1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 117 return false; 118 119 return pte_marker_uffd_wp(vmf->orig_pte); 120 } 121 122 /* 123 * A number of key systems in x86 including ioremap() rely on the assumption 124 * that high_memory defines the upper bound on direct map memory, then end 125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 127 * and ZONE_HIGHMEM. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 do { 368 unsigned long addr = vma->vm_start; 369 struct vm_area_struct *next; 370 371 /* 372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 373 * be 0. This will underflow and is okay. 374 */ 375 next = mas_find(mas, ceiling - 1); 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 if (mm_wr_locked) 382 vma_start_write(vma); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 386 if (is_vm_hugetlb_page(vma)) { 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 388 floor, next ? next->vm_start : ceiling); 389 } else { 390 /* 391 * Optimization: gather nearby vmas into one call down 392 */ 393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 394 && !is_vm_hugetlb_page(next)) { 395 vma = next; 396 next = mas_find(mas, ceiling - 1); 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 } 402 free_pgd_range(tlb, addr, vma->vm_end, 403 floor, next ? next->vm_start : ceiling); 404 } 405 vma = next; 406 } while (vma); 407 } 408 409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 410 { 411 spinlock_t *ptl = pmd_lock(mm, pmd); 412 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 414 mm_inc_nr_ptes(mm); 415 /* 416 * Ensure all pte setup (eg. pte page lock and page clearing) are 417 * visible before the pte is made visible to other CPUs by being 418 * put into page tables. 419 * 420 * The other side of the story is the pointer chasing in the page 421 * table walking code (when walking the page table without locking; 422 * ie. most of the time). Fortunately, these data accesses consist 423 * of a chain of data-dependent loads, meaning most CPUs (alpha 424 * being the notable exception) will already guarantee loads are 425 * seen in-order. See the alpha page table accessors for the 426 * smp_rmb() barriers in page table walking code. 427 */ 428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 429 pmd_populate(mm, pmd, *pte); 430 *pte = NULL; 431 } 432 spin_unlock(ptl); 433 } 434 435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 436 { 437 pgtable_t new = pte_alloc_one(mm); 438 if (!new) 439 return -ENOMEM; 440 441 pmd_install(mm, pmd, &new); 442 if (new) 443 pte_free(mm, new); 444 return 0; 445 } 446 447 int __pte_alloc_kernel(pmd_t *pmd) 448 { 449 pte_t *new = pte_alloc_one_kernel(&init_mm); 450 if (!new) 451 return -ENOMEM; 452 453 spin_lock(&init_mm.page_table_lock); 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 455 smp_wmb(); /* See comment in pmd_install() */ 456 pmd_populate_kernel(&init_mm, pmd, new); 457 new = NULL; 458 } 459 spin_unlock(&init_mm.page_table_lock); 460 if (new) 461 pte_free_kernel(&init_mm, new); 462 return 0; 463 } 464 465 static inline void init_rss_vec(int *rss) 466 { 467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 468 } 469 470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 471 { 472 int i; 473 474 if (current->mm == mm) 475 sync_mm_rss(mm); 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 mapping ? mapping->a_ops->read_folio : NULL); 535 dump_stack(); 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 /* 540 * vm_normal_page -- This function gets the "struct page" associated with a pte. 541 * 542 * "Special" mappings do not wish to be associated with a "struct page" (either 543 * it doesn't exist, or it exists but they don't want to touch it). In this 544 * case, NULL is returned here. "Normal" mappings do have a struct page. 545 * 546 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 547 * pte bit, in which case this function is trivial. Secondly, an architecture 548 * may not have a spare pte bit, which requires a more complicated scheme, 549 * described below. 550 * 551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 552 * special mapping (even if there are underlying and valid "struct pages"). 553 * COWed pages of a VM_PFNMAP are always normal. 554 * 555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 558 * mapping will always honor the rule 559 * 560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 561 * 562 * And for normal mappings this is false. 563 * 564 * This restricts such mappings to be a linear translation from virtual address 565 * to pfn. To get around this restriction, we allow arbitrary mappings so long 566 * as the vma is not a COW mapping; in that case, we know that all ptes are 567 * special (because none can have been COWed). 568 * 569 * 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 571 * 572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 573 * page" backing, however the difference is that _all_ pages with a struct 574 * page (that is, those where pfn_valid is true) are refcounted and considered 575 * normal pages by the VM. The disadvantage is that pages are refcounted 576 * (which can be slower and simply not an option for some PFNMAP users). The 577 * advantage is that we don't have to follow the strict linearity rule of 578 * PFNMAP mappings in order to support COWable mappings. 579 * 580 */ 581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 582 pte_t pte) 583 { 584 unsigned long pfn = pte_pfn(pte); 585 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 587 if (likely(!pte_special(pte))) 588 goto check_pfn; 589 if (vma->vm_ops && vma->vm_ops->find_special_page) 590 return vma->vm_ops->find_special_page(vma, addr); 591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 592 return NULL; 593 if (is_zero_pfn(pfn)) 594 return NULL; 595 if (pte_devmap(pte)) 596 /* 597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 598 * and will have refcounts incremented on their struct pages 599 * when they are inserted into PTEs, thus they are safe to 600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 601 * do not have refcounts. Example of legacy ZONE_DEVICE is 602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 603 */ 604 return NULL; 605 606 print_bad_pte(vma, addr, pte, NULL); 607 return NULL; 608 } 609 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 611 612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 613 if (vma->vm_flags & VM_MIXEDMAP) { 614 if (!pfn_valid(pfn)) 615 return NULL; 616 goto out; 617 } else { 618 unsigned long off; 619 off = (addr - vma->vm_start) >> PAGE_SHIFT; 620 if (pfn == vma->vm_pgoff + off) 621 return NULL; 622 if (!is_cow_mapping(vma->vm_flags)) 623 return NULL; 624 } 625 } 626 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 630 check_pfn: 631 if (unlikely(pfn > highest_memmap_pfn)) { 632 print_bad_pte(vma, addr, pte, NULL); 633 return NULL; 634 } 635 636 /* 637 * NOTE! We still have PageReserved() pages in the page tables. 638 * eg. VDSO mappings can cause them to exist. 639 */ 640 out: 641 return pfn_to_page(pfn); 642 } 643 644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte) 646 { 647 struct page *page = vm_normal_page(vma, addr, pte); 648 649 if (page) 650 return page_folio(page); 651 return NULL; 652 } 653 654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 656 pmd_t pmd) 657 { 658 unsigned long pfn = pmd_pfn(pmd); 659 660 /* 661 * There is no pmd_special() but there may be special pmds, e.g. 662 * in a direct-access (dax) mapping, so let's just replicate the 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 664 */ 665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 666 if (vma->vm_flags & VM_MIXEDMAP) { 667 if (!pfn_valid(pfn)) 668 return NULL; 669 goto out; 670 } else { 671 unsigned long off; 672 off = (addr - vma->vm_start) >> PAGE_SHIFT; 673 if (pfn == vma->vm_pgoff + off) 674 return NULL; 675 if (!is_cow_mapping(vma->vm_flags)) 676 return NULL; 677 } 678 } 679 680 if (pmd_devmap(pmd)) 681 return NULL; 682 if (is_huge_zero_pmd(pmd)) 683 return NULL; 684 if (unlikely(pfn > highest_memmap_pfn)) 685 return NULL; 686 687 /* 688 * NOTE! We still have PageReserved() pages in the page tables. 689 * eg. VDSO mappings can cause them to exist. 690 */ 691 out: 692 return pfn_to_page(pfn); 693 } 694 #endif 695 696 static void restore_exclusive_pte(struct vm_area_struct *vma, 697 struct page *page, unsigned long address, 698 pte_t *ptep) 699 { 700 pte_t orig_pte; 701 pte_t pte; 702 swp_entry_t entry; 703 704 orig_pte = ptep_get(ptep); 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 706 if (pte_swp_soft_dirty(orig_pte)) 707 pte = pte_mksoft_dirty(pte); 708 709 entry = pte_to_swp_entry(orig_pte); 710 if (pte_swp_uffd_wp(orig_pte)) 711 pte = pte_mkuffd_wp(pte); 712 else if (is_writable_device_exclusive_entry(entry)) 713 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 714 715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 716 717 /* 718 * No need to take a page reference as one was already 719 * created when the swap entry was made. 720 */ 721 if (PageAnon(page)) 722 page_add_anon_rmap(page, vma, address, RMAP_NONE); 723 else 724 /* 725 * Currently device exclusive access only supports anonymous 726 * memory so the entry shouldn't point to a filebacked page. 727 */ 728 WARN_ON_ONCE(1); 729 730 set_pte_at(vma->vm_mm, address, ptep, pte); 731 732 /* 733 * No need to invalidate - it was non-present before. However 734 * secondary CPUs may have mappings that need invalidating. 735 */ 736 update_mmu_cache(vma, address, ptep); 737 } 738 739 /* 740 * Tries to restore an exclusive pte if the page lock can be acquired without 741 * sleeping. 742 */ 743 static int 744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 745 unsigned long addr) 746 { 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 748 struct page *page = pfn_swap_entry_to_page(entry); 749 750 if (trylock_page(page)) { 751 restore_exclusive_pte(vma, page, addr, src_pte); 752 unlock_page(page); 753 return 0; 754 } 755 756 return -EBUSY; 757 } 758 759 /* 760 * copy one vm_area from one task to the other. Assumes the page tables 761 * already present in the new task to be cleared in the whole range 762 * covered by this vma. 763 */ 764 765 static unsigned long 766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 768 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 769 { 770 unsigned long vm_flags = dst_vma->vm_flags; 771 pte_t orig_pte = ptep_get(src_pte); 772 pte_t pte = orig_pte; 773 struct page *page; 774 swp_entry_t entry = pte_to_swp_entry(orig_pte); 775 776 if (likely(!non_swap_entry(entry))) { 777 if (swap_duplicate(entry) < 0) 778 return -EIO; 779 780 /* make sure dst_mm is on swapoff's mmlist. */ 781 if (unlikely(list_empty(&dst_mm->mmlist))) { 782 spin_lock(&mmlist_lock); 783 if (list_empty(&dst_mm->mmlist)) 784 list_add(&dst_mm->mmlist, 785 &src_mm->mmlist); 786 spin_unlock(&mmlist_lock); 787 } 788 /* Mark the swap entry as shared. */ 789 if (pte_swp_exclusive(orig_pte)) { 790 pte = pte_swp_clear_exclusive(orig_pte); 791 set_pte_at(src_mm, addr, src_pte, pte); 792 } 793 rss[MM_SWAPENTS]++; 794 } else if (is_migration_entry(entry)) { 795 page = pfn_swap_entry_to_page(entry); 796 797 rss[mm_counter(page)]++; 798 799 if (!is_readable_migration_entry(entry) && 800 is_cow_mapping(vm_flags)) { 801 /* 802 * COW mappings require pages in both parent and child 803 * to be set to read. A previously exclusive entry is 804 * now shared. 805 */ 806 entry = make_readable_migration_entry( 807 swp_offset(entry)); 808 pte = swp_entry_to_pte(entry); 809 if (pte_swp_soft_dirty(orig_pte)) 810 pte = pte_swp_mksoft_dirty(pte); 811 if (pte_swp_uffd_wp(orig_pte)) 812 pte = pte_swp_mkuffd_wp(pte); 813 set_pte_at(src_mm, addr, src_pte, pte); 814 } 815 } else if (is_device_private_entry(entry)) { 816 page = pfn_swap_entry_to_page(entry); 817 818 /* 819 * Update rss count even for unaddressable pages, as 820 * they should treated just like normal pages in this 821 * respect. 822 * 823 * We will likely want to have some new rss counters 824 * for unaddressable pages, at some point. But for now 825 * keep things as they are. 826 */ 827 get_page(page); 828 rss[mm_counter(page)]++; 829 /* Cannot fail as these pages cannot get pinned. */ 830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 831 832 /* 833 * We do not preserve soft-dirty information, because so 834 * far, checkpoint/restore is the only feature that 835 * requires that. And checkpoint/restore does not work 836 * when a device driver is involved (you cannot easily 837 * save and restore device driver state). 838 */ 839 if (is_writable_device_private_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 entry = make_readable_device_private_entry( 842 swp_offset(entry)); 843 pte = swp_entry_to_pte(entry); 844 if (pte_swp_uffd_wp(orig_pte)) 845 pte = pte_swp_mkuffd_wp(pte); 846 set_pte_at(src_mm, addr, src_pte, pte); 847 } 848 } else if (is_device_exclusive_entry(entry)) { 849 /* 850 * Make device exclusive entries present by restoring the 851 * original entry then copying as for a present pte. Device 852 * exclusive entries currently only support private writable 853 * (ie. COW) mappings. 854 */ 855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 856 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 857 return -EBUSY; 858 return -ENOENT; 859 } else if (is_pte_marker_entry(entry)) { 860 pte_marker marker = copy_pte_marker(entry, dst_vma); 861 862 if (marker) 863 set_pte_at(dst_mm, addr, dst_pte, 864 make_pte_marker(marker)); 865 return 0; 866 } 867 if (!userfaultfd_wp(dst_vma)) 868 pte = pte_swp_clear_uffd_wp(pte); 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 /* 874 * Copy a present and normal page. 875 * 876 * NOTE! The usual case is that this isn't required; 877 * instead, the caller can just increase the page refcount 878 * and re-use the pte the traditional way. 879 * 880 * And if we need a pre-allocated page but don't yet have 881 * one, return a negative error to let the preallocation 882 * code know so that it can do so outside the page table 883 * lock. 884 */ 885 static inline int 886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 888 struct folio **prealloc, struct page *page) 889 { 890 struct folio *new_folio; 891 pte_t pte; 892 893 new_folio = *prealloc; 894 if (!new_folio) 895 return -EAGAIN; 896 897 /* 898 * We have a prealloc page, all good! Take it 899 * over and copy the page & arm it. 900 */ 901 *prealloc = NULL; 902 copy_user_highpage(&new_folio->page, page, addr, src_vma); 903 __folio_mark_uptodate(new_folio); 904 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 905 folio_add_lru_vma(new_folio, dst_vma); 906 rss[MM_ANONPAGES]++; 907 908 /* All done, just insert the new page copy in the child */ 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 912 /* Uffd-wp needs to be delivered to dest pte as well */ 913 pte = pte_mkuffd_wp(pte); 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 915 return 0; 916 } 917 918 /* 919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 920 * is required to copy this pte. 921 */ 922 static inline int 923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 925 struct folio **prealloc) 926 { 927 struct mm_struct *src_mm = src_vma->vm_mm; 928 unsigned long vm_flags = src_vma->vm_flags; 929 pte_t pte = ptep_get(src_pte); 930 struct page *page; 931 struct folio *folio; 932 933 page = vm_normal_page(src_vma, addr, pte); 934 if (page) 935 folio = page_folio(page); 936 if (page && folio_test_anon(folio)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 folio_get(folio); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page may be pinned, we have to copy. */ 946 folio_put(folio); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[MM_ANONPAGES]++; 951 } else if (page) { 952 folio_get(folio); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter_file(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 983 struct vm_area_struct *vma, unsigned long addr) 984 { 985 struct folio *new_folio; 986 987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 988 if (!new_folio) 989 return NULL; 990 991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 992 folio_put(new_folio); 993 return NULL; 994 } 995 folio_throttle_swaprate(new_folio, GFP_KERNEL); 996 997 return new_folio; 998 } 999 1000 static int 1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1003 unsigned long end) 1004 { 1005 struct mm_struct *dst_mm = dst_vma->vm_mm; 1006 struct mm_struct *src_mm = src_vma->vm_mm; 1007 pte_t *orig_src_pte, *orig_dst_pte; 1008 pte_t *src_pte, *dst_pte; 1009 pte_t ptent; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct folio *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 /* 1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1022 * error handling here, assume that exclusive mmap_lock on dst and src 1023 * protects anon from unexpected THP transitions; with shmem and file 1024 * protected by mmap_lock-less collapse skipping areas with anon_vma 1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1026 * can remove such assumptions later, but this is good enough for now. 1027 */ 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1034 if (!src_pte) { 1035 pte_unmap_unlock(dst_pte, dst_ptl); 1036 /* ret == 0 */ 1037 goto out; 1038 } 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1040 orig_src_pte = src_pte; 1041 orig_dst_pte = dst_pte; 1042 arch_enter_lazy_mmu_mode(); 1043 1044 do { 1045 /* 1046 * We are holding two locks at this point - either of them 1047 * could generate latencies in another task on another CPU. 1048 */ 1049 if (progress >= 32) { 1050 progress = 0; 1051 if (need_resched() || 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1053 break; 1054 } 1055 ptent = ptep_get(src_pte); 1056 if (pte_none(ptent)) { 1057 progress++; 1058 continue; 1059 } 1060 if (unlikely(!pte_present(ptent))) { 1061 ret = copy_nonpresent_pte(dst_mm, src_mm, 1062 dst_pte, src_pte, 1063 dst_vma, src_vma, 1064 addr, rss); 1065 if (ret == -EIO) { 1066 entry = pte_to_swp_entry(ptep_get(src_pte)); 1067 break; 1068 } else if (ret == -EBUSY) { 1069 break; 1070 } else if (!ret) { 1071 progress += 8; 1072 continue; 1073 } 1074 1075 /* 1076 * Device exclusive entry restored, continue by copying 1077 * the now present pte. 1078 */ 1079 WARN_ON_ONCE(ret != -ENOENT); 1080 } 1081 /* copy_present_pte() will clear `*prealloc' if consumed */ 1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1083 addr, rss, &prealloc); 1084 /* 1085 * If we need a pre-allocated page for this pte, drop the 1086 * locks, allocate, and try again. 1087 */ 1088 if (unlikely(ret == -EAGAIN)) 1089 break; 1090 if (unlikely(prealloc)) { 1091 /* 1092 * pre-alloc page cannot be reused by next time so as 1093 * to strictly follow mempolicy (e.g., alloc_page_vma() 1094 * will allocate page according to address). This 1095 * could only happen if one pinned pte changed. 1096 */ 1097 folio_put(prealloc); 1098 prealloc = NULL; 1099 } 1100 progress += 8; 1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1102 1103 arch_leave_lazy_mmu_mode(); 1104 pte_unmap_unlock(orig_src_pte, src_ptl); 1105 add_mm_rss_vec(dst_mm, rss); 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1107 cond_resched(); 1108 1109 if (ret == -EIO) { 1110 VM_WARN_ON_ONCE(!entry.val); 1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 entry.val = 0; 1116 } else if (ret == -EBUSY) { 1117 goto out; 1118 } else if (ret == -EAGAIN) { 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1120 if (!prealloc) 1121 return -ENOMEM; 1122 } else if (ret) { 1123 VM_WARN_ON_ONCE(1); 1124 } 1125 1126 /* We've captured and resolved the error. Reset, try again. */ 1127 ret = 0; 1128 1129 if (addr != end) 1130 goto again; 1131 out: 1132 if (unlikely(prealloc)) 1133 folio_put(prealloc); 1134 return ret; 1135 } 1136 1137 static inline int 1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pmd_t *src_pmd, *dst_pmd; 1145 unsigned long next; 1146 1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1148 if (!dst_pmd) 1149 return -ENOMEM; 1150 src_pmd = pmd_offset(src_pud, addr); 1151 do { 1152 next = pmd_addr_end(addr, end); 1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1154 || pmd_devmap(*src_pmd)) { 1155 int err; 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1158 addr, dst_vma, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pmd_none_or_clear_bad(src_pmd)) 1166 continue; 1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 struct mm_struct *src_mm = src_vma->vm_mm; 1181 pud_t *src_pud, *dst_pud; 1182 unsigned long next; 1183 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1185 if (!dst_pud) 1186 return -ENOMEM; 1187 src_pud = pud_offset(src_p4d, addr); 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1191 int err; 1192 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1194 err = copy_huge_pud(dst_mm, src_mm, 1195 dst_pud, src_pud, addr, src_vma); 1196 if (err == -ENOMEM) 1197 return -ENOMEM; 1198 if (!err) 1199 continue; 1200 /* fall through */ 1201 } 1202 if (pud_none_or_clear_bad(src_pud)) 1203 continue; 1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1205 addr, next)) 1206 return -ENOMEM; 1207 } while (dst_pud++, src_pud++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 static inline int 1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1214 unsigned long end) 1215 { 1216 struct mm_struct *dst_mm = dst_vma->vm_mm; 1217 p4d_t *src_p4d, *dst_p4d; 1218 unsigned long next; 1219 1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1221 if (!dst_p4d) 1222 return -ENOMEM; 1223 src_p4d = p4d_offset(src_pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(src_p4d)) 1227 continue; 1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1229 addr, next)) 1230 return -ENOMEM; 1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1232 return 0; 1233 } 1234 1235 /* 1236 * Return true if the vma needs to copy the pgtable during this fork(). Return 1237 * false when we can speed up fork() by allowing lazy page faults later until 1238 * when the child accesses the memory range. 1239 */ 1240 static bool 1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1242 { 1243 /* 1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1246 * contains uffd-wp protection information, that's something we can't 1247 * retrieve from page cache, and skip copying will lose those info. 1248 */ 1249 if (userfaultfd_wp(dst_vma)) 1250 return true; 1251 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1253 return true; 1254 1255 if (src_vma->anon_vma) 1256 return true; 1257 1258 /* 1259 * Don't copy ptes where a page fault will fill them correctly. Fork 1260 * becomes much lighter when there are big shared or private readonly 1261 * mappings. The tradeoff is that copy_page_range is more efficient 1262 * than faulting. 1263 */ 1264 return false; 1265 } 1266 1267 int 1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1269 { 1270 pgd_t *src_pgd, *dst_pgd; 1271 unsigned long next; 1272 unsigned long addr = src_vma->vm_start; 1273 unsigned long end = src_vma->vm_end; 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 struct mmu_notifier_range range; 1277 bool is_cow; 1278 int ret; 1279 1280 if (!vma_needs_copy(dst_vma, src_vma)) 1281 return 0; 1282 1283 if (is_vm_hugetlb_page(src_vma)) 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1285 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1287 /* 1288 * We do not free on error cases below as remove_vma 1289 * gets called on error from higher level routine 1290 */ 1291 ret = track_pfn_copy(src_vma); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to invalidate the secondary MMU mappings only when 1298 * there could be a permission downgrade on the ptes of the 1299 * parent mm. And a permission downgrade will only happen if 1300 * is_cow_mapping() returns true. 1301 */ 1302 is_cow = is_cow_mapping(src_vma->vm_flags); 1303 1304 if (is_cow) { 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1306 0, src_mm, addr, end); 1307 mmu_notifier_invalidate_range_start(&range); 1308 /* 1309 * Disabling preemption is not needed for the write side, as 1310 * the read side doesn't spin, but goes to the mmap_lock. 1311 * 1312 * Use the raw variant of the seqcount_t write API to avoid 1313 * lockdep complaining about preemptibility. 1314 */ 1315 vma_assert_write_locked(src_vma); 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1317 } 1318 1319 ret = 0; 1320 dst_pgd = pgd_offset(dst_mm, addr); 1321 src_pgd = pgd_offset(src_mm, addr); 1322 do { 1323 next = pgd_addr_end(addr, end); 1324 if (pgd_none_or_clear_bad(src_pgd)) 1325 continue; 1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1327 addr, next))) { 1328 untrack_pfn_clear(dst_vma); 1329 ret = -ENOMEM; 1330 break; 1331 } 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1333 1334 if (is_cow) { 1335 raw_write_seqcount_end(&src_mm->write_protect_seq); 1336 mmu_notifier_invalidate_range_end(&range); 1337 } 1338 return ret; 1339 } 1340 1341 /* Whether we should zap all COWed (private) pages too */ 1342 static inline bool should_zap_cows(struct zap_details *details) 1343 { 1344 /* By default, zap all pages */ 1345 if (!details) 1346 return true; 1347 1348 /* Or, we zap COWed pages only if the caller wants to */ 1349 return details->even_cows; 1350 } 1351 1352 /* Decides whether we should zap this page with the page pointer specified */ 1353 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1354 { 1355 /* If we can make a decision without *page.. */ 1356 if (should_zap_cows(details)) 1357 return true; 1358 1359 /* E.g. the caller passes NULL for the case of a zero page */ 1360 if (!page) 1361 return true; 1362 1363 /* Otherwise we should only zap non-anon pages */ 1364 return !PageAnon(page); 1365 } 1366 1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1368 { 1369 if (!details) 1370 return false; 1371 1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1373 } 1374 1375 /* 1376 * This function makes sure that we'll replace the none pte with an uffd-wp 1377 * swap special pte marker when necessary. Must be with the pgtable lock held. 1378 */ 1379 static inline void 1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1381 unsigned long addr, pte_t *pte, 1382 struct zap_details *details, pte_t pteval) 1383 { 1384 /* Zap on anonymous always means dropping everything */ 1385 if (vma_is_anonymous(vma)) 1386 return; 1387 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 init_rss_vec(rss); 1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1410 if (!pte) 1411 return addr; 1412 1413 flush_tlb_batched_pending(mm); 1414 arch_enter_lazy_mmu_mode(); 1415 do { 1416 pte_t ptent = ptep_get(pte); 1417 struct page *page; 1418 1419 if (pte_none(ptent)) 1420 continue; 1421 1422 if (need_resched()) 1423 break; 1424 1425 if (pte_present(ptent)) { 1426 unsigned int delay_rmap; 1427 1428 page = vm_normal_page(vma, addr, ptent); 1429 if (unlikely(!should_zap_page(details, page))) 1430 continue; 1431 ptent = ptep_get_and_clear_full(mm, addr, pte, 1432 tlb->fullmm); 1433 tlb_remove_tlb_entry(tlb, pte, addr); 1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1435 ptent); 1436 if (unlikely(!page)) { 1437 ksm_might_unmap_zero_page(mm, ptent); 1438 continue; 1439 } 1440 1441 delay_rmap = 0; 1442 if (!PageAnon(page)) { 1443 if (pte_dirty(ptent)) { 1444 set_page_dirty(page); 1445 if (tlb_delay_rmap(tlb)) { 1446 delay_rmap = 1; 1447 force_flush = 1; 1448 } 1449 } 1450 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1451 mark_page_accessed(page); 1452 } 1453 rss[mm_counter(page)]--; 1454 if (!delay_rmap) { 1455 page_remove_rmap(page, vma, false); 1456 if (unlikely(page_mapcount(page) < 0)) 1457 print_bad_pte(vma, addr, ptent, page); 1458 } 1459 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1460 force_flush = 1; 1461 addr += PAGE_SIZE; 1462 break; 1463 } 1464 continue; 1465 } 1466 1467 entry = pte_to_swp_entry(ptent); 1468 if (is_device_private_entry(entry) || 1469 is_device_exclusive_entry(entry)) { 1470 page = pfn_swap_entry_to_page(entry); 1471 if (unlikely(!should_zap_page(details, page))) 1472 continue; 1473 /* 1474 * Both device private/exclusive mappings should only 1475 * work with anonymous page so far, so we don't need to 1476 * consider uffd-wp bit when zap. For more information, 1477 * see zap_install_uffd_wp_if_needed(). 1478 */ 1479 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1480 rss[mm_counter(page)]--; 1481 if (is_device_private_entry(entry)) 1482 page_remove_rmap(page, vma, false); 1483 put_page(page); 1484 } else if (!non_swap_entry(entry)) { 1485 /* Genuine swap entry, hence a private anon page */ 1486 if (!should_zap_cows(details)) 1487 continue; 1488 rss[MM_SWAPENTS]--; 1489 if (unlikely(!free_swap_and_cache(entry))) 1490 print_bad_pte(vma, addr, ptent, NULL); 1491 } else if (is_migration_entry(entry)) { 1492 page = pfn_swap_entry_to_page(entry); 1493 if (!should_zap_page(details, page)) 1494 continue; 1495 rss[mm_counter(page)]--; 1496 } else if (pte_marker_entry_uffd_wp(entry)) { 1497 /* 1498 * For anon: always drop the marker; for file: only 1499 * drop the marker if explicitly requested. 1500 */ 1501 if (!vma_is_anonymous(vma) && 1502 !zap_drop_file_uffd_wp(details)) 1503 continue; 1504 } else if (is_hwpoison_entry(entry) || 1505 is_poisoned_swp_entry(entry)) { 1506 if (!should_zap_cows(details)) 1507 continue; 1508 } else { 1509 /* We should have covered all the swap entry types */ 1510 WARN_ON_ONCE(1); 1511 } 1512 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1513 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1514 } while (pte++, addr += PAGE_SIZE, addr != end); 1515 1516 add_mm_rss_vec(mm, rss); 1517 arch_leave_lazy_mmu_mode(); 1518 1519 /* Do the actual TLB flush before dropping ptl */ 1520 if (force_flush) { 1521 tlb_flush_mmu_tlbonly(tlb); 1522 tlb_flush_rmaps(tlb, vma); 1523 } 1524 pte_unmap_unlock(start_pte, ptl); 1525 1526 /* 1527 * If we forced a TLB flush (either due to running out of 1528 * batch buffers or because we needed to flush dirty TLB 1529 * entries before releasing the ptl), free the batched 1530 * memory too. Come back again if we didn't do everything. 1531 */ 1532 if (force_flush) 1533 tlb_flush_mmu(tlb); 1534 1535 return addr; 1536 } 1537 1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1539 struct vm_area_struct *vma, pud_t *pud, 1540 unsigned long addr, unsigned long end, 1541 struct zap_details *details) 1542 { 1543 pmd_t *pmd; 1544 unsigned long next; 1545 1546 pmd = pmd_offset(pud, addr); 1547 do { 1548 next = pmd_addr_end(addr, end); 1549 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1550 if (next - addr != HPAGE_PMD_SIZE) 1551 __split_huge_pmd(vma, pmd, addr, false, NULL); 1552 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1553 addr = next; 1554 continue; 1555 } 1556 /* fall through */ 1557 } else if (details && details->single_folio && 1558 folio_test_pmd_mappable(details->single_folio) && 1559 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1560 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1561 /* 1562 * Take and drop THP pmd lock so that we cannot return 1563 * prematurely, while zap_huge_pmd() has cleared *pmd, 1564 * but not yet decremented compound_mapcount(). 1565 */ 1566 spin_unlock(ptl); 1567 } 1568 if (pmd_none(*pmd)) { 1569 addr = next; 1570 continue; 1571 } 1572 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1573 if (addr != next) 1574 pmd--; 1575 } while (pmd++, cond_resched(), addr != end); 1576 1577 return addr; 1578 } 1579 1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1581 struct vm_area_struct *vma, p4d_t *p4d, 1582 unsigned long addr, unsigned long end, 1583 struct zap_details *details) 1584 { 1585 pud_t *pud; 1586 unsigned long next; 1587 1588 pud = pud_offset(p4d, addr); 1589 do { 1590 next = pud_addr_end(addr, end); 1591 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1592 if (next - addr != HPAGE_PUD_SIZE) { 1593 mmap_assert_locked(tlb->mm); 1594 split_huge_pud(vma, pud, addr); 1595 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1596 goto next; 1597 /* fall through */ 1598 } 1599 if (pud_none_or_clear_bad(pud)) 1600 continue; 1601 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1602 next: 1603 cond_resched(); 1604 } while (pud++, addr = next, addr != end); 1605 1606 return addr; 1607 } 1608 1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1610 struct vm_area_struct *vma, pgd_t *pgd, 1611 unsigned long addr, unsigned long end, 1612 struct zap_details *details) 1613 { 1614 p4d_t *p4d; 1615 unsigned long next; 1616 1617 p4d = p4d_offset(pgd, addr); 1618 do { 1619 next = p4d_addr_end(addr, end); 1620 if (p4d_none_or_clear_bad(p4d)) 1621 continue; 1622 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1623 } while (p4d++, addr = next, addr != end); 1624 1625 return addr; 1626 } 1627 1628 void unmap_page_range(struct mmu_gather *tlb, 1629 struct vm_area_struct *vma, 1630 unsigned long addr, unsigned long end, 1631 struct zap_details *details) 1632 { 1633 pgd_t *pgd; 1634 unsigned long next; 1635 1636 BUG_ON(addr >= end); 1637 tlb_start_vma(tlb, vma); 1638 pgd = pgd_offset(vma->vm_mm, addr); 1639 do { 1640 next = pgd_addr_end(addr, end); 1641 if (pgd_none_or_clear_bad(pgd)) 1642 continue; 1643 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1644 } while (pgd++, addr = next, addr != end); 1645 tlb_end_vma(tlb, vma); 1646 } 1647 1648 1649 static void unmap_single_vma(struct mmu_gather *tlb, 1650 struct vm_area_struct *vma, unsigned long start_addr, 1651 unsigned long end_addr, 1652 struct zap_details *details, bool mm_wr_locked) 1653 { 1654 unsigned long start = max(vma->vm_start, start_addr); 1655 unsigned long end; 1656 1657 if (start >= vma->vm_end) 1658 return; 1659 end = min(vma->vm_end, end_addr); 1660 if (end <= vma->vm_start) 1661 return; 1662 1663 if (vma->vm_file) 1664 uprobe_munmap(vma, start, end); 1665 1666 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1667 untrack_pfn(vma, 0, 0, mm_wr_locked); 1668 1669 if (start != end) { 1670 if (unlikely(is_vm_hugetlb_page(vma))) { 1671 /* 1672 * It is undesirable to test vma->vm_file as it 1673 * should be non-null for valid hugetlb area. 1674 * However, vm_file will be NULL in the error 1675 * cleanup path of mmap_region. When 1676 * hugetlbfs ->mmap method fails, 1677 * mmap_region() nullifies vma->vm_file 1678 * before calling this function to clean up. 1679 * Since no pte has actually been setup, it is 1680 * safe to do nothing in this case. 1681 */ 1682 if (vma->vm_file) { 1683 zap_flags_t zap_flags = details ? 1684 details->zap_flags : 0; 1685 __unmap_hugepage_range_final(tlb, vma, start, end, 1686 NULL, zap_flags); 1687 } 1688 } else 1689 unmap_page_range(tlb, vma, start, end, details); 1690 } 1691 } 1692 1693 /** 1694 * unmap_vmas - unmap a range of memory covered by a list of vma's 1695 * @tlb: address of the caller's struct mmu_gather 1696 * @mas: the maple state 1697 * @vma: the starting vma 1698 * @start_addr: virtual address at which to start unmapping 1699 * @end_addr: virtual address at which to end unmapping 1700 * @tree_end: The maximum index to check 1701 * @mm_wr_locked: lock flag 1702 * 1703 * Unmap all pages in the vma list. 1704 * 1705 * Only addresses between `start' and `end' will be unmapped. 1706 * 1707 * The VMA list must be sorted in ascending virtual address order. 1708 * 1709 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1710 * range after unmap_vmas() returns. So the only responsibility here is to 1711 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1712 * drops the lock and schedules. 1713 */ 1714 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1715 struct vm_area_struct *vma, unsigned long start_addr, 1716 unsigned long end_addr, unsigned long tree_end, 1717 bool mm_wr_locked) 1718 { 1719 struct mmu_notifier_range range; 1720 struct zap_details details = { 1721 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1722 /* Careful - we need to zap private pages too! */ 1723 .even_cows = true, 1724 }; 1725 1726 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1727 start_addr, end_addr); 1728 mmu_notifier_invalidate_range_start(&range); 1729 do { 1730 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1731 mm_wr_locked); 1732 } while ((vma = mas_find(mas, tree_end - 1)) != NULL); 1733 mmu_notifier_invalidate_range_end(&range); 1734 } 1735 1736 /** 1737 * zap_page_range_single - remove user pages in a given range 1738 * @vma: vm_area_struct holding the applicable pages 1739 * @address: starting address of pages to zap 1740 * @size: number of bytes to zap 1741 * @details: details of shared cache invalidation 1742 * 1743 * The range must fit into one VMA. 1744 */ 1745 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1746 unsigned long size, struct zap_details *details) 1747 { 1748 const unsigned long end = address + size; 1749 struct mmu_notifier_range range; 1750 struct mmu_gather tlb; 1751 1752 lru_add_drain(); 1753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1754 address, end); 1755 if (is_vm_hugetlb_page(vma)) 1756 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1757 &range.end); 1758 tlb_gather_mmu(&tlb, vma->vm_mm); 1759 update_hiwater_rss(vma->vm_mm); 1760 mmu_notifier_invalidate_range_start(&range); 1761 /* 1762 * unmap 'address-end' not 'range.start-range.end' as range 1763 * could have been expanded for hugetlb pmd sharing. 1764 */ 1765 unmap_single_vma(&tlb, vma, address, end, details, false); 1766 mmu_notifier_invalidate_range_end(&range); 1767 tlb_finish_mmu(&tlb); 1768 } 1769 1770 /** 1771 * zap_vma_ptes - remove ptes mapping the vma 1772 * @vma: vm_area_struct holding ptes to be zapped 1773 * @address: starting address of pages to zap 1774 * @size: number of bytes to zap 1775 * 1776 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1777 * 1778 * The entire address range must be fully contained within the vma. 1779 * 1780 */ 1781 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1782 unsigned long size) 1783 { 1784 if (!range_in_vma(vma, address, address + size) || 1785 !(vma->vm_flags & VM_PFNMAP)) 1786 return; 1787 1788 zap_page_range_single(vma, address, size, NULL); 1789 } 1790 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1791 1792 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1793 { 1794 pgd_t *pgd; 1795 p4d_t *p4d; 1796 pud_t *pud; 1797 pmd_t *pmd; 1798 1799 pgd = pgd_offset(mm, addr); 1800 p4d = p4d_alloc(mm, pgd, addr); 1801 if (!p4d) 1802 return NULL; 1803 pud = pud_alloc(mm, p4d, addr); 1804 if (!pud) 1805 return NULL; 1806 pmd = pmd_alloc(mm, pud, addr); 1807 if (!pmd) 1808 return NULL; 1809 1810 VM_BUG_ON(pmd_trans_huge(*pmd)); 1811 return pmd; 1812 } 1813 1814 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1815 spinlock_t **ptl) 1816 { 1817 pmd_t *pmd = walk_to_pmd(mm, addr); 1818 1819 if (!pmd) 1820 return NULL; 1821 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1822 } 1823 1824 static int validate_page_before_insert(struct page *page) 1825 { 1826 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1827 return -EINVAL; 1828 flush_dcache_page(page); 1829 return 0; 1830 } 1831 1832 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1833 unsigned long addr, struct page *page, pgprot_t prot) 1834 { 1835 if (!pte_none(ptep_get(pte))) 1836 return -EBUSY; 1837 /* Ok, finally just insert the thing.. */ 1838 get_page(page); 1839 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1840 page_add_file_rmap(page, vma, false); 1841 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1842 return 0; 1843 } 1844 1845 /* 1846 * This is the old fallback for page remapping. 1847 * 1848 * For historical reasons, it only allows reserved pages. Only 1849 * old drivers should use this, and they needed to mark their 1850 * pages reserved for the old functions anyway. 1851 */ 1852 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1853 struct page *page, pgprot_t prot) 1854 { 1855 int retval; 1856 pte_t *pte; 1857 spinlock_t *ptl; 1858 1859 retval = validate_page_before_insert(page); 1860 if (retval) 1861 goto out; 1862 retval = -ENOMEM; 1863 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1864 if (!pte) 1865 goto out; 1866 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1867 pte_unmap_unlock(pte, ptl); 1868 out: 1869 return retval; 1870 } 1871 1872 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1873 unsigned long addr, struct page *page, pgprot_t prot) 1874 { 1875 int err; 1876 1877 if (!page_count(page)) 1878 return -EINVAL; 1879 err = validate_page_before_insert(page); 1880 if (err) 1881 return err; 1882 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1883 } 1884 1885 /* insert_pages() amortizes the cost of spinlock operations 1886 * when inserting pages in a loop. 1887 */ 1888 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1889 struct page **pages, unsigned long *num, pgprot_t prot) 1890 { 1891 pmd_t *pmd = NULL; 1892 pte_t *start_pte, *pte; 1893 spinlock_t *pte_lock; 1894 struct mm_struct *const mm = vma->vm_mm; 1895 unsigned long curr_page_idx = 0; 1896 unsigned long remaining_pages_total = *num; 1897 unsigned long pages_to_write_in_pmd; 1898 int ret; 1899 more: 1900 ret = -EFAULT; 1901 pmd = walk_to_pmd(mm, addr); 1902 if (!pmd) 1903 goto out; 1904 1905 pages_to_write_in_pmd = min_t(unsigned long, 1906 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1907 1908 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1909 ret = -ENOMEM; 1910 if (pte_alloc(mm, pmd)) 1911 goto out; 1912 1913 while (pages_to_write_in_pmd) { 1914 int pte_idx = 0; 1915 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1916 1917 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1918 if (!start_pte) { 1919 ret = -EFAULT; 1920 goto out; 1921 } 1922 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1923 int err = insert_page_in_batch_locked(vma, pte, 1924 addr, pages[curr_page_idx], prot); 1925 if (unlikely(err)) { 1926 pte_unmap_unlock(start_pte, pte_lock); 1927 ret = err; 1928 remaining_pages_total -= pte_idx; 1929 goto out; 1930 } 1931 addr += PAGE_SIZE; 1932 ++curr_page_idx; 1933 } 1934 pte_unmap_unlock(start_pte, pte_lock); 1935 pages_to_write_in_pmd -= batch_size; 1936 remaining_pages_total -= batch_size; 1937 } 1938 if (remaining_pages_total) 1939 goto more; 1940 ret = 0; 1941 out: 1942 *num = remaining_pages_total; 1943 return ret; 1944 } 1945 1946 /** 1947 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1948 * @vma: user vma to map to 1949 * @addr: target start user address of these pages 1950 * @pages: source kernel pages 1951 * @num: in: number of pages to map. out: number of pages that were *not* 1952 * mapped. (0 means all pages were successfully mapped). 1953 * 1954 * Preferred over vm_insert_page() when inserting multiple pages. 1955 * 1956 * In case of error, we may have mapped a subset of the provided 1957 * pages. It is the caller's responsibility to account for this case. 1958 * 1959 * The same restrictions apply as in vm_insert_page(). 1960 */ 1961 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1962 struct page **pages, unsigned long *num) 1963 { 1964 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1965 1966 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1967 return -EFAULT; 1968 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1969 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1970 BUG_ON(vma->vm_flags & VM_PFNMAP); 1971 vm_flags_set(vma, VM_MIXEDMAP); 1972 } 1973 /* Defer page refcount checking till we're about to map that page. */ 1974 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1975 } 1976 EXPORT_SYMBOL(vm_insert_pages); 1977 1978 /** 1979 * vm_insert_page - insert single page into user vma 1980 * @vma: user vma to map to 1981 * @addr: target user address of this page 1982 * @page: source kernel page 1983 * 1984 * This allows drivers to insert individual pages they've allocated 1985 * into a user vma. 1986 * 1987 * The page has to be a nice clean _individual_ kernel allocation. 1988 * If you allocate a compound page, you need to have marked it as 1989 * such (__GFP_COMP), or manually just split the page up yourself 1990 * (see split_page()). 1991 * 1992 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1993 * took an arbitrary page protection parameter. This doesn't allow 1994 * that. Your vma protection will have to be set up correctly, which 1995 * means that if you want a shared writable mapping, you'd better 1996 * ask for a shared writable mapping! 1997 * 1998 * The page does not need to be reserved. 1999 * 2000 * Usually this function is called from f_op->mmap() handler 2001 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2002 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2003 * function from other places, for example from page-fault handler. 2004 * 2005 * Return: %0 on success, negative error code otherwise. 2006 */ 2007 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2008 struct page *page) 2009 { 2010 if (addr < vma->vm_start || addr >= vma->vm_end) 2011 return -EFAULT; 2012 if (!page_count(page)) 2013 return -EINVAL; 2014 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2015 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2016 BUG_ON(vma->vm_flags & VM_PFNMAP); 2017 vm_flags_set(vma, VM_MIXEDMAP); 2018 } 2019 return insert_page(vma, addr, page, vma->vm_page_prot); 2020 } 2021 EXPORT_SYMBOL(vm_insert_page); 2022 2023 /* 2024 * __vm_map_pages - maps range of kernel pages into user vma 2025 * @vma: user vma to map to 2026 * @pages: pointer to array of source kernel pages 2027 * @num: number of pages in page array 2028 * @offset: user's requested vm_pgoff 2029 * 2030 * This allows drivers to map range of kernel pages into a user vma. 2031 * 2032 * Return: 0 on success and error code otherwise. 2033 */ 2034 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2035 unsigned long num, unsigned long offset) 2036 { 2037 unsigned long count = vma_pages(vma); 2038 unsigned long uaddr = vma->vm_start; 2039 int ret, i; 2040 2041 /* Fail if the user requested offset is beyond the end of the object */ 2042 if (offset >= num) 2043 return -ENXIO; 2044 2045 /* Fail if the user requested size exceeds available object size */ 2046 if (count > num - offset) 2047 return -ENXIO; 2048 2049 for (i = 0; i < count; i++) { 2050 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2051 if (ret < 0) 2052 return ret; 2053 uaddr += PAGE_SIZE; 2054 } 2055 2056 return 0; 2057 } 2058 2059 /** 2060 * vm_map_pages - maps range of kernel pages starts with non zero offset 2061 * @vma: user vma to map to 2062 * @pages: pointer to array of source kernel pages 2063 * @num: number of pages in page array 2064 * 2065 * Maps an object consisting of @num pages, catering for the user's 2066 * requested vm_pgoff 2067 * 2068 * If we fail to insert any page into the vma, the function will return 2069 * immediately leaving any previously inserted pages present. Callers 2070 * from the mmap handler may immediately return the error as their caller 2071 * will destroy the vma, removing any successfully inserted pages. Other 2072 * callers should make their own arrangements for calling unmap_region(). 2073 * 2074 * Context: Process context. Called by mmap handlers. 2075 * Return: 0 on success and error code otherwise. 2076 */ 2077 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2078 unsigned long num) 2079 { 2080 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2081 } 2082 EXPORT_SYMBOL(vm_map_pages); 2083 2084 /** 2085 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2086 * @vma: user vma to map to 2087 * @pages: pointer to array of source kernel pages 2088 * @num: number of pages in page array 2089 * 2090 * Similar to vm_map_pages(), except that it explicitly sets the offset 2091 * to 0. This function is intended for the drivers that did not consider 2092 * vm_pgoff. 2093 * 2094 * Context: Process context. Called by mmap handlers. 2095 * Return: 0 on success and error code otherwise. 2096 */ 2097 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2098 unsigned long num) 2099 { 2100 return __vm_map_pages(vma, pages, num, 0); 2101 } 2102 EXPORT_SYMBOL(vm_map_pages_zero); 2103 2104 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2105 pfn_t pfn, pgprot_t prot, bool mkwrite) 2106 { 2107 struct mm_struct *mm = vma->vm_mm; 2108 pte_t *pte, entry; 2109 spinlock_t *ptl; 2110 2111 pte = get_locked_pte(mm, addr, &ptl); 2112 if (!pte) 2113 return VM_FAULT_OOM; 2114 entry = ptep_get(pte); 2115 if (!pte_none(entry)) { 2116 if (mkwrite) { 2117 /* 2118 * For read faults on private mappings the PFN passed 2119 * in may not match the PFN we have mapped if the 2120 * mapped PFN is a writeable COW page. In the mkwrite 2121 * case we are creating a writable PTE for a shared 2122 * mapping and we expect the PFNs to match. If they 2123 * don't match, we are likely racing with block 2124 * allocation and mapping invalidation so just skip the 2125 * update. 2126 */ 2127 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2128 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2129 goto out_unlock; 2130 } 2131 entry = pte_mkyoung(entry); 2132 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2133 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2134 update_mmu_cache(vma, addr, pte); 2135 } 2136 goto out_unlock; 2137 } 2138 2139 /* Ok, finally just insert the thing.. */ 2140 if (pfn_t_devmap(pfn)) 2141 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2142 else 2143 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2144 2145 if (mkwrite) { 2146 entry = pte_mkyoung(entry); 2147 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2148 } 2149 2150 set_pte_at(mm, addr, pte, entry); 2151 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2152 2153 out_unlock: 2154 pte_unmap_unlock(pte, ptl); 2155 return VM_FAULT_NOPAGE; 2156 } 2157 2158 /** 2159 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2160 * @vma: user vma to map to 2161 * @addr: target user address of this page 2162 * @pfn: source kernel pfn 2163 * @pgprot: pgprot flags for the inserted page 2164 * 2165 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2166 * to override pgprot on a per-page basis. 2167 * 2168 * This only makes sense for IO mappings, and it makes no sense for 2169 * COW mappings. In general, using multiple vmas is preferable; 2170 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2171 * impractical. 2172 * 2173 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2174 * caching- and encryption bits different than those of @vma->vm_page_prot, 2175 * because the caching- or encryption mode may not be known at mmap() time. 2176 * 2177 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2178 * to set caching and encryption bits for those vmas (except for COW pages). 2179 * This is ensured by core vm only modifying these page table entries using 2180 * functions that don't touch caching- or encryption bits, using pte_modify() 2181 * if needed. (See for example mprotect()). 2182 * 2183 * Also when new page-table entries are created, this is only done using the 2184 * fault() callback, and never using the value of vma->vm_page_prot, 2185 * except for page-table entries that point to anonymous pages as the result 2186 * of COW. 2187 * 2188 * Context: Process context. May allocate using %GFP_KERNEL. 2189 * Return: vm_fault_t value. 2190 */ 2191 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2192 unsigned long pfn, pgprot_t pgprot) 2193 { 2194 /* 2195 * Technically, architectures with pte_special can avoid all these 2196 * restrictions (same for remap_pfn_range). However we would like 2197 * consistency in testing and feature parity among all, so we should 2198 * try to keep these invariants in place for everybody. 2199 */ 2200 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2201 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2202 (VM_PFNMAP|VM_MIXEDMAP)); 2203 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2204 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2205 2206 if (addr < vma->vm_start || addr >= vma->vm_end) 2207 return VM_FAULT_SIGBUS; 2208 2209 if (!pfn_modify_allowed(pfn, pgprot)) 2210 return VM_FAULT_SIGBUS; 2211 2212 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2213 2214 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2215 false); 2216 } 2217 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2218 2219 /** 2220 * vmf_insert_pfn - insert single pfn into user vma 2221 * @vma: user vma to map to 2222 * @addr: target user address of this page 2223 * @pfn: source kernel pfn 2224 * 2225 * Similar to vm_insert_page, this allows drivers to insert individual pages 2226 * they've allocated into a user vma. Same comments apply. 2227 * 2228 * This function should only be called from a vm_ops->fault handler, and 2229 * in that case the handler should return the result of this function. 2230 * 2231 * vma cannot be a COW mapping. 2232 * 2233 * As this is called only for pages that do not currently exist, we 2234 * do not need to flush old virtual caches or the TLB. 2235 * 2236 * Context: Process context. May allocate using %GFP_KERNEL. 2237 * Return: vm_fault_t value. 2238 */ 2239 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2240 unsigned long pfn) 2241 { 2242 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2243 } 2244 EXPORT_SYMBOL(vmf_insert_pfn); 2245 2246 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2247 { 2248 /* these checks mirror the abort conditions in vm_normal_page */ 2249 if (vma->vm_flags & VM_MIXEDMAP) 2250 return true; 2251 if (pfn_t_devmap(pfn)) 2252 return true; 2253 if (pfn_t_special(pfn)) 2254 return true; 2255 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2256 return true; 2257 return false; 2258 } 2259 2260 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2261 unsigned long addr, pfn_t pfn, bool mkwrite) 2262 { 2263 pgprot_t pgprot = vma->vm_page_prot; 2264 int err; 2265 2266 BUG_ON(!vm_mixed_ok(vma, pfn)); 2267 2268 if (addr < vma->vm_start || addr >= vma->vm_end) 2269 return VM_FAULT_SIGBUS; 2270 2271 track_pfn_insert(vma, &pgprot, pfn); 2272 2273 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2274 return VM_FAULT_SIGBUS; 2275 2276 /* 2277 * If we don't have pte special, then we have to use the pfn_valid() 2278 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2279 * refcount the page if pfn_valid is true (hence insert_page rather 2280 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2281 * without pte special, it would there be refcounted as a normal page. 2282 */ 2283 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2284 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2285 struct page *page; 2286 2287 /* 2288 * At this point we are committed to insert_page() 2289 * regardless of whether the caller specified flags that 2290 * result in pfn_t_has_page() == false. 2291 */ 2292 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2293 err = insert_page(vma, addr, page, pgprot); 2294 } else { 2295 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2296 } 2297 2298 if (err == -ENOMEM) 2299 return VM_FAULT_OOM; 2300 if (err < 0 && err != -EBUSY) 2301 return VM_FAULT_SIGBUS; 2302 2303 return VM_FAULT_NOPAGE; 2304 } 2305 2306 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2307 pfn_t pfn) 2308 { 2309 return __vm_insert_mixed(vma, addr, pfn, false); 2310 } 2311 EXPORT_SYMBOL(vmf_insert_mixed); 2312 2313 /* 2314 * If the insertion of PTE failed because someone else already added a 2315 * different entry in the mean time, we treat that as success as we assume 2316 * the same entry was actually inserted. 2317 */ 2318 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2319 unsigned long addr, pfn_t pfn) 2320 { 2321 return __vm_insert_mixed(vma, addr, pfn, true); 2322 } 2323 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2324 2325 /* 2326 * maps a range of physical memory into the requested pages. the old 2327 * mappings are removed. any references to nonexistent pages results 2328 * in null mappings (currently treated as "copy-on-access") 2329 */ 2330 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2331 unsigned long addr, unsigned long end, 2332 unsigned long pfn, pgprot_t prot) 2333 { 2334 pte_t *pte, *mapped_pte; 2335 spinlock_t *ptl; 2336 int err = 0; 2337 2338 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2339 if (!pte) 2340 return -ENOMEM; 2341 arch_enter_lazy_mmu_mode(); 2342 do { 2343 BUG_ON(!pte_none(ptep_get(pte))); 2344 if (!pfn_modify_allowed(pfn, prot)) { 2345 err = -EACCES; 2346 break; 2347 } 2348 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2349 pfn++; 2350 } while (pte++, addr += PAGE_SIZE, addr != end); 2351 arch_leave_lazy_mmu_mode(); 2352 pte_unmap_unlock(mapped_pte, ptl); 2353 return err; 2354 } 2355 2356 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2357 unsigned long addr, unsigned long end, 2358 unsigned long pfn, pgprot_t prot) 2359 { 2360 pmd_t *pmd; 2361 unsigned long next; 2362 int err; 2363 2364 pfn -= addr >> PAGE_SHIFT; 2365 pmd = pmd_alloc(mm, pud, addr); 2366 if (!pmd) 2367 return -ENOMEM; 2368 VM_BUG_ON(pmd_trans_huge(*pmd)); 2369 do { 2370 next = pmd_addr_end(addr, end); 2371 err = remap_pte_range(mm, pmd, addr, next, 2372 pfn + (addr >> PAGE_SHIFT), prot); 2373 if (err) 2374 return err; 2375 } while (pmd++, addr = next, addr != end); 2376 return 0; 2377 } 2378 2379 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2380 unsigned long addr, unsigned long end, 2381 unsigned long pfn, pgprot_t prot) 2382 { 2383 pud_t *pud; 2384 unsigned long next; 2385 int err; 2386 2387 pfn -= addr >> PAGE_SHIFT; 2388 pud = pud_alloc(mm, p4d, addr); 2389 if (!pud) 2390 return -ENOMEM; 2391 do { 2392 next = pud_addr_end(addr, end); 2393 err = remap_pmd_range(mm, pud, addr, next, 2394 pfn + (addr >> PAGE_SHIFT), prot); 2395 if (err) 2396 return err; 2397 } while (pud++, addr = next, addr != end); 2398 return 0; 2399 } 2400 2401 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2402 unsigned long addr, unsigned long end, 2403 unsigned long pfn, pgprot_t prot) 2404 { 2405 p4d_t *p4d; 2406 unsigned long next; 2407 int err; 2408 2409 pfn -= addr >> PAGE_SHIFT; 2410 p4d = p4d_alloc(mm, pgd, addr); 2411 if (!p4d) 2412 return -ENOMEM; 2413 do { 2414 next = p4d_addr_end(addr, end); 2415 err = remap_pud_range(mm, p4d, addr, next, 2416 pfn + (addr >> PAGE_SHIFT), prot); 2417 if (err) 2418 return err; 2419 } while (p4d++, addr = next, addr != end); 2420 return 0; 2421 } 2422 2423 /* 2424 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2425 * must have pre-validated the caching bits of the pgprot_t. 2426 */ 2427 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2428 unsigned long pfn, unsigned long size, pgprot_t prot) 2429 { 2430 pgd_t *pgd; 2431 unsigned long next; 2432 unsigned long end = addr + PAGE_ALIGN(size); 2433 struct mm_struct *mm = vma->vm_mm; 2434 int err; 2435 2436 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2437 return -EINVAL; 2438 2439 /* 2440 * Physically remapped pages are special. Tell the 2441 * rest of the world about it: 2442 * VM_IO tells people not to look at these pages 2443 * (accesses can have side effects). 2444 * VM_PFNMAP tells the core MM that the base pages are just 2445 * raw PFN mappings, and do not have a "struct page" associated 2446 * with them. 2447 * VM_DONTEXPAND 2448 * Disable vma merging and expanding with mremap(). 2449 * VM_DONTDUMP 2450 * Omit vma from core dump, even when VM_IO turned off. 2451 * 2452 * There's a horrible special case to handle copy-on-write 2453 * behaviour that some programs depend on. We mark the "original" 2454 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2455 * See vm_normal_page() for details. 2456 */ 2457 if (is_cow_mapping(vma->vm_flags)) { 2458 if (addr != vma->vm_start || end != vma->vm_end) 2459 return -EINVAL; 2460 vma->vm_pgoff = pfn; 2461 } 2462 2463 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2464 2465 BUG_ON(addr >= end); 2466 pfn -= addr >> PAGE_SHIFT; 2467 pgd = pgd_offset(mm, addr); 2468 flush_cache_range(vma, addr, end); 2469 do { 2470 next = pgd_addr_end(addr, end); 2471 err = remap_p4d_range(mm, pgd, addr, next, 2472 pfn + (addr >> PAGE_SHIFT), prot); 2473 if (err) 2474 return err; 2475 } while (pgd++, addr = next, addr != end); 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * remap_pfn_range - remap kernel memory to userspace 2482 * @vma: user vma to map to 2483 * @addr: target page aligned user address to start at 2484 * @pfn: page frame number of kernel physical memory address 2485 * @size: size of mapping area 2486 * @prot: page protection flags for this mapping 2487 * 2488 * Note: this is only safe if the mm semaphore is held when called. 2489 * 2490 * Return: %0 on success, negative error code otherwise. 2491 */ 2492 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2493 unsigned long pfn, unsigned long size, pgprot_t prot) 2494 { 2495 int err; 2496 2497 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2498 if (err) 2499 return -EINVAL; 2500 2501 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2502 if (err) 2503 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2504 return err; 2505 } 2506 EXPORT_SYMBOL(remap_pfn_range); 2507 2508 /** 2509 * vm_iomap_memory - remap memory to userspace 2510 * @vma: user vma to map to 2511 * @start: start of the physical memory to be mapped 2512 * @len: size of area 2513 * 2514 * This is a simplified io_remap_pfn_range() for common driver use. The 2515 * driver just needs to give us the physical memory range to be mapped, 2516 * we'll figure out the rest from the vma information. 2517 * 2518 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2519 * whatever write-combining details or similar. 2520 * 2521 * Return: %0 on success, negative error code otherwise. 2522 */ 2523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2524 { 2525 unsigned long vm_len, pfn, pages; 2526 2527 /* Check that the physical memory area passed in looks valid */ 2528 if (start + len < start) 2529 return -EINVAL; 2530 /* 2531 * You *really* shouldn't map things that aren't page-aligned, 2532 * but we've historically allowed it because IO memory might 2533 * just have smaller alignment. 2534 */ 2535 len += start & ~PAGE_MASK; 2536 pfn = start >> PAGE_SHIFT; 2537 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2538 if (pfn + pages < pfn) 2539 return -EINVAL; 2540 2541 /* We start the mapping 'vm_pgoff' pages into the area */ 2542 if (vma->vm_pgoff > pages) 2543 return -EINVAL; 2544 pfn += vma->vm_pgoff; 2545 pages -= vma->vm_pgoff; 2546 2547 /* Can we fit all of the mapping? */ 2548 vm_len = vma->vm_end - vma->vm_start; 2549 if (vm_len >> PAGE_SHIFT > pages) 2550 return -EINVAL; 2551 2552 /* Ok, let it rip */ 2553 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2554 } 2555 EXPORT_SYMBOL(vm_iomap_memory); 2556 2557 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2558 unsigned long addr, unsigned long end, 2559 pte_fn_t fn, void *data, bool create, 2560 pgtbl_mod_mask *mask) 2561 { 2562 pte_t *pte, *mapped_pte; 2563 int err = 0; 2564 spinlock_t *ptl; 2565 2566 if (create) { 2567 mapped_pte = pte = (mm == &init_mm) ? 2568 pte_alloc_kernel_track(pmd, addr, mask) : 2569 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2570 if (!pte) 2571 return -ENOMEM; 2572 } else { 2573 mapped_pte = pte = (mm == &init_mm) ? 2574 pte_offset_kernel(pmd, addr) : 2575 pte_offset_map_lock(mm, pmd, addr, &ptl); 2576 if (!pte) 2577 return -EINVAL; 2578 } 2579 2580 arch_enter_lazy_mmu_mode(); 2581 2582 if (fn) { 2583 do { 2584 if (create || !pte_none(ptep_get(pte))) { 2585 err = fn(pte++, addr, data); 2586 if (err) 2587 break; 2588 } 2589 } while (addr += PAGE_SIZE, addr != end); 2590 } 2591 *mask |= PGTBL_PTE_MODIFIED; 2592 2593 arch_leave_lazy_mmu_mode(); 2594 2595 if (mm != &init_mm) 2596 pte_unmap_unlock(mapped_pte, ptl); 2597 return err; 2598 } 2599 2600 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2601 unsigned long addr, unsigned long end, 2602 pte_fn_t fn, void *data, bool create, 2603 pgtbl_mod_mask *mask) 2604 { 2605 pmd_t *pmd; 2606 unsigned long next; 2607 int err = 0; 2608 2609 BUG_ON(pud_huge(*pud)); 2610 2611 if (create) { 2612 pmd = pmd_alloc_track(mm, pud, addr, mask); 2613 if (!pmd) 2614 return -ENOMEM; 2615 } else { 2616 pmd = pmd_offset(pud, addr); 2617 } 2618 do { 2619 next = pmd_addr_end(addr, end); 2620 if (pmd_none(*pmd) && !create) 2621 continue; 2622 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2623 return -EINVAL; 2624 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2625 if (!create) 2626 continue; 2627 pmd_clear_bad(pmd); 2628 } 2629 err = apply_to_pte_range(mm, pmd, addr, next, 2630 fn, data, create, mask); 2631 if (err) 2632 break; 2633 } while (pmd++, addr = next, addr != end); 2634 2635 return err; 2636 } 2637 2638 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2639 unsigned long addr, unsigned long end, 2640 pte_fn_t fn, void *data, bool create, 2641 pgtbl_mod_mask *mask) 2642 { 2643 pud_t *pud; 2644 unsigned long next; 2645 int err = 0; 2646 2647 if (create) { 2648 pud = pud_alloc_track(mm, p4d, addr, mask); 2649 if (!pud) 2650 return -ENOMEM; 2651 } else { 2652 pud = pud_offset(p4d, addr); 2653 } 2654 do { 2655 next = pud_addr_end(addr, end); 2656 if (pud_none(*pud) && !create) 2657 continue; 2658 if (WARN_ON_ONCE(pud_leaf(*pud))) 2659 return -EINVAL; 2660 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2661 if (!create) 2662 continue; 2663 pud_clear_bad(pud); 2664 } 2665 err = apply_to_pmd_range(mm, pud, addr, next, 2666 fn, data, create, mask); 2667 if (err) 2668 break; 2669 } while (pud++, addr = next, addr != end); 2670 2671 return err; 2672 } 2673 2674 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2675 unsigned long addr, unsigned long end, 2676 pte_fn_t fn, void *data, bool create, 2677 pgtbl_mod_mask *mask) 2678 { 2679 p4d_t *p4d; 2680 unsigned long next; 2681 int err = 0; 2682 2683 if (create) { 2684 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2685 if (!p4d) 2686 return -ENOMEM; 2687 } else { 2688 p4d = p4d_offset(pgd, addr); 2689 } 2690 do { 2691 next = p4d_addr_end(addr, end); 2692 if (p4d_none(*p4d) && !create) 2693 continue; 2694 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2695 return -EINVAL; 2696 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2697 if (!create) 2698 continue; 2699 p4d_clear_bad(p4d); 2700 } 2701 err = apply_to_pud_range(mm, p4d, addr, next, 2702 fn, data, create, mask); 2703 if (err) 2704 break; 2705 } while (p4d++, addr = next, addr != end); 2706 2707 return err; 2708 } 2709 2710 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2711 unsigned long size, pte_fn_t fn, 2712 void *data, bool create) 2713 { 2714 pgd_t *pgd; 2715 unsigned long start = addr, next; 2716 unsigned long end = addr + size; 2717 pgtbl_mod_mask mask = 0; 2718 int err = 0; 2719 2720 if (WARN_ON(addr >= end)) 2721 return -EINVAL; 2722 2723 pgd = pgd_offset(mm, addr); 2724 do { 2725 next = pgd_addr_end(addr, end); 2726 if (pgd_none(*pgd) && !create) 2727 continue; 2728 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2729 return -EINVAL; 2730 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2731 if (!create) 2732 continue; 2733 pgd_clear_bad(pgd); 2734 } 2735 err = apply_to_p4d_range(mm, pgd, addr, next, 2736 fn, data, create, &mask); 2737 if (err) 2738 break; 2739 } while (pgd++, addr = next, addr != end); 2740 2741 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2742 arch_sync_kernel_mappings(start, start + size); 2743 2744 return err; 2745 } 2746 2747 /* 2748 * Scan a region of virtual memory, filling in page tables as necessary 2749 * and calling a provided function on each leaf page table. 2750 */ 2751 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2752 unsigned long size, pte_fn_t fn, void *data) 2753 { 2754 return __apply_to_page_range(mm, addr, size, fn, data, true); 2755 } 2756 EXPORT_SYMBOL_GPL(apply_to_page_range); 2757 2758 /* 2759 * Scan a region of virtual memory, calling a provided function on 2760 * each leaf page table where it exists. 2761 * 2762 * Unlike apply_to_page_range, this does _not_ fill in page tables 2763 * where they are absent. 2764 */ 2765 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2766 unsigned long size, pte_fn_t fn, void *data) 2767 { 2768 return __apply_to_page_range(mm, addr, size, fn, data, false); 2769 } 2770 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2771 2772 /* 2773 * handle_pte_fault chooses page fault handler according to an entry which was 2774 * read non-atomically. Before making any commitment, on those architectures 2775 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2776 * parts, do_swap_page must check under lock before unmapping the pte and 2777 * proceeding (but do_wp_page is only called after already making such a check; 2778 * and do_anonymous_page can safely check later on). 2779 */ 2780 static inline int pte_unmap_same(struct vm_fault *vmf) 2781 { 2782 int same = 1; 2783 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2784 if (sizeof(pte_t) > sizeof(unsigned long)) { 2785 spin_lock(vmf->ptl); 2786 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2787 spin_unlock(vmf->ptl); 2788 } 2789 #endif 2790 pte_unmap(vmf->pte); 2791 vmf->pte = NULL; 2792 return same; 2793 } 2794 2795 /* 2796 * Return: 2797 * 0: copied succeeded 2798 * -EHWPOISON: copy failed due to hwpoison in source page 2799 * -EAGAIN: copied failed (some other reason) 2800 */ 2801 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2802 struct vm_fault *vmf) 2803 { 2804 int ret; 2805 void *kaddr; 2806 void __user *uaddr; 2807 struct vm_area_struct *vma = vmf->vma; 2808 struct mm_struct *mm = vma->vm_mm; 2809 unsigned long addr = vmf->address; 2810 2811 if (likely(src)) { 2812 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2813 memory_failure_queue(page_to_pfn(src), 0); 2814 return -EHWPOISON; 2815 } 2816 return 0; 2817 } 2818 2819 /* 2820 * If the source page was a PFN mapping, we don't have 2821 * a "struct page" for it. We do a best-effort copy by 2822 * just copying from the original user address. If that 2823 * fails, we just zero-fill it. Live with it. 2824 */ 2825 kaddr = kmap_atomic(dst); 2826 uaddr = (void __user *)(addr & PAGE_MASK); 2827 2828 /* 2829 * On architectures with software "accessed" bits, we would 2830 * take a double page fault, so mark it accessed here. 2831 */ 2832 vmf->pte = NULL; 2833 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2834 pte_t entry; 2835 2836 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2837 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2838 /* 2839 * Other thread has already handled the fault 2840 * and update local tlb only 2841 */ 2842 if (vmf->pte) 2843 update_mmu_tlb(vma, addr, vmf->pte); 2844 ret = -EAGAIN; 2845 goto pte_unlock; 2846 } 2847 2848 entry = pte_mkyoung(vmf->orig_pte); 2849 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2850 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 2851 } 2852 2853 /* 2854 * This really shouldn't fail, because the page is there 2855 * in the page tables. But it might just be unreadable, 2856 * in which case we just give up and fill the result with 2857 * zeroes. 2858 */ 2859 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2860 if (vmf->pte) 2861 goto warn; 2862 2863 /* Re-validate under PTL if the page is still mapped */ 2864 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2865 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2866 /* The PTE changed under us, update local tlb */ 2867 if (vmf->pte) 2868 update_mmu_tlb(vma, addr, vmf->pte); 2869 ret = -EAGAIN; 2870 goto pte_unlock; 2871 } 2872 2873 /* 2874 * The same page can be mapped back since last copy attempt. 2875 * Try to copy again under PTL. 2876 */ 2877 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2878 /* 2879 * Give a warn in case there can be some obscure 2880 * use-case 2881 */ 2882 warn: 2883 WARN_ON_ONCE(1); 2884 clear_page(kaddr); 2885 } 2886 } 2887 2888 ret = 0; 2889 2890 pte_unlock: 2891 if (vmf->pte) 2892 pte_unmap_unlock(vmf->pte, vmf->ptl); 2893 kunmap_atomic(kaddr); 2894 flush_dcache_page(dst); 2895 2896 return ret; 2897 } 2898 2899 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2900 { 2901 struct file *vm_file = vma->vm_file; 2902 2903 if (vm_file) 2904 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2905 2906 /* 2907 * Special mappings (e.g. VDSO) do not have any file so fake 2908 * a default GFP_KERNEL for them. 2909 */ 2910 return GFP_KERNEL; 2911 } 2912 2913 /* 2914 * Notify the address space that the page is about to become writable so that 2915 * it can prohibit this or wait for the page to get into an appropriate state. 2916 * 2917 * We do this without the lock held, so that it can sleep if it needs to. 2918 */ 2919 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2920 { 2921 vm_fault_t ret; 2922 unsigned int old_flags = vmf->flags; 2923 2924 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2925 2926 if (vmf->vma->vm_file && 2927 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2928 return VM_FAULT_SIGBUS; 2929 2930 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2931 /* Restore original flags so that caller is not surprised */ 2932 vmf->flags = old_flags; 2933 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2934 return ret; 2935 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2936 folio_lock(folio); 2937 if (!folio->mapping) { 2938 folio_unlock(folio); 2939 return 0; /* retry */ 2940 } 2941 ret |= VM_FAULT_LOCKED; 2942 } else 2943 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2944 return ret; 2945 } 2946 2947 /* 2948 * Handle dirtying of a page in shared file mapping on a write fault. 2949 * 2950 * The function expects the page to be locked and unlocks it. 2951 */ 2952 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2953 { 2954 struct vm_area_struct *vma = vmf->vma; 2955 struct address_space *mapping; 2956 struct folio *folio = page_folio(vmf->page); 2957 bool dirtied; 2958 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2959 2960 dirtied = folio_mark_dirty(folio); 2961 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2962 /* 2963 * Take a local copy of the address_space - folio.mapping may be zeroed 2964 * by truncate after folio_unlock(). The address_space itself remains 2965 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2966 * release semantics to prevent the compiler from undoing this copying. 2967 */ 2968 mapping = folio_raw_mapping(folio); 2969 folio_unlock(folio); 2970 2971 if (!page_mkwrite) 2972 file_update_time(vma->vm_file); 2973 2974 /* 2975 * Throttle page dirtying rate down to writeback speed. 2976 * 2977 * mapping may be NULL here because some device drivers do not 2978 * set page.mapping but still dirty their pages 2979 * 2980 * Drop the mmap_lock before waiting on IO, if we can. The file 2981 * is pinning the mapping, as per above. 2982 */ 2983 if ((dirtied || page_mkwrite) && mapping) { 2984 struct file *fpin; 2985 2986 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2987 balance_dirty_pages_ratelimited(mapping); 2988 if (fpin) { 2989 fput(fpin); 2990 return VM_FAULT_COMPLETED; 2991 } 2992 } 2993 2994 return 0; 2995 } 2996 2997 /* 2998 * Handle write page faults for pages that can be reused in the current vma 2999 * 3000 * This can happen either due to the mapping being with the VM_SHARED flag, 3001 * or due to us being the last reference standing to the page. In either 3002 * case, all we need to do here is to mark the page as writable and update 3003 * any related book-keeping. 3004 */ 3005 static inline void wp_page_reuse(struct vm_fault *vmf) 3006 __releases(vmf->ptl) 3007 { 3008 struct vm_area_struct *vma = vmf->vma; 3009 struct page *page = vmf->page; 3010 pte_t entry; 3011 3012 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3013 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3014 3015 /* 3016 * Clear the pages cpupid information as the existing 3017 * information potentially belongs to a now completely 3018 * unrelated process. 3019 */ 3020 if (page) 3021 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3022 3023 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3024 entry = pte_mkyoung(vmf->orig_pte); 3025 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3026 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3027 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3028 pte_unmap_unlock(vmf->pte, vmf->ptl); 3029 count_vm_event(PGREUSE); 3030 } 3031 3032 /* 3033 * Handle the case of a page which we actually need to copy to a new page, 3034 * either due to COW or unsharing. 3035 * 3036 * Called with mmap_lock locked and the old page referenced, but 3037 * without the ptl held. 3038 * 3039 * High level logic flow: 3040 * 3041 * - Allocate a page, copy the content of the old page to the new one. 3042 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3043 * - Take the PTL. If the pte changed, bail out and release the allocated page 3044 * - If the pte is still the way we remember it, update the page table and all 3045 * relevant references. This includes dropping the reference the page-table 3046 * held to the old page, as well as updating the rmap. 3047 * - In any case, unlock the PTL and drop the reference we took to the old page. 3048 */ 3049 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3050 { 3051 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3052 struct vm_area_struct *vma = vmf->vma; 3053 struct mm_struct *mm = vma->vm_mm; 3054 struct folio *old_folio = NULL; 3055 struct folio *new_folio = NULL; 3056 pte_t entry; 3057 int page_copied = 0; 3058 struct mmu_notifier_range range; 3059 int ret; 3060 3061 delayacct_wpcopy_start(); 3062 3063 if (vmf->page) 3064 old_folio = page_folio(vmf->page); 3065 if (unlikely(anon_vma_prepare(vma))) 3066 goto oom; 3067 3068 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3069 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3070 if (!new_folio) 3071 goto oom; 3072 } else { 3073 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3074 vmf->address, false); 3075 if (!new_folio) 3076 goto oom; 3077 3078 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3079 if (ret) { 3080 /* 3081 * COW failed, if the fault was solved by other, 3082 * it's fine. If not, userspace would re-fault on 3083 * the same address and we will handle the fault 3084 * from the second attempt. 3085 * The -EHWPOISON case will not be retried. 3086 */ 3087 folio_put(new_folio); 3088 if (old_folio) 3089 folio_put(old_folio); 3090 3091 delayacct_wpcopy_end(); 3092 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3093 } 3094 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3095 } 3096 3097 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3098 goto oom_free_new; 3099 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3100 3101 __folio_mark_uptodate(new_folio); 3102 3103 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3104 vmf->address & PAGE_MASK, 3105 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3106 mmu_notifier_invalidate_range_start(&range); 3107 3108 /* 3109 * Re-check the pte - we dropped the lock 3110 */ 3111 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3112 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3113 if (old_folio) { 3114 if (!folio_test_anon(old_folio)) { 3115 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3116 inc_mm_counter(mm, MM_ANONPAGES); 3117 } 3118 } else { 3119 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3120 inc_mm_counter(mm, MM_ANONPAGES); 3121 } 3122 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3123 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3124 entry = pte_sw_mkyoung(entry); 3125 if (unlikely(unshare)) { 3126 if (pte_soft_dirty(vmf->orig_pte)) 3127 entry = pte_mksoft_dirty(entry); 3128 if (pte_uffd_wp(vmf->orig_pte)) 3129 entry = pte_mkuffd_wp(entry); 3130 } else { 3131 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3132 } 3133 3134 /* 3135 * Clear the pte entry and flush it first, before updating the 3136 * pte with the new entry, to keep TLBs on different CPUs in 3137 * sync. This code used to set the new PTE then flush TLBs, but 3138 * that left a window where the new PTE could be loaded into 3139 * some TLBs while the old PTE remains in others. 3140 */ 3141 ptep_clear_flush(vma, vmf->address, vmf->pte); 3142 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3143 folio_add_lru_vma(new_folio, vma); 3144 /* 3145 * We call the notify macro here because, when using secondary 3146 * mmu page tables (such as kvm shadow page tables), we want the 3147 * new page to be mapped directly into the secondary page table. 3148 */ 3149 BUG_ON(unshare && pte_write(entry)); 3150 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3151 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3152 if (old_folio) { 3153 /* 3154 * Only after switching the pte to the new page may 3155 * we remove the mapcount here. Otherwise another 3156 * process may come and find the rmap count decremented 3157 * before the pte is switched to the new page, and 3158 * "reuse" the old page writing into it while our pte 3159 * here still points into it and can be read by other 3160 * threads. 3161 * 3162 * The critical issue is to order this 3163 * page_remove_rmap with the ptp_clear_flush above. 3164 * Those stores are ordered by (if nothing else,) 3165 * the barrier present in the atomic_add_negative 3166 * in page_remove_rmap. 3167 * 3168 * Then the TLB flush in ptep_clear_flush ensures that 3169 * no process can access the old page before the 3170 * decremented mapcount is visible. And the old page 3171 * cannot be reused until after the decremented 3172 * mapcount is visible. So transitively, TLBs to 3173 * old page will be flushed before it can be reused. 3174 */ 3175 page_remove_rmap(vmf->page, vma, false); 3176 } 3177 3178 /* Free the old page.. */ 3179 new_folio = old_folio; 3180 page_copied = 1; 3181 pte_unmap_unlock(vmf->pte, vmf->ptl); 3182 } else if (vmf->pte) { 3183 update_mmu_tlb(vma, vmf->address, vmf->pte); 3184 pte_unmap_unlock(vmf->pte, vmf->ptl); 3185 } 3186 3187 mmu_notifier_invalidate_range_end(&range); 3188 3189 if (new_folio) 3190 folio_put(new_folio); 3191 if (old_folio) { 3192 if (page_copied) 3193 free_swap_cache(&old_folio->page); 3194 folio_put(old_folio); 3195 } 3196 3197 delayacct_wpcopy_end(); 3198 return 0; 3199 oom_free_new: 3200 folio_put(new_folio); 3201 oom: 3202 if (old_folio) 3203 folio_put(old_folio); 3204 3205 delayacct_wpcopy_end(); 3206 return VM_FAULT_OOM; 3207 } 3208 3209 /** 3210 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3211 * writeable once the page is prepared 3212 * 3213 * @vmf: structure describing the fault 3214 * 3215 * This function handles all that is needed to finish a write page fault in a 3216 * shared mapping due to PTE being read-only once the mapped page is prepared. 3217 * It handles locking of PTE and modifying it. 3218 * 3219 * The function expects the page to be locked or other protection against 3220 * concurrent faults / writeback (such as DAX radix tree locks). 3221 * 3222 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3223 * we acquired PTE lock. 3224 */ 3225 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3226 { 3227 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3228 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3229 &vmf->ptl); 3230 if (!vmf->pte) 3231 return VM_FAULT_NOPAGE; 3232 /* 3233 * We might have raced with another page fault while we released the 3234 * pte_offset_map_lock. 3235 */ 3236 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3237 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3238 pte_unmap_unlock(vmf->pte, vmf->ptl); 3239 return VM_FAULT_NOPAGE; 3240 } 3241 wp_page_reuse(vmf); 3242 return 0; 3243 } 3244 3245 /* 3246 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3247 * mapping 3248 */ 3249 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3250 { 3251 struct vm_area_struct *vma = vmf->vma; 3252 3253 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3254 vm_fault_t ret; 3255 3256 pte_unmap_unlock(vmf->pte, vmf->ptl); 3257 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3258 vma_end_read(vmf->vma); 3259 return VM_FAULT_RETRY; 3260 } 3261 3262 vmf->flags |= FAULT_FLAG_MKWRITE; 3263 ret = vma->vm_ops->pfn_mkwrite(vmf); 3264 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3265 return ret; 3266 return finish_mkwrite_fault(vmf); 3267 } 3268 wp_page_reuse(vmf); 3269 return 0; 3270 } 3271 3272 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3273 __releases(vmf->ptl) 3274 { 3275 struct vm_area_struct *vma = vmf->vma; 3276 vm_fault_t ret = 0; 3277 3278 folio_get(folio); 3279 3280 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3281 vm_fault_t tmp; 3282 3283 pte_unmap_unlock(vmf->pte, vmf->ptl); 3284 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3285 folio_put(folio); 3286 vma_end_read(vmf->vma); 3287 return VM_FAULT_RETRY; 3288 } 3289 3290 tmp = do_page_mkwrite(vmf, folio); 3291 if (unlikely(!tmp || (tmp & 3292 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3293 folio_put(folio); 3294 return tmp; 3295 } 3296 tmp = finish_mkwrite_fault(vmf); 3297 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3298 folio_unlock(folio); 3299 folio_put(folio); 3300 return tmp; 3301 } 3302 } else { 3303 wp_page_reuse(vmf); 3304 folio_lock(folio); 3305 } 3306 ret |= fault_dirty_shared_page(vmf); 3307 folio_put(folio); 3308 3309 return ret; 3310 } 3311 3312 /* 3313 * This routine handles present pages, when 3314 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3315 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3316 * (FAULT_FLAG_UNSHARE) 3317 * 3318 * It is done by copying the page to a new address and decrementing the 3319 * shared-page counter for the old page. 3320 * 3321 * Note that this routine assumes that the protection checks have been 3322 * done by the caller (the low-level page fault routine in most cases). 3323 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3324 * done any necessary COW. 3325 * 3326 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3327 * though the page will change only once the write actually happens. This 3328 * avoids a few races, and potentially makes it more efficient. 3329 * 3330 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3331 * but allow concurrent faults), with pte both mapped and locked. 3332 * We return with mmap_lock still held, but pte unmapped and unlocked. 3333 */ 3334 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3335 __releases(vmf->ptl) 3336 { 3337 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3338 struct vm_area_struct *vma = vmf->vma; 3339 struct folio *folio = NULL; 3340 3341 if (likely(!unshare)) { 3342 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3343 pte_unmap_unlock(vmf->pte, vmf->ptl); 3344 return handle_userfault(vmf, VM_UFFD_WP); 3345 } 3346 3347 /* 3348 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3349 * is flushed in this case before copying. 3350 */ 3351 if (unlikely(userfaultfd_wp(vmf->vma) && 3352 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3353 flush_tlb_page(vmf->vma, vmf->address); 3354 } 3355 3356 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3357 3358 if (vmf->page) 3359 folio = page_folio(vmf->page); 3360 3361 /* 3362 * Shared mapping: we are guaranteed to have VM_WRITE and 3363 * FAULT_FLAG_WRITE set at this point. 3364 */ 3365 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3366 /* 3367 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3368 * VM_PFNMAP VMA. 3369 * 3370 * We should not cow pages in a shared writeable mapping. 3371 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3372 */ 3373 if (!vmf->page) 3374 return wp_pfn_shared(vmf); 3375 return wp_page_shared(vmf, folio); 3376 } 3377 3378 /* 3379 * Private mapping: create an exclusive anonymous page copy if reuse 3380 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3381 */ 3382 if (folio && folio_test_anon(folio)) { 3383 /* 3384 * If the page is exclusive to this process we must reuse the 3385 * page without further checks. 3386 */ 3387 if (PageAnonExclusive(vmf->page)) 3388 goto reuse; 3389 3390 /* 3391 * We have to verify under folio lock: these early checks are 3392 * just an optimization to avoid locking the folio and freeing 3393 * the swapcache if there is little hope that we can reuse. 3394 * 3395 * KSM doesn't necessarily raise the folio refcount. 3396 */ 3397 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3398 goto copy; 3399 if (!folio_test_lru(folio)) 3400 /* 3401 * We cannot easily detect+handle references from 3402 * remote LRU caches or references to LRU folios. 3403 */ 3404 lru_add_drain(); 3405 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3406 goto copy; 3407 if (!folio_trylock(folio)) 3408 goto copy; 3409 if (folio_test_swapcache(folio)) 3410 folio_free_swap(folio); 3411 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3412 folio_unlock(folio); 3413 goto copy; 3414 } 3415 /* 3416 * Ok, we've got the only folio reference from our mapping 3417 * and the folio is locked, it's dark out, and we're wearing 3418 * sunglasses. Hit it. 3419 */ 3420 page_move_anon_rmap(vmf->page, vma); 3421 folio_unlock(folio); 3422 reuse: 3423 if (unlikely(unshare)) { 3424 pte_unmap_unlock(vmf->pte, vmf->ptl); 3425 return 0; 3426 } 3427 wp_page_reuse(vmf); 3428 return 0; 3429 } 3430 copy: 3431 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) { 3432 pte_unmap_unlock(vmf->pte, vmf->ptl); 3433 vma_end_read(vmf->vma); 3434 return VM_FAULT_RETRY; 3435 } 3436 3437 /* 3438 * Ok, we need to copy. Oh, well.. 3439 */ 3440 if (folio) 3441 folio_get(folio); 3442 3443 pte_unmap_unlock(vmf->pte, vmf->ptl); 3444 #ifdef CONFIG_KSM 3445 if (folio && folio_test_ksm(folio)) 3446 count_vm_event(COW_KSM); 3447 #endif 3448 return wp_page_copy(vmf); 3449 } 3450 3451 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3452 unsigned long start_addr, unsigned long end_addr, 3453 struct zap_details *details) 3454 { 3455 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3456 } 3457 3458 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3459 pgoff_t first_index, 3460 pgoff_t last_index, 3461 struct zap_details *details) 3462 { 3463 struct vm_area_struct *vma; 3464 pgoff_t vba, vea, zba, zea; 3465 3466 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3467 vba = vma->vm_pgoff; 3468 vea = vba + vma_pages(vma) - 1; 3469 zba = max(first_index, vba); 3470 zea = min(last_index, vea); 3471 3472 unmap_mapping_range_vma(vma, 3473 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3474 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3475 details); 3476 } 3477 } 3478 3479 /** 3480 * unmap_mapping_folio() - Unmap single folio from processes. 3481 * @folio: The locked folio to be unmapped. 3482 * 3483 * Unmap this folio from any userspace process which still has it mmaped. 3484 * Typically, for efficiency, the range of nearby pages has already been 3485 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3486 * truncation or invalidation holds the lock on a folio, it may find that 3487 * the page has been remapped again: and then uses unmap_mapping_folio() 3488 * to unmap it finally. 3489 */ 3490 void unmap_mapping_folio(struct folio *folio) 3491 { 3492 struct address_space *mapping = folio->mapping; 3493 struct zap_details details = { }; 3494 pgoff_t first_index; 3495 pgoff_t last_index; 3496 3497 VM_BUG_ON(!folio_test_locked(folio)); 3498 3499 first_index = folio->index; 3500 last_index = folio_next_index(folio) - 1; 3501 3502 details.even_cows = false; 3503 details.single_folio = folio; 3504 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3505 3506 i_mmap_lock_read(mapping); 3507 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3508 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3509 last_index, &details); 3510 i_mmap_unlock_read(mapping); 3511 } 3512 3513 /** 3514 * unmap_mapping_pages() - Unmap pages from processes. 3515 * @mapping: The address space containing pages to be unmapped. 3516 * @start: Index of first page to be unmapped. 3517 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3518 * @even_cows: Whether to unmap even private COWed pages. 3519 * 3520 * Unmap the pages in this address space from any userspace process which 3521 * has them mmaped. Generally, you want to remove COWed pages as well when 3522 * a file is being truncated, but not when invalidating pages from the page 3523 * cache. 3524 */ 3525 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3526 pgoff_t nr, bool even_cows) 3527 { 3528 struct zap_details details = { }; 3529 pgoff_t first_index = start; 3530 pgoff_t last_index = start + nr - 1; 3531 3532 details.even_cows = even_cows; 3533 if (last_index < first_index) 3534 last_index = ULONG_MAX; 3535 3536 i_mmap_lock_read(mapping); 3537 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3538 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3539 last_index, &details); 3540 i_mmap_unlock_read(mapping); 3541 } 3542 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3543 3544 /** 3545 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3546 * address_space corresponding to the specified byte range in the underlying 3547 * file. 3548 * 3549 * @mapping: the address space containing mmaps to be unmapped. 3550 * @holebegin: byte in first page to unmap, relative to the start of 3551 * the underlying file. This will be rounded down to a PAGE_SIZE 3552 * boundary. Note that this is different from truncate_pagecache(), which 3553 * must keep the partial page. In contrast, we must get rid of 3554 * partial pages. 3555 * @holelen: size of prospective hole in bytes. This will be rounded 3556 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3557 * end of the file. 3558 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3559 * but 0 when invalidating pagecache, don't throw away private data. 3560 */ 3561 void unmap_mapping_range(struct address_space *mapping, 3562 loff_t const holebegin, loff_t const holelen, int even_cows) 3563 { 3564 pgoff_t hba = holebegin >> PAGE_SHIFT; 3565 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3566 3567 /* Check for overflow. */ 3568 if (sizeof(holelen) > sizeof(hlen)) { 3569 long long holeend = 3570 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3571 if (holeend & ~(long long)ULONG_MAX) 3572 hlen = ULONG_MAX - hba + 1; 3573 } 3574 3575 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3576 } 3577 EXPORT_SYMBOL(unmap_mapping_range); 3578 3579 /* 3580 * Restore a potential device exclusive pte to a working pte entry 3581 */ 3582 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3583 { 3584 struct folio *folio = page_folio(vmf->page); 3585 struct vm_area_struct *vma = vmf->vma; 3586 struct mmu_notifier_range range; 3587 vm_fault_t ret; 3588 3589 /* 3590 * We need a reference to lock the folio because we don't hold 3591 * the PTL so a racing thread can remove the device-exclusive 3592 * entry and unmap it. If the folio is free the entry must 3593 * have been removed already. If it happens to have already 3594 * been re-allocated after being freed all we do is lock and 3595 * unlock it. 3596 */ 3597 if (!folio_try_get(folio)) 3598 return 0; 3599 3600 ret = folio_lock_or_retry(folio, vmf); 3601 if (ret) { 3602 folio_put(folio); 3603 return ret; 3604 } 3605 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3606 vma->vm_mm, vmf->address & PAGE_MASK, 3607 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3608 mmu_notifier_invalidate_range_start(&range); 3609 3610 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3611 &vmf->ptl); 3612 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3613 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3614 3615 if (vmf->pte) 3616 pte_unmap_unlock(vmf->pte, vmf->ptl); 3617 folio_unlock(folio); 3618 folio_put(folio); 3619 3620 mmu_notifier_invalidate_range_end(&range); 3621 return 0; 3622 } 3623 3624 static inline bool should_try_to_free_swap(struct folio *folio, 3625 struct vm_area_struct *vma, 3626 unsigned int fault_flags) 3627 { 3628 if (!folio_test_swapcache(folio)) 3629 return false; 3630 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3631 folio_test_mlocked(folio)) 3632 return true; 3633 /* 3634 * If we want to map a page that's in the swapcache writable, we 3635 * have to detect via the refcount if we're really the exclusive 3636 * user. Try freeing the swapcache to get rid of the swapcache 3637 * reference only in case it's likely that we'll be the exlusive user. 3638 */ 3639 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3640 folio_ref_count(folio) == 2; 3641 } 3642 3643 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3644 { 3645 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3646 vmf->address, &vmf->ptl); 3647 if (!vmf->pte) 3648 return 0; 3649 /* 3650 * Be careful so that we will only recover a special uffd-wp pte into a 3651 * none pte. Otherwise it means the pte could have changed, so retry. 3652 * 3653 * This should also cover the case where e.g. the pte changed 3654 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3655 * So is_pte_marker() check is not enough to safely drop the pte. 3656 */ 3657 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3658 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3659 pte_unmap_unlock(vmf->pte, vmf->ptl); 3660 return 0; 3661 } 3662 3663 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3664 { 3665 if (vma_is_anonymous(vmf->vma)) 3666 return do_anonymous_page(vmf); 3667 else 3668 return do_fault(vmf); 3669 } 3670 3671 /* 3672 * This is actually a page-missing access, but with uffd-wp special pte 3673 * installed. It means this pte was wr-protected before being unmapped. 3674 */ 3675 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3676 { 3677 /* 3678 * Just in case there're leftover special ptes even after the region 3679 * got unregistered - we can simply clear them. 3680 */ 3681 if (unlikely(!userfaultfd_wp(vmf->vma))) 3682 return pte_marker_clear(vmf); 3683 3684 return do_pte_missing(vmf); 3685 } 3686 3687 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3688 { 3689 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3690 unsigned long marker = pte_marker_get(entry); 3691 3692 /* 3693 * PTE markers should never be empty. If anything weird happened, 3694 * the best thing to do is to kill the process along with its mm. 3695 */ 3696 if (WARN_ON_ONCE(!marker)) 3697 return VM_FAULT_SIGBUS; 3698 3699 /* Higher priority than uffd-wp when data corrupted */ 3700 if (marker & PTE_MARKER_POISONED) 3701 return VM_FAULT_HWPOISON; 3702 3703 if (pte_marker_entry_uffd_wp(entry)) 3704 return pte_marker_handle_uffd_wp(vmf); 3705 3706 /* This is an unknown pte marker */ 3707 return VM_FAULT_SIGBUS; 3708 } 3709 3710 /* 3711 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3712 * but allow concurrent faults), and pte mapped but not yet locked. 3713 * We return with pte unmapped and unlocked. 3714 * 3715 * We return with the mmap_lock locked or unlocked in the same cases 3716 * as does filemap_fault(). 3717 */ 3718 vm_fault_t do_swap_page(struct vm_fault *vmf) 3719 { 3720 struct vm_area_struct *vma = vmf->vma; 3721 struct folio *swapcache, *folio = NULL; 3722 struct page *page; 3723 struct swap_info_struct *si = NULL; 3724 rmap_t rmap_flags = RMAP_NONE; 3725 bool exclusive = false; 3726 swp_entry_t entry; 3727 pte_t pte; 3728 vm_fault_t ret = 0; 3729 void *shadow = NULL; 3730 3731 if (!pte_unmap_same(vmf)) 3732 goto out; 3733 3734 entry = pte_to_swp_entry(vmf->orig_pte); 3735 if (unlikely(non_swap_entry(entry))) { 3736 if (is_migration_entry(entry)) { 3737 migration_entry_wait(vma->vm_mm, vmf->pmd, 3738 vmf->address); 3739 } else if (is_device_exclusive_entry(entry)) { 3740 vmf->page = pfn_swap_entry_to_page(entry); 3741 ret = remove_device_exclusive_entry(vmf); 3742 } else if (is_device_private_entry(entry)) { 3743 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3744 /* 3745 * migrate_to_ram is not yet ready to operate 3746 * under VMA lock. 3747 */ 3748 vma_end_read(vma); 3749 ret = VM_FAULT_RETRY; 3750 goto out; 3751 } 3752 3753 vmf->page = pfn_swap_entry_to_page(entry); 3754 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3755 vmf->address, &vmf->ptl); 3756 if (unlikely(!vmf->pte || 3757 !pte_same(ptep_get(vmf->pte), 3758 vmf->orig_pte))) 3759 goto unlock; 3760 3761 /* 3762 * Get a page reference while we know the page can't be 3763 * freed. 3764 */ 3765 get_page(vmf->page); 3766 pte_unmap_unlock(vmf->pte, vmf->ptl); 3767 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3768 put_page(vmf->page); 3769 } else if (is_hwpoison_entry(entry)) { 3770 ret = VM_FAULT_HWPOISON; 3771 } else if (is_pte_marker_entry(entry)) { 3772 ret = handle_pte_marker(vmf); 3773 } else { 3774 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3775 ret = VM_FAULT_SIGBUS; 3776 } 3777 goto out; 3778 } 3779 3780 /* Prevent swapoff from happening to us. */ 3781 si = get_swap_device(entry); 3782 if (unlikely(!si)) 3783 goto out; 3784 3785 folio = swap_cache_get_folio(entry, vma, vmf->address); 3786 if (folio) 3787 page = folio_file_page(folio, swp_offset(entry)); 3788 swapcache = folio; 3789 3790 if (!folio) { 3791 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3792 __swap_count(entry) == 1) { 3793 /* skip swapcache */ 3794 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3795 vma, vmf->address, false); 3796 page = &folio->page; 3797 if (folio) { 3798 __folio_set_locked(folio); 3799 __folio_set_swapbacked(folio); 3800 3801 if (mem_cgroup_swapin_charge_folio(folio, 3802 vma->vm_mm, GFP_KERNEL, 3803 entry)) { 3804 ret = VM_FAULT_OOM; 3805 goto out_page; 3806 } 3807 mem_cgroup_swapin_uncharge_swap(entry); 3808 3809 shadow = get_shadow_from_swap_cache(entry); 3810 if (shadow) 3811 workingset_refault(folio, shadow); 3812 3813 folio_add_lru(folio); 3814 3815 /* To provide entry to swap_readpage() */ 3816 folio->swap = entry; 3817 swap_readpage(page, true, NULL); 3818 folio->private = NULL; 3819 } 3820 } else { 3821 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3822 vmf); 3823 if (page) 3824 folio = page_folio(page); 3825 swapcache = folio; 3826 } 3827 3828 if (!folio) { 3829 /* 3830 * Back out if somebody else faulted in this pte 3831 * while we released the pte lock. 3832 */ 3833 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3834 vmf->address, &vmf->ptl); 3835 if (likely(vmf->pte && 3836 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3837 ret = VM_FAULT_OOM; 3838 goto unlock; 3839 } 3840 3841 /* Had to read the page from swap area: Major fault */ 3842 ret = VM_FAULT_MAJOR; 3843 count_vm_event(PGMAJFAULT); 3844 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3845 } else if (PageHWPoison(page)) { 3846 /* 3847 * hwpoisoned dirty swapcache pages are kept for killing 3848 * owner processes (which may be unknown at hwpoison time) 3849 */ 3850 ret = VM_FAULT_HWPOISON; 3851 goto out_release; 3852 } 3853 3854 ret |= folio_lock_or_retry(folio, vmf); 3855 if (ret & VM_FAULT_RETRY) 3856 goto out_release; 3857 3858 if (swapcache) { 3859 /* 3860 * Make sure folio_free_swap() or swapoff did not release the 3861 * swapcache from under us. The page pin, and pte_same test 3862 * below, are not enough to exclude that. Even if it is still 3863 * swapcache, we need to check that the page's swap has not 3864 * changed. 3865 */ 3866 if (unlikely(!folio_test_swapcache(folio) || 3867 page_swap_entry(page).val != entry.val)) 3868 goto out_page; 3869 3870 /* 3871 * KSM sometimes has to copy on read faults, for example, if 3872 * page->index of !PageKSM() pages would be nonlinear inside the 3873 * anon VMA -- PageKSM() is lost on actual swapout. 3874 */ 3875 page = ksm_might_need_to_copy(page, vma, vmf->address); 3876 if (unlikely(!page)) { 3877 ret = VM_FAULT_OOM; 3878 goto out_page; 3879 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3880 ret = VM_FAULT_HWPOISON; 3881 goto out_page; 3882 } 3883 folio = page_folio(page); 3884 3885 /* 3886 * If we want to map a page that's in the swapcache writable, we 3887 * have to detect via the refcount if we're really the exclusive 3888 * owner. Try removing the extra reference from the local LRU 3889 * caches if required. 3890 */ 3891 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3892 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3893 lru_add_drain(); 3894 } 3895 3896 folio_throttle_swaprate(folio, GFP_KERNEL); 3897 3898 /* 3899 * Back out if somebody else already faulted in this pte. 3900 */ 3901 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3902 &vmf->ptl); 3903 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3904 goto out_nomap; 3905 3906 if (unlikely(!folio_test_uptodate(folio))) { 3907 ret = VM_FAULT_SIGBUS; 3908 goto out_nomap; 3909 } 3910 3911 /* 3912 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3913 * must never point at an anonymous page in the swapcache that is 3914 * PG_anon_exclusive. Sanity check that this holds and especially, that 3915 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3916 * check after taking the PT lock and making sure that nobody 3917 * concurrently faulted in this page and set PG_anon_exclusive. 3918 */ 3919 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3920 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3921 3922 /* 3923 * Check under PT lock (to protect against concurrent fork() sharing 3924 * the swap entry concurrently) for certainly exclusive pages. 3925 */ 3926 if (!folio_test_ksm(folio)) { 3927 exclusive = pte_swp_exclusive(vmf->orig_pte); 3928 if (folio != swapcache) { 3929 /* 3930 * We have a fresh page that is not exposed to the 3931 * swapcache -> certainly exclusive. 3932 */ 3933 exclusive = true; 3934 } else if (exclusive && folio_test_writeback(folio) && 3935 data_race(si->flags & SWP_STABLE_WRITES)) { 3936 /* 3937 * This is tricky: not all swap backends support 3938 * concurrent page modifications while under writeback. 3939 * 3940 * So if we stumble over such a page in the swapcache 3941 * we must not set the page exclusive, otherwise we can 3942 * map it writable without further checks and modify it 3943 * while still under writeback. 3944 * 3945 * For these problematic swap backends, simply drop the 3946 * exclusive marker: this is perfectly fine as we start 3947 * writeback only if we fully unmapped the page and 3948 * there are no unexpected references on the page after 3949 * unmapping succeeded. After fully unmapped, no 3950 * further GUP references (FOLL_GET and FOLL_PIN) can 3951 * appear, so dropping the exclusive marker and mapping 3952 * it only R/O is fine. 3953 */ 3954 exclusive = false; 3955 } 3956 } 3957 3958 /* 3959 * Some architectures may have to restore extra metadata to the page 3960 * when reading from swap. This metadata may be indexed by swap entry 3961 * so this must be called before swap_free(). 3962 */ 3963 arch_swap_restore(entry, folio); 3964 3965 /* 3966 * Remove the swap entry and conditionally try to free up the swapcache. 3967 * We're already holding a reference on the page but haven't mapped it 3968 * yet. 3969 */ 3970 swap_free(entry); 3971 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3972 folio_free_swap(folio); 3973 3974 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3975 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3976 pte = mk_pte(page, vma->vm_page_prot); 3977 3978 /* 3979 * Same logic as in do_wp_page(); however, optimize for pages that are 3980 * certainly not shared either because we just allocated them without 3981 * exposing them to the swapcache or because the swap entry indicates 3982 * exclusivity. 3983 */ 3984 if (!folio_test_ksm(folio) && 3985 (exclusive || folio_ref_count(folio) == 1)) { 3986 if (vmf->flags & FAULT_FLAG_WRITE) { 3987 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3988 vmf->flags &= ~FAULT_FLAG_WRITE; 3989 } 3990 rmap_flags |= RMAP_EXCLUSIVE; 3991 } 3992 flush_icache_page(vma, page); 3993 if (pte_swp_soft_dirty(vmf->orig_pte)) 3994 pte = pte_mksoft_dirty(pte); 3995 if (pte_swp_uffd_wp(vmf->orig_pte)) 3996 pte = pte_mkuffd_wp(pte); 3997 vmf->orig_pte = pte; 3998 3999 /* ksm created a completely new copy */ 4000 if (unlikely(folio != swapcache && swapcache)) { 4001 page_add_new_anon_rmap(page, vma, vmf->address); 4002 folio_add_lru_vma(folio, vma); 4003 } else { 4004 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4005 } 4006 4007 VM_BUG_ON(!folio_test_anon(folio) || 4008 (pte_write(pte) && !PageAnonExclusive(page))); 4009 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4010 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4011 4012 folio_unlock(folio); 4013 if (folio != swapcache && swapcache) { 4014 /* 4015 * Hold the lock to avoid the swap entry to be reused 4016 * until we take the PT lock for the pte_same() check 4017 * (to avoid false positives from pte_same). For 4018 * further safety release the lock after the swap_free 4019 * so that the swap count won't change under a 4020 * parallel locked swapcache. 4021 */ 4022 folio_unlock(swapcache); 4023 folio_put(swapcache); 4024 } 4025 4026 if (vmf->flags & FAULT_FLAG_WRITE) { 4027 ret |= do_wp_page(vmf); 4028 if (ret & VM_FAULT_ERROR) 4029 ret &= VM_FAULT_ERROR; 4030 goto out; 4031 } 4032 4033 /* No need to invalidate - it was non-present before */ 4034 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4035 unlock: 4036 if (vmf->pte) 4037 pte_unmap_unlock(vmf->pte, vmf->ptl); 4038 out: 4039 if (si) 4040 put_swap_device(si); 4041 return ret; 4042 out_nomap: 4043 if (vmf->pte) 4044 pte_unmap_unlock(vmf->pte, vmf->ptl); 4045 out_page: 4046 folio_unlock(folio); 4047 out_release: 4048 folio_put(folio); 4049 if (folio != swapcache && swapcache) { 4050 folio_unlock(swapcache); 4051 folio_put(swapcache); 4052 } 4053 if (si) 4054 put_swap_device(si); 4055 return ret; 4056 } 4057 4058 /* 4059 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4060 * but allow concurrent faults), and pte mapped but not yet locked. 4061 * We return with mmap_lock still held, but pte unmapped and unlocked. 4062 */ 4063 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4064 { 4065 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4066 struct vm_area_struct *vma = vmf->vma; 4067 struct folio *folio; 4068 vm_fault_t ret = 0; 4069 pte_t entry; 4070 4071 /* File mapping without ->vm_ops ? */ 4072 if (vma->vm_flags & VM_SHARED) 4073 return VM_FAULT_SIGBUS; 4074 4075 /* 4076 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4077 * be distinguished from a transient failure of pte_offset_map(). 4078 */ 4079 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4080 return VM_FAULT_OOM; 4081 4082 /* Use the zero-page for reads */ 4083 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4084 !mm_forbids_zeropage(vma->vm_mm)) { 4085 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4086 vma->vm_page_prot)); 4087 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4088 vmf->address, &vmf->ptl); 4089 if (!vmf->pte) 4090 goto unlock; 4091 if (vmf_pte_changed(vmf)) { 4092 update_mmu_tlb(vma, vmf->address, vmf->pte); 4093 goto unlock; 4094 } 4095 ret = check_stable_address_space(vma->vm_mm); 4096 if (ret) 4097 goto unlock; 4098 /* Deliver the page fault to userland, check inside PT lock */ 4099 if (userfaultfd_missing(vma)) { 4100 pte_unmap_unlock(vmf->pte, vmf->ptl); 4101 return handle_userfault(vmf, VM_UFFD_MISSING); 4102 } 4103 goto setpte; 4104 } 4105 4106 /* Allocate our own private page. */ 4107 if (unlikely(anon_vma_prepare(vma))) 4108 goto oom; 4109 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4110 if (!folio) 4111 goto oom; 4112 4113 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4114 goto oom_free_page; 4115 folio_throttle_swaprate(folio, GFP_KERNEL); 4116 4117 /* 4118 * The memory barrier inside __folio_mark_uptodate makes sure that 4119 * preceding stores to the page contents become visible before 4120 * the set_pte_at() write. 4121 */ 4122 __folio_mark_uptodate(folio); 4123 4124 entry = mk_pte(&folio->page, vma->vm_page_prot); 4125 entry = pte_sw_mkyoung(entry); 4126 if (vma->vm_flags & VM_WRITE) 4127 entry = pte_mkwrite(pte_mkdirty(entry)); 4128 4129 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4130 &vmf->ptl); 4131 if (!vmf->pte) 4132 goto release; 4133 if (vmf_pte_changed(vmf)) { 4134 update_mmu_tlb(vma, vmf->address, vmf->pte); 4135 goto release; 4136 } 4137 4138 ret = check_stable_address_space(vma->vm_mm); 4139 if (ret) 4140 goto release; 4141 4142 /* Deliver the page fault to userland, check inside PT lock */ 4143 if (userfaultfd_missing(vma)) { 4144 pte_unmap_unlock(vmf->pte, vmf->ptl); 4145 folio_put(folio); 4146 return handle_userfault(vmf, VM_UFFD_MISSING); 4147 } 4148 4149 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4150 folio_add_new_anon_rmap(folio, vma, vmf->address); 4151 folio_add_lru_vma(folio, vma); 4152 setpte: 4153 if (uffd_wp) 4154 entry = pte_mkuffd_wp(entry); 4155 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4156 4157 /* No need to invalidate - it was non-present before */ 4158 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4159 unlock: 4160 if (vmf->pte) 4161 pte_unmap_unlock(vmf->pte, vmf->ptl); 4162 return ret; 4163 release: 4164 folio_put(folio); 4165 goto unlock; 4166 oom_free_page: 4167 folio_put(folio); 4168 oom: 4169 return VM_FAULT_OOM; 4170 } 4171 4172 /* 4173 * The mmap_lock must have been held on entry, and may have been 4174 * released depending on flags and vma->vm_ops->fault() return value. 4175 * See filemap_fault() and __lock_page_retry(). 4176 */ 4177 static vm_fault_t __do_fault(struct vm_fault *vmf) 4178 { 4179 struct vm_area_struct *vma = vmf->vma; 4180 vm_fault_t ret; 4181 4182 /* 4183 * Preallocate pte before we take page_lock because this might lead to 4184 * deadlocks for memcg reclaim which waits for pages under writeback: 4185 * lock_page(A) 4186 * SetPageWriteback(A) 4187 * unlock_page(A) 4188 * lock_page(B) 4189 * lock_page(B) 4190 * pte_alloc_one 4191 * shrink_page_list 4192 * wait_on_page_writeback(A) 4193 * SetPageWriteback(B) 4194 * unlock_page(B) 4195 * # flush A, B to clear the writeback 4196 */ 4197 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4198 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4199 if (!vmf->prealloc_pte) 4200 return VM_FAULT_OOM; 4201 } 4202 4203 ret = vma->vm_ops->fault(vmf); 4204 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4205 VM_FAULT_DONE_COW))) 4206 return ret; 4207 4208 if (unlikely(PageHWPoison(vmf->page))) { 4209 struct page *page = vmf->page; 4210 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4211 if (ret & VM_FAULT_LOCKED) { 4212 if (page_mapped(page)) 4213 unmap_mapping_pages(page_mapping(page), 4214 page->index, 1, false); 4215 /* Retry if a clean page was removed from the cache. */ 4216 if (invalidate_inode_page(page)) 4217 poisonret = VM_FAULT_NOPAGE; 4218 unlock_page(page); 4219 } 4220 put_page(page); 4221 vmf->page = NULL; 4222 return poisonret; 4223 } 4224 4225 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4226 lock_page(vmf->page); 4227 else 4228 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4229 4230 return ret; 4231 } 4232 4233 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4234 static void deposit_prealloc_pte(struct vm_fault *vmf) 4235 { 4236 struct vm_area_struct *vma = vmf->vma; 4237 4238 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4239 /* 4240 * We are going to consume the prealloc table, 4241 * count that as nr_ptes. 4242 */ 4243 mm_inc_nr_ptes(vma->vm_mm); 4244 vmf->prealloc_pte = NULL; 4245 } 4246 4247 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4248 { 4249 struct vm_area_struct *vma = vmf->vma; 4250 bool write = vmf->flags & FAULT_FLAG_WRITE; 4251 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4252 pmd_t entry; 4253 vm_fault_t ret = VM_FAULT_FALLBACK; 4254 4255 if (!transhuge_vma_suitable(vma, haddr)) 4256 return ret; 4257 4258 page = compound_head(page); 4259 if (compound_order(page) != HPAGE_PMD_ORDER) 4260 return ret; 4261 4262 /* 4263 * Just backoff if any subpage of a THP is corrupted otherwise 4264 * the corrupted page may mapped by PMD silently to escape the 4265 * check. This kind of THP just can be PTE mapped. Access to 4266 * the corrupted subpage should trigger SIGBUS as expected. 4267 */ 4268 if (unlikely(PageHasHWPoisoned(page))) 4269 return ret; 4270 4271 /* 4272 * Archs like ppc64 need additional space to store information 4273 * related to pte entry. Use the preallocated table for that. 4274 */ 4275 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4276 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4277 if (!vmf->prealloc_pte) 4278 return VM_FAULT_OOM; 4279 } 4280 4281 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4282 if (unlikely(!pmd_none(*vmf->pmd))) 4283 goto out; 4284 4285 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4286 4287 entry = mk_huge_pmd(page, vma->vm_page_prot); 4288 if (write) 4289 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4290 4291 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4292 page_add_file_rmap(page, vma, true); 4293 4294 /* 4295 * deposit and withdraw with pmd lock held 4296 */ 4297 if (arch_needs_pgtable_deposit()) 4298 deposit_prealloc_pte(vmf); 4299 4300 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4301 4302 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4303 4304 /* fault is handled */ 4305 ret = 0; 4306 count_vm_event(THP_FILE_MAPPED); 4307 out: 4308 spin_unlock(vmf->ptl); 4309 return ret; 4310 } 4311 #else 4312 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4313 { 4314 return VM_FAULT_FALLBACK; 4315 } 4316 #endif 4317 4318 /** 4319 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4320 * @vmf: Fault decription. 4321 * @folio: The folio that contains @page. 4322 * @page: The first page to create a PTE for. 4323 * @nr: The number of PTEs to create. 4324 * @addr: The first address to create a PTE for. 4325 */ 4326 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4327 struct page *page, unsigned int nr, unsigned long addr) 4328 { 4329 struct vm_area_struct *vma = vmf->vma; 4330 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4331 bool write = vmf->flags & FAULT_FLAG_WRITE; 4332 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4333 pte_t entry; 4334 4335 flush_icache_pages(vma, page, nr); 4336 entry = mk_pte(page, vma->vm_page_prot); 4337 4338 if (prefault && arch_wants_old_prefaulted_pte()) 4339 entry = pte_mkold(entry); 4340 else 4341 entry = pte_sw_mkyoung(entry); 4342 4343 if (write) 4344 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4345 if (unlikely(uffd_wp)) 4346 entry = pte_mkuffd_wp(entry); 4347 /* copy-on-write page */ 4348 if (write && !(vma->vm_flags & VM_SHARED)) { 4349 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4350 VM_BUG_ON_FOLIO(nr != 1, folio); 4351 folio_add_new_anon_rmap(folio, vma, addr); 4352 folio_add_lru_vma(folio, vma); 4353 } else { 4354 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr); 4355 folio_add_file_rmap_range(folio, page, nr, vma, false); 4356 } 4357 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4358 4359 /* no need to invalidate: a not-present page won't be cached */ 4360 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4361 } 4362 4363 static bool vmf_pte_changed(struct vm_fault *vmf) 4364 { 4365 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4366 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4367 4368 return !pte_none(ptep_get(vmf->pte)); 4369 } 4370 4371 /** 4372 * finish_fault - finish page fault once we have prepared the page to fault 4373 * 4374 * @vmf: structure describing the fault 4375 * 4376 * This function handles all that is needed to finish a page fault once the 4377 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4378 * given page, adds reverse page mapping, handles memcg charges and LRU 4379 * addition. 4380 * 4381 * The function expects the page to be locked and on success it consumes a 4382 * reference of a page being mapped (for the PTE which maps it). 4383 * 4384 * Return: %0 on success, %VM_FAULT_ code in case of error. 4385 */ 4386 vm_fault_t finish_fault(struct vm_fault *vmf) 4387 { 4388 struct vm_area_struct *vma = vmf->vma; 4389 struct page *page; 4390 vm_fault_t ret; 4391 4392 /* Did we COW the page? */ 4393 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4394 page = vmf->cow_page; 4395 else 4396 page = vmf->page; 4397 4398 /* 4399 * check even for read faults because we might have lost our CoWed 4400 * page 4401 */ 4402 if (!(vma->vm_flags & VM_SHARED)) { 4403 ret = check_stable_address_space(vma->vm_mm); 4404 if (ret) 4405 return ret; 4406 } 4407 4408 if (pmd_none(*vmf->pmd)) { 4409 if (PageTransCompound(page)) { 4410 ret = do_set_pmd(vmf, page); 4411 if (ret != VM_FAULT_FALLBACK) 4412 return ret; 4413 } 4414 4415 if (vmf->prealloc_pte) 4416 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4417 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4418 return VM_FAULT_OOM; 4419 } 4420 4421 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4422 vmf->address, &vmf->ptl); 4423 if (!vmf->pte) 4424 return VM_FAULT_NOPAGE; 4425 4426 /* Re-check under ptl */ 4427 if (likely(!vmf_pte_changed(vmf))) { 4428 struct folio *folio = page_folio(page); 4429 4430 set_pte_range(vmf, folio, page, 1, vmf->address); 4431 ret = 0; 4432 } else { 4433 update_mmu_tlb(vma, vmf->address, vmf->pte); 4434 ret = VM_FAULT_NOPAGE; 4435 } 4436 4437 pte_unmap_unlock(vmf->pte, vmf->ptl); 4438 return ret; 4439 } 4440 4441 static unsigned long fault_around_pages __read_mostly = 4442 65536 >> PAGE_SHIFT; 4443 4444 #ifdef CONFIG_DEBUG_FS 4445 static int fault_around_bytes_get(void *data, u64 *val) 4446 { 4447 *val = fault_around_pages << PAGE_SHIFT; 4448 return 0; 4449 } 4450 4451 /* 4452 * fault_around_bytes must be rounded down to the nearest page order as it's 4453 * what do_fault_around() expects to see. 4454 */ 4455 static int fault_around_bytes_set(void *data, u64 val) 4456 { 4457 if (val / PAGE_SIZE > PTRS_PER_PTE) 4458 return -EINVAL; 4459 4460 /* 4461 * The minimum value is 1 page, however this results in no fault-around 4462 * at all. See should_fault_around(). 4463 */ 4464 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4465 4466 return 0; 4467 } 4468 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4469 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4470 4471 static int __init fault_around_debugfs(void) 4472 { 4473 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4474 &fault_around_bytes_fops); 4475 return 0; 4476 } 4477 late_initcall(fault_around_debugfs); 4478 #endif 4479 4480 /* 4481 * do_fault_around() tries to map few pages around the fault address. The hope 4482 * is that the pages will be needed soon and this will lower the number of 4483 * faults to handle. 4484 * 4485 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4486 * not ready to be mapped: not up-to-date, locked, etc. 4487 * 4488 * This function doesn't cross VMA or page table boundaries, in order to call 4489 * map_pages() and acquire a PTE lock only once. 4490 * 4491 * fault_around_pages defines how many pages we'll try to map. 4492 * do_fault_around() expects it to be set to a power of two less than or equal 4493 * to PTRS_PER_PTE. 4494 * 4495 * The virtual address of the area that we map is naturally aligned to 4496 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4497 * (and therefore to page order). This way it's easier to guarantee 4498 * that we don't cross page table boundaries. 4499 */ 4500 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4501 { 4502 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4503 pgoff_t pte_off = pte_index(vmf->address); 4504 /* The page offset of vmf->address within the VMA. */ 4505 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4506 pgoff_t from_pte, to_pte; 4507 vm_fault_t ret; 4508 4509 /* The PTE offset of the start address, clamped to the VMA. */ 4510 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4511 pte_off - min(pte_off, vma_off)); 4512 4513 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4514 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4515 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4516 4517 if (pmd_none(*vmf->pmd)) { 4518 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4519 if (!vmf->prealloc_pte) 4520 return VM_FAULT_OOM; 4521 } 4522 4523 rcu_read_lock(); 4524 ret = vmf->vma->vm_ops->map_pages(vmf, 4525 vmf->pgoff + from_pte - pte_off, 4526 vmf->pgoff + to_pte - pte_off); 4527 rcu_read_unlock(); 4528 4529 return ret; 4530 } 4531 4532 /* Return true if we should do read fault-around, false otherwise */ 4533 static inline bool should_fault_around(struct vm_fault *vmf) 4534 { 4535 /* No ->map_pages? No way to fault around... */ 4536 if (!vmf->vma->vm_ops->map_pages) 4537 return false; 4538 4539 if (uffd_disable_fault_around(vmf->vma)) 4540 return false; 4541 4542 /* A single page implies no faulting 'around' at all. */ 4543 return fault_around_pages > 1; 4544 } 4545 4546 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4547 { 4548 vm_fault_t ret = 0; 4549 struct folio *folio; 4550 4551 /* 4552 * Let's call ->map_pages() first and use ->fault() as fallback 4553 * if page by the offset is not ready to be mapped (cold cache or 4554 * something). 4555 */ 4556 if (should_fault_around(vmf)) { 4557 ret = do_fault_around(vmf); 4558 if (ret) 4559 return ret; 4560 } 4561 4562 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4563 vma_end_read(vmf->vma); 4564 return VM_FAULT_RETRY; 4565 } 4566 4567 ret = __do_fault(vmf); 4568 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4569 return ret; 4570 4571 ret |= finish_fault(vmf); 4572 folio = page_folio(vmf->page); 4573 folio_unlock(folio); 4574 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4575 folio_put(folio); 4576 return ret; 4577 } 4578 4579 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4580 { 4581 struct vm_area_struct *vma = vmf->vma; 4582 vm_fault_t ret; 4583 4584 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4585 vma_end_read(vma); 4586 return VM_FAULT_RETRY; 4587 } 4588 4589 if (unlikely(anon_vma_prepare(vma))) 4590 return VM_FAULT_OOM; 4591 4592 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4593 if (!vmf->cow_page) 4594 return VM_FAULT_OOM; 4595 4596 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4597 GFP_KERNEL)) { 4598 put_page(vmf->cow_page); 4599 return VM_FAULT_OOM; 4600 } 4601 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4602 4603 ret = __do_fault(vmf); 4604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4605 goto uncharge_out; 4606 if (ret & VM_FAULT_DONE_COW) 4607 return ret; 4608 4609 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4610 __SetPageUptodate(vmf->cow_page); 4611 4612 ret |= finish_fault(vmf); 4613 unlock_page(vmf->page); 4614 put_page(vmf->page); 4615 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4616 goto uncharge_out; 4617 return ret; 4618 uncharge_out: 4619 put_page(vmf->cow_page); 4620 return ret; 4621 } 4622 4623 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4624 { 4625 struct vm_area_struct *vma = vmf->vma; 4626 vm_fault_t ret, tmp; 4627 struct folio *folio; 4628 4629 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4630 vma_end_read(vma); 4631 return VM_FAULT_RETRY; 4632 } 4633 4634 ret = __do_fault(vmf); 4635 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4636 return ret; 4637 4638 folio = page_folio(vmf->page); 4639 4640 /* 4641 * Check if the backing address space wants to know that the page is 4642 * about to become writable 4643 */ 4644 if (vma->vm_ops->page_mkwrite) { 4645 folio_unlock(folio); 4646 tmp = do_page_mkwrite(vmf, folio); 4647 if (unlikely(!tmp || 4648 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4649 folio_put(folio); 4650 return tmp; 4651 } 4652 } 4653 4654 ret |= finish_fault(vmf); 4655 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4656 VM_FAULT_RETRY))) { 4657 folio_unlock(folio); 4658 folio_put(folio); 4659 return ret; 4660 } 4661 4662 ret |= fault_dirty_shared_page(vmf); 4663 return ret; 4664 } 4665 4666 /* 4667 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4668 * but allow concurrent faults). 4669 * The mmap_lock may have been released depending on flags and our 4670 * return value. See filemap_fault() and __folio_lock_or_retry(). 4671 * If mmap_lock is released, vma may become invalid (for example 4672 * by other thread calling munmap()). 4673 */ 4674 static vm_fault_t do_fault(struct vm_fault *vmf) 4675 { 4676 struct vm_area_struct *vma = vmf->vma; 4677 struct mm_struct *vm_mm = vma->vm_mm; 4678 vm_fault_t ret; 4679 4680 /* 4681 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4682 */ 4683 if (!vma->vm_ops->fault) { 4684 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4685 vmf->address, &vmf->ptl); 4686 if (unlikely(!vmf->pte)) 4687 ret = VM_FAULT_SIGBUS; 4688 else { 4689 /* 4690 * Make sure this is not a temporary clearing of pte 4691 * by holding ptl and checking again. A R/M/W update 4692 * of pte involves: take ptl, clearing the pte so that 4693 * we don't have concurrent modification by hardware 4694 * followed by an update. 4695 */ 4696 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4697 ret = VM_FAULT_SIGBUS; 4698 else 4699 ret = VM_FAULT_NOPAGE; 4700 4701 pte_unmap_unlock(vmf->pte, vmf->ptl); 4702 } 4703 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4704 ret = do_read_fault(vmf); 4705 else if (!(vma->vm_flags & VM_SHARED)) 4706 ret = do_cow_fault(vmf); 4707 else 4708 ret = do_shared_fault(vmf); 4709 4710 /* preallocated pagetable is unused: free it */ 4711 if (vmf->prealloc_pte) { 4712 pte_free(vm_mm, vmf->prealloc_pte); 4713 vmf->prealloc_pte = NULL; 4714 } 4715 return ret; 4716 } 4717 4718 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4719 unsigned long addr, int page_nid, int *flags) 4720 { 4721 get_page(page); 4722 4723 /* Record the current PID acceesing VMA */ 4724 vma_set_access_pid_bit(vma); 4725 4726 count_vm_numa_event(NUMA_HINT_FAULTS); 4727 if (page_nid == numa_node_id()) { 4728 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4729 *flags |= TNF_FAULT_LOCAL; 4730 } 4731 4732 return mpol_misplaced(page, vma, addr); 4733 } 4734 4735 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4736 { 4737 struct vm_area_struct *vma = vmf->vma; 4738 struct page *page = NULL; 4739 int page_nid = NUMA_NO_NODE; 4740 bool writable = false; 4741 int last_cpupid; 4742 int target_nid; 4743 pte_t pte, old_pte; 4744 int flags = 0; 4745 4746 /* 4747 * The "pte" at this point cannot be used safely without 4748 * validation through pte_unmap_same(). It's of NUMA type but 4749 * the pfn may be screwed if the read is non atomic. 4750 */ 4751 spin_lock(vmf->ptl); 4752 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4753 pte_unmap_unlock(vmf->pte, vmf->ptl); 4754 goto out; 4755 } 4756 4757 /* Get the normal PTE */ 4758 old_pte = ptep_get(vmf->pte); 4759 pte = pte_modify(old_pte, vma->vm_page_prot); 4760 4761 /* 4762 * Detect now whether the PTE could be writable; this information 4763 * is only valid while holding the PT lock. 4764 */ 4765 writable = pte_write(pte); 4766 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4767 can_change_pte_writable(vma, vmf->address, pte)) 4768 writable = true; 4769 4770 page = vm_normal_page(vma, vmf->address, pte); 4771 if (!page || is_zone_device_page(page)) 4772 goto out_map; 4773 4774 /* TODO: handle PTE-mapped THP */ 4775 if (PageCompound(page)) 4776 goto out_map; 4777 4778 /* 4779 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4780 * much anyway since they can be in shared cache state. This misses 4781 * the case where a mapping is writable but the process never writes 4782 * to it but pte_write gets cleared during protection updates and 4783 * pte_dirty has unpredictable behaviour between PTE scan updates, 4784 * background writeback, dirty balancing and application behaviour. 4785 */ 4786 if (!writable) 4787 flags |= TNF_NO_GROUP; 4788 4789 /* 4790 * Flag if the page is shared between multiple address spaces. This 4791 * is later used when determining whether to group tasks together 4792 */ 4793 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4794 flags |= TNF_SHARED; 4795 4796 page_nid = page_to_nid(page); 4797 /* 4798 * For memory tiering mode, cpupid of slow memory page is used 4799 * to record page access time. So use default value. 4800 */ 4801 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4802 !node_is_toptier(page_nid)) 4803 last_cpupid = (-1 & LAST_CPUPID_MASK); 4804 else 4805 last_cpupid = page_cpupid_last(page); 4806 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4807 &flags); 4808 if (target_nid == NUMA_NO_NODE) { 4809 put_page(page); 4810 goto out_map; 4811 } 4812 pte_unmap_unlock(vmf->pte, vmf->ptl); 4813 writable = false; 4814 4815 /* Migrate to the requested node */ 4816 if (migrate_misplaced_page(page, vma, target_nid)) { 4817 page_nid = target_nid; 4818 flags |= TNF_MIGRATED; 4819 } else { 4820 flags |= TNF_MIGRATE_FAIL; 4821 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4822 vmf->address, &vmf->ptl); 4823 if (unlikely(!vmf->pte)) 4824 goto out; 4825 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4826 pte_unmap_unlock(vmf->pte, vmf->ptl); 4827 goto out; 4828 } 4829 goto out_map; 4830 } 4831 4832 out: 4833 if (page_nid != NUMA_NO_NODE) 4834 task_numa_fault(last_cpupid, page_nid, 1, flags); 4835 return 0; 4836 out_map: 4837 /* 4838 * Make it present again, depending on how arch implements 4839 * non-accessible ptes, some can allow access by kernel mode. 4840 */ 4841 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4842 pte = pte_modify(old_pte, vma->vm_page_prot); 4843 pte = pte_mkyoung(pte); 4844 if (writable) 4845 pte = pte_mkwrite(pte); 4846 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4847 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4848 pte_unmap_unlock(vmf->pte, vmf->ptl); 4849 goto out; 4850 } 4851 4852 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4853 { 4854 struct vm_area_struct *vma = vmf->vma; 4855 if (vma_is_anonymous(vma)) 4856 return do_huge_pmd_anonymous_page(vmf); 4857 if (vma->vm_ops->huge_fault) 4858 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4859 return VM_FAULT_FALLBACK; 4860 } 4861 4862 /* `inline' is required to avoid gcc 4.1.2 build error */ 4863 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4864 { 4865 struct vm_area_struct *vma = vmf->vma; 4866 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4867 vm_fault_t ret; 4868 4869 if (vma_is_anonymous(vma)) { 4870 if (likely(!unshare) && 4871 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) 4872 return handle_userfault(vmf, VM_UFFD_WP); 4873 return do_huge_pmd_wp_page(vmf); 4874 } 4875 4876 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4877 if (vma->vm_ops->huge_fault) { 4878 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4879 if (!(ret & VM_FAULT_FALLBACK)) 4880 return ret; 4881 } 4882 } 4883 4884 /* COW or write-notify handled on pte level: split pmd. */ 4885 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 4886 4887 return VM_FAULT_FALLBACK; 4888 } 4889 4890 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4891 { 4892 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4893 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4894 struct vm_area_struct *vma = vmf->vma; 4895 /* No support for anonymous transparent PUD pages yet */ 4896 if (vma_is_anonymous(vma)) 4897 return VM_FAULT_FALLBACK; 4898 if (vma->vm_ops->huge_fault) 4899 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4900 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4901 return VM_FAULT_FALLBACK; 4902 } 4903 4904 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4905 { 4906 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4907 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4908 struct vm_area_struct *vma = vmf->vma; 4909 vm_fault_t ret; 4910 4911 /* No support for anonymous transparent PUD pages yet */ 4912 if (vma_is_anonymous(vma)) 4913 goto split; 4914 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4915 if (vma->vm_ops->huge_fault) { 4916 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4917 if (!(ret & VM_FAULT_FALLBACK)) 4918 return ret; 4919 } 4920 } 4921 split: 4922 /* COW or write-notify not handled on PUD level: split pud.*/ 4923 __split_huge_pud(vma, vmf->pud, vmf->address); 4924 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4925 return VM_FAULT_FALLBACK; 4926 } 4927 4928 /* 4929 * These routines also need to handle stuff like marking pages dirty 4930 * and/or accessed for architectures that don't do it in hardware (most 4931 * RISC architectures). The early dirtying is also good on the i386. 4932 * 4933 * There is also a hook called "update_mmu_cache()" that architectures 4934 * with external mmu caches can use to update those (ie the Sparc or 4935 * PowerPC hashed page tables that act as extended TLBs). 4936 * 4937 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4938 * concurrent faults). 4939 * 4940 * The mmap_lock may have been released depending on flags and our return value. 4941 * See filemap_fault() and __folio_lock_or_retry(). 4942 */ 4943 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4944 { 4945 pte_t entry; 4946 4947 if (unlikely(pmd_none(*vmf->pmd))) { 4948 /* 4949 * Leave __pte_alloc() until later: because vm_ops->fault may 4950 * want to allocate huge page, and if we expose page table 4951 * for an instant, it will be difficult to retract from 4952 * concurrent faults and from rmap lookups. 4953 */ 4954 vmf->pte = NULL; 4955 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4956 } else { 4957 /* 4958 * A regular pmd is established and it can't morph into a huge 4959 * pmd by anon khugepaged, since that takes mmap_lock in write 4960 * mode; but shmem or file collapse to THP could still morph 4961 * it into a huge pmd: just retry later if so. 4962 */ 4963 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4964 vmf->address, &vmf->ptl); 4965 if (unlikely(!vmf->pte)) 4966 return 0; 4967 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4968 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4969 4970 if (pte_none(vmf->orig_pte)) { 4971 pte_unmap(vmf->pte); 4972 vmf->pte = NULL; 4973 } 4974 } 4975 4976 if (!vmf->pte) 4977 return do_pte_missing(vmf); 4978 4979 if (!pte_present(vmf->orig_pte)) 4980 return do_swap_page(vmf); 4981 4982 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4983 return do_numa_page(vmf); 4984 4985 spin_lock(vmf->ptl); 4986 entry = vmf->orig_pte; 4987 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 4988 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4989 goto unlock; 4990 } 4991 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4992 if (!pte_write(entry)) 4993 return do_wp_page(vmf); 4994 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4995 entry = pte_mkdirty(entry); 4996 } 4997 entry = pte_mkyoung(entry); 4998 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4999 vmf->flags & FAULT_FLAG_WRITE)) { 5000 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5001 vmf->pte, 1); 5002 } else { 5003 /* Skip spurious TLB flush for retried page fault */ 5004 if (vmf->flags & FAULT_FLAG_TRIED) 5005 goto unlock; 5006 /* 5007 * This is needed only for protection faults but the arch code 5008 * is not yet telling us if this is a protection fault or not. 5009 * This still avoids useless tlb flushes for .text page faults 5010 * with threads. 5011 */ 5012 if (vmf->flags & FAULT_FLAG_WRITE) 5013 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5014 vmf->pte); 5015 } 5016 unlock: 5017 pte_unmap_unlock(vmf->pte, vmf->ptl); 5018 return 0; 5019 } 5020 5021 /* 5022 * On entry, we hold either the VMA lock or the mmap_lock 5023 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5024 * the result, the mmap_lock is not held on exit. See filemap_fault() 5025 * and __folio_lock_or_retry(). 5026 */ 5027 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5028 unsigned long address, unsigned int flags) 5029 { 5030 struct vm_fault vmf = { 5031 .vma = vma, 5032 .address = address & PAGE_MASK, 5033 .real_address = address, 5034 .flags = flags, 5035 .pgoff = linear_page_index(vma, address), 5036 .gfp_mask = __get_fault_gfp_mask(vma), 5037 }; 5038 struct mm_struct *mm = vma->vm_mm; 5039 unsigned long vm_flags = vma->vm_flags; 5040 pgd_t *pgd; 5041 p4d_t *p4d; 5042 vm_fault_t ret; 5043 5044 pgd = pgd_offset(mm, address); 5045 p4d = p4d_alloc(mm, pgd, address); 5046 if (!p4d) 5047 return VM_FAULT_OOM; 5048 5049 vmf.pud = pud_alloc(mm, p4d, address); 5050 if (!vmf.pud) 5051 return VM_FAULT_OOM; 5052 retry_pud: 5053 if (pud_none(*vmf.pud) && 5054 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5055 ret = create_huge_pud(&vmf); 5056 if (!(ret & VM_FAULT_FALLBACK)) 5057 return ret; 5058 } else { 5059 pud_t orig_pud = *vmf.pud; 5060 5061 barrier(); 5062 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5063 5064 /* 5065 * TODO once we support anonymous PUDs: NUMA case and 5066 * FAULT_FLAG_UNSHARE handling. 5067 */ 5068 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5069 ret = wp_huge_pud(&vmf, orig_pud); 5070 if (!(ret & VM_FAULT_FALLBACK)) 5071 return ret; 5072 } else { 5073 huge_pud_set_accessed(&vmf, orig_pud); 5074 return 0; 5075 } 5076 } 5077 } 5078 5079 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5080 if (!vmf.pmd) 5081 return VM_FAULT_OOM; 5082 5083 /* Huge pud page fault raced with pmd_alloc? */ 5084 if (pud_trans_unstable(vmf.pud)) 5085 goto retry_pud; 5086 5087 if (pmd_none(*vmf.pmd) && 5088 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5089 ret = create_huge_pmd(&vmf); 5090 if (!(ret & VM_FAULT_FALLBACK)) 5091 return ret; 5092 } else { 5093 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5094 5095 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5096 VM_BUG_ON(thp_migration_supported() && 5097 !is_pmd_migration_entry(vmf.orig_pmd)); 5098 if (is_pmd_migration_entry(vmf.orig_pmd)) 5099 pmd_migration_entry_wait(mm, vmf.pmd); 5100 return 0; 5101 } 5102 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5103 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5104 return do_huge_pmd_numa_page(&vmf); 5105 5106 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5107 !pmd_write(vmf.orig_pmd)) { 5108 ret = wp_huge_pmd(&vmf); 5109 if (!(ret & VM_FAULT_FALLBACK)) 5110 return ret; 5111 } else { 5112 huge_pmd_set_accessed(&vmf); 5113 return 0; 5114 } 5115 } 5116 } 5117 5118 return handle_pte_fault(&vmf); 5119 } 5120 5121 /** 5122 * mm_account_fault - Do page fault accounting 5123 * @mm: mm from which memcg should be extracted. It can be NULL. 5124 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5125 * of perf event counters, but we'll still do the per-task accounting to 5126 * the task who triggered this page fault. 5127 * @address: the faulted address. 5128 * @flags: the fault flags. 5129 * @ret: the fault retcode. 5130 * 5131 * This will take care of most of the page fault accounting. Meanwhile, it 5132 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5133 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5134 * still be in per-arch page fault handlers at the entry of page fault. 5135 */ 5136 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5137 unsigned long address, unsigned int flags, 5138 vm_fault_t ret) 5139 { 5140 bool major; 5141 5142 /* Incomplete faults will be accounted upon completion. */ 5143 if (ret & VM_FAULT_RETRY) 5144 return; 5145 5146 /* 5147 * To preserve the behavior of older kernels, PGFAULT counters record 5148 * both successful and failed faults, as opposed to perf counters, 5149 * which ignore failed cases. 5150 */ 5151 count_vm_event(PGFAULT); 5152 count_memcg_event_mm(mm, PGFAULT); 5153 5154 /* 5155 * Do not account for unsuccessful faults (e.g. when the address wasn't 5156 * valid). That includes arch_vma_access_permitted() failing before 5157 * reaching here. So this is not a "this many hardware page faults" 5158 * counter. We should use the hw profiling for that. 5159 */ 5160 if (ret & VM_FAULT_ERROR) 5161 return; 5162 5163 /* 5164 * We define the fault as a major fault when the final successful fault 5165 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5166 * handle it immediately previously). 5167 */ 5168 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5169 5170 if (major) 5171 current->maj_flt++; 5172 else 5173 current->min_flt++; 5174 5175 /* 5176 * If the fault is done for GUP, regs will be NULL. We only do the 5177 * accounting for the per thread fault counters who triggered the 5178 * fault, and we skip the perf event updates. 5179 */ 5180 if (!regs) 5181 return; 5182 5183 if (major) 5184 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5185 else 5186 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5187 } 5188 5189 #ifdef CONFIG_LRU_GEN 5190 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5191 { 5192 /* the LRU algorithm only applies to accesses with recency */ 5193 current->in_lru_fault = vma_has_recency(vma); 5194 } 5195 5196 static void lru_gen_exit_fault(void) 5197 { 5198 current->in_lru_fault = false; 5199 } 5200 #else 5201 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5202 { 5203 } 5204 5205 static void lru_gen_exit_fault(void) 5206 { 5207 } 5208 #endif /* CONFIG_LRU_GEN */ 5209 5210 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5211 unsigned int *flags) 5212 { 5213 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5214 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5215 return VM_FAULT_SIGSEGV; 5216 /* 5217 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5218 * just treat it like an ordinary read-fault otherwise. 5219 */ 5220 if (!is_cow_mapping(vma->vm_flags)) 5221 *flags &= ~FAULT_FLAG_UNSHARE; 5222 } else if (*flags & FAULT_FLAG_WRITE) { 5223 /* Write faults on read-only mappings are impossible ... */ 5224 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5225 return VM_FAULT_SIGSEGV; 5226 /* ... and FOLL_FORCE only applies to COW mappings. */ 5227 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5228 !is_cow_mapping(vma->vm_flags))) 5229 return VM_FAULT_SIGSEGV; 5230 } 5231 #ifdef CONFIG_PER_VMA_LOCK 5232 /* 5233 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5234 * the assumption that lock is dropped on VM_FAULT_RETRY. 5235 */ 5236 if (WARN_ON_ONCE((*flags & 5237 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5238 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5239 return VM_FAULT_SIGSEGV; 5240 #endif 5241 5242 return 0; 5243 } 5244 5245 /* 5246 * By the time we get here, we already hold the mm semaphore 5247 * 5248 * The mmap_lock may have been released depending on flags and our 5249 * return value. See filemap_fault() and __folio_lock_or_retry(). 5250 */ 5251 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5252 unsigned int flags, struct pt_regs *regs) 5253 { 5254 /* If the fault handler drops the mmap_lock, vma may be freed */ 5255 struct mm_struct *mm = vma->vm_mm; 5256 vm_fault_t ret; 5257 5258 __set_current_state(TASK_RUNNING); 5259 5260 ret = sanitize_fault_flags(vma, &flags); 5261 if (ret) 5262 goto out; 5263 5264 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5265 flags & FAULT_FLAG_INSTRUCTION, 5266 flags & FAULT_FLAG_REMOTE)) { 5267 ret = VM_FAULT_SIGSEGV; 5268 goto out; 5269 } 5270 5271 /* 5272 * Enable the memcg OOM handling for faults triggered in user 5273 * space. Kernel faults are handled more gracefully. 5274 */ 5275 if (flags & FAULT_FLAG_USER) 5276 mem_cgroup_enter_user_fault(); 5277 5278 lru_gen_enter_fault(vma); 5279 5280 if (unlikely(is_vm_hugetlb_page(vma))) 5281 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5282 else 5283 ret = __handle_mm_fault(vma, address, flags); 5284 5285 lru_gen_exit_fault(); 5286 5287 if (flags & FAULT_FLAG_USER) { 5288 mem_cgroup_exit_user_fault(); 5289 /* 5290 * The task may have entered a memcg OOM situation but 5291 * if the allocation error was handled gracefully (no 5292 * VM_FAULT_OOM), there is no need to kill anything. 5293 * Just clean up the OOM state peacefully. 5294 */ 5295 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5296 mem_cgroup_oom_synchronize(false); 5297 } 5298 out: 5299 mm_account_fault(mm, regs, address, flags, ret); 5300 5301 return ret; 5302 } 5303 EXPORT_SYMBOL_GPL(handle_mm_fault); 5304 5305 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5306 #include <linux/extable.h> 5307 5308 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5309 { 5310 if (likely(mmap_read_trylock(mm))) 5311 return true; 5312 5313 if (regs && !user_mode(regs)) { 5314 unsigned long ip = instruction_pointer(regs); 5315 if (!search_exception_tables(ip)) 5316 return false; 5317 } 5318 5319 return !mmap_read_lock_killable(mm); 5320 } 5321 5322 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5323 { 5324 /* 5325 * We don't have this operation yet. 5326 * 5327 * It should be easy enough to do: it's basically a 5328 * atomic_long_try_cmpxchg_acquire() 5329 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5330 * it also needs the proper lockdep magic etc. 5331 */ 5332 return false; 5333 } 5334 5335 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5336 { 5337 mmap_read_unlock(mm); 5338 if (regs && !user_mode(regs)) { 5339 unsigned long ip = instruction_pointer(regs); 5340 if (!search_exception_tables(ip)) 5341 return false; 5342 } 5343 return !mmap_write_lock_killable(mm); 5344 } 5345 5346 /* 5347 * Helper for page fault handling. 5348 * 5349 * This is kind of equivalend to "mmap_read_lock()" followed 5350 * by "find_extend_vma()", except it's a lot more careful about 5351 * the locking (and will drop the lock on failure). 5352 * 5353 * For example, if we have a kernel bug that causes a page 5354 * fault, we don't want to just use mmap_read_lock() to get 5355 * the mm lock, because that would deadlock if the bug were 5356 * to happen while we're holding the mm lock for writing. 5357 * 5358 * So this checks the exception tables on kernel faults in 5359 * order to only do this all for instructions that are actually 5360 * expected to fault. 5361 * 5362 * We can also actually take the mm lock for writing if we 5363 * need to extend the vma, which helps the VM layer a lot. 5364 */ 5365 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5366 unsigned long addr, struct pt_regs *regs) 5367 { 5368 struct vm_area_struct *vma; 5369 5370 if (!get_mmap_lock_carefully(mm, regs)) 5371 return NULL; 5372 5373 vma = find_vma(mm, addr); 5374 if (likely(vma && (vma->vm_start <= addr))) 5375 return vma; 5376 5377 /* 5378 * Well, dang. We might still be successful, but only 5379 * if we can extend a vma to do so. 5380 */ 5381 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5382 mmap_read_unlock(mm); 5383 return NULL; 5384 } 5385 5386 /* 5387 * We can try to upgrade the mmap lock atomically, 5388 * in which case we can continue to use the vma 5389 * we already looked up. 5390 * 5391 * Otherwise we'll have to drop the mmap lock and 5392 * re-take it, and also look up the vma again, 5393 * re-checking it. 5394 */ 5395 if (!mmap_upgrade_trylock(mm)) { 5396 if (!upgrade_mmap_lock_carefully(mm, regs)) 5397 return NULL; 5398 5399 vma = find_vma(mm, addr); 5400 if (!vma) 5401 goto fail; 5402 if (vma->vm_start <= addr) 5403 goto success; 5404 if (!(vma->vm_flags & VM_GROWSDOWN)) 5405 goto fail; 5406 } 5407 5408 if (expand_stack_locked(vma, addr)) 5409 goto fail; 5410 5411 success: 5412 mmap_write_downgrade(mm); 5413 return vma; 5414 5415 fail: 5416 mmap_write_unlock(mm); 5417 return NULL; 5418 } 5419 #endif 5420 5421 #ifdef CONFIG_PER_VMA_LOCK 5422 /* 5423 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5424 * stable and not isolated. If the VMA is not found or is being modified the 5425 * function returns NULL. 5426 */ 5427 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5428 unsigned long address) 5429 { 5430 MA_STATE(mas, &mm->mm_mt, address, address); 5431 struct vm_area_struct *vma; 5432 5433 rcu_read_lock(); 5434 retry: 5435 vma = mas_walk(&mas); 5436 if (!vma) 5437 goto inval; 5438 5439 if (!vma_start_read(vma)) 5440 goto inval; 5441 5442 /* 5443 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5444 * This check must happen after vma_start_read(); otherwise, a 5445 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5446 * from its anon_vma. 5447 */ 5448 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5449 goto inval_end_read; 5450 5451 /* Check since vm_start/vm_end might change before we lock the VMA */ 5452 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5453 goto inval_end_read; 5454 5455 /* Check if the VMA got isolated after we found it */ 5456 if (vma->detached) { 5457 vma_end_read(vma); 5458 count_vm_vma_lock_event(VMA_LOCK_MISS); 5459 /* The area was replaced with another one */ 5460 goto retry; 5461 } 5462 5463 rcu_read_unlock(); 5464 return vma; 5465 5466 inval_end_read: 5467 vma_end_read(vma); 5468 inval: 5469 rcu_read_unlock(); 5470 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5471 return NULL; 5472 } 5473 #endif /* CONFIG_PER_VMA_LOCK */ 5474 5475 #ifndef __PAGETABLE_P4D_FOLDED 5476 /* 5477 * Allocate p4d page table. 5478 * We've already handled the fast-path in-line. 5479 */ 5480 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5481 { 5482 p4d_t *new = p4d_alloc_one(mm, address); 5483 if (!new) 5484 return -ENOMEM; 5485 5486 spin_lock(&mm->page_table_lock); 5487 if (pgd_present(*pgd)) { /* Another has populated it */ 5488 p4d_free(mm, new); 5489 } else { 5490 smp_wmb(); /* See comment in pmd_install() */ 5491 pgd_populate(mm, pgd, new); 5492 } 5493 spin_unlock(&mm->page_table_lock); 5494 return 0; 5495 } 5496 #endif /* __PAGETABLE_P4D_FOLDED */ 5497 5498 #ifndef __PAGETABLE_PUD_FOLDED 5499 /* 5500 * Allocate page upper directory. 5501 * We've already handled the fast-path in-line. 5502 */ 5503 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5504 { 5505 pud_t *new = pud_alloc_one(mm, address); 5506 if (!new) 5507 return -ENOMEM; 5508 5509 spin_lock(&mm->page_table_lock); 5510 if (!p4d_present(*p4d)) { 5511 mm_inc_nr_puds(mm); 5512 smp_wmb(); /* See comment in pmd_install() */ 5513 p4d_populate(mm, p4d, new); 5514 } else /* Another has populated it */ 5515 pud_free(mm, new); 5516 spin_unlock(&mm->page_table_lock); 5517 return 0; 5518 } 5519 #endif /* __PAGETABLE_PUD_FOLDED */ 5520 5521 #ifndef __PAGETABLE_PMD_FOLDED 5522 /* 5523 * Allocate page middle directory. 5524 * We've already handled the fast-path in-line. 5525 */ 5526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5527 { 5528 spinlock_t *ptl; 5529 pmd_t *new = pmd_alloc_one(mm, address); 5530 if (!new) 5531 return -ENOMEM; 5532 5533 ptl = pud_lock(mm, pud); 5534 if (!pud_present(*pud)) { 5535 mm_inc_nr_pmds(mm); 5536 smp_wmb(); /* See comment in pmd_install() */ 5537 pud_populate(mm, pud, new); 5538 } else { /* Another has populated it */ 5539 pmd_free(mm, new); 5540 } 5541 spin_unlock(ptl); 5542 return 0; 5543 } 5544 #endif /* __PAGETABLE_PMD_FOLDED */ 5545 5546 /** 5547 * follow_pte - look up PTE at a user virtual address 5548 * @mm: the mm_struct of the target address space 5549 * @address: user virtual address 5550 * @ptepp: location to store found PTE 5551 * @ptlp: location to store the lock for the PTE 5552 * 5553 * On a successful return, the pointer to the PTE is stored in @ptepp; 5554 * the corresponding lock is taken and its location is stored in @ptlp. 5555 * The contents of the PTE are only stable until @ptlp is released; 5556 * any further use, if any, must be protected against invalidation 5557 * with MMU notifiers. 5558 * 5559 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5560 * should be taken for read. 5561 * 5562 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5563 * it is not a good general-purpose API. 5564 * 5565 * Return: zero on success, -ve otherwise. 5566 */ 5567 int follow_pte(struct mm_struct *mm, unsigned long address, 5568 pte_t **ptepp, spinlock_t **ptlp) 5569 { 5570 pgd_t *pgd; 5571 p4d_t *p4d; 5572 pud_t *pud; 5573 pmd_t *pmd; 5574 pte_t *ptep; 5575 5576 pgd = pgd_offset(mm, address); 5577 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5578 goto out; 5579 5580 p4d = p4d_offset(pgd, address); 5581 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5582 goto out; 5583 5584 pud = pud_offset(p4d, address); 5585 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5586 goto out; 5587 5588 pmd = pmd_offset(pud, address); 5589 VM_BUG_ON(pmd_trans_huge(*pmd)); 5590 5591 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5592 if (!ptep) 5593 goto out; 5594 if (!pte_present(ptep_get(ptep))) 5595 goto unlock; 5596 *ptepp = ptep; 5597 return 0; 5598 unlock: 5599 pte_unmap_unlock(ptep, *ptlp); 5600 out: 5601 return -EINVAL; 5602 } 5603 EXPORT_SYMBOL_GPL(follow_pte); 5604 5605 /** 5606 * follow_pfn - look up PFN at a user virtual address 5607 * @vma: memory mapping 5608 * @address: user virtual address 5609 * @pfn: location to store found PFN 5610 * 5611 * Only IO mappings and raw PFN mappings are allowed. 5612 * 5613 * This function does not allow the caller to read the permissions 5614 * of the PTE. Do not use it. 5615 * 5616 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5617 */ 5618 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5619 unsigned long *pfn) 5620 { 5621 int ret = -EINVAL; 5622 spinlock_t *ptl; 5623 pte_t *ptep; 5624 5625 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5626 return ret; 5627 5628 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5629 if (ret) 5630 return ret; 5631 *pfn = pte_pfn(ptep_get(ptep)); 5632 pte_unmap_unlock(ptep, ptl); 5633 return 0; 5634 } 5635 EXPORT_SYMBOL(follow_pfn); 5636 5637 #ifdef CONFIG_HAVE_IOREMAP_PROT 5638 int follow_phys(struct vm_area_struct *vma, 5639 unsigned long address, unsigned int flags, 5640 unsigned long *prot, resource_size_t *phys) 5641 { 5642 int ret = -EINVAL; 5643 pte_t *ptep, pte; 5644 spinlock_t *ptl; 5645 5646 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5647 goto out; 5648 5649 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5650 goto out; 5651 pte = ptep_get(ptep); 5652 5653 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5654 goto unlock; 5655 5656 *prot = pgprot_val(pte_pgprot(pte)); 5657 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5658 5659 ret = 0; 5660 unlock: 5661 pte_unmap_unlock(ptep, ptl); 5662 out: 5663 return ret; 5664 } 5665 5666 /** 5667 * generic_access_phys - generic implementation for iomem mmap access 5668 * @vma: the vma to access 5669 * @addr: userspace address, not relative offset within @vma 5670 * @buf: buffer to read/write 5671 * @len: length of transfer 5672 * @write: set to FOLL_WRITE when writing, otherwise reading 5673 * 5674 * This is a generic implementation for &vm_operations_struct.access for an 5675 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5676 * not page based. 5677 */ 5678 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5679 void *buf, int len, int write) 5680 { 5681 resource_size_t phys_addr; 5682 unsigned long prot = 0; 5683 void __iomem *maddr; 5684 pte_t *ptep, pte; 5685 spinlock_t *ptl; 5686 int offset = offset_in_page(addr); 5687 int ret = -EINVAL; 5688 5689 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5690 return -EINVAL; 5691 5692 retry: 5693 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5694 return -EINVAL; 5695 pte = ptep_get(ptep); 5696 pte_unmap_unlock(ptep, ptl); 5697 5698 prot = pgprot_val(pte_pgprot(pte)); 5699 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5700 5701 if ((write & FOLL_WRITE) && !pte_write(pte)) 5702 return -EINVAL; 5703 5704 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5705 if (!maddr) 5706 return -ENOMEM; 5707 5708 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5709 goto out_unmap; 5710 5711 if (!pte_same(pte, ptep_get(ptep))) { 5712 pte_unmap_unlock(ptep, ptl); 5713 iounmap(maddr); 5714 5715 goto retry; 5716 } 5717 5718 if (write) 5719 memcpy_toio(maddr + offset, buf, len); 5720 else 5721 memcpy_fromio(buf, maddr + offset, len); 5722 ret = len; 5723 pte_unmap_unlock(ptep, ptl); 5724 out_unmap: 5725 iounmap(maddr); 5726 5727 return ret; 5728 } 5729 EXPORT_SYMBOL_GPL(generic_access_phys); 5730 #endif 5731 5732 /* 5733 * Access another process' address space as given in mm. 5734 */ 5735 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5736 int len, unsigned int gup_flags) 5737 { 5738 void *old_buf = buf; 5739 int write = gup_flags & FOLL_WRITE; 5740 5741 if (mmap_read_lock_killable(mm)) 5742 return 0; 5743 5744 /* Untag the address before looking up the VMA */ 5745 addr = untagged_addr_remote(mm, addr); 5746 5747 /* Avoid triggering the temporary warning in __get_user_pages */ 5748 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5749 return 0; 5750 5751 /* ignore errors, just check how much was successfully transferred */ 5752 while (len) { 5753 int bytes, offset; 5754 void *maddr; 5755 struct vm_area_struct *vma = NULL; 5756 struct page *page = get_user_page_vma_remote(mm, addr, 5757 gup_flags, &vma); 5758 5759 if (IS_ERR_OR_NULL(page)) { 5760 /* We might need to expand the stack to access it */ 5761 vma = vma_lookup(mm, addr); 5762 if (!vma) { 5763 vma = expand_stack(mm, addr); 5764 5765 /* mmap_lock was dropped on failure */ 5766 if (!vma) 5767 return buf - old_buf; 5768 5769 /* Try again if stack expansion worked */ 5770 continue; 5771 } 5772 5773 5774 /* 5775 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5776 * we can access using slightly different code. 5777 */ 5778 bytes = 0; 5779 #ifdef CONFIG_HAVE_IOREMAP_PROT 5780 if (vma->vm_ops && vma->vm_ops->access) 5781 bytes = vma->vm_ops->access(vma, addr, buf, 5782 len, write); 5783 #endif 5784 if (bytes <= 0) 5785 break; 5786 } else { 5787 bytes = len; 5788 offset = addr & (PAGE_SIZE-1); 5789 if (bytes > PAGE_SIZE-offset) 5790 bytes = PAGE_SIZE-offset; 5791 5792 maddr = kmap(page); 5793 if (write) { 5794 copy_to_user_page(vma, page, addr, 5795 maddr + offset, buf, bytes); 5796 set_page_dirty_lock(page); 5797 } else { 5798 copy_from_user_page(vma, page, addr, 5799 buf, maddr + offset, bytes); 5800 } 5801 kunmap(page); 5802 put_page(page); 5803 } 5804 len -= bytes; 5805 buf += bytes; 5806 addr += bytes; 5807 } 5808 mmap_read_unlock(mm); 5809 5810 return buf - old_buf; 5811 } 5812 5813 /** 5814 * access_remote_vm - access another process' address space 5815 * @mm: the mm_struct of the target address space 5816 * @addr: start address to access 5817 * @buf: source or destination buffer 5818 * @len: number of bytes to transfer 5819 * @gup_flags: flags modifying lookup behaviour 5820 * 5821 * The caller must hold a reference on @mm. 5822 * 5823 * Return: number of bytes copied from source to destination. 5824 */ 5825 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5826 void *buf, int len, unsigned int gup_flags) 5827 { 5828 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5829 } 5830 5831 /* 5832 * Access another process' address space. 5833 * Source/target buffer must be kernel space, 5834 * Do not walk the page table directly, use get_user_pages 5835 */ 5836 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5837 void *buf, int len, unsigned int gup_flags) 5838 { 5839 struct mm_struct *mm; 5840 int ret; 5841 5842 mm = get_task_mm(tsk); 5843 if (!mm) 5844 return 0; 5845 5846 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5847 5848 mmput(mm); 5849 5850 return ret; 5851 } 5852 EXPORT_SYMBOL_GPL(access_process_vm); 5853 5854 /* 5855 * Print the name of a VMA. 5856 */ 5857 void print_vma_addr(char *prefix, unsigned long ip) 5858 { 5859 struct mm_struct *mm = current->mm; 5860 struct vm_area_struct *vma; 5861 5862 /* 5863 * we might be running from an atomic context so we cannot sleep 5864 */ 5865 if (!mmap_read_trylock(mm)) 5866 return; 5867 5868 vma = find_vma(mm, ip); 5869 if (vma && vma->vm_file) { 5870 struct file *f = vma->vm_file; 5871 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5872 if (buf) { 5873 char *p; 5874 5875 p = file_path(f, buf, PAGE_SIZE); 5876 if (IS_ERR(p)) 5877 p = "?"; 5878 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5879 vma->vm_start, 5880 vma->vm_end - vma->vm_start); 5881 free_page((unsigned long)buf); 5882 } 5883 } 5884 mmap_read_unlock(mm); 5885 } 5886 5887 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5888 void __might_fault(const char *file, int line) 5889 { 5890 if (pagefault_disabled()) 5891 return; 5892 __might_sleep(file, line); 5893 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5894 if (current->mm) 5895 might_lock_read(¤t->mm->mmap_lock); 5896 #endif 5897 } 5898 EXPORT_SYMBOL(__might_fault); 5899 #endif 5900 5901 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5902 /* 5903 * Process all subpages of the specified huge page with the specified 5904 * operation. The target subpage will be processed last to keep its 5905 * cache lines hot. 5906 */ 5907 static inline int process_huge_page( 5908 unsigned long addr_hint, unsigned int pages_per_huge_page, 5909 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5910 void *arg) 5911 { 5912 int i, n, base, l, ret; 5913 unsigned long addr = addr_hint & 5914 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5915 5916 /* Process target subpage last to keep its cache lines hot */ 5917 might_sleep(); 5918 n = (addr_hint - addr) / PAGE_SIZE; 5919 if (2 * n <= pages_per_huge_page) { 5920 /* If target subpage in first half of huge page */ 5921 base = 0; 5922 l = n; 5923 /* Process subpages at the end of huge page */ 5924 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5925 cond_resched(); 5926 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5927 if (ret) 5928 return ret; 5929 } 5930 } else { 5931 /* If target subpage in second half of huge page */ 5932 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5933 l = pages_per_huge_page - n; 5934 /* Process subpages at the begin of huge page */ 5935 for (i = 0; i < base; i++) { 5936 cond_resched(); 5937 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5938 if (ret) 5939 return ret; 5940 } 5941 } 5942 /* 5943 * Process remaining subpages in left-right-left-right pattern 5944 * towards the target subpage 5945 */ 5946 for (i = 0; i < l; i++) { 5947 int left_idx = base + i; 5948 int right_idx = base + 2 * l - 1 - i; 5949 5950 cond_resched(); 5951 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5952 if (ret) 5953 return ret; 5954 cond_resched(); 5955 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5956 if (ret) 5957 return ret; 5958 } 5959 return 0; 5960 } 5961 5962 static void clear_gigantic_page(struct page *page, 5963 unsigned long addr, 5964 unsigned int pages_per_huge_page) 5965 { 5966 int i; 5967 struct page *p; 5968 5969 might_sleep(); 5970 for (i = 0; i < pages_per_huge_page; i++) { 5971 p = nth_page(page, i); 5972 cond_resched(); 5973 clear_user_highpage(p, addr + i * PAGE_SIZE); 5974 } 5975 } 5976 5977 static int clear_subpage(unsigned long addr, int idx, void *arg) 5978 { 5979 struct page *page = arg; 5980 5981 clear_user_highpage(page + idx, addr); 5982 return 0; 5983 } 5984 5985 void clear_huge_page(struct page *page, 5986 unsigned long addr_hint, unsigned int pages_per_huge_page) 5987 { 5988 unsigned long addr = addr_hint & 5989 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5990 5991 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5992 clear_gigantic_page(page, addr, pages_per_huge_page); 5993 return; 5994 } 5995 5996 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5997 } 5998 5999 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6000 unsigned long addr, 6001 struct vm_area_struct *vma, 6002 unsigned int pages_per_huge_page) 6003 { 6004 int i; 6005 struct page *dst_page; 6006 struct page *src_page; 6007 6008 for (i = 0; i < pages_per_huge_page; i++) { 6009 dst_page = folio_page(dst, i); 6010 src_page = folio_page(src, i); 6011 6012 cond_resched(); 6013 if (copy_mc_user_highpage(dst_page, src_page, 6014 addr + i*PAGE_SIZE, vma)) { 6015 memory_failure_queue(page_to_pfn(src_page), 0); 6016 return -EHWPOISON; 6017 } 6018 } 6019 return 0; 6020 } 6021 6022 struct copy_subpage_arg { 6023 struct page *dst; 6024 struct page *src; 6025 struct vm_area_struct *vma; 6026 }; 6027 6028 static int copy_subpage(unsigned long addr, int idx, void *arg) 6029 { 6030 struct copy_subpage_arg *copy_arg = arg; 6031 6032 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6033 addr, copy_arg->vma)) { 6034 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6035 return -EHWPOISON; 6036 } 6037 return 0; 6038 } 6039 6040 int copy_user_large_folio(struct folio *dst, struct folio *src, 6041 unsigned long addr_hint, struct vm_area_struct *vma) 6042 { 6043 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6044 unsigned long addr = addr_hint & 6045 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6046 struct copy_subpage_arg arg = { 6047 .dst = &dst->page, 6048 .src = &src->page, 6049 .vma = vma, 6050 }; 6051 6052 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6053 return copy_user_gigantic_page(dst, src, addr, vma, 6054 pages_per_huge_page); 6055 6056 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6057 } 6058 6059 long copy_folio_from_user(struct folio *dst_folio, 6060 const void __user *usr_src, 6061 bool allow_pagefault) 6062 { 6063 void *kaddr; 6064 unsigned long i, rc = 0; 6065 unsigned int nr_pages = folio_nr_pages(dst_folio); 6066 unsigned long ret_val = nr_pages * PAGE_SIZE; 6067 struct page *subpage; 6068 6069 for (i = 0; i < nr_pages; i++) { 6070 subpage = folio_page(dst_folio, i); 6071 kaddr = kmap_local_page(subpage); 6072 if (!allow_pagefault) 6073 pagefault_disable(); 6074 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6075 if (!allow_pagefault) 6076 pagefault_enable(); 6077 kunmap_local(kaddr); 6078 6079 ret_val -= (PAGE_SIZE - rc); 6080 if (rc) 6081 break; 6082 6083 flush_dcache_page(subpage); 6084 6085 cond_resched(); 6086 } 6087 return ret_val; 6088 } 6089 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6090 6091 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6092 6093 static struct kmem_cache *page_ptl_cachep; 6094 6095 void __init ptlock_cache_init(void) 6096 { 6097 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6098 SLAB_PANIC, NULL); 6099 } 6100 6101 bool ptlock_alloc(struct ptdesc *ptdesc) 6102 { 6103 spinlock_t *ptl; 6104 6105 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6106 if (!ptl) 6107 return false; 6108 ptdesc->ptl = ptl; 6109 return true; 6110 } 6111 6112 void ptlock_free(struct ptdesc *ptdesc) 6113 { 6114 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6115 } 6116 #endif 6117