xref: /openbmc/linux/mm/memory.c (revision e1fd09e3d1dd4a1a8b3b33bc1fd647eee9f4e475)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 #include <linux/sched/sysctl.h>
78 
79 #include <trace/events/kmem.h>
80 
81 #include <asm/io.h>
82 #include <asm/mmu_context.h>
83 #include <asm/pgalloc.h>
84 #include <linux/uaccess.h>
85 #include <asm/tlb.h>
86 #include <asm/tlbflush.h>
87 
88 #include "pgalloc-track.h"
89 #include "internal.h"
90 #include "swap.h"
91 
92 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
93 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
94 #endif
95 
96 #ifndef CONFIG_NUMA
97 unsigned long max_mapnr;
98 EXPORT_SYMBOL(max_mapnr);
99 
100 struct page *mem_map;
101 EXPORT_SYMBOL(mem_map);
102 #endif
103 
104 static vm_fault_t do_fault(struct vm_fault *vmf);
105 
106 /*
107  * A number of key systems in x86 including ioremap() rely on the assumption
108  * that high_memory defines the upper bound on direct map memory, then end
109  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
110  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
111  * and ZONE_HIGHMEM.
112  */
113 void *high_memory;
114 EXPORT_SYMBOL(high_memory);
115 
116 /*
117  * Randomize the address space (stacks, mmaps, brk, etc.).
118  *
119  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
120  *   as ancient (libc5 based) binaries can segfault. )
121  */
122 int randomize_va_space __read_mostly =
123 #ifdef CONFIG_COMPAT_BRK
124 					1;
125 #else
126 					2;
127 #endif
128 
129 #ifndef arch_wants_old_prefaulted_pte
130 static inline bool arch_wants_old_prefaulted_pte(void)
131 {
132 	/*
133 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
134 	 * some architectures, even if it's performed in hardware. By
135 	 * default, "false" means prefaulted entries will be 'young'.
136 	 */
137 	return false;
138 }
139 #endif
140 
141 static int __init disable_randmaps(char *s)
142 {
143 	randomize_va_space = 0;
144 	return 1;
145 }
146 __setup("norandmaps", disable_randmaps);
147 
148 unsigned long zero_pfn __read_mostly;
149 EXPORT_SYMBOL(zero_pfn);
150 
151 unsigned long highest_memmap_pfn __read_mostly;
152 
153 /*
154  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
155  */
156 static int __init init_zero_pfn(void)
157 {
158 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
159 	return 0;
160 }
161 early_initcall(init_zero_pfn);
162 
163 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
164 {
165 	trace_rss_stat(mm, member, count);
166 }
167 
168 #if defined(SPLIT_RSS_COUNTING)
169 
170 void sync_mm_rss(struct mm_struct *mm)
171 {
172 	int i;
173 
174 	for (i = 0; i < NR_MM_COUNTERS; i++) {
175 		if (current->rss_stat.count[i]) {
176 			add_mm_counter(mm, i, current->rss_stat.count[i]);
177 			current->rss_stat.count[i] = 0;
178 		}
179 	}
180 	current->rss_stat.events = 0;
181 }
182 
183 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
184 {
185 	struct task_struct *task = current;
186 
187 	if (likely(task->mm == mm))
188 		task->rss_stat.count[member] += val;
189 	else
190 		add_mm_counter(mm, member, val);
191 }
192 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
193 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
194 
195 /* sync counter once per 64 page faults */
196 #define TASK_RSS_EVENTS_THRESH	(64)
197 static void check_sync_rss_stat(struct task_struct *task)
198 {
199 	if (unlikely(task != current))
200 		return;
201 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
202 		sync_mm_rss(task->mm);
203 }
204 #else /* SPLIT_RSS_COUNTING */
205 
206 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
207 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
208 
209 static void check_sync_rss_stat(struct task_struct *task)
210 {
211 }
212 
213 #endif /* SPLIT_RSS_COUNTING */
214 
215 /*
216  * Note: this doesn't free the actual pages themselves. That
217  * has been handled earlier when unmapping all the memory regions.
218  */
219 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
220 			   unsigned long addr)
221 {
222 	pgtable_t token = pmd_pgtable(*pmd);
223 	pmd_clear(pmd);
224 	pte_free_tlb(tlb, token, addr);
225 	mm_dec_nr_ptes(tlb->mm);
226 }
227 
228 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
229 				unsigned long addr, unsigned long end,
230 				unsigned long floor, unsigned long ceiling)
231 {
232 	pmd_t *pmd;
233 	unsigned long next;
234 	unsigned long start;
235 
236 	start = addr;
237 	pmd = pmd_offset(pud, addr);
238 	do {
239 		next = pmd_addr_end(addr, end);
240 		if (pmd_none_or_clear_bad(pmd))
241 			continue;
242 		free_pte_range(tlb, pmd, addr);
243 	} while (pmd++, addr = next, addr != end);
244 
245 	start &= PUD_MASK;
246 	if (start < floor)
247 		return;
248 	if (ceiling) {
249 		ceiling &= PUD_MASK;
250 		if (!ceiling)
251 			return;
252 	}
253 	if (end - 1 > ceiling - 1)
254 		return;
255 
256 	pmd = pmd_offset(pud, start);
257 	pud_clear(pud);
258 	pmd_free_tlb(tlb, pmd, start);
259 	mm_dec_nr_pmds(tlb->mm);
260 }
261 
262 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
263 				unsigned long addr, unsigned long end,
264 				unsigned long floor, unsigned long ceiling)
265 {
266 	pud_t *pud;
267 	unsigned long next;
268 	unsigned long start;
269 
270 	start = addr;
271 	pud = pud_offset(p4d, addr);
272 	do {
273 		next = pud_addr_end(addr, end);
274 		if (pud_none_or_clear_bad(pud))
275 			continue;
276 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
277 	} while (pud++, addr = next, addr != end);
278 
279 	start &= P4D_MASK;
280 	if (start < floor)
281 		return;
282 	if (ceiling) {
283 		ceiling &= P4D_MASK;
284 		if (!ceiling)
285 			return;
286 	}
287 	if (end - 1 > ceiling - 1)
288 		return;
289 
290 	pud = pud_offset(p4d, start);
291 	p4d_clear(p4d);
292 	pud_free_tlb(tlb, pud, start);
293 	mm_dec_nr_puds(tlb->mm);
294 }
295 
296 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
297 				unsigned long addr, unsigned long end,
298 				unsigned long floor, unsigned long ceiling)
299 {
300 	p4d_t *p4d;
301 	unsigned long next;
302 	unsigned long start;
303 
304 	start = addr;
305 	p4d = p4d_offset(pgd, addr);
306 	do {
307 		next = p4d_addr_end(addr, end);
308 		if (p4d_none_or_clear_bad(p4d))
309 			continue;
310 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
311 	} while (p4d++, addr = next, addr != end);
312 
313 	start &= PGDIR_MASK;
314 	if (start < floor)
315 		return;
316 	if (ceiling) {
317 		ceiling &= PGDIR_MASK;
318 		if (!ceiling)
319 			return;
320 	}
321 	if (end - 1 > ceiling - 1)
322 		return;
323 
324 	p4d = p4d_offset(pgd, start);
325 	pgd_clear(pgd);
326 	p4d_free_tlb(tlb, p4d, start);
327 }
328 
329 /*
330  * This function frees user-level page tables of a process.
331  */
332 void free_pgd_range(struct mmu_gather *tlb,
333 			unsigned long addr, unsigned long end,
334 			unsigned long floor, unsigned long ceiling)
335 {
336 	pgd_t *pgd;
337 	unsigned long next;
338 
339 	/*
340 	 * The next few lines have given us lots of grief...
341 	 *
342 	 * Why are we testing PMD* at this top level?  Because often
343 	 * there will be no work to do at all, and we'd prefer not to
344 	 * go all the way down to the bottom just to discover that.
345 	 *
346 	 * Why all these "- 1"s?  Because 0 represents both the bottom
347 	 * of the address space and the top of it (using -1 for the
348 	 * top wouldn't help much: the masks would do the wrong thing).
349 	 * The rule is that addr 0 and floor 0 refer to the bottom of
350 	 * the address space, but end 0 and ceiling 0 refer to the top
351 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
352 	 * that end 0 case should be mythical).
353 	 *
354 	 * Wherever addr is brought up or ceiling brought down, we must
355 	 * be careful to reject "the opposite 0" before it confuses the
356 	 * subsequent tests.  But what about where end is brought down
357 	 * by PMD_SIZE below? no, end can't go down to 0 there.
358 	 *
359 	 * Whereas we round start (addr) and ceiling down, by different
360 	 * masks at different levels, in order to test whether a table
361 	 * now has no other vmas using it, so can be freed, we don't
362 	 * bother to round floor or end up - the tests don't need that.
363 	 */
364 
365 	addr &= PMD_MASK;
366 	if (addr < floor) {
367 		addr += PMD_SIZE;
368 		if (!addr)
369 			return;
370 	}
371 	if (ceiling) {
372 		ceiling &= PMD_MASK;
373 		if (!ceiling)
374 			return;
375 	}
376 	if (end - 1 > ceiling - 1)
377 		end -= PMD_SIZE;
378 	if (addr > end - 1)
379 		return;
380 	/*
381 	 * We add page table cache pages with PAGE_SIZE,
382 	 * (see pte_free_tlb()), flush the tlb if we need
383 	 */
384 	tlb_change_page_size(tlb, PAGE_SIZE);
385 	pgd = pgd_offset(tlb->mm, addr);
386 	do {
387 		next = pgd_addr_end(addr, end);
388 		if (pgd_none_or_clear_bad(pgd))
389 			continue;
390 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
391 	} while (pgd++, addr = next, addr != end);
392 }
393 
394 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
395 		unsigned long floor, unsigned long ceiling)
396 {
397 	while (vma) {
398 		struct vm_area_struct *next = vma->vm_next;
399 		unsigned long addr = vma->vm_start;
400 
401 		/*
402 		 * Hide vma from rmap and truncate_pagecache before freeing
403 		 * pgtables
404 		 */
405 		unlink_anon_vmas(vma);
406 		unlink_file_vma(vma);
407 
408 		if (is_vm_hugetlb_page(vma)) {
409 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
410 				floor, next ? next->vm_start : ceiling);
411 		} else {
412 			/*
413 			 * Optimization: gather nearby vmas into one call down
414 			 */
415 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
416 			       && !is_vm_hugetlb_page(next)) {
417 				vma = next;
418 				next = vma->vm_next;
419 				unlink_anon_vmas(vma);
420 				unlink_file_vma(vma);
421 			}
422 			free_pgd_range(tlb, addr, vma->vm_end,
423 				floor, next ? next->vm_start : ceiling);
424 		}
425 		vma = next;
426 	}
427 }
428 
429 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
430 {
431 	spinlock_t *ptl = pmd_lock(mm, pmd);
432 
433 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
434 		mm_inc_nr_ptes(mm);
435 		/*
436 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
437 		 * visible before the pte is made visible to other CPUs by being
438 		 * put into page tables.
439 		 *
440 		 * The other side of the story is the pointer chasing in the page
441 		 * table walking code (when walking the page table without locking;
442 		 * ie. most of the time). Fortunately, these data accesses consist
443 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
444 		 * being the notable exception) will already guarantee loads are
445 		 * seen in-order. See the alpha page table accessors for the
446 		 * smp_rmb() barriers in page table walking code.
447 		 */
448 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
449 		pmd_populate(mm, pmd, *pte);
450 		*pte = NULL;
451 	}
452 	spin_unlock(ptl);
453 }
454 
455 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
456 {
457 	pgtable_t new = pte_alloc_one(mm);
458 	if (!new)
459 		return -ENOMEM;
460 
461 	pmd_install(mm, pmd, &new);
462 	if (new)
463 		pte_free(mm, new);
464 	return 0;
465 }
466 
467 int __pte_alloc_kernel(pmd_t *pmd)
468 {
469 	pte_t *new = pte_alloc_one_kernel(&init_mm);
470 	if (!new)
471 		return -ENOMEM;
472 
473 	spin_lock(&init_mm.page_table_lock);
474 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
475 		smp_wmb(); /* See comment in pmd_install() */
476 		pmd_populate_kernel(&init_mm, pmd, new);
477 		new = NULL;
478 	}
479 	spin_unlock(&init_mm.page_table_lock);
480 	if (new)
481 		pte_free_kernel(&init_mm, new);
482 	return 0;
483 }
484 
485 static inline void init_rss_vec(int *rss)
486 {
487 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
488 }
489 
490 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
491 {
492 	int i;
493 
494 	if (current->mm == mm)
495 		sync_mm_rss(mm);
496 	for (i = 0; i < NR_MM_COUNTERS; i++)
497 		if (rss[i])
498 			add_mm_counter(mm, i, rss[i]);
499 }
500 
501 /*
502  * This function is called to print an error when a bad pte
503  * is found. For example, we might have a PFN-mapped pte in
504  * a region that doesn't allow it.
505  *
506  * The calling function must still handle the error.
507  */
508 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
509 			  pte_t pte, struct page *page)
510 {
511 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
512 	p4d_t *p4d = p4d_offset(pgd, addr);
513 	pud_t *pud = pud_offset(p4d, addr);
514 	pmd_t *pmd = pmd_offset(pud, addr);
515 	struct address_space *mapping;
516 	pgoff_t index;
517 	static unsigned long resume;
518 	static unsigned long nr_shown;
519 	static unsigned long nr_unshown;
520 
521 	/*
522 	 * Allow a burst of 60 reports, then keep quiet for that minute;
523 	 * or allow a steady drip of one report per second.
524 	 */
525 	if (nr_shown == 60) {
526 		if (time_before(jiffies, resume)) {
527 			nr_unshown++;
528 			return;
529 		}
530 		if (nr_unshown) {
531 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
532 				 nr_unshown);
533 			nr_unshown = 0;
534 		}
535 		nr_shown = 0;
536 	}
537 	if (nr_shown++ == 0)
538 		resume = jiffies + 60 * HZ;
539 
540 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
541 	index = linear_page_index(vma, addr);
542 
543 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
544 		 current->comm,
545 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
546 	if (page)
547 		dump_page(page, "bad pte");
548 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
549 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
550 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
551 		 vma->vm_file,
552 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
553 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
554 		 mapping ? mapping->a_ops->read_folio : NULL);
555 	dump_stack();
556 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
557 }
558 
559 /*
560  * vm_normal_page -- This function gets the "struct page" associated with a pte.
561  *
562  * "Special" mappings do not wish to be associated with a "struct page" (either
563  * it doesn't exist, or it exists but they don't want to touch it). In this
564  * case, NULL is returned here. "Normal" mappings do have a struct page.
565  *
566  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
567  * pte bit, in which case this function is trivial. Secondly, an architecture
568  * may not have a spare pte bit, which requires a more complicated scheme,
569  * described below.
570  *
571  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
572  * special mapping (even if there are underlying and valid "struct pages").
573  * COWed pages of a VM_PFNMAP are always normal.
574  *
575  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
576  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
577  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
578  * mapping will always honor the rule
579  *
580  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
581  *
582  * And for normal mappings this is false.
583  *
584  * This restricts such mappings to be a linear translation from virtual address
585  * to pfn. To get around this restriction, we allow arbitrary mappings so long
586  * as the vma is not a COW mapping; in that case, we know that all ptes are
587  * special (because none can have been COWed).
588  *
589  *
590  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
591  *
592  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
593  * page" backing, however the difference is that _all_ pages with a struct
594  * page (that is, those where pfn_valid is true) are refcounted and considered
595  * normal pages by the VM. The disadvantage is that pages are refcounted
596  * (which can be slower and simply not an option for some PFNMAP users). The
597  * advantage is that we don't have to follow the strict linearity rule of
598  * PFNMAP mappings in order to support COWable mappings.
599  *
600  */
601 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
602 			    pte_t pte)
603 {
604 	unsigned long pfn = pte_pfn(pte);
605 
606 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
607 		if (likely(!pte_special(pte)))
608 			goto check_pfn;
609 		if (vma->vm_ops && vma->vm_ops->find_special_page)
610 			return vma->vm_ops->find_special_page(vma, addr);
611 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
612 			return NULL;
613 		if (is_zero_pfn(pfn))
614 			return NULL;
615 		if (pte_devmap(pte))
616 		/*
617 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
618 		 * and will have refcounts incremented on their struct pages
619 		 * when they are inserted into PTEs, thus they are safe to
620 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
621 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
622 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
623 		 */
624 			return NULL;
625 
626 		print_bad_pte(vma, addr, pte, NULL);
627 		return NULL;
628 	}
629 
630 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631 
632 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 		if (vma->vm_flags & VM_MIXEDMAP) {
634 			if (!pfn_valid(pfn))
635 				return NULL;
636 			goto out;
637 		} else {
638 			unsigned long off;
639 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
640 			if (pfn == vma->vm_pgoff + off)
641 				return NULL;
642 			if (!is_cow_mapping(vma->vm_flags))
643 				return NULL;
644 		}
645 	}
646 
647 	if (is_zero_pfn(pfn))
648 		return NULL;
649 
650 check_pfn:
651 	if (unlikely(pfn > highest_memmap_pfn)) {
652 		print_bad_pte(vma, addr, pte, NULL);
653 		return NULL;
654 	}
655 
656 	/*
657 	 * NOTE! We still have PageReserved() pages in the page tables.
658 	 * eg. VDSO mappings can cause them to exist.
659 	 */
660 out:
661 	return pfn_to_page(pfn);
662 }
663 
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 				pmd_t pmd)
667 {
668 	unsigned long pfn = pmd_pfn(pmd);
669 
670 	/*
671 	 * There is no pmd_special() but there may be special pmds, e.g.
672 	 * in a direct-access (dax) mapping, so let's just replicate the
673 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674 	 */
675 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 		if (vma->vm_flags & VM_MIXEDMAP) {
677 			if (!pfn_valid(pfn))
678 				return NULL;
679 			goto out;
680 		} else {
681 			unsigned long off;
682 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 			if (pfn == vma->vm_pgoff + off)
684 				return NULL;
685 			if (!is_cow_mapping(vma->vm_flags))
686 				return NULL;
687 		}
688 	}
689 
690 	if (pmd_devmap(pmd))
691 		return NULL;
692 	if (is_huge_zero_pmd(pmd))
693 		return NULL;
694 	if (unlikely(pfn > highest_memmap_pfn))
695 		return NULL;
696 
697 	/*
698 	 * NOTE! We still have PageReserved() pages in the page tables.
699 	 * eg. VDSO mappings can cause them to exist.
700 	 */
701 out:
702 	return pfn_to_page(pfn);
703 }
704 #endif
705 
706 static void restore_exclusive_pte(struct vm_area_struct *vma,
707 				  struct page *page, unsigned long address,
708 				  pte_t *ptep)
709 {
710 	pte_t pte;
711 	swp_entry_t entry;
712 
713 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 	if (pte_swp_soft_dirty(*ptep))
715 		pte = pte_mksoft_dirty(pte);
716 
717 	entry = pte_to_swp_entry(*ptep);
718 	if (pte_swp_uffd_wp(*ptep))
719 		pte = pte_mkuffd_wp(pte);
720 	else if (is_writable_device_exclusive_entry(entry))
721 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722 
723 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
724 
725 	/*
726 	 * No need to take a page reference as one was already
727 	 * created when the swap entry was made.
728 	 */
729 	if (PageAnon(page))
730 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
731 	else
732 		/*
733 		 * Currently device exclusive access only supports anonymous
734 		 * memory so the entry shouldn't point to a filebacked page.
735 		 */
736 		WARN_ON_ONCE(1);
737 
738 	set_pte_at(vma->vm_mm, address, ptep, pte);
739 
740 	/*
741 	 * No need to invalidate - it was non-present before. However
742 	 * secondary CPUs may have mappings that need invalidating.
743 	 */
744 	update_mmu_cache(vma, address, ptep);
745 }
746 
747 /*
748  * Tries to restore an exclusive pte if the page lock can be acquired without
749  * sleeping.
750  */
751 static int
752 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
753 			unsigned long addr)
754 {
755 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
756 	struct page *page = pfn_swap_entry_to_page(entry);
757 
758 	if (trylock_page(page)) {
759 		restore_exclusive_pte(vma, page, addr, src_pte);
760 		unlock_page(page);
761 		return 0;
762 	}
763 
764 	return -EBUSY;
765 }
766 
767 /*
768  * copy one vm_area from one task to the other. Assumes the page tables
769  * already present in the new task to be cleared in the whole range
770  * covered by this vma.
771  */
772 
773 static unsigned long
774 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
775 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
776 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
777 {
778 	unsigned long vm_flags = dst_vma->vm_flags;
779 	pte_t pte = *src_pte;
780 	struct page *page;
781 	swp_entry_t entry = pte_to_swp_entry(pte);
782 
783 	if (likely(!non_swap_entry(entry))) {
784 		if (swap_duplicate(entry) < 0)
785 			return -EIO;
786 
787 		/* make sure dst_mm is on swapoff's mmlist. */
788 		if (unlikely(list_empty(&dst_mm->mmlist))) {
789 			spin_lock(&mmlist_lock);
790 			if (list_empty(&dst_mm->mmlist))
791 				list_add(&dst_mm->mmlist,
792 						&src_mm->mmlist);
793 			spin_unlock(&mmlist_lock);
794 		}
795 		/* Mark the swap entry as shared. */
796 		if (pte_swp_exclusive(*src_pte)) {
797 			pte = pte_swp_clear_exclusive(*src_pte);
798 			set_pte_at(src_mm, addr, src_pte, pte);
799 		}
800 		rss[MM_SWAPENTS]++;
801 	} else if (is_migration_entry(entry)) {
802 		page = pfn_swap_entry_to_page(entry);
803 
804 		rss[mm_counter(page)]++;
805 
806 		if (!is_readable_migration_entry(entry) &&
807 				is_cow_mapping(vm_flags)) {
808 			/*
809 			 * COW mappings require pages in both parent and child
810 			 * to be set to read. A previously exclusive entry is
811 			 * now shared.
812 			 */
813 			entry = make_readable_migration_entry(
814 							swp_offset(entry));
815 			pte = swp_entry_to_pte(entry);
816 			if (pte_swp_soft_dirty(*src_pte))
817 				pte = pte_swp_mksoft_dirty(pte);
818 			if (pte_swp_uffd_wp(*src_pte))
819 				pte = pte_swp_mkuffd_wp(pte);
820 			set_pte_at(src_mm, addr, src_pte, pte);
821 		}
822 	} else if (is_device_private_entry(entry)) {
823 		page = pfn_swap_entry_to_page(entry);
824 
825 		/*
826 		 * Update rss count even for unaddressable pages, as
827 		 * they should treated just like normal pages in this
828 		 * respect.
829 		 *
830 		 * We will likely want to have some new rss counters
831 		 * for unaddressable pages, at some point. But for now
832 		 * keep things as they are.
833 		 */
834 		get_page(page);
835 		rss[mm_counter(page)]++;
836 		/* Cannot fail as these pages cannot get pinned. */
837 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
838 
839 		/*
840 		 * We do not preserve soft-dirty information, because so
841 		 * far, checkpoint/restore is the only feature that
842 		 * requires that. And checkpoint/restore does not work
843 		 * when a device driver is involved (you cannot easily
844 		 * save and restore device driver state).
845 		 */
846 		if (is_writable_device_private_entry(entry) &&
847 		    is_cow_mapping(vm_flags)) {
848 			entry = make_readable_device_private_entry(
849 							swp_offset(entry));
850 			pte = swp_entry_to_pte(entry);
851 			if (pte_swp_uffd_wp(*src_pte))
852 				pte = pte_swp_mkuffd_wp(pte);
853 			set_pte_at(src_mm, addr, src_pte, pte);
854 		}
855 	} else if (is_device_exclusive_entry(entry)) {
856 		/*
857 		 * Make device exclusive entries present by restoring the
858 		 * original entry then copying as for a present pte. Device
859 		 * exclusive entries currently only support private writable
860 		 * (ie. COW) mappings.
861 		 */
862 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
863 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
864 			return -EBUSY;
865 		return -ENOENT;
866 	} else if (is_pte_marker_entry(entry)) {
867 		/*
868 		 * We're copying the pgtable should only because dst_vma has
869 		 * uffd-wp enabled, do sanity check.
870 		 */
871 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
872 		set_pte_at(dst_mm, addr, dst_pte, pte);
873 		return 0;
874 	}
875 	if (!userfaultfd_wp(dst_vma))
876 		pte = pte_swp_clear_uffd_wp(pte);
877 	set_pte_at(dst_mm, addr, dst_pte, pte);
878 	return 0;
879 }
880 
881 /*
882  * Copy a present and normal page.
883  *
884  * NOTE! The usual case is that this isn't required;
885  * instead, the caller can just increase the page refcount
886  * and re-use the pte the traditional way.
887  *
888  * And if we need a pre-allocated page but don't yet have
889  * one, return a negative error to let the preallocation
890  * code know so that it can do so outside the page table
891  * lock.
892  */
893 static inline int
894 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
895 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
896 		  struct page **prealloc, struct page *page)
897 {
898 	struct page *new_page;
899 	pte_t pte;
900 
901 	new_page = *prealloc;
902 	if (!new_page)
903 		return -EAGAIN;
904 
905 	/*
906 	 * We have a prealloc page, all good!  Take it
907 	 * over and copy the page & arm it.
908 	 */
909 	*prealloc = NULL;
910 	copy_user_highpage(new_page, page, addr, src_vma);
911 	__SetPageUptodate(new_page);
912 	page_add_new_anon_rmap(new_page, dst_vma, addr);
913 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
914 	rss[mm_counter(new_page)]++;
915 
916 	/* All done, just insert the new page copy in the child */
917 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
918 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
919 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
920 		/* Uffd-wp needs to be delivered to dest pte as well */
921 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
922 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
923 	return 0;
924 }
925 
926 /*
927  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
928  * is required to copy this pte.
929  */
930 static inline int
931 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
932 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
933 		 struct page **prealloc)
934 {
935 	struct mm_struct *src_mm = src_vma->vm_mm;
936 	unsigned long vm_flags = src_vma->vm_flags;
937 	pte_t pte = *src_pte;
938 	struct page *page;
939 
940 	page = vm_normal_page(src_vma, addr, pte);
941 	if (page && PageAnon(page)) {
942 		/*
943 		 * If this page may have been pinned by the parent process,
944 		 * copy the page immediately for the child so that we'll always
945 		 * guarantee the pinned page won't be randomly replaced in the
946 		 * future.
947 		 */
948 		get_page(page);
949 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
950 			/* Page maybe pinned, we have to copy. */
951 			put_page(page);
952 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
953 						 addr, rss, prealloc, page);
954 		}
955 		rss[mm_counter(page)]++;
956 	} else if (page) {
957 		get_page(page);
958 		page_dup_file_rmap(page, false);
959 		rss[mm_counter(page)]++;
960 	}
961 
962 	/*
963 	 * If it's a COW mapping, write protect it both
964 	 * in the parent and the child
965 	 */
966 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
967 		ptep_set_wrprotect(src_mm, addr, src_pte);
968 		pte = pte_wrprotect(pte);
969 	}
970 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
971 
972 	/*
973 	 * If it's a shared mapping, mark it clean in
974 	 * the child
975 	 */
976 	if (vm_flags & VM_SHARED)
977 		pte = pte_mkclean(pte);
978 	pte = pte_mkold(pte);
979 
980 	if (!userfaultfd_wp(dst_vma))
981 		pte = pte_clear_uffd_wp(pte);
982 
983 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
984 	return 0;
985 }
986 
987 static inline struct page *
988 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
989 		   unsigned long addr)
990 {
991 	struct page *new_page;
992 
993 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994 	if (!new_page)
995 		return NULL;
996 
997 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
998 		put_page(new_page);
999 		return NULL;
1000 	}
1001 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1002 
1003 	return new_page;
1004 }
1005 
1006 static int
1007 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1009 	       unsigned long end)
1010 {
1011 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1012 	struct mm_struct *src_mm = src_vma->vm_mm;
1013 	pte_t *orig_src_pte, *orig_dst_pte;
1014 	pte_t *src_pte, *dst_pte;
1015 	spinlock_t *src_ptl, *dst_ptl;
1016 	int progress, ret = 0;
1017 	int rss[NR_MM_COUNTERS];
1018 	swp_entry_t entry = (swp_entry_t){0};
1019 	struct page *prealloc = NULL;
1020 
1021 again:
1022 	progress = 0;
1023 	init_rss_vec(rss);
1024 
1025 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1026 	if (!dst_pte) {
1027 		ret = -ENOMEM;
1028 		goto out;
1029 	}
1030 	src_pte = pte_offset_map(src_pmd, addr);
1031 	src_ptl = pte_lockptr(src_mm, src_pmd);
1032 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033 	orig_src_pte = src_pte;
1034 	orig_dst_pte = dst_pte;
1035 	arch_enter_lazy_mmu_mode();
1036 
1037 	do {
1038 		/*
1039 		 * We are holding two locks at this point - either of them
1040 		 * could generate latencies in another task on another CPU.
1041 		 */
1042 		if (progress >= 32) {
1043 			progress = 0;
1044 			if (need_resched() ||
1045 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1046 				break;
1047 		}
1048 		if (pte_none(*src_pte)) {
1049 			progress++;
1050 			continue;
1051 		}
1052 		if (unlikely(!pte_present(*src_pte))) {
1053 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1054 						  dst_pte, src_pte,
1055 						  dst_vma, src_vma,
1056 						  addr, rss);
1057 			if (ret == -EIO) {
1058 				entry = pte_to_swp_entry(*src_pte);
1059 				break;
1060 			} else if (ret == -EBUSY) {
1061 				break;
1062 			} else if (!ret) {
1063 				progress += 8;
1064 				continue;
1065 			}
1066 
1067 			/*
1068 			 * Device exclusive entry restored, continue by copying
1069 			 * the now present pte.
1070 			 */
1071 			WARN_ON_ONCE(ret != -ENOENT);
1072 		}
1073 		/* copy_present_pte() will clear `*prealloc' if consumed */
1074 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075 				       addr, rss, &prealloc);
1076 		/*
1077 		 * If we need a pre-allocated page for this pte, drop the
1078 		 * locks, allocate, and try again.
1079 		 */
1080 		if (unlikely(ret == -EAGAIN))
1081 			break;
1082 		if (unlikely(prealloc)) {
1083 			/*
1084 			 * pre-alloc page cannot be reused by next time so as
1085 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1086 			 * will allocate page according to address).  This
1087 			 * could only happen if one pinned pte changed.
1088 			 */
1089 			put_page(prealloc);
1090 			prealloc = NULL;
1091 		}
1092 		progress += 8;
1093 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1094 
1095 	arch_leave_lazy_mmu_mode();
1096 	spin_unlock(src_ptl);
1097 	pte_unmap(orig_src_pte);
1098 	add_mm_rss_vec(dst_mm, rss);
1099 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1100 	cond_resched();
1101 
1102 	if (ret == -EIO) {
1103 		VM_WARN_ON_ONCE(!entry.val);
1104 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1105 			ret = -ENOMEM;
1106 			goto out;
1107 		}
1108 		entry.val = 0;
1109 	} else if (ret == -EBUSY) {
1110 		goto out;
1111 	} else if (ret ==  -EAGAIN) {
1112 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1113 		if (!prealloc)
1114 			return -ENOMEM;
1115 	} else if (ret) {
1116 		VM_WARN_ON_ONCE(1);
1117 	}
1118 
1119 	/* We've captured and resolved the error. Reset, try again. */
1120 	ret = 0;
1121 
1122 	if (addr != end)
1123 		goto again;
1124 out:
1125 	if (unlikely(prealloc))
1126 		put_page(prealloc);
1127 	return ret;
1128 }
1129 
1130 static inline int
1131 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1133 	       unsigned long end)
1134 {
1135 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1136 	struct mm_struct *src_mm = src_vma->vm_mm;
1137 	pmd_t *src_pmd, *dst_pmd;
1138 	unsigned long next;
1139 
1140 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 	if (!dst_pmd)
1142 		return -ENOMEM;
1143 	src_pmd = pmd_offset(src_pud, addr);
1144 	do {
1145 		next = pmd_addr_end(addr, end);
1146 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 			|| pmd_devmap(*src_pmd)) {
1148 			int err;
1149 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1150 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151 					    addr, dst_vma, src_vma);
1152 			if (err == -ENOMEM)
1153 				return -ENOMEM;
1154 			if (!err)
1155 				continue;
1156 			/* fall through */
1157 		}
1158 		if (pmd_none_or_clear_bad(src_pmd))
1159 			continue;
1160 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1161 				   addr, next))
1162 			return -ENOMEM;
1163 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 	return 0;
1165 }
1166 
1167 static inline int
1168 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1170 	       unsigned long end)
1171 {
1172 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1173 	struct mm_struct *src_mm = src_vma->vm_mm;
1174 	pud_t *src_pud, *dst_pud;
1175 	unsigned long next;
1176 
1177 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1178 	if (!dst_pud)
1179 		return -ENOMEM;
1180 	src_pud = pud_offset(src_p4d, addr);
1181 	do {
1182 		next = pud_addr_end(addr, end);
1183 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184 			int err;
1185 
1186 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1187 			err = copy_huge_pud(dst_mm, src_mm,
1188 					    dst_pud, src_pud, addr, src_vma);
1189 			if (err == -ENOMEM)
1190 				return -ENOMEM;
1191 			if (!err)
1192 				continue;
1193 			/* fall through */
1194 		}
1195 		if (pud_none_or_clear_bad(src_pud))
1196 			continue;
1197 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1198 				   addr, next))
1199 			return -ENOMEM;
1200 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1201 	return 0;
1202 }
1203 
1204 static inline int
1205 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1207 	       unsigned long end)
1208 {
1209 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1210 	p4d_t *src_p4d, *dst_p4d;
1211 	unsigned long next;
1212 
1213 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214 	if (!dst_p4d)
1215 		return -ENOMEM;
1216 	src_p4d = p4d_offset(src_pgd, addr);
1217 	do {
1218 		next = p4d_addr_end(addr, end);
1219 		if (p4d_none_or_clear_bad(src_p4d))
1220 			continue;
1221 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1222 				   addr, next))
1223 			return -ENOMEM;
1224 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Return true if the vma needs to copy the pgtable during this fork().  Return
1230  * false when we can speed up fork() by allowing lazy page faults later until
1231  * when the child accesses the memory range.
1232  */
1233 static bool
1234 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1235 {
1236 	/*
1237 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1238 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1239 	 * contains uffd-wp protection information, that's something we can't
1240 	 * retrieve from page cache, and skip copying will lose those info.
1241 	 */
1242 	if (userfaultfd_wp(dst_vma))
1243 		return true;
1244 
1245 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1246 		return true;
1247 
1248 	if (src_vma->anon_vma)
1249 		return true;
1250 
1251 	/*
1252 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1253 	 * becomes much lighter when there are big shared or private readonly
1254 	 * mappings. The tradeoff is that copy_page_range is more efficient
1255 	 * than faulting.
1256 	 */
1257 	return false;
1258 }
1259 
1260 int
1261 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1262 {
1263 	pgd_t *src_pgd, *dst_pgd;
1264 	unsigned long next;
1265 	unsigned long addr = src_vma->vm_start;
1266 	unsigned long end = src_vma->vm_end;
1267 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1268 	struct mm_struct *src_mm = src_vma->vm_mm;
1269 	struct mmu_notifier_range range;
1270 	bool is_cow;
1271 	int ret;
1272 
1273 	if (!vma_needs_copy(dst_vma, src_vma))
1274 		return 0;
1275 
1276 	if (is_vm_hugetlb_page(src_vma))
1277 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1278 
1279 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1280 		/*
1281 		 * We do not free on error cases below as remove_vma
1282 		 * gets called on error from higher level routine
1283 		 */
1284 		ret = track_pfn_copy(src_vma);
1285 		if (ret)
1286 			return ret;
1287 	}
1288 
1289 	/*
1290 	 * We need to invalidate the secondary MMU mappings only when
1291 	 * there could be a permission downgrade on the ptes of the
1292 	 * parent mm. And a permission downgrade will only happen if
1293 	 * is_cow_mapping() returns true.
1294 	 */
1295 	is_cow = is_cow_mapping(src_vma->vm_flags);
1296 
1297 	if (is_cow) {
1298 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1299 					0, src_vma, src_mm, addr, end);
1300 		mmu_notifier_invalidate_range_start(&range);
1301 		/*
1302 		 * Disabling preemption is not needed for the write side, as
1303 		 * the read side doesn't spin, but goes to the mmap_lock.
1304 		 *
1305 		 * Use the raw variant of the seqcount_t write API to avoid
1306 		 * lockdep complaining about preemptibility.
1307 		 */
1308 		mmap_assert_write_locked(src_mm);
1309 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1310 	}
1311 
1312 	ret = 0;
1313 	dst_pgd = pgd_offset(dst_mm, addr);
1314 	src_pgd = pgd_offset(src_mm, addr);
1315 	do {
1316 		next = pgd_addr_end(addr, end);
1317 		if (pgd_none_or_clear_bad(src_pgd))
1318 			continue;
1319 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1320 					    addr, next))) {
1321 			ret = -ENOMEM;
1322 			break;
1323 		}
1324 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1325 
1326 	if (is_cow) {
1327 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1328 		mmu_notifier_invalidate_range_end(&range);
1329 	}
1330 	return ret;
1331 }
1332 
1333 /*
1334  * Parameter block passed down to zap_pte_range in exceptional cases.
1335  */
1336 struct zap_details {
1337 	struct folio *single_folio;	/* Locked folio to be unmapped */
1338 	bool even_cows;			/* Zap COWed private pages too? */
1339 	zap_flags_t zap_flags;		/* Extra flags for zapping */
1340 };
1341 
1342 /* Whether we should zap all COWed (private) pages too */
1343 static inline bool should_zap_cows(struct zap_details *details)
1344 {
1345 	/* By default, zap all pages */
1346 	if (!details)
1347 		return true;
1348 
1349 	/* Or, we zap COWed pages only if the caller wants to */
1350 	return details->even_cows;
1351 }
1352 
1353 /* Decides whether we should zap this page with the page pointer specified */
1354 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1355 {
1356 	/* If we can make a decision without *page.. */
1357 	if (should_zap_cows(details))
1358 		return true;
1359 
1360 	/* E.g. the caller passes NULL for the case of a zero page */
1361 	if (!page)
1362 		return true;
1363 
1364 	/* Otherwise we should only zap non-anon pages */
1365 	return !PageAnon(page);
1366 }
1367 
1368 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1369 {
1370 	if (!details)
1371 		return false;
1372 
1373 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1374 }
1375 
1376 /*
1377  * This function makes sure that we'll replace the none pte with an uffd-wp
1378  * swap special pte marker when necessary. Must be with the pgtable lock held.
1379  */
1380 static inline void
1381 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1382 			      unsigned long addr, pte_t *pte,
1383 			      struct zap_details *details, pte_t pteval)
1384 {
1385 	if (zap_drop_file_uffd_wp(details))
1386 		return;
1387 
1388 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1389 }
1390 
1391 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1392 				struct vm_area_struct *vma, pmd_t *pmd,
1393 				unsigned long addr, unsigned long end,
1394 				struct zap_details *details)
1395 {
1396 	struct mm_struct *mm = tlb->mm;
1397 	int force_flush = 0;
1398 	int rss[NR_MM_COUNTERS];
1399 	spinlock_t *ptl;
1400 	pte_t *start_pte;
1401 	pte_t *pte;
1402 	swp_entry_t entry;
1403 
1404 	tlb_change_page_size(tlb, PAGE_SIZE);
1405 again:
1406 	init_rss_vec(rss);
1407 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1408 	pte = start_pte;
1409 	flush_tlb_batched_pending(mm);
1410 	arch_enter_lazy_mmu_mode();
1411 	do {
1412 		pte_t ptent = *pte;
1413 		struct page *page;
1414 
1415 		if (pte_none(ptent))
1416 			continue;
1417 
1418 		if (need_resched())
1419 			break;
1420 
1421 		if (pte_present(ptent)) {
1422 			page = vm_normal_page(vma, addr, ptent);
1423 			if (unlikely(!should_zap_page(details, page)))
1424 				continue;
1425 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1426 							tlb->fullmm);
1427 			tlb_remove_tlb_entry(tlb, pte, addr);
1428 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1429 						      ptent);
1430 			if (unlikely(!page))
1431 				continue;
1432 
1433 			if (!PageAnon(page)) {
1434 				if (pte_dirty(ptent)) {
1435 					force_flush = 1;
1436 					set_page_dirty(page);
1437 				}
1438 				if (pte_young(ptent) &&
1439 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1440 					mark_page_accessed(page);
1441 			}
1442 			rss[mm_counter(page)]--;
1443 			page_remove_rmap(page, vma, false);
1444 			if (unlikely(page_mapcount(page) < 0))
1445 				print_bad_pte(vma, addr, ptent, page);
1446 			if (unlikely(__tlb_remove_page(tlb, page))) {
1447 				force_flush = 1;
1448 				addr += PAGE_SIZE;
1449 				break;
1450 			}
1451 			continue;
1452 		}
1453 
1454 		entry = pte_to_swp_entry(ptent);
1455 		if (is_device_private_entry(entry) ||
1456 		    is_device_exclusive_entry(entry)) {
1457 			page = pfn_swap_entry_to_page(entry);
1458 			if (unlikely(!should_zap_page(details, page)))
1459 				continue;
1460 			/*
1461 			 * Both device private/exclusive mappings should only
1462 			 * work with anonymous page so far, so we don't need to
1463 			 * consider uffd-wp bit when zap. For more information,
1464 			 * see zap_install_uffd_wp_if_needed().
1465 			 */
1466 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1467 			rss[mm_counter(page)]--;
1468 			if (is_device_private_entry(entry))
1469 				page_remove_rmap(page, vma, false);
1470 			put_page(page);
1471 		} else if (!non_swap_entry(entry)) {
1472 			/* Genuine swap entry, hence a private anon page */
1473 			if (!should_zap_cows(details))
1474 				continue;
1475 			rss[MM_SWAPENTS]--;
1476 			if (unlikely(!free_swap_and_cache(entry)))
1477 				print_bad_pte(vma, addr, ptent, NULL);
1478 		} else if (is_migration_entry(entry)) {
1479 			page = pfn_swap_entry_to_page(entry);
1480 			if (!should_zap_page(details, page))
1481 				continue;
1482 			rss[mm_counter(page)]--;
1483 		} else if (pte_marker_entry_uffd_wp(entry)) {
1484 			/* Only drop the uffd-wp marker if explicitly requested */
1485 			if (!zap_drop_file_uffd_wp(details))
1486 				continue;
1487 		} else if (is_hwpoison_entry(entry) ||
1488 			   is_swapin_error_entry(entry)) {
1489 			if (!should_zap_cows(details))
1490 				continue;
1491 		} else {
1492 			/* We should have covered all the swap entry types */
1493 			WARN_ON_ONCE(1);
1494 		}
1495 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1496 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1497 	} while (pte++, addr += PAGE_SIZE, addr != end);
1498 
1499 	add_mm_rss_vec(mm, rss);
1500 	arch_leave_lazy_mmu_mode();
1501 
1502 	/* Do the actual TLB flush before dropping ptl */
1503 	if (force_flush)
1504 		tlb_flush_mmu_tlbonly(tlb);
1505 	pte_unmap_unlock(start_pte, ptl);
1506 
1507 	/*
1508 	 * If we forced a TLB flush (either due to running out of
1509 	 * batch buffers or because we needed to flush dirty TLB
1510 	 * entries before releasing the ptl), free the batched
1511 	 * memory too. Restart if we didn't do everything.
1512 	 */
1513 	if (force_flush) {
1514 		force_flush = 0;
1515 		tlb_flush_mmu(tlb);
1516 	}
1517 
1518 	if (addr != end) {
1519 		cond_resched();
1520 		goto again;
1521 	}
1522 
1523 	return addr;
1524 }
1525 
1526 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1527 				struct vm_area_struct *vma, pud_t *pud,
1528 				unsigned long addr, unsigned long end,
1529 				struct zap_details *details)
1530 {
1531 	pmd_t *pmd;
1532 	unsigned long next;
1533 
1534 	pmd = pmd_offset(pud, addr);
1535 	do {
1536 		next = pmd_addr_end(addr, end);
1537 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1538 			if (next - addr != HPAGE_PMD_SIZE)
1539 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1540 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1541 				goto next;
1542 			/* fall through */
1543 		} else if (details && details->single_folio &&
1544 			   folio_test_pmd_mappable(details->single_folio) &&
1545 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1546 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1547 			/*
1548 			 * Take and drop THP pmd lock so that we cannot return
1549 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1550 			 * but not yet decremented compound_mapcount().
1551 			 */
1552 			spin_unlock(ptl);
1553 		}
1554 
1555 		/*
1556 		 * Here there can be other concurrent MADV_DONTNEED or
1557 		 * trans huge page faults running, and if the pmd is
1558 		 * none or trans huge it can change under us. This is
1559 		 * because MADV_DONTNEED holds the mmap_lock in read
1560 		 * mode.
1561 		 */
1562 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1563 			goto next;
1564 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1565 next:
1566 		cond_resched();
1567 	} while (pmd++, addr = next, addr != end);
1568 
1569 	return addr;
1570 }
1571 
1572 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1573 				struct vm_area_struct *vma, p4d_t *p4d,
1574 				unsigned long addr, unsigned long end,
1575 				struct zap_details *details)
1576 {
1577 	pud_t *pud;
1578 	unsigned long next;
1579 
1580 	pud = pud_offset(p4d, addr);
1581 	do {
1582 		next = pud_addr_end(addr, end);
1583 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1584 			if (next - addr != HPAGE_PUD_SIZE) {
1585 				mmap_assert_locked(tlb->mm);
1586 				split_huge_pud(vma, pud, addr);
1587 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1588 				goto next;
1589 			/* fall through */
1590 		}
1591 		if (pud_none_or_clear_bad(pud))
1592 			continue;
1593 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1594 next:
1595 		cond_resched();
1596 	} while (pud++, addr = next, addr != end);
1597 
1598 	return addr;
1599 }
1600 
1601 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1602 				struct vm_area_struct *vma, pgd_t *pgd,
1603 				unsigned long addr, unsigned long end,
1604 				struct zap_details *details)
1605 {
1606 	p4d_t *p4d;
1607 	unsigned long next;
1608 
1609 	p4d = p4d_offset(pgd, addr);
1610 	do {
1611 		next = p4d_addr_end(addr, end);
1612 		if (p4d_none_or_clear_bad(p4d))
1613 			continue;
1614 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1615 	} while (p4d++, addr = next, addr != end);
1616 
1617 	return addr;
1618 }
1619 
1620 void unmap_page_range(struct mmu_gather *tlb,
1621 			     struct vm_area_struct *vma,
1622 			     unsigned long addr, unsigned long end,
1623 			     struct zap_details *details)
1624 {
1625 	pgd_t *pgd;
1626 	unsigned long next;
1627 
1628 	BUG_ON(addr >= end);
1629 	tlb_start_vma(tlb, vma);
1630 	pgd = pgd_offset(vma->vm_mm, addr);
1631 	do {
1632 		next = pgd_addr_end(addr, end);
1633 		if (pgd_none_or_clear_bad(pgd))
1634 			continue;
1635 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1636 	} while (pgd++, addr = next, addr != end);
1637 	tlb_end_vma(tlb, vma);
1638 }
1639 
1640 
1641 static void unmap_single_vma(struct mmu_gather *tlb,
1642 		struct vm_area_struct *vma, unsigned long start_addr,
1643 		unsigned long end_addr,
1644 		struct zap_details *details)
1645 {
1646 	unsigned long start = max(vma->vm_start, start_addr);
1647 	unsigned long end;
1648 
1649 	if (start >= vma->vm_end)
1650 		return;
1651 	end = min(vma->vm_end, end_addr);
1652 	if (end <= vma->vm_start)
1653 		return;
1654 
1655 	if (vma->vm_file)
1656 		uprobe_munmap(vma, start, end);
1657 
1658 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1659 		untrack_pfn(vma, 0, 0);
1660 
1661 	if (start != end) {
1662 		if (unlikely(is_vm_hugetlb_page(vma))) {
1663 			/*
1664 			 * It is undesirable to test vma->vm_file as it
1665 			 * should be non-null for valid hugetlb area.
1666 			 * However, vm_file will be NULL in the error
1667 			 * cleanup path of mmap_region. When
1668 			 * hugetlbfs ->mmap method fails,
1669 			 * mmap_region() nullifies vma->vm_file
1670 			 * before calling this function to clean up.
1671 			 * Since no pte has actually been setup, it is
1672 			 * safe to do nothing in this case.
1673 			 */
1674 			if (vma->vm_file) {
1675 				zap_flags_t zap_flags = details ?
1676 				    details->zap_flags : 0;
1677 				i_mmap_lock_write(vma->vm_file->f_mapping);
1678 				__unmap_hugepage_range_final(tlb, vma, start, end,
1679 							     NULL, zap_flags);
1680 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1681 			}
1682 		} else
1683 			unmap_page_range(tlb, vma, start, end, details);
1684 	}
1685 }
1686 
1687 /**
1688  * unmap_vmas - unmap a range of memory covered by a list of vma's
1689  * @tlb: address of the caller's struct mmu_gather
1690  * @vma: the starting vma
1691  * @start_addr: virtual address at which to start unmapping
1692  * @end_addr: virtual address at which to end unmapping
1693  *
1694  * Unmap all pages in the vma list.
1695  *
1696  * Only addresses between `start' and `end' will be unmapped.
1697  *
1698  * The VMA list must be sorted in ascending virtual address order.
1699  *
1700  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1701  * range after unmap_vmas() returns.  So the only responsibility here is to
1702  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1703  * drops the lock and schedules.
1704  */
1705 void unmap_vmas(struct mmu_gather *tlb,
1706 		struct vm_area_struct *vma, unsigned long start_addr,
1707 		unsigned long end_addr)
1708 {
1709 	struct mmu_notifier_range range;
1710 	struct zap_details details = {
1711 		.zap_flags = ZAP_FLAG_DROP_MARKER,
1712 		/* Careful - we need to zap private pages too! */
1713 		.even_cows = true,
1714 	};
1715 
1716 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1717 				start_addr, end_addr);
1718 	mmu_notifier_invalidate_range_start(&range);
1719 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1720 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1721 	mmu_notifier_invalidate_range_end(&range);
1722 }
1723 
1724 /**
1725  * zap_page_range - remove user pages in a given range
1726  * @vma: vm_area_struct holding the applicable pages
1727  * @start: starting address of pages to zap
1728  * @size: number of bytes to zap
1729  *
1730  * Caller must protect the VMA list
1731  */
1732 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1733 		unsigned long size)
1734 {
1735 	struct mmu_notifier_range range;
1736 	struct mmu_gather tlb;
1737 
1738 	lru_add_drain();
1739 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1740 				start, start + size);
1741 	tlb_gather_mmu(&tlb, vma->vm_mm);
1742 	update_hiwater_rss(vma->vm_mm);
1743 	mmu_notifier_invalidate_range_start(&range);
1744 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1745 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1746 	mmu_notifier_invalidate_range_end(&range);
1747 	tlb_finish_mmu(&tlb);
1748 }
1749 
1750 /**
1751  * zap_page_range_single - remove user pages in a given range
1752  * @vma: vm_area_struct holding the applicable pages
1753  * @address: starting address of pages to zap
1754  * @size: number of bytes to zap
1755  * @details: details of shared cache invalidation
1756  *
1757  * The range must fit into one VMA.
1758  */
1759 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1760 		unsigned long size, struct zap_details *details)
1761 {
1762 	struct mmu_notifier_range range;
1763 	struct mmu_gather tlb;
1764 
1765 	lru_add_drain();
1766 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1767 				address, address + size);
1768 	tlb_gather_mmu(&tlb, vma->vm_mm);
1769 	update_hiwater_rss(vma->vm_mm);
1770 	mmu_notifier_invalidate_range_start(&range);
1771 	unmap_single_vma(&tlb, vma, address, range.end, details);
1772 	mmu_notifier_invalidate_range_end(&range);
1773 	tlb_finish_mmu(&tlb);
1774 }
1775 
1776 /**
1777  * zap_vma_ptes - remove ptes mapping the vma
1778  * @vma: vm_area_struct holding ptes to be zapped
1779  * @address: starting address of pages to zap
1780  * @size: number of bytes to zap
1781  *
1782  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1783  *
1784  * The entire address range must be fully contained within the vma.
1785  *
1786  */
1787 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1788 		unsigned long size)
1789 {
1790 	if (!range_in_vma(vma, address, address + size) ||
1791 	    		!(vma->vm_flags & VM_PFNMAP))
1792 		return;
1793 
1794 	zap_page_range_single(vma, address, size, NULL);
1795 }
1796 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1797 
1798 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1799 {
1800 	pgd_t *pgd;
1801 	p4d_t *p4d;
1802 	pud_t *pud;
1803 	pmd_t *pmd;
1804 
1805 	pgd = pgd_offset(mm, addr);
1806 	p4d = p4d_alloc(mm, pgd, addr);
1807 	if (!p4d)
1808 		return NULL;
1809 	pud = pud_alloc(mm, p4d, addr);
1810 	if (!pud)
1811 		return NULL;
1812 	pmd = pmd_alloc(mm, pud, addr);
1813 	if (!pmd)
1814 		return NULL;
1815 
1816 	VM_BUG_ON(pmd_trans_huge(*pmd));
1817 	return pmd;
1818 }
1819 
1820 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1821 			spinlock_t **ptl)
1822 {
1823 	pmd_t *pmd = walk_to_pmd(mm, addr);
1824 
1825 	if (!pmd)
1826 		return NULL;
1827 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1828 }
1829 
1830 static int validate_page_before_insert(struct page *page)
1831 {
1832 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1833 		return -EINVAL;
1834 	flush_dcache_page(page);
1835 	return 0;
1836 }
1837 
1838 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1839 			unsigned long addr, struct page *page, pgprot_t prot)
1840 {
1841 	if (!pte_none(*pte))
1842 		return -EBUSY;
1843 	/* Ok, finally just insert the thing.. */
1844 	get_page(page);
1845 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1846 	page_add_file_rmap(page, vma, false);
1847 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1848 	return 0;
1849 }
1850 
1851 /*
1852  * This is the old fallback for page remapping.
1853  *
1854  * For historical reasons, it only allows reserved pages. Only
1855  * old drivers should use this, and they needed to mark their
1856  * pages reserved for the old functions anyway.
1857  */
1858 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1859 			struct page *page, pgprot_t prot)
1860 {
1861 	int retval;
1862 	pte_t *pte;
1863 	spinlock_t *ptl;
1864 
1865 	retval = validate_page_before_insert(page);
1866 	if (retval)
1867 		goto out;
1868 	retval = -ENOMEM;
1869 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1870 	if (!pte)
1871 		goto out;
1872 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1873 	pte_unmap_unlock(pte, ptl);
1874 out:
1875 	return retval;
1876 }
1877 
1878 #ifdef pte_index
1879 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1880 			unsigned long addr, struct page *page, pgprot_t prot)
1881 {
1882 	int err;
1883 
1884 	if (!page_count(page))
1885 		return -EINVAL;
1886 	err = validate_page_before_insert(page);
1887 	if (err)
1888 		return err;
1889 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1890 }
1891 
1892 /* insert_pages() amortizes the cost of spinlock operations
1893  * when inserting pages in a loop. Arch *must* define pte_index.
1894  */
1895 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1896 			struct page **pages, unsigned long *num, pgprot_t prot)
1897 {
1898 	pmd_t *pmd = NULL;
1899 	pte_t *start_pte, *pte;
1900 	spinlock_t *pte_lock;
1901 	struct mm_struct *const mm = vma->vm_mm;
1902 	unsigned long curr_page_idx = 0;
1903 	unsigned long remaining_pages_total = *num;
1904 	unsigned long pages_to_write_in_pmd;
1905 	int ret;
1906 more:
1907 	ret = -EFAULT;
1908 	pmd = walk_to_pmd(mm, addr);
1909 	if (!pmd)
1910 		goto out;
1911 
1912 	pages_to_write_in_pmd = min_t(unsigned long,
1913 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1914 
1915 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1916 	ret = -ENOMEM;
1917 	if (pte_alloc(mm, pmd))
1918 		goto out;
1919 
1920 	while (pages_to_write_in_pmd) {
1921 		int pte_idx = 0;
1922 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1923 
1924 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1925 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1926 			int err = insert_page_in_batch_locked(vma, pte,
1927 				addr, pages[curr_page_idx], prot);
1928 			if (unlikely(err)) {
1929 				pte_unmap_unlock(start_pte, pte_lock);
1930 				ret = err;
1931 				remaining_pages_total -= pte_idx;
1932 				goto out;
1933 			}
1934 			addr += PAGE_SIZE;
1935 			++curr_page_idx;
1936 		}
1937 		pte_unmap_unlock(start_pte, pte_lock);
1938 		pages_to_write_in_pmd -= batch_size;
1939 		remaining_pages_total -= batch_size;
1940 	}
1941 	if (remaining_pages_total)
1942 		goto more;
1943 	ret = 0;
1944 out:
1945 	*num = remaining_pages_total;
1946 	return ret;
1947 }
1948 #endif  /* ifdef pte_index */
1949 
1950 /**
1951  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1952  * @vma: user vma to map to
1953  * @addr: target start user address of these pages
1954  * @pages: source kernel pages
1955  * @num: in: number of pages to map. out: number of pages that were *not*
1956  * mapped. (0 means all pages were successfully mapped).
1957  *
1958  * Preferred over vm_insert_page() when inserting multiple pages.
1959  *
1960  * In case of error, we may have mapped a subset of the provided
1961  * pages. It is the caller's responsibility to account for this case.
1962  *
1963  * The same restrictions apply as in vm_insert_page().
1964  */
1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1966 			struct page **pages, unsigned long *num)
1967 {
1968 #ifdef pte_index
1969 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1970 
1971 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1972 		return -EFAULT;
1973 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1974 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1975 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1976 		vma->vm_flags |= VM_MIXEDMAP;
1977 	}
1978 	/* Defer page refcount checking till we're about to map that page. */
1979 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1980 #else
1981 	unsigned long idx = 0, pgcount = *num;
1982 	int err = -EINVAL;
1983 
1984 	for (; idx < pgcount; ++idx) {
1985 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1986 		if (err)
1987 			break;
1988 	}
1989 	*num = pgcount - idx;
1990 	return err;
1991 #endif  /* ifdef pte_index */
1992 }
1993 EXPORT_SYMBOL(vm_insert_pages);
1994 
1995 /**
1996  * vm_insert_page - insert single page into user vma
1997  * @vma: user vma to map to
1998  * @addr: target user address of this page
1999  * @page: source kernel page
2000  *
2001  * This allows drivers to insert individual pages they've allocated
2002  * into a user vma.
2003  *
2004  * The page has to be a nice clean _individual_ kernel allocation.
2005  * If you allocate a compound page, you need to have marked it as
2006  * such (__GFP_COMP), or manually just split the page up yourself
2007  * (see split_page()).
2008  *
2009  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2010  * took an arbitrary page protection parameter. This doesn't allow
2011  * that. Your vma protection will have to be set up correctly, which
2012  * means that if you want a shared writable mapping, you'd better
2013  * ask for a shared writable mapping!
2014  *
2015  * The page does not need to be reserved.
2016  *
2017  * Usually this function is called from f_op->mmap() handler
2018  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2019  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2020  * function from other places, for example from page-fault handler.
2021  *
2022  * Return: %0 on success, negative error code otherwise.
2023  */
2024 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2025 			struct page *page)
2026 {
2027 	if (addr < vma->vm_start || addr >= vma->vm_end)
2028 		return -EFAULT;
2029 	if (!page_count(page))
2030 		return -EINVAL;
2031 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2032 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2033 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2034 		vma->vm_flags |= VM_MIXEDMAP;
2035 	}
2036 	return insert_page(vma, addr, page, vma->vm_page_prot);
2037 }
2038 EXPORT_SYMBOL(vm_insert_page);
2039 
2040 /*
2041  * __vm_map_pages - maps range of kernel pages into user vma
2042  * @vma: user vma to map to
2043  * @pages: pointer to array of source kernel pages
2044  * @num: number of pages in page array
2045  * @offset: user's requested vm_pgoff
2046  *
2047  * This allows drivers to map range of kernel pages into a user vma.
2048  *
2049  * Return: 0 on success and error code otherwise.
2050  */
2051 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2052 				unsigned long num, unsigned long offset)
2053 {
2054 	unsigned long count = vma_pages(vma);
2055 	unsigned long uaddr = vma->vm_start;
2056 	int ret, i;
2057 
2058 	/* Fail if the user requested offset is beyond the end of the object */
2059 	if (offset >= num)
2060 		return -ENXIO;
2061 
2062 	/* Fail if the user requested size exceeds available object size */
2063 	if (count > num - offset)
2064 		return -ENXIO;
2065 
2066 	for (i = 0; i < count; i++) {
2067 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2068 		if (ret < 0)
2069 			return ret;
2070 		uaddr += PAGE_SIZE;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 /**
2077  * vm_map_pages - maps range of kernel pages starts with non zero offset
2078  * @vma: user vma to map to
2079  * @pages: pointer to array of source kernel pages
2080  * @num: number of pages in page array
2081  *
2082  * Maps an object consisting of @num pages, catering for the user's
2083  * requested vm_pgoff
2084  *
2085  * If we fail to insert any page into the vma, the function will return
2086  * immediately leaving any previously inserted pages present.  Callers
2087  * from the mmap handler may immediately return the error as their caller
2088  * will destroy the vma, removing any successfully inserted pages. Other
2089  * callers should make their own arrangements for calling unmap_region().
2090  *
2091  * Context: Process context. Called by mmap handlers.
2092  * Return: 0 on success and error code otherwise.
2093  */
2094 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2095 				unsigned long num)
2096 {
2097 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2098 }
2099 EXPORT_SYMBOL(vm_map_pages);
2100 
2101 /**
2102  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2103  * @vma: user vma to map to
2104  * @pages: pointer to array of source kernel pages
2105  * @num: number of pages in page array
2106  *
2107  * Similar to vm_map_pages(), except that it explicitly sets the offset
2108  * to 0. This function is intended for the drivers that did not consider
2109  * vm_pgoff.
2110  *
2111  * Context: Process context. Called by mmap handlers.
2112  * Return: 0 on success and error code otherwise.
2113  */
2114 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2115 				unsigned long num)
2116 {
2117 	return __vm_map_pages(vma, pages, num, 0);
2118 }
2119 EXPORT_SYMBOL(vm_map_pages_zero);
2120 
2121 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2122 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2123 {
2124 	struct mm_struct *mm = vma->vm_mm;
2125 	pte_t *pte, entry;
2126 	spinlock_t *ptl;
2127 
2128 	pte = get_locked_pte(mm, addr, &ptl);
2129 	if (!pte)
2130 		return VM_FAULT_OOM;
2131 	if (!pte_none(*pte)) {
2132 		if (mkwrite) {
2133 			/*
2134 			 * For read faults on private mappings the PFN passed
2135 			 * in may not match the PFN we have mapped if the
2136 			 * mapped PFN is a writeable COW page.  In the mkwrite
2137 			 * case we are creating a writable PTE for a shared
2138 			 * mapping and we expect the PFNs to match. If they
2139 			 * don't match, we are likely racing with block
2140 			 * allocation and mapping invalidation so just skip the
2141 			 * update.
2142 			 */
2143 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2144 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2145 				goto out_unlock;
2146 			}
2147 			entry = pte_mkyoung(*pte);
2148 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2150 				update_mmu_cache(vma, addr, pte);
2151 		}
2152 		goto out_unlock;
2153 	}
2154 
2155 	/* Ok, finally just insert the thing.. */
2156 	if (pfn_t_devmap(pfn))
2157 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2158 	else
2159 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2160 
2161 	if (mkwrite) {
2162 		entry = pte_mkyoung(entry);
2163 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2164 	}
2165 
2166 	set_pte_at(mm, addr, pte, entry);
2167 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2168 
2169 out_unlock:
2170 	pte_unmap_unlock(pte, ptl);
2171 	return VM_FAULT_NOPAGE;
2172 }
2173 
2174 /**
2175  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2176  * @vma: user vma to map to
2177  * @addr: target user address of this page
2178  * @pfn: source kernel pfn
2179  * @pgprot: pgprot flags for the inserted page
2180  *
2181  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2182  * to override pgprot on a per-page basis.
2183  *
2184  * This only makes sense for IO mappings, and it makes no sense for
2185  * COW mappings.  In general, using multiple vmas is preferable;
2186  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2187  * impractical.
2188  *
2189  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2190  * a value of @pgprot different from that of @vma->vm_page_prot.
2191  *
2192  * Context: Process context.  May allocate using %GFP_KERNEL.
2193  * Return: vm_fault_t value.
2194  */
2195 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2196 			unsigned long pfn, pgprot_t pgprot)
2197 {
2198 	/*
2199 	 * Technically, architectures with pte_special can avoid all these
2200 	 * restrictions (same for remap_pfn_range).  However we would like
2201 	 * consistency in testing and feature parity among all, so we should
2202 	 * try to keep these invariants in place for everybody.
2203 	 */
2204 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2205 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2206 						(VM_PFNMAP|VM_MIXEDMAP));
2207 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2208 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2209 
2210 	if (addr < vma->vm_start || addr >= vma->vm_end)
2211 		return VM_FAULT_SIGBUS;
2212 
2213 	if (!pfn_modify_allowed(pfn, pgprot))
2214 		return VM_FAULT_SIGBUS;
2215 
2216 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2217 
2218 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2219 			false);
2220 }
2221 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2222 
2223 /**
2224  * vmf_insert_pfn - insert single pfn into user vma
2225  * @vma: user vma to map to
2226  * @addr: target user address of this page
2227  * @pfn: source kernel pfn
2228  *
2229  * Similar to vm_insert_page, this allows drivers to insert individual pages
2230  * they've allocated into a user vma. Same comments apply.
2231  *
2232  * This function should only be called from a vm_ops->fault handler, and
2233  * in that case the handler should return the result of this function.
2234  *
2235  * vma cannot be a COW mapping.
2236  *
2237  * As this is called only for pages that do not currently exist, we
2238  * do not need to flush old virtual caches or the TLB.
2239  *
2240  * Context: Process context.  May allocate using %GFP_KERNEL.
2241  * Return: vm_fault_t value.
2242  */
2243 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2244 			unsigned long pfn)
2245 {
2246 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2247 }
2248 EXPORT_SYMBOL(vmf_insert_pfn);
2249 
2250 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2251 {
2252 	/* these checks mirror the abort conditions in vm_normal_page */
2253 	if (vma->vm_flags & VM_MIXEDMAP)
2254 		return true;
2255 	if (pfn_t_devmap(pfn))
2256 		return true;
2257 	if (pfn_t_special(pfn))
2258 		return true;
2259 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2260 		return true;
2261 	return false;
2262 }
2263 
2264 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2265 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2266 		bool mkwrite)
2267 {
2268 	int err;
2269 
2270 	BUG_ON(!vm_mixed_ok(vma, pfn));
2271 
2272 	if (addr < vma->vm_start || addr >= vma->vm_end)
2273 		return VM_FAULT_SIGBUS;
2274 
2275 	track_pfn_insert(vma, &pgprot, pfn);
2276 
2277 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2278 		return VM_FAULT_SIGBUS;
2279 
2280 	/*
2281 	 * If we don't have pte special, then we have to use the pfn_valid()
2282 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2283 	 * refcount the page if pfn_valid is true (hence insert_page rather
2284 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2285 	 * without pte special, it would there be refcounted as a normal page.
2286 	 */
2287 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2288 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2289 		struct page *page;
2290 
2291 		/*
2292 		 * At this point we are committed to insert_page()
2293 		 * regardless of whether the caller specified flags that
2294 		 * result in pfn_t_has_page() == false.
2295 		 */
2296 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2297 		err = insert_page(vma, addr, page, pgprot);
2298 	} else {
2299 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2300 	}
2301 
2302 	if (err == -ENOMEM)
2303 		return VM_FAULT_OOM;
2304 	if (err < 0 && err != -EBUSY)
2305 		return VM_FAULT_SIGBUS;
2306 
2307 	return VM_FAULT_NOPAGE;
2308 }
2309 
2310 /**
2311  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2312  * @vma: user vma to map to
2313  * @addr: target user address of this page
2314  * @pfn: source kernel pfn
2315  * @pgprot: pgprot flags for the inserted page
2316  *
2317  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2318  * to override pgprot on a per-page basis.
2319  *
2320  * Typically this function should be used by drivers to set caching- and
2321  * encryption bits different than those of @vma->vm_page_prot, because
2322  * the caching- or encryption mode may not be known at mmap() time.
2323  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2324  * to set caching and encryption bits for those vmas (except for COW pages).
2325  * This is ensured by core vm only modifying these page table entries using
2326  * functions that don't touch caching- or encryption bits, using pte_modify()
2327  * if needed. (See for example mprotect()).
2328  * Also when new page-table entries are created, this is only done using the
2329  * fault() callback, and never using the value of vma->vm_page_prot,
2330  * except for page-table entries that point to anonymous pages as the result
2331  * of COW.
2332  *
2333  * Context: Process context.  May allocate using %GFP_KERNEL.
2334  * Return: vm_fault_t value.
2335  */
2336 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2337 				 pfn_t pfn, pgprot_t pgprot)
2338 {
2339 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2340 }
2341 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2342 
2343 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2344 		pfn_t pfn)
2345 {
2346 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2347 }
2348 EXPORT_SYMBOL(vmf_insert_mixed);
2349 
2350 /*
2351  *  If the insertion of PTE failed because someone else already added a
2352  *  different entry in the mean time, we treat that as success as we assume
2353  *  the same entry was actually inserted.
2354  */
2355 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2356 		unsigned long addr, pfn_t pfn)
2357 {
2358 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2359 }
2360 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2361 
2362 /*
2363  * maps a range of physical memory into the requested pages. the old
2364  * mappings are removed. any references to nonexistent pages results
2365  * in null mappings (currently treated as "copy-on-access")
2366  */
2367 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2368 			unsigned long addr, unsigned long end,
2369 			unsigned long pfn, pgprot_t prot)
2370 {
2371 	pte_t *pte, *mapped_pte;
2372 	spinlock_t *ptl;
2373 	int err = 0;
2374 
2375 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2376 	if (!pte)
2377 		return -ENOMEM;
2378 	arch_enter_lazy_mmu_mode();
2379 	do {
2380 		BUG_ON(!pte_none(*pte));
2381 		if (!pfn_modify_allowed(pfn, prot)) {
2382 			err = -EACCES;
2383 			break;
2384 		}
2385 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2386 		pfn++;
2387 	} while (pte++, addr += PAGE_SIZE, addr != end);
2388 	arch_leave_lazy_mmu_mode();
2389 	pte_unmap_unlock(mapped_pte, ptl);
2390 	return err;
2391 }
2392 
2393 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2394 			unsigned long addr, unsigned long end,
2395 			unsigned long pfn, pgprot_t prot)
2396 {
2397 	pmd_t *pmd;
2398 	unsigned long next;
2399 	int err;
2400 
2401 	pfn -= addr >> PAGE_SHIFT;
2402 	pmd = pmd_alloc(mm, pud, addr);
2403 	if (!pmd)
2404 		return -ENOMEM;
2405 	VM_BUG_ON(pmd_trans_huge(*pmd));
2406 	do {
2407 		next = pmd_addr_end(addr, end);
2408 		err = remap_pte_range(mm, pmd, addr, next,
2409 				pfn + (addr >> PAGE_SHIFT), prot);
2410 		if (err)
2411 			return err;
2412 	} while (pmd++, addr = next, addr != end);
2413 	return 0;
2414 }
2415 
2416 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2417 			unsigned long addr, unsigned long end,
2418 			unsigned long pfn, pgprot_t prot)
2419 {
2420 	pud_t *pud;
2421 	unsigned long next;
2422 	int err;
2423 
2424 	pfn -= addr >> PAGE_SHIFT;
2425 	pud = pud_alloc(mm, p4d, addr);
2426 	if (!pud)
2427 		return -ENOMEM;
2428 	do {
2429 		next = pud_addr_end(addr, end);
2430 		err = remap_pmd_range(mm, pud, addr, next,
2431 				pfn + (addr >> PAGE_SHIFT), prot);
2432 		if (err)
2433 			return err;
2434 	} while (pud++, addr = next, addr != end);
2435 	return 0;
2436 }
2437 
2438 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2439 			unsigned long addr, unsigned long end,
2440 			unsigned long pfn, pgprot_t prot)
2441 {
2442 	p4d_t *p4d;
2443 	unsigned long next;
2444 	int err;
2445 
2446 	pfn -= addr >> PAGE_SHIFT;
2447 	p4d = p4d_alloc(mm, pgd, addr);
2448 	if (!p4d)
2449 		return -ENOMEM;
2450 	do {
2451 		next = p4d_addr_end(addr, end);
2452 		err = remap_pud_range(mm, p4d, addr, next,
2453 				pfn + (addr >> PAGE_SHIFT), prot);
2454 		if (err)
2455 			return err;
2456 	} while (p4d++, addr = next, addr != end);
2457 	return 0;
2458 }
2459 
2460 /*
2461  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2462  * must have pre-validated the caching bits of the pgprot_t.
2463  */
2464 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2465 		unsigned long pfn, unsigned long size, pgprot_t prot)
2466 {
2467 	pgd_t *pgd;
2468 	unsigned long next;
2469 	unsigned long end = addr + PAGE_ALIGN(size);
2470 	struct mm_struct *mm = vma->vm_mm;
2471 	int err;
2472 
2473 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2474 		return -EINVAL;
2475 
2476 	/*
2477 	 * Physically remapped pages are special. Tell the
2478 	 * rest of the world about it:
2479 	 *   VM_IO tells people not to look at these pages
2480 	 *	(accesses can have side effects).
2481 	 *   VM_PFNMAP tells the core MM that the base pages are just
2482 	 *	raw PFN mappings, and do not have a "struct page" associated
2483 	 *	with them.
2484 	 *   VM_DONTEXPAND
2485 	 *      Disable vma merging and expanding with mremap().
2486 	 *   VM_DONTDUMP
2487 	 *      Omit vma from core dump, even when VM_IO turned off.
2488 	 *
2489 	 * There's a horrible special case to handle copy-on-write
2490 	 * behaviour that some programs depend on. We mark the "original"
2491 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2492 	 * See vm_normal_page() for details.
2493 	 */
2494 	if (is_cow_mapping(vma->vm_flags)) {
2495 		if (addr != vma->vm_start || end != vma->vm_end)
2496 			return -EINVAL;
2497 		vma->vm_pgoff = pfn;
2498 	}
2499 
2500 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2501 
2502 	BUG_ON(addr >= end);
2503 	pfn -= addr >> PAGE_SHIFT;
2504 	pgd = pgd_offset(mm, addr);
2505 	flush_cache_range(vma, addr, end);
2506 	do {
2507 		next = pgd_addr_end(addr, end);
2508 		err = remap_p4d_range(mm, pgd, addr, next,
2509 				pfn + (addr >> PAGE_SHIFT), prot);
2510 		if (err)
2511 			return err;
2512 	} while (pgd++, addr = next, addr != end);
2513 
2514 	return 0;
2515 }
2516 
2517 /**
2518  * remap_pfn_range - remap kernel memory to userspace
2519  * @vma: user vma to map to
2520  * @addr: target page aligned user address to start at
2521  * @pfn: page frame number of kernel physical memory address
2522  * @size: size of mapping area
2523  * @prot: page protection flags for this mapping
2524  *
2525  * Note: this is only safe if the mm semaphore is held when called.
2526  *
2527  * Return: %0 on success, negative error code otherwise.
2528  */
2529 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2530 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2531 {
2532 	int err;
2533 
2534 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2535 	if (err)
2536 		return -EINVAL;
2537 
2538 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2539 	if (err)
2540 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2541 	return err;
2542 }
2543 EXPORT_SYMBOL(remap_pfn_range);
2544 
2545 /**
2546  * vm_iomap_memory - remap memory to userspace
2547  * @vma: user vma to map to
2548  * @start: start of the physical memory to be mapped
2549  * @len: size of area
2550  *
2551  * This is a simplified io_remap_pfn_range() for common driver use. The
2552  * driver just needs to give us the physical memory range to be mapped,
2553  * we'll figure out the rest from the vma information.
2554  *
2555  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2556  * whatever write-combining details or similar.
2557  *
2558  * Return: %0 on success, negative error code otherwise.
2559  */
2560 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2561 {
2562 	unsigned long vm_len, pfn, pages;
2563 
2564 	/* Check that the physical memory area passed in looks valid */
2565 	if (start + len < start)
2566 		return -EINVAL;
2567 	/*
2568 	 * You *really* shouldn't map things that aren't page-aligned,
2569 	 * but we've historically allowed it because IO memory might
2570 	 * just have smaller alignment.
2571 	 */
2572 	len += start & ~PAGE_MASK;
2573 	pfn = start >> PAGE_SHIFT;
2574 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2575 	if (pfn + pages < pfn)
2576 		return -EINVAL;
2577 
2578 	/* We start the mapping 'vm_pgoff' pages into the area */
2579 	if (vma->vm_pgoff > pages)
2580 		return -EINVAL;
2581 	pfn += vma->vm_pgoff;
2582 	pages -= vma->vm_pgoff;
2583 
2584 	/* Can we fit all of the mapping? */
2585 	vm_len = vma->vm_end - vma->vm_start;
2586 	if (vm_len >> PAGE_SHIFT > pages)
2587 		return -EINVAL;
2588 
2589 	/* Ok, let it rip */
2590 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2591 }
2592 EXPORT_SYMBOL(vm_iomap_memory);
2593 
2594 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2595 				     unsigned long addr, unsigned long end,
2596 				     pte_fn_t fn, void *data, bool create,
2597 				     pgtbl_mod_mask *mask)
2598 {
2599 	pte_t *pte, *mapped_pte;
2600 	int err = 0;
2601 	spinlock_t *ptl;
2602 
2603 	if (create) {
2604 		mapped_pte = pte = (mm == &init_mm) ?
2605 			pte_alloc_kernel_track(pmd, addr, mask) :
2606 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2607 		if (!pte)
2608 			return -ENOMEM;
2609 	} else {
2610 		mapped_pte = pte = (mm == &init_mm) ?
2611 			pte_offset_kernel(pmd, addr) :
2612 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2613 	}
2614 
2615 	BUG_ON(pmd_huge(*pmd));
2616 
2617 	arch_enter_lazy_mmu_mode();
2618 
2619 	if (fn) {
2620 		do {
2621 			if (create || !pte_none(*pte)) {
2622 				err = fn(pte++, addr, data);
2623 				if (err)
2624 					break;
2625 			}
2626 		} while (addr += PAGE_SIZE, addr != end);
2627 	}
2628 	*mask |= PGTBL_PTE_MODIFIED;
2629 
2630 	arch_leave_lazy_mmu_mode();
2631 
2632 	if (mm != &init_mm)
2633 		pte_unmap_unlock(mapped_pte, ptl);
2634 	return err;
2635 }
2636 
2637 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2638 				     unsigned long addr, unsigned long end,
2639 				     pte_fn_t fn, void *data, bool create,
2640 				     pgtbl_mod_mask *mask)
2641 {
2642 	pmd_t *pmd;
2643 	unsigned long next;
2644 	int err = 0;
2645 
2646 	BUG_ON(pud_huge(*pud));
2647 
2648 	if (create) {
2649 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2650 		if (!pmd)
2651 			return -ENOMEM;
2652 	} else {
2653 		pmd = pmd_offset(pud, addr);
2654 	}
2655 	do {
2656 		next = pmd_addr_end(addr, end);
2657 		if (pmd_none(*pmd) && !create)
2658 			continue;
2659 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2660 			return -EINVAL;
2661 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2662 			if (!create)
2663 				continue;
2664 			pmd_clear_bad(pmd);
2665 		}
2666 		err = apply_to_pte_range(mm, pmd, addr, next,
2667 					 fn, data, create, mask);
2668 		if (err)
2669 			break;
2670 	} while (pmd++, addr = next, addr != end);
2671 
2672 	return err;
2673 }
2674 
2675 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2676 				     unsigned long addr, unsigned long end,
2677 				     pte_fn_t fn, void *data, bool create,
2678 				     pgtbl_mod_mask *mask)
2679 {
2680 	pud_t *pud;
2681 	unsigned long next;
2682 	int err = 0;
2683 
2684 	if (create) {
2685 		pud = pud_alloc_track(mm, p4d, addr, mask);
2686 		if (!pud)
2687 			return -ENOMEM;
2688 	} else {
2689 		pud = pud_offset(p4d, addr);
2690 	}
2691 	do {
2692 		next = pud_addr_end(addr, end);
2693 		if (pud_none(*pud) && !create)
2694 			continue;
2695 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2696 			return -EINVAL;
2697 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2698 			if (!create)
2699 				continue;
2700 			pud_clear_bad(pud);
2701 		}
2702 		err = apply_to_pmd_range(mm, pud, addr, next,
2703 					 fn, data, create, mask);
2704 		if (err)
2705 			break;
2706 	} while (pud++, addr = next, addr != end);
2707 
2708 	return err;
2709 }
2710 
2711 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2712 				     unsigned long addr, unsigned long end,
2713 				     pte_fn_t fn, void *data, bool create,
2714 				     pgtbl_mod_mask *mask)
2715 {
2716 	p4d_t *p4d;
2717 	unsigned long next;
2718 	int err = 0;
2719 
2720 	if (create) {
2721 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2722 		if (!p4d)
2723 			return -ENOMEM;
2724 	} else {
2725 		p4d = p4d_offset(pgd, addr);
2726 	}
2727 	do {
2728 		next = p4d_addr_end(addr, end);
2729 		if (p4d_none(*p4d) && !create)
2730 			continue;
2731 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2732 			return -EINVAL;
2733 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2734 			if (!create)
2735 				continue;
2736 			p4d_clear_bad(p4d);
2737 		}
2738 		err = apply_to_pud_range(mm, p4d, addr, next,
2739 					 fn, data, create, mask);
2740 		if (err)
2741 			break;
2742 	} while (p4d++, addr = next, addr != end);
2743 
2744 	return err;
2745 }
2746 
2747 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2748 				 unsigned long size, pte_fn_t fn,
2749 				 void *data, bool create)
2750 {
2751 	pgd_t *pgd;
2752 	unsigned long start = addr, next;
2753 	unsigned long end = addr + size;
2754 	pgtbl_mod_mask mask = 0;
2755 	int err = 0;
2756 
2757 	if (WARN_ON(addr >= end))
2758 		return -EINVAL;
2759 
2760 	pgd = pgd_offset(mm, addr);
2761 	do {
2762 		next = pgd_addr_end(addr, end);
2763 		if (pgd_none(*pgd) && !create)
2764 			continue;
2765 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2766 			return -EINVAL;
2767 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2768 			if (!create)
2769 				continue;
2770 			pgd_clear_bad(pgd);
2771 		}
2772 		err = apply_to_p4d_range(mm, pgd, addr, next,
2773 					 fn, data, create, &mask);
2774 		if (err)
2775 			break;
2776 	} while (pgd++, addr = next, addr != end);
2777 
2778 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2779 		arch_sync_kernel_mappings(start, start + size);
2780 
2781 	return err;
2782 }
2783 
2784 /*
2785  * Scan a region of virtual memory, filling in page tables as necessary
2786  * and calling a provided function on each leaf page table.
2787  */
2788 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2789 			unsigned long size, pte_fn_t fn, void *data)
2790 {
2791 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2792 }
2793 EXPORT_SYMBOL_GPL(apply_to_page_range);
2794 
2795 /*
2796  * Scan a region of virtual memory, calling a provided function on
2797  * each leaf page table where it exists.
2798  *
2799  * Unlike apply_to_page_range, this does _not_ fill in page tables
2800  * where they are absent.
2801  */
2802 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2803 				 unsigned long size, pte_fn_t fn, void *data)
2804 {
2805 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2806 }
2807 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2808 
2809 /*
2810  * handle_pte_fault chooses page fault handler according to an entry which was
2811  * read non-atomically.  Before making any commitment, on those architectures
2812  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2813  * parts, do_swap_page must check under lock before unmapping the pte and
2814  * proceeding (but do_wp_page is only called after already making such a check;
2815  * and do_anonymous_page can safely check later on).
2816  */
2817 static inline int pte_unmap_same(struct vm_fault *vmf)
2818 {
2819 	int same = 1;
2820 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2821 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2822 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2823 		spin_lock(ptl);
2824 		same = pte_same(*vmf->pte, vmf->orig_pte);
2825 		spin_unlock(ptl);
2826 	}
2827 #endif
2828 	pte_unmap(vmf->pte);
2829 	vmf->pte = NULL;
2830 	return same;
2831 }
2832 
2833 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2834 				       struct vm_fault *vmf)
2835 {
2836 	bool ret;
2837 	void *kaddr;
2838 	void __user *uaddr;
2839 	bool locked = false;
2840 	struct vm_area_struct *vma = vmf->vma;
2841 	struct mm_struct *mm = vma->vm_mm;
2842 	unsigned long addr = vmf->address;
2843 
2844 	if (likely(src)) {
2845 		copy_user_highpage(dst, src, addr, vma);
2846 		return true;
2847 	}
2848 
2849 	/*
2850 	 * If the source page was a PFN mapping, we don't have
2851 	 * a "struct page" for it. We do a best-effort copy by
2852 	 * just copying from the original user address. If that
2853 	 * fails, we just zero-fill it. Live with it.
2854 	 */
2855 	kaddr = kmap_atomic(dst);
2856 	uaddr = (void __user *)(addr & PAGE_MASK);
2857 
2858 	/*
2859 	 * On architectures with software "accessed" bits, we would
2860 	 * take a double page fault, so mark it accessed here.
2861 	 */
2862 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2863 		pte_t entry;
2864 
2865 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2866 		locked = true;
2867 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2868 			/*
2869 			 * Other thread has already handled the fault
2870 			 * and update local tlb only
2871 			 */
2872 			update_mmu_tlb(vma, addr, vmf->pte);
2873 			ret = false;
2874 			goto pte_unlock;
2875 		}
2876 
2877 		entry = pte_mkyoung(vmf->orig_pte);
2878 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2879 			update_mmu_cache(vma, addr, vmf->pte);
2880 	}
2881 
2882 	/*
2883 	 * This really shouldn't fail, because the page is there
2884 	 * in the page tables. But it might just be unreadable,
2885 	 * in which case we just give up and fill the result with
2886 	 * zeroes.
2887 	 */
2888 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2889 		if (locked)
2890 			goto warn;
2891 
2892 		/* Re-validate under PTL if the page is still mapped */
2893 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2894 		locked = true;
2895 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2896 			/* The PTE changed under us, update local tlb */
2897 			update_mmu_tlb(vma, addr, vmf->pte);
2898 			ret = false;
2899 			goto pte_unlock;
2900 		}
2901 
2902 		/*
2903 		 * The same page can be mapped back since last copy attempt.
2904 		 * Try to copy again under PTL.
2905 		 */
2906 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2907 			/*
2908 			 * Give a warn in case there can be some obscure
2909 			 * use-case
2910 			 */
2911 warn:
2912 			WARN_ON_ONCE(1);
2913 			clear_page(kaddr);
2914 		}
2915 	}
2916 
2917 	ret = true;
2918 
2919 pte_unlock:
2920 	if (locked)
2921 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2922 	kunmap_atomic(kaddr);
2923 	flush_dcache_page(dst);
2924 
2925 	return ret;
2926 }
2927 
2928 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2929 {
2930 	struct file *vm_file = vma->vm_file;
2931 
2932 	if (vm_file)
2933 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2934 
2935 	/*
2936 	 * Special mappings (e.g. VDSO) do not have any file so fake
2937 	 * a default GFP_KERNEL for them.
2938 	 */
2939 	return GFP_KERNEL;
2940 }
2941 
2942 /*
2943  * Notify the address space that the page is about to become writable so that
2944  * it can prohibit this or wait for the page to get into an appropriate state.
2945  *
2946  * We do this without the lock held, so that it can sleep if it needs to.
2947  */
2948 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2949 {
2950 	vm_fault_t ret;
2951 	struct page *page = vmf->page;
2952 	unsigned int old_flags = vmf->flags;
2953 
2954 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2955 
2956 	if (vmf->vma->vm_file &&
2957 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2958 		return VM_FAULT_SIGBUS;
2959 
2960 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2961 	/* Restore original flags so that caller is not surprised */
2962 	vmf->flags = old_flags;
2963 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2964 		return ret;
2965 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2966 		lock_page(page);
2967 		if (!page->mapping) {
2968 			unlock_page(page);
2969 			return 0; /* retry */
2970 		}
2971 		ret |= VM_FAULT_LOCKED;
2972 	} else
2973 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2974 	return ret;
2975 }
2976 
2977 /*
2978  * Handle dirtying of a page in shared file mapping on a write fault.
2979  *
2980  * The function expects the page to be locked and unlocks it.
2981  */
2982 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2983 {
2984 	struct vm_area_struct *vma = vmf->vma;
2985 	struct address_space *mapping;
2986 	struct page *page = vmf->page;
2987 	bool dirtied;
2988 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2989 
2990 	dirtied = set_page_dirty(page);
2991 	VM_BUG_ON_PAGE(PageAnon(page), page);
2992 	/*
2993 	 * Take a local copy of the address_space - page.mapping may be zeroed
2994 	 * by truncate after unlock_page().   The address_space itself remains
2995 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2996 	 * release semantics to prevent the compiler from undoing this copying.
2997 	 */
2998 	mapping = page_rmapping(page);
2999 	unlock_page(page);
3000 
3001 	if (!page_mkwrite)
3002 		file_update_time(vma->vm_file);
3003 
3004 	/*
3005 	 * Throttle page dirtying rate down to writeback speed.
3006 	 *
3007 	 * mapping may be NULL here because some device drivers do not
3008 	 * set page.mapping but still dirty their pages
3009 	 *
3010 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3011 	 * is pinning the mapping, as per above.
3012 	 */
3013 	if ((dirtied || page_mkwrite) && mapping) {
3014 		struct file *fpin;
3015 
3016 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3017 		balance_dirty_pages_ratelimited(mapping);
3018 		if (fpin) {
3019 			fput(fpin);
3020 			return VM_FAULT_COMPLETED;
3021 		}
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 /*
3028  * Handle write page faults for pages that can be reused in the current vma
3029  *
3030  * This can happen either due to the mapping being with the VM_SHARED flag,
3031  * or due to us being the last reference standing to the page. In either
3032  * case, all we need to do here is to mark the page as writable and update
3033  * any related book-keeping.
3034  */
3035 static inline void wp_page_reuse(struct vm_fault *vmf)
3036 	__releases(vmf->ptl)
3037 {
3038 	struct vm_area_struct *vma = vmf->vma;
3039 	struct page *page = vmf->page;
3040 	pte_t entry;
3041 
3042 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3043 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3044 
3045 	/*
3046 	 * Clear the pages cpupid information as the existing
3047 	 * information potentially belongs to a now completely
3048 	 * unrelated process.
3049 	 */
3050 	if (page)
3051 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3052 
3053 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3054 	entry = pte_mkyoung(vmf->orig_pte);
3055 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3056 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3057 		update_mmu_cache(vma, vmf->address, vmf->pte);
3058 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3059 	count_vm_event(PGREUSE);
3060 }
3061 
3062 /*
3063  * Handle the case of a page which we actually need to copy to a new page,
3064  * either due to COW or unsharing.
3065  *
3066  * Called with mmap_lock locked and the old page referenced, but
3067  * without the ptl held.
3068  *
3069  * High level logic flow:
3070  *
3071  * - Allocate a page, copy the content of the old page to the new one.
3072  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3073  * - Take the PTL. If the pte changed, bail out and release the allocated page
3074  * - If the pte is still the way we remember it, update the page table and all
3075  *   relevant references. This includes dropping the reference the page-table
3076  *   held to the old page, as well as updating the rmap.
3077  * - In any case, unlock the PTL and drop the reference we took to the old page.
3078  */
3079 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3080 {
3081 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3082 	struct vm_area_struct *vma = vmf->vma;
3083 	struct mm_struct *mm = vma->vm_mm;
3084 	struct page *old_page = vmf->page;
3085 	struct page *new_page = NULL;
3086 	pte_t entry;
3087 	int page_copied = 0;
3088 	struct mmu_notifier_range range;
3089 
3090 	delayacct_wpcopy_start();
3091 
3092 	if (unlikely(anon_vma_prepare(vma)))
3093 		goto oom;
3094 
3095 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3096 		new_page = alloc_zeroed_user_highpage_movable(vma,
3097 							      vmf->address);
3098 		if (!new_page)
3099 			goto oom;
3100 	} else {
3101 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3102 				vmf->address);
3103 		if (!new_page)
3104 			goto oom;
3105 
3106 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3107 			/*
3108 			 * COW failed, if the fault was solved by other,
3109 			 * it's fine. If not, userspace would re-fault on
3110 			 * the same address and we will handle the fault
3111 			 * from the second attempt.
3112 			 */
3113 			put_page(new_page);
3114 			if (old_page)
3115 				put_page(old_page);
3116 
3117 			delayacct_wpcopy_end();
3118 			return 0;
3119 		}
3120 	}
3121 
3122 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3123 		goto oom_free_new;
3124 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3125 
3126 	__SetPageUptodate(new_page);
3127 
3128 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3129 				vmf->address & PAGE_MASK,
3130 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3131 	mmu_notifier_invalidate_range_start(&range);
3132 
3133 	/*
3134 	 * Re-check the pte - we dropped the lock
3135 	 */
3136 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3137 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3138 		if (old_page) {
3139 			if (!PageAnon(old_page)) {
3140 				dec_mm_counter_fast(mm,
3141 						mm_counter_file(old_page));
3142 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3143 			}
3144 		} else {
3145 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3146 		}
3147 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3148 		entry = mk_pte(new_page, vma->vm_page_prot);
3149 		entry = pte_sw_mkyoung(entry);
3150 		if (unlikely(unshare)) {
3151 			if (pte_soft_dirty(vmf->orig_pte))
3152 				entry = pte_mksoft_dirty(entry);
3153 			if (pte_uffd_wp(vmf->orig_pte))
3154 				entry = pte_mkuffd_wp(entry);
3155 		} else {
3156 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3157 		}
3158 
3159 		/*
3160 		 * Clear the pte entry and flush it first, before updating the
3161 		 * pte with the new entry, to keep TLBs on different CPUs in
3162 		 * sync. This code used to set the new PTE then flush TLBs, but
3163 		 * that left a window where the new PTE could be loaded into
3164 		 * some TLBs while the old PTE remains in others.
3165 		 */
3166 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3167 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3168 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3169 		/*
3170 		 * We call the notify macro here because, when using secondary
3171 		 * mmu page tables (such as kvm shadow page tables), we want the
3172 		 * new page to be mapped directly into the secondary page table.
3173 		 */
3174 		BUG_ON(unshare && pte_write(entry));
3175 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3176 		update_mmu_cache(vma, vmf->address, vmf->pte);
3177 		if (old_page) {
3178 			/*
3179 			 * Only after switching the pte to the new page may
3180 			 * we remove the mapcount here. Otherwise another
3181 			 * process may come and find the rmap count decremented
3182 			 * before the pte is switched to the new page, and
3183 			 * "reuse" the old page writing into it while our pte
3184 			 * here still points into it and can be read by other
3185 			 * threads.
3186 			 *
3187 			 * The critical issue is to order this
3188 			 * page_remove_rmap with the ptp_clear_flush above.
3189 			 * Those stores are ordered by (if nothing else,)
3190 			 * the barrier present in the atomic_add_negative
3191 			 * in page_remove_rmap.
3192 			 *
3193 			 * Then the TLB flush in ptep_clear_flush ensures that
3194 			 * no process can access the old page before the
3195 			 * decremented mapcount is visible. And the old page
3196 			 * cannot be reused until after the decremented
3197 			 * mapcount is visible. So transitively, TLBs to
3198 			 * old page will be flushed before it can be reused.
3199 			 */
3200 			page_remove_rmap(old_page, vma, false);
3201 		}
3202 
3203 		/* Free the old page.. */
3204 		new_page = old_page;
3205 		page_copied = 1;
3206 	} else {
3207 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3208 	}
3209 
3210 	if (new_page)
3211 		put_page(new_page);
3212 
3213 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3214 	/*
3215 	 * No need to double call mmu_notifier->invalidate_range() callback as
3216 	 * the above ptep_clear_flush_notify() did already call it.
3217 	 */
3218 	mmu_notifier_invalidate_range_only_end(&range);
3219 	if (old_page) {
3220 		if (page_copied)
3221 			free_swap_cache(old_page);
3222 		put_page(old_page);
3223 	}
3224 
3225 	delayacct_wpcopy_end();
3226 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3227 oom_free_new:
3228 	put_page(new_page);
3229 oom:
3230 	if (old_page)
3231 		put_page(old_page);
3232 
3233 	delayacct_wpcopy_end();
3234 	return VM_FAULT_OOM;
3235 }
3236 
3237 /**
3238  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3239  *			  writeable once the page is prepared
3240  *
3241  * @vmf: structure describing the fault
3242  *
3243  * This function handles all that is needed to finish a write page fault in a
3244  * shared mapping due to PTE being read-only once the mapped page is prepared.
3245  * It handles locking of PTE and modifying it.
3246  *
3247  * The function expects the page to be locked or other protection against
3248  * concurrent faults / writeback (such as DAX radix tree locks).
3249  *
3250  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3251  * we acquired PTE lock.
3252  */
3253 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3254 {
3255 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3256 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3257 				       &vmf->ptl);
3258 	/*
3259 	 * We might have raced with another page fault while we released the
3260 	 * pte_offset_map_lock.
3261 	 */
3262 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3263 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3264 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3265 		return VM_FAULT_NOPAGE;
3266 	}
3267 	wp_page_reuse(vmf);
3268 	return 0;
3269 }
3270 
3271 /*
3272  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3273  * mapping
3274  */
3275 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3276 {
3277 	struct vm_area_struct *vma = vmf->vma;
3278 
3279 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3280 		vm_fault_t ret;
3281 
3282 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3283 		vmf->flags |= FAULT_FLAG_MKWRITE;
3284 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3285 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3286 			return ret;
3287 		return finish_mkwrite_fault(vmf);
3288 	}
3289 	wp_page_reuse(vmf);
3290 	return VM_FAULT_WRITE;
3291 }
3292 
3293 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3294 	__releases(vmf->ptl)
3295 {
3296 	struct vm_area_struct *vma = vmf->vma;
3297 	vm_fault_t ret = VM_FAULT_WRITE;
3298 
3299 	get_page(vmf->page);
3300 
3301 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3302 		vm_fault_t tmp;
3303 
3304 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3305 		tmp = do_page_mkwrite(vmf);
3306 		if (unlikely(!tmp || (tmp &
3307 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3308 			put_page(vmf->page);
3309 			return tmp;
3310 		}
3311 		tmp = finish_mkwrite_fault(vmf);
3312 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3313 			unlock_page(vmf->page);
3314 			put_page(vmf->page);
3315 			return tmp;
3316 		}
3317 	} else {
3318 		wp_page_reuse(vmf);
3319 		lock_page(vmf->page);
3320 	}
3321 	ret |= fault_dirty_shared_page(vmf);
3322 	put_page(vmf->page);
3323 
3324 	return ret;
3325 }
3326 
3327 /*
3328  * This routine handles present pages, when
3329  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3330  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3331  *   (FAULT_FLAG_UNSHARE)
3332  *
3333  * It is done by copying the page to a new address and decrementing the
3334  * shared-page counter for the old page.
3335  *
3336  * Note that this routine assumes that the protection checks have been
3337  * done by the caller (the low-level page fault routine in most cases).
3338  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3339  * done any necessary COW.
3340  *
3341  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3342  * though the page will change only once the write actually happens. This
3343  * avoids a few races, and potentially makes it more efficient.
3344  *
3345  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3346  * but allow concurrent faults), with pte both mapped and locked.
3347  * We return with mmap_lock still held, but pte unmapped and unlocked.
3348  */
3349 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3350 	__releases(vmf->ptl)
3351 {
3352 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3353 	struct vm_area_struct *vma = vmf->vma;
3354 
3355 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3356 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3357 
3358 	if (likely(!unshare)) {
3359 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3360 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3361 			return handle_userfault(vmf, VM_UFFD_WP);
3362 		}
3363 
3364 		/*
3365 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3366 		 * is flushed in this case before copying.
3367 		 */
3368 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3369 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3370 			flush_tlb_page(vmf->vma, vmf->address);
3371 	}
3372 
3373 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3374 	if (!vmf->page) {
3375 		if (unlikely(unshare)) {
3376 			/* No anonymous page -> nothing to do. */
3377 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3378 			return 0;
3379 		}
3380 
3381 		/*
3382 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3383 		 * VM_PFNMAP VMA.
3384 		 *
3385 		 * We should not cow pages in a shared writeable mapping.
3386 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3387 		 */
3388 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3389 				     (VM_WRITE|VM_SHARED))
3390 			return wp_pfn_shared(vmf);
3391 
3392 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3393 		return wp_page_copy(vmf);
3394 	}
3395 
3396 	/*
3397 	 * Take out anonymous pages first, anonymous shared vmas are
3398 	 * not dirty accountable.
3399 	 */
3400 	if (PageAnon(vmf->page)) {
3401 		struct page *page = vmf->page;
3402 
3403 		/*
3404 		 * If the page is exclusive to this process we must reuse the
3405 		 * page without further checks.
3406 		 */
3407 		if (PageAnonExclusive(page))
3408 			goto reuse;
3409 
3410 		/*
3411 		 * We have to verify under page lock: these early checks are
3412 		 * just an optimization to avoid locking the page and freeing
3413 		 * the swapcache if there is little hope that we can reuse.
3414 		 *
3415 		 * PageKsm() doesn't necessarily raise the page refcount.
3416 		 */
3417 		if (PageKsm(page) || page_count(page) > 3)
3418 			goto copy;
3419 		if (!PageLRU(page))
3420 			/*
3421 			 * Note: We cannot easily detect+handle references from
3422 			 * remote LRU pagevecs or references to PageLRU() pages.
3423 			 */
3424 			lru_add_drain();
3425 		if (page_count(page) > 1 + PageSwapCache(page))
3426 			goto copy;
3427 		if (!trylock_page(page))
3428 			goto copy;
3429 		if (PageSwapCache(page))
3430 			try_to_free_swap(page);
3431 		if (PageKsm(page) || page_count(page) != 1) {
3432 			unlock_page(page);
3433 			goto copy;
3434 		}
3435 		/*
3436 		 * Ok, we've got the only page reference from our mapping
3437 		 * and the page is locked, it's dark out, and we're wearing
3438 		 * sunglasses. Hit it.
3439 		 */
3440 		page_move_anon_rmap(page, vma);
3441 		unlock_page(page);
3442 reuse:
3443 		if (unlikely(unshare)) {
3444 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 			return 0;
3446 		}
3447 		wp_page_reuse(vmf);
3448 		return VM_FAULT_WRITE;
3449 	} else if (unshare) {
3450 		/* No anonymous page -> nothing to do. */
3451 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3452 		return 0;
3453 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3454 					(VM_WRITE|VM_SHARED))) {
3455 		return wp_page_shared(vmf);
3456 	}
3457 copy:
3458 	/*
3459 	 * Ok, we need to copy. Oh, well..
3460 	 */
3461 	get_page(vmf->page);
3462 
3463 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 #ifdef CONFIG_KSM
3465 	if (PageKsm(vmf->page))
3466 		count_vm_event(COW_KSM);
3467 #endif
3468 	return wp_page_copy(vmf);
3469 }
3470 
3471 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3472 		unsigned long start_addr, unsigned long end_addr,
3473 		struct zap_details *details)
3474 {
3475 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3476 }
3477 
3478 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3479 					    pgoff_t first_index,
3480 					    pgoff_t last_index,
3481 					    struct zap_details *details)
3482 {
3483 	struct vm_area_struct *vma;
3484 	pgoff_t vba, vea, zba, zea;
3485 
3486 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3487 		vba = vma->vm_pgoff;
3488 		vea = vba + vma_pages(vma) - 1;
3489 		zba = max(first_index, vba);
3490 		zea = min(last_index, vea);
3491 
3492 		unmap_mapping_range_vma(vma,
3493 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3494 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3495 				details);
3496 	}
3497 }
3498 
3499 /**
3500  * unmap_mapping_folio() - Unmap single folio from processes.
3501  * @folio: The locked folio to be unmapped.
3502  *
3503  * Unmap this folio from any userspace process which still has it mmaped.
3504  * Typically, for efficiency, the range of nearby pages has already been
3505  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3506  * truncation or invalidation holds the lock on a folio, it may find that
3507  * the page has been remapped again: and then uses unmap_mapping_folio()
3508  * to unmap it finally.
3509  */
3510 void unmap_mapping_folio(struct folio *folio)
3511 {
3512 	struct address_space *mapping = folio->mapping;
3513 	struct zap_details details = { };
3514 	pgoff_t	first_index;
3515 	pgoff_t	last_index;
3516 
3517 	VM_BUG_ON(!folio_test_locked(folio));
3518 
3519 	first_index = folio->index;
3520 	last_index = folio->index + folio_nr_pages(folio) - 1;
3521 
3522 	details.even_cows = false;
3523 	details.single_folio = folio;
3524 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3525 
3526 	i_mmap_lock_read(mapping);
3527 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3528 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3529 					 last_index, &details);
3530 	i_mmap_unlock_read(mapping);
3531 }
3532 
3533 /**
3534  * unmap_mapping_pages() - Unmap pages from processes.
3535  * @mapping: The address space containing pages to be unmapped.
3536  * @start: Index of first page to be unmapped.
3537  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3538  * @even_cows: Whether to unmap even private COWed pages.
3539  *
3540  * Unmap the pages in this address space from any userspace process which
3541  * has them mmaped.  Generally, you want to remove COWed pages as well when
3542  * a file is being truncated, but not when invalidating pages from the page
3543  * cache.
3544  */
3545 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3546 		pgoff_t nr, bool even_cows)
3547 {
3548 	struct zap_details details = { };
3549 	pgoff_t	first_index = start;
3550 	pgoff_t	last_index = start + nr - 1;
3551 
3552 	details.even_cows = even_cows;
3553 	if (last_index < first_index)
3554 		last_index = ULONG_MAX;
3555 
3556 	i_mmap_lock_read(mapping);
3557 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3558 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3559 					 last_index, &details);
3560 	i_mmap_unlock_read(mapping);
3561 }
3562 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3563 
3564 /**
3565  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3566  * address_space corresponding to the specified byte range in the underlying
3567  * file.
3568  *
3569  * @mapping: the address space containing mmaps to be unmapped.
3570  * @holebegin: byte in first page to unmap, relative to the start of
3571  * the underlying file.  This will be rounded down to a PAGE_SIZE
3572  * boundary.  Note that this is different from truncate_pagecache(), which
3573  * must keep the partial page.  In contrast, we must get rid of
3574  * partial pages.
3575  * @holelen: size of prospective hole in bytes.  This will be rounded
3576  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3577  * end of the file.
3578  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3579  * but 0 when invalidating pagecache, don't throw away private data.
3580  */
3581 void unmap_mapping_range(struct address_space *mapping,
3582 		loff_t const holebegin, loff_t const holelen, int even_cows)
3583 {
3584 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3585 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586 
3587 	/* Check for overflow. */
3588 	if (sizeof(holelen) > sizeof(hlen)) {
3589 		long long holeend =
3590 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3591 		if (holeend & ~(long long)ULONG_MAX)
3592 			hlen = ULONG_MAX - hba + 1;
3593 	}
3594 
3595 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3596 }
3597 EXPORT_SYMBOL(unmap_mapping_range);
3598 
3599 /*
3600  * Restore a potential device exclusive pte to a working pte entry
3601  */
3602 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3603 {
3604 	struct page *page = vmf->page;
3605 	struct vm_area_struct *vma = vmf->vma;
3606 	struct mmu_notifier_range range;
3607 
3608 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3609 		return VM_FAULT_RETRY;
3610 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3611 				vma->vm_mm, vmf->address & PAGE_MASK,
3612 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3613 	mmu_notifier_invalidate_range_start(&range);
3614 
3615 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3616 				&vmf->ptl);
3617 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3618 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3619 
3620 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3621 	unlock_page(page);
3622 
3623 	mmu_notifier_invalidate_range_end(&range);
3624 	return 0;
3625 }
3626 
3627 static inline bool should_try_to_free_swap(struct page *page,
3628 					   struct vm_area_struct *vma,
3629 					   unsigned int fault_flags)
3630 {
3631 	if (!PageSwapCache(page))
3632 		return false;
3633 	if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3634 	    PageMlocked(page))
3635 		return true;
3636 	/*
3637 	 * If we want to map a page that's in the swapcache writable, we
3638 	 * have to detect via the refcount if we're really the exclusive
3639 	 * user. Try freeing the swapcache to get rid of the swapcache
3640 	 * reference only in case it's likely that we'll be the exlusive user.
3641 	 */
3642 	return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3643 		page_count(page) == 2;
3644 }
3645 
3646 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3647 {
3648 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3649 				       vmf->address, &vmf->ptl);
3650 	/*
3651 	 * Be careful so that we will only recover a special uffd-wp pte into a
3652 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3653 	 */
3654 	if (is_pte_marker(*vmf->pte))
3655 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3656 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3657 	return 0;
3658 }
3659 
3660 /*
3661  * This is actually a page-missing access, but with uffd-wp special pte
3662  * installed.  It means this pte was wr-protected before being unmapped.
3663  */
3664 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3665 {
3666 	/*
3667 	 * Just in case there're leftover special ptes even after the region
3668 	 * got unregistered - we can simply clear them.  We can also do that
3669 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3670 	 * ranges, but it should be more efficient to be done lazily here.
3671 	 */
3672 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3673 		return pte_marker_clear(vmf);
3674 
3675 	/* do_fault() can handle pte markers too like none pte */
3676 	return do_fault(vmf);
3677 }
3678 
3679 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3680 {
3681 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3682 	unsigned long marker = pte_marker_get(entry);
3683 
3684 	/*
3685 	 * PTE markers should always be with file-backed memories, and the
3686 	 * marker should never be empty.  If anything weird happened, the best
3687 	 * thing to do is to kill the process along with its mm.
3688 	 */
3689 	if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3690 		return VM_FAULT_SIGBUS;
3691 
3692 	if (pte_marker_entry_uffd_wp(entry))
3693 		return pte_marker_handle_uffd_wp(vmf);
3694 
3695 	/* This is an unknown pte marker */
3696 	return VM_FAULT_SIGBUS;
3697 }
3698 
3699 /*
3700  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3701  * but allow concurrent faults), and pte mapped but not yet locked.
3702  * We return with pte unmapped and unlocked.
3703  *
3704  * We return with the mmap_lock locked or unlocked in the same cases
3705  * as does filemap_fault().
3706  */
3707 vm_fault_t do_swap_page(struct vm_fault *vmf)
3708 {
3709 	struct vm_area_struct *vma = vmf->vma;
3710 	struct page *page = NULL, *swapcache;
3711 	struct swap_info_struct *si = NULL;
3712 	rmap_t rmap_flags = RMAP_NONE;
3713 	bool exclusive = false;
3714 	swp_entry_t entry;
3715 	pte_t pte;
3716 	int locked;
3717 	vm_fault_t ret = 0;
3718 	void *shadow = NULL;
3719 
3720 	if (!pte_unmap_same(vmf))
3721 		goto out;
3722 
3723 	entry = pte_to_swp_entry(vmf->orig_pte);
3724 	if (unlikely(non_swap_entry(entry))) {
3725 		if (is_migration_entry(entry)) {
3726 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3727 					     vmf->address);
3728 		} else if (is_device_exclusive_entry(entry)) {
3729 			vmf->page = pfn_swap_entry_to_page(entry);
3730 			ret = remove_device_exclusive_entry(vmf);
3731 		} else if (is_device_private_entry(entry)) {
3732 			vmf->page = pfn_swap_entry_to_page(entry);
3733 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3734 		} else if (is_hwpoison_entry(entry)) {
3735 			ret = VM_FAULT_HWPOISON;
3736 		} else if (is_swapin_error_entry(entry)) {
3737 			ret = VM_FAULT_SIGBUS;
3738 		} else if (is_pte_marker_entry(entry)) {
3739 			ret = handle_pte_marker(vmf);
3740 		} else {
3741 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3742 			ret = VM_FAULT_SIGBUS;
3743 		}
3744 		goto out;
3745 	}
3746 
3747 	/* Prevent swapoff from happening to us. */
3748 	si = get_swap_device(entry);
3749 	if (unlikely(!si))
3750 		goto out;
3751 
3752 	page = lookup_swap_cache(entry, vma, vmf->address);
3753 	swapcache = page;
3754 
3755 	if (!page) {
3756 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3757 		    __swap_count(entry) == 1) {
3758 			/* skip swapcache */
3759 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3760 							vmf->address);
3761 			if (page) {
3762 				__SetPageLocked(page);
3763 				__SetPageSwapBacked(page);
3764 
3765 				if (mem_cgroup_swapin_charge_page(page,
3766 					vma->vm_mm, GFP_KERNEL, entry)) {
3767 					ret = VM_FAULT_OOM;
3768 					goto out_page;
3769 				}
3770 				mem_cgroup_swapin_uncharge_swap(entry);
3771 
3772 				shadow = get_shadow_from_swap_cache(entry);
3773 				if (shadow)
3774 					workingset_refault(page_folio(page),
3775 								shadow);
3776 
3777 				lru_cache_add(page);
3778 
3779 				/* To provide entry to swap_readpage() */
3780 				set_page_private(page, entry.val);
3781 				swap_readpage(page, true, NULL);
3782 				set_page_private(page, 0);
3783 			}
3784 		} else {
3785 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3786 						vmf);
3787 			swapcache = page;
3788 		}
3789 
3790 		if (!page) {
3791 			/*
3792 			 * Back out if somebody else faulted in this pte
3793 			 * while we released the pte lock.
3794 			 */
3795 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3796 					vmf->address, &vmf->ptl);
3797 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3798 				ret = VM_FAULT_OOM;
3799 			goto unlock;
3800 		}
3801 
3802 		/* Had to read the page from swap area: Major fault */
3803 		ret = VM_FAULT_MAJOR;
3804 		count_vm_event(PGMAJFAULT);
3805 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3806 	} else if (PageHWPoison(page)) {
3807 		/*
3808 		 * hwpoisoned dirty swapcache pages are kept for killing
3809 		 * owner processes (which may be unknown at hwpoison time)
3810 		 */
3811 		ret = VM_FAULT_HWPOISON;
3812 		goto out_release;
3813 	}
3814 
3815 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3816 
3817 	if (!locked) {
3818 		ret |= VM_FAULT_RETRY;
3819 		goto out_release;
3820 	}
3821 
3822 	if (swapcache) {
3823 		/*
3824 		 * Make sure try_to_free_swap or swapoff did not release the
3825 		 * swapcache from under us.  The page pin, and pte_same test
3826 		 * below, are not enough to exclude that.  Even if it is still
3827 		 * swapcache, we need to check that the page's swap has not
3828 		 * changed.
3829 		 */
3830 		if (unlikely(!PageSwapCache(page) ||
3831 			     page_private(page) != entry.val))
3832 			goto out_page;
3833 
3834 		/*
3835 		 * KSM sometimes has to copy on read faults, for example, if
3836 		 * page->index of !PageKSM() pages would be nonlinear inside the
3837 		 * anon VMA -- PageKSM() is lost on actual swapout.
3838 		 */
3839 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3840 		if (unlikely(!page)) {
3841 			ret = VM_FAULT_OOM;
3842 			page = swapcache;
3843 			goto out_page;
3844 		}
3845 
3846 		/*
3847 		 * If we want to map a page that's in the swapcache writable, we
3848 		 * have to detect via the refcount if we're really the exclusive
3849 		 * owner. Try removing the extra reference from the local LRU
3850 		 * pagevecs if required.
3851 		 */
3852 		if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3853 		    !PageKsm(page) && !PageLRU(page))
3854 			lru_add_drain();
3855 	}
3856 
3857 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3858 
3859 	/*
3860 	 * Back out if somebody else already faulted in this pte.
3861 	 */
3862 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3863 			&vmf->ptl);
3864 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3865 		goto out_nomap;
3866 
3867 	if (unlikely(!PageUptodate(page))) {
3868 		ret = VM_FAULT_SIGBUS;
3869 		goto out_nomap;
3870 	}
3871 
3872 	/*
3873 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3874 	 * must never point at an anonymous page in the swapcache that is
3875 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3876 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3877 	 * check after taking the PT lock and making sure that nobody
3878 	 * concurrently faulted in this page and set PG_anon_exclusive.
3879 	 */
3880 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3881 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3882 
3883 	/*
3884 	 * Check under PT lock (to protect against concurrent fork() sharing
3885 	 * the swap entry concurrently) for certainly exclusive pages.
3886 	 */
3887 	if (!PageKsm(page)) {
3888 		/*
3889 		 * Note that pte_swp_exclusive() == false for architectures
3890 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3891 		 */
3892 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3893 		if (page != swapcache) {
3894 			/*
3895 			 * We have a fresh page that is not exposed to the
3896 			 * swapcache -> certainly exclusive.
3897 			 */
3898 			exclusive = true;
3899 		} else if (exclusive && PageWriteback(page) &&
3900 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3901 			/*
3902 			 * This is tricky: not all swap backends support
3903 			 * concurrent page modifications while under writeback.
3904 			 *
3905 			 * So if we stumble over such a page in the swapcache
3906 			 * we must not set the page exclusive, otherwise we can
3907 			 * map it writable without further checks and modify it
3908 			 * while still under writeback.
3909 			 *
3910 			 * For these problematic swap backends, simply drop the
3911 			 * exclusive marker: this is perfectly fine as we start
3912 			 * writeback only if we fully unmapped the page and
3913 			 * there are no unexpected references on the page after
3914 			 * unmapping succeeded. After fully unmapped, no
3915 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3916 			 * appear, so dropping the exclusive marker and mapping
3917 			 * it only R/O is fine.
3918 			 */
3919 			exclusive = false;
3920 		}
3921 	}
3922 
3923 	/*
3924 	 * Remove the swap entry and conditionally try to free up the swapcache.
3925 	 * We're already holding a reference on the page but haven't mapped it
3926 	 * yet.
3927 	 */
3928 	swap_free(entry);
3929 	if (should_try_to_free_swap(page, vma, vmf->flags))
3930 		try_to_free_swap(page);
3931 
3932 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3933 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3934 	pte = mk_pte(page, vma->vm_page_prot);
3935 
3936 	/*
3937 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3938 	 * certainly not shared either because we just allocated them without
3939 	 * exposing them to the swapcache or because the swap entry indicates
3940 	 * exclusivity.
3941 	 */
3942 	if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3943 		if (vmf->flags & FAULT_FLAG_WRITE) {
3944 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3945 			vmf->flags &= ~FAULT_FLAG_WRITE;
3946 			ret |= VM_FAULT_WRITE;
3947 		}
3948 		rmap_flags |= RMAP_EXCLUSIVE;
3949 	}
3950 	flush_icache_page(vma, page);
3951 	if (pte_swp_soft_dirty(vmf->orig_pte))
3952 		pte = pte_mksoft_dirty(pte);
3953 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3954 		pte = pte_mkuffd_wp(pte);
3955 		pte = pte_wrprotect(pte);
3956 	}
3957 	vmf->orig_pte = pte;
3958 
3959 	/* ksm created a completely new copy */
3960 	if (unlikely(page != swapcache && swapcache)) {
3961 		page_add_new_anon_rmap(page, vma, vmf->address);
3962 		lru_cache_add_inactive_or_unevictable(page, vma);
3963 	} else {
3964 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3965 	}
3966 
3967 	VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3968 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3969 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3970 
3971 	unlock_page(page);
3972 	if (page != swapcache && swapcache) {
3973 		/*
3974 		 * Hold the lock to avoid the swap entry to be reused
3975 		 * until we take the PT lock for the pte_same() check
3976 		 * (to avoid false positives from pte_same). For
3977 		 * further safety release the lock after the swap_free
3978 		 * so that the swap count won't change under a
3979 		 * parallel locked swapcache.
3980 		 */
3981 		unlock_page(swapcache);
3982 		put_page(swapcache);
3983 	}
3984 
3985 	if (vmf->flags & FAULT_FLAG_WRITE) {
3986 		ret |= do_wp_page(vmf);
3987 		if (ret & VM_FAULT_ERROR)
3988 			ret &= VM_FAULT_ERROR;
3989 		goto out;
3990 	}
3991 
3992 	/* No need to invalidate - it was non-present before */
3993 	update_mmu_cache(vma, vmf->address, vmf->pte);
3994 unlock:
3995 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3996 out:
3997 	if (si)
3998 		put_swap_device(si);
3999 	return ret;
4000 out_nomap:
4001 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4002 out_page:
4003 	unlock_page(page);
4004 out_release:
4005 	put_page(page);
4006 	if (page != swapcache && swapcache) {
4007 		unlock_page(swapcache);
4008 		put_page(swapcache);
4009 	}
4010 	if (si)
4011 		put_swap_device(si);
4012 	return ret;
4013 }
4014 
4015 /*
4016  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4017  * but allow concurrent faults), and pte mapped but not yet locked.
4018  * We return with mmap_lock still held, but pte unmapped and unlocked.
4019  */
4020 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4021 {
4022 	struct vm_area_struct *vma = vmf->vma;
4023 	struct page *page;
4024 	vm_fault_t ret = 0;
4025 	pte_t entry;
4026 
4027 	/* File mapping without ->vm_ops ? */
4028 	if (vma->vm_flags & VM_SHARED)
4029 		return VM_FAULT_SIGBUS;
4030 
4031 	/*
4032 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4033 	 * pte_offset_map() on pmds where a huge pmd might be created
4034 	 * from a different thread.
4035 	 *
4036 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4037 	 * parallel threads are excluded by other means.
4038 	 *
4039 	 * Here we only have mmap_read_lock(mm).
4040 	 */
4041 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4042 		return VM_FAULT_OOM;
4043 
4044 	/* See comment in handle_pte_fault() */
4045 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4046 		return 0;
4047 
4048 	/* Use the zero-page for reads */
4049 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4050 			!mm_forbids_zeropage(vma->vm_mm)) {
4051 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4052 						vma->vm_page_prot));
4053 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4054 				vmf->address, &vmf->ptl);
4055 		if (!pte_none(*vmf->pte)) {
4056 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4057 			goto unlock;
4058 		}
4059 		ret = check_stable_address_space(vma->vm_mm);
4060 		if (ret)
4061 			goto unlock;
4062 		/* Deliver the page fault to userland, check inside PT lock */
4063 		if (userfaultfd_missing(vma)) {
4064 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4065 			return handle_userfault(vmf, VM_UFFD_MISSING);
4066 		}
4067 		goto setpte;
4068 	}
4069 
4070 	/* Allocate our own private page. */
4071 	if (unlikely(anon_vma_prepare(vma)))
4072 		goto oom;
4073 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4074 	if (!page)
4075 		goto oom;
4076 
4077 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4078 		goto oom_free_page;
4079 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4080 
4081 	/*
4082 	 * The memory barrier inside __SetPageUptodate makes sure that
4083 	 * preceding stores to the page contents become visible before
4084 	 * the set_pte_at() write.
4085 	 */
4086 	__SetPageUptodate(page);
4087 
4088 	entry = mk_pte(page, vma->vm_page_prot);
4089 	entry = pte_sw_mkyoung(entry);
4090 	if (vma->vm_flags & VM_WRITE)
4091 		entry = pte_mkwrite(pte_mkdirty(entry));
4092 
4093 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4094 			&vmf->ptl);
4095 	if (!pte_none(*vmf->pte)) {
4096 		update_mmu_cache(vma, vmf->address, vmf->pte);
4097 		goto release;
4098 	}
4099 
4100 	ret = check_stable_address_space(vma->vm_mm);
4101 	if (ret)
4102 		goto release;
4103 
4104 	/* Deliver the page fault to userland, check inside PT lock */
4105 	if (userfaultfd_missing(vma)) {
4106 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4107 		put_page(page);
4108 		return handle_userfault(vmf, VM_UFFD_MISSING);
4109 	}
4110 
4111 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4112 	page_add_new_anon_rmap(page, vma, vmf->address);
4113 	lru_cache_add_inactive_or_unevictable(page, vma);
4114 setpte:
4115 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4116 
4117 	/* No need to invalidate - it was non-present before */
4118 	update_mmu_cache(vma, vmf->address, vmf->pte);
4119 unlock:
4120 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4121 	return ret;
4122 release:
4123 	put_page(page);
4124 	goto unlock;
4125 oom_free_page:
4126 	put_page(page);
4127 oom:
4128 	return VM_FAULT_OOM;
4129 }
4130 
4131 /*
4132  * The mmap_lock must have been held on entry, and may have been
4133  * released depending on flags and vma->vm_ops->fault() return value.
4134  * See filemap_fault() and __lock_page_retry().
4135  */
4136 static vm_fault_t __do_fault(struct vm_fault *vmf)
4137 {
4138 	struct vm_area_struct *vma = vmf->vma;
4139 	vm_fault_t ret;
4140 
4141 	/*
4142 	 * Preallocate pte before we take page_lock because this might lead to
4143 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4144 	 *				lock_page(A)
4145 	 *				SetPageWriteback(A)
4146 	 *				unlock_page(A)
4147 	 * lock_page(B)
4148 	 *				lock_page(B)
4149 	 * pte_alloc_one
4150 	 *   shrink_page_list
4151 	 *     wait_on_page_writeback(A)
4152 	 *				SetPageWriteback(B)
4153 	 *				unlock_page(B)
4154 	 *				# flush A, B to clear the writeback
4155 	 */
4156 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4157 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4158 		if (!vmf->prealloc_pte)
4159 			return VM_FAULT_OOM;
4160 	}
4161 
4162 	ret = vma->vm_ops->fault(vmf);
4163 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4164 			    VM_FAULT_DONE_COW)))
4165 		return ret;
4166 
4167 	if (unlikely(PageHWPoison(vmf->page))) {
4168 		struct page *page = vmf->page;
4169 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4170 		if (ret & VM_FAULT_LOCKED) {
4171 			if (page_mapped(page))
4172 				unmap_mapping_pages(page_mapping(page),
4173 						    page->index, 1, false);
4174 			/* Retry if a clean page was removed from the cache. */
4175 			if (invalidate_inode_page(page))
4176 				poisonret = VM_FAULT_NOPAGE;
4177 			unlock_page(page);
4178 		}
4179 		put_page(page);
4180 		vmf->page = NULL;
4181 		return poisonret;
4182 	}
4183 
4184 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4185 		lock_page(vmf->page);
4186 	else
4187 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4188 
4189 	return ret;
4190 }
4191 
4192 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4193 static void deposit_prealloc_pte(struct vm_fault *vmf)
4194 {
4195 	struct vm_area_struct *vma = vmf->vma;
4196 
4197 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4198 	/*
4199 	 * We are going to consume the prealloc table,
4200 	 * count that as nr_ptes.
4201 	 */
4202 	mm_inc_nr_ptes(vma->vm_mm);
4203 	vmf->prealloc_pte = NULL;
4204 }
4205 
4206 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4207 {
4208 	struct vm_area_struct *vma = vmf->vma;
4209 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4210 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4211 	pmd_t entry;
4212 	int i;
4213 	vm_fault_t ret = VM_FAULT_FALLBACK;
4214 
4215 	if (!transhuge_vma_suitable(vma, haddr))
4216 		return ret;
4217 
4218 	page = compound_head(page);
4219 	if (compound_order(page) != HPAGE_PMD_ORDER)
4220 		return ret;
4221 
4222 	/*
4223 	 * Just backoff if any subpage of a THP is corrupted otherwise
4224 	 * the corrupted page may mapped by PMD silently to escape the
4225 	 * check.  This kind of THP just can be PTE mapped.  Access to
4226 	 * the corrupted subpage should trigger SIGBUS as expected.
4227 	 */
4228 	if (unlikely(PageHasHWPoisoned(page)))
4229 		return ret;
4230 
4231 	/*
4232 	 * Archs like ppc64 need additional space to store information
4233 	 * related to pte entry. Use the preallocated table for that.
4234 	 */
4235 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4236 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4237 		if (!vmf->prealloc_pte)
4238 			return VM_FAULT_OOM;
4239 	}
4240 
4241 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4242 	if (unlikely(!pmd_none(*vmf->pmd)))
4243 		goto out;
4244 
4245 	for (i = 0; i < HPAGE_PMD_NR; i++)
4246 		flush_icache_page(vma, page + i);
4247 
4248 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4249 	if (write)
4250 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4251 
4252 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4253 	page_add_file_rmap(page, vma, true);
4254 
4255 	/*
4256 	 * deposit and withdraw with pmd lock held
4257 	 */
4258 	if (arch_needs_pgtable_deposit())
4259 		deposit_prealloc_pte(vmf);
4260 
4261 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4262 
4263 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4264 
4265 	/* fault is handled */
4266 	ret = 0;
4267 	count_vm_event(THP_FILE_MAPPED);
4268 out:
4269 	spin_unlock(vmf->ptl);
4270 	return ret;
4271 }
4272 #else
4273 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4274 {
4275 	return VM_FAULT_FALLBACK;
4276 }
4277 #endif
4278 
4279 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4280 {
4281 	struct vm_area_struct *vma = vmf->vma;
4282 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4283 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4284 	bool prefault = vmf->address != addr;
4285 	pte_t entry;
4286 
4287 	flush_icache_page(vma, page);
4288 	entry = mk_pte(page, vma->vm_page_prot);
4289 
4290 	if (prefault && arch_wants_old_prefaulted_pte())
4291 		entry = pte_mkold(entry);
4292 	else
4293 		entry = pte_sw_mkyoung(entry);
4294 
4295 	if (write)
4296 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4297 	if (unlikely(uffd_wp))
4298 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4299 	/* copy-on-write page */
4300 	if (write && !(vma->vm_flags & VM_SHARED)) {
4301 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4302 		page_add_new_anon_rmap(page, vma, addr);
4303 		lru_cache_add_inactive_or_unevictable(page, vma);
4304 	} else {
4305 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4306 		page_add_file_rmap(page, vma, false);
4307 	}
4308 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4309 }
4310 
4311 static bool vmf_pte_changed(struct vm_fault *vmf)
4312 {
4313 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4314 		return !pte_same(*vmf->pte, vmf->orig_pte);
4315 
4316 	return !pte_none(*vmf->pte);
4317 }
4318 
4319 /**
4320  * finish_fault - finish page fault once we have prepared the page to fault
4321  *
4322  * @vmf: structure describing the fault
4323  *
4324  * This function handles all that is needed to finish a page fault once the
4325  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4326  * given page, adds reverse page mapping, handles memcg charges and LRU
4327  * addition.
4328  *
4329  * The function expects the page to be locked and on success it consumes a
4330  * reference of a page being mapped (for the PTE which maps it).
4331  *
4332  * Return: %0 on success, %VM_FAULT_ code in case of error.
4333  */
4334 vm_fault_t finish_fault(struct vm_fault *vmf)
4335 {
4336 	struct vm_area_struct *vma = vmf->vma;
4337 	struct page *page;
4338 	vm_fault_t ret;
4339 
4340 	/* Did we COW the page? */
4341 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4342 		page = vmf->cow_page;
4343 	else
4344 		page = vmf->page;
4345 
4346 	/*
4347 	 * check even for read faults because we might have lost our CoWed
4348 	 * page
4349 	 */
4350 	if (!(vma->vm_flags & VM_SHARED)) {
4351 		ret = check_stable_address_space(vma->vm_mm);
4352 		if (ret)
4353 			return ret;
4354 	}
4355 
4356 	if (pmd_none(*vmf->pmd)) {
4357 		if (PageTransCompound(page)) {
4358 			ret = do_set_pmd(vmf, page);
4359 			if (ret != VM_FAULT_FALLBACK)
4360 				return ret;
4361 		}
4362 
4363 		if (vmf->prealloc_pte)
4364 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4365 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4366 			return VM_FAULT_OOM;
4367 	}
4368 
4369 	/*
4370 	 * See comment in handle_pte_fault() for how this scenario happens, we
4371 	 * need to return NOPAGE so that we drop this page.
4372 	 */
4373 	if (pmd_devmap_trans_unstable(vmf->pmd))
4374 		return VM_FAULT_NOPAGE;
4375 
4376 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4377 				      vmf->address, &vmf->ptl);
4378 
4379 	/* Re-check under ptl */
4380 	if (likely(!vmf_pte_changed(vmf))) {
4381 		do_set_pte(vmf, page, vmf->address);
4382 
4383 		/* no need to invalidate: a not-present page won't be cached */
4384 		update_mmu_cache(vma, vmf->address, vmf->pte);
4385 
4386 		ret = 0;
4387 	} else {
4388 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4389 		ret = VM_FAULT_NOPAGE;
4390 	}
4391 
4392 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4393 	return ret;
4394 }
4395 
4396 static unsigned long fault_around_bytes __read_mostly =
4397 	rounddown_pow_of_two(65536);
4398 
4399 #ifdef CONFIG_DEBUG_FS
4400 static int fault_around_bytes_get(void *data, u64 *val)
4401 {
4402 	*val = fault_around_bytes;
4403 	return 0;
4404 }
4405 
4406 /*
4407  * fault_around_bytes must be rounded down to the nearest page order as it's
4408  * what do_fault_around() expects to see.
4409  */
4410 static int fault_around_bytes_set(void *data, u64 val)
4411 {
4412 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4413 		return -EINVAL;
4414 	if (val > PAGE_SIZE)
4415 		fault_around_bytes = rounddown_pow_of_two(val);
4416 	else
4417 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4418 	return 0;
4419 }
4420 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4421 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4422 
4423 static int __init fault_around_debugfs(void)
4424 {
4425 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4426 				   &fault_around_bytes_fops);
4427 	return 0;
4428 }
4429 late_initcall(fault_around_debugfs);
4430 #endif
4431 
4432 /*
4433  * do_fault_around() tries to map few pages around the fault address. The hope
4434  * is that the pages will be needed soon and this will lower the number of
4435  * faults to handle.
4436  *
4437  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4438  * not ready to be mapped: not up-to-date, locked, etc.
4439  *
4440  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4441  * only once.
4442  *
4443  * fault_around_bytes defines how many bytes we'll try to map.
4444  * do_fault_around() expects it to be set to a power of two less than or equal
4445  * to PTRS_PER_PTE.
4446  *
4447  * The virtual address of the area that we map is naturally aligned to
4448  * fault_around_bytes rounded down to the machine page size
4449  * (and therefore to page order).  This way it's easier to guarantee
4450  * that we don't cross page table boundaries.
4451  */
4452 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4453 {
4454 	unsigned long address = vmf->address, nr_pages, mask;
4455 	pgoff_t start_pgoff = vmf->pgoff;
4456 	pgoff_t end_pgoff;
4457 	int off;
4458 
4459 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4460 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4461 
4462 	address = max(address & mask, vmf->vma->vm_start);
4463 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4464 	start_pgoff -= off;
4465 
4466 	/*
4467 	 *  end_pgoff is either the end of the page table, the end of
4468 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4469 	 */
4470 	end_pgoff = start_pgoff -
4471 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4472 		PTRS_PER_PTE - 1;
4473 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4474 			start_pgoff + nr_pages - 1);
4475 
4476 	if (pmd_none(*vmf->pmd)) {
4477 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4478 		if (!vmf->prealloc_pte)
4479 			return VM_FAULT_OOM;
4480 	}
4481 
4482 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4483 }
4484 
4485 /* Return true if we should do read fault-around, false otherwise */
4486 static inline bool should_fault_around(struct vm_fault *vmf)
4487 {
4488 	/* No ->map_pages?  No way to fault around... */
4489 	if (!vmf->vma->vm_ops->map_pages)
4490 		return false;
4491 
4492 	if (uffd_disable_fault_around(vmf->vma))
4493 		return false;
4494 
4495 	return fault_around_bytes >> PAGE_SHIFT > 1;
4496 }
4497 
4498 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4499 {
4500 	vm_fault_t ret = 0;
4501 
4502 	/*
4503 	 * Let's call ->map_pages() first and use ->fault() as fallback
4504 	 * if page by the offset is not ready to be mapped (cold cache or
4505 	 * something).
4506 	 */
4507 	if (should_fault_around(vmf)) {
4508 		ret = do_fault_around(vmf);
4509 		if (ret)
4510 			return ret;
4511 	}
4512 
4513 	ret = __do_fault(vmf);
4514 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4515 		return ret;
4516 
4517 	ret |= finish_fault(vmf);
4518 	unlock_page(vmf->page);
4519 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4520 		put_page(vmf->page);
4521 	return ret;
4522 }
4523 
4524 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4525 {
4526 	struct vm_area_struct *vma = vmf->vma;
4527 	vm_fault_t ret;
4528 
4529 	if (unlikely(anon_vma_prepare(vma)))
4530 		return VM_FAULT_OOM;
4531 
4532 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4533 	if (!vmf->cow_page)
4534 		return VM_FAULT_OOM;
4535 
4536 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4537 				GFP_KERNEL)) {
4538 		put_page(vmf->cow_page);
4539 		return VM_FAULT_OOM;
4540 	}
4541 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4542 
4543 	ret = __do_fault(vmf);
4544 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4545 		goto uncharge_out;
4546 	if (ret & VM_FAULT_DONE_COW)
4547 		return ret;
4548 
4549 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4550 	__SetPageUptodate(vmf->cow_page);
4551 
4552 	ret |= finish_fault(vmf);
4553 	unlock_page(vmf->page);
4554 	put_page(vmf->page);
4555 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556 		goto uncharge_out;
4557 	return ret;
4558 uncharge_out:
4559 	put_page(vmf->cow_page);
4560 	return ret;
4561 }
4562 
4563 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4564 {
4565 	struct vm_area_struct *vma = vmf->vma;
4566 	vm_fault_t ret, tmp;
4567 
4568 	ret = __do_fault(vmf);
4569 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4570 		return ret;
4571 
4572 	/*
4573 	 * Check if the backing address space wants to know that the page is
4574 	 * about to become writable
4575 	 */
4576 	if (vma->vm_ops->page_mkwrite) {
4577 		unlock_page(vmf->page);
4578 		tmp = do_page_mkwrite(vmf);
4579 		if (unlikely(!tmp ||
4580 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4581 			put_page(vmf->page);
4582 			return tmp;
4583 		}
4584 	}
4585 
4586 	ret |= finish_fault(vmf);
4587 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4588 					VM_FAULT_RETRY))) {
4589 		unlock_page(vmf->page);
4590 		put_page(vmf->page);
4591 		return ret;
4592 	}
4593 
4594 	ret |= fault_dirty_shared_page(vmf);
4595 	return ret;
4596 }
4597 
4598 /*
4599  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4600  * but allow concurrent faults).
4601  * The mmap_lock may have been released depending on flags and our
4602  * return value.  See filemap_fault() and __folio_lock_or_retry().
4603  * If mmap_lock is released, vma may become invalid (for example
4604  * by other thread calling munmap()).
4605  */
4606 static vm_fault_t do_fault(struct vm_fault *vmf)
4607 {
4608 	struct vm_area_struct *vma = vmf->vma;
4609 	struct mm_struct *vm_mm = vma->vm_mm;
4610 	vm_fault_t ret;
4611 
4612 	/*
4613 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4614 	 */
4615 	if (!vma->vm_ops->fault) {
4616 		/*
4617 		 * If we find a migration pmd entry or a none pmd entry, which
4618 		 * should never happen, return SIGBUS
4619 		 */
4620 		if (unlikely(!pmd_present(*vmf->pmd)))
4621 			ret = VM_FAULT_SIGBUS;
4622 		else {
4623 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4624 						       vmf->pmd,
4625 						       vmf->address,
4626 						       &vmf->ptl);
4627 			/*
4628 			 * Make sure this is not a temporary clearing of pte
4629 			 * by holding ptl and checking again. A R/M/W update
4630 			 * of pte involves: take ptl, clearing the pte so that
4631 			 * we don't have concurrent modification by hardware
4632 			 * followed by an update.
4633 			 */
4634 			if (unlikely(pte_none(*vmf->pte)))
4635 				ret = VM_FAULT_SIGBUS;
4636 			else
4637 				ret = VM_FAULT_NOPAGE;
4638 
4639 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4640 		}
4641 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4642 		ret = do_read_fault(vmf);
4643 	else if (!(vma->vm_flags & VM_SHARED))
4644 		ret = do_cow_fault(vmf);
4645 	else
4646 		ret = do_shared_fault(vmf);
4647 
4648 	/* preallocated pagetable is unused: free it */
4649 	if (vmf->prealloc_pte) {
4650 		pte_free(vm_mm, vmf->prealloc_pte);
4651 		vmf->prealloc_pte = NULL;
4652 	}
4653 	return ret;
4654 }
4655 
4656 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4657 		      unsigned long addr, int page_nid, int *flags)
4658 {
4659 	get_page(page);
4660 
4661 	count_vm_numa_event(NUMA_HINT_FAULTS);
4662 	if (page_nid == numa_node_id()) {
4663 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4664 		*flags |= TNF_FAULT_LOCAL;
4665 	}
4666 
4667 	return mpol_misplaced(page, vma, addr);
4668 }
4669 
4670 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4671 {
4672 	struct vm_area_struct *vma = vmf->vma;
4673 	struct page *page = NULL;
4674 	int page_nid = NUMA_NO_NODE;
4675 	int last_cpupid;
4676 	int target_nid;
4677 	pte_t pte, old_pte;
4678 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4679 	int flags = 0;
4680 
4681 	/*
4682 	 * The "pte" at this point cannot be used safely without
4683 	 * validation through pte_unmap_same(). It's of NUMA type but
4684 	 * the pfn may be screwed if the read is non atomic.
4685 	 */
4686 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4687 	spin_lock(vmf->ptl);
4688 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4689 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4690 		goto out;
4691 	}
4692 
4693 	/* Get the normal PTE  */
4694 	old_pte = ptep_get(vmf->pte);
4695 	pte = pte_modify(old_pte, vma->vm_page_prot);
4696 
4697 	page = vm_normal_page(vma, vmf->address, pte);
4698 	if (!page || is_zone_device_page(page))
4699 		goto out_map;
4700 
4701 	/* TODO: handle PTE-mapped THP */
4702 	if (PageCompound(page))
4703 		goto out_map;
4704 
4705 	/*
4706 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4707 	 * much anyway since they can be in shared cache state. This misses
4708 	 * the case where a mapping is writable but the process never writes
4709 	 * to it but pte_write gets cleared during protection updates and
4710 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4711 	 * background writeback, dirty balancing and application behaviour.
4712 	 */
4713 	if (!was_writable)
4714 		flags |= TNF_NO_GROUP;
4715 
4716 	/*
4717 	 * Flag if the page is shared between multiple address spaces. This
4718 	 * is later used when determining whether to group tasks together
4719 	 */
4720 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4721 		flags |= TNF_SHARED;
4722 
4723 	page_nid = page_to_nid(page);
4724 	/*
4725 	 * For memory tiering mode, cpupid of slow memory page is used
4726 	 * to record page access time.  So use default value.
4727 	 */
4728 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4729 	    !node_is_toptier(page_nid))
4730 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4731 	else
4732 		last_cpupid = page_cpupid_last(page);
4733 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4734 			&flags);
4735 	if (target_nid == NUMA_NO_NODE) {
4736 		put_page(page);
4737 		goto out_map;
4738 	}
4739 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4740 
4741 	/* Migrate to the requested node */
4742 	if (migrate_misplaced_page(page, vma, target_nid)) {
4743 		page_nid = target_nid;
4744 		flags |= TNF_MIGRATED;
4745 	} else {
4746 		flags |= TNF_MIGRATE_FAIL;
4747 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4748 		spin_lock(vmf->ptl);
4749 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4750 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4751 			goto out;
4752 		}
4753 		goto out_map;
4754 	}
4755 
4756 out:
4757 	if (page_nid != NUMA_NO_NODE)
4758 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4759 	return 0;
4760 out_map:
4761 	/*
4762 	 * Make it present again, depending on how arch implements
4763 	 * non-accessible ptes, some can allow access by kernel mode.
4764 	 */
4765 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4766 	pte = pte_modify(old_pte, vma->vm_page_prot);
4767 	pte = pte_mkyoung(pte);
4768 	if (was_writable)
4769 		pte = pte_mkwrite(pte);
4770 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4771 	update_mmu_cache(vma, vmf->address, vmf->pte);
4772 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4773 	goto out;
4774 }
4775 
4776 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4777 {
4778 	if (vma_is_anonymous(vmf->vma))
4779 		return do_huge_pmd_anonymous_page(vmf);
4780 	if (vmf->vma->vm_ops->huge_fault)
4781 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4782 	return VM_FAULT_FALLBACK;
4783 }
4784 
4785 /* `inline' is required to avoid gcc 4.1.2 build error */
4786 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4787 {
4788 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4789 
4790 	if (vma_is_anonymous(vmf->vma)) {
4791 		if (likely(!unshare) &&
4792 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4793 			return handle_userfault(vmf, VM_UFFD_WP);
4794 		return do_huge_pmd_wp_page(vmf);
4795 	}
4796 	if (vmf->vma->vm_ops->huge_fault) {
4797 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4798 
4799 		if (!(ret & VM_FAULT_FALLBACK))
4800 			return ret;
4801 	}
4802 
4803 	/* COW or write-notify handled on pte level: split pmd. */
4804 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4805 
4806 	return VM_FAULT_FALLBACK;
4807 }
4808 
4809 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4810 {
4811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4812 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4813 	/* No support for anonymous transparent PUD pages yet */
4814 	if (vma_is_anonymous(vmf->vma))
4815 		return VM_FAULT_FALLBACK;
4816 	if (vmf->vma->vm_ops->huge_fault)
4817 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4818 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4819 	return VM_FAULT_FALLBACK;
4820 }
4821 
4822 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4823 {
4824 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4825 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4826 	/* No support for anonymous transparent PUD pages yet */
4827 	if (vma_is_anonymous(vmf->vma))
4828 		goto split;
4829 	if (vmf->vma->vm_ops->huge_fault) {
4830 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4831 
4832 		if (!(ret & VM_FAULT_FALLBACK))
4833 			return ret;
4834 	}
4835 split:
4836 	/* COW or write-notify not handled on PUD level: split pud.*/
4837 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4838 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4839 	return VM_FAULT_FALLBACK;
4840 }
4841 
4842 /*
4843  * These routines also need to handle stuff like marking pages dirty
4844  * and/or accessed for architectures that don't do it in hardware (most
4845  * RISC architectures).  The early dirtying is also good on the i386.
4846  *
4847  * There is also a hook called "update_mmu_cache()" that architectures
4848  * with external mmu caches can use to update those (ie the Sparc or
4849  * PowerPC hashed page tables that act as extended TLBs).
4850  *
4851  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4852  * concurrent faults).
4853  *
4854  * The mmap_lock may have been released depending on flags and our return value.
4855  * See filemap_fault() and __folio_lock_or_retry().
4856  */
4857 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4858 {
4859 	pte_t entry;
4860 
4861 	if (unlikely(pmd_none(*vmf->pmd))) {
4862 		/*
4863 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4864 		 * want to allocate huge page, and if we expose page table
4865 		 * for an instant, it will be difficult to retract from
4866 		 * concurrent faults and from rmap lookups.
4867 		 */
4868 		vmf->pte = NULL;
4869 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4870 	} else {
4871 		/*
4872 		 * If a huge pmd materialized under us just retry later.  Use
4873 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4874 		 * of pmd_trans_huge() to ensure the pmd didn't become
4875 		 * pmd_trans_huge under us and then back to pmd_none, as a
4876 		 * result of MADV_DONTNEED running immediately after a huge pmd
4877 		 * fault in a different thread of this mm, in turn leading to a
4878 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4879 		 * that it is a regular pmd that we can walk with
4880 		 * pte_offset_map() and we can do that through an atomic read
4881 		 * in C, which is what pmd_trans_unstable() provides.
4882 		 */
4883 		if (pmd_devmap_trans_unstable(vmf->pmd))
4884 			return 0;
4885 		/*
4886 		 * A regular pmd is established and it can't morph into a huge
4887 		 * pmd from under us anymore at this point because we hold the
4888 		 * mmap_lock read mode and khugepaged takes it in write mode.
4889 		 * So now it's safe to run pte_offset_map().
4890 		 */
4891 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4892 		vmf->orig_pte = *vmf->pte;
4893 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4894 
4895 		/*
4896 		 * some architectures can have larger ptes than wordsize,
4897 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4898 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4899 		 * accesses.  The code below just needs a consistent view
4900 		 * for the ifs and we later double check anyway with the
4901 		 * ptl lock held. So here a barrier will do.
4902 		 */
4903 		barrier();
4904 		if (pte_none(vmf->orig_pte)) {
4905 			pte_unmap(vmf->pte);
4906 			vmf->pte = NULL;
4907 		}
4908 	}
4909 
4910 	if (!vmf->pte) {
4911 		if (vma_is_anonymous(vmf->vma))
4912 			return do_anonymous_page(vmf);
4913 		else
4914 			return do_fault(vmf);
4915 	}
4916 
4917 	if (!pte_present(vmf->orig_pte))
4918 		return do_swap_page(vmf);
4919 
4920 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4921 		return do_numa_page(vmf);
4922 
4923 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4924 	spin_lock(vmf->ptl);
4925 	entry = vmf->orig_pte;
4926 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4927 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4928 		goto unlock;
4929 	}
4930 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4931 		if (!pte_write(entry))
4932 			return do_wp_page(vmf);
4933 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4934 			entry = pte_mkdirty(entry);
4935 	}
4936 	entry = pte_mkyoung(entry);
4937 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4938 				vmf->flags & FAULT_FLAG_WRITE)) {
4939 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4940 	} else {
4941 		/* Skip spurious TLB flush for retried page fault */
4942 		if (vmf->flags & FAULT_FLAG_TRIED)
4943 			goto unlock;
4944 		/*
4945 		 * This is needed only for protection faults but the arch code
4946 		 * is not yet telling us if this is a protection fault or not.
4947 		 * This still avoids useless tlb flushes for .text page faults
4948 		 * with threads.
4949 		 */
4950 		if (vmf->flags & FAULT_FLAG_WRITE)
4951 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4952 	}
4953 unlock:
4954 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4955 	return 0;
4956 }
4957 
4958 /*
4959  * By the time we get here, we already hold the mm semaphore
4960  *
4961  * The mmap_lock may have been released depending on flags and our
4962  * return value.  See filemap_fault() and __folio_lock_or_retry().
4963  */
4964 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4965 		unsigned long address, unsigned int flags)
4966 {
4967 	struct vm_fault vmf = {
4968 		.vma = vma,
4969 		.address = address & PAGE_MASK,
4970 		.real_address = address,
4971 		.flags = flags,
4972 		.pgoff = linear_page_index(vma, address),
4973 		.gfp_mask = __get_fault_gfp_mask(vma),
4974 	};
4975 	struct mm_struct *mm = vma->vm_mm;
4976 	unsigned long vm_flags = vma->vm_flags;
4977 	pgd_t *pgd;
4978 	p4d_t *p4d;
4979 	vm_fault_t ret;
4980 
4981 	pgd = pgd_offset(mm, address);
4982 	p4d = p4d_alloc(mm, pgd, address);
4983 	if (!p4d)
4984 		return VM_FAULT_OOM;
4985 
4986 	vmf.pud = pud_alloc(mm, p4d, address);
4987 	if (!vmf.pud)
4988 		return VM_FAULT_OOM;
4989 retry_pud:
4990 	if (pud_none(*vmf.pud) &&
4991 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
4992 		ret = create_huge_pud(&vmf);
4993 		if (!(ret & VM_FAULT_FALLBACK))
4994 			return ret;
4995 	} else {
4996 		pud_t orig_pud = *vmf.pud;
4997 
4998 		barrier();
4999 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5000 
5001 			/*
5002 			 * TODO once we support anonymous PUDs: NUMA case and
5003 			 * FAULT_FLAG_UNSHARE handling.
5004 			 */
5005 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5006 				ret = wp_huge_pud(&vmf, orig_pud);
5007 				if (!(ret & VM_FAULT_FALLBACK))
5008 					return ret;
5009 			} else {
5010 				huge_pud_set_accessed(&vmf, orig_pud);
5011 				return 0;
5012 			}
5013 		}
5014 	}
5015 
5016 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5017 	if (!vmf.pmd)
5018 		return VM_FAULT_OOM;
5019 
5020 	/* Huge pud page fault raced with pmd_alloc? */
5021 	if (pud_trans_unstable(vmf.pud))
5022 		goto retry_pud;
5023 
5024 	if (pmd_none(*vmf.pmd) &&
5025 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5026 		ret = create_huge_pmd(&vmf);
5027 		if (!(ret & VM_FAULT_FALLBACK))
5028 			return ret;
5029 	} else {
5030 		vmf.orig_pmd = *vmf.pmd;
5031 
5032 		barrier();
5033 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5034 			VM_BUG_ON(thp_migration_supported() &&
5035 					  !is_pmd_migration_entry(vmf.orig_pmd));
5036 			if (is_pmd_migration_entry(vmf.orig_pmd))
5037 				pmd_migration_entry_wait(mm, vmf.pmd);
5038 			return 0;
5039 		}
5040 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5041 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5042 				return do_huge_pmd_numa_page(&vmf);
5043 
5044 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5045 			    !pmd_write(vmf.orig_pmd)) {
5046 				ret = wp_huge_pmd(&vmf);
5047 				if (!(ret & VM_FAULT_FALLBACK))
5048 					return ret;
5049 			} else {
5050 				huge_pmd_set_accessed(&vmf);
5051 				return 0;
5052 			}
5053 		}
5054 	}
5055 
5056 	return handle_pte_fault(&vmf);
5057 }
5058 
5059 /**
5060  * mm_account_fault - Do page fault accounting
5061  *
5062  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5063  *        of perf event counters, but we'll still do the per-task accounting to
5064  *        the task who triggered this page fault.
5065  * @address: the faulted address.
5066  * @flags: the fault flags.
5067  * @ret: the fault retcode.
5068  *
5069  * This will take care of most of the page fault accounting.  Meanwhile, it
5070  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5071  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5072  * still be in per-arch page fault handlers at the entry of page fault.
5073  */
5074 static inline void mm_account_fault(struct pt_regs *regs,
5075 				    unsigned long address, unsigned int flags,
5076 				    vm_fault_t ret)
5077 {
5078 	bool major;
5079 
5080 	/*
5081 	 * We don't do accounting for some specific faults:
5082 	 *
5083 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5084 	 *   includes arch_vma_access_permitted() failing before reaching here.
5085 	 *   So this is not a "this many hardware page faults" counter.  We
5086 	 *   should use the hw profiling for that.
5087 	 *
5088 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5089 	 *   once they're completed.
5090 	 */
5091 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5092 		return;
5093 
5094 	/*
5095 	 * We define the fault as a major fault when the final successful fault
5096 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5097 	 * handle it immediately previously).
5098 	 */
5099 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5100 
5101 	if (major)
5102 		current->maj_flt++;
5103 	else
5104 		current->min_flt++;
5105 
5106 	/*
5107 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5108 	 * accounting for the per thread fault counters who triggered the
5109 	 * fault, and we skip the perf event updates.
5110 	 */
5111 	if (!regs)
5112 		return;
5113 
5114 	if (major)
5115 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5116 	else
5117 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5118 }
5119 
5120 /*
5121  * By the time we get here, we already hold the mm semaphore
5122  *
5123  * The mmap_lock may have been released depending on flags and our
5124  * return value.  See filemap_fault() and __folio_lock_or_retry().
5125  */
5126 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5127 			   unsigned int flags, struct pt_regs *regs)
5128 {
5129 	vm_fault_t ret;
5130 
5131 	__set_current_state(TASK_RUNNING);
5132 
5133 	count_vm_event(PGFAULT);
5134 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5135 
5136 	/* do counter updates before entering really critical section. */
5137 	check_sync_rss_stat(current);
5138 
5139 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5140 					    flags & FAULT_FLAG_INSTRUCTION,
5141 					    flags & FAULT_FLAG_REMOTE))
5142 		return VM_FAULT_SIGSEGV;
5143 
5144 	/*
5145 	 * Enable the memcg OOM handling for faults triggered in user
5146 	 * space.  Kernel faults are handled more gracefully.
5147 	 */
5148 	if (flags & FAULT_FLAG_USER)
5149 		mem_cgroup_enter_user_fault();
5150 
5151 	if (unlikely(is_vm_hugetlb_page(vma)))
5152 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5153 	else
5154 		ret = __handle_mm_fault(vma, address, flags);
5155 
5156 	if (flags & FAULT_FLAG_USER) {
5157 		mem_cgroup_exit_user_fault();
5158 		/*
5159 		 * The task may have entered a memcg OOM situation but
5160 		 * if the allocation error was handled gracefully (no
5161 		 * VM_FAULT_OOM), there is no need to kill anything.
5162 		 * Just clean up the OOM state peacefully.
5163 		 */
5164 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5165 			mem_cgroup_oom_synchronize(false);
5166 	}
5167 
5168 	mm_account_fault(regs, address, flags, ret);
5169 
5170 	return ret;
5171 }
5172 EXPORT_SYMBOL_GPL(handle_mm_fault);
5173 
5174 #ifndef __PAGETABLE_P4D_FOLDED
5175 /*
5176  * Allocate p4d page table.
5177  * We've already handled the fast-path in-line.
5178  */
5179 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5180 {
5181 	p4d_t *new = p4d_alloc_one(mm, address);
5182 	if (!new)
5183 		return -ENOMEM;
5184 
5185 	spin_lock(&mm->page_table_lock);
5186 	if (pgd_present(*pgd)) {	/* Another has populated it */
5187 		p4d_free(mm, new);
5188 	} else {
5189 		smp_wmb(); /* See comment in pmd_install() */
5190 		pgd_populate(mm, pgd, new);
5191 	}
5192 	spin_unlock(&mm->page_table_lock);
5193 	return 0;
5194 }
5195 #endif /* __PAGETABLE_P4D_FOLDED */
5196 
5197 #ifndef __PAGETABLE_PUD_FOLDED
5198 /*
5199  * Allocate page upper directory.
5200  * We've already handled the fast-path in-line.
5201  */
5202 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5203 {
5204 	pud_t *new = pud_alloc_one(mm, address);
5205 	if (!new)
5206 		return -ENOMEM;
5207 
5208 	spin_lock(&mm->page_table_lock);
5209 	if (!p4d_present(*p4d)) {
5210 		mm_inc_nr_puds(mm);
5211 		smp_wmb(); /* See comment in pmd_install() */
5212 		p4d_populate(mm, p4d, new);
5213 	} else	/* Another has populated it */
5214 		pud_free(mm, new);
5215 	spin_unlock(&mm->page_table_lock);
5216 	return 0;
5217 }
5218 #endif /* __PAGETABLE_PUD_FOLDED */
5219 
5220 #ifndef __PAGETABLE_PMD_FOLDED
5221 /*
5222  * Allocate page middle directory.
5223  * We've already handled the fast-path in-line.
5224  */
5225 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5226 {
5227 	spinlock_t *ptl;
5228 	pmd_t *new = pmd_alloc_one(mm, address);
5229 	if (!new)
5230 		return -ENOMEM;
5231 
5232 	ptl = pud_lock(mm, pud);
5233 	if (!pud_present(*pud)) {
5234 		mm_inc_nr_pmds(mm);
5235 		smp_wmb(); /* See comment in pmd_install() */
5236 		pud_populate(mm, pud, new);
5237 	} else {	/* Another has populated it */
5238 		pmd_free(mm, new);
5239 	}
5240 	spin_unlock(ptl);
5241 	return 0;
5242 }
5243 #endif /* __PAGETABLE_PMD_FOLDED */
5244 
5245 /**
5246  * follow_pte - look up PTE at a user virtual address
5247  * @mm: the mm_struct of the target address space
5248  * @address: user virtual address
5249  * @ptepp: location to store found PTE
5250  * @ptlp: location to store the lock for the PTE
5251  *
5252  * On a successful return, the pointer to the PTE is stored in @ptepp;
5253  * the corresponding lock is taken and its location is stored in @ptlp.
5254  * The contents of the PTE are only stable until @ptlp is released;
5255  * any further use, if any, must be protected against invalidation
5256  * with MMU notifiers.
5257  *
5258  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5259  * should be taken for read.
5260  *
5261  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5262  * it is not a good general-purpose API.
5263  *
5264  * Return: zero on success, -ve otherwise.
5265  */
5266 int follow_pte(struct mm_struct *mm, unsigned long address,
5267 	       pte_t **ptepp, spinlock_t **ptlp)
5268 {
5269 	pgd_t *pgd;
5270 	p4d_t *p4d;
5271 	pud_t *pud;
5272 	pmd_t *pmd;
5273 	pte_t *ptep;
5274 
5275 	pgd = pgd_offset(mm, address);
5276 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5277 		goto out;
5278 
5279 	p4d = p4d_offset(pgd, address);
5280 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5281 		goto out;
5282 
5283 	pud = pud_offset(p4d, address);
5284 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5285 		goto out;
5286 
5287 	pmd = pmd_offset(pud, address);
5288 	VM_BUG_ON(pmd_trans_huge(*pmd));
5289 
5290 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5291 		goto out;
5292 
5293 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5294 	if (!pte_present(*ptep))
5295 		goto unlock;
5296 	*ptepp = ptep;
5297 	return 0;
5298 unlock:
5299 	pte_unmap_unlock(ptep, *ptlp);
5300 out:
5301 	return -EINVAL;
5302 }
5303 EXPORT_SYMBOL_GPL(follow_pte);
5304 
5305 /**
5306  * follow_pfn - look up PFN at a user virtual address
5307  * @vma: memory mapping
5308  * @address: user virtual address
5309  * @pfn: location to store found PFN
5310  *
5311  * Only IO mappings and raw PFN mappings are allowed.
5312  *
5313  * This function does not allow the caller to read the permissions
5314  * of the PTE.  Do not use it.
5315  *
5316  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5317  */
5318 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5319 	unsigned long *pfn)
5320 {
5321 	int ret = -EINVAL;
5322 	spinlock_t *ptl;
5323 	pte_t *ptep;
5324 
5325 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5326 		return ret;
5327 
5328 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5329 	if (ret)
5330 		return ret;
5331 	*pfn = pte_pfn(*ptep);
5332 	pte_unmap_unlock(ptep, ptl);
5333 	return 0;
5334 }
5335 EXPORT_SYMBOL(follow_pfn);
5336 
5337 #ifdef CONFIG_HAVE_IOREMAP_PROT
5338 int follow_phys(struct vm_area_struct *vma,
5339 		unsigned long address, unsigned int flags,
5340 		unsigned long *prot, resource_size_t *phys)
5341 {
5342 	int ret = -EINVAL;
5343 	pte_t *ptep, pte;
5344 	spinlock_t *ptl;
5345 
5346 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5347 		goto out;
5348 
5349 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5350 		goto out;
5351 	pte = *ptep;
5352 
5353 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5354 		goto unlock;
5355 
5356 	*prot = pgprot_val(pte_pgprot(pte));
5357 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5358 
5359 	ret = 0;
5360 unlock:
5361 	pte_unmap_unlock(ptep, ptl);
5362 out:
5363 	return ret;
5364 }
5365 
5366 /**
5367  * generic_access_phys - generic implementation for iomem mmap access
5368  * @vma: the vma to access
5369  * @addr: userspace address, not relative offset within @vma
5370  * @buf: buffer to read/write
5371  * @len: length of transfer
5372  * @write: set to FOLL_WRITE when writing, otherwise reading
5373  *
5374  * This is a generic implementation for &vm_operations_struct.access for an
5375  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5376  * not page based.
5377  */
5378 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5379 			void *buf, int len, int write)
5380 {
5381 	resource_size_t phys_addr;
5382 	unsigned long prot = 0;
5383 	void __iomem *maddr;
5384 	pte_t *ptep, pte;
5385 	spinlock_t *ptl;
5386 	int offset = offset_in_page(addr);
5387 	int ret = -EINVAL;
5388 
5389 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5390 		return -EINVAL;
5391 
5392 retry:
5393 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5394 		return -EINVAL;
5395 	pte = *ptep;
5396 	pte_unmap_unlock(ptep, ptl);
5397 
5398 	prot = pgprot_val(pte_pgprot(pte));
5399 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5400 
5401 	if ((write & FOLL_WRITE) && !pte_write(pte))
5402 		return -EINVAL;
5403 
5404 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5405 	if (!maddr)
5406 		return -ENOMEM;
5407 
5408 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5409 		goto out_unmap;
5410 
5411 	if (!pte_same(pte, *ptep)) {
5412 		pte_unmap_unlock(ptep, ptl);
5413 		iounmap(maddr);
5414 
5415 		goto retry;
5416 	}
5417 
5418 	if (write)
5419 		memcpy_toio(maddr + offset, buf, len);
5420 	else
5421 		memcpy_fromio(buf, maddr + offset, len);
5422 	ret = len;
5423 	pte_unmap_unlock(ptep, ptl);
5424 out_unmap:
5425 	iounmap(maddr);
5426 
5427 	return ret;
5428 }
5429 EXPORT_SYMBOL_GPL(generic_access_phys);
5430 #endif
5431 
5432 /*
5433  * Access another process' address space as given in mm.
5434  */
5435 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5436 		       int len, unsigned int gup_flags)
5437 {
5438 	struct vm_area_struct *vma;
5439 	void *old_buf = buf;
5440 	int write = gup_flags & FOLL_WRITE;
5441 
5442 	if (mmap_read_lock_killable(mm))
5443 		return 0;
5444 
5445 	/* ignore errors, just check how much was successfully transferred */
5446 	while (len) {
5447 		int bytes, ret, offset;
5448 		void *maddr;
5449 		struct page *page = NULL;
5450 
5451 		ret = get_user_pages_remote(mm, addr, 1,
5452 				gup_flags, &page, &vma, NULL);
5453 		if (ret <= 0) {
5454 #ifndef CONFIG_HAVE_IOREMAP_PROT
5455 			break;
5456 #else
5457 			/*
5458 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5459 			 * we can access using slightly different code.
5460 			 */
5461 			vma = vma_lookup(mm, addr);
5462 			if (!vma)
5463 				break;
5464 			if (vma->vm_ops && vma->vm_ops->access)
5465 				ret = vma->vm_ops->access(vma, addr, buf,
5466 							  len, write);
5467 			if (ret <= 0)
5468 				break;
5469 			bytes = ret;
5470 #endif
5471 		} else {
5472 			bytes = len;
5473 			offset = addr & (PAGE_SIZE-1);
5474 			if (bytes > PAGE_SIZE-offset)
5475 				bytes = PAGE_SIZE-offset;
5476 
5477 			maddr = kmap(page);
5478 			if (write) {
5479 				copy_to_user_page(vma, page, addr,
5480 						  maddr + offset, buf, bytes);
5481 				set_page_dirty_lock(page);
5482 			} else {
5483 				copy_from_user_page(vma, page, addr,
5484 						    buf, maddr + offset, bytes);
5485 			}
5486 			kunmap(page);
5487 			put_page(page);
5488 		}
5489 		len -= bytes;
5490 		buf += bytes;
5491 		addr += bytes;
5492 	}
5493 	mmap_read_unlock(mm);
5494 
5495 	return buf - old_buf;
5496 }
5497 
5498 /**
5499  * access_remote_vm - access another process' address space
5500  * @mm:		the mm_struct of the target address space
5501  * @addr:	start address to access
5502  * @buf:	source or destination buffer
5503  * @len:	number of bytes to transfer
5504  * @gup_flags:	flags modifying lookup behaviour
5505  *
5506  * The caller must hold a reference on @mm.
5507  *
5508  * Return: number of bytes copied from source to destination.
5509  */
5510 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5511 		void *buf, int len, unsigned int gup_flags)
5512 {
5513 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5514 }
5515 
5516 /*
5517  * Access another process' address space.
5518  * Source/target buffer must be kernel space,
5519  * Do not walk the page table directly, use get_user_pages
5520  */
5521 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5522 		void *buf, int len, unsigned int gup_flags)
5523 {
5524 	struct mm_struct *mm;
5525 	int ret;
5526 
5527 	mm = get_task_mm(tsk);
5528 	if (!mm)
5529 		return 0;
5530 
5531 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5532 
5533 	mmput(mm);
5534 
5535 	return ret;
5536 }
5537 EXPORT_SYMBOL_GPL(access_process_vm);
5538 
5539 /*
5540  * Print the name of a VMA.
5541  */
5542 void print_vma_addr(char *prefix, unsigned long ip)
5543 {
5544 	struct mm_struct *mm = current->mm;
5545 	struct vm_area_struct *vma;
5546 
5547 	/*
5548 	 * we might be running from an atomic context so we cannot sleep
5549 	 */
5550 	if (!mmap_read_trylock(mm))
5551 		return;
5552 
5553 	vma = find_vma(mm, ip);
5554 	if (vma && vma->vm_file) {
5555 		struct file *f = vma->vm_file;
5556 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5557 		if (buf) {
5558 			char *p;
5559 
5560 			p = file_path(f, buf, PAGE_SIZE);
5561 			if (IS_ERR(p))
5562 				p = "?";
5563 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5564 					vma->vm_start,
5565 					vma->vm_end - vma->vm_start);
5566 			free_page((unsigned long)buf);
5567 		}
5568 	}
5569 	mmap_read_unlock(mm);
5570 }
5571 
5572 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5573 void __might_fault(const char *file, int line)
5574 {
5575 	if (pagefault_disabled())
5576 		return;
5577 	__might_sleep(file, line);
5578 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5579 	if (current->mm)
5580 		might_lock_read(&current->mm->mmap_lock);
5581 #endif
5582 }
5583 EXPORT_SYMBOL(__might_fault);
5584 #endif
5585 
5586 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5587 /*
5588  * Process all subpages of the specified huge page with the specified
5589  * operation.  The target subpage will be processed last to keep its
5590  * cache lines hot.
5591  */
5592 static inline void process_huge_page(
5593 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5594 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5595 	void *arg)
5596 {
5597 	int i, n, base, l;
5598 	unsigned long addr = addr_hint &
5599 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5600 
5601 	/* Process target subpage last to keep its cache lines hot */
5602 	might_sleep();
5603 	n = (addr_hint - addr) / PAGE_SIZE;
5604 	if (2 * n <= pages_per_huge_page) {
5605 		/* If target subpage in first half of huge page */
5606 		base = 0;
5607 		l = n;
5608 		/* Process subpages at the end of huge page */
5609 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5610 			cond_resched();
5611 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5612 		}
5613 	} else {
5614 		/* If target subpage in second half of huge page */
5615 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5616 		l = pages_per_huge_page - n;
5617 		/* Process subpages at the begin of huge page */
5618 		for (i = 0; i < base; i++) {
5619 			cond_resched();
5620 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5621 		}
5622 	}
5623 	/*
5624 	 * Process remaining subpages in left-right-left-right pattern
5625 	 * towards the target subpage
5626 	 */
5627 	for (i = 0; i < l; i++) {
5628 		int left_idx = base + i;
5629 		int right_idx = base + 2 * l - 1 - i;
5630 
5631 		cond_resched();
5632 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5633 		cond_resched();
5634 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5635 	}
5636 }
5637 
5638 static void clear_gigantic_page(struct page *page,
5639 				unsigned long addr,
5640 				unsigned int pages_per_huge_page)
5641 {
5642 	int i;
5643 	struct page *p = page;
5644 
5645 	might_sleep();
5646 	for (i = 0; i < pages_per_huge_page;
5647 	     i++, p = mem_map_next(p, page, i)) {
5648 		cond_resched();
5649 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5650 	}
5651 }
5652 
5653 static void clear_subpage(unsigned long addr, int idx, void *arg)
5654 {
5655 	struct page *page = arg;
5656 
5657 	clear_user_highpage(page + idx, addr);
5658 }
5659 
5660 void clear_huge_page(struct page *page,
5661 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5662 {
5663 	unsigned long addr = addr_hint &
5664 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5665 
5666 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5667 		clear_gigantic_page(page, addr, pages_per_huge_page);
5668 		return;
5669 	}
5670 
5671 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5672 }
5673 
5674 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5675 				    unsigned long addr,
5676 				    struct vm_area_struct *vma,
5677 				    unsigned int pages_per_huge_page)
5678 {
5679 	int i;
5680 	struct page *dst_base = dst;
5681 	struct page *src_base = src;
5682 
5683 	for (i = 0; i < pages_per_huge_page; ) {
5684 		cond_resched();
5685 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5686 
5687 		i++;
5688 		dst = mem_map_next(dst, dst_base, i);
5689 		src = mem_map_next(src, src_base, i);
5690 	}
5691 }
5692 
5693 struct copy_subpage_arg {
5694 	struct page *dst;
5695 	struct page *src;
5696 	struct vm_area_struct *vma;
5697 };
5698 
5699 static void copy_subpage(unsigned long addr, int idx, void *arg)
5700 {
5701 	struct copy_subpage_arg *copy_arg = arg;
5702 
5703 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5704 			   addr, copy_arg->vma);
5705 }
5706 
5707 void copy_user_huge_page(struct page *dst, struct page *src,
5708 			 unsigned long addr_hint, struct vm_area_struct *vma,
5709 			 unsigned int pages_per_huge_page)
5710 {
5711 	unsigned long addr = addr_hint &
5712 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5713 	struct copy_subpage_arg arg = {
5714 		.dst = dst,
5715 		.src = src,
5716 		.vma = vma,
5717 	};
5718 
5719 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5720 		copy_user_gigantic_page(dst, src, addr, vma,
5721 					pages_per_huge_page);
5722 		return;
5723 	}
5724 
5725 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5726 }
5727 
5728 long copy_huge_page_from_user(struct page *dst_page,
5729 				const void __user *usr_src,
5730 				unsigned int pages_per_huge_page,
5731 				bool allow_pagefault)
5732 {
5733 	void *page_kaddr;
5734 	unsigned long i, rc = 0;
5735 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5736 	struct page *subpage = dst_page;
5737 
5738 	for (i = 0; i < pages_per_huge_page;
5739 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5740 		if (allow_pagefault)
5741 			page_kaddr = kmap(subpage);
5742 		else
5743 			page_kaddr = kmap_atomic(subpage);
5744 		rc = copy_from_user(page_kaddr,
5745 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5746 		if (allow_pagefault)
5747 			kunmap(subpage);
5748 		else
5749 			kunmap_atomic(page_kaddr);
5750 
5751 		ret_val -= (PAGE_SIZE - rc);
5752 		if (rc)
5753 			break;
5754 
5755 		flush_dcache_page(subpage);
5756 
5757 		cond_resched();
5758 	}
5759 	return ret_val;
5760 }
5761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5762 
5763 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5764 
5765 static struct kmem_cache *page_ptl_cachep;
5766 
5767 void __init ptlock_cache_init(void)
5768 {
5769 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5770 			SLAB_PANIC, NULL);
5771 }
5772 
5773 bool ptlock_alloc(struct page *page)
5774 {
5775 	spinlock_t *ptl;
5776 
5777 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5778 	if (!ptl)
5779 		return false;
5780 	page->ptl = ptl;
5781 	return true;
5782 }
5783 
5784 void ptlock_free(struct page *page)
5785 {
5786 	kmem_cache_free(page_ptl_cachep, page->ptl);
5787 }
5788 #endif
5789