1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 52 #include <asm/pgalloc.h> 53 #include <asm/uaccess.h> 54 #include <asm/tlb.h> 55 #include <asm/tlbflush.h> 56 #include <asm/pgtable.h> 57 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 61 #ifndef CONFIG_DISCONTIGMEM 62 /* use the per-pgdat data instead for discontigmem - mbligh */ 63 unsigned long max_mapnr; 64 struct page *mem_map; 65 66 EXPORT_SYMBOL(max_mapnr); 67 EXPORT_SYMBOL(mem_map); 68 #endif 69 70 unsigned long num_physpages; 71 /* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78 void * high_memory; 79 unsigned long vmalloc_earlyreserve; 80 81 EXPORT_SYMBOL(num_physpages); 82 EXPORT_SYMBOL(high_memory); 83 EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85 /* 86 * If a p?d_bad entry is found while walking page tables, report 87 * the error, before resetting entry to p?d_none. Usually (but 88 * very seldom) called out from the p?d_none_or_clear_bad macros. 89 */ 90 91 void pgd_clear_bad(pgd_t *pgd) 92 { 93 pgd_ERROR(*pgd); 94 pgd_clear(pgd); 95 } 96 97 void pud_clear_bad(pud_t *pud) 98 { 99 pud_ERROR(*pud); 100 pud_clear(pud); 101 } 102 103 void pmd_clear_bad(pmd_t *pmd) 104 { 105 pmd_ERROR(*pmd); 106 pmd_clear(pmd); 107 } 108 109 /* 110 * Note: this doesn't free the actual pages themselves. That 111 * has been handled earlier when unmapping all the memory regions. 112 */ 113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 114 { 115 struct page *page = pmd_page(*pmd); 116 pmd_clear(pmd); 117 pte_free_tlb(tlb, page); 118 dec_page_state(nr_page_table_pages); 119 tlb->mm->nr_ptes--; 120 } 121 122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 123 unsigned long addr, unsigned long end, 124 unsigned long floor, unsigned long ceiling) 125 { 126 pmd_t *pmd; 127 unsigned long next; 128 unsigned long start; 129 130 start = addr; 131 pmd = pmd_offset(pud, addr); 132 do { 133 next = pmd_addr_end(addr, end); 134 if (pmd_none_or_clear_bad(pmd)) 135 continue; 136 free_pte_range(tlb, pmd); 137 } while (pmd++, addr = next, addr != end); 138 139 start &= PUD_MASK; 140 if (start < floor) 141 return; 142 if (ceiling) { 143 ceiling &= PUD_MASK; 144 if (!ceiling) 145 return; 146 } 147 if (end - 1 > ceiling - 1) 148 return; 149 150 pmd = pmd_offset(pud, start); 151 pud_clear(pud); 152 pmd_free_tlb(tlb, pmd); 153 } 154 155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 156 unsigned long addr, unsigned long end, 157 unsigned long floor, unsigned long ceiling) 158 { 159 pud_t *pud; 160 unsigned long next; 161 unsigned long start; 162 163 start = addr; 164 pud = pud_offset(pgd, addr); 165 do { 166 next = pud_addr_end(addr, end); 167 if (pud_none_or_clear_bad(pud)) 168 continue; 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 170 } while (pud++, addr = next, addr != end); 171 172 start &= PGDIR_MASK; 173 if (start < floor) 174 return; 175 if (ceiling) { 176 ceiling &= PGDIR_MASK; 177 if (!ceiling) 178 return; 179 } 180 if (end - 1 > ceiling - 1) 181 return; 182 183 pud = pud_offset(pgd, start); 184 pgd_clear(pgd); 185 pud_free_tlb(tlb, pud); 186 } 187 188 /* 189 * This function frees user-level page tables of a process. 190 * 191 * Must be called with pagetable lock held. 192 */ 193 static inline void free_pgd_range(struct mmu_gather *tlb, 194 unsigned long addr, unsigned long end, 195 unsigned long floor, unsigned long ceiling) 196 { 197 pgd_t *pgd; 198 unsigned long next; 199 unsigned long start; 200 201 /* 202 * The next few lines have given us lots of grief... 203 * 204 * Why are we testing PMD* at this top level? Because often 205 * there will be no work to do at all, and we'd prefer not to 206 * go all the way down to the bottom just to discover that. 207 * 208 * Why all these "- 1"s? Because 0 represents both the bottom 209 * of the address space and the top of it (using -1 for the 210 * top wouldn't help much: the masks would do the wrong thing). 211 * The rule is that addr 0 and floor 0 refer to the bottom of 212 * the address space, but end 0 and ceiling 0 refer to the top 213 * Comparisons need to use "end - 1" and "ceiling - 1" (though 214 * that end 0 case should be mythical). 215 * 216 * Wherever addr is brought up or ceiling brought down, we must 217 * be careful to reject "the opposite 0" before it confuses the 218 * subsequent tests. But what about where end is brought down 219 * by PMD_SIZE below? no, end can't go down to 0 there. 220 * 221 * Whereas we round start (addr) and ceiling down, by different 222 * masks at different levels, in order to test whether a table 223 * now has no other vmas using it, so can be freed, we don't 224 * bother to round floor or end up - the tests don't need that. 225 */ 226 227 addr &= PMD_MASK; 228 if (addr < floor) { 229 addr += PMD_SIZE; 230 if (!addr) 231 return; 232 } 233 if (ceiling) { 234 ceiling &= PMD_MASK; 235 if (!ceiling) 236 return; 237 } 238 if (end - 1 > ceiling - 1) 239 end -= PMD_SIZE; 240 if (addr > end - 1) 241 return; 242 243 start = addr; 244 pgd = pgd_offset(tlb->mm, addr); 245 do { 246 next = pgd_addr_end(addr, end); 247 if (pgd_none_or_clear_bad(pgd)) 248 continue; 249 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 250 } while (pgd++, addr = next, addr != end); 251 252 if (!tlb_is_full_mm(tlb)) 253 flush_tlb_pgtables(tlb->mm, start, end); 254 } 255 256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 257 unsigned long floor, unsigned long ceiling) 258 { 259 while (vma) { 260 struct vm_area_struct *next = vma->vm_next; 261 unsigned long addr = vma->vm_start; 262 263 /* Optimization: gather nearby vmas into a single call down */ 264 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 265 vma = next; 266 next = vma->vm_next; 267 } 268 free_pgd_range(*tlb, addr, vma->vm_end, 269 floor, next? next->vm_start: ceiling); 270 vma = next; 271 } 272 } 273 274 pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 275 { 276 if (!pmd_present(*pmd)) { 277 struct page *new; 278 279 spin_unlock(&mm->page_table_lock); 280 new = pte_alloc_one(mm, address); 281 spin_lock(&mm->page_table_lock); 282 if (!new) 283 return NULL; 284 /* 285 * Because we dropped the lock, we should re-check the 286 * entry, as somebody else could have populated it.. 287 */ 288 if (pmd_present(*pmd)) { 289 pte_free(new); 290 goto out; 291 } 292 mm->nr_ptes++; 293 inc_page_state(nr_page_table_pages); 294 pmd_populate(mm, pmd, new); 295 } 296 out: 297 return pte_offset_map(pmd, address); 298 } 299 300 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 301 { 302 if (!pmd_present(*pmd)) { 303 pte_t *new; 304 305 spin_unlock(&mm->page_table_lock); 306 new = pte_alloc_one_kernel(mm, address); 307 spin_lock(&mm->page_table_lock); 308 if (!new) 309 return NULL; 310 311 /* 312 * Because we dropped the lock, we should re-check the 313 * entry, as somebody else could have populated it.. 314 */ 315 if (pmd_present(*pmd)) { 316 pte_free_kernel(new); 317 goto out; 318 } 319 pmd_populate_kernel(mm, pmd, new); 320 } 321 out: 322 return pte_offset_kernel(pmd, address); 323 } 324 325 /* 326 * copy one vm_area from one task to the other. Assumes the page tables 327 * already present in the new task to be cleared in the whole range 328 * covered by this vma. 329 * 330 * dst->page_table_lock is held on entry and exit, 331 * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). 332 */ 333 334 static inline void 335 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 336 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, 337 unsigned long addr) 338 { 339 pte_t pte = *src_pte; 340 struct page *page; 341 unsigned long pfn; 342 343 /* pte contains position in swap or file, so copy. */ 344 if (unlikely(!pte_present(pte))) { 345 if (!pte_file(pte)) { 346 swap_duplicate(pte_to_swp_entry(pte)); 347 /* make sure dst_mm is on swapoff's mmlist. */ 348 if (unlikely(list_empty(&dst_mm->mmlist))) { 349 spin_lock(&mmlist_lock); 350 list_add(&dst_mm->mmlist, &src_mm->mmlist); 351 spin_unlock(&mmlist_lock); 352 } 353 } 354 set_pte_at(dst_mm, addr, dst_pte, pte); 355 return; 356 } 357 358 pfn = pte_pfn(pte); 359 /* the pte points outside of valid memory, the 360 * mapping is assumed to be good, meaningful 361 * and not mapped via rmap - duplicate the 362 * mapping as is. 363 */ 364 page = NULL; 365 if (pfn_valid(pfn)) 366 page = pfn_to_page(pfn); 367 368 if (!page || PageReserved(page)) { 369 set_pte_at(dst_mm, addr, dst_pte, pte); 370 return; 371 } 372 373 /* 374 * If it's a COW mapping, write protect it both 375 * in the parent and the child 376 */ 377 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { 378 ptep_set_wrprotect(src_mm, addr, src_pte); 379 pte = *src_pte; 380 } 381 382 /* 383 * If it's a shared mapping, mark it clean in 384 * the child 385 */ 386 if (vm_flags & VM_SHARED) 387 pte = pte_mkclean(pte); 388 pte = pte_mkold(pte); 389 get_page(page); 390 inc_mm_counter(dst_mm, rss); 391 if (PageAnon(page)) 392 inc_mm_counter(dst_mm, anon_rss); 393 set_pte_at(dst_mm, addr, dst_pte, pte); 394 page_dup_rmap(page); 395 } 396 397 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 398 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 399 unsigned long addr, unsigned long end) 400 { 401 pte_t *src_pte, *dst_pte; 402 unsigned long vm_flags = vma->vm_flags; 403 int progress; 404 405 again: 406 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); 407 if (!dst_pte) 408 return -ENOMEM; 409 src_pte = pte_offset_map_nested(src_pmd, addr); 410 411 progress = 0; 412 spin_lock(&src_mm->page_table_lock); 413 do { 414 /* 415 * We are holding two locks at this point - either of them 416 * could generate latencies in another task on another CPU. 417 */ 418 if (progress >= 32 && (need_resched() || 419 need_lockbreak(&src_mm->page_table_lock) || 420 need_lockbreak(&dst_mm->page_table_lock))) 421 break; 422 if (pte_none(*src_pte)) { 423 progress++; 424 continue; 425 } 426 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); 427 progress += 8; 428 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 429 spin_unlock(&src_mm->page_table_lock); 430 431 pte_unmap_nested(src_pte - 1); 432 pte_unmap(dst_pte - 1); 433 cond_resched_lock(&dst_mm->page_table_lock); 434 if (addr != end) 435 goto again; 436 return 0; 437 } 438 439 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 440 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 441 unsigned long addr, unsigned long end) 442 { 443 pmd_t *src_pmd, *dst_pmd; 444 unsigned long next; 445 446 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 447 if (!dst_pmd) 448 return -ENOMEM; 449 src_pmd = pmd_offset(src_pud, addr); 450 do { 451 next = pmd_addr_end(addr, end); 452 if (pmd_none_or_clear_bad(src_pmd)) 453 continue; 454 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 455 vma, addr, next)) 456 return -ENOMEM; 457 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 458 return 0; 459 } 460 461 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 462 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 463 unsigned long addr, unsigned long end) 464 { 465 pud_t *src_pud, *dst_pud; 466 unsigned long next; 467 468 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 469 if (!dst_pud) 470 return -ENOMEM; 471 src_pud = pud_offset(src_pgd, addr); 472 do { 473 next = pud_addr_end(addr, end); 474 if (pud_none_or_clear_bad(src_pud)) 475 continue; 476 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 477 vma, addr, next)) 478 return -ENOMEM; 479 } while (dst_pud++, src_pud++, addr = next, addr != end); 480 return 0; 481 } 482 483 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 484 struct vm_area_struct *vma) 485 { 486 pgd_t *src_pgd, *dst_pgd; 487 unsigned long next; 488 unsigned long addr = vma->vm_start; 489 unsigned long end = vma->vm_end; 490 491 if (is_vm_hugetlb_page(vma)) 492 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 493 494 dst_pgd = pgd_offset(dst_mm, addr); 495 src_pgd = pgd_offset(src_mm, addr); 496 do { 497 next = pgd_addr_end(addr, end); 498 if (pgd_none_or_clear_bad(src_pgd)) 499 continue; 500 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 501 vma, addr, next)) 502 return -ENOMEM; 503 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 504 return 0; 505 } 506 507 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 508 unsigned long addr, unsigned long end, 509 struct zap_details *details) 510 { 511 pte_t *pte; 512 513 pte = pte_offset_map(pmd, addr); 514 do { 515 pte_t ptent = *pte; 516 if (pte_none(ptent)) 517 continue; 518 if (pte_present(ptent)) { 519 struct page *page = NULL; 520 unsigned long pfn = pte_pfn(ptent); 521 if (pfn_valid(pfn)) { 522 page = pfn_to_page(pfn); 523 if (PageReserved(page)) 524 page = NULL; 525 } 526 if (unlikely(details) && page) { 527 /* 528 * unmap_shared_mapping_pages() wants to 529 * invalidate cache without truncating: 530 * unmap shared but keep private pages. 531 */ 532 if (details->check_mapping && 533 details->check_mapping != page->mapping) 534 continue; 535 /* 536 * Each page->index must be checked when 537 * invalidating or truncating nonlinear. 538 */ 539 if (details->nonlinear_vma && 540 (page->index < details->first_index || 541 page->index > details->last_index)) 542 continue; 543 } 544 ptent = ptep_get_and_clear(tlb->mm, addr, pte); 545 tlb_remove_tlb_entry(tlb, pte, addr); 546 if (unlikely(!page)) 547 continue; 548 if (unlikely(details) && details->nonlinear_vma 549 && linear_page_index(details->nonlinear_vma, 550 addr) != page->index) 551 set_pte_at(tlb->mm, addr, pte, 552 pgoff_to_pte(page->index)); 553 if (pte_dirty(ptent)) 554 set_page_dirty(page); 555 if (PageAnon(page)) 556 dec_mm_counter(tlb->mm, anon_rss); 557 else if (pte_young(ptent)) 558 mark_page_accessed(page); 559 tlb->freed++; 560 page_remove_rmap(page); 561 tlb_remove_page(tlb, page); 562 continue; 563 } 564 /* 565 * If details->check_mapping, we leave swap entries; 566 * if details->nonlinear_vma, we leave file entries. 567 */ 568 if (unlikely(details)) 569 continue; 570 if (!pte_file(ptent)) 571 free_swap_and_cache(pte_to_swp_entry(ptent)); 572 pte_clear(tlb->mm, addr, pte); 573 } while (pte++, addr += PAGE_SIZE, addr != end); 574 pte_unmap(pte - 1); 575 } 576 577 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, 578 unsigned long addr, unsigned long end, 579 struct zap_details *details) 580 { 581 pmd_t *pmd; 582 unsigned long next; 583 584 pmd = pmd_offset(pud, addr); 585 do { 586 next = pmd_addr_end(addr, end); 587 if (pmd_none_or_clear_bad(pmd)) 588 continue; 589 zap_pte_range(tlb, pmd, addr, next, details); 590 } while (pmd++, addr = next, addr != end); 591 } 592 593 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 594 unsigned long addr, unsigned long end, 595 struct zap_details *details) 596 { 597 pud_t *pud; 598 unsigned long next; 599 600 pud = pud_offset(pgd, addr); 601 do { 602 next = pud_addr_end(addr, end); 603 if (pud_none_or_clear_bad(pud)) 604 continue; 605 zap_pmd_range(tlb, pud, addr, next, details); 606 } while (pud++, addr = next, addr != end); 607 } 608 609 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 610 unsigned long addr, unsigned long end, 611 struct zap_details *details) 612 { 613 pgd_t *pgd; 614 unsigned long next; 615 616 if (details && !details->check_mapping && !details->nonlinear_vma) 617 details = NULL; 618 619 BUG_ON(addr >= end); 620 tlb_start_vma(tlb, vma); 621 pgd = pgd_offset(vma->vm_mm, addr); 622 do { 623 next = pgd_addr_end(addr, end); 624 if (pgd_none_or_clear_bad(pgd)) 625 continue; 626 zap_pud_range(tlb, pgd, addr, next, details); 627 } while (pgd++, addr = next, addr != end); 628 tlb_end_vma(tlb, vma); 629 } 630 631 #ifdef CONFIG_PREEMPT 632 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 633 #else 634 /* No preempt: go for improved straight-line efficiency */ 635 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 636 #endif 637 638 /** 639 * unmap_vmas - unmap a range of memory covered by a list of vma's 640 * @tlbp: address of the caller's struct mmu_gather 641 * @mm: the controlling mm_struct 642 * @vma: the starting vma 643 * @start_addr: virtual address at which to start unmapping 644 * @end_addr: virtual address at which to end unmapping 645 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 646 * @details: details of nonlinear truncation or shared cache invalidation 647 * 648 * Returns the number of vma's which were covered by the unmapping. 649 * 650 * Unmap all pages in the vma list. Called under page_table_lock. 651 * 652 * We aim to not hold page_table_lock for too long (for scheduling latency 653 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 654 * return the ending mmu_gather to the caller. 655 * 656 * Only addresses between `start' and `end' will be unmapped. 657 * 658 * The VMA list must be sorted in ascending virtual address order. 659 * 660 * unmap_vmas() assumes that the caller will flush the whole unmapped address 661 * range after unmap_vmas() returns. So the only responsibility here is to 662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 663 * drops the lock and schedules. 664 */ 665 int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, 666 struct vm_area_struct *vma, unsigned long start_addr, 667 unsigned long end_addr, unsigned long *nr_accounted, 668 struct zap_details *details) 669 { 670 unsigned long zap_bytes = ZAP_BLOCK_SIZE; 671 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 672 int tlb_start_valid = 0; 673 int ret = 0; 674 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 675 int fullmm = tlb_is_full_mm(*tlbp); 676 677 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 678 unsigned long start; 679 unsigned long end; 680 681 start = max(vma->vm_start, start_addr); 682 if (start >= vma->vm_end) 683 continue; 684 end = min(vma->vm_end, end_addr); 685 if (end <= vma->vm_start) 686 continue; 687 688 if (vma->vm_flags & VM_ACCOUNT) 689 *nr_accounted += (end - start) >> PAGE_SHIFT; 690 691 ret++; 692 while (start != end) { 693 unsigned long block; 694 695 if (!tlb_start_valid) { 696 tlb_start = start; 697 tlb_start_valid = 1; 698 } 699 700 if (is_vm_hugetlb_page(vma)) { 701 block = end - start; 702 unmap_hugepage_range(vma, start, end); 703 } else { 704 block = min(zap_bytes, end - start); 705 unmap_page_range(*tlbp, vma, start, 706 start + block, details); 707 } 708 709 start += block; 710 zap_bytes -= block; 711 if ((long)zap_bytes > 0) 712 continue; 713 714 tlb_finish_mmu(*tlbp, tlb_start, start); 715 716 if (need_resched() || 717 need_lockbreak(&mm->page_table_lock) || 718 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 719 if (i_mmap_lock) { 720 /* must reset count of rss freed */ 721 *tlbp = tlb_gather_mmu(mm, fullmm); 722 details->break_addr = start; 723 goto out; 724 } 725 spin_unlock(&mm->page_table_lock); 726 cond_resched(); 727 spin_lock(&mm->page_table_lock); 728 } 729 730 *tlbp = tlb_gather_mmu(mm, fullmm); 731 tlb_start_valid = 0; 732 zap_bytes = ZAP_BLOCK_SIZE; 733 } 734 } 735 out: 736 return ret; 737 } 738 739 /** 740 * zap_page_range - remove user pages in a given range 741 * @vma: vm_area_struct holding the applicable pages 742 * @address: starting address of pages to zap 743 * @size: number of bytes to zap 744 * @details: details of nonlinear truncation or shared cache invalidation 745 */ 746 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 747 unsigned long size, struct zap_details *details) 748 { 749 struct mm_struct *mm = vma->vm_mm; 750 struct mmu_gather *tlb; 751 unsigned long end = address + size; 752 unsigned long nr_accounted = 0; 753 754 if (is_vm_hugetlb_page(vma)) { 755 zap_hugepage_range(vma, address, size); 756 return; 757 } 758 759 lru_add_drain(); 760 spin_lock(&mm->page_table_lock); 761 tlb = tlb_gather_mmu(mm, 0); 762 unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); 763 tlb_finish_mmu(tlb, address, end); 764 spin_unlock(&mm->page_table_lock); 765 } 766 767 /* 768 * Do a quick page-table lookup for a single page. 769 * mm->page_table_lock must be held. 770 */ 771 static struct page * 772 __follow_page(struct mm_struct *mm, unsigned long address, int read, int write) 773 { 774 pgd_t *pgd; 775 pud_t *pud; 776 pmd_t *pmd; 777 pte_t *ptep, pte; 778 unsigned long pfn; 779 struct page *page; 780 781 page = follow_huge_addr(mm, address, write); 782 if (! IS_ERR(page)) 783 return page; 784 785 pgd = pgd_offset(mm, address); 786 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 787 goto out; 788 789 pud = pud_offset(pgd, address); 790 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 791 goto out; 792 793 pmd = pmd_offset(pud, address); 794 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 795 goto out; 796 if (pmd_huge(*pmd)) 797 return follow_huge_pmd(mm, address, pmd, write); 798 799 ptep = pte_offset_map(pmd, address); 800 if (!ptep) 801 goto out; 802 803 pte = *ptep; 804 pte_unmap(ptep); 805 if (pte_present(pte)) { 806 if (write && !pte_write(pte)) 807 goto out; 808 if (read && !pte_read(pte)) 809 goto out; 810 pfn = pte_pfn(pte); 811 if (pfn_valid(pfn)) { 812 page = pfn_to_page(pfn); 813 if (write && !pte_dirty(pte) && !PageDirty(page)) 814 set_page_dirty(page); 815 mark_page_accessed(page); 816 return page; 817 } 818 } 819 820 out: 821 return NULL; 822 } 823 824 struct page * 825 follow_page(struct mm_struct *mm, unsigned long address, int write) 826 { 827 return __follow_page(mm, address, /*read*/0, write); 828 } 829 830 int 831 check_user_page_readable(struct mm_struct *mm, unsigned long address) 832 { 833 return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL; 834 } 835 836 EXPORT_SYMBOL(check_user_page_readable); 837 838 /* 839 * Given a physical address, is there a useful struct page pointing to 840 * it? This may become more complex in the future if we start dealing 841 * with IO-aperture pages for direct-IO. 842 */ 843 844 static inline struct page *get_page_map(struct page *page) 845 { 846 if (!pfn_valid(page_to_pfn(page))) 847 return NULL; 848 return page; 849 } 850 851 852 static inline int 853 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, 854 unsigned long address) 855 { 856 pgd_t *pgd; 857 pud_t *pud; 858 pmd_t *pmd; 859 860 /* Check if the vma is for an anonymous mapping. */ 861 if (vma->vm_ops && vma->vm_ops->nopage) 862 return 0; 863 864 /* Check if page directory entry exists. */ 865 pgd = pgd_offset(mm, address); 866 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 867 return 1; 868 869 pud = pud_offset(pgd, address); 870 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 871 return 1; 872 873 /* Check if page middle directory entry exists. */ 874 pmd = pmd_offset(pud, address); 875 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 876 return 1; 877 878 /* There is a pte slot for 'address' in 'mm'. */ 879 return 0; 880 } 881 882 883 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 884 unsigned long start, int len, int write, int force, 885 struct page **pages, struct vm_area_struct **vmas) 886 { 887 int i; 888 unsigned int flags; 889 890 /* 891 * Require read or write permissions. 892 * If 'force' is set, we only require the "MAY" flags. 893 */ 894 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 895 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 896 i = 0; 897 898 do { 899 struct vm_area_struct * vma; 900 901 vma = find_extend_vma(mm, start); 902 if (!vma && in_gate_area(tsk, start)) { 903 unsigned long pg = start & PAGE_MASK; 904 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 905 pgd_t *pgd; 906 pud_t *pud; 907 pmd_t *pmd; 908 pte_t *pte; 909 if (write) /* user gate pages are read-only */ 910 return i ? : -EFAULT; 911 if (pg > TASK_SIZE) 912 pgd = pgd_offset_k(pg); 913 else 914 pgd = pgd_offset_gate(mm, pg); 915 BUG_ON(pgd_none(*pgd)); 916 pud = pud_offset(pgd, pg); 917 BUG_ON(pud_none(*pud)); 918 pmd = pmd_offset(pud, pg); 919 BUG_ON(pmd_none(*pmd)); 920 pte = pte_offset_map(pmd, pg); 921 BUG_ON(pte_none(*pte)); 922 if (pages) { 923 pages[i] = pte_page(*pte); 924 get_page(pages[i]); 925 } 926 pte_unmap(pte); 927 if (vmas) 928 vmas[i] = gate_vma; 929 i++; 930 start += PAGE_SIZE; 931 len--; 932 continue; 933 } 934 935 if (!vma || (vma->vm_flags & VM_IO) 936 || !(flags & vma->vm_flags)) 937 return i ? : -EFAULT; 938 939 if (is_vm_hugetlb_page(vma)) { 940 i = follow_hugetlb_page(mm, vma, pages, vmas, 941 &start, &len, i); 942 continue; 943 } 944 spin_lock(&mm->page_table_lock); 945 do { 946 struct page *map; 947 int lookup_write = write; 948 949 cond_resched_lock(&mm->page_table_lock); 950 while (!(map = follow_page(mm, start, lookup_write))) { 951 /* 952 * Shortcut for anonymous pages. We don't want 953 * to force the creation of pages tables for 954 * insanly big anonymously mapped areas that 955 * nobody touched so far. This is important 956 * for doing a core dump for these mappings. 957 */ 958 if (!lookup_write && 959 untouched_anonymous_page(mm,vma,start)) { 960 map = ZERO_PAGE(start); 961 break; 962 } 963 spin_unlock(&mm->page_table_lock); 964 switch (handle_mm_fault(mm,vma,start,write)) { 965 case VM_FAULT_MINOR: 966 tsk->min_flt++; 967 break; 968 case VM_FAULT_MAJOR: 969 tsk->maj_flt++; 970 break; 971 case VM_FAULT_SIGBUS: 972 return i ? i : -EFAULT; 973 case VM_FAULT_OOM: 974 return i ? i : -ENOMEM; 975 default: 976 BUG(); 977 } 978 /* 979 * Now that we have performed a write fault 980 * and surely no longer have a shared page we 981 * shouldn't write, we shouldn't ignore an 982 * unwritable page in the page table if 983 * we are forcing write access. 984 */ 985 lookup_write = write && !force; 986 spin_lock(&mm->page_table_lock); 987 } 988 if (pages) { 989 pages[i] = get_page_map(map); 990 if (!pages[i]) { 991 spin_unlock(&mm->page_table_lock); 992 while (i--) 993 page_cache_release(pages[i]); 994 i = -EFAULT; 995 goto out; 996 } 997 flush_dcache_page(pages[i]); 998 if (!PageReserved(pages[i])) 999 page_cache_get(pages[i]); 1000 } 1001 if (vmas) 1002 vmas[i] = vma; 1003 i++; 1004 start += PAGE_SIZE; 1005 len--; 1006 } while(len && start < vma->vm_end); 1007 spin_unlock(&mm->page_table_lock); 1008 } while(len); 1009 out: 1010 return i; 1011 } 1012 1013 EXPORT_SYMBOL(get_user_pages); 1014 1015 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1016 unsigned long addr, unsigned long end, pgprot_t prot) 1017 { 1018 pte_t *pte; 1019 1020 pte = pte_alloc_map(mm, pmd, addr); 1021 if (!pte) 1022 return -ENOMEM; 1023 do { 1024 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); 1025 BUG_ON(!pte_none(*pte)); 1026 set_pte_at(mm, addr, pte, zero_pte); 1027 } while (pte++, addr += PAGE_SIZE, addr != end); 1028 pte_unmap(pte - 1); 1029 return 0; 1030 } 1031 1032 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1033 unsigned long addr, unsigned long end, pgprot_t prot) 1034 { 1035 pmd_t *pmd; 1036 unsigned long next; 1037 1038 pmd = pmd_alloc(mm, pud, addr); 1039 if (!pmd) 1040 return -ENOMEM; 1041 do { 1042 next = pmd_addr_end(addr, end); 1043 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1044 return -ENOMEM; 1045 } while (pmd++, addr = next, addr != end); 1046 return 0; 1047 } 1048 1049 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1050 unsigned long addr, unsigned long end, pgprot_t prot) 1051 { 1052 pud_t *pud; 1053 unsigned long next; 1054 1055 pud = pud_alloc(mm, pgd, addr); 1056 if (!pud) 1057 return -ENOMEM; 1058 do { 1059 next = pud_addr_end(addr, end); 1060 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1061 return -ENOMEM; 1062 } while (pud++, addr = next, addr != end); 1063 return 0; 1064 } 1065 1066 int zeromap_page_range(struct vm_area_struct *vma, 1067 unsigned long addr, unsigned long size, pgprot_t prot) 1068 { 1069 pgd_t *pgd; 1070 unsigned long next; 1071 unsigned long end = addr + size; 1072 struct mm_struct *mm = vma->vm_mm; 1073 int err; 1074 1075 BUG_ON(addr >= end); 1076 pgd = pgd_offset(mm, addr); 1077 flush_cache_range(vma, addr, end); 1078 spin_lock(&mm->page_table_lock); 1079 do { 1080 next = pgd_addr_end(addr, end); 1081 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1082 if (err) 1083 break; 1084 } while (pgd++, addr = next, addr != end); 1085 spin_unlock(&mm->page_table_lock); 1086 return err; 1087 } 1088 1089 /* 1090 * maps a range of physical memory into the requested pages. the old 1091 * mappings are removed. any references to nonexistent pages results 1092 * in null mappings (currently treated as "copy-on-access") 1093 */ 1094 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1095 unsigned long addr, unsigned long end, 1096 unsigned long pfn, pgprot_t prot) 1097 { 1098 pte_t *pte; 1099 1100 pte = pte_alloc_map(mm, pmd, addr); 1101 if (!pte) 1102 return -ENOMEM; 1103 do { 1104 BUG_ON(!pte_none(*pte)); 1105 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) 1106 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1107 pfn++; 1108 } while (pte++, addr += PAGE_SIZE, addr != end); 1109 pte_unmap(pte - 1); 1110 return 0; 1111 } 1112 1113 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1114 unsigned long addr, unsigned long end, 1115 unsigned long pfn, pgprot_t prot) 1116 { 1117 pmd_t *pmd; 1118 unsigned long next; 1119 1120 pfn -= addr >> PAGE_SHIFT; 1121 pmd = pmd_alloc(mm, pud, addr); 1122 if (!pmd) 1123 return -ENOMEM; 1124 do { 1125 next = pmd_addr_end(addr, end); 1126 if (remap_pte_range(mm, pmd, addr, next, 1127 pfn + (addr >> PAGE_SHIFT), prot)) 1128 return -ENOMEM; 1129 } while (pmd++, addr = next, addr != end); 1130 return 0; 1131 } 1132 1133 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1134 unsigned long addr, unsigned long end, 1135 unsigned long pfn, pgprot_t prot) 1136 { 1137 pud_t *pud; 1138 unsigned long next; 1139 1140 pfn -= addr >> PAGE_SHIFT; 1141 pud = pud_alloc(mm, pgd, addr); 1142 if (!pud) 1143 return -ENOMEM; 1144 do { 1145 next = pud_addr_end(addr, end); 1146 if (remap_pmd_range(mm, pud, addr, next, 1147 pfn + (addr >> PAGE_SHIFT), prot)) 1148 return -ENOMEM; 1149 } while (pud++, addr = next, addr != end); 1150 return 0; 1151 } 1152 1153 /* Note: this is only safe if the mm semaphore is held when called. */ 1154 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1155 unsigned long pfn, unsigned long size, pgprot_t prot) 1156 { 1157 pgd_t *pgd; 1158 unsigned long next; 1159 unsigned long end = addr + size; 1160 struct mm_struct *mm = vma->vm_mm; 1161 int err; 1162 1163 /* 1164 * Physically remapped pages are special. Tell the 1165 * rest of the world about it: 1166 * VM_IO tells people not to look at these pages 1167 * (accesses can have side effects). 1168 * VM_RESERVED tells swapout not to try to touch 1169 * this region. 1170 */ 1171 vma->vm_flags |= VM_IO | VM_RESERVED; 1172 1173 BUG_ON(addr >= end); 1174 pfn -= addr >> PAGE_SHIFT; 1175 pgd = pgd_offset(mm, addr); 1176 flush_cache_range(vma, addr, end); 1177 spin_lock(&mm->page_table_lock); 1178 do { 1179 next = pgd_addr_end(addr, end); 1180 err = remap_pud_range(mm, pgd, addr, next, 1181 pfn + (addr >> PAGE_SHIFT), prot); 1182 if (err) 1183 break; 1184 } while (pgd++, addr = next, addr != end); 1185 spin_unlock(&mm->page_table_lock); 1186 return err; 1187 } 1188 EXPORT_SYMBOL(remap_pfn_range); 1189 1190 /* 1191 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1192 * servicing faults for write access. In the normal case, do always want 1193 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1194 * that do not have writing enabled, when used by access_process_vm. 1195 */ 1196 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1197 { 1198 if (likely(vma->vm_flags & VM_WRITE)) 1199 pte = pte_mkwrite(pte); 1200 return pte; 1201 } 1202 1203 /* 1204 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock 1205 */ 1206 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 1207 pte_t *page_table) 1208 { 1209 pte_t entry; 1210 1211 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), 1212 vma); 1213 ptep_establish(vma, address, page_table, entry); 1214 update_mmu_cache(vma, address, entry); 1215 lazy_mmu_prot_update(entry); 1216 } 1217 1218 /* 1219 * This routine handles present pages, when users try to write 1220 * to a shared page. It is done by copying the page to a new address 1221 * and decrementing the shared-page counter for the old page. 1222 * 1223 * Goto-purists beware: the only reason for goto's here is that it results 1224 * in better assembly code.. The "default" path will see no jumps at all. 1225 * 1226 * Note that this routine assumes that the protection checks have been 1227 * done by the caller (the low-level page fault routine in most cases). 1228 * Thus we can safely just mark it writable once we've done any necessary 1229 * COW. 1230 * 1231 * We also mark the page dirty at this point even though the page will 1232 * change only once the write actually happens. This avoids a few races, 1233 * and potentially makes it more efficient. 1234 * 1235 * We hold the mm semaphore and the page_table_lock on entry and exit 1236 * with the page_table_lock released. 1237 */ 1238 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, 1239 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) 1240 { 1241 struct page *old_page, *new_page; 1242 unsigned long pfn = pte_pfn(pte); 1243 pte_t entry; 1244 1245 if (unlikely(!pfn_valid(pfn))) { 1246 /* 1247 * This should really halt the system so it can be debugged or 1248 * at least the kernel stops what it's doing before it corrupts 1249 * data, but for the moment just pretend this is OOM. 1250 */ 1251 pte_unmap(page_table); 1252 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", 1253 address); 1254 spin_unlock(&mm->page_table_lock); 1255 return VM_FAULT_OOM; 1256 } 1257 old_page = pfn_to_page(pfn); 1258 1259 if (!TestSetPageLocked(old_page)) { 1260 int reuse = can_share_swap_page(old_page); 1261 unlock_page(old_page); 1262 if (reuse) { 1263 flush_cache_page(vma, address, pfn); 1264 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), 1265 vma); 1266 ptep_set_access_flags(vma, address, page_table, entry, 1); 1267 update_mmu_cache(vma, address, entry); 1268 lazy_mmu_prot_update(entry); 1269 pte_unmap(page_table); 1270 spin_unlock(&mm->page_table_lock); 1271 return VM_FAULT_MINOR; 1272 } 1273 } 1274 pte_unmap(page_table); 1275 1276 /* 1277 * Ok, we need to copy. Oh, well.. 1278 */ 1279 if (!PageReserved(old_page)) 1280 page_cache_get(old_page); 1281 spin_unlock(&mm->page_table_lock); 1282 1283 if (unlikely(anon_vma_prepare(vma))) 1284 goto no_new_page; 1285 if (old_page == ZERO_PAGE(address)) { 1286 new_page = alloc_zeroed_user_highpage(vma, address); 1287 if (!new_page) 1288 goto no_new_page; 1289 } else { 1290 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1291 if (!new_page) 1292 goto no_new_page; 1293 copy_user_highpage(new_page, old_page, address); 1294 } 1295 /* 1296 * Re-check the pte - we dropped the lock 1297 */ 1298 spin_lock(&mm->page_table_lock); 1299 page_table = pte_offset_map(pmd, address); 1300 if (likely(pte_same(*page_table, pte))) { 1301 if (PageAnon(old_page)) 1302 dec_mm_counter(mm, anon_rss); 1303 if (PageReserved(old_page)) 1304 inc_mm_counter(mm, rss); 1305 else 1306 page_remove_rmap(old_page); 1307 flush_cache_page(vma, address, pfn); 1308 break_cow(vma, new_page, address, page_table); 1309 lru_cache_add_active(new_page); 1310 page_add_anon_rmap(new_page, vma, address); 1311 1312 /* Free the old page.. */ 1313 new_page = old_page; 1314 } 1315 pte_unmap(page_table); 1316 page_cache_release(new_page); 1317 page_cache_release(old_page); 1318 spin_unlock(&mm->page_table_lock); 1319 return VM_FAULT_MINOR; 1320 1321 no_new_page: 1322 page_cache_release(old_page); 1323 return VM_FAULT_OOM; 1324 } 1325 1326 /* 1327 * Helper functions for unmap_mapping_range(). 1328 * 1329 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1330 * 1331 * We have to restart searching the prio_tree whenever we drop the lock, 1332 * since the iterator is only valid while the lock is held, and anyway 1333 * a later vma might be split and reinserted earlier while lock dropped. 1334 * 1335 * The list of nonlinear vmas could be handled more efficiently, using 1336 * a placeholder, but handle it in the same way until a need is shown. 1337 * It is important to search the prio_tree before nonlinear list: a vma 1338 * may become nonlinear and be shifted from prio_tree to nonlinear list 1339 * while the lock is dropped; but never shifted from list to prio_tree. 1340 * 1341 * In order to make forward progress despite restarting the search, 1342 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1343 * quickly skip it next time around. Since the prio_tree search only 1344 * shows us those vmas affected by unmapping the range in question, we 1345 * can't efficiently keep all vmas in step with mapping->truncate_count: 1346 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1347 * mapping->truncate_count and vma->vm_truncate_count are protected by 1348 * i_mmap_lock. 1349 * 1350 * In order to make forward progress despite repeatedly restarting some 1351 * large vma, note the break_addr set by unmap_vmas when it breaks out: 1352 * and restart from that address when we reach that vma again. It might 1353 * have been split or merged, shrunk or extended, but never shifted: so 1354 * restart_addr remains valid so long as it remains in the vma's range. 1355 * unmap_mapping_range forces truncate_count to leap over page-aligned 1356 * values so we can save vma's restart_addr in its truncate_count field. 1357 */ 1358 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1359 1360 static void reset_vma_truncate_counts(struct address_space *mapping) 1361 { 1362 struct vm_area_struct *vma; 1363 struct prio_tree_iter iter; 1364 1365 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1366 vma->vm_truncate_count = 0; 1367 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1368 vma->vm_truncate_count = 0; 1369 } 1370 1371 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1372 unsigned long start_addr, unsigned long end_addr, 1373 struct zap_details *details) 1374 { 1375 unsigned long restart_addr; 1376 int need_break; 1377 1378 again: 1379 restart_addr = vma->vm_truncate_count; 1380 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1381 start_addr = restart_addr; 1382 if (start_addr >= end_addr) { 1383 /* Top of vma has been split off since last time */ 1384 vma->vm_truncate_count = details->truncate_count; 1385 return 0; 1386 } 1387 } 1388 1389 details->break_addr = end_addr; 1390 zap_page_range(vma, start_addr, end_addr - start_addr, details); 1391 1392 /* 1393 * We cannot rely on the break test in unmap_vmas: 1394 * on the one hand, we don't want to restart our loop 1395 * just because that broke out for the page_table_lock; 1396 * on the other hand, it does no test when vma is small. 1397 */ 1398 need_break = need_resched() || 1399 need_lockbreak(details->i_mmap_lock); 1400 1401 if (details->break_addr >= end_addr) { 1402 /* We have now completed this vma: mark it so */ 1403 vma->vm_truncate_count = details->truncate_count; 1404 if (!need_break) 1405 return 0; 1406 } else { 1407 /* Note restart_addr in vma's truncate_count field */ 1408 vma->vm_truncate_count = details->break_addr; 1409 if (!need_break) 1410 goto again; 1411 } 1412 1413 spin_unlock(details->i_mmap_lock); 1414 cond_resched(); 1415 spin_lock(details->i_mmap_lock); 1416 return -EINTR; 1417 } 1418 1419 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1420 struct zap_details *details) 1421 { 1422 struct vm_area_struct *vma; 1423 struct prio_tree_iter iter; 1424 pgoff_t vba, vea, zba, zea; 1425 1426 restart: 1427 vma_prio_tree_foreach(vma, &iter, root, 1428 details->first_index, details->last_index) { 1429 /* Skip quickly over those we have already dealt with */ 1430 if (vma->vm_truncate_count == details->truncate_count) 1431 continue; 1432 1433 vba = vma->vm_pgoff; 1434 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1435 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1436 zba = details->first_index; 1437 if (zba < vba) 1438 zba = vba; 1439 zea = details->last_index; 1440 if (zea > vea) 1441 zea = vea; 1442 1443 if (unmap_mapping_range_vma(vma, 1444 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1445 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1446 details) < 0) 1447 goto restart; 1448 } 1449 } 1450 1451 static inline void unmap_mapping_range_list(struct list_head *head, 1452 struct zap_details *details) 1453 { 1454 struct vm_area_struct *vma; 1455 1456 /* 1457 * In nonlinear VMAs there is no correspondence between virtual address 1458 * offset and file offset. So we must perform an exhaustive search 1459 * across *all* the pages in each nonlinear VMA, not just the pages 1460 * whose virtual address lies outside the file truncation point. 1461 */ 1462 restart: 1463 list_for_each_entry(vma, head, shared.vm_set.list) { 1464 /* Skip quickly over those we have already dealt with */ 1465 if (vma->vm_truncate_count == details->truncate_count) 1466 continue; 1467 details->nonlinear_vma = vma; 1468 if (unmap_mapping_range_vma(vma, vma->vm_start, 1469 vma->vm_end, details) < 0) 1470 goto restart; 1471 } 1472 } 1473 1474 /** 1475 * unmap_mapping_range - unmap the portion of all mmaps 1476 * in the specified address_space corresponding to the specified 1477 * page range in the underlying file. 1478 * @address_space: the address space containing mmaps to be unmapped. 1479 * @holebegin: byte in first page to unmap, relative to the start of 1480 * the underlying file. This will be rounded down to a PAGE_SIZE 1481 * boundary. Note that this is different from vmtruncate(), which 1482 * must keep the partial page. In contrast, we must get rid of 1483 * partial pages. 1484 * @holelen: size of prospective hole in bytes. This will be rounded 1485 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1486 * end of the file. 1487 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1488 * but 0 when invalidating pagecache, don't throw away private data. 1489 */ 1490 void unmap_mapping_range(struct address_space *mapping, 1491 loff_t const holebegin, loff_t const holelen, int even_cows) 1492 { 1493 struct zap_details details; 1494 pgoff_t hba = holebegin >> PAGE_SHIFT; 1495 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1496 1497 /* Check for overflow. */ 1498 if (sizeof(holelen) > sizeof(hlen)) { 1499 long long holeend = 1500 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1501 if (holeend & ~(long long)ULONG_MAX) 1502 hlen = ULONG_MAX - hba + 1; 1503 } 1504 1505 details.check_mapping = even_cows? NULL: mapping; 1506 details.nonlinear_vma = NULL; 1507 details.first_index = hba; 1508 details.last_index = hba + hlen - 1; 1509 if (details.last_index < details.first_index) 1510 details.last_index = ULONG_MAX; 1511 details.i_mmap_lock = &mapping->i_mmap_lock; 1512 1513 spin_lock(&mapping->i_mmap_lock); 1514 1515 /* serialize i_size write against truncate_count write */ 1516 smp_wmb(); 1517 /* Protect against page faults, and endless unmapping loops */ 1518 mapping->truncate_count++; 1519 /* 1520 * For archs where spin_lock has inclusive semantics like ia64 1521 * this smp_mb() will prevent to read pagetable contents 1522 * before the truncate_count increment is visible to 1523 * other cpus. 1524 */ 1525 smp_mb(); 1526 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1527 if (mapping->truncate_count == 0) 1528 reset_vma_truncate_counts(mapping); 1529 mapping->truncate_count++; 1530 } 1531 details.truncate_count = mapping->truncate_count; 1532 1533 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1534 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1535 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1536 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1537 spin_unlock(&mapping->i_mmap_lock); 1538 } 1539 EXPORT_SYMBOL(unmap_mapping_range); 1540 1541 /* 1542 * Handle all mappings that got truncated by a "truncate()" 1543 * system call. 1544 * 1545 * NOTE! We have to be ready to update the memory sharing 1546 * between the file and the memory map for a potential last 1547 * incomplete page. Ugly, but necessary. 1548 */ 1549 int vmtruncate(struct inode * inode, loff_t offset) 1550 { 1551 struct address_space *mapping = inode->i_mapping; 1552 unsigned long limit; 1553 1554 if (inode->i_size < offset) 1555 goto do_expand; 1556 /* 1557 * truncation of in-use swapfiles is disallowed - it would cause 1558 * subsequent swapout to scribble on the now-freed blocks. 1559 */ 1560 if (IS_SWAPFILE(inode)) 1561 goto out_busy; 1562 i_size_write(inode, offset); 1563 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1564 truncate_inode_pages(mapping, offset); 1565 goto out_truncate; 1566 1567 do_expand: 1568 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1569 if (limit != RLIM_INFINITY && offset > limit) 1570 goto out_sig; 1571 if (offset > inode->i_sb->s_maxbytes) 1572 goto out_big; 1573 i_size_write(inode, offset); 1574 1575 out_truncate: 1576 if (inode->i_op && inode->i_op->truncate) 1577 inode->i_op->truncate(inode); 1578 return 0; 1579 out_sig: 1580 send_sig(SIGXFSZ, current, 0); 1581 out_big: 1582 return -EFBIG; 1583 out_busy: 1584 return -ETXTBSY; 1585 } 1586 1587 EXPORT_SYMBOL(vmtruncate); 1588 1589 /* 1590 * Primitive swap readahead code. We simply read an aligned block of 1591 * (1 << page_cluster) entries in the swap area. This method is chosen 1592 * because it doesn't cost us any seek time. We also make sure to queue 1593 * the 'original' request together with the readahead ones... 1594 * 1595 * This has been extended to use the NUMA policies from the mm triggering 1596 * the readahead. 1597 * 1598 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1599 */ 1600 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1601 { 1602 #ifdef CONFIG_NUMA 1603 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1604 #endif 1605 int i, num; 1606 struct page *new_page; 1607 unsigned long offset; 1608 1609 /* 1610 * Get the number of handles we should do readahead io to. 1611 */ 1612 num = valid_swaphandles(entry, &offset); 1613 for (i = 0; i < num; offset++, i++) { 1614 /* Ok, do the async read-ahead now */ 1615 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1616 offset), vma, addr); 1617 if (!new_page) 1618 break; 1619 page_cache_release(new_page); 1620 #ifdef CONFIG_NUMA 1621 /* 1622 * Find the next applicable VMA for the NUMA policy. 1623 */ 1624 addr += PAGE_SIZE; 1625 if (addr == 0) 1626 vma = NULL; 1627 if (vma) { 1628 if (addr >= vma->vm_end) { 1629 vma = next_vma; 1630 next_vma = vma ? vma->vm_next : NULL; 1631 } 1632 if (vma && addr < vma->vm_start) 1633 vma = NULL; 1634 } else { 1635 if (next_vma && addr >= next_vma->vm_start) { 1636 vma = next_vma; 1637 next_vma = vma->vm_next; 1638 } 1639 } 1640 #endif 1641 } 1642 lru_add_drain(); /* Push any new pages onto the LRU now */ 1643 } 1644 1645 /* 1646 * We hold the mm semaphore and the page_table_lock on entry and 1647 * should release the pagetable lock on exit.. 1648 */ 1649 static int do_swap_page(struct mm_struct * mm, 1650 struct vm_area_struct * vma, unsigned long address, 1651 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) 1652 { 1653 struct page *page; 1654 swp_entry_t entry = pte_to_swp_entry(orig_pte); 1655 pte_t pte; 1656 int ret = VM_FAULT_MINOR; 1657 1658 pte_unmap(page_table); 1659 spin_unlock(&mm->page_table_lock); 1660 page = lookup_swap_cache(entry); 1661 if (!page) { 1662 swapin_readahead(entry, address, vma); 1663 page = read_swap_cache_async(entry, vma, address); 1664 if (!page) { 1665 /* 1666 * Back out if somebody else faulted in this pte while 1667 * we released the page table lock. 1668 */ 1669 spin_lock(&mm->page_table_lock); 1670 page_table = pte_offset_map(pmd, address); 1671 if (likely(pte_same(*page_table, orig_pte))) 1672 ret = VM_FAULT_OOM; 1673 else 1674 ret = VM_FAULT_MINOR; 1675 pte_unmap(page_table); 1676 spin_unlock(&mm->page_table_lock); 1677 goto out; 1678 } 1679 1680 /* Had to read the page from swap area: Major fault */ 1681 ret = VM_FAULT_MAJOR; 1682 inc_page_state(pgmajfault); 1683 grab_swap_token(); 1684 } 1685 1686 mark_page_accessed(page); 1687 lock_page(page); 1688 1689 /* 1690 * Back out if somebody else faulted in this pte while we 1691 * released the page table lock. 1692 */ 1693 spin_lock(&mm->page_table_lock); 1694 page_table = pte_offset_map(pmd, address); 1695 if (unlikely(!pte_same(*page_table, orig_pte))) { 1696 pte_unmap(page_table); 1697 spin_unlock(&mm->page_table_lock); 1698 unlock_page(page); 1699 page_cache_release(page); 1700 ret = VM_FAULT_MINOR; 1701 goto out; 1702 } 1703 1704 /* The page isn't present yet, go ahead with the fault. */ 1705 1706 swap_free(entry); 1707 if (vm_swap_full()) 1708 remove_exclusive_swap_page(page); 1709 1710 inc_mm_counter(mm, rss); 1711 pte = mk_pte(page, vma->vm_page_prot); 1712 if (write_access && can_share_swap_page(page)) { 1713 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1714 write_access = 0; 1715 } 1716 unlock_page(page); 1717 1718 flush_icache_page(vma, page); 1719 set_pte_at(mm, address, page_table, pte); 1720 page_add_anon_rmap(page, vma, address); 1721 1722 if (write_access) { 1723 if (do_wp_page(mm, vma, address, 1724 page_table, pmd, pte) == VM_FAULT_OOM) 1725 ret = VM_FAULT_OOM; 1726 goto out; 1727 } 1728 1729 /* No need to invalidate - it was non-present before */ 1730 update_mmu_cache(vma, address, pte); 1731 lazy_mmu_prot_update(pte); 1732 pte_unmap(page_table); 1733 spin_unlock(&mm->page_table_lock); 1734 out: 1735 return ret; 1736 } 1737 1738 /* 1739 * We are called with the MM semaphore and page_table_lock 1740 * spinlock held to protect against concurrent faults in 1741 * multithreaded programs. 1742 */ 1743 static int 1744 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 1745 pte_t *page_table, pmd_t *pmd, int write_access, 1746 unsigned long addr) 1747 { 1748 pte_t entry; 1749 struct page * page = ZERO_PAGE(addr); 1750 1751 /* Read-only mapping of ZERO_PAGE. */ 1752 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); 1753 1754 /* ..except if it's a write access */ 1755 if (write_access) { 1756 /* Allocate our own private page. */ 1757 pte_unmap(page_table); 1758 spin_unlock(&mm->page_table_lock); 1759 1760 if (unlikely(anon_vma_prepare(vma))) 1761 goto no_mem; 1762 page = alloc_zeroed_user_highpage(vma, addr); 1763 if (!page) 1764 goto no_mem; 1765 1766 spin_lock(&mm->page_table_lock); 1767 page_table = pte_offset_map(pmd, addr); 1768 1769 if (!pte_none(*page_table)) { 1770 pte_unmap(page_table); 1771 page_cache_release(page); 1772 spin_unlock(&mm->page_table_lock); 1773 goto out; 1774 } 1775 inc_mm_counter(mm, rss); 1776 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, 1777 vma->vm_page_prot)), 1778 vma); 1779 lru_cache_add_active(page); 1780 SetPageReferenced(page); 1781 page_add_anon_rmap(page, vma, addr); 1782 } 1783 1784 set_pte_at(mm, addr, page_table, entry); 1785 pte_unmap(page_table); 1786 1787 /* No need to invalidate - it was non-present before */ 1788 update_mmu_cache(vma, addr, entry); 1789 lazy_mmu_prot_update(entry); 1790 spin_unlock(&mm->page_table_lock); 1791 out: 1792 return VM_FAULT_MINOR; 1793 no_mem: 1794 return VM_FAULT_OOM; 1795 } 1796 1797 /* 1798 * do_no_page() tries to create a new page mapping. It aggressively 1799 * tries to share with existing pages, but makes a separate copy if 1800 * the "write_access" parameter is true in order to avoid the next 1801 * page fault. 1802 * 1803 * As this is called only for pages that do not currently exist, we 1804 * do not need to flush old virtual caches or the TLB. 1805 * 1806 * This is called with the MM semaphore held and the page table 1807 * spinlock held. Exit with the spinlock released. 1808 */ 1809 static int 1810 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1811 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) 1812 { 1813 struct page * new_page; 1814 struct address_space *mapping = NULL; 1815 pte_t entry; 1816 unsigned int sequence = 0; 1817 int ret = VM_FAULT_MINOR; 1818 int anon = 0; 1819 1820 if (!vma->vm_ops || !vma->vm_ops->nopage) 1821 return do_anonymous_page(mm, vma, page_table, 1822 pmd, write_access, address); 1823 pte_unmap(page_table); 1824 spin_unlock(&mm->page_table_lock); 1825 1826 if (vma->vm_file) { 1827 mapping = vma->vm_file->f_mapping; 1828 sequence = mapping->truncate_count; 1829 smp_rmb(); /* serializes i_size against truncate_count */ 1830 } 1831 retry: 1832 cond_resched(); 1833 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 1834 /* 1835 * No smp_rmb is needed here as long as there's a full 1836 * spin_lock/unlock sequence inside the ->nopage callback 1837 * (for the pagecache lookup) that acts as an implicit 1838 * smp_mb() and prevents the i_size read to happen 1839 * after the next truncate_count read. 1840 */ 1841 1842 /* no page was available -- either SIGBUS or OOM */ 1843 if (new_page == NOPAGE_SIGBUS) 1844 return VM_FAULT_SIGBUS; 1845 if (new_page == NOPAGE_OOM) 1846 return VM_FAULT_OOM; 1847 1848 /* 1849 * Should we do an early C-O-W break? 1850 */ 1851 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1852 struct page *page; 1853 1854 if (unlikely(anon_vma_prepare(vma))) 1855 goto oom; 1856 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1857 if (!page) 1858 goto oom; 1859 copy_user_highpage(page, new_page, address); 1860 page_cache_release(new_page); 1861 new_page = page; 1862 anon = 1; 1863 } 1864 1865 spin_lock(&mm->page_table_lock); 1866 /* 1867 * For a file-backed vma, someone could have truncated or otherwise 1868 * invalidated this page. If unmap_mapping_range got called, 1869 * retry getting the page. 1870 */ 1871 if (mapping && unlikely(sequence != mapping->truncate_count)) { 1872 sequence = mapping->truncate_count; 1873 spin_unlock(&mm->page_table_lock); 1874 page_cache_release(new_page); 1875 goto retry; 1876 } 1877 page_table = pte_offset_map(pmd, address); 1878 1879 /* 1880 * This silly early PAGE_DIRTY setting removes a race 1881 * due to the bad i386 page protection. But it's valid 1882 * for other architectures too. 1883 * 1884 * Note that if write_access is true, we either now have 1885 * an exclusive copy of the page, or this is a shared mapping, 1886 * so we can make it writable and dirty to avoid having to 1887 * handle that later. 1888 */ 1889 /* Only go through if we didn't race with anybody else... */ 1890 if (pte_none(*page_table)) { 1891 if (!PageReserved(new_page)) 1892 inc_mm_counter(mm, rss); 1893 1894 flush_icache_page(vma, new_page); 1895 entry = mk_pte(new_page, vma->vm_page_prot); 1896 if (write_access) 1897 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1898 set_pte_at(mm, address, page_table, entry); 1899 if (anon) { 1900 lru_cache_add_active(new_page); 1901 page_add_anon_rmap(new_page, vma, address); 1902 } else 1903 page_add_file_rmap(new_page); 1904 pte_unmap(page_table); 1905 } else { 1906 /* One of our sibling threads was faster, back out. */ 1907 pte_unmap(page_table); 1908 page_cache_release(new_page); 1909 spin_unlock(&mm->page_table_lock); 1910 goto out; 1911 } 1912 1913 /* no need to invalidate: a not-present page shouldn't be cached */ 1914 update_mmu_cache(vma, address, entry); 1915 lazy_mmu_prot_update(entry); 1916 spin_unlock(&mm->page_table_lock); 1917 out: 1918 return ret; 1919 oom: 1920 page_cache_release(new_page); 1921 ret = VM_FAULT_OOM; 1922 goto out; 1923 } 1924 1925 /* 1926 * Fault of a previously existing named mapping. Repopulate the pte 1927 * from the encoded file_pte if possible. This enables swappable 1928 * nonlinear vmas. 1929 */ 1930 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, 1931 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) 1932 { 1933 unsigned long pgoff; 1934 int err; 1935 1936 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); 1937 /* 1938 * Fall back to the linear mapping if the fs does not support 1939 * ->populate: 1940 */ 1941 if (!vma->vm_ops || !vma->vm_ops->populate || 1942 (write_access && !(vma->vm_flags & VM_SHARED))) { 1943 pte_clear(mm, address, pte); 1944 return do_no_page(mm, vma, address, write_access, pte, pmd); 1945 } 1946 1947 pgoff = pte_to_pgoff(*pte); 1948 1949 pte_unmap(pte); 1950 spin_unlock(&mm->page_table_lock); 1951 1952 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); 1953 if (err == -ENOMEM) 1954 return VM_FAULT_OOM; 1955 if (err) 1956 return VM_FAULT_SIGBUS; 1957 return VM_FAULT_MAJOR; 1958 } 1959 1960 /* 1961 * These routines also need to handle stuff like marking pages dirty 1962 * and/or accessed for architectures that don't do it in hardware (most 1963 * RISC architectures). The early dirtying is also good on the i386. 1964 * 1965 * There is also a hook called "update_mmu_cache()" that architectures 1966 * with external mmu caches can use to update those (ie the Sparc or 1967 * PowerPC hashed page tables that act as extended TLBs). 1968 * 1969 * Note the "page_table_lock". It is to protect against kswapd removing 1970 * pages from under us. Note that kswapd only ever _removes_ pages, never 1971 * adds them. As such, once we have noticed that the page is not present, 1972 * we can drop the lock early. 1973 * 1974 * The adding of pages is protected by the MM semaphore (which we hold), 1975 * so we don't need to worry about a page being suddenly been added into 1976 * our VM. 1977 * 1978 * We enter with the pagetable spinlock held, we are supposed to 1979 * release it when done. 1980 */ 1981 static inline int handle_pte_fault(struct mm_struct *mm, 1982 struct vm_area_struct * vma, unsigned long address, 1983 int write_access, pte_t *pte, pmd_t *pmd) 1984 { 1985 pte_t entry; 1986 1987 entry = *pte; 1988 if (!pte_present(entry)) { 1989 /* 1990 * If it truly wasn't present, we know that kswapd 1991 * and the PTE updates will not touch it later. So 1992 * drop the lock. 1993 */ 1994 if (pte_none(entry)) 1995 return do_no_page(mm, vma, address, write_access, pte, pmd); 1996 if (pte_file(entry)) 1997 return do_file_page(mm, vma, address, write_access, pte, pmd); 1998 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); 1999 } 2000 2001 if (write_access) { 2002 if (!pte_write(entry)) 2003 return do_wp_page(mm, vma, address, pte, pmd, entry); 2004 2005 entry = pte_mkdirty(entry); 2006 } 2007 entry = pte_mkyoung(entry); 2008 ptep_set_access_flags(vma, address, pte, entry, write_access); 2009 update_mmu_cache(vma, address, entry); 2010 lazy_mmu_prot_update(entry); 2011 pte_unmap(pte); 2012 spin_unlock(&mm->page_table_lock); 2013 return VM_FAULT_MINOR; 2014 } 2015 2016 /* 2017 * By the time we get here, we already hold the mm semaphore 2018 */ 2019 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, 2020 unsigned long address, int write_access) 2021 { 2022 pgd_t *pgd; 2023 pud_t *pud; 2024 pmd_t *pmd; 2025 pte_t *pte; 2026 2027 __set_current_state(TASK_RUNNING); 2028 2029 inc_page_state(pgfault); 2030 2031 if (is_vm_hugetlb_page(vma)) 2032 return VM_FAULT_SIGBUS; /* mapping truncation does this. */ 2033 2034 /* 2035 * We need the page table lock to synchronize with kswapd 2036 * and the SMP-safe atomic PTE updates. 2037 */ 2038 pgd = pgd_offset(mm, address); 2039 spin_lock(&mm->page_table_lock); 2040 2041 pud = pud_alloc(mm, pgd, address); 2042 if (!pud) 2043 goto oom; 2044 2045 pmd = pmd_alloc(mm, pud, address); 2046 if (!pmd) 2047 goto oom; 2048 2049 pte = pte_alloc_map(mm, pmd, address); 2050 if (!pte) 2051 goto oom; 2052 2053 return handle_pte_fault(mm, vma, address, write_access, pte, pmd); 2054 2055 oom: 2056 spin_unlock(&mm->page_table_lock); 2057 return VM_FAULT_OOM; 2058 } 2059 2060 #ifndef __PAGETABLE_PUD_FOLDED 2061 /* 2062 * Allocate page upper directory. 2063 * 2064 * We've already handled the fast-path in-line, and we own the 2065 * page table lock. 2066 */ 2067 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2068 { 2069 pud_t *new; 2070 2071 spin_unlock(&mm->page_table_lock); 2072 new = pud_alloc_one(mm, address); 2073 spin_lock(&mm->page_table_lock); 2074 if (!new) 2075 return NULL; 2076 2077 /* 2078 * Because we dropped the lock, we should re-check the 2079 * entry, as somebody else could have populated it.. 2080 */ 2081 if (pgd_present(*pgd)) { 2082 pud_free(new); 2083 goto out; 2084 } 2085 pgd_populate(mm, pgd, new); 2086 out: 2087 return pud_offset(pgd, address); 2088 } 2089 #endif /* __PAGETABLE_PUD_FOLDED */ 2090 2091 #ifndef __PAGETABLE_PMD_FOLDED 2092 /* 2093 * Allocate page middle directory. 2094 * 2095 * We've already handled the fast-path in-line, and we own the 2096 * page table lock. 2097 */ 2098 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2099 { 2100 pmd_t *new; 2101 2102 spin_unlock(&mm->page_table_lock); 2103 new = pmd_alloc_one(mm, address); 2104 spin_lock(&mm->page_table_lock); 2105 if (!new) 2106 return NULL; 2107 2108 /* 2109 * Because we dropped the lock, we should re-check the 2110 * entry, as somebody else could have populated it.. 2111 */ 2112 #ifndef __ARCH_HAS_4LEVEL_HACK 2113 if (pud_present(*pud)) { 2114 pmd_free(new); 2115 goto out; 2116 } 2117 pud_populate(mm, pud, new); 2118 #else 2119 if (pgd_present(*pud)) { 2120 pmd_free(new); 2121 goto out; 2122 } 2123 pgd_populate(mm, pud, new); 2124 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2125 2126 out: 2127 return pmd_offset(pud, address); 2128 } 2129 #endif /* __PAGETABLE_PMD_FOLDED */ 2130 2131 int make_pages_present(unsigned long addr, unsigned long end) 2132 { 2133 int ret, len, write; 2134 struct vm_area_struct * vma; 2135 2136 vma = find_vma(current->mm, addr); 2137 if (!vma) 2138 return -1; 2139 write = (vma->vm_flags & VM_WRITE) != 0; 2140 if (addr >= end) 2141 BUG(); 2142 if (end > vma->vm_end) 2143 BUG(); 2144 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2145 ret = get_user_pages(current, current->mm, addr, 2146 len, write, 0, NULL, NULL); 2147 if (ret < 0) 2148 return ret; 2149 return ret == len ? 0 : -1; 2150 } 2151 2152 /* 2153 * Map a vmalloc()-space virtual address to the physical page. 2154 */ 2155 struct page * vmalloc_to_page(void * vmalloc_addr) 2156 { 2157 unsigned long addr = (unsigned long) vmalloc_addr; 2158 struct page *page = NULL; 2159 pgd_t *pgd = pgd_offset_k(addr); 2160 pud_t *pud; 2161 pmd_t *pmd; 2162 pte_t *ptep, pte; 2163 2164 if (!pgd_none(*pgd)) { 2165 pud = pud_offset(pgd, addr); 2166 if (!pud_none(*pud)) { 2167 pmd = pmd_offset(pud, addr); 2168 if (!pmd_none(*pmd)) { 2169 ptep = pte_offset_map(pmd, addr); 2170 pte = *ptep; 2171 if (pte_present(pte)) 2172 page = pte_page(pte); 2173 pte_unmap(ptep); 2174 } 2175 } 2176 } 2177 return page; 2178 } 2179 2180 EXPORT_SYMBOL(vmalloc_to_page); 2181 2182 /* 2183 * Map a vmalloc()-space virtual address to the physical page frame number. 2184 */ 2185 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2186 { 2187 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2188 } 2189 2190 EXPORT_SYMBOL(vmalloc_to_pfn); 2191 2192 /* 2193 * update_mem_hiwater 2194 * - update per process rss and vm high water data 2195 */ 2196 void update_mem_hiwater(struct task_struct *tsk) 2197 { 2198 if (tsk->mm) { 2199 unsigned long rss = get_mm_counter(tsk->mm, rss); 2200 2201 if (tsk->mm->hiwater_rss < rss) 2202 tsk->mm->hiwater_rss = rss; 2203 if (tsk->mm->hiwater_vm < tsk->mm->total_vm) 2204 tsk->mm->hiwater_vm = tsk->mm->total_vm; 2205 } 2206 } 2207 2208 #if !defined(__HAVE_ARCH_GATE_AREA) 2209 2210 #if defined(AT_SYSINFO_EHDR) 2211 struct vm_area_struct gate_vma; 2212 2213 static int __init gate_vma_init(void) 2214 { 2215 gate_vma.vm_mm = NULL; 2216 gate_vma.vm_start = FIXADDR_USER_START; 2217 gate_vma.vm_end = FIXADDR_USER_END; 2218 gate_vma.vm_page_prot = PAGE_READONLY; 2219 gate_vma.vm_flags = 0; 2220 return 0; 2221 } 2222 __initcall(gate_vma_init); 2223 #endif 2224 2225 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2226 { 2227 #ifdef AT_SYSINFO_EHDR 2228 return &gate_vma; 2229 #else 2230 return NULL; 2231 #endif 2232 } 2233 2234 int in_gate_area_no_task(unsigned long addr) 2235 { 2236 #ifdef AT_SYSINFO_EHDR 2237 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2238 return 1; 2239 #endif 2240 return 0; 2241 } 2242 2243 #endif /* __HAVE_ARCH_GATE_AREA */ 2244