1346 	if (zap_drop_file_uffd_wp(details))
1347 		return;
1348 
1349 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1350 }
1351 
1352 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1353 				struct vm_area_struct *vma, pmd_t *pmd,
1354 				unsigned long addr, unsigned long end,
1355 				struct zap_details *details)
1356 {
1357 	struct mm_struct *mm = tlb->mm;
1358 	int force_flush = 0;
1359 	int rss[NR_MM_COUNTERS];
1360 	spinlock_t *ptl;
1361 	pte_t *start_pte;
1362 	pte_t *pte;
1363 	swp_entry_t entry;
1364 
1365 	tlb_change_page_size(tlb, PAGE_SIZE);
1366 again:
1367 	init_rss_vec(rss);
1368 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1369 	pte = start_pte;
1370 	flush_tlb_batched_pending(mm);
1371 	arch_enter_lazy_mmu_mode();
1372 	do {
1373 		pte_t ptent = *pte;
1374 		struct page *page;
1375 
1376 		if (pte_none(ptent))
1377 			continue;
1378 
1379 		if (need_resched())
1380 			break;
1381 
1382 		if (pte_present(ptent)) {
1383 			unsigned int delay_rmap;
1384 
1385 			page = vm_normal_page(vma, addr, ptent);
1386 			if (unlikely(!should_zap_page(details, page)))
1387 				continue;
1388 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1389 							tlb->fullmm);
1390 			tlb_remove_tlb_entry(tlb, pte, addr);
1391 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1392 						      ptent);
1393 			if (unlikely(!page))
1394 				continue;
1395 
1396 			delay_rmap = 0;
1397 			if (!PageAnon(page)) {
1398 				if (pte_dirty(ptent)) {
1399 					set_page_dirty(page);
1400 					if (tlb_delay_rmap(tlb)) {
1401 						delay_rmap = 1;
1402 						force_flush = 1;
1403 					}
1404 				}
1405 				if (pte_young(ptent) &&
1406 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1407 					mark_page_accessed(page);
1408 			}
1409 			rss[mm_counter(page)]--;
1410 			if (!delay_rmap) {
1411 				page_remove_rmap(page, vma, false);
1412 				if (unlikely(page_mapcount(page) < 0))
1413 					print_bad_pte(vma, addr, ptent, page);
1414 			}
1415 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1416 				force_flush = 1;
1417 				addr += PAGE_SIZE;
1418 				break;
1419 			}
1420 			continue;
1421 		}
1422 
1423 		entry = pte_to_swp_entry(ptent);
1424 		if (is_device_private_entry(entry) ||
1425 		    is_device_exclusive_entry(entry)) {
1426 			page = pfn_swap_entry_to_page(entry);
1427 			if (unlikely(!should_zap_page(details, page)))
1428 				continue;
1429 			/*
1430 			 * Both device private/exclusive mappings should only
1431 			 * work with anonymous page so far, so we don't need to
1432 			 * consider uffd-wp bit when zap. For more information,
1433 			 * see zap_install_uffd_wp_if_needed().
1434 			 */
1435 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1436 			rss[mm_counter(page)]--;
1437 			if (is_device_private_entry(entry))
1438 				page_remove_rmap(page, vma, false);
1439 			put_page(page);
1440 		} else if (!non_swap_entry(entry)) {
1441 			/* Genuine swap entry, hence a private anon page */
1442 			if (!should_zap_cows(details))
1443 				continue;
1444 			rss[MM_SWAPENTS]--;
1445 			if (unlikely(!free_swap_and_cache(entry)))
1446 				print_bad_pte(vma, addr, ptent, NULL);
1447 		} else if (is_migration_entry(entry)) {
1448 			page = pfn_swap_entry_to_page(entry);
1449 			if (!should_zap_page(details, page))
1450 				continue;
1451 			rss[mm_counter(page)]--;
1452 		} else if (pte_marker_entry_uffd_wp(entry)) {
1453 			/* Only drop the uffd-wp marker if explicitly requested */
1454 			if (!zap_drop_file_uffd_wp(details))
1455 				continue;
1456 		} else if (is_hwpoison_entry(entry) ||
1457 			   is_swapin_error_entry(entry)) {
1458 			if (!should_zap_cows(details))
1459 				continue;
1460 		} else {
1461 			/* We should have covered all the swap entry types */
1462 			WARN_ON_ONCE(1);
1463 		}
1464 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1465 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1466 	} while (pte++, addr += PAGE_SIZE, addr != end);
1467 
1468 	add_mm_rss_vec(mm, rss);
1469 	arch_leave_lazy_mmu_mode();
1470 
1471 	/* Do the actual TLB flush before dropping ptl */
1472 	if (force_flush) {
1473 		tlb_flush_mmu_tlbonly(tlb);
1474 		tlb_flush_rmaps(tlb, vma);
1475 	}
1476 	pte_unmap_unlock(start_pte, ptl);
1477 
1478 	/*
1479 	 * If we forced a TLB flush (either due to running out of
1480 	 * batch buffers or because we needed to flush dirty TLB
1481 	 * entries before releasing the ptl), free the batched
1482 	 * memory too. Restart if we didn't do everything.
1483 	 */
1484 	if (force_flush) {
1485 		force_flush = 0;
1486 		tlb_flush_mmu(tlb);
1487 	}
1488 
1489 	if (addr != end) {
1490 		cond_resched();
1491 		goto again;
1492 	}
1493 
1494 	return addr;
1495 }
1496 
1497 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1498 				struct vm_area_struct *vma, pud_t *pud,
1499 				unsigned long addr, unsigned long end,
1500 				struct zap_details *details)
1501 {
1502 	pmd_t *pmd;
1503 	unsigned long next;
1504 
1505 	pmd = pmd_offset(pud, addr);
1506 	do {
1507 		next = pmd_addr_end(addr, end);
1508 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1509 			if (next - addr != HPAGE_PMD_SIZE)
1510 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1511 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1512 				goto next;
1513 			/* fall through */
1514 		} else if (details && details->single_folio &&
1515 			   folio_test_pmd_mappable(details->single_folio) &&
1516 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1517 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1518 			/*
1519 			 * Take and drop THP pmd lock so that we cannot return
1520 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1521 			 * but not yet decremented compound_mapcount().
1522 			 */
1523 			spin_unlock(ptl);
1524 		}
1525 
1526 		/*
1527 		 * Here there can be other concurrent MADV_DONTNEED or
1528 		 * trans huge page faults running, and if the pmd is
1529 		 * none or trans huge it can change under us. This is
1530 		 * because MADV_DONTNEED holds the mmap_lock in read
1531 		 * mode.
1532 		 */
1533 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1534 			goto next;
1535 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1536 next:
1537 		cond_resched();
1538 	} while (pmd++, addr = next, addr != end);
1539 
1540 	return addr;
1541 }
1542 
1543 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1544 				struct vm_area_struct *vma, p4d_t *p4d,
1545 				unsigned long addr, unsigned long end,
1546 				struct zap_details *details)
1547 {
1548 	pud_t *pud;
1549 	unsigned long next;
1550 
1551 	pud = pud_offset(p4d, addr);
1552 	do {
1553 		next = pud_addr_end(addr, end);
1554 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1555 			if (next - addr != HPAGE_PUD_SIZE) {
1556 				mmap_assert_locked(tlb->mm);
1557 				split_huge_pud(vma, pud, addr);
1558 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1559 				goto next;
1560 			/* fall through */
1561 		}
1562 		if (pud_none_or_clear_bad(pud))
1563 			continue;
1564 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1565 next:
1566 		cond_resched();
1567 	} while (pud++, addr = next, addr != end);
1568 
1569 	return addr;
1570 }
1571 
1572 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1573 				struct vm_area_struct *vma, pgd_t *pgd,
1574 				unsigned long addr, unsigned long end,
1575 				struct zap_details *details)
1576 {
1577 	p4d_t *p4d;
1578 	unsigned long next;
1579 
1580 	p4d = p4d_offset(pgd, addr);
1581 	do {
1582 		next = p4d_addr_end(addr, end);
1583 		if (p4d_none_or_clear_bad(p4d))
1584 			continue;
1585 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1586 	} while (p4d++, addr = next, addr != end);
1587 
1588 	return addr;
1589 }
1590 
1591 void unmap_page_range(struct mmu_gather *tlb,
1592 			     struct vm_area_struct *vma,
1593 			     unsigned long addr, unsigned long end,
1594 			     struct zap_details *details)
1595 {
1596 	pgd_t *pgd;
1597 	unsigned long next;
1598 
1599 	BUG_ON(addr >= end);
1600 	tlb_start_vma(tlb, vma);
1601 	pgd = pgd_offset(vma->vm_mm, addr);
1602 	do {
1603 		next = pgd_addr_end(addr, end);
1604 		if (pgd_none_or_clear_bad(pgd))
1605 			continue;
1606 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1607 	} while (pgd++, addr = next, addr != end);
1608 	tlb_end_vma(tlb, vma);
1609 }
1610 
1611 
1612 static void unmap_single_vma(struct mmu_gather *tlb,
1613 		struct vm_area_struct *vma, unsigned long start_addr,
1614 		unsigned long end_addr,
1615 		struct zap_details *details)
1616 {
1617 	unsigned long start = max(vma->vm_start, start_addr);
1618 	unsigned long end;
1619 
1620 	if (start >= vma->vm_end)
1621 		return;
1622 	end = min(vma->vm_end, end_addr);
1623 	if (end <= vma->vm_start)
1624 		return;
1625 
1626 	if (vma->vm_file)
1627 		uprobe_munmap(vma, start, end);
1628 
1629 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1630 		untrack_pfn(vma, 0, 0);
1631 
1632 	if (start != end) {
1633 		if (unlikely(is_vm_hugetlb_page(vma))) {
1634 			/*
1635 			 * It is undesirable to test vma->vm_file as it
1636 			 * should be non-null for valid hugetlb area.
1637 			 * However, vm_file will be NULL in the error
1638 			 * cleanup path of mmap_region. When
1639 			 * hugetlbfs ->mmap method fails,
1640 			 * mmap_region() nullifies vma->vm_file
1641 			 * before calling this function to clean up.
1642 			 * Since no pte has actually been setup, it is
1643 			 * safe to do nothing in this case.
1644 			 */
1645 			if (vma->vm_file) {
1646 				zap_flags_t zap_flags = details ?
1647 				    details->zap_flags : 0;
1648 				__unmap_hugepage_range_final(tlb, vma, start, end,
1649 							     NULL, zap_flags);
1650 			}
1651 		} else
1652 			unmap_page_range(tlb, vma, start, end, details);
1653 	}
1654 }
1655 
1656 /**
1657  * unmap_vmas - unmap a range of memory covered by a list of vma's
1658  * @tlb: address of the caller's struct mmu_gather
1659  * @mt: the maple tree
1660  * @vma: the starting vma
1661  * @start_addr: virtual address at which to start unmapping
1662  * @end_addr: virtual address at which to end unmapping
1663  *
1664  * Unmap all pages in the vma list.
1665  *
1666  * Only addresses between `start' and `end' will be unmapped.
1667  *
1668  * The VMA list must be sorted in ascending virtual address order.
1669  *
1670  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1671  * range after unmap_vmas() returns.  So the only responsibility here is to
1672  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1673  * drops the lock and schedules.
1674  */
1675 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1676 		struct vm_area_struct *vma, unsigned long start_addr,
1677 		unsigned long end_addr)
1678 {
1679 	struct mmu_notifier_range range;
1680 	struct zap_details details = {
1681 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1682 		/* Careful - we need to zap private pages too! */
1683 		.even_cows = true,
1684 	};
1685 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1686 
1687 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1688 				start_addr, end_addr);
1689 	mmu_notifier_invalidate_range_start(&range);
1690 	do {
1691 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1692 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1693 	mmu_notifier_invalidate_range_end(&range);
1694 }
1695 
1696 /**
1697  * zap_page_range_single - remove user pages in a given range
1698  * @vma: vm_area_struct holding the applicable pages
1699  * @address: starting address of pages to zap
1700  * @size: number of bytes to zap
1701  * @details: details of shared cache invalidation
1702  *
1703  * The range must fit into one VMA.
1704  */
1705 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1706 		unsigned long size, struct zap_details *details)
1707 {
1708 	const unsigned long end = address + size;
1709 	struct mmu_notifier_range range;
1710 	struct mmu_gather tlb;
1711 
1712 	lru_add_drain();
1713 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1714 				address, end);
1715 	if (is_vm_hugetlb_page(vma))
1716 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1717 						     &range.end);
1718 	tlb_gather_mmu(&tlb, vma->vm_mm);
1719 	update_hiwater_rss(vma->vm_mm);
1720 	mmu_notifier_invalidate_range_start(&range);
1721 	/*
1722 	 * unmap 'address-end' not 'range.start-range.end' as range
1723 	 * could have been expanded for hugetlb pmd sharing.
1724 	 */
1725 	unmap_single_vma(&tlb, vma, address, end, details);
1726 	mmu_notifier_invalidate_range_end(&range);
1727 	tlb_finish_mmu(&tlb);
1728 }
1729 
1730 /**
1731  * zap_vma_ptes - remove ptes mapping the vma
1732  * @vma: vm_area_struct holding ptes to be zapped
1733  * @address: starting address of pages to zap
1734  * @size: number of bytes to zap
1735  *
1736  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1737  *
1738  * The entire address range must be fully contained within the vma.
1739  *
1740  */
1741 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1742 		unsigned long size)
1743 {
1744 	if (!range_in_vma(vma, address, address + size) ||
1745 	    		!(vma->vm_flags & VM_PFNMAP))
1746 		return;
1747 
1748 	zap_page_range_single(vma, address, size, NULL);
1749 }
1750 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1751 
1752 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1753 {
1754 	pgd_t *pgd;
1755 	p4d_t *p4d;
1756 	pud_t *pud;
1757 	pmd_t *pmd;
1758 
1759 	pgd = pgd_offset(mm, addr);
1760 	p4d = p4d_alloc(mm, pgd, addr);
1761 	if (!p4d)
1762 		return NULL;
1763 	pud = pud_alloc(mm, p4d, addr);
1764 	if (!pud)
1765 		return NULL;
1766 	pmd = pmd_alloc(mm, pud, addr);
1767 	if (!pmd)
1768 		return NULL;
1769 
1770 	VM_BUG_ON(pmd_trans_huge(*pmd));
1771 	return pmd;
1772 }
1773 
1774 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1775 			spinlock_t **ptl)
1776 {
1777 	pmd_t *pmd = walk_to_pmd(mm, addr);
1778 
1779 	if (!pmd)
1780 		return NULL;
1781 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1782 }
1783 
1784 static int validate_page_before_insert(struct page *page)
1785 {
1786 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1787 		return -EINVAL;
1788 	flush_dcache_page(page);
1789 	return 0;
1790 }
1791 
1792 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1793 			unsigned long addr, struct page *page, pgprot_t prot)
1794 {
1795 	if (!pte_none(*pte))
1796 		return -EBUSY;
1797 	/* Ok, finally just insert the thing.. */
1798 	get_page(page);
1799 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1800 	page_add_file_rmap(page, vma, false);
1801 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1802 	return 0;
1803 }
1804 
1805 /*
1806  * This is the old fallback for page remapping.
1807  *
1808  * For historical reasons, it only allows reserved pages. Only
1809  * old drivers should use this, and they needed to mark their
1810  * pages reserved for the old functions anyway.
1811  */
1812 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1813 			struct page *page, pgprot_t prot)
1814 {
1815 	int retval;
1816 	pte_t *pte;
1817 	spinlock_t *ptl;
1818 
1819 	retval = validate_page_before_insert(page);
1820 	if (retval)
1821 		goto out;
1822 	retval = -ENOMEM;
1823 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1824 	if (!pte)
1825 		goto out;
1826 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1827 	pte_unmap_unlock(pte, ptl);
1828 out:
1829 	return retval;
1830 }
1831 
1832 #ifdef pte_index
1833 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1834 			unsigned long addr, struct page *page, pgprot_t prot)
1835 {
1836 	int err;
1837 
1838 	if (!page_count(page))
1839 		return -EINVAL;
1840 	err = validate_page_before_insert(page);
1841 	if (err)
1842 		return err;
1843 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1844 }
1845 
1846 /* insert_pages() amortizes the cost of spinlock operations
1847  * when inserting pages in a loop. Arch *must* define pte_index.
1848  */
1849 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1850 			struct page **pages, unsigned long *num, pgprot_t prot)
1851 {
1852 	pmd_t *pmd = NULL;
1853 	pte_t *start_pte, *pte;
1854 	spinlock_t *pte_lock;
1855 	struct mm_struct *const mm = vma->vm_mm;
1856 	unsigned long curr_page_idx = 0;
1857 	unsigned long remaining_pages_total = *num;
1858 	unsigned long pages_to_write_in_pmd;
1859 	int ret;
1860 more:
1861 	ret = -EFAULT;
1862 	pmd = walk_to_pmd(mm, addr);
1863 	if (!pmd)
1864 		goto out;
1865 
1866 	pages_to_write_in_pmd = min_t(unsigned long,
1867 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1868 
1869 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1870 	ret = -ENOMEM;
1871 	if (pte_alloc(mm, pmd))
1872 		goto out;
1873 
1874 	while (pages_to_write_in_pmd) {
1875 		int pte_idx = 0;
1876 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1877 
1878 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1879 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1880 			int err = insert_page_in_batch_locked(vma, pte,
1881 				addr, pages[curr_page_idx], prot);
1882 			if (unlikely(err)) {
1883 				pte_unmap_unlock(start_pte, pte_lock);
1884 				ret = err;
1885 				remaining_pages_total -= pte_idx;
1886 				goto out;
1887 			}
1888 			addr += PAGE_SIZE;
1889 			++curr_page_idx;
1890 		}
1891 		pte_unmap_unlock(start_pte, pte_lock);
1892 		pages_to_write_in_pmd -= batch_size;
1893 		remaining_pages_total -= batch_size;
1894 	}
1895 	if (remaining_pages_total)
1896 		goto more;
1897 	ret = 0;
1898 out:
1899 	*num = remaining_pages_total;
1900 	return ret;
1901 }
1902 #endif  /* ifdef pte_index */
1903 
1904 /**
1905  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1906  * @vma: user vma to map to
1907  * @addr: target start user address of these pages
1908  * @pages: source kernel pages
1909  * @num: in: number of pages to map. out: number of pages that were *not*
1910  * mapped. (0 means all pages were successfully mapped).
1911  *
1912  * Preferred over vm_insert_page() when inserting multiple pages.
1913  *
1914  * In case of error, we may have mapped a subset of the provided
1915  * pages. It is the caller's responsibility to account for this case.
1916  *
1917  * The same restrictions apply as in vm_insert_page().
1918  */
1919 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1920 			struct page **pages, unsigned long *num)
1921 {
1922 #ifdef pte_index
1923 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1924 
1925 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1926 		return -EFAULT;
1927 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1928 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1929 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1930 		vma->vm_flags |= VM_MIXEDMAP;
1931 	}
1932 	/* Defer page refcount checking till we're about to map that page. */
1933 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1934 #else
1935 	unsigned long idx = 0, pgcount = *num;
1936 	int err = -EINVAL;
1937 
1938 	for (; idx < pgcount; ++idx) {
1939 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1940 		if (err)
1941 			break;
1942 	}
1943 	*num = pgcount - idx;
1944 	return err;
1945 #endif  /* ifdef pte_index */
1946 }
1947 EXPORT_SYMBOL(vm_insert_pages);
1948 
1949 /**
1950  * vm_insert_page - insert single page into user vma
1951  * @vma: user vma to map to
1952  * @addr: target user address of this page
1953  * @page: source kernel page
1954  *
1955  * This allows drivers to insert individual pages they've allocated
1956  * into a user vma.
1957  *
1958  * The page has to be a nice clean _individual_ kernel allocation.
1959  * If you allocate a compound page, you need to have marked it as
1960  * such (__GFP_COMP), or manually just split the page up yourself
1961  * (see split_page()).
1962  *
1963  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1964  * took an arbitrary page protection parameter. This doesn't allow
1965  * that. Your vma protection will have to be set up correctly, which
1966  * means that if you want a shared writable mapping, you'd better
1967  * ask for a shared writable mapping!
1968  *
1969  * The page does not need to be reserved.
1970  *
1971  * Usually this function is called from f_op->mmap() handler
1972  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1973  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1974  * function from other places, for example from page-fault handler.
1975  *
1976  * Return: %0 on success, negative error code otherwise.
1977  */
1978 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1979 			struct page *page)
1980 {
1981 	if (addr < vma->vm_start || addr >= vma->vm_end)
1982 		return -EFAULT;
1983 	if (!page_count(page))
1984 		return -EINVAL;
1985 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1986 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1987 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1988 		vma->vm_flags |= VM_MIXEDMAP;
1989 	}
1990 	return insert_page(vma, addr, page, vma->vm_page_prot);
1991 }
1992 EXPORT_SYMBOL(vm_insert_page);
1993 
1994 /*
1995  * __vm_map_pages - maps range of kernel pages into user vma
1996  * @vma: user vma to map to
1997  * @pages: pointer to array of source kernel pages
1998  * @num: number of pages in page array
1999  * @offset: user's requested vm_pgoff
2000  *
2001  * This allows drivers to map range of kernel pages into a user vma.
2002  *
2003  * Return: 0 on success and error code otherwise.
2004  */
2005 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2006 				unsigned long num, unsigned long offset)
2007 {
2008 	unsigned long count = vma_pages(vma);
2009 	unsigned long uaddr = vma->vm_start;
2010 	int ret, i;
2011 
2012 	/* Fail if the user requested offset is beyond the end of the object */
2013 	if (offset >= num)
2014 		return -ENXIO;
2015 
2016 	/* Fail if the user requested size exceeds available object size */
2017 	if (count > num - offset)
2018 		return -ENXIO;
2019 
2020 	for (i = 0; i < count; i++) {
2021 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2022 		if (ret < 0)
2023 			return ret;
2024 		uaddr += PAGE_SIZE;
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 /**
2031  * vm_map_pages - maps range of kernel pages starts with non zero offset
2032  * @vma: user vma to map to
2033  * @pages: pointer to array of source kernel pages
2034  * @num: number of pages in page array
2035  *
2036  * Maps an object consisting of @num pages, catering for the user's
2037  * requested vm_pgoff
2038  *
2039  * If we fail to insert any page into the vma, the function will return
2040  * immediately leaving any previously inserted pages present.  Callers
2041  * from the mmap handler may immediately return the error as their caller
2042  * will destroy the vma, removing any successfully inserted pages. Other
2043  * callers should make their own arrangements for calling unmap_region().
2044  *
2045  * Context: Process context. Called by mmap handlers.
2046  * Return: 0 on success and error code otherwise.
2047  */
2048 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2049 				unsigned long num)
2050 {
2051 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2052 }
2053 EXPORT_SYMBOL(vm_map_pages);
2054 
2055 /**
2056  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2057  * @vma: user vma to map to
2058  * @pages: pointer to array of source kernel pages
2059  * @num: number of pages in page array
2060  *
2061  * Similar to vm_map_pages(), except that it explicitly sets the offset
2062  * to 0. This function is intended for the drivers that did not consider
2063  * vm_pgoff.
2064  *
2065  * Context: Process context. Called by mmap handlers.
2066  * Return: 0 on success and error code otherwise.
2067  */
2068 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2069 				unsigned long num)
2070 {
2071 	return __vm_map_pages(vma, pages, num, 0);
2072 }
2073 EXPORT_SYMBOL(vm_map_pages_zero);
2074 
2075 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2076 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2077 {
2078 	struct mm_struct *mm = vma->vm_mm;
2079 	pte_t *pte, entry;
2080 	spinlock_t *ptl;
2081 
2082 	pte = get_locked_pte(mm, addr, &ptl);
2083 	if (!pte)
2084 		return VM_FAULT_OOM;
2085 	if (!pte_none(*pte)) {
2086 		if (mkwrite) {
2087 			/*
2088 			 * For read faults on private mappings the PFN passed
2089 			 * in may not match the PFN we have mapped if the
2090 			 * mapped PFN is a writeable COW page.  In the mkwrite
2091 			 * case we are creating a writable PTE for a shared
2092 			 * mapping and we expect the PFNs to match. If they
2093 			 * don't match, we are likely racing with block
2094 			 * allocation and mapping invalidation so just skip the
2095 			 * update.
2096 			 */
2097 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2098 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2099 				goto out_unlock;
2100 			}
2101 			entry = pte_mkyoung(*pte);
2102 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2103 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2104 				update_mmu_cache(vma, addr, pte);
2105 		}
2106 		goto out_unlock;
2107 	}
2108 
2109 	/* Ok, finally just insert the thing.. */
2110 	if (pfn_t_devmap(pfn))
2111 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2112 	else
2113 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2114 
2115 	if (mkwrite) {
2116 		entry = pte_mkyoung(entry);
2117 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2118 	}
2119 
2120 	set_pte_at(mm, addr, pte, entry);
2121 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2122 
2123 out_unlock:
2124 	pte_unmap_unlock(pte, ptl);
2125 	return VM_FAULT_NOPAGE;
2126 }
2127 
2128 /**
2129  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2130  * @vma: user vma to map to
2131  * @addr: target user address of this page
2132  * @pfn: source kernel pfn
2133  * @pgprot: pgprot flags for the inserted page
2134  *
2135  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2136  * to override pgprot on a per-page basis.
2137  *
2138  * This only makes sense for IO mappings, and it makes no sense for
2139  * COW mappings.  In general, using multiple vmas is preferable;
2140  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2141  * impractical.
2142  *
2143  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2144  * a value of @pgprot different from that of @vma->vm_page_prot.
2145  *
2146  * Context: Process context.  May allocate using %GFP_KERNEL.
2147  * Return: vm_fault_t value.
2148  */
2149 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2150 			unsigned long pfn, pgprot_t pgprot)
2151 {
2152 	/*
2153 	 * Technically, architectures with pte_special can avoid all these
2154 	 * restrictions (same for remap_pfn_range).  However we would like
2155 	 * consistency in testing and feature parity among all, so we should
2156 	 * try to keep these invariants in place for everybody.
2157 	 */
2158 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2159 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2160 						(VM_PFNMAP|VM_MIXEDMAP));
2161 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2162 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2163 
2164 	if (addr < vma->vm_start || addr >= vma->vm_end)
2165 		return VM_FAULT_SIGBUS;
2166 
2167 	if (!pfn_modify_allowed(pfn, pgprot))
2168 		return VM_FAULT_SIGBUS;
2169 
2170 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2171 
2172 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2173 			false);
2174 }
2175 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2176 
2177 /**
2178  * vmf_insert_pfn - insert single pfn into user vma
2179  * @vma: user vma to map to
2180  * @addr: target user address of this page
2181  * @pfn: source kernel pfn
2182  *
2183  * Similar to vm_insert_page, this allows drivers to insert individual pages
2184  * they've allocated into a user vma. Same comments apply.
2185  *
2186  * This function should only be called from a vm_ops->fault handler, and
2187  * in that case the handler should return the result of this function.
2188  *
2189  * vma cannot be a COW mapping.
2190  *
2191  * As this is called only for pages that do not currently exist, we
2192  * do not need to flush old virtual caches or the TLB.
2193  *
2194  * Context: Process context.  May allocate using %GFP_KERNEL.
2195  * Return: vm_fault_t value.
2196  */
2197 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2198 			unsigned long pfn)
2199 {
2200 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2201 }
2202 EXPORT_SYMBOL(vmf_insert_pfn);
2203 
2204 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2205 {
2206 	/* these checks mirror the abort conditions in vm_normal_page */
2207 	if (vma->vm_flags & VM_MIXEDMAP)
2208 		return true;
2209 	if (pfn_t_devmap(pfn))
2210 		return true;
2211 	if (pfn_t_special(pfn))
2212 		return true;
2213 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2214 		return true;
2215 	return false;
2216 }
2217 
2218 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2219 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2220 		bool mkwrite)
2221 {
2222 	int err;
2223 
2224 	BUG_ON(!vm_mixed_ok(vma, pfn));
2225 
2226 	if (addr < vma->vm_start || addr >= vma->vm_end)
2227 		return VM_FAULT_SIGBUS;
2228 
2229 	track_pfn_insert(vma, &pgprot, pfn);
2230 
2231 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2232 		return VM_FAULT_SIGBUS;
2233 
2234 	/*
2235 	 * If we don't have pte special, then we have to use the pfn_valid()
2236 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2237 	 * refcount the page if pfn_valid is true (hence insert_page rather
2238 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2239 	 * without pte special, it would there be refcounted as a normal page.
2240 	 */
2241 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2242 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2243 		struct page *page;
2244 
2245 		/*
2246 		 * At this point we are committed to insert_page()
2247 		 * regardless of whether the caller specified flags that
2248 		 * result in pfn_t_has_page() == false.
2249 		 */
2250 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2251 		err = insert_page(vma, addr, page, pgprot);
2252 	} else {
2253 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2254 	}
2255 
2256 	if (err == -ENOMEM)
2257 		return VM_FAULT_OOM;
2258 	if (err < 0 && err != -EBUSY)
2259 		return VM_FAULT_SIGBUS;
2260 
2261 	return VM_FAULT_NOPAGE;
2262 }
2263 
2264 /**
2265  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2266  * @vma: user vma to map to
2267  * @addr: target user address of this page
2268  * @pfn: source kernel pfn
2269  * @pgprot: pgprot flags for the inserted page
2270  *
2271  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2272  * to override pgprot on a per-page basis.
2273  *
2274  * Typically this function should be used by drivers to set caching- and
2275  * encryption bits different than those of @vma->vm_page_prot, because
2276  * the caching- or encryption mode may not be known at mmap() time.
2277  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2278  * to set caching and encryption bits for those vmas (except for COW pages).
2279  * This is ensured by core vm only modifying these page table entries using
2280  * functions that don't touch caching- or encryption bits, using pte_modify()
2281  * if needed. (See for example mprotect()).
2282  * Also when new page-table entries are created, this is only done using the
2283  * fault() callback, and never using the value of vma->vm_page_prot,
2284  * except for page-table entries that point to anonymous pages as the result
2285  * of COW.
2286  *
2287  * Context: Process context.  May allocate using %GFP_KERNEL.
2288  * Return: vm_fault_t value.
2289  */
2290 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2291 				 pfn_t pfn, pgprot_t pgprot)
2292 {
2293 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2294 }
2295 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2296 
2297 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2298 		pfn_t pfn)
2299 {
2300 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2301 }
2302 EXPORT_SYMBOL(vmf_insert_mixed);
2303 
2304 /*
2305  *  If the insertion of PTE failed because someone else already added a
2306  *  different entry in the mean time, we treat that as success as we assume
2307  *  the same entry was actually inserted.
2308  */
2309 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2310 		unsigned long addr, pfn_t pfn)
2311 {
2312 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2313 }
2314 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2315 
2316 /*
2317  * maps a range of physical memory into the requested pages. the old
2318  * mappings are removed. any references to nonexistent pages results
2319  * in null mappings (currently treated as "copy-on-access")
2320  */
2321 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2322 			unsigned long addr, unsigned long end,
2323 			unsigned long pfn, pgprot_t prot)
2324 {
2325 	pte_t *pte, *mapped_pte;
2326 	spinlock_t *ptl;
2327 	int err = 0;
2328 
2329 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2330 	if (!pte)
2331 		return -ENOMEM;
2332 	arch_enter_lazy_mmu_mode();
2333 	do {
2334 		BUG_ON(!pte_none(*pte));
2335 		if (!pfn_modify_allowed(pfn, prot)) {
2336 			err = -EACCES;
2337 			break;
2338 		}
2339 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2340 		pfn++;
2341 	} while (pte++, addr += PAGE_SIZE, addr != end);
2342 	arch_leave_lazy_mmu_mode();
2343 	pte_unmap_unlock(mapped_pte, ptl);
2344 	return err;
2345 }
2346 
2347 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2348 			unsigned long addr, unsigned long end,
2349 			unsigned long pfn, pgprot_t prot)
2350 {
2351 	pmd_t *pmd;
2352 	unsigned long next;
2353 	int err;
2354 
2355 	pfn -= addr >> PAGE_SHIFT;
2356 	pmd = pmd_alloc(mm, pud, addr);
2357 	if (!pmd)
2358 		return -ENOMEM;
2359 	VM_BUG_ON(pmd_trans_huge(*pmd));
2360 	do {
2361 		next = pmd_addr_end(addr, end);
2362 		err = remap_pte_range(mm, pmd, addr, next,
2363 				pfn + (addr >> PAGE_SHIFT), prot);
2364 		if (err)
2365 			return err;
2366 	} while (pmd++, addr = next, addr != end);
2367 	return 0;
2368 }
2369 
2370 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2371 			unsigned long addr, unsigned long end,
2372 			unsigned long pfn, pgprot_t prot)
2373 {
2374 	pud_t *pud;
2375 	unsigned long next;
2376 	int err;
2377 
2378 	pfn -= addr >> PAGE_SHIFT;
2379 	pud = pud_alloc(mm, p4d, addr);
2380 	if (!pud)
2381 		return -ENOMEM;
2382 	do {
2383 		next = pud_addr_end(addr, end);
2384 		err = remap_pmd_range(mm, pud, addr, next,
2385 				pfn + (addr >> PAGE_SHIFT), prot);
2386 		if (err)
2387 			return err;
2388 	} while (pud++, addr = next, addr != end);
2389 	return 0;
2390 }
2391 
2392 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2393 			unsigned long addr, unsigned long end,
2394 			unsigned long pfn, pgprot_t prot)
2395 {
2396 	p4d_t *p4d;
2397 	unsigned long next;
2398 	int err;
2399 
2400 	pfn -= addr >> PAGE_SHIFT;
2401 	p4d = p4d_alloc(mm, pgd, addr);
2402 	if (!p4d)
2403 		return -ENOMEM;
2404 	do {
2405 		next = p4d_addr_end(addr, end);
2406 		err = remap_pud_range(mm, p4d, addr, next,
2407 				pfn + (addr >> PAGE_SHIFT), prot);
2408 		if (err)
2409 			return err;
2410 	} while (p4d++, addr = next, addr != end);
2411 	return 0;
2412 }
2413 
2414 /*
2415  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2416  * must have pre-validated the caching bits of the pgprot_t.
2417  */
2418 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2419 		unsigned long pfn, unsigned long size, pgprot_t prot)
2420 {
2421 	pgd_t *pgd;
2422 	unsigned long next;
2423 	unsigned long end = addr + PAGE_ALIGN(size);
2424 	struct mm_struct *mm = vma->vm_mm;
2425 	int err;
2426 
2427 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2428 		return -EINVAL;
2429 
2430 	/*
2431 	 * Physically remapped pages are special. Tell the
2432 	 * rest of the world about it:
2433 	 *   VM_IO tells people not to look at these pages
2434 	 *	(accesses can have side effects).
2435 	 *   VM_PFNMAP tells the core MM that the base pages are just
2436 	 *	raw PFN mappings, and do not have a "struct page" associated
2437 	 *	with them.
2438 	 *   VM_DONTEXPAND
2439 	 *      Disable vma merging and expanding with mremap().
2440 	 *   VM_DONTDUMP
2441 	 *      Omit vma from core dump, even when VM_IO turned off.
2442 	 *
2443 	 * There's a horrible special case to handle copy-on-write
2444 	 * behaviour that some programs depend on. We mark the "original"
2445 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2446 	 * See vm_normal_page() for details.
2447 	 */
2448 	if (is_cow_mapping(vma->vm_flags)) {
2449 		if (addr != vma->vm_start || end != vma->vm_end)
2450 			return -EINVAL;
2451 		vma->vm_pgoff = pfn;
2452 	}
2453 
2454 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2455 
2456 	BUG_ON(addr >= end);
2457 	pfn -= addr >> PAGE_SHIFT;
2458 	pgd = pgd_offset(mm, addr);
2459 	flush_cache_range(vma, addr, end);
2460 	do {
2461 		next = pgd_addr_end(addr, end);
2462 		err = remap_p4d_range(mm, pgd, addr, next,
2463 				pfn + (addr >> PAGE_SHIFT), prot);
2464 		if (err)
2465 			return err;
2466 	} while (pgd++, addr = next, addr != end);
2467 
2468 	return 0;
2469 }
2470 
2471 /**
2472  * remap_pfn_range - remap kernel memory to userspace
2473  * @vma: user vma to map to
2474  * @addr: target page aligned user address to start at
2475  * @pfn: page frame number of kernel physical memory address
2476  * @size: size of mapping area
2477  * @prot: page protection flags for this mapping
2478  *
2479  * Note: this is only safe if the mm semaphore is held when called.
2480  *
2481  * Return: %0 on success, negative error code otherwise.
2482  */
2483 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2484 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2485 {
2486 	int err;
2487 
2488 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2489 	if (err)
2490 		return -EINVAL;
2491 
2492 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2493 	if (err)
2494 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2495 	return err;
2496 }
2497 EXPORT_SYMBOL(remap_pfn_range);
2498 
2499 /**
2500  * vm_iomap_memory - remap memory to userspace
2501  * @vma: user vma to map to
2502  * @start: start of the physical memory to be mapped
2503  * @len: size of area
2504  *
2505  * This is a simplified io_remap_pfn_range() for common driver use. The
2506  * driver just needs to give us the physical memory range to be mapped,
2507  * we'll figure out the rest from the vma information.
2508  *
2509  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2510  * whatever write-combining details or similar.
2511  *
2512  * Return: %0 on success, negative error code otherwise.
2513  */
2514 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2515 {
2516 	unsigned long vm_len, pfn, pages;
2517 
2518 	/* Check that the physical memory area passed in looks valid */
2519 	if (start + len < start)
2520 		return -EINVAL;
2521 	/*
2522 	 * You *really* shouldn't map things that aren't page-aligned,
2523 	 * but we've historically allowed it because IO memory might
2524 	 * just have smaller alignment.
2525 	 */
2526 	len += start & ~PAGE_MASK;
2527 	pfn = start >> PAGE_SHIFT;
2528 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2529 	if (pfn + pages < pfn)
2530 		return -EINVAL;
2531 
2532 	/* We start the mapping 'vm_pgoff' pages into the area */
2533 	if (vma->vm_pgoff > pages)
2534 		return -EINVAL;
2535 	pfn += vma->vm_pgoff;
2536 	pages -= vma->vm_pgoff;
2537 
2538 	/* Can we fit all of the mapping? */
2539 	vm_len = vma->vm_end - vma->vm_start;
2540 	if (vm_len >> PAGE_SHIFT > pages)
2541 		return -EINVAL;
2542 
2543 	/* Ok, let it rip */
2544 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2545 }
2546 EXPORT_SYMBOL(vm_iomap_memory);
2547 
2548 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2549 				     unsigned long addr, unsigned long end,
2550 				     pte_fn_t fn, void *data, bool create,
2551 				     pgtbl_mod_mask *mask)
2552 {
2553 	pte_t *pte, *mapped_pte;
2554 	int err = 0;
2555 	spinlock_t *ptl;
2556 
2557 	if (create) {
2558 		mapped_pte = pte = (mm == &init_mm) ?
2559 			pte_alloc_kernel_track(pmd, addr, mask) :
2560 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2561 		if (!pte)
2562 			return -ENOMEM;
2563 	} else {
2564 		mapped_pte = pte = (mm == &init_mm) ?
2565 			pte_offset_kernel(pmd, addr) :
2566 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2567 	}
2568 
2569 	BUG_ON(pmd_huge(*pmd));
2570 
2571 	arch_enter_lazy_mmu_mode();
2572 
2573 	if (fn) {
2574 		do {
2575 			if (create || !pte_none(*pte)) {
2576 				err = fn(pte++, addr, data);
2577 				if (err)
2578 					break;
2579 			}
2580 		} while (addr += PAGE_SIZE, addr != end);
2581 	}
2582 	*mask |= PGTBL_PTE_MODIFIED;
2583 
2584 	arch_leave_lazy_mmu_mode();
2585 
2586 	if (mm != &init_mm)
2587 		pte_unmap_unlock(mapped_pte, ptl);
2588 	return err;
2589 }
2590 
2591 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2592 				     unsigned long addr, unsigned long end,
2593 				     pte_fn_t fn, void *data, bool create,
2594 				     pgtbl_mod_mask *mask)
2595 {
2596 	pmd_t *pmd;
2597 	unsigned long next;
2598 	int err = 0;
2599 
2600 	BUG_ON(pud_huge(*pud));
2601 
2602 	if (create) {
2603 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2604 		if (!pmd)
2605 			return -ENOMEM;
2606 	} else {
2607 		pmd = pmd_offset(pud, addr);
2608 	}
2609 	do {
2610 		next = pmd_addr_end(addr, end);
2611 		if (pmd_none(*pmd) && !create)
2612 			continue;
2613 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2614 			return -EINVAL;
2615 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2616 			if (!create)
2617 				continue;
2618 			pmd_clear_bad(pmd);
2619 		}
2620 		err = apply_to_pte_range(mm, pmd, addr, next,
2621 					 fn, data, create, mask);
2622 		if (err)
2623 			break;
2624 	} while (pmd++, addr = next, addr != end);
2625 
2626 	return err;
2627 }
2628 
2629 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2630 				     unsigned long addr, unsigned long end,
2631 				     pte_fn_t fn, void *data, bool create,
2632 				     pgtbl_mod_mask *mask)
2633 {
2634 	pud_t *pud;
2635 	unsigned long next;
2636 	int err = 0;
2637 
2638 	if (create) {
2639 		pud = pud_alloc_track(mm, p4d, addr, mask);
2640 		if (!pud)
2641 			return -ENOMEM;
2642 	} else {
2643 		pud = pud_offset(p4d, addr);
2644 	}
2645 	do {
2646 		next = pud_addr_end(addr, end);
2647 		if (pud_none(*pud) && !create)
2648 			continue;
2649 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2650 			return -EINVAL;
2651 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2652 			if (!create)
2653 				continue;
2654 			pud_clear_bad(pud);
2655 		}
2656 		err = apply_to_pmd_range(mm, pud, addr, next,
2657 					 fn, data, create, mask);
2658 		if (err)
2659 			break;
2660 	} while (pud++, addr = next, addr != end);
2661 
2662 	return err;
2663 }
2664 
2665 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2666 				     unsigned long addr, unsigned long end,
2667 				     pte_fn_t fn, void *data, bool create,
2668 				     pgtbl_mod_mask *mask)
2669 {
2670 	p4d_t *p4d;
2671 	unsigned long next;
2672 	int err = 0;
2673 
2674 	if (create) {
2675 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2676 		if (!p4d)
2677 			return -ENOMEM;
2678 	} else {
2679 		p4d = p4d_offset(pgd, addr);
2680 	}
2681 	do {
2682 		next = p4d_addr_end(addr, end);
2683 		if (p4d_none(*p4d) && !create)
2684 			continue;
2685 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2686 			return -EINVAL;
2687 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2688 			if (!create)
2689 				continue;
2690 			p4d_clear_bad(p4d);
2691 		}
2692 		err = apply_to_pud_range(mm, p4d, addr, next,
2693 					 fn, data, create, mask);
2694 		if (err)
2695 			break;
2696 	} while (p4d++, addr = next, addr != end);
2697 
2698 	return err;
2699 }
2700 
2701 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2702 				 unsigned long size, pte_fn_t fn,
2703 				 void *data, bool create)
2704 {
2705 	pgd_t *pgd;
2706 	unsigned long start = addr, next;
2707 	unsigned long end = addr + size;
2708 	pgtbl_mod_mask mask = 0;
2709 	int err = 0;
2710 
2711 	if (WARN_ON(addr >= end))
2712 		return -EINVAL;
2713 
2714 	pgd = pgd_offset(mm, addr);
2715 	do {
2716 		next = pgd_addr_end(addr, end);
2717 		if (pgd_none(*pgd) && !create)
2718 			continue;
2719 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2720 			return -EINVAL;
2721 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2722 			if (!create)
2723 				continue;
2724 			pgd_clear_bad(pgd);
2725 		}
2726 		err = apply_to_p4d_range(mm, pgd, addr, next,
2727 					 fn, data, create, &mask);
2728 		if (err)
2729 			break;
2730 	} while (pgd++, addr = next, addr != end);
2731 
2732 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2733 		arch_sync_kernel_mappings(start, start + size);
2734 
2735 	return err;
2736 }
2737 
2738 /*
2739  * Scan a region of virtual memory, filling in page tables as necessary
2740  * and calling a provided function on each leaf page table.
2741  */
2742 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2743 			unsigned long size, pte_fn_t fn, void *data)
2744 {
2745 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2746 }
2747 EXPORT_SYMBOL_GPL(apply_to_page_range);
2748 
2749 /*
2750  * Scan a region of virtual memory, calling a provided function on
2751  * each leaf page table where it exists.
2752  *
2753  * Unlike apply_to_page_range, this does _not_ fill in page tables
2754  * where they are absent.
2755  */
2756 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2757 				 unsigned long size, pte_fn_t fn, void *data)
2758 {
2759 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2760 }
2761 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2762 
2763 /*
2764  * handle_pte_fault chooses page fault handler according to an entry which was
2765  * read non-atomically.  Before making any commitment, on those architectures
2766  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2767  * parts, do_swap_page must check under lock before unmapping the pte and
2768  * proceeding (but do_wp_page is only called after already making such a check;
2769  * and do_anonymous_page can safely check later on).
2770  */
2771 static inline int pte_unmap_same(struct vm_fault *vmf)
2772 {
2773 	int same = 1;
2774 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2775 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2776 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2777 		spin_lock(ptl);
2778 		same = pte_same(*vmf->pte, vmf->orig_pte);
2779 		spin_unlock(ptl);
2780 	}
2781 #endif
2782 	pte_unmap(vmf->pte);
2783 	vmf->pte = NULL;
2784 	return same;
2785 }
2786 
2787 /*
2788  * Return:
2789  *	0:		copied succeeded
2790  *	-EHWPOISON:	copy failed due to hwpoison in source page
2791  *	-EAGAIN:	copied failed (some other reason)
2792  */
2793 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2794 				      struct vm_fault *vmf)
2795 {
2796 	int ret;
2797 	void *kaddr;
2798 	void __user *uaddr;
2799 	bool locked = false;
2800 	struct vm_area_struct *vma = vmf->vma;
2801 	struct mm_struct *mm = vma->vm_mm;
2802 	unsigned long addr = vmf->address;
2803 
2804 	if (likely(src)) {
2805 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2806 			memory_failure_queue(page_to_pfn(src), 0);
2807 			return -EHWPOISON;
2808 		}
2809 		return 0;
2810 	}
2811 
2812 	/*
2813 	 * If the source page was a PFN mapping, we don't have
2814 	 * a "struct page" for it. We do a best-effort copy by
2815 	 * just copying from the original user address. If that
2816 	 * fails, we just zero-fill it. Live with it.
2817 	 */
2818 	kaddr = kmap_atomic(dst);
2819 	uaddr = (void __user *)(addr & PAGE_MASK);
2820 
2821 	/*
2822 	 * On architectures with software "accessed" bits, we would
2823 	 * take a double page fault, so mark it accessed here.
2824 	 */
2825 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2826 		pte_t entry;
2827 
2828 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2829 		locked = true;
2830 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2831 			/*
2832 			 * Other thread has already handled the fault
2833 			 * and update local tlb only
2834 			 */
2835 			update_mmu_tlb(vma, addr, vmf->pte);
2836 			ret = -EAGAIN;
2837 			goto pte_unlock;
2838 		}
2839 
2840 		entry = pte_mkyoung(vmf->orig_pte);
2841 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2842 			update_mmu_cache(vma, addr, vmf->pte);
2843 	}
2844 
2845 	/*
2846 	 * This really shouldn't fail, because the page is there
2847 	 * in the page tables. But it might just be unreadable,
2848 	 * in which case we just give up and fill the result with
2849 	 * zeroes.
2850 	 */
2851 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2852 		if (locked)
2853 			goto warn;
2854 
2855 		/* Re-validate under PTL if the page is still mapped */
2856 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2857 		locked = true;
2858 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2859 			/* The PTE changed under us, update local tlb */
2860 			update_mmu_tlb(vma, addr, vmf->pte);
2861 			ret = -EAGAIN;
2862 			goto pte_unlock;
2863 		}
2864 
2865 		/*
2866 		 * The same page can be mapped back since last copy attempt.
2867 		 * Try to copy again under PTL.
2868 		 */
2869 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2870 			/*
2871 			 * Give a warn in case there can be some obscure
2872 			 * use-case
2873 			 */
2874 warn:
2875 			WARN_ON_ONCE(1);
2876 			clear_page(kaddr);
2877 		}
2878 	}
2879 
2880 	ret = 0;
2881 
2882 pte_unlock:
2883 	if (locked)
2884 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2885 	kunmap_atomic(kaddr);
2886 	flush_dcache_page(dst);
2887 
2888 	return ret;
2889 }
2890 
2891 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2892 {
2893 	struct file *vm_file = vma->vm_file;
2894 
2895 	if (vm_file)
2896 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2897 
2898 	/*
2899 	 * Special mappings (e.g. VDSO) do not have any file so fake
2900 	 * a default GFP_KERNEL for them.
2901 	 */
2902 	return GFP_KERNEL;
2903 }
2904 
2905 /*
2906  * Notify the address space that the page is about to become writable so that
2907  * it can prohibit this or wait for the page to get into an appropriate state.
2908  *
2909  * We do this without the lock held, so that it can sleep if it needs to.
2910  */
2911 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2912 {
2913 	vm_fault_t ret;
2914 	struct page *page = vmf->page;
2915 	unsigned int old_flags = vmf->flags;
2916 
2917 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2918 
2919 	if (vmf->vma->vm_file &&
2920 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2921 		return VM_FAULT_SIGBUS;
2922 
2923 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2924 	/* Restore original flags so that caller is not surprised */
2925 	vmf->flags = old_flags;
2926 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2927 		return ret;
2928 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2929 		lock_page(page);
2930 		if (!page->mapping) {
2931 			unlock_page(page);
2932 			return 0; /* retry */
2933 		}
2934 		ret |= VM_FAULT_LOCKED;
2935 	} else
2936 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2937 	return ret;
2938 }
2939 
2940 /*
2941  * Handle dirtying of a page in shared file mapping on a write fault.
2942  *
2943  * The function expects the page to be locked and unlocks it.
2944  */
2945 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2946 {
2947 	struct vm_area_struct *vma = vmf->vma;
2948 	struct address_space *mapping;
2949 	struct page *page = vmf->page;
2950 	bool dirtied;
2951 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2952 
2953 	dirtied = set_page_dirty(page);
2954 	VM_BUG_ON_PAGE(PageAnon(page), page);
2955 	/*
2956 	 * Take a local copy of the address_space - page.mapping may be zeroed
2957 	 * by truncate after unlock_page().   The address_space itself remains
2958 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2959 	 * release semantics to prevent the compiler from undoing this copying.
2960 	 */
2961 	mapping = page_rmapping(page);
2962 	unlock_page(page);
2963 
2964 	if (!page_mkwrite)
2965 		file_update_time(vma->vm_file);
2966 
2967 	/*
2968 	 * Throttle page dirtying rate down to writeback speed.
2969 	 *
2970 	 * mapping may be NULL here because some device drivers do not
2971 	 * set page.mapping but still dirty their pages
2972 	 *
2973 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2974 	 * is pinning the mapping, as per above.
2975 	 */
2976 	if ((dirtied || page_mkwrite) && mapping) {
2977 		struct file *fpin;
2978 
2979 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2980 		balance_dirty_pages_ratelimited(mapping);
2981 		if (fpin) {
2982 			fput(fpin);
2983 			return VM_FAULT_COMPLETED;
2984 		}
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 /*
2991  * Handle write page faults for pages that can be reused in the current vma
2992  *
2993  * This can happen either due to the mapping being with the VM_SHARED flag,
2994  * or due to us being the last reference standing to the page. In either
2995  * case, all we need to do here is to mark the page as writable and update
2996  * any related book-keeping.
2997  */
2998 static inline void wp_page_reuse(struct vm_fault *vmf)
2999 	__releases(vmf->ptl)
3000 {
3001 	struct vm_area_struct *vma = vmf->vma;
3002 	struct page *page = vmf->page;
3003 	pte_t entry;
3004 
3005 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3006 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3007 
3008 	/*
3009 	 * Clear the pages cpupid information as the existing
3010 	 * information potentially belongs to a now completely
3011 	 * unrelated process.
3012 	 */
3013 	if (page)
3014 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3015 
3016 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3017 	entry = pte_mkyoung(vmf->orig_pte);
3018 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3019 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3020 		update_mmu_cache(vma, vmf->address, vmf->pte);
3021 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3022 	count_vm_event(PGREUSE);
3023 }
3024 
3025 /*
3026  * Handle the case of a page which we actually need to copy to a new page,
3027  * either due to COW or unsharing.
3028  *
3029  * Called with mmap_lock locked and the old page referenced, but
3030  * without the ptl held.
3031  *
3032  * High level logic flow:
3033  *
3034  * - Allocate a page, copy the content of the old page to the new one.
3035  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3036  * - Take the PTL. If the pte changed, bail out and release the allocated page
3037  * - If the pte is still the way we remember it, update the page table and all
3038  *   relevant references. This includes dropping the reference the page-table
3039  *   held to the old page, as well as updating the rmap.
3040  * - In any case, unlock the PTL and drop the reference we took to the old page.
3041  */
3042 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3043 {
3044 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3045 	struct vm_area_struct *vma = vmf->vma;
3046 	struct mm_struct *mm = vma->vm_mm;
3047 	struct page *old_page = vmf->page;
3048 	struct page *new_page = NULL;
3049 	pte_t entry;
3050 	int page_copied = 0;
3051 	struct mmu_notifier_range range;
3052 	int ret;
3053 
3054 	delayacct_wpcopy_start();
3055 
3056 	if (unlikely(anon_vma_prepare(vma)))
3057 		goto oom;
3058 
3059 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3060 		new_page = alloc_zeroed_user_highpage_movable(vma,
3061 							      vmf->address);
3062 		if (!new_page)
3063 			goto oom;
3064 	} else {
3065 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3066 				vmf->address);
3067 		if (!new_page)
3068 			goto oom;
3069 
3070 		ret = __wp_page_copy_user(new_page, old_page, vmf);
3071 		if (ret) {
3072 			/*
3073 			 * COW failed, if the fault was solved by other,
3074 			 * it's fine. If not, userspace would re-fault on
3075 			 * the same address and we will handle the fault
3076 			 * from the second attempt.
3077 			 * The -EHWPOISON case will not be retried.
3078 			 */
3079 			put_page(new_page);
3080 			if (old_page)
3081 				put_page(old_page);
3082 
3083 			delayacct_wpcopy_end();
3084 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3085 		}
3086 		kmsan_copy_page_meta(new_page, old_page);
3087 	}
3088 
3089 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3090 		goto oom_free_new;
3091 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3092 
3093 	__SetPageUptodate(new_page);
3094 
3095 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3096 				vmf->address & PAGE_MASK,
3097 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3098 	mmu_notifier_invalidate_range_start(&range);
3099 
3100 	/*
3101 	 * Re-check the pte - we dropped the lock
3102 	 */
3103 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3104 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3105 		if (old_page) {
3106 			if (!PageAnon(old_page)) {
3107 				dec_mm_counter(mm, mm_counter_file(old_page));
3108 				inc_mm_counter(mm, MM_ANONPAGES);
3109 			}
3110 		} else {
3111 			inc_mm_counter(mm, MM_ANONPAGES);
3112 		}
3113 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3114 		entry = mk_pte(new_page, vma->vm_page_prot);
3115 		entry = pte_sw_mkyoung(entry);
3116 		if (unlikely(unshare)) {
3117 			if (pte_soft_dirty(vmf->orig_pte))
3118 				entry = pte_mksoft_dirty(entry);
3119 			if (pte_uffd_wp(vmf->orig_pte))
3120 				entry = pte_mkuffd_wp(entry);
3121 		} else {
3122 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3123 		}
3124 
3125 		/*
3126 		 * Clear the pte entry and flush it first, before updating the
3127 		 * pte with the new entry, to keep TLBs on different CPUs in
3128 		 * sync. This code used to set the new PTE then flush TLBs, but
3129 		 * that left a window where the new PTE could be loaded into
3130 		 * some TLBs while the old PTE remains in others.
3131 		 */
3132 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3133 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3134 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3135 		/*
3136 		 * We call the notify macro here because, when using secondary
3137 		 * mmu page tables (such as kvm shadow page tables), we want the
3138 		 * new page to be mapped directly into the secondary page table.
3139 		 */
3140 		BUG_ON(unshare && pte_write(entry));
3141 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3142 		update_mmu_cache(vma, vmf->address, vmf->pte);
3143 		if (old_page) {
3144 			/*
3145 			 * Only after switching the pte to the new page may
3146 			 * we remove the mapcount here. Otherwise another
3147 			 * process may come and find the rmap count decremented
3148 			 * before the pte is switched to the new page, and
3149 			 * "reuse" the old page writing into it while our pte
3150 			 * here still points into it and can be read by other
3151 			 * threads.
3152 			 *
3153 			 * The critical issue is to order this
3154 			 * page_remove_rmap with the ptp_clear_flush above.
3155 			 * Those stores are ordered by (if nothing else,)
3156 			 * the barrier present in the atomic_add_negative
3157 			 * in page_remove_rmap.
3158 			 *
3159 			 * Then the TLB flush in ptep_clear_flush ensures that
3160 			 * no process can access the old page before the
3161 			 * decremented mapcount is visible. And the old page
3162 			 * cannot be reused until after the decremented
3163 			 * mapcount is visible. So transitively, TLBs to
3164 			 * old page will be flushed before it can be reused.
3165 			 */
3166 			page_remove_rmap(old_page, vma, false);
3167 		}
3168 
3169 		/* Free the old page.. */
3170 		new_page = old_page;
3171 		page_copied = 1;
3172 	} else {
3173 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3174 	}
3175 
3176 	if (new_page)
3177 		put_page(new_page);
3178 
3179 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3180 	/*
3181 	 * No need to double call mmu_notifier->invalidate_range() callback as
3182 	 * the above ptep_clear_flush_notify() did already call it.
3183 	 */
3184 	mmu_notifier_invalidate_range_only_end(&range);
3185 	if (old_page) {
3186 		if (page_copied)
3187 			free_swap_cache(old_page);
3188 		put_page(old_page);
3189 	}
3190 
3191 	delayacct_wpcopy_end();
3192 	return 0;
3193 oom_free_new:
3194 	put_page(new_page);
3195 oom:
3196 	if (old_page)
3197 		put_page(old_page);
3198 
3199 	delayacct_wpcopy_end();
3200 	return VM_FAULT_OOM;
3201 }
3202 
3203 /**
3204  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3205  *			  writeable once the page is prepared
3206  *
3207  * @vmf: structure describing the fault
3208  *
3209  * This function handles all that is needed to finish a write page fault in a
3210  * shared mapping due to PTE being read-only once the mapped page is prepared.
3211  * It handles locking of PTE and modifying it.
3212  *
3213  * The function expects the page to be locked or other protection against
3214  * concurrent faults / writeback (such as DAX radix tree locks).
3215  *
3216  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3217  * we acquired PTE lock.
3218  */
3219 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3220 {
3221 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3222 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3223 				       &vmf->ptl);
3224 	/*
3225 	 * We might have raced with another page fault while we released the
3226 	 * pte_offset_map_lock.
3227 	 */
3228 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3229 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3230 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3231 		return VM_FAULT_NOPAGE;
3232 	}
3233 	wp_page_reuse(vmf);
3234 	return 0;
3235 }
3236 
3237 /*
3238  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3239  * mapping
3240  */
3241 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3242 {
3243 	struct vm_area_struct *vma = vmf->vma;
3244 
3245 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3246 		vm_fault_t ret;
3247 
3248 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3249 		vmf->flags |= FAULT_FLAG_MKWRITE;
3250 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3251 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3252 			return ret;
3253 		return finish_mkwrite_fault(vmf);
3254 	}
3255 	wp_page_reuse(vmf);
3256 	return 0;
3257 }
3258 
3259 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3260 	__releases(vmf->ptl)
3261 {
3262 	struct vm_area_struct *vma = vmf->vma;
3263 	vm_fault_t ret = 0;
3264 
3265 	get_page(vmf->page);
3266 
3267 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3268 		vm_fault_t tmp;
3269 
3270 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3271 		tmp = do_page_mkwrite(vmf);
3272 		if (unlikely(!tmp || (tmp &
3273 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3274 			put_page(vmf->page);
3275 			return tmp;
3276 		}
3277 		tmp = finish_mkwrite_fault(vmf);
3278 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3279 			unlock_page(vmf->page);
3280 			put_page(vmf->page);
3281 			return tmp;
3282 		}
3283 	} else {
3284 		wp_page_reuse(vmf);
3285 		lock_page(vmf->page);
3286 	}
3287 	ret |= fault_dirty_shared_page(vmf);
3288 	put_page(vmf->page);
3289 
3290 	return ret;
3291 }
3292 
3293 /*
3294  * This routine handles present pages, when
3295  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3296  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3297  *   (FAULT_FLAG_UNSHARE)
3298  *
3299  * It is done by copying the page to a new address and decrementing the
3300  * shared-page counter for the old page.
3301  *
3302  * Note that this routine assumes that the protection checks have been
3303  * done by the caller (the low-level page fault routine in most cases).
3304  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3305  * done any necessary COW.
3306  *
3307  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3308  * though the page will change only once the write actually happens. This
3309  * avoids a few races, and potentially makes it more efficient.
3310  *
3311  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3312  * but allow concurrent faults), with pte both mapped and locked.
3313  * We return with mmap_lock still held, but pte unmapped and unlocked.
3314  */
3315 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3316 	__releases(vmf->ptl)
3317 {
3318 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3319 	struct vm_area_struct *vma = vmf->vma;
3320 	struct folio *folio = NULL;
3321 
3322 	if (likely(!unshare)) {
3323 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3324 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3325 			return handle_userfault(vmf, VM_UFFD_WP);
3326 		}
3327 
3328 		/*
3329 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3330 		 * is flushed in this case before copying.
3331 		 */
3332 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3333 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3334 			flush_tlb_page(vmf->vma, vmf->address);
3335 	}
3336 
3337 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3338 
3339 	/*
3340 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3341 	 * FAULT_FLAG_WRITE set at this point.
3342 	 */
3343 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3344 		/*
3345 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3346 		 * VM_PFNMAP VMA.
3347 		 *
3348 		 * We should not cow pages in a shared writeable mapping.
3349 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3350 		 */
3351 		if (!vmf->page)
3352 			return wp_pfn_shared(vmf);
3353 		return wp_page_shared(vmf);
3354 	}
3355 
3356 	if (vmf->page)
3357 		folio = page_folio(vmf->page);
3358 
3359 	/*
3360 	 * Private mapping: create an exclusive anonymous page copy if reuse
3361 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3362 	 */
3363 	if (folio && folio_test_anon(folio)) {
3364 		/*
3365 		 * If the page is exclusive to this process we must reuse the
3366 		 * page without further checks.
3367 		 */
3368 		if (PageAnonExclusive(vmf->page))
3369 			goto reuse;
3370 
3371 		/*
3372 		 * We have to verify under folio lock: these early checks are
3373 		 * just an optimization to avoid locking the folio and freeing
3374 		 * the swapcache if there is little hope that we can reuse.
3375 		 *
3376 		 * KSM doesn't necessarily raise the folio refcount.
3377 		 */
3378 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3379 			goto copy;
3380 		if (!folio_test_lru(folio))
3381 			/*
3382 			 * Note: We cannot easily detect+handle references from
3383 			 * remote LRU pagevecs or references to LRU folios.
3384 			 */
3385 			lru_add_drain();
3386 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3387 			goto copy;
3388 		if (!folio_trylock(folio))
3389 			goto copy;
3390 		if (folio_test_swapcache(folio))
3391 			folio_free_swap(folio);
3392 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3393 			folio_unlock(folio);
3394 			goto copy;
3395 		}
3396 		/*
3397 		 * Ok, we've got the only folio reference from our mapping
3398 		 * and the folio is locked, it's dark out, and we're wearing
3399 		 * sunglasses. Hit it.
3400 		 */
3401 		page_move_anon_rmap(vmf->page, vma);
3402 		folio_unlock(folio);
3403 reuse:
3404 		if (unlikely(unshare)) {
3405 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3406 			return 0;
3407 		}
3408 		wp_page_reuse(vmf);
3409 		return 0;
3410 	}
3411 copy:
3412 	/*
3413 	 * Ok, we need to copy. Oh, well..
3414 	 */
3415 	if (folio)
3416 		folio_get(folio);
3417 
3418 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3419 #ifdef CONFIG_KSM
3420 	if (folio && folio_test_ksm(folio))
3421 		count_vm_event(COW_KSM);
3422 #endif
3423 	return wp_page_copy(vmf);
3424 }
3425 
3426 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3427 		unsigned long start_addr, unsigned long end_addr,
3428 		struct zap_details *details)
3429 {
3430 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3431 }
3432 
3433 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3434 					    pgoff_t first_index,
3435 					    pgoff_t last_index,
3436 					    struct zap_details *details)
3437 {
3438 	struct vm_area_struct *vma;
3439 	pgoff_t vba, vea, zba, zea;
3440 
3441 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3442 		vba = vma->vm_pgoff;
3443 		vea = vba + vma_pages(vma) - 1;
3444 		zba = max(first_index, vba);
3445 		zea = min(last_index, vea);
3446 
3447 		unmap_mapping_range_vma(vma,
3448 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3449 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3450 				details);
3451 	}
3452 }
3453 
3454 /**
3455  * unmap_mapping_folio() - Unmap single folio from processes.
3456  * @folio: The locked folio to be unmapped.
3457  *
3458  * Unmap this folio from any userspace process which still has it mmaped.
3459  * Typically, for efficiency, the range of nearby pages has already been
3460  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3461  * truncation or invalidation holds the lock on a folio, it may find that
3462  * the page has been remapped again: and then uses unmap_mapping_folio()
3463  * to unmap it finally.
3464  */
3465 void unmap_mapping_folio(struct folio *folio)
3466 {
3467 	struct address_space *mapping = folio->mapping;
3468 	struct zap_details details = { };
3469 	pgoff_t	first_index;
3470 	pgoff_t	last_index;
3471 
3472 	VM_BUG_ON(!folio_test_locked(folio));
3473 
3474 	first_index = folio->index;
3475 	last_index = folio->index + folio_nr_pages(folio) - 1;
3476 
3477 	details.even_cows = false;
3478 	details.single_folio = folio;
3479 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3480 
3481 	i_mmap_lock_read(mapping);
3482 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3483 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3484 					 last_index, &details);
3485 	i_mmap_unlock_read(mapping);
3486 }
3487 
3488 /**
3489  * unmap_mapping_pages() - Unmap pages from processes.
3490  * @mapping: The address space containing pages to be unmapped.
3491  * @start: Index of first page to be unmapped.
3492  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3493  * @even_cows: Whether to unmap even private COWed pages.
3494  *
3495  * Unmap the pages in this address space from any userspace process which
3496  * has them mmaped.  Generally, you want to remove COWed pages as well when
3497  * a file is being truncated, but not when invalidating pages from the page
3498  * cache.
3499  */
3500 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3501 		pgoff_t nr, bool even_cows)
3502 {
3503 	struct zap_details details = { };
3504 	pgoff_t	first_index = start;
3505 	pgoff_t	last_index = start + nr - 1;
3506 
3507 	details.even_cows = even_cows;
3508 	if (last_index < first_index)
3509 		last_index = ULONG_MAX;
3510 
3511 	i_mmap_lock_read(mapping);
3512 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3513 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3514 					 last_index, &details);
3515 	i_mmap_unlock_read(mapping);
3516 }
3517 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3518 
3519 /**
3520  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3521  * address_space corresponding to the specified byte range in the underlying
3522  * file.
3523  *
3524  * @mapping: the address space containing mmaps to be unmapped.
3525  * @holebegin: byte in first page to unmap, relative to the start of
3526  * the underlying file.  This will be rounded down to a PAGE_SIZE
3527  * boundary.  Note that this is different from truncate_pagecache(), which
3528  * must keep the partial page.  In contrast, we must get rid of
3529  * partial pages.
3530  * @holelen: size of prospective hole in bytes.  This will be rounded
3531  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3532  * end of the file.
3533  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3534  * but 0 when invalidating pagecache, don't throw away private data.
3535  */
3536 void unmap_mapping_range(struct address_space *mapping,
3537 		loff_t const holebegin, loff_t const holelen, int even_cows)
3538 {
3539 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3540 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3541 
3542 	/* Check for overflow. */
3543 	if (sizeof(holelen) > sizeof(hlen)) {
3544 		long long holeend =
3545 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3546 		if (holeend & ~(long long)ULONG_MAX)
3547 			hlen = ULONG_MAX - hba + 1;
3548 	}
3549 
3550 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3551 }
3552 EXPORT_SYMBOL(unmap_mapping_range);
3553 
3554 /*
3555  * Restore a potential device exclusive pte to a working pte entry
3556  */
3557 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3558 {
3559 	struct folio *folio = page_folio(vmf->page);
3560 	struct vm_area_struct *vma = vmf->vma;
3561 	struct mmu_notifier_range range;
3562 
3563 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3564 		return VM_FAULT_RETRY;
3565 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3566 				vma->vm_mm, vmf->address & PAGE_MASK,
3567 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3568 	mmu_notifier_invalidate_range_start(&range);
3569 
3570 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3571 				&vmf->ptl);
3572 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3573 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3574 
3575 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3576 	folio_unlock(folio);
3577 
3578 	mmu_notifier_invalidate_range_end(&range);
3579 	return 0;
3580 }
3581 
3582 static inline bool should_try_to_free_swap(struct folio *folio,
3583 					   struct vm_area_struct *vma,
3584 					   unsigned int fault_flags)
3585 {
3586 	if (!folio_test_swapcache(folio))
3587 		return false;
3588 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3589 	    folio_test_mlocked(folio))
3590 		return true;
3591 	/*
3592 	 * If we want to map a page that's in the swapcache writable, we
3593 	 * have to detect via the refcount if we're really the exclusive
3594 	 * user. Try freeing the swapcache to get rid of the swapcache
3595 	 * reference only in case it's likely that we'll be the exlusive user.
3596 	 */
3597 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3598 		folio_ref_count(folio) == 2;
3599 }
3600 
3601 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3602 {
3603 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3604 				       vmf->address, &vmf->ptl);
3605 	/*
3606 	 * Be careful so that we will only recover a special uffd-wp pte into a
3607 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3608 	 *
3609 	 * This should also cover the case where e.g. the pte changed
3610 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3611 	 * So is_pte_marker() check is not enough to safely drop the pte.
3612 	 */
3613 	if (pte_same(vmf->orig_pte, *vmf->pte))
3614 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3615 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3616 	return 0;
3617 }
3618 
3619 /*
3620  * This is actually a page-missing access, but with uffd-wp special pte
3621  * installed.  It means this pte was wr-protected before being unmapped.
3622  */
3623 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3624 {
3625 	/*
3626 	 * Just in case there're leftover special ptes even after the region
3627 	 * got unregistered - we can simply clear them.  We can also do that
3628 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3629 	 * ranges, but it should be more efficient to be done lazily here.
3630 	 */
3631 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3632 		return pte_marker_clear(vmf);
3633 
3634 	/* do_fault() can handle pte markers too like none pte */
3635 	return do_fault(vmf);
3636 }
3637 
3638 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3639 {
3640 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3641 	unsigned long marker = pte_marker_get(entry);
3642 
3643 	/*
3644 	 * PTE markers should never be empty.  If anything weird happened,
3645 	 * the best thing to do is to kill the process along with its mm.
3646 	 */
3647 	if (WARN_ON_ONCE(!marker))
3648 		return VM_FAULT_SIGBUS;
3649 
3650 	/* Higher priority than uffd-wp when data corrupted */
3651 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3652 		return VM_FAULT_SIGBUS;
3653 
3654 	if (pte_marker_entry_uffd_wp(entry))
3655 		return pte_marker_handle_uffd_wp(vmf);
3656 
3657 	/* This is an unknown pte marker */
3658 	return VM_FAULT_SIGBUS;
3659 }
3660 
3661 /*
3662  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3663  * but allow concurrent faults), and pte mapped but not yet locked.
3664  * We return with pte unmapped and unlocked.
3665  *
3666  * We return with the mmap_lock locked or unlocked in the same cases
3667  * as does filemap_fault().
3668  */
3669 vm_fault_t do_swap_page(struct vm_fault *vmf)
3670 {
3671 	struct vm_area_struct *vma = vmf->vma;
3672 	struct folio *swapcache, *folio = NULL;
3673 	struct page *page;
3674 	struct swap_info_struct *si = NULL;
3675 	rmap_t rmap_flags = RMAP_NONE;
3676 	bool exclusive = false;
3677 	swp_entry_t entry;
3678 	pte_t pte;
3679 	int locked;
3680 	vm_fault_t ret = 0;
3681 	void *shadow = NULL;
3682 
3683 	if (!pte_unmap_same(vmf))
3684 		goto out;
3685 
3686 	entry = pte_to_swp_entry(vmf->orig_pte);
3687 	if (unlikely(non_swap_entry(entry))) {
3688 		if (is_migration_entry(entry)) {
3689 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3690 					     vmf->address);
3691 		} else if (is_device_exclusive_entry(entry)) {
3692 			vmf->page = pfn_swap_entry_to_page(entry);
3693 			ret = remove_device_exclusive_entry(vmf);
3694 		} else if (is_device_private_entry(entry)) {
3695 			vmf->page = pfn_swap_entry_to_page(entry);
3696 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3697 					vmf->address, &vmf->ptl);
3698 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3699 				spin_unlock(vmf->ptl);
3700 				goto out;
3701 			}
3702 
3703 			/*
3704 			 * Get a page reference while we know the page can't be
3705 			 * freed.
3706 			 */
3707 			get_page(vmf->page);
3708 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3709 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3710 			put_page(vmf->page);
3711 		} else if (is_hwpoison_entry(entry)) {
3712 			ret = VM_FAULT_HWPOISON;
3713 		} else if (is_pte_marker_entry(entry)) {
3714 			ret = handle_pte_marker(vmf);
3715 		} else {
3716 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3717 			ret = VM_FAULT_SIGBUS;
3718 		}
3719 		goto out;
3720 	}
3721 
3722 	/* Prevent swapoff from happening to us. */
3723 	si = get_swap_device(entry);
3724 	if (unlikely(!si))
3725 		goto out;
3726 
3727 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3728 	if (folio)
3729 		page = folio_file_page(folio, swp_offset(entry));
3730 	swapcache = folio;
3731 
3732 	if (!folio) {
3733 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3734 		    __swap_count(entry) == 1) {
3735 			/* skip swapcache */
3736 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3737 						vma, vmf->address, false);
3738 			page = &folio->page;
3739 			if (folio) {
3740 				__folio_set_locked(folio);
3741 				__folio_set_swapbacked(folio);
3742 
3743 				if (mem_cgroup_swapin_charge_folio(folio,
3744 							vma->vm_mm, GFP_KERNEL,
3745 							entry)) {
3746 					ret = VM_FAULT_OOM;
3747 					goto out_page;
3748 				}
3749 				mem_cgroup_swapin_uncharge_swap(entry);
3750 
3751 				shadow = get_shadow_from_swap_cache(entry);
3752 				if (shadow)
3753 					workingset_refault(folio, shadow);
3754 
3755 				folio_add_lru(folio);
3756 
3757 				/* To provide entry to swap_readpage() */
3758 				folio_set_swap_entry(folio, entry);
3759 				swap_readpage(page, true, NULL);
3760 				folio->private = NULL;
3761 			}
3762 		} else {
3763 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3764 						vmf);
3765 			if (page)
3766 				folio = page_folio(page);
3767 			swapcache = folio;
3768 		}
3769 
3770 		if (!folio) {
3771 			/*
3772 			 * Back out if somebody else faulted in this pte
3773 			 * while we released the pte lock.
3774 			 */
3775 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3776 					vmf->address, &vmf->ptl);
3777 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3778 				ret = VM_FAULT_OOM;
3779 			goto unlock;
3780 		}
3781 
3782 		/* Had to read the page from swap area: Major fault */
3783 		ret = VM_FAULT_MAJOR;
3784 		count_vm_event(PGMAJFAULT);
3785 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3786 	} else if (PageHWPoison(page)) {
3787 		/*
3788 		 * hwpoisoned dirty swapcache pages are kept for killing
3789 		 * owner processes (which may be unknown at hwpoison time)
3790 		 */
3791 		ret = VM_FAULT_HWPOISON;
3792 		goto out_release;
3793 	}
3794 
3795 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3796 
3797 	if (!locked) {
3798 		ret |= VM_FAULT_RETRY;
3799 		goto out_release;
3800 	}
3801 
3802 	if (swapcache) {
3803 		/*
3804 		 * Make sure folio_free_swap() or swapoff did not release the
3805 		 * swapcache from under us.  The page pin, and pte_same test
3806 		 * below, are not enough to exclude that.  Even if it is still
3807 		 * swapcache, we need to check that the page's swap has not
3808 		 * changed.
3809 		 */
3810 		if (unlikely(!folio_test_swapcache(folio) ||
3811 			     page_private(page) != entry.val))
3812 			goto out_page;
3813 
3814 		/*
3815 		 * KSM sometimes has to copy on read faults, for example, if
3816 		 * page->index of !PageKSM() pages would be nonlinear inside the
3817 		 * anon VMA -- PageKSM() is lost on actual swapout.
3818 		 */
3819 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3820 		if (unlikely(!page)) {
3821 			ret = VM_FAULT_OOM;
3822 			goto out_page;
3823 		}
3824 		folio = page_folio(page);
3825 
3826 		/*
3827 		 * If we want to map a page that's in the swapcache writable, we
3828 		 * have to detect via the refcount if we're really the exclusive
3829 		 * owner. Try removing the extra reference from the local LRU
3830 		 * pagevecs if required.
3831 		 */
3832 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3833 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3834 			lru_add_drain();
3835 	}
3836 
3837 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3838 
3839 	/*
3840 	 * Back out if somebody else already faulted in this pte.
3841 	 */
3842 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3843 			&vmf->ptl);
3844 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3845 		goto out_nomap;
3846 
3847 	if (unlikely(!folio_test_uptodate(folio))) {
3848 		ret = VM_FAULT_SIGBUS;
3849 		goto out_nomap;
3850 	}
3851 
3852 	/*
3853 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3854 	 * must never point at an anonymous page in the swapcache that is
3855 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3856 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3857 	 * check after taking the PT lock and making sure that nobody
3858 	 * concurrently faulted in this page and set PG_anon_exclusive.
3859 	 */
3860 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3861 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3862 
3863 	/*
3864 	 * Check under PT lock (to protect against concurrent fork() sharing
3865 	 * the swap entry concurrently) for certainly exclusive pages.
3866 	 */
3867 	if (!folio_test_ksm(folio)) {
3868 		/*
3869 		 * Note that pte_swp_exclusive() == false for architectures
3870 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3871 		 */
3872 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3873 		if (folio != swapcache) {
3874 			/*
3875 			 * We have a fresh page that is not exposed to the
3876 			 * swapcache -> certainly exclusive.
3877 			 */
3878 			exclusive = true;
3879 		} else if (exclusive && folio_test_writeback(folio) &&
3880 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3881 			/*
3882 			 * This is tricky: not all swap backends support
3883 			 * concurrent page modifications while under writeback.
3884 			 *
3885 			 * So if we stumble over such a page in the swapcache
3886 			 * we must not set the page exclusive, otherwise we can
3887 			 * map it writable without further checks and modify it
3888 			 * while still under writeback.
3889 			 *
3890 			 * For these problematic swap backends, simply drop the
3891 			 * exclusive marker: this is perfectly fine as we start
3892 			 * writeback only if we fully unmapped the page and
3893 			 * there are no unexpected references on the page after
3894 			 * unmapping succeeded. After fully unmapped, no
3895 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3896 			 * appear, so dropping the exclusive marker and mapping
3897 			 * it only R/O is fine.
3898 			 */
3899 			exclusive = false;
3900 		}
3901 	}
3902 
3903 	/*
3904 	 * Remove the swap entry and conditionally try to free up the swapcache.
3905 	 * We're already holding a reference on the page but haven't mapped it
3906 	 * yet.
3907 	 */
3908 	swap_free(entry);
3909 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3910 		folio_free_swap(folio);
3911 
3912 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3913 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3914 	pte = mk_pte(page, vma->vm_page_prot);
3915 
3916 	/*
3917 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3918 	 * certainly not shared either because we just allocated them without
3919 	 * exposing them to the swapcache or because the swap entry indicates
3920 	 * exclusivity.
3921 	 */
3922 	if (!folio_test_ksm(folio) &&
3923 	    (exclusive || folio_ref_count(folio) == 1)) {
3924 		if (vmf->flags & FAULT_FLAG_WRITE) {
3925 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3926 			vmf->flags &= ~FAULT_FLAG_WRITE;
3927 		}
3928 		rmap_flags |= RMAP_EXCLUSIVE;
3929 	}
3930 	flush_icache_page(vma, page);
3931 	if (pte_swp_soft_dirty(vmf->orig_pte))
3932 		pte = pte_mksoft_dirty(pte);
3933 	if (pte_swp_uffd_wp(vmf->orig_pte))
3934 		pte = pte_mkuffd_wp(pte);
3935 	vmf->orig_pte = pte;
3936 
3937 	/* ksm created a completely new copy */
3938 	if (unlikely(folio != swapcache && swapcache)) {
3939 		page_add_new_anon_rmap(page, vma, vmf->address);
3940 		folio_add_lru_vma(folio, vma);
3941 	} else {
3942 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3943 	}
3944 
3945 	VM_BUG_ON(!folio_test_anon(folio) ||
3946 			(pte_write(pte) && !PageAnonExclusive(page)));
3947 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3948 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3949 
3950 	folio_unlock(folio);
3951 	if (folio != swapcache && swapcache) {
3952 		/*
3953 		 * Hold the lock to avoid the swap entry to be reused
3954 		 * until we take the PT lock for the pte_same() check
3955 		 * (to avoid false positives from pte_same). For
3956 		 * further safety release the lock after the swap_free
3957 		 * so that the swap count won't change under a
3958 		 * parallel locked swapcache.
3959 		 */
3960 		folio_unlock(swapcache);
3961 		folio_put(swapcache);
3962 	}
3963 
3964 	if (vmf->flags & FAULT_FLAG_WRITE) {
3965 		ret |= do_wp_page(vmf);
3966 		if (ret & VM_FAULT_ERROR)
3967 			ret &= VM_FAULT_ERROR;
3968 		goto out;
3969 	}
3970 
3971 	/* No need to invalidate - it was non-present before */
3972 	update_mmu_cache(vma, vmf->address, vmf->pte);
3973 unlock:
3974 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3975 out:
3976 	if (si)
3977 		put_swap_device(si);
3978 	return ret;
3979 out_nomap:
3980 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3981 out_page:
3982 	folio_unlock(folio);
3983 out_release:
3984 	folio_put(folio);
3985 	if (folio != swapcache && swapcache) {
3986 		folio_unlock(swapcache);
3987 		folio_put(swapcache);
3988 	}
3989 	if (si)
3990 		put_swap_device(si);
3991 	return ret;
3992 }
3993 
3994 /*
3995  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3996  * but allow concurrent faults), and pte mapped but not yet locked.
3997  * We return with mmap_lock still held, but pte unmapped and unlocked.
3998  */
3999 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4000 {
4001 	struct vm_area_struct *vma = vmf->vma;
4002 	struct page *page;
4003 	vm_fault_t ret = 0;
4004 	pte_t entry;
4005 
4006 	/* File mapping without ->vm_ops ? */
4007 	if (vma->vm_flags & VM_SHARED)
4008 		return VM_FAULT_SIGBUS;
4009 
4010 	/*
4011 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4012 	 * pte_offset_map() on pmds where a huge pmd might be created
4013 	 * from a different thread.
4014 	 *
4015 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4016 	 * parallel threads are excluded by other means.
4017 	 *
4018 	 * Here we only have mmap_read_lock(mm).
4019 	 */
4020 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4021 		return VM_FAULT_OOM;
4022 
4023 	/* See comment in handle_pte_fault() */
4024 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4025 		return 0;
4026 
4027 	/* Use the zero-page for reads */
4028 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4029 			!mm_forbids_zeropage(vma->vm_mm)) {
4030 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4031 						vma->vm_page_prot));
4032 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4033 				vmf->address, &vmf->ptl);
4034 		if (!pte_none(*vmf->pte)) {
4035 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4036 			goto unlock;
4037 		}
4038 		ret = check_stable_address_space(vma->vm_mm);
4039 		if (ret)
4040 			goto unlock;
4041 		/* Deliver the page fault to userland, check inside PT lock */
4042 		if (userfaultfd_missing(vma)) {
4043 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4044 			return handle_userfault(vmf, VM_UFFD_MISSING);
4045 		}
4046 		goto setpte;
4047 	}
4048 
4049 	/* Allocate our own private page. */
4050 	if (unlikely(anon_vma_prepare(vma)))
4051 		goto oom;
4052 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4053 	if (!page)
4054 		goto oom;
4055 
4056 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4057 		goto oom_free_page;
4058 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4059 
4060 	/*
4061 	 * The memory barrier inside __SetPageUptodate makes sure that
4062 	 * preceding stores to the page contents become visible before
4063 	 * the set_pte_at() write.
4064 	 */
4065 	__SetPageUptodate(page);
4066 
4067 	entry = mk_pte(page, vma->vm_page_prot);
4068 	entry = pte_sw_mkyoung(entry);
4069 	if (vma->vm_flags & VM_WRITE)
4070 		entry = pte_mkwrite(pte_mkdirty(entry));
4071 
4072 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4073 			&vmf->ptl);
4074 	if (!pte_none(*vmf->pte)) {
4075 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4076 		goto release;
4077 	}
4078 
4079 	ret = check_stable_address_space(vma->vm_mm);
4080 	if (ret)
4081 		goto release;
4082 
4083 	/* Deliver the page fault to userland, check inside PT lock */
4084 	if (userfaultfd_missing(vma)) {
4085 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4086 		put_page(page);
4087 		return handle_userfault(vmf, VM_UFFD_MISSING);
4088 	}
4089 
4090 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4091 	page_add_new_anon_rmap(page, vma, vmf->address);
4092 	lru_cache_add_inactive_or_unevictable(page, vma);
4093 setpte:
4094 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4095 
4096 	/* No need to invalidate - it was non-present before */
4097 	update_mmu_cache(vma, vmf->address, vmf->pte);
4098 unlock:
4099 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4100 	return ret;
4101 release:
4102 	put_page(page);
4103 	goto unlock;
4104 oom_free_page:
4105 	put_page(page);
4106 oom:
4107 	return VM_FAULT_OOM;
4108 }
4109 
4110 /*
4111  * The mmap_lock must have been held on entry, and may have been
4112  * released depending on flags and vma->vm_ops->fault() return value.
4113  * See filemap_fault() and __lock_page_retry().
4114  */
4115 static vm_fault_t __do_fault(struct vm_fault *vmf)
4116 {
4117 	struct vm_area_struct *vma = vmf->vma;
4118 	vm_fault_t ret;
4119 
4120 	/*
4121 	 * Preallocate pte before we take page_lock because this might lead to
4122 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4123 	 *				lock_page(A)
4124 	 *				SetPageWriteback(A)
4125 	 *				unlock_page(A)
4126 	 * lock_page(B)
4127 	 *				lock_page(B)
4128 	 * pte_alloc_one
4129 	 *   shrink_page_list
4130 	 *     wait_on_page_writeback(A)
4131 	 *				SetPageWriteback(B)
4132 	 *				unlock_page(B)
4133 	 *				# flush A, B to clear the writeback
4134 	 */
4135 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4136 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4137 		if (!vmf->prealloc_pte)
4138 			return VM_FAULT_OOM;
4139 	}
4140 
4141 	ret = vma->vm_ops->fault(vmf);
4142 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4143 			    VM_FAULT_DONE_COW)))
4144 		return ret;
4145 
4146 	if (unlikely(PageHWPoison(vmf->page))) {
4147 		struct page *page = vmf->page;
4148 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4149 		if (ret & VM_FAULT_LOCKED) {
4150 			if (page_mapped(page))
4151 				unmap_mapping_pages(page_mapping(page),
4152 						    page->index, 1, false);
4153 			/* Retry if a clean page was removed from the cache. */
4154 			if (invalidate_inode_page(page))
4155 				poisonret = VM_FAULT_NOPAGE;
4156 			unlock_page(page);
4157 		}
4158 		put_page(page);
4159 		vmf->page = NULL;
4160 		return poisonret;
4161 	}
4162 
4163 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4164 		lock_page(vmf->page);
4165 	else
4166 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4167 
4168 	return ret;
4169 }
4170 
4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4172 static void deposit_prealloc_pte(struct vm_fault *vmf)
4173 {
4174 	struct vm_area_struct *vma = vmf->vma;
4175 
4176 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4177 	/*
4178 	 * We are going to consume the prealloc table,
4179 	 * count that as nr_ptes.
4180 	 */
4181 	mm_inc_nr_ptes(vma->vm_mm);
4182 	vmf->prealloc_pte = NULL;
4183 }
4184 
4185 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4186 {
4187 	struct vm_area_struct *vma = vmf->vma;
4188 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4189 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4190 	pmd_t entry;
4191 	int i;
4192 	vm_fault_t ret = VM_FAULT_FALLBACK;
4193 
4194 	if (!transhuge_vma_suitable(vma, haddr))
4195 		return ret;
4196 
4197 	page = compound_head(page);
4198 	if (compound_order(page) != HPAGE_PMD_ORDER)
4199 		return ret;
4200 
4201 	/*
4202 	 * Just backoff if any subpage of a THP is corrupted otherwise
4203 	 * the corrupted page may mapped by PMD silently to escape the
4204 	 * check.  This kind of THP just can be PTE mapped.  Access to
4205 	 * the corrupted subpage should trigger SIGBUS as expected.
4206 	 */
4207 	if (unlikely(PageHasHWPoisoned(page)))
4208 		return ret;
4209 
4210 	/*
4211 	 * Archs like ppc64 need additional space to store information
4212 	 * related to pte entry. Use the preallocated table for that.
4213 	 */
4214 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4215 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4216 		if (!vmf->prealloc_pte)
4217 			return VM_FAULT_OOM;
4218 	}
4219 
4220 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4221 	if (unlikely(!pmd_none(*vmf->pmd)))
4222 		goto out;
4223 
4224 	for (i = 0; i < HPAGE_PMD_NR; i++)
4225 		flush_icache_page(vma, page + i);
4226 
4227 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4228 	if (write)
4229 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4230 
4231 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4232 	page_add_file_rmap(page, vma, true);
4233 
4234 	/*
4235 	 * deposit and withdraw with pmd lock held
4236 	 */
4237 	if (arch_needs_pgtable_deposit())
4238 		deposit_prealloc_pte(vmf);
4239 
4240 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4241 
4242 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4243 
4244 	/* fault is handled */
4245 	ret = 0;
4246 	count_vm_event(THP_FILE_MAPPED);
4247 out:
4248 	spin_unlock(vmf->ptl);
4249 	return ret;
4250 }
4251 #else
4252 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4253 {
4254 	return VM_FAULT_FALLBACK;
4255 }
4256 #endif
4257 
4258 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4259 {
4260 	struct vm_area_struct *vma = vmf->vma;
4261 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4262 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4263 	bool prefault = vmf->address != addr;
4264 	pte_t entry;
4265 
4266 	flush_icache_page(vma, page);
4267 	entry = mk_pte(page, vma->vm_page_prot);
4268 
4269 	if (prefault && arch_wants_old_prefaulted_pte())
4270 		entry = pte_mkold(entry);
4271 	else
4272 		entry = pte_sw_mkyoung(entry);
4273 
4274 	if (write)
4275 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4276 	if (unlikely(uffd_wp))
4277 		entry = pte_mkuffd_wp(entry);
4278 	/* copy-on-write page */
4279 	if (write && !(vma->vm_flags & VM_SHARED)) {
4280 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4281 		page_add_new_anon_rmap(page, vma, addr);
4282 		lru_cache_add_inactive_or_unevictable(page, vma);
4283 	} else {
4284 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4285 		page_add_file_rmap(page, vma, false);
4286 	}
4287 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4288 }
4289 
4290 static bool vmf_pte_changed(struct vm_fault *vmf)
4291 {
4292 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4293 		return !pte_same(*vmf->pte, vmf->orig_pte);
4294 
4295 	return !pte_none(*vmf->pte);
4296 }
4297 
4298 /**
4299  * finish_fault - finish page fault once we have prepared the page to fault
4300  *
4301  * @vmf: structure describing the fault
4302  *
4303  * This function handles all that is needed to finish a page fault once the
4304  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4305  * given page, adds reverse page mapping, handles memcg charges and LRU
4306  * addition.
4307  *
4308  * The function expects the page to be locked and on success it consumes a
4309  * reference of a page being mapped (for the PTE which maps it).
4310  *
4311  * Return: %0 on success, %VM_FAULT_ code in case of error.
4312  */
4313 vm_fault_t finish_fault(struct vm_fault *vmf)
4314 {
4315 	struct vm_area_struct *vma = vmf->vma;
4316 	struct page *page;
4317 	vm_fault_t ret;
4318 
4319 	/* Did we COW the page? */
4320 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4321 		page = vmf->cow_page;
4322 	else
4323 		page = vmf->page;
4324 
4325 	/*
4326 	 * check even for read faults because we might have lost our CoWed
4327 	 * page
4328 	 */
4329 	if (!(vma->vm_flags & VM_SHARED)) {
4330 		ret = check_stable_address_space(vma->vm_mm);
4331 		if (ret)
4332 			return ret;
4333 	}
4334 
4335 	if (pmd_none(*vmf->pmd)) {
4336 		if (PageTransCompound(page)) {
4337 			ret = do_set_pmd(vmf, page);
4338 			if (ret != VM_FAULT_FALLBACK)
4339 				return ret;
4340 		}
4341 
4342 		if (vmf->prealloc_pte)
4343 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4344 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4345 			return VM_FAULT_OOM;
4346 	}
4347 
4348 	/*
4349 	 * See comment in handle_pte_fault() for how this scenario happens, we
4350 	 * need to return NOPAGE so that we drop this page.
4351 	 */
4352 	if (pmd_devmap_trans_unstable(vmf->pmd))
4353 		return VM_FAULT_NOPAGE;
4354 
4355 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4356 				      vmf->address, &vmf->ptl);
4357 
4358 	/* Re-check under ptl */
4359 	if (likely(!vmf_pte_changed(vmf))) {
4360 		do_set_pte(vmf, page, vmf->address);
4361 
4362 		/* no need to invalidate: a not-present page won't be cached */
4363 		update_mmu_cache(vma, vmf->address, vmf->pte);
4364 
4365 		ret = 0;
4366 	} else {
4367 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4368 		ret = VM_FAULT_NOPAGE;
4369 	}
4370 
4371 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4372 	return ret;
4373 }
4374 
4375 static unsigned long fault_around_bytes __read_mostly =
4376 	rounddown_pow_of_two(65536);
4377 
4378 #ifdef CONFIG_DEBUG_FS
4379 static int fault_around_bytes_get(void *data, u64 *val)
4380 {
4381 	*val = fault_around_bytes;
4382 	return 0;
4383 }
4384 
4385 /*
4386  * fault_around_bytes must be rounded down to the nearest page order as it's
4387  * what do_fault_around() expects to see.
4388  */
4389 static int fault_around_bytes_set(void *data, u64 val)
4390 {
4391 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4392 		return -EINVAL;
4393 	if (val > PAGE_SIZE)
4394 		fault_around_bytes = rounddown_pow_of_two(val);
4395 	else
4396 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4397 	return 0;
4398 }
4399 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4400 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4401 
4402 static int __init fault_around_debugfs(void)
4403 {
4404 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4405 				   &fault_around_bytes_fops);
4406 	return 0;
4407 }
4408 late_initcall(fault_around_debugfs);
4409 #endif
4410 
4411 /*
4412  * do_fault_around() tries to map few pages around the fault address. The hope
4413  * is that the pages will be needed soon and this will lower the number of
4414  * faults to handle.
4415  *
4416  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4417  * not ready to be mapped: not up-to-date, locked, etc.
4418  *
4419  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4420  * only once.
4421  *
4422  * fault_around_bytes defines how many bytes we'll try to map.
4423  * do_fault_around() expects it to be set to a power of two less than or equal
4424  * to PTRS_PER_PTE.
4425  *
4426  * The virtual address of the area that we map is naturally aligned to
4427  * fault_around_bytes rounded down to the machine page size
4428  * (and therefore to page order).  This way it's easier to guarantee
4429  * that we don't cross page table boundaries.
4430  */
4431 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4432 {
4433 	unsigned long address = vmf->address, nr_pages, mask;
4434 	pgoff_t start_pgoff = vmf->pgoff;
4435 	pgoff_t end_pgoff;
4436 	int off;
4437 
4438 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4439 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4440 
4441 	address = max(address & mask, vmf->vma->vm_start);
4442 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4443 	start_pgoff -= off;
4444 
4445 	/*
4446 	 *  end_pgoff is either the end of the page table, the end of
4447 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4448 	 */
4449 	end_pgoff = start_pgoff -
4450 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4451 		PTRS_PER_PTE - 1;
4452 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4453 			start_pgoff + nr_pages - 1);
4454 
4455 	if (pmd_none(*vmf->pmd)) {
4456 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4457 		if (!vmf->prealloc_pte)
4458 			return VM_FAULT_OOM;
4459 	}
4460 
4461 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4462 }
4463 
4464 /* Return true if we should do read fault-around, false otherwise */
4465 static inline bool should_fault_around(struct vm_fault *vmf)
4466 {
4467 	/* No ->map_pages?  No way to fault around... */
4468 	if (!vmf->vma->vm_ops->map_pages)
4469 		return false;
4470 
4471 	if (uffd_disable_fault_around(vmf->vma))
4472 		return false;
4473 
4474 	return fault_around_bytes >> PAGE_SHIFT > 1;
4475 }
4476 
4477 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4478 {
4479 	vm_fault_t ret = 0;
4480 
4481 	/*
4482 	 * Let's call ->map_pages() first and use ->fault() as fallback
4483 	 * if page by the offset is not ready to be mapped (cold cache or
4484 	 * something).
4485 	 */
4486 	if (should_fault_around(vmf)) {
4487 		ret = do_fault_around(vmf);
4488 		if (ret)
4489 			return ret;
4490 	}
4491 
4492 	ret = __do_fault(vmf);
4493 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4494 		return ret;
4495 
4496 	ret |= finish_fault(vmf);
4497 	unlock_page(vmf->page);
4498 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4499 		put_page(vmf->page);
4500 	return ret;
4501 }
4502 
4503 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4504 {
4505 	struct vm_area_struct *vma = vmf->vma;
4506 	vm_fault_t ret;
4507 
4508 	if (unlikely(anon_vma_prepare(vma)))
4509 		return VM_FAULT_OOM;
4510 
4511 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4512 	if (!vmf->cow_page)
4513 		return VM_FAULT_OOM;
4514 
4515 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4516 				GFP_KERNEL)) {
4517 		put_page(vmf->cow_page);
4518 		return VM_FAULT_OOM;
4519 	}
4520 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4521 
4522 	ret = __do_fault(vmf);
4523 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4524 		goto uncharge_out;
4525 	if (ret & VM_FAULT_DONE_COW)
4526 		return ret;
4527 
4528 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4529 	__SetPageUptodate(vmf->cow_page);
4530 
4531 	ret |= finish_fault(vmf);
4532 	unlock_page(vmf->page);
4533 	put_page(vmf->page);
4534 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4535 		goto uncharge_out;
4536 	return ret;
4537 uncharge_out:
4538 	put_page(vmf->cow_page);
4539 	return ret;
4540 }
4541 
4542 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4543 {
4544 	struct vm_area_struct *vma = vmf->vma;
4545 	vm_fault_t ret, tmp;
4546 
4547 	ret = __do_fault(vmf);
4548 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549 		return ret;
4550 
4551 	/*
4552 	 * Check if the backing address space wants to know that the page is
4553 	 * about to become writable
4554 	 */
4555 	if (vma->vm_ops->page_mkwrite) {
4556 		unlock_page(vmf->page);
4557 		tmp = do_page_mkwrite(vmf);
4558 		if (unlikely(!tmp ||
4559 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4560 			put_page(vmf->page);
4561 			return tmp;
4562 		}
4563 	}
4564 
4565 	ret |= finish_fault(vmf);
4566 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4567 					VM_FAULT_RETRY))) {
4568 		unlock_page(vmf->page);
4569 		put_page(vmf->page);
4570 		return ret;
4571 	}
4572 
4573 	ret |= fault_dirty_shared_page(vmf);
4574 	return ret;
4575 }
4576 
4577 /*
4578  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4579  * but allow concurrent faults).
4580  * The mmap_lock may have been released depending on flags and our
4581  * return value.  See filemap_fault() and __folio_lock_or_retry().
4582  * If mmap_lock is released, vma may become invalid (for example
4583  * by other thread calling munmap()).
4584  */
4585 static vm_fault_t do_fault(struct vm_fault *vmf)
4586 {
4587 	struct vm_area_struct *vma = vmf->vma;
4588 	struct mm_struct *vm_mm = vma->vm_mm;
4589 	vm_fault_t ret;
4590 
4591 	/*
4592 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4593 	 */
4594 	if (!vma->vm_ops->fault) {
4595 		/*
4596 		 * If we find a migration pmd entry or a none pmd entry, which
4597 		 * should never happen, return SIGBUS
4598 		 */
4599 		if (unlikely(!pmd_present(*vmf->pmd)))
4600 			ret = VM_FAULT_SIGBUS;
4601 		else {
4602 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4603 						       vmf->pmd,
4604 						       vmf->address,
4605 						       &vmf->ptl);
4606 			/*
4607 			 * Make sure this is not a temporary clearing of pte
4608 			 * by holding ptl and checking again. A R/M/W update
4609 			 * of pte involves: take ptl, clearing the pte so that
4610 			 * we don't have concurrent modification by hardware
4611 			 * followed by an update.
4612 			 */
4613 			if (unlikely(pte_none(*vmf->pte)))
4614 				ret = VM_FAULT_SIGBUS;
4615 			else
4616 				ret = VM_FAULT_NOPAGE;
4617 
4618 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4619 		}
4620 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4621 		ret = do_read_fault(vmf);
4622 	else if (!(vma->vm_flags & VM_SHARED))
4623 		ret = do_cow_fault(vmf);
4624 	else
4625 		ret = do_shared_fault(vmf);
4626 
4627 	/* preallocated pagetable is unused: free it */
4628 	if (vmf->prealloc_pte) {
4629 		pte_free(vm_mm, vmf->prealloc_pte);
4630 		vmf->prealloc_pte = NULL;
4631 	}
4632 	return ret;
4633 }
4634 
4635 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4636 		      unsigned long addr, int page_nid, int *flags)
4637 {
4638 	get_page(page);
4639 
4640 	count_vm_numa_event(NUMA_HINT_FAULTS);
4641 	if (page_nid == numa_node_id()) {
4642 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4643 		*flags |= TNF_FAULT_LOCAL;
4644 	}
4645 
4646 	return mpol_misplaced(page, vma, addr);
4647 }
4648 
4649 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4650 {
4651 	struct vm_area_struct *vma = vmf->vma;
4652 	struct page *page = NULL;
4653 	int page_nid = NUMA_NO_NODE;
4654 	bool writable = false;
4655 	int last_cpupid;
4656 	int target_nid;
4657 	pte_t pte, old_pte;
4658 	int flags = 0;
4659 
4660 	/*
4661 	 * The "pte" at this point cannot be used safely without
4662 	 * validation through pte_unmap_same(). It's of NUMA type but
4663 	 * the pfn may be screwed if the read is non atomic.
4664 	 */
4665 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4666 	spin_lock(vmf->ptl);
4667 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4668 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4669 		goto out;
4670 	}
4671 
4672 	/* Get the normal PTE  */
4673 	old_pte = ptep_get(vmf->pte);
4674 	pte = pte_modify(old_pte, vma->vm_page_prot);
4675 
4676 	/*
4677 	 * Detect now whether the PTE could be writable; this information
4678 	 * is only valid while holding the PT lock.
4679 	 */
4680 	writable = pte_write(pte);
4681 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4682 	    can_change_pte_writable(vma, vmf->address, pte))
4683 		writable = true;
4684 
4685 	page = vm_normal_page(vma, vmf->address, pte);
4686 	if (!page || is_zone_device_page(page))
4687 		goto out_map;
4688 
4689 	/* TODO: handle PTE-mapped THP */
4690 	if (PageCompound(page))
4691 		goto out_map;
4692 
4693 	/*
4694 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4695 	 * much anyway since they can be in shared cache state. This misses
4696 	 * the case where a mapping is writable but the process never writes
4697 	 * to it but pte_write gets cleared during protection updates and
4698 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4699 	 * background writeback, dirty balancing and application behaviour.
4700 	 */
4701 	if (!writable)
4702 		flags |= TNF_NO_GROUP;
4703 
4704 	/*
4705 	 * Flag if the page is shared between multiple address spaces. This
4706 	 * is later used when determining whether to group tasks together
4707 	 */
4708 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4709 		flags |= TNF_SHARED;
4710 
4711 	page_nid = page_to_nid(page);
4712 	/*
4713 	 * For memory tiering mode, cpupid of slow memory page is used
4714 	 * to record page access time.  So use default value.
4715 	 */
4716 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4717 	    !node_is_toptier(page_nid))
4718 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4719 	else
4720 		last_cpupid = page_cpupid_last(page);
4721 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4722 			&flags);
4723 	if (target_nid == NUMA_NO_NODE) {
4724 		put_page(page);
4725 		goto out_map;
4726 	}
4727 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4728 	writable = false;
4729 
4730 	/* Migrate to the requested node */
4731 	if (migrate_misplaced_page(page, vma, target_nid)) {
4732 		page_nid = target_nid;
4733 		flags |= TNF_MIGRATED;
4734 	} else {
4735 		flags |= TNF_MIGRATE_FAIL;
4736 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4737 		spin_lock(vmf->ptl);
4738 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4739 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4740 			goto out;
4741 		}
4742 		goto out_map;
4743 	}
4744 
4745 out:
4746 	if (page_nid != NUMA_NO_NODE)
4747 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4748 	return 0;
4749 out_map:
4750 	/*
4751 	 * Make it present again, depending on how arch implements
4752 	 * non-accessible ptes, some can allow access by kernel mode.
4753 	 */
4754 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4755 	pte = pte_modify(old_pte, vma->vm_page_prot);
4756 	pte = pte_mkyoung(pte);
4757 	if (writable)
4758 		pte = pte_mkwrite(pte);
4759 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4760 	update_mmu_cache(vma, vmf->address, vmf->pte);
4761 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4762 	goto out;
4763 }
4764 
4765 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4766 {
4767 	if (vma_is_anonymous(vmf->vma))
4768 		return do_huge_pmd_anonymous_page(vmf);
4769 	if (vmf->vma->vm_ops->huge_fault)
4770 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4771 	return VM_FAULT_FALLBACK;
4772 }
4773 
4774 /* `inline' is required to avoid gcc 4.1.2 build error */
4775 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4776 {
4777 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4778 	vm_fault_t ret;
4779 
4780 	if (vma_is_anonymous(vmf->vma)) {
4781 		if (likely(!unshare) &&
4782 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4783 			return handle_userfault(vmf, VM_UFFD_WP);
4784 		return do_huge_pmd_wp_page(vmf);
4785 	}
4786 
4787 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4788 		if (vmf->vma->vm_ops->huge_fault) {
4789 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4790 			if (!(ret & VM_FAULT_FALLBACK))
4791 				return ret;
4792 		}
4793 	}
4794 
4795 	/* COW or write-notify handled on pte level: split pmd. */
4796 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4797 
4798 	return VM_FAULT_FALLBACK;
4799 }
4800 
4801 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4802 {
4803 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4804 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4805 	/* No support for anonymous transparent PUD pages yet */
4806 	if (vma_is_anonymous(vmf->vma))
4807 		return VM_FAULT_FALLBACK;
4808 	if (vmf->vma->vm_ops->huge_fault)
4809 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4811 	return VM_FAULT_FALLBACK;
4812 }
4813 
4814 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4815 {
4816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4817 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4818 	vm_fault_t ret;
4819 
4820 	/* No support for anonymous transparent PUD pages yet */
4821 	if (vma_is_anonymous(vmf->vma))
4822 		goto split;
4823 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4824 		if (vmf->vma->vm_ops->huge_fault) {
4825 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4826 			if (!(ret & VM_FAULT_FALLBACK))
4827 				return ret;
4828 		}
4829 	}
4830 split:
4831 	/* COW or write-notify not handled on PUD level: split pud.*/
4832 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4834 	return VM_FAULT_FALLBACK;
4835 }
4836 
4837 /*
4838  * These routines also need to handle stuff like marking pages dirty
4839  * and/or accessed for architectures that don't do it in hardware (most
4840  * RISC architectures).  The early dirtying is also good on the i386.
4841  *
4842  * There is also a hook called "update_mmu_cache()" that architectures
4843  * with external mmu caches can use to update those (ie the Sparc or
4844  * PowerPC hashed page tables that act as extended TLBs).
4845  *
4846  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4847  * concurrent faults).
4848  *
4849  * The mmap_lock may have been released depending on flags and our return value.
4850  * See filemap_fault() and __folio_lock_or_retry().
4851  */
4852 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4853 {
4854 	pte_t entry;
4855 
4856 	if (unlikely(pmd_none(*vmf->pmd))) {
4857 		/*
4858 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4859 		 * want to allocate huge page, and if we expose page table
4860 		 * for an instant, it will be difficult to retract from
4861 		 * concurrent faults and from rmap lookups.
4862 		 */
4863 		vmf->pte = NULL;
4864 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4865 	} else {
4866 		/*
4867 		 * If a huge pmd materialized under us just retry later.  Use
4868 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4869 		 * of pmd_trans_huge() to ensure the pmd didn't become
4870 		 * pmd_trans_huge under us and then back to pmd_none, as a
4871 		 * result of MADV_DONTNEED running immediately after a huge pmd
4872 		 * fault in a different thread of this mm, in turn leading to a
4873 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4874 		 * that it is a regular pmd that we can walk with
4875 		 * pte_offset_map() and we can do that through an atomic read
4876 		 * in C, which is what pmd_trans_unstable() provides.
4877 		 */
4878 		if (pmd_devmap_trans_unstable(vmf->pmd))
4879 			return 0;
4880 		/*
4881 		 * A regular pmd is established and it can't morph into a huge
4882 		 * pmd from under us anymore at this point because we hold the
4883 		 * mmap_lock read mode and khugepaged takes it in write mode.
4884 		 * So now it's safe to run pte_offset_map().
4885 		 */
4886 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4887 		vmf->orig_pte = *vmf->pte;
4888 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4889 
4890 		/*
4891 		 * some architectures can have larger ptes than wordsize,
4892 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4893 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4894 		 * accesses.  The code below just needs a consistent view
4895 		 * for the ifs and we later double check anyway with the
4896 		 * ptl lock held. So here a barrier will do.
4897 		 */
4898 		barrier();
4899 		if (pte_none(vmf->orig_pte)) {
4900 			pte_unmap(vmf->pte);
4901 			vmf->pte = NULL;
4902 		}
4903 	}
4904 
4905 	if (!vmf->pte) {
4906 		if (vma_is_anonymous(vmf->vma))
4907 			return do_anonymous_page(vmf);
4908 		else
4909 			return do_fault(vmf);
4910 	}
4911 
4912 	if (!pte_present(vmf->orig_pte))
4913 		return do_swap_page(vmf);
4914 
4915 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4916 		return do_numa_page(vmf);
4917 
4918 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4919 	spin_lock(vmf->ptl);
4920 	entry = vmf->orig_pte;
4921 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4922 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4923 		goto unlock;
4924 	}
4925 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4926 		if (!pte_write(entry))
4927 			return do_wp_page(vmf);
4928 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4929 			entry = pte_mkdirty(entry);
4930 	}
4931 	entry = pte_mkyoung(entry);
4932 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4933 				vmf->flags & FAULT_FLAG_WRITE)) {
4934 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4935 	} else {
4936 		/* Skip spurious TLB flush for retried page fault */
4937 		if (vmf->flags & FAULT_FLAG_TRIED)
4938 			goto unlock;
4939 		/*
4940 		 * This is needed only for protection faults but the arch code
4941 		 * is not yet telling us if this is a protection fault or not.
4942 		 * This still avoids useless tlb flushes for .text page faults
4943 		 * with threads.
4944 		 */
4945 		if (vmf->flags & FAULT_FLAG_WRITE)
4946 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4947 	}
4948 unlock:
4949 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4950 	return 0;
4951 }
4952 
4953 /*
4954  * By the time we get here, we already hold the mm semaphore
4955  *
4956  * The mmap_lock may have been released depending on flags and our
4957  * return value.  See filemap_fault() and __folio_lock_or_retry().
4958  */
4959 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4960 		unsigned long address, unsigned int flags)
4961 {
4962 	struct vm_fault vmf = {
4963 		.vma = vma,
4964 		.address = address & PAGE_MASK,
4965 		.real_address = address,
4966 		.flags = flags,
4967 		.pgoff = linear_page_index(vma, address),
4968 		.gfp_mask = __get_fault_gfp_mask(vma),
4969 	};
4970 	struct mm_struct *mm = vma->vm_mm;
4971 	unsigned long vm_flags = vma->vm_flags;
4972 	pgd_t *pgd;
4973 	p4d_t *p4d;
4974 	vm_fault_t ret;
4975 
4976 	pgd = pgd_offset(mm, address);
4977 	p4d = p4d_alloc(mm, pgd, address);
4978 	if (!p4d)
4979 		return VM_FAULT_OOM;
4980 
4981 	vmf.pud = pud_alloc(mm, p4d, address);
4982 	if (!vmf.pud)
4983 		return VM_FAULT_OOM;
4984 retry_pud:
4985 	if (pud_none(*vmf.pud) &&
4986 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
4987 		ret = create_huge_pud(&vmf);
4988 		if (!(ret & VM_FAULT_FALLBACK))
4989 			return ret;
4990 	} else {
4991 		pud_t orig_pud = *vmf.pud;
4992 
4993 		barrier();
4994 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4995 
4996 			/*
4997 			 * TODO once we support anonymous PUDs: NUMA case and
4998 			 * FAULT_FLAG_UNSHARE handling.
4999 			 */
5000 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5001 				ret = wp_huge_pud(&vmf, orig_pud);
5002 				if (!(ret & VM_FAULT_FALLBACK))
5003 					return ret;
5004 			} else {
5005 				huge_pud_set_accessed(&vmf, orig_pud);
5006 				return 0;
5007 			}
5008 		}
5009 	}
5010 
5011 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5012 	if (!vmf.pmd)
5013 		return VM_FAULT_OOM;
5014 
5015 	/* Huge pud page fault raced with pmd_alloc? */
5016 	if (pud_trans_unstable(vmf.pud))
5017 		goto retry_pud;
5018 
5019 	if (pmd_none(*vmf.pmd) &&
5020 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5021 		ret = create_huge_pmd(&vmf);
5022 		if (!(ret & VM_FAULT_FALLBACK))
5023 			return ret;
5024 	} else {
5025 		vmf.orig_pmd = *vmf.pmd;
5026 
5027 		barrier();
5028 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5029 			VM_BUG_ON(thp_migration_supported() &&
5030 					  !is_pmd_migration_entry(vmf.orig_pmd));
5031 			if (is_pmd_migration_entry(vmf.orig_pmd))
5032 				pmd_migration_entry_wait(mm, vmf.pmd);
5033 			return 0;
5034 		}
5035 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5036 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5037 				return do_huge_pmd_numa_page(&vmf);
5038 
5039 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5040 			    !pmd_write(vmf.orig_pmd)) {
5041 				ret = wp_huge_pmd(&vmf);
5042 				if (!(ret & VM_FAULT_FALLBACK))
5043 					return ret;
5044 			} else {
5045 				huge_pmd_set_accessed(&vmf);
5046 				return 0;
5047 			}
5048 		}
5049 	}
5050 
5051 	return handle_pte_fault(&vmf);
5052 }
5053 
5054 /**
5055  * mm_account_fault - Do page fault accounting
5056  *
5057  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5058  *        of perf event counters, but we'll still do the per-task accounting to
5059  *        the task who triggered this page fault.
5060  * @address: the faulted address.
5061  * @flags: the fault flags.
5062  * @ret: the fault retcode.
5063  *
5064  * This will take care of most of the page fault accounting.  Meanwhile, it
5065  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5066  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5067  * still be in per-arch page fault handlers at the entry of page fault.
5068  */
5069 static inline void mm_account_fault(struct pt_regs *regs,
5070 				    unsigned long address, unsigned int flags,
5071 				    vm_fault_t ret)
5072 {
5073 	bool major;
5074 
5075 	/*
5076 	 * We don't do accounting for some specific faults:
5077 	 *
5078 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5079 	 *   includes arch_vma_access_permitted() failing before reaching here.
5080 	 *   So this is not a "this many hardware page faults" counter.  We
5081 	 *   should use the hw profiling for that.
5082 	 *
5083 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5084 	 *   once they're completed.
5085 	 */
5086 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5087 		return;
5088 
5089 	/*
5090 	 * We define the fault as a major fault when the final successful fault
5091 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5092 	 * handle it immediately previously).
5093 	 */
5094 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5095 
5096 	if (major)
5097 		current->maj_flt++;
5098 	else
5099 		current->min_flt++;
5100 
5101 	/*
5102 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5103 	 * accounting for the per thread fault counters who triggered the
5104 	 * fault, and we skip the perf event updates.
5105 	 */
5106 	if (!regs)
5107 		return;
5108 
5109 	if (major)
5110 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5111 	else
5112 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5113 }
5114 
5115 #ifdef CONFIG_LRU_GEN
5116 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5117 {
5118 	/* the LRU algorithm doesn't apply to sequential or random reads */
5119 	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5120 }
5121 
5122 static void lru_gen_exit_fault(void)
5123 {
5124 	current->in_lru_fault = false;
5125 }
5126 #else
5127 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5128 {
5129 }
5130 
5131 static void lru_gen_exit_fault(void)
5132 {
5133 }
5134 #endif /* CONFIG_LRU_GEN */
5135 
5136 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5137 				       unsigned int *flags)
5138 {
5139 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5140 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5141 			return VM_FAULT_SIGSEGV;
5142 		/*
5143 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5144 		 * just treat it like an ordinary read-fault otherwise.
5145 		 */
5146 		if (!is_cow_mapping(vma->vm_flags))
5147 			*flags &= ~FAULT_FLAG_UNSHARE;
5148 	} else if (*flags & FAULT_FLAG_WRITE) {
5149 		/* Write faults on read-only mappings are impossible ... */
5150 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5151 			return VM_FAULT_SIGSEGV;
5152 		/* ... and FOLL_FORCE only applies to COW mappings. */
5153 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5154 				 !is_cow_mapping(vma->vm_flags)))
5155 			return VM_FAULT_SIGSEGV;
5156 	}
5157 	return 0;
5158 }
5159 
5160 /*
5161  * By the time we get here, we already hold the mm semaphore
5162  *
5163  * The mmap_lock may have been released depending on flags and our
5164  * return value.  See filemap_fault() and __folio_lock_or_retry().
5165  */
5166 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5167 			   unsigned int flags, struct pt_regs *regs)
5168 {
5169 	vm_fault_t ret;
5170 
5171 	__set_current_state(TASK_RUNNING);
5172 
5173 	count_vm_event(PGFAULT);
5174 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5175 
5176 	ret = sanitize_fault_flags(vma, &flags);
5177 	if (ret)
5178 		return ret;
5179 
5180 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5181 					    flags & FAULT_FLAG_INSTRUCTION,
5182 					    flags & FAULT_FLAG_REMOTE))
5183 		return VM_FAULT_SIGSEGV;
5184 
5185 	/*
5186 	 * Enable the memcg OOM handling for faults triggered in user
5187 	 * space.  Kernel faults are handled more gracefully.
5188 	 */
5189 	if (flags & FAULT_FLAG_USER)
5190 		mem_cgroup_enter_user_fault();
5191 
5192 	lru_gen_enter_fault(vma);
5193 
5194 	if (unlikely(is_vm_hugetlb_page(vma)))
5195 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5196 	else
5197 		ret = __handle_mm_fault(vma, address, flags);
5198 
5199 	lru_gen_exit_fault();
5200 
5201 	if (flags & FAULT_FLAG_USER) {
5202 		mem_cgroup_exit_user_fault();
5203 		/*
5204 		 * The task may have entered a memcg OOM situation but
5205 		 * if the allocation error was handled gracefully (no
5206 		 * VM_FAULT_OOM), there is no need to kill anything.
5207 		 * Just clean up the OOM state peacefully.
5208 		 */
5209 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5210 			mem_cgroup_oom_synchronize(false);
5211 	}
5212 
5213 	mm_account_fault(regs, address, flags, ret);
5214 
5215 	return ret;
5216 }
5217 EXPORT_SYMBOL_GPL(handle_mm_fault);
5218 
5219 #ifndef __PAGETABLE_P4D_FOLDED
5220 /*
5221  * Allocate p4d page table.
5222  * We've already handled the fast-path in-line.
5223  */
5224 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5225 {
5226 	p4d_t *new = p4d_alloc_one(mm, address);
5227 	if (!new)
5228 		return -ENOMEM;
5229 
5230 	spin_lock(&mm->page_table_lock);
5231 	if (pgd_present(*pgd)) {	/* Another has populated it */
5232 		p4d_free(mm, new);
5233 	} else {
5234 		smp_wmb(); /* See comment in pmd_install() */
5235 		pgd_populate(mm, pgd, new);
5236 	}
5237 	spin_unlock(&mm->page_table_lock);
5238 	return 0;
5239 }
5240 #endif /* __PAGETABLE_P4D_FOLDED */
5241 
5242 #ifndef __PAGETABLE_PUD_FOLDED
5243 /*
5244  * Allocate page upper directory.
5245  * We've already handled the fast-path in-line.
5246  */
5247 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5248 {
5249 	pud_t *new = pud_alloc_one(mm, address);
5250 	if (!new)
5251 		return -ENOMEM;
5252 
5253 	spin_lock(&mm->page_table_lock);
5254 	if (!p4d_present(*p4d)) {
5255 		mm_inc_nr_puds(mm);
5256 		smp_wmb(); /* See comment in pmd_install() */
5257 		p4d_populate(mm, p4d, new);
5258 	} else	/* Another has populated it */
5259 		pud_free(mm, new);
5260 	spin_unlock(&mm->page_table_lock);
5261 	return 0;
5262 }
5263 #endif /* __PAGETABLE_PUD_FOLDED */
5264 
5265 #ifndef __PAGETABLE_PMD_FOLDED
5266 /*
5267  * Allocate page middle directory.
5268  * We've already handled the fast-path in-line.
5269  */
5270 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5271 {
5272 	spinlock_t *ptl;
5273 	pmd_t *new = pmd_alloc_one(mm, address);
5274 	if (!new)
5275 		return -ENOMEM;
5276 
5277 	ptl = pud_lock(mm, pud);
5278 	if (!pud_present(*pud)) {
5279 		mm_inc_nr_pmds(mm);
5280 		smp_wmb(); /* See comment in pmd_install() */
5281 		pud_populate(mm, pud, new);
5282 	} else {	/* Another has populated it */
5283 		pmd_free(mm, new);
5284 	}
5285 	spin_unlock(ptl);
5286 	return 0;
5287 }
5288 #endif /* __PAGETABLE_PMD_FOLDED */
5289 
5290 /**
5291  * follow_pte - look up PTE at a user virtual address
5292  * @mm: the mm_struct of the target address space
5293  * @address: user virtual address
5294  * @ptepp: location to store found PTE
5295  * @ptlp: location to store the lock for the PTE
5296  *
5297  * On a successful return, the pointer to the PTE is stored in @ptepp;
5298  * the corresponding lock is taken and its location is stored in @ptlp.
5299  * The contents of the PTE are only stable until @ptlp is released;
5300  * any further use, if any, must be protected against invalidation
5301  * with MMU notifiers.
5302  *
5303  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5304  * should be taken for read.
5305  *
5306  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5307  * it is not a good general-purpose API.
5308  *
5309  * Return: zero on success, -ve otherwise.
5310  */
5311 int follow_pte(struct mm_struct *mm, unsigned long address,
5312 	       pte_t **ptepp, spinlock_t **ptlp)
5313 {
5314 	pgd_t *pgd;
5315 	p4d_t *p4d;
5316 	pud_t *pud;
5317 	pmd_t *pmd;
5318 	pte_t *ptep;
5319 
5320 	pgd = pgd_offset(mm, address);
5321 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5322 		goto out;
5323 
5324 	p4d = p4d_offset(pgd, address);
5325 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5326 		goto out;
5327 
5328 	pud = pud_offset(p4d, address);
5329 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5330 		goto out;
5331 
5332 	pmd = pmd_offset(pud, address);
5333 	VM_BUG_ON(pmd_trans_huge(*pmd));
5334 
5335 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5336 		goto out;
5337 
5338 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5339 	if (!pte_present(*ptep))
5340 		goto unlock;
5341 	*ptepp = ptep;
5342 	return 0;
5343 unlock:
5344 	pte_unmap_unlock(ptep, *ptlp);
5345 out:
5346 	return -EINVAL;
5347 }
5348 EXPORT_SYMBOL_GPL(follow_pte);
5349 
5350 /**
5351  * follow_pfn - look up PFN at a user virtual address
5352  * @vma: memory mapping
5353  * @address: user virtual address
5354  * @pfn: location to store found PFN
5355  *
5356  * Only IO mappings and raw PFN mappings are allowed.
5357  *
5358  * This function does not allow the caller to read the permissions
5359  * of the PTE.  Do not use it.
5360  *
5361  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5362  */
5363 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5364 	unsigned long *pfn)
5365 {
5366 	int ret = -EINVAL;
5367 	spinlock_t *ptl;
5368 	pte_t *ptep;
5369 
5370 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5371 		return ret;
5372 
5373 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5374 	if (ret)
5375 		return ret;
5376 	*pfn = pte_pfn(*ptep);
5377 	pte_unmap_unlock(ptep, ptl);
5378 	return 0;
5379 }
5380 EXPORT_SYMBOL(follow_pfn);
5381 
5382 #ifdef CONFIG_HAVE_IOREMAP_PROT
5383 int follow_phys(struct vm_area_struct *vma,
5384 		unsigned long address, unsigned int flags,
5385 		unsigned long *prot, resource_size_t *phys)
5386 {
5387 	int ret = -EINVAL;
5388 	pte_t *ptep, pte;
5389 	spinlock_t *ptl;
5390 
5391 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5392 		goto out;
5393 
5394 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5395 		goto out;
5396 	pte = *ptep;
5397 
5398 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5399 		goto unlock;
5400 
5401 	*prot = pgprot_val(pte_pgprot(pte));
5402 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5403 
5404 	ret = 0;
5405 unlock:
5406 	pte_unmap_unlock(ptep, ptl);
5407 out:
5408 	return ret;
5409 }
5410 
5411 /**
5412  * generic_access_phys - generic implementation for iomem mmap access
5413  * @vma: the vma to access
5414  * @addr: userspace address, not relative offset within @vma
5415  * @buf: buffer to read/write
5416  * @len: length of transfer
5417  * @write: set to FOLL_WRITE when writing, otherwise reading
5418  *
5419  * This is a generic implementation for &vm_operations_struct.access for an
5420  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5421  * not page based.
5422  */
5423 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5424 			void *buf, int len, int write)
5425 {
5426 	resource_size_t phys_addr;
5427 	unsigned long prot = 0;
5428 	void __iomem *maddr;
5429 	pte_t *ptep, pte;
5430 	spinlock_t *ptl;
5431 	int offset = offset_in_page(addr);
5432 	int ret = -EINVAL;
5433 
5434 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5435 		return -EINVAL;
5436 
5437 retry:
5438 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5439 		return -EINVAL;
5440 	pte = *ptep;
5441 	pte_unmap_unlock(ptep, ptl);
5442 
5443 	prot = pgprot_val(pte_pgprot(pte));
5444 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5445 
5446 	if ((write & FOLL_WRITE) && !pte_write(pte))
5447 		return -EINVAL;
5448 
5449 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5450 	if (!maddr)
5451 		return -ENOMEM;
5452 
5453 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5454 		goto out_unmap;
5455 
5456 	if (!pte_same(pte, *ptep)) {
5457 		pte_unmap_unlock(ptep, ptl);
5458 		iounmap(maddr);
5459 
5460 		goto retry;
5461 	}
5462 
5463 	if (write)
5464 		memcpy_toio(maddr + offset, buf, len);
5465 	else
5466 		memcpy_fromio(buf, maddr + offset, len);
5467 	ret = len;
5468 	pte_unmap_unlock(ptep, ptl);
5469 out_unmap:
5470 	iounmap(maddr);
5471 
5472 	return ret;
5473 }
5474 EXPORT_SYMBOL_GPL(generic_access_phys);
5475 #endif
5476 
5477 /*
5478  * Access another process' address space as given in mm.
5479  */
5480 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5481 		       int len, unsigned int gup_flags)
5482 {
5483 	struct vm_area_struct *vma;
5484 	void *old_buf = buf;
5485 	int write = gup_flags & FOLL_WRITE;
5486 
5487 	if (mmap_read_lock_killable(mm))
5488 		return 0;
5489 
5490 	/* ignore errors, just check how much was successfully transferred */
5491 	while (len) {
5492 		int bytes, ret, offset;
5493 		void *maddr;
5494 		struct page *page = NULL;
5495 
5496 		ret = get_user_pages_remote(mm, addr, 1,
5497 				gup_flags, &page, &vma, NULL);
5498 		if (ret <= 0) {
5499 #ifndef CONFIG_HAVE_IOREMAP_PROT
5500 			break;
5501 #else
5502 			/*
5503 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5504 			 * we can access using slightly different code.
5505 			 */
5506 			vma = vma_lookup(mm, addr);
5507 			if (!vma)
5508 				break;
5509 			if (vma->vm_ops && vma->vm_ops->access)
5510 				ret = vma->vm_ops->access(vma, addr, buf,
5511 							  len, write);
5512 			if (ret <= 0)
5513 				break;
5514 			bytes = ret;
5515 #endif
5516 		} else {
5517 			bytes = len;
5518 			offset = addr & (PAGE_SIZE-1);
5519 			if (bytes > PAGE_SIZE-offset)
5520 				bytes = PAGE_SIZE-offset;
5521 
5522 			maddr = kmap(page);
5523 			if (write) {
5524 				copy_to_user_page(vma, page, addr,
5525 						  maddr + offset, buf, bytes);
5526 				set_page_dirty_lock(page);
5527 			} else {
5528 				copy_from_user_page(vma, page, addr,
5529 						    buf, maddr + offset, bytes);
5530 			}
5531 			kunmap(page);
5532 			put_page(page);
5533 		}
5534 		len -= bytes;
5535 		buf += bytes;
5536 		addr += bytes;
5537 	}
5538 	mmap_read_unlock(mm);
5539 
5540 	return buf - old_buf;
5541 }
5542 
5543 /**
5544  * access_remote_vm - access another process' address space
5545  * @mm:		the mm_struct of the target address space
5546  * @addr:	start address to access
5547  * @buf:	source or destination buffer
5548  * @len:	number of bytes to transfer
5549  * @gup_flags:	flags modifying lookup behaviour
5550  *
5551  * The caller must hold a reference on @mm.
5552  *
5553  * Return: number of bytes copied from source to destination.
5554  */
5555 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5556 		void *buf, int len, unsigned int gup_flags)
5557 {
5558 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5559 }
5560 
5561 /*
5562  * Access another process' address space.
5563  * Source/target buffer must be kernel space,
5564  * Do not walk the page table directly, use get_user_pages
5565  */
5566 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5567 		void *buf, int len, unsigned int gup_flags)
5568 {
5569 	struct mm_struct *mm;
5570 	int ret;
5571 
5572 	mm = get_task_mm(tsk);
5573 	if (!mm)
5574 		return 0;
5575 
5576 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5577 
5578 	mmput(mm);
5579 
5580 	return ret;
5581 }
5582 EXPORT_SYMBOL_GPL(access_process_vm);
5583 
5584 /*
5585  * Print the name of a VMA.
5586  */
5587 void print_vma_addr(char *prefix, unsigned long ip)
5588 {
5589 	struct mm_struct *mm = current->mm;
5590 	struct vm_area_struct *vma;
5591 
5592 	/*
5593 	 * we might be running from an atomic context so we cannot sleep
5594 	 */
5595 	if (!mmap_read_trylock(mm))
5596 		return;
5597 
5598 	vma = find_vma(mm, ip);
5599 	if (vma && vma->vm_file) {
5600 		struct file *f = vma->vm_file;
5601 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5602 		if (buf) {
5603 			char *p;
5604 
5605 			p = file_path(f, buf, PAGE_SIZE);
5606 			if (IS_ERR(p))
5607 				p = "?";
5608 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5609 					vma->vm_start,
5610 					vma->vm_end - vma->vm_start);
5611 			free_page((unsigned long)buf);
5612 		}
5613 	}
5614 	mmap_read_unlock(mm);
5615 }
5616 
5617 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5618 void __might_fault(const char *file, int line)
5619 {
5620 	if (pagefault_disabled())
5621 		return;
5622 	__might_sleep(file, line);
5623 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5624 	if (current->mm)
5625 		might_lock_read(&current->mm->mmap_lock);
5626 #endif
5627 }
5628 EXPORT_SYMBOL(__might_fault);
5629 #endif
5630 
5631 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5632 /*
5633  * Process all subpages of the specified huge page with the specified
5634  * operation.  The target subpage will be processed last to keep its
5635  * cache lines hot.
5636  */
5637 static inline void process_huge_page(
5638 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5639 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5640 	void *arg)
5641 {
5642 	int i, n, base, l;
5643 	unsigned long addr = addr_hint &
5644 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5645 
5646 	/* Process target subpage last to keep its cache lines hot */
5647 	might_sleep();
5648 	n = (addr_hint - addr) / PAGE_SIZE;
5649 	if (2 * n <= pages_per_huge_page) {
5650 		/* If target subpage in first half of huge page */
5651 		base = 0;
5652 		l = n;
5653 		/* Process subpages at the end of huge page */
5654 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5655 			cond_resched();
5656 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5657 		}
5658 	} else {
5659 		/* If target subpage in second half of huge page */
5660 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5661 		l = pages_per_huge_page - n;
5662 		/* Process subpages at the begin of huge page */
5663 		for (i = 0; i < base; i++) {
5664 			cond_resched();
5665 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5666 		}
5667 	}
5668 	/*
5669 	 * Process remaining subpages in left-right-left-right pattern
5670 	 * towards the target subpage
5671 	 */
5672 	for (i = 0; i < l; i++) {
5673 		int left_idx = base + i;
5674 		int right_idx = base + 2 * l - 1 - i;
5675 
5676 		cond_resched();
5677 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5678 		cond_resched();
5679 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5680 	}
5681 }
5682 
5683 static void clear_gigantic_page(struct page *page,
5684 				unsigned long addr,
5685 				unsigned int pages_per_huge_page)
5686 {
5687 	int i;
5688 	struct page *p;
5689 
5690 	might_sleep();
5691 	for (i = 0; i < pages_per_huge_page; i++) {
5692 		p = nth_page(page, i);
5693 		cond_resched();
5694 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5695 	}
5696 }
5697 
5698 static void clear_subpage(unsigned long addr, int idx, void *arg)
5699 {
5700 	struct page *page = arg;
5701 
5702 	clear_user_highpage(page + idx, addr);
5703 }
5704 
5705 void clear_huge_page(struct page *page,
5706 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5707 {
5708 	unsigned long addr = addr_hint &
5709 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5710 
5711 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5712 		clear_gigantic_page(page, addr, pages_per_huge_page);
5713 		return;
5714 	}
5715 
5716 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5717 }
5718 
5719 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5720 				    unsigned long addr,
5721 				    struct vm_area_struct *vma,
5722 				    unsigned int pages_per_huge_page)
5723 {
5724 	int i;
5725 	struct page *dst_base = dst;
5726 	struct page *src_base = src;
5727 
5728 	for (i = 0; i < pages_per_huge_page; i++) {
5729 		dst = nth_page(dst_base, i);
5730 		src = nth_page(src_base, i);
5731 
5732 		cond_resched();
5733 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5734 	}
5735 }
5736 
5737 struct copy_subpage_arg {
5738 	struct page *dst;
5739 	struct page *src;
5740 	struct vm_area_struct *vma;
5741 };
5742 
5743 static void copy_subpage(unsigned long addr, int idx, void *arg)
5744 {
5745 	struct copy_subpage_arg *copy_arg = arg;
5746 
5747 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5748 			   addr, copy_arg->vma);
5749 }
5750 
5751 void copy_user_huge_page(struct page *dst, struct page *src,
5752 			 unsigned long addr_hint, struct vm_area_struct *vma,
5753 			 unsigned int pages_per_huge_page)
5754 {
5755 	unsigned long addr = addr_hint &
5756 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5757 	struct copy_subpage_arg arg = {
5758 		.dst = dst,
5759 		.src = src,
5760 		.vma = vma,
5761 	};
5762 
5763 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5764 		copy_user_gigantic_page(dst, src, addr, vma,
5765 					pages_per_huge_page);
5766 		return;
5767 	}
5768 
5769 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5770 }
5771 
5772 long copy_huge_page_from_user(struct page *dst_page,
5773 				const void __user *usr_src,
5774 				unsigned int pages_per_huge_page,
5775 				bool allow_pagefault)
5776 {
5777 	void *page_kaddr;
5778 	unsigned long i, rc = 0;
5779 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5780 	struct page *subpage;
5781 
5782 	for (i = 0; i < pages_per_huge_page; i++) {
5783 		subpage = nth_page(dst_page, i);
5784 		if (allow_pagefault)
5785 			page_kaddr = kmap(subpage);
5786 		else
5787 			page_kaddr = kmap_atomic(subpage);
5788 		rc = copy_from_user(page_kaddr,
5789 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5790 		if (allow_pagefault)
5791 			kunmap(subpage);
5792 		else
5793 			kunmap_atomic(page_kaddr);
5794 
5795 		ret_val -= (PAGE_SIZE - rc);
5796 		if (rc)
5797 			break;
5798 
5799 		flush_dcache_page(subpage);
5800 
5801 		cond_resched();
5802 	}
5803 	return ret_val;
5804 }
5805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5806 
5807 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5808 
5809 static struct kmem_cache *page_ptl_cachep;
5810 
5811 void __init ptlock_cache_init(void)
5812 {
5813 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5814 			SLAB_PANIC, NULL);
5815 }
5816 
5817 bool ptlock_alloc(struct page *page)
5818 {
5819 	spinlock_t *ptl;
5820 
5821 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5822 	if (!ptl)
5823 		return false;
5824 	page->ptl = ptl;
5825 	return true;
5826 }
5827 
5828 void ptlock_free(struct page *page)
5829 {
5830 	kmem_cache_free(page_ptl_cachep, page->ptl);
5831 }
5832 #endif
5833