1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 52 #include <asm/pgalloc.h> 53 #include <asm/uaccess.h> 54 #include <asm/tlb.h> 55 #include <asm/tlbflush.h> 56 #include <asm/pgtable.h> 57 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 61 #ifndef CONFIG_DISCONTIGMEM 62 /* use the per-pgdat data instead for discontigmem - mbligh */ 63 unsigned long max_mapnr; 64 struct page *mem_map; 65 66 EXPORT_SYMBOL(max_mapnr); 67 EXPORT_SYMBOL(mem_map); 68 #endif 69 70 unsigned long num_physpages; 71 /* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78 void * high_memory; 79 unsigned long vmalloc_earlyreserve; 80 81 EXPORT_SYMBOL(num_physpages); 82 EXPORT_SYMBOL(high_memory); 83 EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85 /* 86 * If a p?d_bad entry is found while walking page tables, report 87 * the error, before resetting entry to p?d_none. Usually (but 88 * very seldom) called out from the p?d_none_or_clear_bad macros. 89 */ 90 91 void pgd_clear_bad(pgd_t *pgd) 92 { 93 pgd_ERROR(*pgd); 94 pgd_clear(pgd); 95 } 96 97 void pud_clear_bad(pud_t *pud) 98 { 99 pud_ERROR(*pud); 100 pud_clear(pud); 101 } 102 103 void pmd_clear_bad(pmd_t *pmd) 104 { 105 pmd_ERROR(*pmd); 106 pmd_clear(pmd); 107 } 108 109 /* 110 * Note: this doesn't free the actual pages themselves. That 111 * has been handled earlier when unmapping all the memory regions. 112 */ 113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 114 { 115 struct page *page = pmd_page(*pmd); 116 pmd_clear(pmd); 117 pte_free_tlb(tlb, page); 118 dec_page_state(nr_page_table_pages); 119 tlb->mm->nr_ptes--; 120 } 121 122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 123 unsigned long addr, unsigned long end, 124 unsigned long floor, unsigned long ceiling) 125 { 126 pmd_t *pmd; 127 unsigned long next; 128 unsigned long start; 129 130 start = addr; 131 pmd = pmd_offset(pud, addr); 132 do { 133 next = pmd_addr_end(addr, end); 134 if (pmd_none_or_clear_bad(pmd)) 135 continue; 136 free_pte_range(tlb, pmd); 137 } while (pmd++, addr = next, addr != end); 138 139 start &= PUD_MASK; 140 if (start < floor) 141 return; 142 if (ceiling) { 143 ceiling &= PUD_MASK; 144 if (!ceiling) 145 return; 146 } 147 if (end - 1 > ceiling - 1) 148 return; 149 150 pmd = pmd_offset(pud, start); 151 pud_clear(pud); 152 pmd_free_tlb(tlb, pmd); 153 } 154 155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 156 unsigned long addr, unsigned long end, 157 unsigned long floor, unsigned long ceiling) 158 { 159 pud_t *pud; 160 unsigned long next; 161 unsigned long start; 162 163 start = addr; 164 pud = pud_offset(pgd, addr); 165 do { 166 next = pud_addr_end(addr, end); 167 if (pud_none_or_clear_bad(pud)) 168 continue; 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 170 } while (pud++, addr = next, addr != end); 171 172 start &= PGDIR_MASK; 173 if (start < floor) 174 return; 175 if (ceiling) { 176 ceiling &= PGDIR_MASK; 177 if (!ceiling) 178 return; 179 } 180 if (end - 1 > ceiling - 1) 181 return; 182 183 pud = pud_offset(pgd, start); 184 pgd_clear(pgd); 185 pud_free_tlb(tlb, pud); 186 } 187 188 /* 189 * This function frees user-level page tables of a process. 190 * 191 * Must be called with pagetable lock held. 192 */ 193 void free_pgd_range(struct mmu_gather **tlb, 194 unsigned long addr, unsigned long end, 195 unsigned long floor, unsigned long ceiling) 196 { 197 pgd_t *pgd; 198 unsigned long next; 199 unsigned long start; 200 201 /* 202 * The next few lines have given us lots of grief... 203 * 204 * Why are we testing PMD* at this top level? Because often 205 * there will be no work to do at all, and we'd prefer not to 206 * go all the way down to the bottom just to discover that. 207 * 208 * Why all these "- 1"s? Because 0 represents both the bottom 209 * of the address space and the top of it (using -1 for the 210 * top wouldn't help much: the masks would do the wrong thing). 211 * The rule is that addr 0 and floor 0 refer to the bottom of 212 * the address space, but end 0 and ceiling 0 refer to the top 213 * Comparisons need to use "end - 1" and "ceiling - 1" (though 214 * that end 0 case should be mythical). 215 * 216 * Wherever addr is brought up or ceiling brought down, we must 217 * be careful to reject "the opposite 0" before it confuses the 218 * subsequent tests. But what about where end is brought down 219 * by PMD_SIZE below? no, end can't go down to 0 there. 220 * 221 * Whereas we round start (addr) and ceiling down, by different 222 * masks at different levels, in order to test whether a table 223 * now has no other vmas using it, so can be freed, we don't 224 * bother to round floor or end up - the tests don't need that. 225 */ 226 227 addr &= PMD_MASK; 228 if (addr < floor) { 229 addr += PMD_SIZE; 230 if (!addr) 231 return; 232 } 233 if (ceiling) { 234 ceiling &= PMD_MASK; 235 if (!ceiling) 236 return; 237 } 238 if (end - 1 > ceiling - 1) 239 end -= PMD_SIZE; 240 if (addr > end - 1) 241 return; 242 243 start = addr; 244 pgd = pgd_offset((*tlb)->mm, addr); 245 do { 246 next = pgd_addr_end(addr, end); 247 if (pgd_none_or_clear_bad(pgd)) 248 continue; 249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 250 } while (pgd++, addr = next, addr != end); 251 252 if (!tlb_is_full_mm(*tlb)) 253 flush_tlb_pgtables((*tlb)->mm, start, end); 254 } 255 256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 257 unsigned long floor, unsigned long ceiling) 258 { 259 while (vma) { 260 struct vm_area_struct *next = vma->vm_next; 261 unsigned long addr = vma->vm_start; 262 263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { 264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 265 floor, next? next->vm_start: ceiling); 266 } else { 267 /* 268 * Optimization: gather nearby vmas into one call down 269 */ 270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start, 272 HPAGE_SIZE)) { 273 vma = next; 274 next = vma->vm_next; 275 } 276 free_pgd_range(tlb, addr, vma->vm_end, 277 floor, next? next->vm_start: ceiling); 278 } 279 vma = next; 280 } 281 } 282 283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, 284 unsigned long address) 285 { 286 if (!pmd_present(*pmd)) { 287 struct page *new; 288 289 spin_unlock(&mm->page_table_lock); 290 new = pte_alloc_one(mm, address); 291 spin_lock(&mm->page_table_lock); 292 if (!new) 293 return NULL; 294 /* 295 * Because we dropped the lock, we should re-check the 296 * entry, as somebody else could have populated it.. 297 */ 298 if (pmd_present(*pmd)) { 299 pte_free(new); 300 goto out; 301 } 302 mm->nr_ptes++; 303 inc_page_state(nr_page_table_pages); 304 pmd_populate(mm, pmd, new); 305 } 306 out: 307 return pte_offset_map(pmd, address); 308 } 309 310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 311 { 312 if (!pmd_present(*pmd)) { 313 pte_t *new; 314 315 spin_unlock(&mm->page_table_lock); 316 new = pte_alloc_one_kernel(mm, address); 317 spin_lock(&mm->page_table_lock); 318 if (!new) 319 return NULL; 320 321 /* 322 * Because we dropped the lock, we should re-check the 323 * entry, as somebody else could have populated it.. 324 */ 325 if (pmd_present(*pmd)) { 326 pte_free_kernel(new); 327 goto out; 328 } 329 pmd_populate_kernel(mm, pmd, new); 330 } 331 out: 332 return pte_offset_kernel(pmd, address); 333 } 334 335 /* 336 * copy one vm_area from one task to the other. Assumes the page tables 337 * already present in the new task to be cleared in the whole range 338 * covered by this vma. 339 * 340 * dst->page_table_lock is held on entry and exit, 341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). 342 */ 343 344 static inline void 345 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, 347 unsigned long addr) 348 { 349 pte_t pte = *src_pte; 350 struct page *page; 351 unsigned long pfn; 352 353 /* pte contains position in swap or file, so copy. */ 354 if (unlikely(!pte_present(pte))) { 355 if (!pte_file(pte)) { 356 swap_duplicate(pte_to_swp_entry(pte)); 357 /* make sure dst_mm is on swapoff's mmlist. */ 358 if (unlikely(list_empty(&dst_mm->mmlist))) { 359 spin_lock(&mmlist_lock); 360 list_add(&dst_mm->mmlist, &src_mm->mmlist); 361 spin_unlock(&mmlist_lock); 362 } 363 } 364 set_pte_at(dst_mm, addr, dst_pte, pte); 365 return; 366 } 367 368 pfn = pte_pfn(pte); 369 /* the pte points outside of valid memory, the 370 * mapping is assumed to be good, meaningful 371 * and not mapped via rmap - duplicate the 372 * mapping as is. 373 */ 374 page = NULL; 375 if (pfn_valid(pfn)) 376 page = pfn_to_page(pfn); 377 378 if (!page || PageReserved(page)) { 379 set_pte_at(dst_mm, addr, dst_pte, pte); 380 return; 381 } 382 383 /* 384 * If it's a COW mapping, write protect it both 385 * in the parent and the child 386 */ 387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { 388 ptep_set_wrprotect(src_mm, addr, src_pte); 389 pte = *src_pte; 390 } 391 392 /* 393 * If it's a shared mapping, mark it clean in 394 * the child 395 */ 396 if (vm_flags & VM_SHARED) 397 pte = pte_mkclean(pte); 398 pte = pte_mkold(pte); 399 get_page(page); 400 inc_mm_counter(dst_mm, rss); 401 if (PageAnon(page)) 402 inc_mm_counter(dst_mm, anon_rss); 403 set_pte_at(dst_mm, addr, dst_pte, pte); 404 page_dup_rmap(page); 405 } 406 407 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 408 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 409 unsigned long addr, unsigned long end) 410 { 411 pte_t *src_pte, *dst_pte; 412 unsigned long vm_flags = vma->vm_flags; 413 int progress; 414 415 again: 416 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); 417 if (!dst_pte) 418 return -ENOMEM; 419 src_pte = pte_offset_map_nested(src_pmd, addr); 420 421 progress = 0; 422 spin_lock(&src_mm->page_table_lock); 423 do { 424 /* 425 * We are holding two locks at this point - either of them 426 * could generate latencies in another task on another CPU. 427 */ 428 if (progress >= 32 && (need_resched() || 429 need_lockbreak(&src_mm->page_table_lock) || 430 need_lockbreak(&dst_mm->page_table_lock))) 431 break; 432 if (pte_none(*src_pte)) { 433 progress++; 434 continue; 435 } 436 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); 437 progress += 8; 438 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 439 spin_unlock(&src_mm->page_table_lock); 440 441 pte_unmap_nested(src_pte - 1); 442 pte_unmap(dst_pte - 1); 443 cond_resched_lock(&dst_mm->page_table_lock); 444 if (addr != end) 445 goto again; 446 return 0; 447 } 448 449 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 450 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 451 unsigned long addr, unsigned long end) 452 { 453 pmd_t *src_pmd, *dst_pmd; 454 unsigned long next; 455 456 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 457 if (!dst_pmd) 458 return -ENOMEM; 459 src_pmd = pmd_offset(src_pud, addr); 460 do { 461 next = pmd_addr_end(addr, end); 462 if (pmd_none_or_clear_bad(src_pmd)) 463 continue; 464 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 465 vma, addr, next)) 466 return -ENOMEM; 467 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 468 return 0; 469 } 470 471 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 472 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 473 unsigned long addr, unsigned long end) 474 { 475 pud_t *src_pud, *dst_pud; 476 unsigned long next; 477 478 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 479 if (!dst_pud) 480 return -ENOMEM; 481 src_pud = pud_offset(src_pgd, addr); 482 do { 483 next = pud_addr_end(addr, end); 484 if (pud_none_or_clear_bad(src_pud)) 485 continue; 486 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 487 vma, addr, next)) 488 return -ENOMEM; 489 } while (dst_pud++, src_pud++, addr = next, addr != end); 490 return 0; 491 } 492 493 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 494 struct vm_area_struct *vma) 495 { 496 pgd_t *src_pgd, *dst_pgd; 497 unsigned long next; 498 unsigned long addr = vma->vm_start; 499 unsigned long end = vma->vm_end; 500 501 if (is_vm_hugetlb_page(vma)) 502 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 503 504 dst_pgd = pgd_offset(dst_mm, addr); 505 src_pgd = pgd_offset(src_mm, addr); 506 do { 507 next = pgd_addr_end(addr, end); 508 if (pgd_none_or_clear_bad(src_pgd)) 509 continue; 510 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 511 vma, addr, next)) 512 return -ENOMEM; 513 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 514 return 0; 515 } 516 517 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 518 unsigned long addr, unsigned long end, 519 struct zap_details *details) 520 { 521 pte_t *pte; 522 523 pte = pte_offset_map(pmd, addr); 524 do { 525 pte_t ptent = *pte; 526 if (pte_none(ptent)) 527 continue; 528 if (pte_present(ptent)) { 529 struct page *page = NULL; 530 unsigned long pfn = pte_pfn(ptent); 531 if (pfn_valid(pfn)) { 532 page = pfn_to_page(pfn); 533 if (PageReserved(page)) 534 page = NULL; 535 } 536 if (unlikely(details) && page) { 537 /* 538 * unmap_shared_mapping_pages() wants to 539 * invalidate cache without truncating: 540 * unmap shared but keep private pages. 541 */ 542 if (details->check_mapping && 543 details->check_mapping != page->mapping) 544 continue; 545 /* 546 * Each page->index must be checked when 547 * invalidating or truncating nonlinear. 548 */ 549 if (details->nonlinear_vma && 550 (page->index < details->first_index || 551 page->index > details->last_index)) 552 continue; 553 } 554 ptent = ptep_get_and_clear(tlb->mm, addr, pte); 555 tlb_remove_tlb_entry(tlb, pte, addr); 556 if (unlikely(!page)) 557 continue; 558 if (unlikely(details) && details->nonlinear_vma 559 && linear_page_index(details->nonlinear_vma, 560 addr) != page->index) 561 set_pte_at(tlb->mm, addr, pte, 562 pgoff_to_pte(page->index)); 563 if (pte_dirty(ptent)) 564 set_page_dirty(page); 565 if (PageAnon(page)) 566 dec_mm_counter(tlb->mm, anon_rss); 567 else if (pte_young(ptent)) 568 mark_page_accessed(page); 569 tlb->freed++; 570 page_remove_rmap(page); 571 tlb_remove_page(tlb, page); 572 continue; 573 } 574 /* 575 * If details->check_mapping, we leave swap entries; 576 * if details->nonlinear_vma, we leave file entries. 577 */ 578 if (unlikely(details)) 579 continue; 580 if (!pte_file(ptent)) 581 free_swap_and_cache(pte_to_swp_entry(ptent)); 582 pte_clear(tlb->mm, addr, pte); 583 } while (pte++, addr += PAGE_SIZE, addr != end); 584 pte_unmap(pte - 1); 585 } 586 587 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, 588 unsigned long addr, unsigned long end, 589 struct zap_details *details) 590 { 591 pmd_t *pmd; 592 unsigned long next; 593 594 pmd = pmd_offset(pud, addr); 595 do { 596 next = pmd_addr_end(addr, end); 597 if (pmd_none_or_clear_bad(pmd)) 598 continue; 599 zap_pte_range(tlb, pmd, addr, next, details); 600 } while (pmd++, addr = next, addr != end); 601 } 602 603 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 604 unsigned long addr, unsigned long end, 605 struct zap_details *details) 606 { 607 pud_t *pud; 608 unsigned long next; 609 610 pud = pud_offset(pgd, addr); 611 do { 612 next = pud_addr_end(addr, end); 613 if (pud_none_or_clear_bad(pud)) 614 continue; 615 zap_pmd_range(tlb, pud, addr, next, details); 616 } while (pud++, addr = next, addr != end); 617 } 618 619 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 620 unsigned long addr, unsigned long end, 621 struct zap_details *details) 622 { 623 pgd_t *pgd; 624 unsigned long next; 625 626 if (details && !details->check_mapping && !details->nonlinear_vma) 627 details = NULL; 628 629 BUG_ON(addr >= end); 630 tlb_start_vma(tlb, vma); 631 pgd = pgd_offset(vma->vm_mm, addr); 632 do { 633 next = pgd_addr_end(addr, end); 634 if (pgd_none_or_clear_bad(pgd)) 635 continue; 636 zap_pud_range(tlb, pgd, addr, next, details); 637 } while (pgd++, addr = next, addr != end); 638 tlb_end_vma(tlb, vma); 639 } 640 641 #ifdef CONFIG_PREEMPT 642 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 643 #else 644 /* No preempt: go for improved straight-line efficiency */ 645 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 646 #endif 647 648 /** 649 * unmap_vmas - unmap a range of memory covered by a list of vma's 650 * @tlbp: address of the caller's struct mmu_gather 651 * @mm: the controlling mm_struct 652 * @vma: the starting vma 653 * @start_addr: virtual address at which to start unmapping 654 * @end_addr: virtual address at which to end unmapping 655 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 656 * @details: details of nonlinear truncation or shared cache invalidation 657 * 658 * Returns the end address of the unmapping (restart addr if interrupted). 659 * 660 * Unmap all pages in the vma list. Called under page_table_lock. 661 * 662 * We aim to not hold page_table_lock for too long (for scheduling latency 663 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 664 * return the ending mmu_gather to the caller. 665 * 666 * Only addresses between `start' and `end' will be unmapped. 667 * 668 * The VMA list must be sorted in ascending virtual address order. 669 * 670 * unmap_vmas() assumes that the caller will flush the whole unmapped address 671 * range after unmap_vmas() returns. So the only responsibility here is to 672 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 673 * drops the lock and schedules. 674 */ 675 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, 676 struct vm_area_struct *vma, unsigned long start_addr, 677 unsigned long end_addr, unsigned long *nr_accounted, 678 struct zap_details *details) 679 { 680 unsigned long zap_bytes = ZAP_BLOCK_SIZE; 681 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 682 int tlb_start_valid = 0; 683 unsigned long start = start_addr; 684 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 685 int fullmm = tlb_is_full_mm(*tlbp); 686 687 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 688 unsigned long end; 689 690 start = max(vma->vm_start, start_addr); 691 if (start >= vma->vm_end) 692 continue; 693 end = min(vma->vm_end, end_addr); 694 if (end <= vma->vm_start) 695 continue; 696 697 if (vma->vm_flags & VM_ACCOUNT) 698 *nr_accounted += (end - start) >> PAGE_SHIFT; 699 700 while (start != end) { 701 unsigned long block; 702 703 if (!tlb_start_valid) { 704 tlb_start = start; 705 tlb_start_valid = 1; 706 } 707 708 if (is_vm_hugetlb_page(vma)) { 709 block = end - start; 710 unmap_hugepage_range(vma, start, end); 711 } else { 712 block = min(zap_bytes, end - start); 713 unmap_page_range(*tlbp, vma, start, 714 start + block, details); 715 } 716 717 start += block; 718 zap_bytes -= block; 719 if ((long)zap_bytes > 0) 720 continue; 721 722 tlb_finish_mmu(*tlbp, tlb_start, start); 723 724 if (need_resched() || 725 need_lockbreak(&mm->page_table_lock) || 726 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 727 if (i_mmap_lock) { 728 /* must reset count of rss freed */ 729 *tlbp = tlb_gather_mmu(mm, fullmm); 730 goto out; 731 } 732 spin_unlock(&mm->page_table_lock); 733 cond_resched(); 734 spin_lock(&mm->page_table_lock); 735 } 736 737 *tlbp = tlb_gather_mmu(mm, fullmm); 738 tlb_start_valid = 0; 739 zap_bytes = ZAP_BLOCK_SIZE; 740 } 741 } 742 out: 743 return start; /* which is now the end (or restart) address */ 744 } 745 746 /** 747 * zap_page_range - remove user pages in a given range 748 * @vma: vm_area_struct holding the applicable pages 749 * @address: starting address of pages to zap 750 * @size: number of bytes to zap 751 * @details: details of nonlinear truncation or shared cache invalidation 752 */ 753 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 754 unsigned long size, struct zap_details *details) 755 { 756 struct mm_struct *mm = vma->vm_mm; 757 struct mmu_gather *tlb; 758 unsigned long end = address + size; 759 unsigned long nr_accounted = 0; 760 761 if (is_vm_hugetlb_page(vma)) { 762 zap_hugepage_range(vma, address, size); 763 return end; 764 } 765 766 lru_add_drain(); 767 spin_lock(&mm->page_table_lock); 768 tlb = tlb_gather_mmu(mm, 0); 769 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); 770 tlb_finish_mmu(tlb, address, end); 771 spin_unlock(&mm->page_table_lock); 772 return end; 773 } 774 775 /* 776 * Do a quick page-table lookup for a single page. 777 * mm->page_table_lock must be held. 778 */ 779 static struct page * 780 __follow_page(struct mm_struct *mm, unsigned long address, int read, int write) 781 { 782 pgd_t *pgd; 783 pud_t *pud; 784 pmd_t *pmd; 785 pte_t *ptep, pte; 786 unsigned long pfn; 787 struct page *page; 788 789 page = follow_huge_addr(mm, address, write); 790 if (! IS_ERR(page)) 791 return page; 792 793 pgd = pgd_offset(mm, address); 794 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 795 goto out; 796 797 pud = pud_offset(pgd, address); 798 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 799 goto out; 800 801 pmd = pmd_offset(pud, address); 802 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 803 goto out; 804 if (pmd_huge(*pmd)) 805 return follow_huge_pmd(mm, address, pmd, write); 806 807 ptep = pte_offset_map(pmd, address); 808 if (!ptep) 809 goto out; 810 811 pte = *ptep; 812 pte_unmap(ptep); 813 if (pte_present(pte)) { 814 if (write && !pte_write(pte)) 815 goto out; 816 if (read && !pte_read(pte)) 817 goto out; 818 pfn = pte_pfn(pte); 819 if (pfn_valid(pfn)) { 820 page = pfn_to_page(pfn); 821 if (write && !pte_dirty(pte) && !PageDirty(page)) 822 set_page_dirty(page); 823 mark_page_accessed(page); 824 return page; 825 } 826 } 827 828 out: 829 return NULL; 830 } 831 832 struct page * 833 follow_page(struct mm_struct *mm, unsigned long address, int write) 834 { 835 return __follow_page(mm, address, /*read*/0, write); 836 } 837 838 int 839 check_user_page_readable(struct mm_struct *mm, unsigned long address) 840 { 841 return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL; 842 } 843 844 EXPORT_SYMBOL(check_user_page_readable); 845 846 /* 847 * Given a physical address, is there a useful struct page pointing to 848 * it? This may become more complex in the future if we start dealing 849 * with IO-aperture pages for direct-IO. 850 */ 851 852 static inline struct page *get_page_map(struct page *page) 853 { 854 if (!pfn_valid(page_to_pfn(page))) 855 return NULL; 856 return page; 857 } 858 859 860 static inline int 861 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, 862 unsigned long address) 863 { 864 pgd_t *pgd; 865 pud_t *pud; 866 pmd_t *pmd; 867 868 /* Check if the vma is for an anonymous mapping. */ 869 if (vma->vm_ops && vma->vm_ops->nopage) 870 return 0; 871 872 /* Check if page directory entry exists. */ 873 pgd = pgd_offset(mm, address); 874 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 875 return 1; 876 877 pud = pud_offset(pgd, address); 878 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 879 return 1; 880 881 /* Check if page middle directory entry exists. */ 882 pmd = pmd_offset(pud, address); 883 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 884 return 1; 885 886 /* There is a pte slot for 'address' in 'mm'. */ 887 return 0; 888 } 889 890 891 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 892 unsigned long start, int len, int write, int force, 893 struct page **pages, struct vm_area_struct **vmas) 894 { 895 int i; 896 unsigned int flags; 897 898 /* 899 * Require read or write permissions. 900 * If 'force' is set, we only require the "MAY" flags. 901 */ 902 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 903 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 904 i = 0; 905 906 do { 907 struct vm_area_struct * vma; 908 909 vma = find_extend_vma(mm, start); 910 if (!vma && in_gate_area(tsk, start)) { 911 unsigned long pg = start & PAGE_MASK; 912 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 913 pgd_t *pgd; 914 pud_t *pud; 915 pmd_t *pmd; 916 pte_t *pte; 917 if (write) /* user gate pages are read-only */ 918 return i ? : -EFAULT; 919 if (pg > TASK_SIZE) 920 pgd = pgd_offset_k(pg); 921 else 922 pgd = pgd_offset_gate(mm, pg); 923 BUG_ON(pgd_none(*pgd)); 924 pud = pud_offset(pgd, pg); 925 BUG_ON(pud_none(*pud)); 926 pmd = pmd_offset(pud, pg); 927 BUG_ON(pmd_none(*pmd)); 928 pte = pte_offset_map(pmd, pg); 929 BUG_ON(pte_none(*pte)); 930 if (pages) { 931 pages[i] = pte_page(*pte); 932 get_page(pages[i]); 933 } 934 pte_unmap(pte); 935 if (vmas) 936 vmas[i] = gate_vma; 937 i++; 938 start += PAGE_SIZE; 939 len--; 940 continue; 941 } 942 943 if (!vma || (vma->vm_flags & VM_IO) 944 || !(flags & vma->vm_flags)) 945 return i ? : -EFAULT; 946 947 if (is_vm_hugetlb_page(vma)) { 948 i = follow_hugetlb_page(mm, vma, pages, vmas, 949 &start, &len, i); 950 continue; 951 } 952 spin_lock(&mm->page_table_lock); 953 do { 954 struct page *map; 955 int lookup_write = write; 956 957 cond_resched_lock(&mm->page_table_lock); 958 while (!(map = follow_page(mm, start, lookup_write))) { 959 /* 960 * Shortcut for anonymous pages. We don't want 961 * to force the creation of pages tables for 962 * insanly big anonymously mapped areas that 963 * nobody touched so far. This is important 964 * for doing a core dump for these mappings. 965 */ 966 if (!lookup_write && 967 untouched_anonymous_page(mm,vma,start)) { 968 map = ZERO_PAGE(start); 969 break; 970 } 971 spin_unlock(&mm->page_table_lock); 972 switch (handle_mm_fault(mm,vma,start,write)) { 973 case VM_FAULT_MINOR: 974 tsk->min_flt++; 975 break; 976 case VM_FAULT_MAJOR: 977 tsk->maj_flt++; 978 break; 979 case VM_FAULT_SIGBUS: 980 return i ? i : -EFAULT; 981 case VM_FAULT_OOM: 982 return i ? i : -ENOMEM; 983 default: 984 BUG(); 985 } 986 /* 987 * Now that we have performed a write fault 988 * and surely no longer have a shared page we 989 * shouldn't write, we shouldn't ignore an 990 * unwritable page in the page table if 991 * we are forcing write access. 992 */ 993 lookup_write = write && !force; 994 spin_lock(&mm->page_table_lock); 995 } 996 if (pages) { 997 pages[i] = get_page_map(map); 998 if (!pages[i]) { 999 spin_unlock(&mm->page_table_lock); 1000 while (i--) 1001 page_cache_release(pages[i]); 1002 i = -EFAULT; 1003 goto out; 1004 } 1005 flush_dcache_page(pages[i]); 1006 if (!PageReserved(pages[i])) 1007 page_cache_get(pages[i]); 1008 } 1009 if (vmas) 1010 vmas[i] = vma; 1011 i++; 1012 start += PAGE_SIZE; 1013 len--; 1014 } while(len && start < vma->vm_end); 1015 spin_unlock(&mm->page_table_lock); 1016 } while(len); 1017 out: 1018 return i; 1019 } 1020 1021 EXPORT_SYMBOL(get_user_pages); 1022 1023 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1024 unsigned long addr, unsigned long end, pgprot_t prot) 1025 { 1026 pte_t *pte; 1027 1028 pte = pte_alloc_map(mm, pmd, addr); 1029 if (!pte) 1030 return -ENOMEM; 1031 do { 1032 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); 1033 BUG_ON(!pte_none(*pte)); 1034 set_pte_at(mm, addr, pte, zero_pte); 1035 } while (pte++, addr += PAGE_SIZE, addr != end); 1036 pte_unmap(pte - 1); 1037 return 0; 1038 } 1039 1040 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1041 unsigned long addr, unsigned long end, pgprot_t prot) 1042 { 1043 pmd_t *pmd; 1044 unsigned long next; 1045 1046 pmd = pmd_alloc(mm, pud, addr); 1047 if (!pmd) 1048 return -ENOMEM; 1049 do { 1050 next = pmd_addr_end(addr, end); 1051 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1052 return -ENOMEM; 1053 } while (pmd++, addr = next, addr != end); 1054 return 0; 1055 } 1056 1057 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1058 unsigned long addr, unsigned long end, pgprot_t prot) 1059 { 1060 pud_t *pud; 1061 unsigned long next; 1062 1063 pud = pud_alloc(mm, pgd, addr); 1064 if (!pud) 1065 return -ENOMEM; 1066 do { 1067 next = pud_addr_end(addr, end); 1068 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1069 return -ENOMEM; 1070 } while (pud++, addr = next, addr != end); 1071 return 0; 1072 } 1073 1074 int zeromap_page_range(struct vm_area_struct *vma, 1075 unsigned long addr, unsigned long size, pgprot_t prot) 1076 { 1077 pgd_t *pgd; 1078 unsigned long next; 1079 unsigned long end = addr + size; 1080 struct mm_struct *mm = vma->vm_mm; 1081 int err; 1082 1083 BUG_ON(addr >= end); 1084 pgd = pgd_offset(mm, addr); 1085 flush_cache_range(vma, addr, end); 1086 spin_lock(&mm->page_table_lock); 1087 do { 1088 next = pgd_addr_end(addr, end); 1089 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1090 if (err) 1091 break; 1092 } while (pgd++, addr = next, addr != end); 1093 spin_unlock(&mm->page_table_lock); 1094 return err; 1095 } 1096 1097 /* 1098 * maps a range of physical memory into the requested pages. the old 1099 * mappings are removed. any references to nonexistent pages results 1100 * in null mappings (currently treated as "copy-on-access") 1101 */ 1102 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1103 unsigned long addr, unsigned long end, 1104 unsigned long pfn, pgprot_t prot) 1105 { 1106 pte_t *pte; 1107 1108 pte = pte_alloc_map(mm, pmd, addr); 1109 if (!pte) 1110 return -ENOMEM; 1111 do { 1112 BUG_ON(!pte_none(*pte)); 1113 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) 1114 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1115 pfn++; 1116 } while (pte++, addr += PAGE_SIZE, addr != end); 1117 pte_unmap(pte - 1); 1118 return 0; 1119 } 1120 1121 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1122 unsigned long addr, unsigned long end, 1123 unsigned long pfn, pgprot_t prot) 1124 { 1125 pmd_t *pmd; 1126 unsigned long next; 1127 1128 pfn -= addr >> PAGE_SHIFT; 1129 pmd = pmd_alloc(mm, pud, addr); 1130 if (!pmd) 1131 return -ENOMEM; 1132 do { 1133 next = pmd_addr_end(addr, end); 1134 if (remap_pte_range(mm, pmd, addr, next, 1135 pfn + (addr >> PAGE_SHIFT), prot)) 1136 return -ENOMEM; 1137 } while (pmd++, addr = next, addr != end); 1138 return 0; 1139 } 1140 1141 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1142 unsigned long addr, unsigned long end, 1143 unsigned long pfn, pgprot_t prot) 1144 { 1145 pud_t *pud; 1146 unsigned long next; 1147 1148 pfn -= addr >> PAGE_SHIFT; 1149 pud = pud_alloc(mm, pgd, addr); 1150 if (!pud) 1151 return -ENOMEM; 1152 do { 1153 next = pud_addr_end(addr, end); 1154 if (remap_pmd_range(mm, pud, addr, next, 1155 pfn + (addr >> PAGE_SHIFT), prot)) 1156 return -ENOMEM; 1157 } while (pud++, addr = next, addr != end); 1158 return 0; 1159 } 1160 1161 /* Note: this is only safe if the mm semaphore is held when called. */ 1162 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1163 unsigned long pfn, unsigned long size, pgprot_t prot) 1164 { 1165 pgd_t *pgd; 1166 unsigned long next; 1167 unsigned long end = addr + size; 1168 struct mm_struct *mm = vma->vm_mm; 1169 int err; 1170 1171 /* 1172 * Physically remapped pages are special. Tell the 1173 * rest of the world about it: 1174 * VM_IO tells people not to look at these pages 1175 * (accesses can have side effects). 1176 * VM_RESERVED tells swapout not to try to touch 1177 * this region. 1178 */ 1179 vma->vm_flags |= VM_IO | VM_RESERVED; 1180 1181 BUG_ON(addr >= end); 1182 pfn -= addr >> PAGE_SHIFT; 1183 pgd = pgd_offset(mm, addr); 1184 flush_cache_range(vma, addr, end); 1185 spin_lock(&mm->page_table_lock); 1186 do { 1187 next = pgd_addr_end(addr, end); 1188 err = remap_pud_range(mm, pgd, addr, next, 1189 pfn + (addr >> PAGE_SHIFT), prot); 1190 if (err) 1191 break; 1192 } while (pgd++, addr = next, addr != end); 1193 spin_unlock(&mm->page_table_lock); 1194 return err; 1195 } 1196 EXPORT_SYMBOL(remap_pfn_range); 1197 1198 /* 1199 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1200 * servicing faults for write access. In the normal case, do always want 1201 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1202 * that do not have writing enabled, when used by access_process_vm. 1203 */ 1204 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1205 { 1206 if (likely(vma->vm_flags & VM_WRITE)) 1207 pte = pte_mkwrite(pte); 1208 return pte; 1209 } 1210 1211 /* 1212 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock 1213 */ 1214 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 1215 pte_t *page_table) 1216 { 1217 pte_t entry; 1218 1219 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), 1220 vma); 1221 ptep_establish(vma, address, page_table, entry); 1222 update_mmu_cache(vma, address, entry); 1223 lazy_mmu_prot_update(entry); 1224 } 1225 1226 /* 1227 * This routine handles present pages, when users try to write 1228 * to a shared page. It is done by copying the page to a new address 1229 * and decrementing the shared-page counter for the old page. 1230 * 1231 * Goto-purists beware: the only reason for goto's here is that it results 1232 * in better assembly code.. The "default" path will see no jumps at all. 1233 * 1234 * Note that this routine assumes that the protection checks have been 1235 * done by the caller (the low-level page fault routine in most cases). 1236 * Thus we can safely just mark it writable once we've done any necessary 1237 * COW. 1238 * 1239 * We also mark the page dirty at this point even though the page will 1240 * change only once the write actually happens. This avoids a few races, 1241 * and potentially makes it more efficient. 1242 * 1243 * We hold the mm semaphore and the page_table_lock on entry and exit 1244 * with the page_table_lock released. 1245 */ 1246 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, 1247 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) 1248 { 1249 struct page *old_page, *new_page; 1250 unsigned long pfn = pte_pfn(pte); 1251 pte_t entry; 1252 1253 if (unlikely(!pfn_valid(pfn))) { 1254 /* 1255 * This should really halt the system so it can be debugged or 1256 * at least the kernel stops what it's doing before it corrupts 1257 * data, but for the moment just pretend this is OOM. 1258 */ 1259 pte_unmap(page_table); 1260 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", 1261 address); 1262 spin_unlock(&mm->page_table_lock); 1263 return VM_FAULT_OOM; 1264 } 1265 old_page = pfn_to_page(pfn); 1266 1267 if (!TestSetPageLocked(old_page)) { 1268 int reuse = can_share_swap_page(old_page); 1269 unlock_page(old_page); 1270 if (reuse) { 1271 flush_cache_page(vma, address, pfn); 1272 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), 1273 vma); 1274 ptep_set_access_flags(vma, address, page_table, entry, 1); 1275 update_mmu_cache(vma, address, entry); 1276 lazy_mmu_prot_update(entry); 1277 pte_unmap(page_table); 1278 spin_unlock(&mm->page_table_lock); 1279 return VM_FAULT_MINOR; 1280 } 1281 } 1282 pte_unmap(page_table); 1283 1284 /* 1285 * Ok, we need to copy. Oh, well.. 1286 */ 1287 if (!PageReserved(old_page)) 1288 page_cache_get(old_page); 1289 spin_unlock(&mm->page_table_lock); 1290 1291 if (unlikely(anon_vma_prepare(vma))) 1292 goto no_new_page; 1293 if (old_page == ZERO_PAGE(address)) { 1294 new_page = alloc_zeroed_user_highpage(vma, address); 1295 if (!new_page) 1296 goto no_new_page; 1297 } else { 1298 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1299 if (!new_page) 1300 goto no_new_page; 1301 copy_user_highpage(new_page, old_page, address); 1302 } 1303 /* 1304 * Re-check the pte - we dropped the lock 1305 */ 1306 spin_lock(&mm->page_table_lock); 1307 page_table = pte_offset_map(pmd, address); 1308 if (likely(pte_same(*page_table, pte))) { 1309 if (PageAnon(old_page)) 1310 dec_mm_counter(mm, anon_rss); 1311 if (PageReserved(old_page)) 1312 inc_mm_counter(mm, rss); 1313 else 1314 page_remove_rmap(old_page); 1315 flush_cache_page(vma, address, pfn); 1316 break_cow(vma, new_page, address, page_table); 1317 lru_cache_add_active(new_page); 1318 page_add_anon_rmap(new_page, vma, address); 1319 1320 /* Free the old page.. */ 1321 new_page = old_page; 1322 } 1323 pte_unmap(page_table); 1324 page_cache_release(new_page); 1325 page_cache_release(old_page); 1326 spin_unlock(&mm->page_table_lock); 1327 return VM_FAULT_MINOR; 1328 1329 no_new_page: 1330 page_cache_release(old_page); 1331 return VM_FAULT_OOM; 1332 } 1333 1334 /* 1335 * Helper functions for unmap_mapping_range(). 1336 * 1337 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1338 * 1339 * We have to restart searching the prio_tree whenever we drop the lock, 1340 * since the iterator is only valid while the lock is held, and anyway 1341 * a later vma might be split and reinserted earlier while lock dropped. 1342 * 1343 * The list of nonlinear vmas could be handled more efficiently, using 1344 * a placeholder, but handle it in the same way until a need is shown. 1345 * It is important to search the prio_tree before nonlinear list: a vma 1346 * may become nonlinear and be shifted from prio_tree to nonlinear list 1347 * while the lock is dropped; but never shifted from list to prio_tree. 1348 * 1349 * In order to make forward progress despite restarting the search, 1350 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1351 * quickly skip it next time around. Since the prio_tree search only 1352 * shows us those vmas affected by unmapping the range in question, we 1353 * can't efficiently keep all vmas in step with mapping->truncate_count: 1354 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1355 * mapping->truncate_count and vma->vm_truncate_count are protected by 1356 * i_mmap_lock. 1357 * 1358 * In order to make forward progress despite repeatedly restarting some 1359 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1360 * and restart from that address when we reach that vma again. It might 1361 * have been split or merged, shrunk or extended, but never shifted: so 1362 * restart_addr remains valid so long as it remains in the vma's range. 1363 * unmap_mapping_range forces truncate_count to leap over page-aligned 1364 * values so we can save vma's restart_addr in its truncate_count field. 1365 */ 1366 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1367 1368 static void reset_vma_truncate_counts(struct address_space *mapping) 1369 { 1370 struct vm_area_struct *vma; 1371 struct prio_tree_iter iter; 1372 1373 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1374 vma->vm_truncate_count = 0; 1375 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1376 vma->vm_truncate_count = 0; 1377 } 1378 1379 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1380 unsigned long start_addr, unsigned long end_addr, 1381 struct zap_details *details) 1382 { 1383 unsigned long restart_addr; 1384 int need_break; 1385 1386 again: 1387 restart_addr = vma->vm_truncate_count; 1388 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1389 start_addr = restart_addr; 1390 if (start_addr >= end_addr) { 1391 /* Top of vma has been split off since last time */ 1392 vma->vm_truncate_count = details->truncate_count; 1393 return 0; 1394 } 1395 } 1396 1397 restart_addr = zap_page_range(vma, start_addr, 1398 end_addr - start_addr, details); 1399 1400 /* 1401 * We cannot rely on the break test in unmap_vmas: 1402 * on the one hand, we don't want to restart our loop 1403 * just because that broke out for the page_table_lock; 1404 * on the other hand, it does no test when vma is small. 1405 */ 1406 need_break = need_resched() || 1407 need_lockbreak(details->i_mmap_lock); 1408 1409 if (restart_addr >= end_addr) { 1410 /* We have now completed this vma: mark it so */ 1411 vma->vm_truncate_count = details->truncate_count; 1412 if (!need_break) 1413 return 0; 1414 } else { 1415 /* Note restart_addr in vma's truncate_count field */ 1416 vma->vm_truncate_count = restart_addr; 1417 if (!need_break) 1418 goto again; 1419 } 1420 1421 spin_unlock(details->i_mmap_lock); 1422 cond_resched(); 1423 spin_lock(details->i_mmap_lock); 1424 return -EINTR; 1425 } 1426 1427 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1428 struct zap_details *details) 1429 { 1430 struct vm_area_struct *vma; 1431 struct prio_tree_iter iter; 1432 pgoff_t vba, vea, zba, zea; 1433 1434 restart: 1435 vma_prio_tree_foreach(vma, &iter, root, 1436 details->first_index, details->last_index) { 1437 /* Skip quickly over those we have already dealt with */ 1438 if (vma->vm_truncate_count == details->truncate_count) 1439 continue; 1440 1441 vba = vma->vm_pgoff; 1442 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1443 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1444 zba = details->first_index; 1445 if (zba < vba) 1446 zba = vba; 1447 zea = details->last_index; 1448 if (zea > vea) 1449 zea = vea; 1450 1451 if (unmap_mapping_range_vma(vma, 1452 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1453 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1454 details) < 0) 1455 goto restart; 1456 } 1457 } 1458 1459 static inline void unmap_mapping_range_list(struct list_head *head, 1460 struct zap_details *details) 1461 { 1462 struct vm_area_struct *vma; 1463 1464 /* 1465 * In nonlinear VMAs there is no correspondence between virtual address 1466 * offset and file offset. So we must perform an exhaustive search 1467 * across *all* the pages in each nonlinear VMA, not just the pages 1468 * whose virtual address lies outside the file truncation point. 1469 */ 1470 restart: 1471 list_for_each_entry(vma, head, shared.vm_set.list) { 1472 /* Skip quickly over those we have already dealt with */ 1473 if (vma->vm_truncate_count == details->truncate_count) 1474 continue; 1475 details->nonlinear_vma = vma; 1476 if (unmap_mapping_range_vma(vma, vma->vm_start, 1477 vma->vm_end, details) < 0) 1478 goto restart; 1479 } 1480 } 1481 1482 /** 1483 * unmap_mapping_range - unmap the portion of all mmaps 1484 * in the specified address_space corresponding to the specified 1485 * page range in the underlying file. 1486 * @address_space: the address space containing mmaps to be unmapped. 1487 * @holebegin: byte in first page to unmap, relative to the start of 1488 * the underlying file. This will be rounded down to a PAGE_SIZE 1489 * boundary. Note that this is different from vmtruncate(), which 1490 * must keep the partial page. In contrast, we must get rid of 1491 * partial pages. 1492 * @holelen: size of prospective hole in bytes. This will be rounded 1493 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1494 * end of the file. 1495 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1496 * but 0 when invalidating pagecache, don't throw away private data. 1497 */ 1498 void unmap_mapping_range(struct address_space *mapping, 1499 loff_t const holebegin, loff_t const holelen, int even_cows) 1500 { 1501 struct zap_details details; 1502 pgoff_t hba = holebegin >> PAGE_SHIFT; 1503 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1504 1505 /* Check for overflow. */ 1506 if (sizeof(holelen) > sizeof(hlen)) { 1507 long long holeend = 1508 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1509 if (holeend & ~(long long)ULONG_MAX) 1510 hlen = ULONG_MAX - hba + 1; 1511 } 1512 1513 details.check_mapping = even_cows? NULL: mapping; 1514 details.nonlinear_vma = NULL; 1515 details.first_index = hba; 1516 details.last_index = hba + hlen - 1; 1517 if (details.last_index < details.first_index) 1518 details.last_index = ULONG_MAX; 1519 details.i_mmap_lock = &mapping->i_mmap_lock; 1520 1521 spin_lock(&mapping->i_mmap_lock); 1522 1523 /* serialize i_size write against truncate_count write */ 1524 smp_wmb(); 1525 /* Protect against page faults, and endless unmapping loops */ 1526 mapping->truncate_count++; 1527 /* 1528 * For archs where spin_lock has inclusive semantics like ia64 1529 * this smp_mb() will prevent to read pagetable contents 1530 * before the truncate_count increment is visible to 1531 * other cpus. 1532 */ 1533 smp_mb(); 1534 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1535 if (mapping->truncate_count == 0) 1536 reset_vma_truncate_counts(mapping); 1537 mapping->truncate_count++; 1538 } 1539 details.truncate_count = mapping->truncate_count; 1540 1541 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1542 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1543 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1544 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1545 spin_unlock(&mapping->i_mmap_lock); 1546 } 1547 EXPORT_SYMBOL(unmap_mapping_range); 1548 1549 /* 1550 * Handle all mappings that got truncated by a "truncate()" 1551 * system call. 1552 * 1553 * NOTE! We have to be ready to update the memory sharing 1554 * between the file and the memory map for a potential last 1555 * incomplete page. Ugly, but necessary. 1556 */ 1557 int vmtruncate(struct inode * inode, loff_t offset) 1558 { 1559 struct address_space *mapping = inode->i_mapping; 1560 unsigned long limit; 1561 1562 if (inode->i_size < offset) 1563 goto do_expand; 1564 /* 1565 * truncation of in-use swapfiles is disallowed - it would cause 1566 * subsequent swapout to scribble on the now-freed blocks. 1567 */ 1568 if (IS_SWAPFILE(inode)) 1569 goto out_busy; 1570 i_size_write(inode, offset); 1571 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1572 truncate_inode_pages(mapping, offset); 1573 goto out_truncate; 1574 1575 do_expand: 1576 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1577 if (limit != RLIM_INFINITY && offset > limit) 1578 goto out_sig; 1579 if (offset > inode->i_sb->s_maxbytes) 1580 goto out_big; 1581 i_size_write(inode, offset); 1582 1583 out_truncate: 1584 if (inode->i_op && inode->i_op->truncate) 1585 inode->i_op->truncate(inode); 1586 return 0; 1587 out_sig: 1588 send_sig(SIGXFSZ, current, 0); 1589 out_big: 1590 return -EFBIG; 1591 out_busy: 1592 return -ETXTBSY; 1593 } 1594 1595 EXPORT_SYMBOL(vmtruncate); 1596 1597 /* 1598 * Primitive swap readahead code. We simply read an aligned block of 1599 * (1 << page_cluster) entries in the swap area. This method is chosen 1600 * because it doesn't cost us any seek time. We also make sure to queue 1601 * the 'original' request together with the readahead ones... 1602 * 1603 * This has been extended to use the NUMA policies from the mm triggering 1604 * the readahead. 1605 * 1606 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1607 */ 1608 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1609 { 1610 #ifdef CONFIG_NUMA 1611 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1612 #endif 1613 int i, num; 1614 struct page *new_page; 1615 unsigned long offset; 1616 1617 /* 1618 * Get the number of handles we should do readahead io to. 1619 */ 1620 num = valid_swaphandles(entry, &offset); 1621 for (i = 0; i < num; offset++, i++) { 1622 /* Ok, do the async read-ahead now */ 1623 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1624 offset), vma, addr); 1625 if (!new_page) 1626 break; 1627 page_cache_release(new_page); 1628 #ifdef CONFIG_NUMA 1629 /* 1630 * Find the next applicable VMA for the NUMA policy. 1631 */ 1632 addr += PAGE_SIZE; 1633 if (addr == 0) 1634 vma = NULL; 1635 if (vma) { 1636 if (addr >= vma->vm_end) { 1637 vma = next_vma; 1638 next_vma = vma ? vma->vm_next : NULL; 1639 } 1640 if (vma && addr < vma->vm_start) 1641 vma = NULL; 1642 } else { 1643 if (next_vma && addr >= next_vma->vm_start) { 1644 vma = next_vma; 1645 next_vma = vma->vm_next; 1646 } 1647 } 1648 #endif 1649 } 1650 lru_add_drain(); /* Push any new pages onto the LRU now */ 1651 } 1652 1653 /* 1654 * We hold the mm semaphore and the page_table_lock on entry and 1655 * should release the pagetable lock on exit.. 1656 */ 1657 static int do_swap_page(struct mm_struct * mm, 1658 struct vm_area_struct * vma, unsigned long address, 1659 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) 1660 { 1661 struct page *page; 1662 swp_entry_t entry = pte_to_swp_entry(orig_pte); 1663 pte_t pte; 1664 int ret = VM_FAULT_MINOR; 1665 1666 pte_unmap(page_table); 1667 spin_unlock(&mm->page_table_lock); 1668 page = lookup_swap_cache(entry); 1669 if (!page) { 1670 swapin_readahead(entry, address, vma); 1671 page = read_swap_cache_async(entry, vma, address); 1672 if (!page) { 1673 /* 1674 * Back out if somebody else faulted in this pte while 1675 * we released the page table lock. 1676 */ 1677 spin_lock(&mm->page_table_lock); 1678 page_table = pte_offset_map(pmd, address); 1679 if (likely(pte_same(*page_table, orig_pte))) 1680 ret = VM_FAULT_OOM; 1681 else 1682 ret = VM_FAULT_MINOR; 1683 pte_unmap(page_table); 1684 spin_unlock(&mm->page_table_lock); 1685 goto out; 1686 } 1687 1688 /* Had to read the page from swap area: Major fault */ 1689 ret = VM_FAULT_MAJOR; 1690 inc_page_state(pgmajfault); 1691 grab_swap_token(); 1692 } 1693 1694 mark_page_accessed(page); 1695 lock_page(page); 1696 1697 /* 1698 * Back out if somebody else faulted in this pte while we 1699 * released the page table lock. 1700 */ 1701 spin_lock(&mm->page_table_lock); 1702 page_table = pte_offset_map(pmd, address); 1703 if (unlikely(!pte_same(*page_table, orig_pte))) { 1704 ret = VM_FAULT_MINOR; 1705 goto out_nomap; 1706 } 1707 1708 if (unlikely(!PageUptodate(page))) { 1709 ret = VM_FAULT_SIGBUS; 1710 goto out_nomap; 1711 } 1712 1713 /* The page isn't present yet, go ahead with the fault. */ 1714 1715 swap_free(entry); 1716 if (vm_swap_full()) 1717 remove_exclusive_swap_page(page); 1718 1719 inc_mm_counter(mm, rss); 1720 pte = mk_pte(page, vma->vm_page_prot); 1721 if (write_access && can_share_swap_page(page)) { 1722 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1723 write_access = 0; 1724 } 1725 unlock_page(page); 1726 1727 flush_icache_page(vma, page); 1728 set_pte_at(mm, address, page_table, pte); 1729 page_add_anon_rmap(page, vma, address); 1730 1731 if (write_access) { 1732 if (do_wp_page(mm, vma, address, 1733 page_table, pmd, pte) == VM_FAULT_OOM) 1734 ret = VM_FAULT_OOM; 1735 goto out; 1736 } 1737 1738 /* No need to invalidate - it was non-present before */ 1739 update_mmu_cache(vma, address, pte); 1740 lazy_mmu_prot_update(pte); 1741 pte_unmap(page_table); 1742 spin_unlock(&mm->page_table_lock); 1743 out: 1744 return ret; 1745 out_nomap: 1746 pte_unmap(page_table); 1747 spin_unlock(&mm->page_table_lock); 1748 unlock_page(page); 1749 page_cache_release(page); 1750 goto out; 1751 } 1752 1753 /* 1754 * We are called with the MM semaphore and page_table_lock 1755 * spinlock held to protect against concurrent faults in 1756 * multithreaded programs. 1757 */ 1758 static int 1759 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 1760 pte_t *page_table, pmd_t *pmd, int write_access, 1761 unsigned long addr) 1762 { 1763 pte_t entry; 1764 struct page * page = ZERO_PAGE(addr); 1765 1766 /* Read-only mapping of ZERO_PAGE. */ 1767 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); 1768 1769 /* ..except if it's a write access */ 1770 if (write_access) { 1771 /* Allocate our own private page. */ 1772 pte_unmap(page_table); 1773 spin_unlock(&mm->page_table_lock); 1774 1775 if (unlikely(anon_vma_prepare(vma))) 1776 goto no_mem; 1777 page = alloc_zeroed_user_highpage(vma, addr); 1778 if (!page) 1779 goto no_mem; 1780 1781 spin_lock(&mm->page_table_lock); 1782 page_table = pte_offset_map(pmd, addr); 1783 1784 if (!pte_none(*page_table)) { 1785 pte_unmap(page_table); 1786 page_cache_release(page); 1787 spin_unlock(&mm->page_table_lock); 1788 goto out; 1789 } 1790 inc_mm_counter(mm, rss); 1791 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, 1792 vma->vm_page_prot)), 1793 vma); 1794 lru_cache_add_active(page); 1795 SetPageReferenced(page); 1796 page_add_anon_rmap(page, vma, addr); 1797 } 1798 1799 set_pte_at(mm, addr, page_table, entry); 1800 pte_unmap(page_table); 1801 1802 /* No need to invalidate - it was non-present before */ 1803 update_mmu_cache(vma, addr, entry); 1804 lazy_mmu_prot_update(entry); 1805 spin_unlock(&mm->page_table_lock); 1806 out: 1807 return VM_FAULT_MINOR; 1808 no_mem: 1809 return VM_FAULT_OOM; 1810 } 1811 1812 /* 1813 * do_no_page() tries to create a new page mapping. It aggressively 1814 * tries to share with existing pages, but makes a separate copy if 1815 * the "write_access" parameter is true in order to avoid the next 1816 * page fault. 1817 * 1818 * As this is called only for pages that do not currently exist, we 1819 * do not need to flush old virtual caches or the TLB. 1820 * 1821 * This is called with the MM semaphore held and the page table 1822 * spinlock held. Exit with the spinlock released. 1823 */ 1824 static int 1825 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1826 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) 1827 { 1828 struct page * new_page; 1829 struct address_space *mapping = NULL; 1830 pte_t entry; 1831 unsigned int sequence = 0; 1832 int ret = VM_FAULT_MINOR; 1833 int anon = 0; 1834 1835 if (!vma->vm_ops || !vma->vm_ops->nopage) 1836 return do_anonymous_page(mm, vma, page_table, 1837 pmd, write_access, address); 1838 pte_unmap(page_table); 1839 spin_unlock(&mm->page_table_lock); 1840 1841 if (vma->vm_file) { 1842 mapping = vma->vm_file->f_mapping; 1843 sequence = mapping->truncate_count; 1844 smp_rmb(); /* serializes i_size against truncate_count */ 1845 } 1846 retry: 1847 cond_resched(); 1848 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 1849 /* 1850 * No smp_rmb is needed here as long as there's a full 1851 * spin_lock/unlock sequence inside the ->nopage callback 1852 * (for the pagecache lookup) that acts as an implicit 1853 * smp_mb() and prevents the i_size read to happen 1854 * after the next truncate_count read. 1855 */ 1856 1857 /* no page was available -- either SIGBUS or OOM */ 1858 if (new_page == NOPAGE_SIGBUS) 1859 return VM_FAULT_SIGBUS; 1860 if (new_page == NOPAGE_OOM) 1861 return VM_FAULT_OOM; 1862 1863 /* 1864 * Should we do an early C-O-W break? 1865 */ 1866 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1867 struct page *page; 1868 1869 if (unlikely(anon_vma_prepare(vma))) 1870 goto oom; 1871 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1872 if (!page) 1873 goto oom; 1874 copy_user_highpage(page, new_page, address); 1875 page_cache_release(new_page); 1876 new_page = page; 1877 anon = 1; 1878 } 1879 1880 spin_lock(&mm->page_table_lock); 1881 /* 1882 * For a file-backed vma, someone could have truncated or otherwise 1883 * invalidated this page. If unmap_mapping_range got called, 1884 * retry getting the page. 1885 */ 1886 if (mapping && unlikely(sequence != mapping->truncate_count)) { 1887 sequence = mapping->truncate_count; 1888 spin_unlock(&mm->page_table_lock); 1889 page_cache_release(new_page); 1890 goto retry; 1891 } 1892 page_table = pte_offset_map(pmd, address); 1893 1894 /* 1895 * This silly early PAGE_DIRTY setting removes a race 1896 * due to the bad i386 page protection. But it's valid 1897 * for other architectures too. 1898 * 1899 * Note that if write_access is true, we either now have 1900 * an exclusive copy of the page, or this is a shared mapping, 1901 * so we can make it writable and dirty to avoid having to 1902 * handle that later. 1903 */ 1904 /* Only go through if we didn't race with anybody else... */ 1905 if (pte_none(*page_table)) { 1906 if (!PageReserved(new_page)) 1907 inc_mm_counter(mm, rss); 1908 1909 flush_icache_page(vma, new_page); 1910 entry = mk_pte(new_page, vma->vm_page_prot); 1911 if (write_access) 1912 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1913 set_pte_at(mm, address, page_table, entry); 1914 if (anon) { 1915 lru_cache_add_active(new_page); 1916 page_add_anon_rmap(new_page, vma, address); 1917 } else 1918 page_add_file_rmap(new_page); 1919 pte_unmap(page_table); 1920 } else { 1921 /* One of our sibling threads was faster, back out. */ 1922 pte_unmap(page_table); 1923 page_cache_release(new_page); 1924 spin_unlock(&mm->page_table_lock); 1925 goto out; 1926 } 1927 1928 /* no need to invalidate: a not-present page shouldn't be cached */ 1929 update_mmu_cache(vma, address, entry); 1930 lazy_mmu_prot_update(entry); 1931 spin_unlock(&mm->page_table_lock); 1932 out: 1933 return ret; 1934 oom: 1935 page_cache_release(new_page); 1936 ret = VM_FAULT_OOM; 1937 goto out; 1938 } 1939 1940 /* 1941 * Fault of a previously existing named mapping. Repopulate the pte 1942 * from the encoded file_pte if possible. This enables swappable 1943 * nonlinear vmas. 1944 */ 1945 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, 1946 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) 1947 { 1948 unsigned long pgoff; 1949 int err; 1950 1951 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); 1952 /* 1953 * Fall back to the linear mapping if the fs does not support 1954 * ->populate: 1955 */ 1956 if (!vma->vm_ops || !vma->vm_ops->populate || 1957 (write_access && !(vma->vm_flags & VM_SHARED))) { 1958 pte_clear(mm, address, pte); 1959 return do_no_page(mm, vma, address, write_access, pte, pmd); 1960 } 1961 1962 pgoff = pte_to_pgoff(*pte); 1963 1964 pte_unmap(pte); 1965 spin_unlock(&mm->page_table_lock); 1966 1967 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); 1968 if (err == -ENOMEM) 1969 return VM_FAULT_OOM; 1970 if (err) 1971 return VM_FAULT_SIGBUS; 1972 return VM_FAULT_MAJOR; 1973 } 1974 1975 /* 1976 * These routines also need to handle stuff like marking pages dirty 1977 * and/or accessed for architectures that don't do it in hardware (most 1978 * RISC architectures). The early dirtying is also good on the i386. 1979 * 1980 * There is also a hook called "update_mmu_cache()" that architectures 1981 * with external mmu caches can use to update those (ie the Sparc or 1982 * PowerPC hashed page tables that act as extended TLBs). 1983 * 1984 * Note the "page_table_lock". It is to protect against kswapd removing 1985 * pages from under us. Note that kswapd only ever _removes_ pages, never 1986 * adds them. As such, once we have noticed that the page is not present, 1987 * we can drop the lock early. 1988 * 1989 * The adding of pages is protected by the MM semaphore (which we hold), 1990 * so we don't need to worry about a page being suddenly been added into 1991 * our VM. 1992 * 1993 * We enter with the pagetable spinlock held, we are supposed to 1994 * release it when done. 1995 */ 1996 static inline int handle_pte_fault(struct mm_struct *mm, 1997 struct vm_area_struct * vma, unsigned long address, 1998 int write_access, pte_t *pte, pmd_t *pmd) 1999 { 2000 pte_t entry; 2001 2002 entry = *pte; 2003 if (!pte_present(entry)) { 2004 /* 2005 * If it truly wasn't present, we know that kswapd 2006 * and the PTE updates will not touch it later. So 2007 * drop the lock. 2008 */ 2009 if (pte_none(entry)) 2010 return do_no_page(mm, vma, address, write_access, pte, pmd); 2011 if (pte_file(entry)) 2012 return do_file_page(mm, vma, address, write_access, pte, pmd); 2013 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); 2014 } 2015 2016 if (write_access) { 2017 if (!pte_write(entry)) 2018 return do_wp_page(mm, vma, address, pte, pmd, entry); 2019 2020 entry = pte_mkdirty(entry); 2021 } 2022 entry = pte_mkyoung(entry); 2023 ptep_set_access_flags(vma, address, pte, entry, write_access); 2024 update_mmu_cache(vma, address, entry); 2025 lazy_mmu_prot_update(entry); 2026 pte_unmap(pte); 2027 spin_unlock(&mm->page_table_lock); 2028 return VM_FAULT_MINOR; 2029 } 2030 2031 /* 2032 * By the time we get here, we already hold the mm semaphore 2033 */ 2034 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, 2035 unsigned long address, int write_access) 2036 { 2037 pgd_t *pgd; 2038 pud_t *pud; 2039 pmd_t *pmd; 2040 pte_t *pte; 2041 2042 __set_current_state(TASK_RUNNING); 2043 2044 inc_page_state(pgfault); 2045 2046 if (is_vm_hugetlb_page(vma)) 2047 return VM_FAULT_SIGBUS; /* mapping truncation does this. */ 2048 2049 /* 2050 * We need the page table lock to synchronize with kswapd 2051 * and the SMP-safe atomic PTE updates. 2052 */ 2053 pgd = pgd_offset(mm, address); 2054 spin_lock(&mm->page_table_lock); 2055 2056 pud = pud_alloc(mm, pgd, address); 2057 if (!pud) 2058 goto oom; 2059 2060 pmd = pmd_alloc(mm, pud, address); 2061 if (!pmd) 2062 goto oom; 2063 2064 pte = pte_alloc_map(mm, pmd, address); 2065 if (!pte) 2066 goto oom; 2067 2068 return handle_pte_fault(mm, vma, address, write_access, pte, pmd); 2069 2070 oom: 2071 spin_unlock(&mm->page_table_lock); 2072 return VM_FAULT_OOM; 2073 } 2074 2075 #ifndef __PAGETABLE_PUD_FOLDED 2076 /* 2077 * Allocate page upper directory. 2078 * 2079 * We've already handled the fast-path in-line, and we own the 2080 * page table lock. 2081 */ 2082 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2083 { 2084 pud_t *new; 2085 2086 spin_unlock(&mm->page_table_lock); 2087 new = pud_alloc_one(mm, address); 2088 spin_lock(&mm->page_table_lock); 2089 if (!new) 2090 return NULL; 2091 2092 /* 2093 * Because we dropped the lock, we should re-check the 2094 * entry, as somebody else could have populated it.. 2095 */ 2096 if (pgd_present(*pgd)) { 2097 pud_free(new); 2098 goto out; 2099 } 2100 pgd_populate(mm, pgd, new); 2101 out: 2102 return pud_offset(pgd, address); 2103 } 2104 #endif /* __PAGETABLE_PUD_FOLDED */ 2105 2106 #ifndef __PAGETABLE_PMD_FOLDED 2107 /* 2108 * Allocate page middle directory. 2109 * 2110 * We've already handled the fast-path in-line, and we own the 2111 * page table lock. 2112 */ 2113 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2114 { 2115 pmd_t *new; 2116 2117 spin_unlock(&mm->page_table_lock); 2118 new = pmd_alloc_one(mm, address); 2119 spin_lock(&mm->page_table_lock); 2120 if (!new) 2121 return NULL; 2122 2123 /* 2124 * Because we dropped the lock, we should re-check the 2125 * entry, as somebody else could have populated it.. 2126 */ 2127 #ifndef __ARCH_HAS_4LEVEL_HACK 2128 if (pud_present(*pud)) { 2129 pmd_free(new); 2130 goto out; 2131 } 2132 pud_populate(mm, pud, new); 2133 #else 2134 if (pgd_present(*pud)) { 2135 pmd_free(new); 2136 goto out; 2137 } 2138 pgd_populate(mm, pud, new); 2139 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2140 2141 out: 2142 return pmd_offset(pud, address); 2143 } 2144 #endif /* __PAGETABLE_PMD_FOLDED */ 2145 2146 int make_pages_present(unsigned long addr, unsigned long end) 2147 { 2148 int ret, len, write; 2149 struct vm_area_struct * vma; 2150 2151 vma = find_vma(current->mm, addr); 2152 if (!vma) 2153 return -1; 2154 write = (vma->vm_flags & VM_WRITE) != 0; 2155 if (addr >= end) 2156 BUG(); 2157 if (end > vma->vm_end) 2158 BUG(); 2159 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2160 ret = get_user_pages(current, current->mm, addr, 2161 len, write, 0, NULL, NULL); 2162 if (ret < 0) 2163 return ret; 2164 return ret == len ? 0 : -1; 2165 } 2166 2167 /* 2168 * Map a vmalloc()-space virtual address to the physical page. 2169 */ 2170 struct page * vmalloc_to_page(void * vmalloc_addr) 2171 { 2172 unsigned long addr = (unsigned long) vmalloc_addr; 2173 struct page *page = NULL; 2174 pgd_t *pgd = pgd_offset_k(addr); 2175 pud_t *pud; 2176 pmd_t *pmd; 2177 pte_t *ptep, pte; 2178 2179 if (!pgd_none(*pgd)) { 2180 pud = pud_offset(pgd, addr); 2181 if (!pud_none(*pud)) { 2182 pmd = pmd_offset(pud, addr); 2183 if (!pmd_none(*pmd)) { 2184 ptep = pte_offset_map(pmd, addr); 2185 pte = *ptep; 2186 if (pte_present(pte)) 2187 page = pte_page(pte); 2188 pte_unmap(ptep); 2189 } 2190 } 2191 } 2192 return page; 2193 } 2194 2195 EXPORT_SYMBOL(vmalloc_to_page); 2196 2197 /* 2198 * Map a vmalloc()-space virtual address to the physical page frame number. 2199 */ 2200 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2201 { 2202 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2203 } 2204 2205 EXPORT_SYMBOL(vmalloc_to_pfn); 2206 2207 /* 2208 * update_mem_hiwater 2209 * - update per process rss and vm high water data 2210 */ 2211 void update_mem_hiwater(struct task_struct *tsk) 2212 { 2213 if (tsk->mm) { 2214 unsigned long rss = get_mm_counter(tsk->mm, rss); 2215 2216 if (tsk->mm->hiwater_rss < rss) 2217 tsk->mm->hiwater_rss = rss; 2218 if (tsk->mm->hiwater_vm < tsk->mm->total_vm) 2219 tsk->mm->hiwater_vm = tsk->mm->total_vm; 2220 } 2221 } 2222 2223 #if !defined(__HAVE_ARCH_GATE_AREA) 2224 2225 #if defined(AT_SYSINFO_EHDR) 2226 struct vm_area_struct gate_vma; 2227 2228 static int __init gate_vma_init(void) 2229 { 2230 gate_vma.vm_mm = NULL; 2231 gate_vma.vm_start = FIXADDR_USER_START; 2232 gate_vma.vm_end = FIXADDR_USER_END; 2233 gate_vma.vm_page_prot = PAGE_READONLY; 2234 gate_vma.vm_flags = 0; 2235 return 0; 2236 } 2237 __initcall(gate_vma_init); 2238 #endif 2239 2240 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2241 { 2242 #ifdef AT_SYSINFO_EHDR 2243 return &gate_vma; 2244 #else 2245 return NULL; 2246 #endif 2247 } 2248 2249 int in_gate_area_no_task(unsigned long addr) 2250 { 2251 #ifdef AT_SYSINFO_EHDR 2252 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2253 return 1; 2254 #endif 2255 return 0; 2256 } 2257 2258 #endif /* __HAVE_ARCH_GATE_AREA */ 2259