xref: /openbmc/linux/mm/memory.c (revision e0da382c92626ad1d7f4b7527d19b80104d67a83)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 
61 #ifndef CONFIG_DISCONTIGMEM
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65 
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69 
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80 
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84 
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90 
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93 	pgd_ERROR(*pgd);
94 	pgd_clear(pgd);
95 }
96 
97 void pud_clear_bad(pud_t *pud)
98 {
99 	pud_ERROR(*pud);
100 	pud_clear(pud);
101 }
102 
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105 	pmd_ERROR(*pmd);
106 	pmd_clear(pmd);
107 }
108 
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115 	struct page *page = pmd_page(*pmd);
116 	pmd_clear(pmd);
117 	pte_free_tlb(tlb, page);
118 	dec_page_state(nr_page_table_pages);
119 	tlb->mm->nr_ptes--;
120 }
121 
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 				unsigned long addr, unsigned long end,
124 				unsigned long floor, unsigned long ceiling)
125 {
126 	pmd_t *pmd;
127 	unsigned long next;
128 	unsigned long start;
129 
130 	start = addr;
131 	pmd = pmd_offset(pud, addr);
132 	do {
133 		next = pmd_addr_end(addr, end);
134 		if (pmd_none_or_clear_bad(pmd))
135 			continue;
136 		free_pte_range(tlb, pmd);
137 	} while (pmd++, addr = next, addr != end);
138 
139 	start &= PUD_MASK;
140 	if (start < floor)
141 		return;
142 	if (ceiling) {
143 		ceiling &= PUD_MASK;
144 		if (!ceiling)
145 			return;
146 	}
147 	if (end - 1 > ceiling - 1)
148 		return;
149 
150 	pmd = pmd_offset(pud, start);
151 	pud_clear(pud);
152 	pmd_free_tlb(tlb, pmd);
153 }
154 
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 				unsigned long addr, unsigned long end,
157 				unsigned long floor, unsigned long ceiling)
158 {
159 	pud_t *pud;
160 	unsigned long next;
161 	unsigned long start;
162 
163 	start = addr;
164 	pud = pud_offset(pgd, addr);
165 	do {
166 		next = pud_addr_end(addr, end);
167 		if (pud_none_or_clear_bad(pud))
168 			continue;
169 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170 	} while (pud++, addr = next, addr != end);
171 
172 	start &= PGDIR_MASK;
173 	if (start < floor)
174 		return;
175 	if (ceiling) {
176 		ceiling &= PGDIR_MASK;
177 		if (!ceiling)
178 			return;
179 	}
180 	if (end - 1 > ceiling - 1)
181 		return;
182 
183 	pud = pud_offset(pgd, start);
184 	pgd_clear(pgd);
185 	pud_free_tlb(tlb, pud);
186 }
187 
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 static inline void free_pgd_range(struct mmu_gather *tlb,
194 			unsigned long addr, unsigned long end,
195 			unsigned long floor, unsigned long ceiling)
196 {
197 	pgd_t *pgd;
198 	unsigned long next;
199 	unsigned long start;
200 
201 	/*
202 	 * The next few lines have given us lots of grief...
203 	 *
204 	 * Why are we testing PMD* at this top level?  Because often
205 	 * there will be no work to do at all, and we'd prefer not to
206 	 * go all the way down to the bottom just to discover that.
207 	 *
208 	 * Why all these "- 1"s?  Because 0 represents both the bottom
209 	 * of the address space and the top of it (using -1 for the
210 	 * top wouldn't help much: the masks would do the wrong thing).
211 	 * The rule is that addr 0 and floor 0 refer to the bottom of
212 	 * the address space, but end 0 and ceiling 0 refer to the top
213 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 	 * that end 0 case should be mythical).
215 	 *
216 	 * Wherever addr is brought up or ceiling brought down, we must
217 	 * be careful to reject "the opposite 0" before it confuses the
218 	 * subsequent tests.  But what about where end is brought down
219 	 * by PMD_SIZE below? no, end can't go down to 0 there.
220 	 *
221 	 * Whereas we round start (addr) and ceiling down, by different
222 	 * masks at different levels, in order to test whether a table
223 	 * now has no other vmas using it, so can be freed, we don't
224 	 * bother to round floor or end up - the tests don't need that.
225 	 */
226 
227 	addr &= PMD_MASK;
228 	if (addr < floor) {
229 		addr += PMD_SIZE;
230 		if (!addr)
231 			return;
232 	}
233 	if (ceiling) {
234 		ceiling &= PMD_MASK;
235 		if (!ceiling)
236 			return;
237 	}
238 	if (end - 1 > ceiling - 1)
239 		end -= PMD_SIZE;
240 	if (addr > end - 1)
241 		return;
242 
243 	start = addr;
244 	pgd = pgd_offset(tlb->mm, addr);
245 	do {
246 		next = pgd_addr_end(addr, end);
247 		if (pgd_none_or_clear_bad(pgd))
248 			continue;
249 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
250 	} while (pgd++, addr = next, addr != end);
251 
252 	if (!tlb_is_full_mm(tlb))
253 		flush_tlb_pgtables(tlb->mm, start, end);
254 }
255 
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257 				unsigned long floor, unsigned long ceiling)
258 {
259 	while (vma) {
260 		struct vm_area_struct *next = vma->vm_next;
261 		unsigned long addr = vma->vm_start;
262 
263 		/* Optimization: gather nearby vmas into a single call down */
264 		while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
265 			vma = next;
266 			next = vma->vm_next;
267 		}
268 		free_pgd_range(*tlb, addr, vma->vm_end,
269 				floor, next? next->vm_start: ceiling);
270 		vma = next;
271 	}
272 }
273 
274 pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
275 {
276 	if (!pmd_present(*pmd)) {
277 		struct page *new;
278 
279 		spin_unlock(&mm->page_table_lock);
280 		new = pte_alloc_one(mm, address);
281 		spin_lock(&mm->page_table_lock);
282 		if (!new)
283 			return NULL;
284 		/*
285 		 * Because we dropped the lock, we should re-check the
286 		 * entry, as somebody else could have populated it..
287 		 */
288 		if (pmd_present(*pmd)) {
289 			pte_free(new);
290 			goto out;
291 		}
292 		mm->nr_ptes++;
293 		inc_page_state(nr_page_table_pages);
294 		pmd_populate(mm, pmd, new);
295 	}
296 out:
297 	return pte_offset_map(pmd, address);
298 }
299 
300 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
301 {
302 	if (!pmd_present(*pmd)) {
303 		pte_t *new;
304 
305 		spin_unlock(&mm->page_table_lock);
306 		new = pte_alloc_one_kernel(mm, address);
307 		spin_lock(&mm->page_table_lock);
308 		if (!new)
309 			return NULL;
310 
311 		/*
312 		 * Because we dropped the lock, we should re-check the
313 		 * entry, as somebody else could have populated it..
314 		 */
315 		if (pmd_present(*pmd)) {
316 			pte_free_kernel(new);
317 			goto out;
318 		}
319 		pmd_populate_kernel(mm, pmd, new);
320 	}
321 out:
322 	return pte_offset_kernel(pmd, address);
323 }
324 
325 /*
326  * copy one vm_area from one task to the other. Assumes the page tables
327  * already present in the new task to be cleared in the whole range
328  * covered by this vma.
329  *
330  * dst->page_table_lock is held on entry and exit,
331  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
332  */
333 
334 static inline void
335 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
336 		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
337 		unsigned long addr)
338 {
339 	pte_t pte = *src_pte;
340 	struct page *page;
341 	unsigned long pfn;
342 
343 	/* pte contains position in swap or file, so copy. */
344 	if (unlikely(!pte_present(pte))) {
345 		if (!pte_file(pte)) {
346 			swap_duplicate(pte_to_swp_entry(pte));
347 			/* make sure dst_mm is on swapoff's mmlist. */
348 			if (unlikely(list_empty(&dst_mm->mmlist))) {
349 				spin_lock(&mmlist_lock);
350 				list_add(&dst_mm->mmlist, &src_mm->mmlist);
351 				spin_unlock(&mmlist_lock);
352 			}
353 		}
354 		set_pte_at(dst_mm, addr, dst_pte, pte);
355 		return;
356 	}
357 
358 	pfn = pte_pfn(pte);
359 	/* the pte points outside of valid memory, the
360 	 * mapping is assumed to be good, meaningful
361 	 * and not mapped via rmap - duplicate the
362 	 * mapping as is.
363 	 */
364 	page = NULL;
365 	if (pfn_valid(pfn))
366 		page = pfn_to_page(pfn);
367 
368 	if (!page || PageReserved(page)) {
369 		set_pte_at(dst_mm, addr, dst_pte, pte);
370 		return;
371 	}
372 
373 	/*
374 	 * If it's a COW mapping, write protect it both
375 	 * in the parent and the child
376 	 */
377 	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
378 		ptep_set_wrprotect(src_mm, addr, src_pte);
379 		pte = *src_pte;
380 	}
381 
382 	/*
383 	 * If it's a shared mapping, mark it clean in
384 	 * the child
385 	 */
386 	if (vm_flags & VM_SHARED)
387 		pte = pte_mkclean(pte);
388 	pte = pte_mkold(pte);
389 	get_page(page);
390 	inc_mm_counter(dst_mm, rss);
391 	if (PageAnon(page))
392 		inc_mm_counter(dst_mm, anon_rss);
393 	set_pte_at(dst_mm, addr, dst_pte, pte);
394 	page_dup_rmap(page);
395 }
396 
397 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
398 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
399 		unsigned long addr, unsigned long end)
400 {
401 	pte_t *src_pte, *dst_pte;
402 	unsigned long vm_flags = vma->vm_flags;
403 	int progress;
404 
405 again:
406 	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
407 	if (!dst_pte)
408 		return -ENOMEM;
409 	src_pte = pte_offset_map_nested(src_pmd, addr);
410 
411 	progress = 0;
412 	spin_lock(&src_mm->page_table_lock);
413 	do {
414 		/*
415 		 * We are holding two locks at this point - either of them
416 		 * could generate latencies in another task on another CPU.
417 		 */
418 		if (progress >= 32 && (need_resched() ||
419 		    need_lockbreak(&src_mm->page_table_lock) ||
420 		    need_lockbreak(&dst_mm->page_table_lock)))
421 			break;
422 		if (pte_none(*src_pte)) {
423 			progress++;
424 			continue;
425 		}
426 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
427 		progress += 8;
428 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
429 	spin_unlock(&src_mm->page_table_lock);
430 
431 	pte_unmap_nested(src_pte - 1);
432 	pte_unmap(dst_pte - 1);
433 	cond_resched_lock(&dst_mm->page_table_lock);
434 	if (addr != end)
435 		goto again;
436 	return 0;
437 }
438 
439 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
440 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
441 		unsigned long addr, unsigned long end)
442 {
443 	pmd_t *src_pmd, *dst_pmd;
444 	unsigned long next;
445 
446 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
447 	if (!dst_pmd)
448 		return -ENOMEM;
449 	src_pmd = pmd_offset(src_pud, addr);
450 	do {
451 		next = pmd_addr_end(addr, end);
452 		if (pmd_none_or_clear_bad(src_pmd))
453 			continue;
454 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
455 						vma, addr, next))
456 			return -ENOMEM;
457 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
458 	return 0;
459 }
460 
461 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
462 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
463 		unsigned long addr, unsigned long end)
464 {
465 	pud_t *src_pud, *dst_pud;
466 	unsigned long next;
467 
468 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
469 	if (!dst_pud)
470 		return -ENOMEM;
471 	src_pud = pud_offset(src_pgd, addr);
472 	do {
473 		next = pud_addr_end(addr, end);
474 		if (pud_none_or_clear_bad(src_pud))
475 			continue;
476 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
477 						vma, addr, next))
478 			return -ENOMEM;
479 	} while (dst_pud++, src_pud++, addr = next, addr != end);
480 	return 0;
481 }
482 
483 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
484 		struct vm_area_struct *vma)
485 {
486 	pgd_t *src_pgd, *dst_pgd;
487 	unsigned long next;
488 	unsigned long addr = vma->vm_start;
489 	unsigned long end = vma->vm_end;
490 
491 	if (is_vm_hugetlb_page(vma))
492 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
493 
494 	dst_pgd = pgd_offset(dst_mm, addr);
495 	src_pgd = pgd_offset(src_mm, addr);
496 	do {
497 		next = pgd_addr_end(addr, end);
498 		if (pgd_none_or_clear_bad(src_pgd))
499 			continue;
500 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
501 						vma, addr, next))
502 			return -ENOMEM;
503 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
504 	return 0;
505 }
506 
507 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
508 				unsigned long addr, unsigned long end,
509 				struct zap_details *details)
510 {
511 	pte_t *pte;
512 
513 	pte = pte_offset_map(pmd, addr);
514 	do {
515 		pte_t ptent = *pte;
516 		if (pte_none(ptent))
517 			continue;
518 		if (pte_present(ptent)) {
519 			struct page *page = NULL;
520 			unsigned long pfn = pte_pfn(ptent);
521 			if (pfn_valid(pfn)) {
522 				page = pfn_to_page(pfn);
523 				if (PageReserved(page))
524 					page = NULL;
525 			}
526 			if (unlikely(details) && page) {
527 				/*
528 				 * unmap_shared_mapping_pages() wants to
529 				 * invalidate cache without truncating:
530 				 * unmap shared but keep private pages.
531 				 */
532 				if (details->check_mapping &&
533 				    details->check_mapping != page->mapping)
534 					continue;
535 				/*
536 				 * Each page->index must be checked when
537 				 * invalidating or truncating nonlinear.
538 				 */
539 				if (details->nonlinear_vma &&
540 				    (page->index < details->first_index ||
541 				     page->index > details->last_index))
542 					continue;
543 			}
544 			ptent = ptep_get_and_clear(tlb->mm, addr, pte);
545 			tlb_remove_tlb_entry(tlb, pte, addr);
546 			if (unlikely(!page))
547 				continue;
548 			if (unlikely(details) && details->nonlinear_vma
549 			    && linear_page_index(details->nonlinear_vma,
550 						addr) != page->index)
551 				set_pte_at(tlb->mm, addr, pte,
552 					   pgoff_to_pte(page->index));
553 			if (pte_dirty(ptent))
554 				set_page_dirty(page);
555 			if (PageAnon(page))
556 				dec_mm_counter(tlb->mm, anon_rss);
557 			else if (pte_young(ptent))
558 				mark_page_accessed(page);
559 			tlb->freed++;
560 			page_remove_rmap(page);
561 			tlb_remove_page(tlb, page);
562 			continue;
563 		}
564 		/*
565 		 * If details->check_mapping, we leave swap entries;
566 		 * if details->nonlinear_vma, we leave file entries.
567 		 */
568 		if (unlikely(details))
569 			continue;
570 		if (!pte_file(ptent))
571 			free_swap_and_cache(pte_to_swp_entry(ptent));
572 		pte_clear(tlb->mm, addr, pte);
573 	} while (pte++, addr += PAGE_SIZE, addr != end);
574 	pte_unmap(pte - 1);
575 }
576 
577 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
578 				unsigned long addr, unsigned long end,
579 				struct zap_details *details)
580 {
581 	pmd_t *pmd;
582 	unsigned long next;
583 
584 	pmd = pmd_offset(pud, addr);
585 	do {
586 		next = pmd_addr_end(addr, end);
587 		if (pmd_none_or_clear_bad(pmd))
588 			continue;
589 		zap_pte_range(tlb, pmd, addr, next, details);
590 	} while (pmd++, addr = next, addr != end);
591 }
592 
593 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
594 				unsigned long addr, unsigned long end,
595 				struct zap_details *details)
596 {
597 	pud_t *pud;
598 	unsigned long next;
599 
600 	pud = pud_offset(pgd, addr);
601 	do {
602 		next = pud_addr_end(addr, end);
603 		if (pud_none_or_clear_bad(pud))
604 			continue;
605 		zap_pmd_range(tlb, pud, addr, next, details);
606 	} while (pud++, addr = next, addr != end);
607 }
608 
609 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
610 				unsigned long addr, unsigned long end,
611 				struct zap_details *details)
612 {
613 	pgd_t *pgd;
614 	unsigned long next;
615 
616 	if (details && !details->check_mapping && !details->nonlinear_vma)
617 		details = NULL;
618 
619 	BUG_ON(addr >= end);
620 	tlb_start_vma(tlb, vma);
621 	pgd = pgd_offset(vma->vm_mm, addr);
622 	do {
623 		next = pgd_addr_end(addr, end);
624 		if (pgd_none_or_clear_bad(pgd))
625 			continue;
626 		zap_pud_range(tlb, pgd, addr, next, details);
627 	} while (pgd++, addr = next, addr != end);
628 	tlb_end_vma(tlb, vma);
629 }
630 
631 #ifdef CONFIG_PREEMPT
632 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
633 #else
634 /* No preempt: go for improved straight-line efficiency */
635 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
636 #endif
637 
638 /**
639  * unmap_vmas - unmap a range of memory covered by a list of vma's
640  * @tlbp: address of the caller's struct mmu_gather
641  * @mm: the controlling mm_struct
642  * @vma: the starting vma
643  * @start_addr: virtual address at which to start unmapping
644  * @end_addr: virtual address at which to end unmapping
645  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
646  * @details: details of nonlinear truncation or shared cache invalidation
647  *
648  * Returns the number of vma's which were covered by the unmapping.
649  *
650  * Unmap all pages in the vma list.  Called under page_table_lock.
651  *
652  * We aim to not hold page_table_lock for too long (for scheduling latency
653  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
654  * return the ending mmu_gather to the caller.
655  *
656  * Only addresses between `start' and `end' will be unmapped.
657  *
658  * The VMA list must be sorted in ascending virtual address order.
659  *
660  * unmap_vmas() assumes that the caller will flush the whole unmapped address
661  * range after unmap_vmas() returns.  So the only responsibility here is to
662  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
663  * drops the lock and schedules.
664  */
665 int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
666 		struct vm_area_struct *vma, unsigned long start_addr,
667 		unsigned long end_addr, unsigned long *nr_accounted,
668 		struct zap_details *details)
669 {
670 	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
671 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
672 	int tlb_start_valid = 0;
673 	int ret = 0;
674 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
675 	int fullmm = tlb_is_full_mm(*tlbp);
676 
677 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
678 		unsigned long start;
679 		unsigned long end;
680 
681 		start = max(vma->vm_start, start_addr);
682 		if (start >= vma->vm_end)
683 			continue;
684 		end = min(vma->vm_end, end_addr);
685 		if (end <= vma->vm_start)
686 			continue;
687 
688 		if (vma->vm_flags & VM_ACCOUNT)
689 			*nr_accounted += (end - start) >> PAGE_SHIFT;
690 
691 		ret++;
692 		while (start != end) {
693 			unsigned long block;
694 
695 			if (!tlb_start_valid) {
696 				tlb_start = start;
697 				tlb_start_valid = 1;
698 			}
699 
700 			if (is_vm_hugetlb_page(vma)) {
701 				block = end - start;
702 				unmap_hugepage_range(vma, start, end);
703 			} else {
704 				block = min(zap_bytes, end - start);
705 				unmap_page_range(*tlbp, vma, start,
706 						start + block, details);
707 			}
708 
709 			start += block;
710 			zap_bytes -= block;
711 			if ((long)zap_bytes > 0)
712 				continue;
713 
714 			tlb_finish_mmu(*tlbp, tlb_start, start);
715 
716 			if (need_resched() ||
717 				need_lockbreak(&mm->page_table_lock) ||
718 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
719 				if (i_mmap_lock) {
720 					/* must reset count of rss freed */
721 					*tlbp = tlb_gather_mmu(mm, fullmm);
722 					details->break_addr = start;
723 					goto out;
724 				}
725 				spin_unlock(&mm->page_table_lock);
726 				cond_resched();
727 				spin_lock(&mm->page_table_lock);
728 			}
729 
730 			*tlbp = tlb_gather_mmu(mm, fullmm);
731 			tlb_start_valid = 0;
732 			zap_bytes = ZAP_BLOCK_SIZE;
733 		}
734 	}
735 out:
736 	return ret;
737 }
738 
739 /**
740  * zap_page_range - remove user pages in a given range
741  * @vma: vm_area_struct holding the applicable pages
742  * @address: starting address of pages to zap
743  * @size: number of bytes to zap
744  * @details: details of nonlinear truncation or shared cache invalidation
745  */
746 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
747 		unsigned long size, struct zap_details *details)
748 {
749 	struct mm_struct *mm = vma->vm_mm;
750 	struct mmu_gather *tlb;
751 	unsigned long end = address + size;
752 	unsigned long nr_accounted = 0;
753 
754 	if (is_vm_hugetlb_page(vma)) {
755 		zap_hugepage_range(vma, address, size);
756 		return;
757 	}
758 
759 	lru_add_drain();
760 	spin_lock(&mm->page_table_lock);
761 	tlb = tlb_gather_mmu(mm, 0);
762 	unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
763 	tlb_finish_mmu(tlb, address, end);
764 	spin_unlock(&mm->page_table_lock);
765 }
766 
767 /*
768  * Do a quick page-table lookup for a single page.
769  * mm->page_table_lock must be held.
770  */
771 static struct page *
772 __follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
773 {
774 	pgd_t *pgd;
775 	pud_t *pud;
776 	pmd_t *pmd;
777 	pte_t *ptep, pte;
778 	unsigned long pfn;
779 	struct page *page;
780 
781 	page = follow_huge_addr(mm, address, write);
782 	if (! IS_ERR(page))
783 		return page;
784 
785 	pgd = pgd_offset(mm, address);
786 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
787 		goto out;
788 
789 	pud = pud_offset(pgd, address);
790 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
791 		goto out;
792 
793 	pmd = pmd_offset(pud, address);
794 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
795 		goto out;
796 	if (pmd_huge(*pmd))
797 		return follow_huge_pmd(mm, address, pmd, write);
798 
799 	ptep = pte_offset_map(pmd, address);
800 	if (!ptep)
801 		goto out;
802 
803 	pte = *ptep;
804 	pte_unmap(ptep);
805 	if (pte_present(pte)) {
806 		if (write && !pte_write(pte))
807 			goto out;
808 		if (read && !pte_read(pte))
809 			goto out;
810 		pfn = pte_pfn(pte);
811 		if (pfn_valid(pfn)) {
812 			page = pfn_to_page(pfn);
813 			if (write && !pte_dirty(pte) && !PageDirty(page))
814 				set_page_dirty(page);
815 			mark_page_accessed(page);
816 			return page;
817 		}
818 	}
819 
820 out:
821 	return NULL;
822 }
823 
824 struct page *
825 follow_page(struct mm_struct *mm, unsigned long address, int write)
826 {
827 	return __follow_page(mm, address, /*read*/0, write);
828 }
829 
830 int
831 check_user_page_readable(struct mm_struct *mm, unsigned long address)
832 {
833 	return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
834 }
835 
836 EXPORT_SYMBOL(check_user_page_readable);
837 
838 /*
839  * Given a physical address, is there a useful struct page pointing to
840  * it?  This may become more complex in the future if we start dealing
841  * with IO-aperture pages for direct-IO.
842  */
843 
844 static inline struct page *get_page_map(struct page *page)
845 {
846 	if (!pfn_valid(page_to_pfn(page)))
847 		return NULL;
848 	return page;
849 }
850 
851 
852 static inline int
853 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
854 			 unsigned long address)
855 {
856 	pgd_t *pgd;
857 	pud_t *pud;
858 	pmd_t *pmd;
859 
860 	/* Check if the vma is for an anonymous mapping. */
861 	if (vma->vm_ops && vma->vm_ops->nopage)
862 		return 0;
863 
864 	/* Check if page directory entry exists. */
865 	pgd = pgd_offset(mm, address);
866 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
867 		return 1;
868 
869 	pud = pud_offset(pgd, address);
870 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
871 		return 1;
872 
873 	/* Check if page middle directory entry exists. */
874 	pmd = pmd_offset(pud, address);
875 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
876 		return 1;
877 
878 	/* There is a pte slot for 'address' in 'mm'. */
879 	return 0;
880 }
881 
882 
883 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
884 		unsigned long start, int len, int write, int force,
885 		struct page **pages, struct vm_area_struct **vmas)
886 {
887 	int i;
888 	unsigned int flags;
889 
890 	/*
891 	 * Require read or write permissions.
892 	 * If 'force' is set, we only require the "MAY" flags.
893 	 */
894 	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
895 	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
896 	i = 0;
897 
898 	do {
899 		struct vm_area_struct *	vma;
900 
901 		vma = find_extend_vma(mm, start);
902 		if (!vma && in_gate_area(tsk, start)) {
903 			unsigned long pg = start & PAGE_MASK;
904 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
905 			pgd_t *pgd;
906 			pud_t *pud;
907 			pmd_t *pmd;
908 			pte_t *pte;
909 			if (write) /* user gate pages are read-only */
910 				return i ? : -EFAULT;
911 			if (pg > TASK_SIZE)
912 				pgd = pgd_offset_k(pg);
913 			else
914 				pgd = pgd_offset_gate(mm, pg);
915 			BUG_ON(pgd_none(*pgd));
916 			pud = pud_offset(pgd, pg);
917 			BUG_ON(pud_none(*pud));
918 			pmd = pmd_offset(pud, pg);
919 			BUG_ON(pmd_none(*pmd));
920 			pte = pte_offset_map(pmd, pg);
921 			BUG_ON(pte_none(*pte));
922 			if (pages) {
923 				pages[i] = pte_page(*pte);
924 				get_page(pages[i]);
925 			}
926 			pte_unmap(pte);
927 			if (vmas)
928 				vmas[i] = gate_vma;
929 			i++;
930 			start += PAGE_SIZE;
931 			len--;
932 			continue;
933 		}
934 
935 		if (!vma || (vma->vm_flags & VM_IO)
936 				|| !(flags & vma->vm_flags))
937 			return i ? : -EFAULT;
938 
939 		if (is_vm_hugetlb_page(vma)) {
940 			i = follow_hugetlb_page(mm, vma, pages, vmas,
941 						&start, &len, i);
942 			continue;
943 		}
944 		spin_lock(&mm->page_table_lock);
945 		do {
946 			struct page *map;
947 			int lookup_write = write;
948 
949 			cond_resched_lock(&mm->page_table_lock);
950 			while (!(map = follow_page(mm, start, lookup_write))) {
951 				/*
952 				 * Shortcut for anonymous pages. We don't want
953 				 * to force the creation of pages tables for
954 				 * insanly big anonymously mapped areas that
955 				 * nobody touched so far. This is important
956 				 * for doing a core dump for these mappings.
957 				 */
958 				if (!lookup_write &&
959 				    untouched_anonymous_page(mm,vma,start)) {
960 					map = ZERO_PAGE(start);
961 					break;
962 				}
963 				spin_unlock(&mm->page_table_lock);
964 				switch (handle_mm_fault(mm,vma,start,write)) {
965 				case VM_FAULT_MINOR:
966 					tsk->min_flt++;
967 					break;
968 				case VM_FAULT_MAJOR:
969 					tsk->maj_flt++;
970 					break;
971 				case VM_FAULT_SIGBUS:
972 					return i ? i : -EFAULT;
973 				case VM_FAULT_OOM:
974 					return i ? i : -ENOMEM;
975 				default:
976 					BUG();
977 				}
978 				/*
979 				 * Now that we have performed a write fault
980 				 * and surely no longer have a shared page we
981 				 * shouldn't write, we shouldn't ignore an
982 				 * unwritable page in the page table if
983 				 * we are forcing write access.
984 				 */
985 				lookup_write = write && !force;
986 				spin_lock(&mm->page_table_lock);
987 			}
988 			if (pages) {
989 				pages[i] = get_page_map(map);
990 				if (!pages[i]) {
991 					spin_unlock(&mm->page_table_lock);
992 					while (i--)
993 						page_cache_release(pages[i]);
994 					i = -EFAULT;
995 					goto out;
996 				}
997 				flush_dcache_page(pages[i]);
998 				if (!PageReserved(pages[i]))
999 					page_cache_get(pages[i]);
1000 			}
1001 			if (vmas)
1002 				vmas[i] = vma;
1003 			i++;
1004 			start += PAGE_SIZE;
1005 			len--;
1006 		} while(len && start < vma->vm_end);
1007 		spin_unlock(&mm->page_table_lock);
1008 	} while(len);
1009 out:
1010 	return i;
1011 }
1012 
1013 EXPORT_SYMBOL(get_user_pages);
1014 
1015 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1016 			unsigned long addr, unsigned long end, pgprot_t prot)
1017 {
1018 	pte_t *pte;
1019 
1020 	pte = pte_alloc_map(mm, pmd, addr);
1021 	if (!pte)
1022 		return -ENOMEM;
1023 	do {
1024 		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1025 		BUG_ON(!pte_none(*pte));
1026 		set_pte_at(mm, addr, pte, zero_pte);
1027 	} while (pte++, addr += PAGE_SIZE, addr != end);
1028 	pte_unmap(pte - 1);
1029 	return 0;
1030 }
1031 
1032 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1033 			unsigned long addr, unsigned long end, pgprot_t prot)
1034 {
1035 	pmd_t *pmd;
1036 	unsigned long next;
1037 
1038 	pmd = pmd_alloc(mm, pud, addr);
1039 	if (!pmd)
1040 		return -ENOMEM;
1041 	do {
1042 		next = pmd_addr_end(addr, end);
1043 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1044 			return -ENOMEM;
1045 	} while (pmd++, addr = next, addr != end);
1046 	return 0;
1047 }
1048 
1049 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1050 			unsigned long addr, unsigned long end, pgprot_t prot)
1051 {
1052 	pud_t *pud;
1053 	unsigned long next;
1054 
1055 	pud = pud_alloc(mm, pgd, addr);
1056 	if (!pud)
1057 		return -ENOMEM;
1058 	do {
1059 		next = pud_addr_end(addr, end);
1060 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1061 			return -ENOMEM;
1062 	} while (pud++, addr = next, addr != end);
1063 	return 0;
1064 }
1065 
1066 int zeromap_page_range(struct vm_area_struct *vma,
1067 			unsigned long addr, unsigned long size, pgprot_t prot)
1068 {
1069 	pgd_t *pgd;
1070 	unsigned long next;
1071 	unsigned long end = addr + size;
1072 	struct mm_struct *mm = vma->vm_mm;
1073 	int err;
1074 
1075 	BUG_ON(addr >= end);
1076 	pgd = pgd_offset(mm, addr);
1077 	flush_cache_range(vma, addr, end);
1078 	spin_lock(&mm->page_table_lock);
1079 	do {
1080 		next = pgd_addr_end(addr, end);
1081 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1082 		if (err)
1083 			break;
1084 	} while (pgd++, addr = next, addr != end);
1085 	spin_unlock(&mm->page_table_lock);
1086 	return err;
1087 }
1088 
1089 /*
1090  * maps a range of physical memory into the requested pages. the old
1091  * mappings are removed. any references to nonexistent pages results
1092  * in null mappings (currently treated as "copy-on-access")
1093  */
1094 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1095 			unsigned long addr, unsigned long end,
1096 			unsigned long pfn, pgprot_t prot)
1097 {
1098 	pte_t *pte;
1099 
1100 	pte = pte_alloc_map(mm, pmd, addr);
1101 	if (!pte)
1102 		return -ENOMEM;
1103 	do {
1104 		BUG_ON(!pte_none(*pte));
1105 		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1106 			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1107 		pfn++;
1108 	} while (pte++, addr += PAGE_SIZE, addr != end);
1109 	pte_unmap(pte - 1);
1110 	return 0;
1111 }
1112 
1113 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1114 			unsigned long addr, unsigned long end,
1115 			unsigned long pfn, pgprot_t prot)
1116 {
1117 	pmd_t *pmd;
1118 	unsigned long next;
1119 
1120 	pfn -= addr >> PAGE_SHIFT;
1121 	pmd = pmd_alloc(mm, pud, addr);
1122 	if (!pmd)
1123 		return -ENOMEM;
1124 	do {
1125 		next = pmd_addr_end(addr, end);
1126 		if (remap_pte_range(mm, pmd, addr, next,
1127 				pfn + (addr >> PAGE_SHIFT), prot))
1128 			return -ENOMEM;
1129 	} while (pmd++, addr = next, addr != end);
1130 	return 0;
1131 }
1132 
1133 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1134 			unsigned long addr, unsigned long end,
1135 			unsigned long pfn, pgprot_t prot)
1136 {
1137 	pud_t *pud;
1138 	unsigned long next;
1139 
1140 	pfn -= addr >> PAGE_SHIFT;
1141 	pud = pud_alloc(mm, pgd, addr);
1142 	if (!pud)
1143 		return -ENOMEM;
1144 	do {
1145 		next = pud_addr_end(addr, end);
1146 		if (remap_pmd_range(mm, pud, addr, next,
1147 				pfn + (addr >> PAGE_SHIFT), prot))
1148 			return -ENOMEM;
1149 	} while (pud++, addr = next, addr != end);
1150 	return 0;
1151 }
1152 
1153 /*  Note: this is only safe if the mm semaphore is held when called. */
1154 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1155 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1156 {
1157 	pgd_t *pgd;
1158 	unsigned long next;
1159 	unsigned long end = addr + size;
1160 	struct mm_struct *mm = vma->vm_mm;
1161 	int err;
1162 
1163 	/*
1164 	 * Physically remapped pages are special. Tell the
1165 	 * rest of the world about it:
1166 	 *   VM_IO tells people not to look at these pages
1167 	 *	(accesses can have side effects).
1168 	 *   VM_RESERVED tells swapout not to try to touch
1169 	 *	this region.
1170 	 */
1171 	vma->vm_flags |= VM_IO | VM_RESERVED;
1172 
1173 	BUG_ON(addr >= end);
1174 	pfn -= addr >> PAGE_SHIFT;
1175 	pgd = pgd_offset(mm, addr);
1176 	flush_cache_range(vma, addr, end);
1177 	spin_lock(&mm->page_table_lock);
1178 	do {
1179 		next = pgd_addr_end(addr, end);
1180 		err = remap_pud_range(mm, pgd, addr, next,
1181 				pfn + (addr >> PAGE_SHIFT), prot);
1182 		if (err)
1183 			break;
1184 	} while (pgd++, addr = next, addr != end);
1185 	spin_unlock(&mm->page_table_lock);
1186 	return err;
1187 }
1188 EXPORT_SYMBOL(remap_pfn_range);
1189 
1190 /*
1191  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1192  * servicing faults for write access.  In the normal case, do always want
1193  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1194  * that do not have writing enabled, when used by access_process_vm.
1195  */
1196 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1197 {
1198 	if (likely(vma->vm_flags & VM_WRITE))
1199 		pte = pte_mkwrite(pte);
1200 	return pte;
1201 }
1202 
1203 /*
1204  * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1205  */
1206 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1207 		pte_t *page_table)
1208 {
1209 	pte_t entry;
1210 
1211 	entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1212 			      vma);
1213 	ptep_establish(vma, address, page_table, entry);
1214 	update_mmu_cache(vma, address, entry);
1215 	lazy_mmu_prot_update(entry);
1216 }
1217 
1218 /*
1219  * This routine handles present pages, when users try to write
1220  * to a shared page. It is done by copying the page to a new address
1221  * and decrementing the shared-page counter for the old page.
1222  *
1223  * Goto-purists beware: the only reason for goto's here is that it results
1224  * in better assembly code.. The "default" path will see no jumps at all.
1225  *
1226  * Note that this routine assumes that the protection checks have been
1227  * done by the caller (the low-level page fault routine in most cases).
1228  * Thus we can safely just mark it writable once we've done any necessary
1229  * COW.
1230  *
1231  * We also mark the page dirty at this point even though the page will
1232  * change only once the write actually happens. This avoids a few races,
1233  * and potentially makes it more efficient.
1234  *
1235  * We hold the mm semaphore and the page_table_lock on entry and exit
1236  * with the page_table_lock released.
1237  */
1238 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1239 	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1240 {
1241 	struct page *old_page, *new_page;
1242 	unsigned long pfn = pte_pfn(pte);
1243 	pte_t entry;
1244 
1245 	if (unlikely(!pfn_valid(pfn))) {
1246 		/*
1247 		 * This should really halt the system so it can be debugged or
1248 		 * at least the kernel stops what it's doing before it corrupts
1249 		 * data, but for the moment just pretend this is OOM.
1250 		 */
1251 		pte_unmap(page_table);
1252 		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1253 				address);
1254 		spin_unlock(&mm->page_table_lock);
1255 		return VM_FAULT_OOM;
1256 	}
1257 	old_page = pfn_to_page(pfn);
1258 
1259 	if (!TestSetPageLocked(old_page)) {
1260 		int reuse = can_share_swap_page(old_page);
1261 		unlock_page(old_page);
1262 		if (reuse) {
1263 			flush_cache_page(vma, address, pfn);
1264 			entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1265 					      vma);
1266 			ptep_set_access_flags(vma, address, page_table, entry, 1);
1267 			update_mmu_cache(vma, address, entry);
1268 			lazy_mmu_prot_update(entry);
1269 			pte_unmap(page_table);
1270 			spin_unlock(&mm->page_table_lock);
1271 			return VM_FAULT_MINOR;
1272 		}
1273 	}
1274 	pte_unmap(page_table);
1275 
1276 	/*
1277 	 * Ok, we need to copy. Oh, well..
1278 	 */
1279 	if (!PageReserved(old_page))
1280 		page_cache_get(old_page);
1281 	spin_unlock(&mm->page_table_lock);
1282 
1283 	if (unlikely(anon_vma_prepare(vma)))
1284 		goto no_new_page;
1285 	if (old_page == ZERO_PAGE(address)) {
1286 		new_page = alloc_zeroed_user_highpage(vma, address);
1287 		if (!new_page)
1288 			goto no_new_page;
1289 	} else {
1290 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1291 		if (!new_page)
1292 			goto no_new_page;
1293 		copy_user_highpage(new_page, old_page, address);
1294 	}
1295 	/*
1296 	 * Re-check the pte - we dropped the lock
1297 	 */
1298 	spin_lock(&mm->page_table_lock);
1299 	page_table = pte_offset_map(pmd, address);
1300 	if (likely(pte_same(*page_table, pte))) {
1301 		if (PageAnon(old_page))
1302 			dec_mm_counter(mm, anon_rss);
1303 		if (PageReserved(old_page))
1304 			inc_mm_counter(mm, rss);
1305 		else
1306 			page_remove_rmap(old_page);
1307 		flush_cache_page(vma, address, pfn);
1308 		break_cow(vma, new_page, address, page_table);
1309 		lru_cache_add_active(new_page);
1310 		page_add_anon_rmap(new_page, vma, address);
1311 
1312 		/* Free the old page.. */
1313 		new_page = old_page;
1314 	}
1315 	pte_unmap(page_table);
1316 	page_cache_release(new_page);
1317 	page_cache_release(old_page);
1318 	spin_unlock(&mm->page_table_lock);
1319 	return VM_FAULT_MINOR;
1320 
1321 no_new_page:
1322 	page_cache_release(old_page);
1323 	return VM_FAULT_OOM;
1324 }
1325 
1326 /*
1327  * Helper functions for unmap_mapping_range().
1328  *
1329  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1330  *
1331  * We have to restart searching the prio_tree whenever we drop the lock,
1332  * since the iterator is only valid while the lock is held, and anyway
1333  * a later vma might be split and reinserted earlier while lock dropped.
1334  *
1335  * The list of nonlinear vmas could be handled more efficiently, using
1336  * a placeholder, but handle it in the same way until a need is shown.
1337  * It is important to search the prio_tree before nonlinear list: a vma
1338  * may become nonlinear and be shifted from prio_tree to nonlinear list
1339  * while the lock is dropped; but never shifted from list to prio_tree.
1340  *
1341  * In order to make forward progress despite restarting the search,
1342  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1343  * quickly skip it next time around.  Since the prio_tree search only
1344  * shows us those vmas affected by unmapping the range in question, we
1345  * can't efficiently keep all vmas in step with mapping->truncate_count:
1346  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1347  * mapping->truncate_count and vma->vm_truncate_count are protected by
1348  * i_mmap_lock.
1349  *
1350  * In order to make forward progress despite repeatedly restarting some
1351  * large vma, note the break_addr set by unmap_vmas when it breaks out:
1352  * and restart from that address when we reach that vma again.  It might
1353  * have been split or merged, shrunk or extended, but never shifted: so
1354  * restart_addr remains valid so long as it remains in the vma's range.
1355  * unmap_mapping_range forces truncate_count to leap over page-aligned
1356  * values so we can save vma's restart_addr in its truncate_count field.
1357  */
1358 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1359 
1360 static void reset_vma_truncate_counts(struct address_space *mapping)
1361 {
1362 	struct vm_area_struct *vma;
1363 	struct prio_tree_iter iter;
1364 
1365 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1366 		vma->vm_truncate_count = 0;
1367 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1368 		vma->vm_truncate_count = 0;
1369 }
1370 
1371 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1372 		unsigned long start_addr, unsigned long end_addr,
1373 		struct zap_details *details)
1374 {
1375 	unsigned long restart_addr;
1376 	int need_break;
1377 
1378 again:
1379 	restart_addr = vma->vm_truncate_count;
1380 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1381 		start_addr = restart_addr;
1382 		if (start_addr >= end_addr) {
1383 			/* Top of vma has been split off since last time */
1384 			vma->vm_truncate_count = details->truncate_count;
1385 			return 0;
1386 		}
1387 	}
1388 
1389 	details->break_addr = end_addr;
1390 	zap_page_range(vma, start_addr, end_addr - start_addr, details);
1391 
1392 	/*
1393 	 * We cannot rely on the break test in unmap_vmas:
1394 	 * on the one hand, we don't want to restart our loop
1395 	 * just because that broke out for the page_table_lock;
1396 	 * on the other hand, it does no test when vma is small.
1397 	 */
1398 	need_break = need_resched() ||
1399 			need_lockbreak(details->i_mmap_lock);
1400 
1401 	if (details->break_addr >= end_addr) {
1402 		/* We have now completed this vma: mark it so */
1403 		vma->vm_truncate_count = details->truncate_count;
1404 		if (!need_break)
1405 			return 0;
1406 	} else {
1407 		/* Note restart_addr in vma's truncate_count field */
1408 		vma->vm_truncate_count = details->break_addr;
1409 		if (!need_break)
1410 			goto again;
1411 	}
1412 
1413 	spin_unlock(details->i_mmap_lock);
1414 	cond_resched();
1415 	spin_lock(details->i_mmap_lock);
1416 	return -EINTR;
1417 }
1418 
1419 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1420 					    struct zap_details *details)
1421 {
1422 	struct vm_area_struct *vma;
1423 	struct prio_tree_iter iter;
1424 	pgoff_t vba, vea, zba, zea;
1425 
1426 restart:
1427 	vma_prio_tree_foreach(vma, &iter, root,
1428 			details->first_index, details->last_index) {
1429 		/* Skip quickly over those we have already dealt with */
1430 		if (vma->vm_truncate_count == details->truncate_count)
1431 			continue;
1432 
1433 		vba = vma->vm_pgoff;
1434 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1435 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1436 		zba = details->first_index;
1437 		if (zba < vba)
1438 			zba = vba;
1439 		zea = details->last_index;
1440 		if (zea > vea)
1441 			zea = vea;
1442 
1443 		if (unmap_mapping_range_vma(vma,
1444 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1445 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1446 				details) < 0)
1447 			goto restart;
1448 	}
1449 }
1450 
1451 static inline void unmap_mapping_range_list(struct list_head *head,
1452 					    struct zap_details *details)
1453 {
1454 	struct vm_area_struct *vma;
1455 
1456 	/*
1457 	 * In nonlinear VMAs there is no correspondence between virtual address
1458 	 * offset and file offset.  So we must perform an exhaustive search
1459 	 * across *all* the pages in each nonlinear VMA, not just the pages
1460 	 * whose virtual address lies outside the file truncation point.
1461 	 */
1462 restart:
1463 	list_for_each_entry(vma, head, shared.vm_set.list) {
1464 		/* Skip quickly over those we have already dealt with */
1465 		if (vma->vm_truncate_count == details->truncate_count)
1466 			continue;
1467 		details->nonlinear_vma = vma;
1468 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1469 					vma->vm_end, details) < 0)
1470 			goto restart;
1471 	}
1472 }
1473 
1474 /**
1475  * unmap_mapping_range - unmap the portion of all mmaps
1476  * in the specified address_space corresponding to the specified
1477  * page range in the underlying file.
1478  * @address_space: the address space containing mmaps to be unmapped.
1479  * @holebegin: byte in first page to unmap, relative to the start of
1480  * the underlying file.  This will be rounded down to a PAGE_SIZE
1481  * boundary.  Note that this is different from vmtruncate(), which
1482  * must keep the partial page.  In contrast, we must get rid of
1483  * partial pages.
1484  * @holelen: size of prospective hole in bytes.  This will be rounded
1485  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1486  * end of the file.
1487  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1488  * but 0 when invalidating pagecache, don't throw away private data.
1489  */
1490 void unmap_mapping_range(struct address_space *mapping,
1491 		loff_t const holebegin, loff_t const holelen, int even_cows)
1492 {
1493 	struct zap_details details;
1494 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1495 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1496 
1497 	/* Check for overflow. */
1498 	if (sizeof(holelen) > sizeof(hlen)) {
1499 		long long holeend =
1500 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1501 		if (holeend & ~(long long)ULONG_MAX)
1502 			hlen = ULONG_MAX - hba + 1;
1503 	}
1504 
1505 	details.check_mapping = even_cows? NULL: mapping;
1506 	details.nonlinear_vma = NULL;
1507 	details.first_index = hba;
1508 	details.last_index = hba + hlen - 1;
1509 	if (details.last_index < details.first_index)
1510 		details.last_index = ULONG_MAX;
1511 	details.i_mmap_lock = &mapping->i_mmap_lock;
1512 
1513 	spin_lock(&mapping->i_mmap_lock);
1514 
1515 	/* serialize i_size write against truncate_count write */
1516 	smp_wmb();
1517 	/* Protect against page faults, and endless unmapping loops */
1518 	mapping->truncate_count++;
1519 	/*
1520 	 * For archs where spin_lock has inclusive semantics like ia64
1521 	 * this smp_mb() will prevent to read pagetable contents
1522 	 * before the truncate_count increment is visible to
1523 	 * other cpus.
1524 	 */
1525 	smp_mb();
1526 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1527 		if (mapping->truncate_count == 0)
1528 			reset_vma_truncate_counts(mapping);
1529 		mapping->truncate_count++;
1530 	}
1531 	details.truncate_count = mapping->truncate_count;
1532 
1533 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1534 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1535 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1536 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1537 	spin_unlock(&mapping->i_mmap_lock);
1538 }
1539 EXPORT_SYMBOL(unmap_mapping_range);
1540 
1541 /*
1542  * Handle all mappings that got truncated by a "truncate()"
1543  * system call.
1544  *
1545  * NOTE! We have to be ready to update the memory sharing
1546  * between the file and the memory map for a potential last
1547  * incomplete page.  Ugly, but necessary.
1548  */
1549 int vmtruncate(struct inode * inode, loff_t offset)
1550 {
1551 	struct address_space *mapping = inode->i_mapping;
1552 	unsigned long limit;
1553 
1554 	if (inode->i_size < offset)
1555 		goto do_expand;
1556 	/*
1557 	 * truncation of in-use swapfiles is disallowed - it would cause
1558 	 * subsequent swapout to scribble on the now-freed blocks.
1559 	 */
1560 	if (IS_SWAPFILE(inode))
1561 		goto out_busy;
1562 	i_size_write(inode, offset);
1563 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1564 	truncate_inode_pages(mapping, offset);
1565 	goto out_truncate;
1566 
1567 do_expand:
1568 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1569 	if (limit != RLIM_INFINITY && offset > limit)
1570 		goto out_sig;
1571 	if (offset > inode->i_sb->s_maxbytes)
1572 		goto out_big;
1573 	i_size_write(inode, offset);
1574 
1575 out_truncate:
1576 	if (inode->i_op && inode->i_op->truncate)
1577 		inode->i_op->truncate(inode);
1578 	return 0;
1579 out_sig:
1580 	send_sig(SIGXFSZ, current, 0);
1581 out_big:
1582 	return -EFBIG;
1583 out_busy:
1584 	return -ETXTBSY;
1585 }
1586 
1587 EXPORT_SYMBOL(vmtruncate);
1588 
1589 /*
1590  * Primitive swap readahead code. We simply read an aligned block of
1591  * (1 << page_cluster) entries in the swap area. This method is chosen
1592  * because it doesn't cost us any seek time.  We also make sure to queue
1593  * the 'original' request together with the readahead ones...
1594  *
1595  * This has been extended to use the NUMA policies from the mm triggering
1596  * the readahead.
1597  *
1598  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1599  */
1600 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1601 {
1602 #ifdef CONFIG_NUMA
1603 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1604 #endif
1605 	int i, num;
1606 	struct page *new_page;
1607 	unsigned long offset;
1608 
1609 	/*
1610 	 * Get the number of handles we should do readahead io to.
1611 	 */
1612 	num = valid_swaphandles(entry, &offset);
1613 	for (i = 0; i < num; offset++, i++) {
1614 		/* Ok, do the async read-ahead now */
1615 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1616 							   offset), vma, addr);
1617 		if (!new_page)
1618 			break;
1619 		page_cache_release(new_page);
1620 #ifdef CONFIG_NUMA
1621 		/*
1622 		 * Find the next applicable VMA for the NUMA policy.
1623 		 */
1624 		addr += PAGE_SIZE;
1625 		if (addr == 0)
1626 			vma = NULL;
1627 		if (vma) {
1628 			if (addr >= vma->vm_end) {
1629 				vma = next_vma;
1630 				next_vma = vma ? vma->vm_next : NULL;
1631 			}
1632 			if (vma && addr < vma->vm_start)
1633 				vma = NULL;
1634 		} else {
1635 			if (next_vma && addr >= next_vma->vm_start) {
1636 				vma = next_vma;
1637 				next_vma = vma->vm_next;
1638 			}
1639 		}
1640 #endif
1641 	}
1642 	lru_add_drain();	/* Push any new pages onto the LRU now */
1643 }
1644 
1645 /*
1646  * We hold the mm semaphore and the page_table_lock on entry and
1647  * should release the pagetable lock on exit..
1648  */
1649 static int do_swap_page(struct mm_struct * mm,
1650 	struct vm_area_struct * vma, unsigned long address,
1651 	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1652 {
1653 	struct page *page;
1654 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
1655 	pte_t pte;
1656 	int ret = VM_FAULT_MINOR;
1657 
1658 	pte_unmap(page_table);
1659 	spin_unlock(&mm->page_table_lock);
1660 	page = lookup_swap_cache(entry);
1661 	if (!page) {
1662  		swapin_readahead(entry, address, vma);
1663  		page = read_swap_cache_async(entry, vma, address);
1664 		if (!page) {
1665 			/*
1666 			 * Back out if somebody else faulted in this pte while
1667 			 * we released the page table lock.
1668 			 */
1669 			spin_lock(&mm->page_table_lock);
1670 			page_table = pte_offset_map(pmd, address);
1671 			if (likely(pte_same(*page_table, orig_pte)))
1672 				ret = VM_FAULT_OOM;
1673 			else
1674 				ret = VM_FAULT_MINOR;
1675 			pte_unmap(page_table);
1676 			spin_unlock(&mm->page_table_lock);
1677 			goto out;
1678 		}
1679 
1680 		/* Had to read the page from swap area: Major fault */
1681 		ret = VM_FAULT_MAJOR;
1682 		inc_page_state(pgmajfault);
1683 		grab_swap_token();
1684 	}
1685 
1686 	mark_page_accessed(page);
1687 	lock_page(page);
1688 
1689 	/*
1690 	 * Back out if somebody else faulted in this pte while we
1691 	 * released the page table lock.
1692 	 */
1693 	spin_lock(&mm->page_table_lock);
1694 	page_table = pte_offset_map(pmd, address);
1695 	if (unlikely(!pte_same(*page_table, orig_pte))) {
1696 		pte_unmap(page_table);
1697 		spin_unlock(&mm->page_table_lock);
1698 		unlock_page(page);
1699 		page_cache_release(page);
1700 		ret = VM_FAULT_MINOR;
1701 		goto out;
1702 	}
1703 
1704 	/* The page isn't present yet, go ahead with the fault. */
1705 
1706 	swap_free(entry);
1707 	if (vm_swap_full())
1708 		remove_exclusive_swap_page(page);
1709 
1710 	inc_mm_counter(mm, rss);
1711 	pte = mk_pte(page, vma->vm_page_prot);
1712 	if (write_access && can_share_swap_page(page)) {
1713 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1714 		write_access = 0;
1715 	}
1716 	unlock_page(page);
1717 
1718 	flush_icache_page(vma, page);
1719 	set_pte_at(mm, address, page_table, pte);
1720 	page_add_anon_rmap(page, vma, address);
1721 
1722 	if (write_access) {
1723 		if (do_wp_page(mm, vma, address,
1724 				page_table, pmd, pte) == VM_FAULT_OOM)
1725 			ret = VM_FAULT_OOM;
1726 		goto out;
1727 	}
1728 
1729 	/* No need to invalidate - it was non-present before */
1730 	update_mmu_cache(vma, address, pte);
1731 	lazy_mmu_prot_update(pte);
1732 	pte_unmap(page_table);
1733 	spin_unlock(&mm->page_table_lock);
1734 out:
1735 	return ret;
1736 }
1737 
1738 /*
1739  * We are called with the MM semaphore and page_table_lock
1740  * spinlock held to protect against concurrent faults in
1741  * multithreaded programs.
1742  */
1743 static int
1744 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1745 		pte_t *page_table, pmd_t *pmd, int write_access,
1746 		unsigned long addr)
1747 {
1748 	pte_t entry;
1749 	struct page * page = ZERO_PAGE(addr);
1750 
1751 	/* Read-only mapping of ZERO_PAGE. */
1752 	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1753 
1754 	/* ..except if it's a write access */
1755 	if (write_access) {
1756 		/* Allocate our own private page. */
1757 		pte_unmap(page_table);
1758 		spin_unlock(&mm->page_table_lock);
1759 
1760 		if (unlikely(anon_vma_prepare(vma)))
1761 			goto no_mem;
1762 		page = alloc_zeroed_user_highpage(vma, addr);
1763 		if (!page)
1764 			goto no_mem;
1765 
1766 		spin_lock(&mm->page_table_lock);
1767 		page_table = pte_offset_map(pmd, addr);
1768 
1769 		if (!pte_none(*page_table)) {
1770 			pte_unmap(page_table);
1771 			page_cache_release(page);
1772 			spin_unlock(&mm->page_table_lock);
1773 			goto out;
1774 		}
1775 		inc_mm_counter(mm, rss);
1776 		entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1777 							 vma->vm_page_prot)),
1778 				      vma);
1779 		lru_cache_add_active(page);
1780 		SetPageReferenced(page);
1781 		page_add_anon_rmap(page, vma, addr);
1782 	}
1783 
1784 	set_pte_at(mm, addr, page_table, entry);
1785 	pte_unmap(page_table);
1786 
1787 	/* No need to invalidate - it was non-present before */
1788 	update_mmu_cache(vma, addr, entry);
1789 	lazy_mmu_prot_update(entry);
1790 	spin_unlock(&mm->page_table_lock);
1791 out:
1792 	return VM_FAULT_MINOR;
1793 no_mem:
1794 	return VM_FAULT_OOM;
1795 }
1796 
1797 /*
1798  * do_no_page() tries to create a new page mapping. It aggressively
1799  * tries to share with existing pages, but makes a separate copy if
1800  * the "write_access" parameter is true in order to avoid the next
1801  * page fault.
1802  *
1803  * As this is called only for pages that do not currently exist, we
1804  * do not need to flush old virtual caches or the TLB.
1805  *
1806  * This is called with the MM semaphore held and the page table
1807  * spinlock held. Exit with the spinlock released.
1808  */
1809 static int
1810 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1811 	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1812 {
1813 	struct page * new_page;
1814 	struct address_space *mapping = NULL;
1815 	pte_t entry;
1816 	unsigned int sequence = 0;
1817 	int ret = VM_FAULT_MINOR;
1818 	int anon = 0;
1819 
1820 	if (!vma->vm_ops || !vma->vm_ops->nopage)
1821 		return do_anonymous_page(mm, vma, page_table,
1822 					pmd, write_access, address);
1823 	pte_unmap(page_table);
1824 	spin_unlock(&mm->page_table_lock);
1825 
1826 	if (vma->vm_file) {
1827 		mapping = vma->vm_file->f_mapping;
1828 		sequence = mapping->truncate_count;
1829 		smp_rmb(); /* serializes i_size against truncate_count */
1830 	}
1831 retry:
1832 	cond_resched();
1833 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1834 	/*
1835 	 * No smp_rmb is needed here as long as there's a full
1836 	 * spin_lock/unlock sequence inside the ->nopage callback
1837 	 * (for the pagecache lookup) that acts as an implicit
1838 	 * smp_mb() and prevents the i_size read to happen
1839 	 * after the next truncate_count read.
1840 	 */
1841 
1842 	/* no page was available -- either SIGBUS or OOM */
1843 	if (new_page == NOPAGE_SIGBUS)
1844 		return VM_FAULT_SIGBUS;
1845 	if (new_page == NOPAGE_OOM)
1846 		return VM_FAULT_OOM;
1847 
1848 	/*
1849 	 * Should we do an early C-O-W break?
1850 	 */
1851 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1852 		struct page *page;
1853 
1854 		if (unlikely(anon_vma_prepare(vma)))
1855 			goto oom;
1856 		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1857 		if (!page)
1858 			goto oom;
1859 		copy_user_highpage(page, new_page, address);
1860 		page_cache_release(new_page);
1861 		new_page = page;
1862 		anon = 1;
1863 	}
1864 
1865 	spin_lock(&mm->page_table_lock);
1866 	/*
1867 	 * For a file-backed vma, someone could have truncated or otherwise
1868 	 * invalidated this page.  If unmap_mapping_range got called,
1869 	 * retry getting the page.
1870 	 */
1871 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
1872 		sequence = mapping->truncate_count;
1873 		spin_unlock(&mm->page_table_lock);
1874 		page_cache_release(new_page);
1875 		goto retry;
1876 	}
1877 	page_table = pte_offset_map(pmd, address);
1878 
1879 	/*
1880 	 * This silly early PAGE_DIRTY setting removes a race
1881 	 * due to the bad i386 page protection. But it's valid
1882 	 * for other architectures too.
1883 	 *
1884 	 * Note that if write_access is true, we either now have
1885 	 * an exclusive copy of the page, or this is a shared mapping,
1886 	 * so we can make it writable and dirty to avoid having to
1887 	 * handle that later.
1888 	 */
1889 	/* Only go through if we didn't race with anybody else... */
1890 	if (pte_none(*page_table)) {
1891 		if (!PageReserved(new_page))
1892 			inc_mm_counter(mm, rss);
1893 
1894 		flush_icache_page(vma, new_page);
1895 		entry = mk_pte(new_page, vma->vm_page_prot);
1896 		if (write_access)
1897 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1898 		set_pte_at(mm, address, page_table, entry);
1899 		if (anon) {
1900 			lru_cache_add_active(new_page);
1901 			page_add_anon_rmap(new_page, vma, address);
1902 		} else
1903 			page_add_file_rmap(new_page);
1904 		pte_unmap(page_table);
1905 	} else {
1906 		/* One of our sibling threads was faster, back out. */
1907 		pte_unmap(page_table);
1908 		page_cache_release(new_page);
1909 		spin_unlock(&mm->page_table_lock);
1910 		goto out;
1911 	}
1912 
1913 	/* no need to invalidate: a not-present page shouldn't be cached */
1914 	update_mmu_cache(vma, address, entry);
1915 	lazy_mmu_prot_update(entry);
1916 	spin_unlock(&mm->page_table_lock);
1917 out:
1918 	return ret;
1919 oom:
1920 	page_cache_release(new_page);
1921 	ret = VM_FAULT_OOM;
1922 	goto out;
1923 }
1924 
1925 /*
1926  * Fault of a previously existing named mapping. Repopulate the pte
1927  * from the encoded file_pte if possible. This enables swappable
1928  * nonlinear vmas.
1929  */
1930 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1931 	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1932 {
1933 	unsigned long pgoff;
1934 	int err;
1935 
1936 	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1937 	/*
1938 	 * Fall back to the linear mapping if the fs does not support
1939 	 * ->populate:
1940 	 */
1941 	if (!vma->vm_ops || !vma->vm_ops->populate ||
1942 			(write_access && !(vma->vm_flags & VM_SHARED))) {
1943 		pte_clear(mm, address, pte);
1944 		return do_no_page(mm, vma, address, write_access, pte, pmd);
1945 	}
1946 
1947 	pgoff = pte_to_pgoff(*pte);
1948 
1949 	pte_unmap(pte);
1950 	spin_unlock(&mm->page_table_lock);
1951 
1952 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1953 	if (err == -ENOMEM)
1954 		return VM_FAULT_OOM;
1955 	if (err)
1956 		return VM_FAULT_SIGBUS;
1957 	return VM_FAULT_MAJOR;
1958 }
1959 
1960 /*
1961  * These routines also need to handle stuff like marking pages dirty
1962  * and/or accessed for architectures that don't do it in hardware (most
1963  * RISC architectures).  The early dirtying is also good on the i386.
1964  *
1965  * There is also a hook called "update_mmu_cache()" that architectures
1966  * with external mmu caches can use to update those (ie the Sparc or
1967  * PowerPC hashed page tables that act as extended TLBs).
1968  *
1969  * Note the "page_table_lock". It is to protect against kswapd removing
1970  * pages from under us. Note that kswapd only ever _removes_ pages, never
1971  * adds them. As such, once we have noticed that the page is not present,
1972  * we can drop the lock early.
1973  *
1974  * The adding of pages is protected by the MM semaphore (which we hold),
1975  * so we don't need to worry about a page being suddenly been added into
1976  * our VM.
1977  *
1978  * We enter with the pagetable spinlock held, we are supposed to
1979  * release it when done.
1980  */
1981 static inline int handle_pte_fault(struct mm_struct *mm,
1982 	struct vm_area_struct * vma, unsigned long address,
1983 	int write_access, pte_t *pte, pmd_t *pmd)
1984 {
1985 	pte_t entry;
1986 
1987 	entry = *pte;
1988 	if (!pte_present(entry)) {
1989 		/*
1990 		 * If it truly wasn't present, we know that kswapd
1991 		 * and the PTE updates will not touch it later. So
1992 		 * drop the lock.
1993 		 */
1994 		if (pte_none(entry))
1995 			return do_no_page(mm, vma, address, write_access, pte, pmd);
1996 		if (pte_file(entry))
1997 			return do_file_page(mm, vma, address, write_access, pte, pmd);
1998 		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1999 	}
2000 
2001 	if (write_access) {
2002 		if (!pte_write(entry))
2003 			return do_wp_page(mm, vma, address, pte, pmd, entry);
2004 
2005 		entry = pte_mkdirty(entry);
2006 	}
2007 	entry = pte_mkyoung(entry);
2008 	ptep_set_access_flags(vma, address, pte, entry, write_access);
2009 	update_mmu_cache(vma, address, entry);
2010 	lazy_mmu_prot_update(entry);
2011 	pte_unmap(pte);
2012 	spin_unlock(&mm->page_table_lock);
2013 	return VM_FAULT_MINOR;
2014 }
2015 
2016 /*
2017  * By the time we get here, we already hold the mm semaphore
2018  */
2019 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2020 		unsigned long address, int write_access)
2021 {
2022 	pgd_t *pgd;
2023 	pud_t *pud;
2024 	pmd_t *pmd;
2025 	pte_t *pte;
2026 
2027 	__set_current_state(TASK_RUNNING);
2028 
2029 	inc_page_state(pgfault);
2030 
2031 	if (is_vm_hugetlb_page(vma))
2032 		return VM_FAULT_SIGBUS;	/* mapping truncation does this. */
2033 
2034 	/*
2035 	 * We need the page table lock to synchronize with kswapd
2036 	 * and the SMP-safe atomic PTE updates.
2037 	 */
2038 	pgd = pgd_offset(mm, address);
2039 	spin_lock(&mm->page_table_lock);
2040 
2041 	pud = pud_alloc(mm, pgd, address);
2042 	if (!pud)
2043 		goto oom;
2044 
2045 	pmd = pmd_alloc(mm, pud, address);
2046 	if (!pmd)
2047 		goto oom;
2048 
2049 	pte = pte_alloc_map(mm, pmd, address);
2050 	if (!pte)
2051 		goto oom;
2052 
2053 	return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2054 
2055  oom:
2056 	spin_unlock(&mm->page_table_lock);
2057 	return VM_FAULT_OOM;
2058 }
2059 
2060 #ifndef __PAGETABLE_PUD_FOLDED
2061 /*
2062  * Allocate page upper directory.
2063  *
2064  * We've already handled the fast-path in-line, and we own the
2065  * page table lock.
2066  */
2067 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2068 {
2069 	pud_t *new;
2070 
2071 	spin_unlock(&mm->page_table_lock);
2072 	new = pud_alloc_one(mm, address);
2073 	spin_lock(&mm->page_table_lock);
2074 	if (!new)
2075 		return NULL;
2076 
2077 	/*
2078 	 * Because we dropped the lock, we should re-check the
2079 	 * entry, as somebody else could have populated it..
2080 	 */
2081 	if (pgd_present(*pgd)) {
2082 		pud_free(new);
2083 		goto out;
2084 	}
2085 	pgd_populate(mm, pgd, new);
2086  out:
2087 	return pud_offset(pgd, address);
2088 }
2089 #endif /* __PAGETABLE_PUD_FOLDED */
2090 
2091 #ifndef __PAGETABLE_PMD_FOLDED
2092 /*
2093  * Allocate page middle directory.
2094  *
2095  * We've already handled the fast-path in-line, and we own the
2096  * page table lock.
2097  */
2098 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2099 {
2100 	pmd_t *new;
2101 
2102 	spin_unlock(&mm->page_table_lock);
2103 	new = pmd_alloc_one(mm, address);
2104 	spin_lock(&mm->page_table_lock);
2105 	if (!new)
2106 		return NULL;
2107 
2108 	/*
2109 	 * Because we dropped the lock, we should re-check the
2110 	 * entry, as somebody else could have populated it..
2111 	 */
2112 #ifndef __ARCH_HAS_4LEVEL_HACK
2113 	if (pud_present(*pud)) {
2114 		pmd_free(new);
2115 		goto out;
2116 	}
2117 	pud_populate(mm, pud, new);
2118 #else
2119 	if (pgd_present(*pud)) {
2120 		pmd_free(new);
2121 		goto out;
2122 	}
2123 	pgd_populate(mm, pud, new);
2124 #endif /* __ARCH_HAS_4LEVEL_HACK */
2125 
2126  out:
2127 	return pmd_offset(pud, address);
2128 }
2129 #endif /* __PAGETABLE_PMD_FOLDED */
2130 
2131 int make_pages_present(unsigned long addr, unsigned long end)
2132 {
2133 	int ret, len, write;
2134 	struct vm_area_struct * vma;
2135 
2136 	vma = find_vma(current->mm, addr);
2137 	if (!vma)
2138 		return -1;
2139 	write = (vma->vm_flags & VM_WRITE) != 0;
2140 	if (addr >= end)
2141 		BUG();
2142 	if (end > vma->vm_end)
2143 		BUG();
2144 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2145 	ret = get_user_pages(current, current->mm, addr,
2146 			len, write, 0, NULL, NULL);
2147 	if (ret < 0)
2148 		return ret;
2149 	return ret == len ? 0 : -1;
2150 }
2151 
2152 /*
2153  * Map a vmalloc()-space virtual address to the physical page.
2154  */
2155 struct page * vmalloc_to_page(void * vmalloc_addr)
2156 {
2157 	unsigned long addr = (unsigned long) vmalloc_addr;
2158 	struct page *page = NULL;
2159 	pgd_t *pgd = pgd_offset_k(addr);
2160 	pud_t *pud;
2161 	pmd_t *pmd;
2162 	pte_t *ptep, pte;
2163 
2164 	if (!pgd_none(*pgd)) {
2165 		pud = pud_offset(pgd, addr);
2166 		if (!pud_none(*pud)) {
2167 			pmd = pmd_offset(pud, addr);
2168 			if (!pmd_none(*pmd)) {
2169 				ptep = pte_offset_map(pmd, addr);
2170 				pte = *ptep;
2171 				if (pte_present(pte))
2172 					page = pte_page(pte);
2173 				pte_unmap(ptep);
2174 			}
2175 		}
2176 	}
2177 	return page;
2178 }
2179 
2180 EXPORT_SYMBOL(vmalloc_to_page);
2181 
2182 /*
2183  * Map a vmalloc()-space virtual address to the physical page frame number.
2184  */
2185 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2186 {
2187 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2188 }
2189 
2190 EXPORT_SYMBOL(vmalloc_to_pfn);
2191 
2192 /*
2193  * update_mem_hiwater
2194  *	- update per process rss and vm high water data
2195  */
2196 void update_mem_hiwater(struct task_struct *tsk)
2197 {
2198 	if (tsk->mm) {
2199 		unsigned long rss = get_mm_counter(tsk->mm, rss);
2200 
2201 		if (tsk->mm->hiwater_rss < rss)
2202 			tsk->mm->hiwater_rss = rss;
2203 		if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2204 			tsk->mm->hiwater_vm = tsk->mm->total_vm;
2205 	}
2206 }
2207 
2208 #if !defined(__HAVE_ARCH_GATE_AREA)
2209 
2210 #if defined(AT_SYSINFO_EHDR)
2211 struct vm_area_struct gate_vma;
2212 
2213 static int __init gate_vma_init(void)
2214 {
2215 	gate_vma.vm_mm = NULL;
2216 	gate_vma.vm_start = FIXADDR_USER_START;
2217 	gate_vma.vm_end = FIXADDR_USER_END;
2218 	gate_vma.vm_page_prot = PAGE_READONLY;
2219 	gate_vma.vm_flags = 0;
2220 	return 0;
2221 }
2222 __initcall(gate_vma_init);
2223 #endif
2224 
2225 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2226 {
2227 #ifdef AT_SYSINFO_EHDR
2228 	return &gate_vma;
2229 #else
2230 	return NULL;
2231 #endif
2232 }
2233 
2234 int in_gate_area_no_task(unsigned long addr)
2235 {
2236 #ifdef AT_SYSINFO_EHDR
2237 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2238 		return 1;
2239 #endif
2240 	return 0;
2241 }
2242 
2243 #endif	/* __HAVE_ARCH_GATE_AREA */
2244