1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 /* 122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 123 */ 124 static int __init init_zero_pfn(void) 125 { 126 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 127 return 0; 128 } 129 core_initcall(init_zero_pfn); 130 131 132 #if defined(SPLIT_RSS_COUNTING) 133 134 void sync_mm_rss(struct mm_struct *mm) 135 { 136 int i; 137 138 for (i = 0; i < NR_MM_COUNTERS; i++) { 139 if (current->rss_stat.count[i]) { 140 add_mm_counter(mm, i, current->rss_stat.count[i]); 141 current->rss_stat.count[i] = 0; 142 } 143 } 144 current->rss_stat.events = 0; 145 } 146 147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 148 { 149 struct task_struct *task = current; 150 151 if (likely(task->mm == mm)) 152 task->rss_stat.count[member] += val; 153 else 154 add_mm_counter(mm, member, val); 155 } 156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 158 159 /* sync counter once per 64 page faults */ 160 #define TASK_RSS_EVENTS_THRESH (64) 161 static void check_sync_rss_stat(struct task_struct *task) 162 { 163 if (unlikely(task != current)) 164 return; 165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 166 sync_mm_rss(task->mm); 167 } 168 #else /* SPLIT_RSS_COUNTING */ 169 170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 172 173 static void check_sync_rss_stat(struct task_struct *task) 174 { 175 } 176 177 #endif /* SPLIT_RSS_COUNTING */ 178 179 #ifdef HAVE_GENERIC_MMU_GATHER 180 181 static int tlb_next_batch(struct mmu_gather *tlb) 182 { 183 struct mmu_gather_batch *batch; 184 185 batch = tlb->active; 186 if (batch->next) { 187 tlb->active = batch->next; 188 return 1; 189 } 190 191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 192 return 0; 193 194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 195 if (!batch) 196 return 0; 197 198 tlb->batch_count++; 199 batch->next = NULL; 200 batch->nr = 0; 201 batch->max = MAX_GATHER_BATCH; 202 203 tlb->active->next = batch; 204 tlb->active = batch; 205 206 return 1; 207 } 208 209 /* tlb_gather_mmu 210 * Called to initialize an (on-stack) mmu_gather structure for page-table 211 * tear-down from @mm. The @fullmm argument is used when @mm is without 212 * users and we're going to destroy the full address space (exit/execve). 213 */ 214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 215 { 216 tlb->mm = mm; 217 218 /* Is it from 0 to ~0? */ 219 tlb->fullmm = !(start | (end+1)); 220 tlb->need_flush_all = 0; 221 tlb->start = start; 222 tlb->end = end; 223 tlb->need_flush = 0; 224 tlb->local.next = NULL; 225 tlb->local.nr = 0; 226 tlb->local.max = ARRAY_SIZE(tlb->__pages); 227 tlb->active = &tlb->local; 228 tlb->batch_count = 0; 229 230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 231 tlb->batch = NULL; 232 #endif 233 } 234 235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 236 { 237 tlb->need_flush = 0; 238 tlb_flush(tlb); 239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 240 tlb_table_flush(tlb); 241 #endif 242 } 243 244 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 245 { 246 struct mmu_gather_batch *batch; 247 248 for (batch = &tlb->local; batch; batch = batch->next) { 249 free_pages_and_swap_cache(batch->pages, batch->nr); 250 batch->nr = 0; 251 } 252 tlb->active = &tlb->local; 253 } 254 255 void tlb_flush_mmu(struct mmu_gather *tlb) 256 { 257 if (!tlb->need_flush) 258 return; 259 tlb_flush_mmu_tlbonly(tlb); 260 tlb_flush_mmu_free(tlb); 261 } 262 263 /* tlb_finish_mmu 264 * Called at the end of the shootdown operation to free up any resources 265 * that were required. 266 */ 267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 268 { 269 struct mmu_gather_batch *batch, *next; 270 271 tlb_flush_mmu(tlb); 272 273 /* keep the page table cache within bounds */ 274 check_pgt_cache(); 275 276 for (batch = tlb->local.next; batch; batch = next) { 277 next = batch->next; 278 free_pages((unsigned long)batch, 0); 279 } 280 tlb->local.next = NULL; 281 } 282 283 /* __tlb_remove_page 284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 285 * handling the additional races in SMP caused by other CPUs caching valid 286 * mappings in their TLBs. Returns the number of free page slots left. 287 * When out of page slots we must call tlb_flush_mmu(). 288 */ 289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 290 { 291 struct mmu_gather_batch *batch; 292 293 VM_BUG_ON(!tlb->need_flush); 294 295 batch = tlb->active; 296 batch->pages[batch->nr++] = page; 297 if (batch->nr == batch->max) { 298 if (!tlb_next_batch(tlb)) 299 return 0; 300 batch = tlb->active; 301 } 302 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 303 304 return batch->max - batch->nr; 305 } 306 307 #endif /* HAVE_GENERIC_MMU_GATHER */ 308 309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 310 311 /* 312 * See the comment near struct mmu_table_batch. 313 */ 314 315 static void tlb_remove_table_smp_sync(void *arg) 316 { 317 /* Simply deliver the interrupt */ 318 } 319 320 static void tlb_remove_table_one(void *table) 321 { 322 /* 323 * This isn't an RCU grace period and hence the page-tables cannot be 324 * assumed to be actually RCU-freed. 325 * 326 * It is however sufficient for software page-table walkers that rely on 327 * IRQ disabling. See the comment near struct mmu_table_batch. 328 */ 329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 330 __tlb_remove_table(table); 331 } 332 333 static void tlb_remove_table_rcu(struct rcu_head *head) 334 { 335 struct mmu_table_batch *batch; 336 int i; 337 338 batch = container_of(head, struct mmu_table_batch, rcu); 339 340 for (i = 0; i < batch->nr; i++) 341 __tlb_remove_table(batch->tables[i]); 342 343 free_page((unsigned long)batch); 344 } 345 346 void tlb_table_flush(struct mmu_gather *tlb) 347 { 348 struct mmu_table_batch **batch = &tlb->batch; 349 350 if (*batch) { 351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 352 *batch = NULL; 353 } 354 } 355 356 void tlb_remove_table(struct mmu_gather *tlb, void *table) 357 { 358 struct mmu_table_batch **batch = &tlb->batch; 359 360 tlb->need_flush = 1; 361 362 /* 363 * When there's less then two users of this mm there cannot be a 364 * concurrent page-table walk. 365 */ 366 if (atomic_read(&tlb->mm->mm_users) < 2) { 367 __tlb_remove_table(table); 368 return; 369 } 370 371 if (*batch == NULL) { 372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 373 if (*batch == NULL) { 374 tlb_remove_table_one(table); 375 return; 376 } 377 (*batch)->nr = 0; 378 } 379 (*batch)->tables[(*batch)->nr++] = table; 380 if ((*batch)->nr == MAX_TABLE_BATCH) 381 tlb_table_flush(tlb); 382 } 383 384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 385 386 /* 387 * Note: this doesn't free the actual pages themselves. That 388 * has been handled earlier when unmapping all the memory regions. 389 */ 390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 391 unsigned long addr) 392 { 393 pgtable_t token = pmd_pgtable(*pmd); 394 pmd_clear(pmd); 395 pte_free_tlb(tlb, token, addr); 396 atomic_long_dec(&tlb->mm->nr_ptes); 397 } 398 399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 400 unsigned long addr, unsigned long end, 401 unsigned long floor, unsigned long ceiling) 402 { 403 pmd_t *pmd; 404 unsigned long next; 405 unsigned long start; 406 407 start = addr; 408 pmd = pmd_offset(pud, addr); 409 do { 410 next = pmd_addr_end(addr, end); 411 if (pmd_none_or_clear_bad(pmd)) 412 continue; 413 free_pte_range(tlb, pmd, addr); 414 } while (pmd++, addr = next, addr != end); 415 416 start &= PUD_MASK; 417 if (start < floor) 418 return; 419 if (ceiling) { 420 ceiling &= PUD_MASK; 421 if (!ceiling) 422 return; 423 } 424 if (end - 1 > ceiling - 1) 425 return; 426 427 pmd = pmd_offset(pud, start); 428 pud_clear(pud); 429 pmd_free_tlb(tlb, pmd, start); 430 } 431 432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 433 unsigned long addr, unsigned long end, 434 unsigned long floor, unsigned long ceiling) 435 { 436 pud_t *pud; 437 unsigned long next; 438 unsigned long start; 439 440 start = addr; 441 pud = pud_offset(pgd, addr); 442 do { 443 next = pud_addr_end(addr, end); 444 if (pud_none_or_clear_bad(pud)) 445 continue; 446 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 447 } while (pud++, addr = next, addr != end); 448 449 start &= PGDIR_MASK; 450 if (start < floor) 451 return; 452 if (ceiling) { 453 ceiling &= PGDIR_MASK; 454 if (!ceiling) 455 return; 456 } 457 if (end - 1 > ceiling - 1) 458 return; 459 460 pud = pud_offset(pgd, start); 461 pgd_clear(pgd); 462 pud_free_tlb(tlb, pud, start); 463 } 464 465 /* 466 * This function frees user-level page tables of a process. 467 */ 468 void free_pgd_range(struct mmu_gather *tlb, 469 unsigned long addr, unsigned long end, 470 unsigned long floor, unsigned long ceiling) 471 { 472 pgd_t *pgd; 473 unsigned long next; 474 475 /* 476 * The next few lines have given us lots of grief... 477 * 478 * Why are we testing PMD* at this top level? Because often 479 * there will be no work to do at all, and we'd prefer not to 480 * go all the way down to the bottom just to discover that. 481 * 482 * Why all these "- 1"s? Because 0 represents both the bottom 483 * of the address space and the top of it (using -1 for the 484 * top wouldn't help much: the masks would do the wrong thing). 485 * The rule is that addr 0 and floor 0 refer to the bottom of 486 * the address space, but end 0 and ceiling 0 refer to the top 487 * Comparisons need to use "end - 1" and "ceiling - 1" (though 488 * that end 0 case should be mythical). 489 * 490 * Wherever addr is brought up or ceiling brought down, we must 491 * be careful to reject "the opposite 0" before it confuses the 492 * subsequent tests. But what about where end is brought down 493 * by PMD_SIZE below? no, end can't go down to 0 there. 494 * 495 * Whereas we round start (addr) and ceiling down, by different 496 * masks at different levels, in order to test whether a table 497 * now has no other vmas using it, so can be freed, we don't 498 * bother to round floor or end up - the tests don't need that. 499 */ 500 501 addr &= PMD_MASK; 502 if (addr < floor) { 503 addr += PMD_SIZE; 504 if (!addr) 505 return; 506 } 507 if (ceiling) { 508 ceiling &= PMD_MASK; 509 if (!ceiling) 510 return; 511 } 512 if (end - 1 > ceiling - 1) 513 end -= PMD_SIZE; 514 if (addr > end - 1) 515 return; 516 517 pgd = pgd_offset(tlb->mm, addr); 518 do { 519 next = pgd_addr_end(addr, end); 520 if (pgd_none_or_clear_bad(pgd)) 521 continue; 522 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 523 } while (pgd++, addr = next, addr != end); 524 } 525 526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 527 unsigned long floor, unsigned long ceiling) 528 { 529 while (vma) { 530 struct vm_area_struct *next = vma->vm_next; 531 unsigned long addr = vma->vm_start; 532 533 /* 534 * Hide vma from rmap and truncate_pagecache before freeing 535 * pgtables 536 */ 537 unlink_anon_vmas(vma); 538 unlink_file_vma(vma); 539 540 if (is_vm_hugetlb_page(vma)) { 541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 542 floor, next? next->vm_start: ceiling); 543 } else { 544 /* 545 * Optimization: gather nearby vmas into one call down 546 */ 547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 548 && !is_vm_hugetlb_page(next)) { 549 vma = next; 550 next = vma->vm_next; 551 unlink_anon_vmas(vma); 552 unlink_file_vma(vma); 553 } 554 free_pgd_range(tlb, addr, vma->vm_end, 555 floor, next? next->vm_start: ceiling); 556 } 557 vma = next; 558 } 559 } 560 561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 562 pmd_t *pmd, unsigned long address) 563 { 564 spinlock_t *ptl; 565 pgtable_t new = pte_alloc_one(mm, address); 566 int wait_split_huge_page; 567 if (!new) 568 return -ENOMEM; 569 570 /* 571 * Ensure all pte setup (eg. pte page lock and page clearing) are 572 * visible before the pte is made visible to other CPUs by being 573 * put into page tables. 574 * 575 * The other side of the story is the pointer chasing in the page 576 * table walking code (when walking the page table without locking; 577 * ie. most of the time). Fortunately, these data accesses consist 578 * of a chain of data-dependent loads, meaning most CPUs (alpha 579 * being the notable exception) will already guarantee loads are 580 * seen in-order. See the alpha page table accessors for the 581 * smp_read_barrier_depends() barriers in page table walking code. 582 */ 583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 584 585 ptl = pmd_lock(mm, pmd); 586 wait_split_huge_page = 0; 587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 588 atomic_long_inc(&mm->nr_ptes); 589 pmd_populate(mm, pmd, new); 590 new = NULL; 591 } else if (unlikely(pmd_trans_splitting(*pmd))) 592 wait_split_huge_page = 1; 593 spin_unlock(ptl); 594 if (new) 595 pte_free(mm, new); 596 if (wait_split_huge_page) 597 wait_split_huge_page(vma->anon_vma, pmd); 598 return 0; 599 } 600 601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 602 { 603 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 604 if (!new) 605 return -ENOMEM; 606 607 smp_wmb(); /* See comment in __pte_alloc */ 608 609 spin_lock(&init_mm.page_table_lock); 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 611 pmd_populate_kernel(&init_mm, pmd, new); 612 new = NULL; 613 } else 614 VM_BUG_ON(pmd_trans_splitting(*pmd)); 615 spin_unlock(&init_mm.page_table_lock); 616 if (new) 617 pte_free_kernel(&init_mm, new); 618 return 0; 619 } 620 621 static inline void init_rss_vec(int *rss) 622 { 623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 624 } 625 626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 627 { 628 int i; 629 630 if (current->mm == mm) 631 sync_mm_rss(mm); 632 for (i = 0; i < NR_MM_COUNTERS; i++) 633 if (rss[i]) 634 add_mm_counter(mm, i, rss[i]); 635 } 636 637 /* 638 * This function is called to print an error when a bad pte 639 * is found. For example, we might have a PFN-mapped pte in 640 * a region that doesn't allow it. 641 * 642 * The calling function must still handle the error. 643 */ 644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte, struct page *page) 646 { 647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 648 pud_t *pud = pud_offset(pgd, addr); 649 pmd_t *pmd = pmd_offset(pud, addr); 650 struct address_space *mapping; 651 pgoff_t index; 652 static unsigned long resume; 653 static unsigned long nr_shown; 654 static unsigned long nr_unshown; 655 656 /* 657 * Allow a burst of 60 reports, then keep quiet for that minute; 658 * or allow a steady drip of one report per second. 659 */ 660 if (nr_shown == 60) { 661 if (time_before(jiffies, resume)) { 662 nr_unshown++; 663 return; 664 } 665 if (nr_unshown) { 666 printk(KERN_ALERT 667 "BUG: Bad page map: %lu messages suppressed\n", 668 nr_unshown); 669 nr_unshown = 0; 670 } 671 nr_shown = 0; 672 } 673 if (nr_shown++ == 0) 674 resume = jiffies + 60 * HZ; 675 676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 677 index = linear_page_index(vma, addr); 678 679 printk(KERN_ALERT 680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 681 current->comm, 682 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 683 if (page) 684 dump_page(page, "bad pte"); 685 printk(KERN_ALERT 686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 688 /* 689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 690 */ 691 if (vma->vm_ops) 692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 693 vma->vm_ops->fault); 694 if (vma->vm_file) 695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 696 vma->vm_file->f_op->mmap); 697 dump_stack(); 698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 699 } 700 701 /* 702 * vm_normal_page -- This function gets the "struct page" associated with a pte. 703 * 704 * "Special" mappings do not wish to be associated with a "struct page" (either 705 * it doesn't exist, or it exists but they don't want to touch it). In this 706 * case, NULL is returned here. "Normal" mappings do have a struct page. 707 * 708 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 709 * pte bit, in which case this function is trivial. Secondly, an architecture 710 * may not have a spare pte bit, which requires a more complicated scheme, 711 * described below. 712 * 713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 714 * special mapping (even if there are underlying and valid "struct pages"). 715 * COWed pages of a VM_PFNMAP are always normal. 716 * 717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 720 * mapping will always honor the rule 721 * 722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 723 * 724 * And for normal mappings this is false. 725 * 726 * This restricts such mappings to be a linear translation from virtual address 727 * to pfn. To get around this restriction, we allow arbitrary mappings so long 728 * as the vma is not a COW mapping; in that case, we know that all ptes are 729 * special (because none can have been COWed). 730 * 731 * 732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 733 * 734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 735 * page" backing, however the difference is that _all_ pages with a struct 736 * page (that is, those where pfn_valid is true) are refcounted and considered 737 * normal pages by the VM. The disadvantage is that pages are refcounted 738 * (which can be slower and simply not an option for some PFNMAP users). The 739 * advantage is that we don't have to follow the strict linearity rule of 740 * PFNMAP mappings in order to support COWable mappings. 741 * 742 */ 743 #ifdef __HAVE_ARCH_PTE_SPECIAL 744 # define HAVE_PTE_SPECIAL 1 745 #else 746 # define HAVE_PTE_SPECIAL 0 747 #endif 748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 749 pte_t pte) 750 { 751 unsigned long pfn = pte_pfn(pte); 752 753 if (HAVE_PTE_SPECIAL) { 754 if (likely(!pte_special(pte))) 755 goto check_pfn; 756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 757 return NULL; 758 if (!is_zero_pfn(pfn)) 759 print_bad_pte(vma, addr, pte, NULL); 760 return NULL; 761 } 762 763 /* !HAVE_PTE_SPECIAL case follows: */ 764 765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 766 if (vma->vm_flags & VM_MIXEDMAP) { 767 if (!pfn_valid(pfn)) 768 return NULL; 769 goto out; 770 } else { 771 unsigned long off; 772 off = (addr - vma->vm_start) >> PAGE_SHIFT; 773 if (pfn == vma->vm_pgoff + off) 774 return NULL; 775 if (!is_cow_mapping(vma->vm_flags)) 776 return NULL; 777 } 778 } 779 780 if (is_zero_pfn(pfn)) 781 return NULL; 782 check_pfn: 783 if (unlikely(pfn > highest_memmap_pfn)) { 784 print_bad_pte(vma, addr, pte, NULL); 785 return NULL; 786 } 787 788 /* 789 * NOTE! We still have PageReserved() pages in the page tables. 790 * eg. VDSO mappings can cause them to exist. 791 */ 792 out: 793 return pfn_to_page(pfn); 794 } 795 796 /* 797 * copy one vm_area from one task to the other. Assumes the page tables 798 * already present in the new task to be cleared in the whole range 799 * covered by this vma. 800 */ 801 802 static inline unsigned long 803 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 804 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 805 unsigned long addr, int *rss) 806 { 807 unsigned long vm_flags = vma->vm_flags; 808 pte_t pte = *src_pte; 809 struct page *page; 810 811 /* pte contains position in swap or file, so copy. */ 812 if (unlikely(!pte_present(pte))) { 813 if (!pte_file(pte)) { 814 swp_entry_t entry = pte_to_swp_entry(pte); 815 816 if (swap_duplicate(entry) < 0) 817 return entry.val; 818 819 /* make sure dst_mm is on swapoff's mmlist. */ 820 if (unlikely(list_empty(&dst_mm->mmlist))) { 821 spin_lock(&mmlist_lock); 822 if (list_empty(&dst_mm->mmlist)) 823 list_add(&dst_mm->mmlist, 824 &src_mm->mmlist); 825 spin_unlock(&mmlist_lock); 826 } 827 if (likely(!non_swap_entry(entry))) 828 rss[MM_SWAPENTS]++; 829 else if (is_migration_entry(entry)) { 830 page = migration_entry_to_page(entry); 831 832 if (PageAnon(page)) 833 rss[MM_ANONPAGES]++; 834 else 835 rss[MM_FILEPAGES]++; 836 837 if (is_write_migration_entry(entry) && 838 is_cow_mapping(vm_flags)) { 839 /* 840 * COW mappings require pages in both 841 * parent and child to be set to read. 842 */ 843 make_migration_entry_read(&entry); 844 pte = swp_entry_to_pte(entry); 845 if (pte_swp_soft_dirty(*src_pte)) 846 pte = pte_swp_mksoft_dirty(pte); 847 set_pte_at(src_mm, addr, src_pte, pte); 848 } 849 } 850 } 851 goto out_set_pte; 852 } 853 854 /* 855 * If it's a COW mapping, write protect it both 856 * in the parent and the child 857 */ 858 if (is_cow_mapping(vm_flags)) { 859 ptep_set_wrprotect(src_mm, addr, src_pte); 860 pte = pte_wrprotect(pte); 861 } 862 863 /* 864 * If it's a shared mapping, mark it clean in 865 * the child 866 */ 867 if (vm_flags & VM_SHARED) 868 pte = pte_mkclean(pte); 869 pte = pte_mkold(pte); 870 871 page = vm_normal_page(vma, addr, pte); 872 if (page) { 873 get_page(page); 874 page_dup_rmap(page); 875 if (PageAnon(page)) 876 rss[MM_ANONPAGES]++; 877 else 878 rss[MM_FILEPAGES]++; 879 } 880 881 out_set_pte: 882 set_pte_at(dst_mm, addr, dst_pte, pte); 883 return 0; 884 } 885 886 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 887 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 888 unsigned long addr, unsigned long end) 889 { 890 pte_t *orig_src_pte, *orig_dst_pte; 891 pte_t *src_pte, *dst_pte; 892 spinlock_t *src_ptl, *dst_ptl; 893 int progress = 0; 894 int rss[NR_MM_COUNTERS]; 895 swp_entry_t entry = (swp_entry_t){0}; 896 897 again: 898 init_rss_vec(rss); 899 900 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 901 if (!dst_pte) 902 return -ENOMEM; 903 src_pte = pte_offset_map(src_pmd, addr); 904 src_ptl = pte_lockptr(src_mm, src_pmd); 905 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 906 orig_src_pte = src_pte; 907 orig_dst_pte = dst_pte; 908 arch_enter_lazy_mmu_mode(); 909 910 do { 911 /* 912 * We are holding two locks at this point - either of them 913 * could generate latencies in another task on another CPU. 914 */ 915 if (progress >= 32) { 916 progress = 0; 917 if (need_resched() || 918 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 919 break; 920 } 921 if (pte_none(*src_pte)) { 922 progress++; 923 continue; 924 } 925 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 926 vma, addr, rss); 927 if (entry.val) 928 break; 929 progress += 8; 930 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 931 932 arch_leave_lazy_mmu_mode(); 933 spin_unlock(src_ptl); 934 pte_unmap(orig_src_pte); 935 add_mm_rss_vec(dst_mm, rss); 936 pte_unmap_unlock(orig_dst_pte, dst_ptl); 937 cond_resched(); 938 939 if (entry.val) { 940 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 941 return -ENOMEM; 942 progress = 0; 943 } 944 if (addr != end) 945 goto again; 946 return 0; 947 } 948 949 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 950 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 951 unsigned long addr, unsigned long end) 952 { 953 pmd_t *src_pmd, *dst_pmd; 954 unsigned long next; 955 956 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 957 if (!dst_pmd) 958 return -ENOMEM; 959 src_pmd = pmd_offset(src_pud, addr); 960 do { 961 next = pmd_addr_end(addr, end); 962 if (pmd_trans_huge(*src_pmd)) { 963 int err; 964 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 965 err = copy_huge_pmd(dst_mm, src_mm, 966 dst_pmd, src_pmd, addr, vma); 967 if (err == -ENOMEM) 968 return -ENOMEM; 969 if (!err) 970 continue; 971 /* fall through */ 972 } 973 if (pmd_none_or_clear_bad(src_pmd)) 974 continue; 975 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 976 vma, addr, next)) 977 return -ENOMEM; 978 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 979 return 0; 980 } 981 982 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 983 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 984 unsigned long addr, unsigned long end) 985 { 986 pud_t *src_pud, *dst_pud; 987 unsigned long next; 988 989 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 990 if (!dst_pud) 991 return -ENOMEM; 992 src_pud = pud_offset(src_pgd, addr); 993 do { 994 next = pud_addr_end(addr, end); 995 if (pud_none_or_clear_bad(src_pud)) 996 continue; 997 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 998 vma, addr, next)) 999 return -ENOMEM; 1000 } while (dst_pud++, src_pud++, addr = next, addr != end); 1001 return 0; 1002 } 1003 1004 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1005 struct vm_area_struct *vma) 1006 { 1007 pgd_t *src_pgd, *dst_pgd; 1008 unsigned long next; 1009 unsigned long addr = vma->vm_start; 1010 unsigned long end = vma->vm_end; 1011 unsigned long mmun_start; /* For mmu_notifiers */ 1012 unsigned long mmun_end; /* For mmu_notifiers */ 1013 bool is_cow; 1014 int ret; 1015 1016 /* 1017 * Don't copy ptes where a page fault will fill them correctly. 1018 * Fork becomes much lighter when there are big shared or private 1019 * readonly mappings. The tradeoff is that copy_page_range is more 1020 * efficient than faulting. 1021 */ 1022 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1023 VM_PFNMAP | VM_MIXEDMAP))) { 1024 if (!vma->anon_vma) 1025 return 0; 1026 } 1027 1028 if (is_vm_hugetlb_page(vma)) 1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1030 1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1032 /* 1033 * We do not free on error cases below as remove_vma 1034 * gets called on error from higher level routine 1035 */ 1036 ret = track_pfn_copy(vma); 1037 if (ret) 1038 return ret; 1039 } 1040 1041 /* 1042 * We need to invalidate the secondary MMU mappings only when 1043 * there could be a permission downgrade on the ptes of the 1044 * parent mm. And a permission downgrade will only happen if 1045 * is_cow_mapping() returns true. 1046 */ 1047 is_cow = is_cow_mapping(vma->vm_flags); 1048 mmun_start = addr; 1049 mmun_end = end; 1050 if (is_cow) 1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1052 mmun_end); 1053 1054 ret = 0; 1055 dst_pgd = pgd_offset(dst_mm, addr); 1056 src_pgd = pgd_offset(src_mm, addr); 1057 do { 1058 next = pgd_addr_end(addr, end); 1059 if (pgd_none_or_clear_bad(src_pgd)) 1060 continue; 1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1062 vma, addr, next))) { 1063 ret = -ENOMEM; 1064 break; 1065 } 1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1067 1068 if (is_cow) 1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1070 return ret; 1071 } 1072 1073 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1074 struct vm_area_struct *vma, pmd_t *pmd, 1075 unsigned long addr, unsigned long end, 1076 struct zap_details *details) 1077 { 1078 struct mm_struct *mm = tlb->mm; 1079 int force_flush = 0; 1080 int rss[NR_MM_COUNTERS]; 1081 spinlock_t *ptl; 1082 pte_t *start_pte; 1083 pte_t *pte; 1084 1085 again: 1086 init_rss_vec(rss); 1087 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1088 pte = start_pte; 1089 arch_enter_lazy_mmu_mode(); 1090 do { 1091 pte_t ptent = *pte; 1092 if (pte_none(ptent)) { 1093 continue; 1094 } 1095 1096 if (pte_present(ptent)) { 1097 struct page *page; 1098 1099 page = vm_normal_page(vma, addr, ptent); 1100 if (unlikely(details) && page) { 1101 /* 1102 * unmap_shared_mapping_pages() wants to 1103 * invalidate cache without truncating: 1104 * unmap shared but keep private pages. 1105 */ 1106 if (details->check_mapping && 1107 details->check_mapping != page->mapping) 1108 continue; 1109 /* 1110 * Each page->index must be checked when 1111 * invalidating or truncating nonlinear. 1112 */ 1113 if (details->nonlinear_vma && 1114 (page->index < details->first_index || 1115 page->index > details->last_index)) 1116 continue; 1117 } 1118 ptent = ptep_get_and_clear_full(mm, addr, pte, 1119 tlb->fullmm); 1120 tlb_remove_tlb_entry(tlb, pte, addr); 1121 if (unlikely(!page)) 1122 continue; 1123 if (unlikely(details) && details->nonlinear_vma 1124 && linear_page_index(details->nonlinear_vma, 1125 addr) != page->index) { 1126 pte_t ptfile = pgoff_to_pte(page->index); 1127 if (pte_soft_dirty(ptent)) 1128 pte_file_mksoft_dirty(ptfile); 1129 set_pte_at(mm, addr, pte, ptfile); 1130 } 1131 if (PageAnon(page)) 1132 rss[MM_ANONPAGES]--; 1133 else { 1134 if (pte_dirty(ptent)) { 1135 force_flush = 1; 1136 set_page_dirty(page); 1137 } 1138 if (pte_young(ptent) && 1139 likely(!(vma->vm_flags & VM_SEQ_READ))) 1140 mark_page_accessed(page); 1141 rss[MM_FILEPAGES]--; 1142 } 1143 page_remove_rmap(page); 1144 if (unlikely(page_mapcount(page) < 0)) 1145 print_bad_pte(vma, addr, ptent, page); 1146 if (unlikely(!__tlb_remove_page(tlb, page))) { 1147 force_flush = 1; 1148 break; 1149 } 1150 continue; 1151 } 1152 /* 1153 * If details->check_mapping, we leave swap entries; 1154 * if details->nonlinear_vma, we leave file entries. 1155 */ 1156 if (unlikely(details)) 1157 continue; 1158 if (pte_file(ptent)) { 1159 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1160 print_bad_pte(vma, addr, ptent, NULL); 1161 } else { 1162 swp_entry_t entry = pte_to_swp_entry(ptent); 1163 1164 if (!non_swap_entry(entry)) 1165 rss[MM_SWAPENTS]--; 1166 else if (is_migration_entry(entry)) { 1167 struct page *page; 1168 1169 page = migration_entry_to_page(entry); 1170 1171 if (PageAnon(page)) 1172 rss[MM_ANONPAGES]--; 1173 else 1174 rss[MM_FILEPAGES]--; 1175 } 1176 if (unlikely(!free_swap_and_cache(entry))) 1177 print_bad_pte(vma, addr, ptent, NULL); 1178 } 1179 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1180 } while (pte++, addr += PAGE_SIZE, addr != end); 1181 1182 add_mm_rss_vec(mm, rss); 1183 arch_leave_lazy_mmu_mode(); 1184 1185 /* Do the actual TLB flush before dropping ptl */ 1186 if (force_flush) { 1187 unsigned long old_end; 1188 1189 /* 1190 * Flush the TLB just for the previous segment, 1191 * then update the range to be the remaining 1192 * TLB range. 1193 */ 1194 old_end = tlb->end; 1195 tlb->end = addr; 1196 tlb_flush_mmu_tlbonly(tlb); 1197 tlb->start = addr; 1198 tlb->end = old_end; 1199 } 1200 pte_unmap_unlock(start_pte, ptl); 1201 1202 /* 1203 * If we forced a TLB flush (either due to running out of 1204 * batch buffers or because we needed to flush dirty TLB 1205 * entries before releasing the ptl), free the batched 1206 * memory too. Restart if we didn't do everything. 1207 */ 1208 if (force_flush) { 1209 force_flush = 0; 1210 tlb_flush_mmu_free(tlb); 1211 1212 if (addr != end) 1213 goto again; 1214 } 1215 1216 return addr; 1217 } 1218 1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1220 struct vm_area_struct *vma, pud_t *pud, 1221 unsigned long addr, unsigned long end, 1222 struct zap_details *details) 1223 { 1224 pmd_t *pmd; 1225 unsigned long next; 1226 1227 pmd = pmd_offset(pud, addr); 1228 do { 1229 next = pmd_addr_end(addr, end); 1230 if (pmd_trans_huge(*pmd)) { 1231 if (next - addr != HPAGE_PMD_SIZE) { 1232 #ifdef CONFIG_DEBUG_VM 1233 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1234 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1235 __func__, addr, end, 1236 vma->vm_start, 1237 vma->vm_end); 1238 BUG(); 1239 } 1240 #endif 1241 split_huge_page_pmd(vma, addr, pmd); 1242 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1243 goto next; 1244 /* fall through */ 1245 } 1246 /* 1247 * Here there can be other concurrent MADV_DONTNEED or 1248 * trans huge page faults running, and if the pmd is 1249 * none or trans huge it can change under us. This is 1250 * because MADV_DONTNEED holds the mmap_sem in read 1251 * mode. 1252 */ 1253 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1254 goto next; 1255 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1256 next: 1257 cond_resched(); 1258 } while (pmd++, addr = next, addr != end); 1259 1260 return addr; 1261 } 1262 1263 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1264 struct vm_area_struct *vma, pgd_t *pgd, 1265 unsigned long addr, unsigned long end, 1266 struct zap_details *details) 1267 { 1268 pud_t *pud; 1269 unsigned long next; 1270 1271 pud = pud_offset(pgd, addr); 1272 do { 1273 next = pud_addr_end(addr, end); 1274 if (pud_none_or_clear_bad(pud)) 1275 continue; 1276 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1277 } while (pud++, addr = next, addr != end); 1278 1279 return addr; 1280 } 1281 1282 static void unmap_page_range(struct mmu_gather *tlb, 1283 struct vm_area_struct *vma, 1284 unsigned long addr, unsigned long end, 1285 struct zap_details *details) 1286 { 1287 pgd_t *pgd; 1288 unsigned long next; 1289 1290 if (details && !details->check_mapping && !details->nonlinear_vma) 1291 details = NULL; 1292 1293 BUG_ON(addr >= end); 1294 tlb_start_vma(tlb, vma); 1295 pgd = pgd_offset(vma->vm_mm, addr); 1296 do { 1297 next = pgd_addr_end(addr, end); 1298 if (pgd_none_or_clear_bad(pgd)) 1299 continue; 1300 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1301 } while (pgd++, addr = next, addr != end); 1302 tlb_end_vma(tlb, vma); 1303 } 1304 1305 1306 static void unmap_single_vma(struct mmu_gather *tlb, 1307 struct vm_area_struct *vma, unsigned long start_addr, 1308 unsigned long end_addr, 1309 struct zap_details *details) 1310 { 1311 unsigned long start = max(vma->vm_start, start_addr); 1312 unsigned long end; 1313 1314 if (start >= vma->vm_end) 1315 return; 1316 end = min(vma->vm_end, end_addr); 1317 if (end <= vma->vm_start) 1318 return; 1319 1320 if (vma->vm_file) 1321 uprobe_munmap(vma, start, end); 1322 1323 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1324 untrack_pfn(vma, 0, 0); 1325 1326 if (start != end) { 1327 if (unlikely(is_vm_hugetlb_page(vma))) { 1328 /* 1329 * It is undesirable to test vma->vm_file as it 1330 * should be non-null for valid hugetlb area. 1331 * However, vm_file will be NULL in the error 1332 * cleanup path of mmap_region. When 1333 * hugetlbfs ->mmap method fails, 1334 * mmap_region() nullifies vma->vm_file 1335 * before calling this function to clean up. 1336 * Since no pte has actually been setup, it is 1337 * safe to do nothing in this case. 1338 */ 1339 if (vma->vm_file) { 1340 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1341 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1342 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1343 } 1344 } else 1345 unmap_page_range(tlb, vma, start, end, details); 1346 } 1347 } 1348 1349 /** 1350 * unmap_vmas - unmap a range of memory covered by a list of vma's 1351 * @tlb: address of the caller's struct mmu_gather 1352 * @vma: the starting vma 1353 * @start_addr: virtual address at which to start unmapping 1354 * @end_addr: virtual address at which to end unmapping 1355 * 1356 * Unmap all pages in the vma list. 1357 * 1358 * Only addresses between `start' and `end' will be unmapped. 1359 * 1360 * The VMA list must be sorted in ascending virtual address order. 1361 * 1362 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1363 * range after unmap_vmas() returns. So the only responsibility here is to 1364 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1365 * drops the lock and schedules. 1366 */ 1367 void unmap_vmas(struct mmu_gather *tlb, 1368 struct vm_area_struct *vma, unsigned long start_addr, 1369 unsigned long end_addr) 1370 { 1371 struct mm_struct *mm = vma->vm_mm; 1372 1373 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1374 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1375 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1376 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1377 } 1378 1379 /** 1380 * zap_page_range - remove user pages in a given range 1381 * @vma: vm_area_struct holding the applicable pages 1382 * @start: starting address of pages to zap 1383 * @size: number of bytes to zap 1384 * @details: details of nonlinear truncation or shared cache invalidation 1385 * 1386 * Caller must protect the VMA list 1387 */ 1388 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1389 unsigned long size, struct zap_details *details) 1390 { 1391 struct mm_struct *mm = vma->vm_mm; 1392 struct mmu_gather tlb; 1393 unsigned long end = start + size; 1394 1395 lru_add_drain(); 1396 tlb_gather_mmu(&tlb, mm, start, end); 1397 update_hiwater_rss(mm); 1398 mmu_notifier_invalidate_range_start(mm, start, end); 1399 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1400 unmap_single_vma(&tlb, vma, start, end, details); 1401 mmu_notifier_invalidate_range_end(mm, start, end); 1402 tlb_finish_mmu(&tlb, start, end); 1403 } 1404 1405 /** 1406 * zap_page_range_single - remove user pages in a given range 1407 * @vma: vm_area_struct holding the applicable pages 1408 * @address: starting address of pages to zap 1409 * @size: number of bytes to zap 1410 * @details: details of nonlinear truncation or shared cache invalidation 1411 * 1412 * The range must fit into one VMA. 1413 */ 1414 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1415 unsigned long size, struct zap_details *details) 1416 { 1417 struct mm_struct *mm = vma->vm_mm; 1418 struct mmu_gather tlb; 1419 unsigned long end = address + size; 1420 1421 lru_add_drain(); 1422 tlb_gather_mmu(&tlb, mm, address, end); 1423 update_hiwater_rss(mm); 1424 mmu_notifier_invalidate_range_start(mm, address, end); 1425 unmap_single_vma(&tlb, vma, address, end, details); 1426 mmu_notifier_invalidate_range_end(mm, address, end); 1427 tlb_finish_mmu(&tlb, address, end); 1428 } 1429 1430 /** 1431 * zap_vma_ptes - remove ptes mapping the vma 1432 * @vma: vm_area_struct holding ptes to be zapped 1433 * @address: starting address of pages to zap 1434 * @size: number of bytes to zap 1435 * 1436 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1437 * 1438 * The entire address range must be fully contained within the vma. 1439 * 1440 * Returns 0 if successful. 1441 */ 1442 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1443 unsigned long size) 1444 { 1445 if (address < vma->vm_start || address + size > vma->vm_end || 1446 !(vma->vm_flags & VM_PFNMAP)) 1447 return -1; 1448 zap_page_range_single(vma, address, size, NULL); 1449 return 0; 1450 } 1451 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1452 1453 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1454 spinlock_t **ptl) 1455 { 1456 pgd_t * pgd = pgd_offset(mm, addr); 1457 pud_t * pud = pud_alloc(mm, pgd, addr); 1458 if (pud) { 1459 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1460 if (pmd) { 1461 VM_BUG_ON(pmd_trans_huge(*pmd)); 1462 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1463 } 1464 } 1465 return NULL; 1466 } 1467 1468 /* 1469 * This is the old fallback for page remapping. 1470 * 1471 * For historical reasons, it only allows reserved pages. Only 1472 * old drivers should use this, and they needed to mark their 1473 * pages reserved for the old functions anyway. 1474 */ 1475 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1476 struct page *page, pgprot_t prot) 1477 { 1478 struct mm_struct *mm = vma->vm_mm; 1479 int retval; 1480 pte_t *pte; 1481 spinlock_t *ptl; 1482 1483 retval = -EINVAL; 1484 if (PageAnon(page)) 1485 goto out; 1486 retval = -ENOMEM; 1487 flush_dcache_page(page); 1488 pte = get_locked_pte(mm, addr, &ptl); 1489 if (!pte) 1490 goto out; 1491 retval = -EBUSY; 1492 if (!pte_none(*pte)) 1493 goto out_unlock; 1494 1495 /* Ok, finally just insert the thing.. */ 1496 get_page(page); 1497 inc_mm_counter_fast(mm, MM_FILEPAGES); 1498 page_add_file_rmap(page); 1499 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1500 1501 retval = 0; 1502 pte_unmap_unlock(pte, ptl); 1503 return retval; 1504 out_unlock: 1505 pte_unmap_unlock(pte, ptl); 1506 out: 1507 return retval; 1508 } 1509 1510 /** 1511 * vm_insert_page - insert single page into user vma 1512 * @vma: user vma to map to 1513 * @addr: target user address of this page 1514 * @page: source kernel page 1515 * 1516 * This allows drivers to insert individual pages they've allocated 1517 * into a user vma. 1518 * 1519 * The page has to be a nice clean _individual_ kernel allocation. 1520 * If you allocate a compound page, you need to have marked it as 1521 * such (__GFP_COMP), or manually just split the page up yourself 1522 * (see split_page()). 1523 * 1524 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1525 * took an arbitrary page protection parameter. This doesn't allow 1526 * that. Your vma protection will have to be set up correctly, which 1527 * means that if you want a shared writable mapping, you'd better 1528 * ask for a shared writable mapping! 1529 * 1530 * The page does not need to be reserved. 1531 * 1532 * Usually this function is called from f_op->mmap() handler 1533 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1534 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1535 * function from other places, for example from page-fault handler. 1536 */ 1537 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1538 struct page *page) 1539 { 1540 if (addr < vma->vm_start || addr >= vma->vm_end) 1541 return -EFAULT; 1542 if (!page_count(page)) 1543 return -EINVAL; 1544 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1545 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1546 BUG_ON(vma->vm_flags & VM_PFNMAP); 1547 vma->vm_flags |= VM_MIXEDMAP; 1548 } 1549 return insert_page(vma, addr, page, vma->vm_page_prot); 1550 } 1551 EXPORT_SYMBOL(vm_insert_page); 1552 1553 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1554 unsigned long pfn, pgprot_t prot) 1555 { 1556 struct mm_struct *mm = vma->vm_mm; 1557 int retval; 1558 pte_t *pte, entry; 1559 spinlock_t *ptl; 1560 1561 retval = -ENOMEM; 1562 pte = get_locked_pte(mm, addr, &ptl); 1563 if (!pte) 1564 goto out; 1565 retval = -EBUSY; 1566 if (!pte_none(*pte)) 1567 goto out_unlock; 1568 1569 /* Ok, finally just insert the thing.. */ 1570 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1571 set_pte_at(mm, addr, pte, entry); 1572 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1573 1574 retval = 0; 1575 out_unlock: 1576 pte_unmap_unlock(pte, ptl); 1577 out: 1578 return retval; 1579 } 1580 1581 /** 1582 * vm_insert_pfn - insert single pfn into user vma 1583 * @vma: user vma to map to 1584 * @addr: target user address of this page 1585 * @pfn: source kernel pfn 1586 * 1587 * Similar to vm_insert_page, this allows drivers to insert individual pages 1588 * they've allocated into a user vma. Same comments apply. 1589 * 1590 * This function should only be called from a vm_ops->fault handler, and 1591 * in that case the handler should return NULL. 1592 * 1593 * vma cannot be a COW mapping. 1594 * 1595 * As this is called only for pages that do not currently exist, we 1596 * do not need to flush old virtual caches or the TLB. 1597 */ 1598 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1599 unsigned long pfn) 1600 { 1601 int ret; 1602 pgprot_t pgprot = vma->vm_page_prot; 1603 /* 1604 * Technically, architectures with pte_special can avoid all these 1605 * restrictions (same for remap_pfn_range). However we would like 1606 * consistency in testing and feature parity among all, so we should 1607 * try to keep these invariants in place for everybody. 1608 */ 1609 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1610 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1611 (VM_PFNMAP|VM_MIXEDMAP)); 1612 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1613 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1614 1615 if (addr < vma->vm_start || addr >= vma->vm_end) 1616 return -EFAULT; 1617 if (track_pfn_insert(vma, &pgprot, pfn)) 1618 return -EINVAL; 1619 1620 ret = insert_pfn(vma, addr, pfn, pgprot); 1621 1622 return ret; 1623 } 1624 EXPORT_SYMBOL(vm_insert_pfn); 1625 1626 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1627 unsigned long pfn) 1628 { 1629 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1630 1631 if (addr < vma->vm_start || addr >= vma->vm_end) 1632 return -EFAULT; 1633 1634 /* 1635 * If we don't have pte special, then we have to use the pfn_valid() 1636 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1637 * refcount the page if pfn_valid is true (hence insert_page rather 1638 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1639 * without pte special, it would there be refcounted as a normal page. 1640 */ 1641 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1642 struct page *page; 1643 1644 page = pfn_to_page(pfn); 1645 return insert_page(vma, addr, page, vma->vm_page_prot); 1646 } 1647 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1648 } 1649 EXPORT_SYMBOL(vm_insert_mixed); 1650 1651 /* 1652 * maps a range of physical memory into the requested pages. the old 1653 * mappings are removed. any references to nonexistent pages results 1654 * in null mappings (currently treated as "copy-on-access") 1655 */ 1656 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1657 unsigned long addr, unsigned long end, 1658 unsigned long pfn, pgprot_t prot) 1659 { 1660 pte_t *pte; 1661 spinlock_t *ptl; 1662 1663 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1664 if (!pte) 1665 return -ENOMEM; 1666 arch_enter_lazy_mmu_mode(); 1667 do { 1668 BUG_ON(!pte_none(*pte)); 1669 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1670 pfn++; 1671 } while (pte++, addr += PAGE_SIZE, addr != end); 1672 arch_leave_lazy_mmu_mode(); 1673 pte_unmap_unlock(pte - 1, ptl); 1674 return 0; 1675 } 1676 1677 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1678 unsigned long addr, unsigned long end, 1679 unsigned long pfn, pgprot_t prot) 1680 { 1681 pmd_t *pmd; 1682 unsigned long next; 1683 1684 pfn -= addr >> PAGE_SHIFT; 1685 pmd = pmd_alloc(mm, pud, addr); 1686 if (!pmd) 1687 return -ENOMEM; 1688 VM_BUG_ON(pmd_trans_huge(*pmd)); 1689 do { 1690 next = pmd_addr_end(addr, end); 1691 if (remap_pte_range(mm, pmd, addr, next, 1692 pfn + (addr >> PAGE_SHIFT), prot)) 1693 return -ENOMEM; 1694 } while (pmd++, addr = next, addr != end); 1695 return 0; 1696 } 1697 1698 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1699 unsigned long addr, unsigned long end, 1700 unsigned long pfn, pgprot_t prot) 1701 { 1702 pud_t *pud; 1703 unsigned long next; 1704 1705 pfn -= addr >> PAGE_SHIFT; 1706 pud = pud_alloc(mm, pgd, addr); 1707 if (!pud) 1708 return -ENOMEM; 1709 do { 1710 next = pud_addr_end(addr, end); 1711 if (remap_pmd_range(mm, pud, addr, next, 1712 pfn + (addr >> PAGE_SHIFT), prot)) 1713 return -ENOMEM; 1714 } while (pud++, addr = next, addr != end); 1715 return 0; 1716 } 1717 1718 /** 1719 * remap_pfn_range - remap kernel memory to userspace 1720 * @vma: user vma to map to 1721 * @addr: target user address to start at 1722 * @pfn: physical address of kernel memory 1723 * @size: size of map area 1724 * @prot: page protection flags for this mapping 1725 * 1726 * Note: this is only safe if the mm semaphore is held when called. 1727 */ 1728 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1729 unsigned long pfn, unsigned long size, pgprot_t prot) 1730 { 1731 pgd_t *pgd; 1732 unsigned long next; 1733 unsigned long end = addr + PAGE_ALIGN(size); 1734 struct mm_struct *mm = vma->vm_mm; 1735 int err; 1736 1737 /* 1738 * Physically remapped pages are special. Tell the 1739 * rest of the world about it: 1740 * VM_IO tells people not to look at these pages 1741 * (accesses can have side effects). 1742 * VM_PFNMAP tells the core MM that the base pages are just 1743 * raw PFN mappings, and do not have a "struct page" associated 1744 * with them. 1745 * VM_DONTEXPAND 1746 * Disable vma merging and expanding with mremap(). 1747 * VM_DONTDUMP 1748 * Omit vma from core dump, even when VM_IO turned off. 1749 * 1750 * There's a horrible special case to handle copy-on-write 1751 * behaviour that some programs depend on. We mark the "original" 1752 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1753 * See vm_normal_page() for details. 1754 */ 1755 if (is_cow_mapping(vma->vm_flags)) { 1756 if (addr != vma->vm_start || end != vma->vm_end) 1757 return -EINVAL; 1758 vma->vm_pgoff = pfn; 1759 } 1760 1761 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1762 if (err) 1763 return -EINVAL; 1764 1765 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1766 1767 BUG_ON(addr >= end); 1768 pfn -= addr >> PAGE_SHIFT; 1769 pgd = pgd_offset(mm, addr); 1770 flush_cache_range(vma, addr, end); 1771 do { 1772 next = pgd_addr_end(addr, end); 1773 err = remap_pud_range(mm, pgd, addr, next, 1774 pfn + (addr >> PAGE_SHIFT), prot); 1775 if (err) 1776 break; 1777 } while (pgd++, addr = next, addr != end); 1778 1779 if (err) 1780 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1781 1782 return err; 1783 } 1784 EXPORT_SYMBOL(remap_pfn_range); 1785 1786 /** 1787 * vm_iomap_memory - remap memory to userspace 1788 * @vma: user vma to map to 1789 * @start: start of area 1790 * @len: size of area 1791 * 1792 * This is a simplified io_remap_pfn_range() for common driver use. The 1793 * driver just needs to give us the physical memory range to be mapped, 1794 * we'll figure out the rest from the vma information. 1795 * 1796 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1797 * whatever write-combining details or similar. 1798 */ 1799 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1800 { 1801 unsigned long vm_len, pfn, pages; 1802 1803 /* Check that the physical memory area passed in looks valid */ 1804 if (start + len < start) 1805 return -EINVAL; 1806 /* 1807 * You *really* shouldn't map things that aren't page-aligned, 1808 * but we've historically allowed it because IO memory might 1809 * just have smaller alignment. 1810 */ 1811 len += start & ~PAGE_MASK; 1812 pfn = start >> PAGE_SHIFT; 1813 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1814 if (pfn + pages < pfn) 1815 return -EINVAL; 1816 1817 /* We start the mapping 'vm_pgoff' pages into the area */ 1818 if (vma->vm_pgoff > pages) 1819 return -EINVAL; 1820 pfn += vma->vm_pgoff; 1821 pages -= vma->vm_pgoff; 1822 1823 /* Can we fit all of the mapping? */ 1824 vm_len = vma->vm_end - vma->vm_start; 1825 if (vm_len >> PAGE_SHIFT > pages) 1826 return -EINVAL; 1827 1828 /* Ok, let it rip */ 1829 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1830 } 1831 EXPORT_SYMBOL(vm_iomap_memory); 1832 1833 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1834 unsigned long addr, unsigned long end, 1835 pte_fn_t fn, void *data) 1836 { 1837 pte_t *pte; 1838 int err; 1839 pgtable_t token; 1840 spinlock_t *uninitialized_var(ptl); 1841 1842 pte = (mm == &init_mm) ? 1843 pte_alloc_kernel(pmd, addr) : 1844 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1845 if (!pte) 1846 return -ENOMEM; 1847 1848 BUG_ON(pmd_huge(*pmd)); 1849 1850 arch_enter_lazy_mmu_mode(); 1851 1852 token = pmd_pgtable(*pmd); 1853 1854 do { 1855 err = fn(pte++, token, addr, data); 1856 if (err) 1857 break; 1858 } while (addr += PAGE_SIZE, addr != end); 1859 1860 arch_leave_lazy_mmu_mode(); 1861 1862 if (mm != &init_mm) 1863 pte_unmap_unlock(pte-1, ptl); 1864 return err; 1865 } 1866 1867 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1868 unsigned long addr, unsigned long end, 1869 pte_fn_t fn, void *data) 1870 { 1871 pmd_t *pmd; 1872 unsigned long next; 1873 int err; 1874 1875 BUG_ON(pud_huge(*pud)); 1876 1877 pmd = pmd_alloc(mm, pud, addr); 1878 if (!pmd) 1879 return -ENOMEM; 1880 do { 1881 next = pmd_addr_end(addr, end); 1882 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1883 if (err) 1884 break; 1885 } while (pmd++, addr = next, addr != end); 1886 return err; 1887 } 1888 1889 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1890 unsigned long addr, unsigned long end, 1891 pte_fn_t fn, void *data) 1892 { 1893 pud_t *pud; 1894 unsigned long next; 1895 int err; 1896 1897 pud = pud_alloc(mm, pgd, addr); 1898 if (!pud) 1899 return -ENOMEM; 1900 do { 1901 next = pud_addr_end(addr, end); 1902 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1903 if (err) 1904 break; 1905 } while (pud++, addr = next, addr != end); 1906 return err; 1907 } 1908 1909 /* 1910 * Scan a region of virtual memory, filling in page tables as necessary 1911 * and calling a provided function on each leaf page table. 1912 */ 1913 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1914 unsigned long size, pte_fn_t fn, void *data) 1915 { 1916 pgd_t *pgd; 1917 unsigned long next; 1918 unsigned long end = addr + size; 1919 int err; 1920 1921 BUG_ON(addr >= end); 1922 pgd = pgd_offset(mm, addr); 1923 do { 1924 next = pgd_addr_end(addr, end); 1925 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1926 if (err) 1927 break; 1928 } while (pgd++, addr = next, addr != end); 1929 1930 return err; 1931 } 1932 EXPORT_SYMBOL_GPL(apply_to_page_range); 1933 1934 /* 1935 * handle_pte_fault chooses page fault handler according to an entry 1936 * which was read non-atomically. Before making any commitment, on 1937 * those architectures or configurations (e.g. i386 with PAE) which 1938 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 1939 * must check under lock before unmapping the pte and proceeding 1940 * (but do_wp_page is only called after already making such a check; 1941 * and do_anonymous_page can safely check later on). 1942 */ 1943 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1944 pte_t *page_table, pte_t orig_pte) 1945 { 1946 int same = 1; 1947 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1948 if (sizeof(pte_t) > sizeof(unsigned long)) { 1949 spinlock_t *ptl = pte_lockptr(mm, pmd); 1950 spin_lock(ptl); 1951 same = pte_same(*page_table, orig_pte); 1952 spin_unlock(ptl); 1953 } 1954 #endif 1955 pte_unmap(page_table); 1956 return same; 1957 } 1958 1959 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1960 { 1961 debug_dma_assert_idle(src); 1962 1963 /* 1964 * If the source page was a PFN mapping, we don't have 1965 * a "struct page" for it. We do a best-effort copy by 1966 * just copying from the original user address. If that 1967 * fails, we just zero-fill it. Live with it. 1968 */ 1969 if (unlikely(!src)) { 1970 void *kaddr = kmap_atomic(dst); 1971 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1972 1973 /* 1974 * This really shouldn't fail, because the page is there 1975 * in the page tables. But it might just be unreadable, 1976 * in which case we just give up and fill the result with 1977 * zeroes. 1978 */ 1979 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1980 clear_page(kaddr); 1981 kunmap_atomic(kaddr); 1982 flush_dcache_page(dst); 1983 } else 1984 copy_user_highpage(dst, src, va, vma); 1985 } 1986 1987 /* 1988 * Notify the address space that the page is about to become writable so that 1989 * it can prohibit this or wait for the page to get into an appropriate state. 1990 * 1991 * We do this without the lock held, so that it can sleep if it needs to. 1992 */ 1993 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1994 unsigned long address) 1995 { 1996 struct vm_fault vmf; 1997 int ret; 1998 1999 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2000 vmf.pgoff = page->index; 2001 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2002 vmf.page = page; 2003 2004 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2006 return ret; 2007 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2008 lock_page(page); 2009 if (!page->mapping) { 2010 unlock_page(page); 2011 return 0; /* retry */ 2012 } 2013 ret |= VM_FAULT_LOCKED; 2014 } else 2015 VM_BUG_ON_PAGE(!PageLocked(page), page); 2016 return ret; 2017 } 2018 2019 /* 2020 * This routine handles present pages, when users try to write 2021 * to a shared page. It is done by copying the page to a new address 2022 * and decrementing the shared-page counter for the old page. 2023 * 2024 * Note that this routine assumes that the protection checks have been 2025 * done by the caller (the low-level page fault routine in most cases). 2026 * Thus we can safely just mark it writable once we've done any necessary 2027 * COW. 2028 * 2029 * We also mark the page dirty at this point even though the page will 2030 * change only once the write actually happens. This avoids a few races, 2031 * and potentially makes it more efficient. 2032 * 2033 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2034 * but allow concurrent faults), with pte both mapped and locked. 2035 * We return with mmap_sem still held, but pte unmapped and unlocked. 2036 */ 2037 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2038 unsigned long address, pte_t *page_table, pmd_t *pmd, 2039 spinlock_t *ptl, pte_t orig_pte) 2040 __releases(ptl) 2041 { 2042 struct page *old_page, *new_page = NULL; 2043 pte_t entry; 2044 int ret = 0; 2045 int page_mkwrite = 0; 2046 struct page *dirty_page = NULL; 2047 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2048 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2049 struct mem_cgroup *memcg; 2050 2051 old_page = vm_normal_page(vma, address, orig_pte); 2052 if (!old_page) { 2053 /* 2054 * VM_MIXEDMAP !pfn_valid() case 2055 * 2056 * We should not cow pages in a shared writeable mapping. 2057 * Just mark the pages writable as we can't do any dirty 2058 * accounting on raw pfn maps. 2059 */ 2060 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2061 (VM_WRITE|VM_SHARED)) 2062 goto reuse; 2063 goto gotten; 2064 } 2065 2066 /* 2067 * Take out anonymous pages first, anonymous shared vmas are 2068 * not dirty accountable. 2069 */ 2070 if (PageAnon(old_page) && !PageKsm(old_page)) { 2071 if (!trylock_page(old_page)) { 2072 page_cache_get(old_page); 2073 pte_unmap_unlock(page_table, ptl); 2074 lock_page(old_page); 2075 page_table = pte_offset_map_lock(mm, pmd, address, 2076 &ptl); 2077 if (!pte_same(*page_table, orig_pte)) { 2078 unlock_page(old_page); 2079 goto unlock; 2080 } 2081 page_cache_release(old_page); 2082 } 2083 if (reuse_swap_page(old_page)) { 2084 /* 2085 * The page is all ours. Move it to our anon_vma so 2086 * the rmap code will not search our parent or siblings. 2087 * Protected against the rmap code by the page lock. 2088 */ 2089 page_move_anon_rmap(old_page, vma, address); 2090 unlock_page(old_page); 2091 goto reuse; 2092 } 2093 unlock_page(old_page); 2094 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2095 (VM_WRITE|VM_SHARED))) { 2096 /* 2097 * Only catch write-faults on shared writable pages, 2098 * read-only shared pages can get COWed by 2099 * get_user_pages(.write=1, .force=1). 2100 */ 2101 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2102 int tmp; 2103 page_cache_get(old_page); 2104 pte_unmap_unlock(page_table, ptl); 2105 tmp = do_page_mkwrite(vma, old_page, address); 2106 if (unlikely(!tmp || (tmp & 2107 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2108 page_cache_release(old_page); 2109 return tmp; 2110 } 2111 /* 2112 * Since we dropped the lock we need to revalidate 2113 * the PTE as someone else may have changed it. If 2114 * they did, we just return, as we can count on the 2115 * MMU to tell us if they didn't also make it writable. 2116 */ 2117 page_table = pte_offset_map_lock(mm, pmd, address, 2118 &ptl); 2119 if (!pte_same(*page_table, orig_pte)) { 2120 unlock_page(old_page); 2121 goto unlock; 2122 } 2123 2124 page_mkwrite = 1; 2125 } 2126 dirty_page = old_page; 2127 get_page(dirty_page); 2128 2129 reuse: 2130 /* 2131 * Clear the pages cpupid information as the existing 2132 * information potentially belongs to a now completely 2133 * unrelated process. 2134 */ 2135 if (old_page) 2136 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2137 2138 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2139 entry = pte_mkyoung(orig_pte); 2140 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2141 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2142 update_mmu_cache(vma, address, page_table); 2143 pte_unmap_unlock(page_table, ptl); 2144 ret |= VM_FAULT_WRITE; 2145 2146 if (!dirty_page) 2147 return ret; 2148 2149 /* 2150 * Yes, Virginia, this is actually required to prevent a race 2151 * with clear_page_dirty_for_io() from clearing the page dirty 2152 * bit after it clear all dirty ptes, but before a racing 2153 * do_wp_page installs a dirty pte. 2154 * 2155 * do_shared_fault is protected similarly. 2156 */ 2157 if (!page_mkwrite) { 2158 wait_on_page_locked(dirty_page); 2159 set_page_dirty_balance(dirty_page); 2160 /* file_update_time outside page_lock */ 2161 if (vma->vm_file) 2162 file_update_time(vma->vm_file); 2163 } 2164 put_page(dirty_page); 2165 if (page_mkwrite) { 2166 struct address_space *mapping = dirty_page->mapping; 2167 2168 set_page_dirty(dirty_page); 2169 unlock_page(dirty_page); 2170 page_cache_release(dirty_page); 2171 if (mapping) { 2172 /* 2173 * Some device drivers do not set page.mapping 2174 * but still dirty their pages 2175 */ 2176 balance_dirty_pages_ratelimited(mapping); 2177 } 2178 } 2179 2180 return ret; 2181 } 2182 2183 /* 2184 * Ok, we need to copy. Oh, well.. 2185 */ 2186 page_cache_get(old_page); 2187 gotten: 2188 pte_unmap_unlock(page_table, ptl); 2189 2190 if (unlikely(anon_vma_prepare(vma))) 2191 goto oom; 2192 2193 if (is_zero_pfn(pte_pfn(orig_pte))) { 2194 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2195 if (!new_page) 2196 goto oom; 2197 } else { 2198 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2199 if (!new_page) 2200 goto oom; 2201 cow_user_page(new_page, old_page, address, vma); 2202 } 2203 __SetPageUptodate(new_page); 2204 2205 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2206 goto oom_free_new; 2207 2208 mmun_start = address & PAGE_MASK; 2209 mmun_end = mmun_start + PAGE_SIZE; 2210 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2211 2212 /* 2213 * Re-check the pte - we dropped the lock 2214 */ 2215 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2216 if (likely(pte_same(*page_table, orig_pte))) { 2217 if (old_page) { 2218 if (!PageAnon(old_page)) { 2219 dec_mm_counter_fast(mm, MM_FILEPAGES); 2220 inc_mm_counter_fast(mm, MM_ANONPAGES); 2221 } 2222 } else 2223 inc_mm_counter_fast(mm, MM_ANONPAGES); 2224 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2225 entry = mk_pte(new_page, vma->vm_page_prot); 2226 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2227 /* 2228 * Clear the pte entry and flush it first, before updating the 2229 * pte with the new entry. This will avoid a race condition 2230 * seen in the presence of one thread doing SMC and another 2231 * thread doing COW. 2232 */ 2233 ptep_clear_flush(vma, address, page_table); 2234 page_add_new_anon_rmap(new_page, vma, address); 2235 mem_cgroup_commit_charge(new_page, memcg, false); 2236 lru_cache_add_active_or_unevictable(new_page, vma); 2237 /* 2238 * We call the notify macro here because, when using secondary 2239 * mmu page tables (such as kvm shadow page tables), we want the 2240 * new page to be mapped directly into the secondary page table. 2241 */ 2242 set_pte_at_notify(mm, address, page_table, entry); 2243 update_mmu_cache(vma, address, page_table); 2244 if (old_page) { 2245 /* 2246 * Only after switching the pte to the new page may 2247 * we remove the mapcount here. Otherwise another 2248 * process may come and find the rmap count decremented 2249 * before the pte is switched to the new page, and 2250 * "reuse" the old page writing into it while our pte 2251 * here still points into it and can be read by other 2252 * threads. 2253 * 2254 * The critical issue is to order this 2255 * page_remove_rmap with the ptp_clear_flush above. 2256 * Those stores are ordered by (if nothing else,) 2257 * the barrier present in the atomic_add_negative 2258 * in page_remove_rmap. 2259 * 2260 * Then the TLB flush in ptep_clear_flush ensures that 2261 * no process can access the old page before the 2262 * decremented mapcount is visible. And the old page 2263 * cannot be reused until after the decremented 2264 * mapcount is visible. So transitively, TLBs to 2265 * old page will be flushed before it can be reused. 2266 */ 2267 page_remove_rmap(old_page); 2268 } 2269 2270 /* Free the old page.. */ 2271 new_page = old_page; 2272 ret |= VM_FAULT_WRITE; 2273 } else 2274 mem_cgroup_cancel_charge(new_page, memcg); 2275 2276 if (new_page) 2277 page_cache_release(new_page); 2278 unlock: 2279 pte_unmap_unlock(page_table, ptl); 2280 if (mmun_end > mmun_start) 2281 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2282 if (old_page) { 2283 /* 2284 * Don't let another task, with possibly unlocked vma, 2285 * keep the mlocked page. 2286 */ 2287 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2288 lock_page(old_page); /* LRU manipulation */ 2289 munlock_vma_page(old_page); 2290 unlock_page(old_page); 2291 } 2292 page_cache_release(old_page); 2293 } 2294 return ret; 2295 oom_free_new: 2296 page_cache_release(new_page); 2297 oom: 2298 if (old_page) 2299 page_cache_release(old_page); 2300 return VM_FAULT_OOM; 2301 } 2302 2303 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2304 unsigned long start_addr, unsigned long end_addr, 2305 struct zap_details *details) 2306 { 2307 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2308 } 2309 2310 static inline void unmap_mapping_range_tree(struct rb_root *root, 2311 struct zap_details *details) 2312 { 2313 struct vm_area_struct *vma; 2314 pgoff_t vba, vea, zba, zea; 2315 2316 vma_interval_tree_foreach(vma, root, 2317 details->first_index, details->last_index) { 2318 2319 vba = vma->vm_pgoff; 2320 vea = vba + vma_pages(vma) - 1; 2321 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2322 zba = details->first_index; 2323 if (zba < vba) 2324 zba = vba; 2325 zea = details->last_index; 2326 if (zea > vea) 2327 zea = vea; 2328 2329 unmap_mapping_range_vma(vma, 2330 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2331 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2332 details); 2333 } 2334 } 2335 2336 static inline void unmap_mapping_range_list(struct list_head *head, 2337 struct zap_details *details) 2338 { 2339 struct vm_area_struct *vma; 2340 2341 /* 2342 * In nonlinear VMAs there is no correspondence between virtual address 2343 * offset and file offset. So we must perform an exhaustive search 2344 * across *all* the pages in each nonlinear VMA, not just the pages 2345 * whose virtual address lies outside the file truncation point. 2346 */ 2347 list_for_each_entry(vma, head, shared.nonlinear) { 2348 details->nonlinear_vma = vma; 2349 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2350 } 2351 } 2352 2353 /** 2354 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2355 * @mapping: the address space containing mmaps to be unmapped. 2356 * @holebegin: byte in first page to unmap, relative to the start of 2357 * the underlying file. This will be rounded down to a PAGE_SIZE 2358 * boundary. Note that this is different from truncate_pagecache(), which 2359 * must keep the partial page. In contrast, we must get rid of 2360 * partial pages. 2361 * @holelen: size of prospective hole in bytes. This will be rounded 2362 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2363 * end of the file. 2364 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2365 * but 0 when invalidating pagecache, don't throw away private data. 2366 */ 2367 void unmap_mapping_range(struct address_space *mapping, 2368 loff_t const holebegin, loff_t const holelen, int even_cows) 2369 { 2370 struct zap_details details; 2371 pgoff_t hba = holebegin >> PAGE_SHIFT; 2372 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2373 2374 /* Check for overflow. */ 2375 if (sizeof(holelen) > sizeof(hlen)) { 2376 long long holeend = 2377 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2378 if (holeend & ~(long long)ULONG_MAX) 2379 hlen = ULONG_MAX - hba + 1; 2380 } 2381 2382 details.check_mapping = even_cows? NULL: mapping; 2383 details.nonlinear_vma = NULL; 2384 details.first_index = hba; 2385 details.last_index = hba + hlen - 1; 2386 if (details.last_index < details.first_index) 2387 details.last_index = ULONG_MAX; 2388 2389 2390 mutex_lock(&mapping->i_mmap_mutex); 2391 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2392 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2393 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2394 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2395 mutex_unlock(&mapping->i_mmap_mutex); 2396 } 2397 EXPORT_SYMBOL(unmap_mapping_range); 2398 2399 /* 2400 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2401 * but allow concurrent faults), and pte mapped but not yet locked. 2402 * We return with pte unmapped and unlocked. 2403 * 2404 * We return with the mmap_sem locked or unlocked in the same cases 2405 * as does filemap_fault(). 2406 */ 2407 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2408 unsigned long address, pte_t *page_table, pmd_t *pmd, 2409 unsigned int flags, pte_t orig_pte) 2410 { 2411 spinlock_t *ptl; 2412 struct page *page, *swapcache; 2413 struct mem_cgroup *memcg; 2414 swp_entry_t entry; 2415 pte_t pte; 2416 int locked; 2417 int exclusive = 0; 2418 int ret = 0; 2419 2420 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2421 goto out; 2422 2423 entry = pte_to_swp_entry(orig_pte); 2424 if (unlikely(non_swap_entry(entry))) { 2425 if (is_migration_entry(entry)) { 2426 migration_entry_wait(mm, pmd, address); 2427 } else if (is_hwpoison_entry(entry)) { 2428 ret = VM_FAULT_HWPOISON; 2429 } else { 2430 print_bad_pte(vma, address, orig_pte, NULL); 2431 ret = VM_FAULT_SIGBUS; 2432 } 2433 goto out; 2434 } 2435 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2436 page = lookup_swap_cache(entry); 2437 if (!page) { 2438 page = swapin_readahead(entry, 2439 GFP_HIGHUSER_MOVABLE, vma, address); 2440 if (!page) { 2441 /* 2442 * Back out if somebody else faulted in this pte 2443 * while we released the pte lock. 2444 */ 2445 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2446 if (likely(pte_same(*page_table, orig_pte))) 2447 ret = VM_FAULT_OOM; 2448 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2449 goto unlock; 2450 } 2451 2452 /* Had to read the page from swap area: Major fault */ 2453 ret = VM_FAULT_MAJOR; 2454 count_vm_event(PGMAJFAULT); 2455 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2456 } else if (PageHWPoison(page)) { 2457 /* 2458 * hwpoisoned dirty swapcache pages are kept for killing 2459 * owner processes (which may be unknown at hwpoison time) 2460 */ 2461 ret = VM_FAULT_HWPOISON; 2462 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2463 swapcache = page; 2464 goto out_release; 2465 } 2466 2467 swapcache = page; 2468 locked = lock_page_or_retry(page, mm, flags); 2469 2470 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2471 if (!locked) { 2472 ret |= VM_FAULT_RETRY; 2473 goto out_release; 2474 } 2475 2476 /* 2477 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2478 * release the swapcache from under us. The page pin, and pte_same 2479 * test below, are not enough to exclude that. Even if it is still 2480 * swapcache, we need to check that the page's swap has not changed. 2481 */ 2482 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2483 goto out_page; 2484 2485 page = ksm_might_need_to_copy(page, vma, address); 2486 if (unlikely(!page)) { 2487 ret = VM_FAULT_OOM; 2488 page = swapcache; 2489 goto out_page; 2490 } 2491 2492 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2493 ret = VM_FAULT_OOM; 2494 goto out_page; 2495 } 2496 2497 /* 2498 * Back out if somebody else already faulted in this pte. 2499 */ 2500 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2501 if (unlikely(!pte_same(*page_table, orig_pte))) 2502 goto out_nomap; 2503 2504 if (unlikely(!PageUptodate(page))) { 2505 ret = VM_FAULT_SIGBUS; 2506 goto out_nomap; 2507 } 2508 2509 /* 2510 * The page isn't present yet, go ahead with the fault. 2511 * 2512 * Be careful about the sequence of operations here. 2513 * To get its accounting right, reuse_swap_page() must be called 2514 * while the page is counted on swap but not yet in mapcount i.e. 2515 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2516 * must be called after the swap_free(), or it will never succeed. 2517 */ 2518 2519 inc_mm_counter_fast(mm, MM_ANONPAGES); 2520 dec_mm_counter_fast(mm, MM_SWAPENTS); 2521 pte = mk_pte(page, vma->vm_page_prot); 2522 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2523 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2524 flags &= ~FAULT_FLAG_WRITE; 2525 ret |= VM_FAULT_WRITE; 2526 exclusive = 1; 2527 } 2528 flush_icache_page(vma, page); 2529 if (pte_swp_soft_dirty(orig_pte)) 2530 pte = pte_mksoft_dirty(pte); 2531 set_pte_at(mm, address, page_table, pte); 2532 if (page == swapcache) { 2533 do_page_add_anon_rmap(page, vma, address, exclusive); 2534 mem_cgroup_commit_charge(page, memcg, true); 2535 } else { /* ksm created a completely new copy */ 2536 page_add_new_anon_rmap(page, vma, address); 2537 mem_cgroup_commit_charge(page, memcg, false); 2538 lru_cache_add_active_or_unevictable(page, vma); 2539 } 2540 2541 swap_free(entry); 2542 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2543 try_to_free_swap(page); 2544 unlock_page(page); 2545 if (page != swapcache) { 2546 /* 2547 * Hold the lock to avoid the swap entry to be reused 2548 * until we take the PT lock for the pte_same() check 2549 * (to avoid false positives from pte_same). For 2550 * further safety release the lock after the swap_free 2551 * so that the swap count won't change under a 2552 * parallel locked swapcache. 2553 */ 2554 unlock_page(swapcache); 2555 page_cache_release(swapcache); 2556 } 2557 2558 if (flags & FAULT_FLAG_WRITE) { 2559 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2560 if (ret & VM_FAULT_ERROR) 2561 ret &= VM_FAULT_ERROR; 2562 goto out; 2563 } 2564 2565 /* No need to invalidate - it was non-present before */ 2566 update_mmu_cache(vma, address, page_table); 2567 unlock: 2568 pte_unmap_unlock(page_table, ptl); 2569 out: 2570 return ret; 2571 out_nomap: 2572 mem_cgroup_cancel_charge(page, memcg); 2573 pte_unmap_unlock(page_table, ptl); 2574 out_page: 2575 unlock_page(page); 2576 out_release: 2577 page_cache_release(page); 2578 if (page != swapcache) { 2579 unlock_page(swapcache); 2580 page_cache_release(swapcache); 2581 } 2582 return ret; 2583 } 2584 2585 /* 2586 * This is like a special single-page "expand_{down|up}wards()", 2587 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2588 * doesn't hit another vma. 2589 */ 2590 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2591 { 2592 address &= PAGE_MASK; 2593 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2594 struct vm_area_struct *prev = vma->vm_prev; 2595 2596 /* 2597 * Is there a mapping abutting this one below? 2598 * 2599 * That's only ok if it's the same stack mapping 2600 * that has gotten split.. 2601 */ 2602 if (prev && prev->vm_end == address) 2603 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2604 2605 expand_downwards(vma, address - PAGE_SIZE); 2606 } 2607 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2608 struct vm_area_struct *next = vma->vm_next; 2609 2610 /* As VM_GROWSDOWN but s/below/above/ */ 2611 if (next && next->vm_start == address + PAGE_SIZE) 2612 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2613 2614 expand_upwards(vma, address + PAGE_SIZE); 2615 } 2616 return 0; 2617 } 2618 2619 /* 2620 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2621 * but allow concurrent faults), and pte mapped but not yet locked. 2622 * We return with mmap_sem still held, but pte unmapped and unlocked. 2623 */ 2624 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2625 unsigned long address, pte_t *page_table, pmd_t *pmd, 2626 unsigned int flags) 2627 { 2628 struct mem_cgroup *memcg; 2629 struct page *page; 2630 spinlock_t *ptl; 2631 pte_t entry; 2632 2633 pte_unmap(page_table); 2634 2635 /* Check if we need to add a guard page to the stack */ 2636 if (check_stack_guard_page(vma, address) < 0) 2637 return VM_FAULT_SIGBUS; 2638 2639 /* Use the zero-page for reads */ 2640 if (!(flags & FAULT_FLAG_WRITE)) { 2641 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2642 vma->vm_page_prot)); 2643 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2644 if (!pte_none(*page_table)) 2645 goto unlock; 2646 goto setpte; 2647 } 2648 2649 /* Allocate our own private page. */ 2650 if (unlikely(anon_vma_prepare(vma))) 2651 goto oom; 2652 page = alloc_zeroed_user_highpage_movable(vma, address); 2653 if (!page) 2654 goto oom; 2655 /* 2656 * The memory barrier inside __SetPageUptodate makes sure that 2657 * preceeding stores to the page contents become visible before 2658 * the set_pte_at() write. 2659 */ 2660 __SetPageUptodate(page); 2661 2662 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2663 goto oom_free_page; 2664 2665 entry = mk_pte(page, vma->vm_page_prot); 2666 if (vma->vm_flags & VM_WRITE) 2667 entry = pte_mkwrite(pte_mkdirty(entry)); 2668 2669 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2670 if (!pte_none(*page_table)) 2671 goto release; 2672 2673 inc_mm_counter_fast(mm, MM_ANONPAGES); 2674 page_add_new_anon_rmap(page, vma, address); 2675 mem_cgroup_commit_charge(page, memcg, false); 2676 lru_cache_add_active_or_unevictable(page, vma); 2677 setpte: 2678 set_pte_at(mm, address, page_table, entry); 2679 2680 /* No need to invalidate - it was non-present before */ 2681 update_mmu_cache(vma, address, page_table); 2682 unlock: 2683 pte_unmap_unlock(page_table, ptl); 2684 return 0; 2685 release: 2686 mem_cgroup_cancel_charge(page, memcg); 2687 page_cache_release(page); 2688 goto unlock; 2689 oom_free_page: 2690 page_cache_release(page); 2691 oom: 2692 return VM_FAULT_OOM; 2693 } 2694 2695 /* 2696 * The mmap_sem must have been held on entry, and may have been 2697 * released depending on flags and vma->vm_ops->fault() return value. 2698 * See filemap_fault() and __lock_page_retry(). 2699 */ 2700 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2701 pgoff_t pgoff, unsigned int flags, struct page **page) 2702 { 2703 struct vm_fault vmf; 2704 int ret; 2705 2706 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2707 vmf.pgoff = pgoff; 2708 vmf.flags = flags; 2709 vmf.page = NULL; 2710 2711 ret = vma->vm_ops->fault(vma, &vmf); 2712 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2713 return ret; 2714 2715 if (unlikely(PageHWPoison(vmf.page))) { 2716 if (ret & VM_FAULT_LOCKED) 2717 unlock_page(vmf.page); 2718 page_cache_release(vmf.page); 2719 return VM_FAULT_HWPOISON; 2720 } 2721 2722 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2723 lock_page(vmf.page); 2724 else 2725 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2726 2727 *page = vmf.page; 2728 return ret; 2729 } 2730 2731 /** 2732 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2733 * 2734 * @vma: virtual memory area 2735 * @address: user virtual address 2736 * @page: page to map 2737 * @pte: pointer to target page table entry 2738 * @write: true, if new entry is writable 2739 * @anon: true, if it's anonymous page 2740 * 2741 * Caller must hold page table lock relevant for @pte. 2742 * 2743 * Target users are page handler itself and implementations of 2744 * vm_ops->map_pages. 2745 */ 2746 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2747 struct page *page, pte_t *pte, bool write, bool anon) 2748 { 2749 pte_t entry; 2750 2751 flush_icache_page(vma, page); 2752 entry = mk_pte(page, vma->vm_page_prot); 2753 if (write) 2754 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2755 else if (pte_file(*pte) && pte_file_soft_dirty(*pte)) 2756 entry = pte_mksoft_dirty(entry); 2757 if (anon) { 2758 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2759 page_add_new_anon_rmap(page, vma, address); 2760 } else { 2761 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2762 page_add_file_rmap(page); 2763 } 2764 set_pte_at(vma->vm_mm, address, pte, entry); 2765 2766 /* no need to invalidate: a not-present page won't be cached */ 2767 update_mmu_cache(vma, address, pte); 2768 } 2769 2770 static unsigned long fault_around_bytes __read_mostly = 2771 rounddown_pow_of_two(65536); 2772 2773 #ifdef CONFIG_DEBUG_FS 2774 static int fault_around_bytes_get(void *data, u64 *val) 2775 { 2776 *val = fault_around_bytes; 2777 return 0; 2778 } 2779 2780 /* 2781 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2782 * rounded down to nearest page order. It's what do_fault_around() expects to 2783 * see. 2784 */ 2785 static int fault_around_bytes_set(void *data, u64 val) 2786 { 2787 if (val / PAGE_SIZE > PTRS_PER_PTE) 2788 return -EINVAL; 2789 if (val > PAGE_SIZE) 2790 fault_around_bytes = rounddown_pow_of_two(val); 2791 else 2792 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2793 return 0; 2794 } 2795 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2796 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2797 2798 static int __init fault_around_debugfs(void) 2799 { 2800 void *ret; 2801 2802 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2803 &fault_around_bytes_fops); 2804 if (!ret) 2805 pr_warn("Failed to create fault_around_bytes in debugfs"); 2806 return 0; 2807 } 2808 late_initcall(fault_around_debugfs); 2809 #endif 2810 2811 /* 2812 * do_fault_around() tries to map few pages around the fault address. The hope 2813 * is that the pages will be needed soon and this will lower the number of 2814 * faults to handle. 2815 * 2816 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2817 * not ready to be mapped: not up-to-date, locked, etc. 2818 * 2819 * This function is called with the page table lock taken. In the split ptlock 2820 * case the page table lock only protects only those entries which belong to 2821 * the page table corresponding to the fault address. 2822 * 2823 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2824 * only once. 2825 * 2826 * fault_around_pages() defines how many pages we'll try to map. 2827 * do_fault_around() expects it to return a power of two less than or equal to 2828 * PTRS_PER_PTE. 2829 * 2830 * The virtual address of the area that we map is naturally aligned to the 2831 * fault_around_pages() value (and therefore to page order). This way it's 2832 * easier to guarantee that we don't cross page table boundaries. 2833 */ 2834 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2835 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2836 { 2837 unsigned long start_addr, nr_pages, mask; 2838 pgoff_t max_pgoff; 2839 struct vm_fault vmf; 2840 int off; 2841 2842 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2843 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2844 2845 start_addr = max(address & mask, vma->vm_start); 2846 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2847 pte -= off; 2848 pgoff -= off; 2849 2850 /* 2851 * max_pgoff is either end of page table or end of vma 2852 * or fault_around_pages() from pgoff, depending what is nearest. 2853 */ 2854 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2855 PTRS_PER_PTE - 1; 2856 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2857 pgoff + nr_pages - 1); 2858 2859 /* Check if it makes any sense to call ->map_pages */ 2860 while (!pte_none(*pte)) { 2861 if (++pgoff > max_pgoff) 2862 return; 2863 start_addr += PAGE_SIZE; 2864 if (start_addr >= vma->vm_end) 2865 return; 2866 pte++; 2867 } 2868 2869 vmf.virtual_address = (void __user *) start_addr; 2870 vmf.pte = pte; 2871 vmf.pgoff = pgoff; 2872 vmf.max_pgoff = max_pgoff; 2873 vmf.flags = flags; 2874 vma->vm_ops->map_pages(vma, &vmf); 2875 } 2876 2877 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2878 unsigned long address, pmd_t *pmd, 2879 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2880 { 2881 struct page *fault_page; 2882 spinlock_t *ptl; 2883 pte_t *pte; 2884 int ret = 0; 2885 2886 /* 2887 * Let's call ->map_pages() first and use ->fault() as fallback 2888 * if page by the offset is not ready to be mapped (cold cache or 2889 * something). 2890 */ 2891 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) && 2892 fault_around_bytes >> PAGE_SHIFT > 1) { 2893 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2894 do_fault_around(vma, address, pte, pgoff, flags); 2895 if (!pte_same(*pte, orig_pte)) 2896 goto unlock_out; 2897 pte_unmap_unlock(pte, ptl); 2898 } 2899 2900 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2902 return ret; 2903 2904 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2905 if (unlikely(!pte_same(*pte, orig_pte))) { 2906 pte_unmap_unlock(pte, ptl); 2907 unlock_page(fault_page); 2908 page_cache_release(fault_page); 2909 return ret; 2910 } 2911 do_set_pte(vma, address, fault_page, pte, false, false); 2912 unlock_page(fault_page); 2913 unlock_out: 2914 pte_unmap_unlock(pte, ptl); 2915 return ret; 2916 } 2917 2918 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2919 unsigned long address, pmd_t *pmd, 2920 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2921 { 2922 struct page *fault_page, *new_page; 2923 struct mem_cgroup *memcg; 2924 spinlock_t *ptl; 2925 pte_t *pte; 2926 int ret; 2927 2928 if (unlikely(anon_vma_prepare(vma))) 2929 return VM_FAULT_OOM; 2930 2931 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2932 if (!new_page) 2933 return VM_FAULT_OOM; 2934 2935 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2936 page_cache_release(new_page); 2937 return VM_FAULT_OOM; 2938 } 2939 2940 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2941 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2942 goto uncharge_out; 2943 2944 copy_user_highpage(new_page, fault_page, address, vma); 2945 __SetPageUptodate(new_page); 2946 2947 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2948 if (unlikely(!pte_same(*pte, orig_pte))) { 2949 pte_unmap_unlock(pte, ptl); 2950 unlock_page(fault_page); 2951 page_cache_release(fault_page); 2952 goto uncharge_out; 2953 } 2954 do_set_pte(vma, address, new_page, pte, true, true); 2955 mem_cgroup_commit_charge(new_page, memcg, false); 2956 lru_cache_add_active_or_unevictable(new_page, vma); 2957 pte_unmap_unlock(pte, ptl); 2958 unlock_page(fault_page); 2959 page_cache_release(fault_page); 2960 return ret; 2961 uncharge_out: 2962 mem_cgroup_cancel_charge(new_page, memcg); 2963 page_cache_release(new_page); 2964 return ret; 2965 } 2966 2967 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2968 unsigned long address, pmd_t *pmd, 2969 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2970 { 2971 struct page *fault_page; 2972 struct address_space *mapping; 2973 spinlock_t *ptl; 2974 pte_t *pte; 2975 int dirtied = 0; 2976 int ret, tmp; 2977 2978 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2979 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2980 return ret; 2981 2982 /* 2983 * Check if the backing address space wants to know that the page is 2984 * about to become writable 2985 */ 2986 if (vma->vm_ops->page_mkwrite) { 2987 unlock_page(fault_page); 2988 tmp = do_page_mkwrite(vma, fault_page, address); 2989 if (unlikely(!tmp || 2990 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2991 page_cache_release(fault_page); 2992 return tmp; 2993 } 2994 } 2995 2996 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2997 if (unlikely(!pte_same(*pte, orig_pte))) { 2998 pte_unmap_unlock(pte, ptl); 2999 unlock_page(fault_page); 3000 page_cache_release(fault_page); 3001 return ret; 3002 } 3003 do_set_pte(vma, address, fault_page, pte, true, false); 3004 pte_unmap_unlock(pte, ptl); 3005 3006 if (set_page_dirty(fault_page)) 3007 dirtied = 1; 3008 mapping = fault_page->mapping; 3009 unlock_page(fault_page); 3010 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3011 /* 3012 * Some device drivers do not set page.mapping but still 3013 * dirty their pages 3014 */ 3015 balance_dirty_pages_ratelimited(mapping); 3016 } 3017 3018 /* file_update_time outside page_lock */ 3019 if (vma->vm_file && !vma->vm_ops->page_mkwrite) 3020 file_update_time(vma->vm_file); 3021 3022 return ret; 3023 } 3024 3025 /* 3026 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3027 * but allow concurrent faults). 3028 * The mmap_sem may have been released depending on flags and our 3029 * return value. See filemap_fault() and __lock_page_or_retry(). 3030 */ 3031 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3032 unsigned long address, pte_t *page_table, pmd_t *pmd, 3033 unsigned int flags, pte_t orig_pte) 3034 { 3035 pgoff_t pgoff = (((address & PAGE_MASK) 3036 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3037 3038 pte_unmap(page_table); 3039 if (!(flags & FAULT_FLAG_WRITE)) 3040 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3041 orig_pte); 3042 if (!(vma->vm_flags & VM_SHARED)) 3043 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3044 orig_pte); 3045 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3046 } 3047 3048 /* 3049 * Fault of a previously existing named mapping. Repopulate the pte 3050 * from the encoded file_pte if possible. This enables swappable 3051 * nonlinear vmas. 3052 * 3053 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3054 * but allow concurrent faults), and pte mapped but not yet locked. 3055 * We return with pte unmapped and unlocked. 3056 * The mmap_sem may have been released depending on flags and our 3057 * return value. See filemap_fault() and __lock_page_or_retry(). 3058 */ 3059 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3060 unsigned long address, pte_t *page_table, pmd_t *pmd, 3061 unsigned int flags, pte_t orig_pte) 3062 { 3063 pgoff_t pgoff; 3064 3065 flags |= FAULT_FLAG_NONLINEAR; 3066 3067 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3068 return 0; 3069 3070 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3071 /* 3072 * Page table corrupted: show pte and kill process. 3073 */ 3074 print_bad_pte(vma, address, orig_pte, NULL); 3075 return VM_FAULT_SIGBUS; 3076 } 3077 3078 pgoff = pte_to_pgoff(orig_pte); 3079 if (!(flags & FAULT_FLAG_WRITE)) 3080 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3081 orig_pte); 3082 if (!(vma->vm_flags & VM_SHARED)) 3083 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3084 orig_pte); 3085 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3086 } 3087 3088 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3089 unsigned long addr, int page_nid, 3090 int *flags) 3091 { 3092 get_page(page); 3093 3094 count_vm_numa_event(NUMA_HINT_FAULTS); 3095 if (page_nid == numa_node_id()) { 3096 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3097 *flags |= TNF_FAULT_LOCAL; 3098 } 3099 3100 return mpol_misplaced(page, vma, addr); 3101 } 3102 3103 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3104 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3105 { 3106 struct page *page = NULL; 3107 spinlock_t *ptl; 3108 int page_nid = -1; 3109 int last_cpupid; 3110 int target_nid; 3111 bool migrated = false; 3112 int flags = 0; 3113 3114 /* 3115 * The "pte" at this point cannot be used safely without 3116 * validation through pte_unmap_same(). It's of NUMA type but 3117 * the pfn may be screwed if the read is non atomic. 3118 * 3119 * ptep_modify_prot_start is not called as this is clearing 3120 * the _PAGE_NUMA bit and it is not really expected that there 3121 * would be concurrent hardware modifications to the PTE. 3122 */ 3123 ptl = pte_lockptr(mm, pmd); 3124 spin_lock(ptl); 3125 if (unlikely(!pte_same(*ptep, pte))) { 3126 pte_unmap_unlock(ptep, ptl); 3127 goto out; 3128 } 3129 3130 pte = pte_mknonnuma(pte); 3131 set_pte_at(mm, addr, ptep, pte); 3132 update_mmu_cache(vma, addr, ptep); 3133 3134 page = vm_normal_page(vma, addr, pte); 3135 if (!page) { 3136 pte_unmap_unlock(ptep, ptl); 3137 return 0; 3138 } 3139 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3140 3141 /* 3142 * Avoid grouping on DSO/COW pages in specific and RO pages 3143 * in general, RO pages shouldn't hurt as much anyway since 3144 * they can be in shared cache state. 3145 */ 3146 if (!pte_write(pte)) 3147 flags |= TNF_NO_GROUP; 3148 3149 /* 3150 * Flag if the page is shared between multiple address spaces. This 3151 * is later used when determining whether to group tasks together 3152 */ 3153 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3154 flags |= TNF_SHARED; 3155 3156 last_cpupid = page_cpupid_last(page); 3157 page_nid = page_to_nid(page); 3158 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3159 pte_unmap_unlock(ptep, ptl); 3160 if (target_nid == -1) { 3161 put_page(page); 3162 goto out; 3163 } 3164 3165 /* Migrate to the requested node */ 3166 migrated = migrate_misplaced_page(page, vma, target_nid); 3167 if (migrated) { 3168 page_nid = target_nid; 3169 flags |= TNF_MIGRATED; 3170 } 3171 3172 out: 3173 if (page_nid != -1) 3174 task_numa_fault(last_cpupid, page_nid, 1, flags); 3175 return 0; 3176 } 3177 3178 /* 3179 * These routines also need to handle stuff like marking pages dirty 3180 * and/or accessed for architectures that don't do it in hardware (most 3181 * RISC architectures). The early dirtying is also good on the i386. 3182 * 3183 * There is also a hook called "update_mmu_cache()" that architectures 3184 * with external mmu caches can use to update those (ie the Sparc or 3185 * PowerPC hashed page tables that act as extended TLBs). 3186 * 3187 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3188 * but allow concurrent faults), and pte mapped but not yet locked. 3189 * We return with pte unmapped and unlocked. 3190 * 3191 * The mmap_sem may have been released depending on flags and our 3192 * return value. See filemap_fault() and __lock_page_or_retry(). 3193 */ 3194 static int handle_pte_fault(struct mm_struct *mm, 3195 struct vm_area_struct *vma, unsigned long address, 3196 pte_t *pte, pmd_t *pmd, unsigned int flags) 3197 { 3198 pte_t entry; 3199 spinlock_t *ptl; 3200 3201 entry = ACCESS_ONCE(*pte); 3202 if (!pte_present(entry)) { 3203 if (pte_none(entry)) { 3204 if (vma->vm_ops) { 3205 if (likely(vma->vm_ops->fault)) 3206 return do_linear_fault(mm, vma, address, 3207 pte, pmd, flags, entry); 3208 } 3209 return do_anonymous_page(mm, vma, address, 3210 pte, pmd, flags); 3211 } 3212 if (pte_file(entry)) 3213 return do_nonlinear_fault(mm, vma, address, 3214 pte, pmd, flags, entry); 3215 return do_swap_page(mm, vma, address, 3216 pte, pmd, flags, entry); 3217 } 3218 3219 if (pte_numa(entry)) 3220 return do_numa_page(mm, vma, address, entry, pte, pmd); 3221 3222 ptl = pte_lockptr(mm, pmd); 3223 spin_lock(ptl); 3224 if (unlikely(!pte_same(*pte, entry))) 3225 goto unlock; 3226 if (flags & FAULT_FLAG_WRITE) { 3227 if (!pte_write(entry)) 3228 return do_wp_page(mm, vma, address, 3229 pte, pmd, ptl, entry); 3230 entry = pte_mkdirty(entry); 3231 } 3232 entry = pte_mkyoung(entry); 3233 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3234 update_mmu_cache(vma, address, pte); 3235 } else { 3236 /* 3237 * This is needed only for protection faults but the arch code 3238 * is not yet telling us if this is a protection fault or not. 3239 * This still avoids useless tlb flushes for .text page faults 3240 * with threads. 3241 */ 3242 if (flags & FAULT_FLAG_WRITE) 3243 flush_tlb_fix_spurious_fault(vma, address); 3244 } 3245 unlock: 3246 pte_unmap_unlock(pte, ptl); 3247 return 0; 3248 } 3249 3250 /* 3251 * By the time we get here, we already hold the mm semaphore 3252 * 3253 * The mmap_sem may have been released depending on flags and our 3254 * return value. See filemap_fault() and __lock_page_or_retry(). 3255 */ 3256 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3257 unsigned long address, unsigned int flags) 3258 { 3259 pgd_t *pgd; 3260 pud_t *pud; 3261 pmd_t *pmd; 3262 pte_t *pte; 3263 3264 if (unlikely(is_vm_hugetlb_page(vma))) 3265 return hugetlb_fault(mm, vma, address, flags); 3266 3267 pgd = pgd_offset(mm, address); 3268 pud = pud_alloc(mm, pgd, address); 3269 if (!pud) 3270 return VM_FAULT_OOM; 3271 pmd = pmd_alloc(mm, pud, address); 3272 if (!pmd) 3273 return VM_FAULT_OOM; 3274 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3275 int ret = VM_FAULT_FALLBACK; 3276 if (!vma->vm_ops) 3277 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3278 pmd, flags); 3279 if (!(ret & VM_FAULT_FALLBACK)) 3280 return ret; 3281 } else { 3282 pmd_t orig_pmd = *pmd; 3283 int ret; 3284 3285 barrier(); 3286 if (pmd_trans_huge(orig_pmd)) { 3287 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3288 3289 /* 3290 * If the pmd is splitting, return and retry the 3291 * the fault. Alternative: wait until the split 3292 * is done, and goto retry. 3293 */ 3294 if (pmd_trans_splitting(orig_pmd)) 3295 return 0; 3296 3297 if (pmd_numa(orig_pmd)) 3298 return do_huge_pmd_numa_page(mm, vma, address, 3299 orig_pmd, pmd); 3300 3301 if (dirty && !pmd_write(orig_pmd)) { 3302 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3303 orig_pmd); 3304 if (!(ret & VM_FAULT_FALLBACK)) 3305 return ret; 3306 } else { 3307 huge_pmd_set_accessed(mm, vma, address, pmd, 3308 orig_pmd, dirty); 3309 return 0; 3310 } 3311 } 3312 } 3313 3314 /* 3315 * Use __pte_alloc instead of pte_alloc_map, because we can't 3316 * run pte_offset_map on the pmd, if an huge pmd could 3317 * materialize from under us from a different thread. 3318 */ 3319 if (unlikely(pmd_none(*pmd)) && 3320 unlikely(__pte_alloc(mm, vma, pmd, address))) 3321 return VM_FAULT_OOM; 3322 /* if an huge pmd materialized from under us just retry later */ 3323 if (unlikely(pmd_trans_huge(*pmd))) 3324 return 0; 3325 /* 3326 * A regular pmd is established and it can't morph into a huge pmd 3327 * from under us anymore at this point because we hold the mmap_sem 3328 * read mode and khugepaged takes it in write mode. So now it's 3329 * safe to run pte_offset_map(). 3330 */ 3331 pte = pte_offset_map(pmd, address); 3332 3333 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3334 } 3335 3336 /* 3337 * By the time we get here, we already hold the mm semaphore 3338 * 3339 * The mmap_sem may have been released depending on flags and our 3340 * return value. See filemap_fault() and __lock_page_or_retry(). 3341 */ 3342 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3343 unsigned long address, unsigned int flags) 3344 { 3345 int ret; 3346 3347 __set_current_state(TASK_RUNNING); 3348 3349 count_vm_event(PGFAULT); 3350 mem_cgroup_count_vm_event(mm, PGFAULT); 3351 3352 /* do counter updates before entering really critical section. */ 3353 check_sync_rss_stat(current); 3354 3355 /* 3356 * Enable the memcg OOM handling for faults triggered in user 3357 * space. Kernel faults are handled more gracefully. 3358 */ 3359 if (flags & FAULT_FLAG_USER) 3360 mem_cgroup_oom_enable(); 3361 3362 ret = __handle_mm_fault(mm, vma, address, flags); 3363 3364 if (flags & FAULT_FLAG_USER) { 3365 mem_cgroup_oom_disable(); 3366 /* 3367 * The task may have entered a memcg OOM situation but 3368 * if the allocation error was handled gracefully (no 3369 * VM_FAULT_OOM), there is no need to kill anything. 3370 * Just clean up the OOM state peacefully. 3371 */ 3372 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3373 mem_cgroup_oom_synchronize(false); 3374 } 3375 3376 return ret; 3377 } 3378 3379 #ifndef __PAGETABLE_PUD_FOLDED 3380 /* 3381 * Allocate page upper directory. 3382 * We've already handled the fast-path in-line. 3383 */ 3384 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3385 { 3386 pud_t *new = pud_alloc_one(mm, address); 3387 if (!new) 3388 return -ENOMEM; 3389 3390 smp_wmb(); /* See comment in __pte_alloc */ 3391 3392 spin_lock(&mm->page_table_lock); 3393 if (pgd_present(*pgd)) /* Another has populated it */ 3394 pud_free(mm, new); 3395 else 3396 pgd_populate(mm, pgd, new); 3397 spin_unlock(&mm->page_table_lock); 3398 return 0; 3399 } 3400 #endif /* __PAGETABLE_PUD_FOLDED */ 3401 3402 #ifndef __PAGETABLE_PMD_FOLDED 3403 /* 3404 * Allocate page middle directory. 3405 * We've already handled the fast-path in-line. 3406 */ 3407 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3408 { 3409 pmd_t *new = pmd_alloc_one(mm, address); 3410 if (!new) 3411 return -ENOMEM; 3412 3413 smp_wmb(); /* See comment in __pte_alloc */ 3414 3415 spin_lock(&mm->page_table_lock); 3416 #ifndef __ARCH_HAS_4LEVEL_HACK 3417 if (pud_present(*pud)) /* Another has populated it */ 3418 pmd_free(mm, new); 3419 else 3420 pud_populate(mm, pud, new); 3421 #else 3422 if (pgd_present(*pud)) /* Another has populated it */ 3423 pmd_free(mm, new); 3424 else 3425 pgd_populate(mm, pud, new); 3426 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3427 spin_unlock(&mm->page_table_lock); 3428 return 0; 3429 } 3430 #endif /* __PAGETABLE_PMD_FOLDED */ 3431 3432 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3433 pte_t **ptepp, spinlock_t **ptlp) 3434 { 3435 pgd_t *pgd; 3436 pud_t *pud; 3437 pmd_t *pmd; 3438 pte_t *ptep; 3439 3440 pgd = pgd_offset(mm, address); 3441 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3442 goto out; 3443 3444 pud = pud_offset(pgd, address); 3445 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3446 goto out; 3447 3448 pmd = pmd_offset(pud, address); 3449 VM_BUG_ON(pmd_trans_huge(*pmd)); 3450 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3451 goto out; 3452 3453 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3454 if (pmd_huge(*pmd)) 3455 goto out; 3456 3457 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3458 if (!ptep) 3459 goto out; 3460 if (!pte_present(*ptep)) 3461 goto unlock; 3462 *ptepp = ptep; 3463 return 0; 3464 unlock: 3465 pte_unmap_unlock(ptep, *ptlp); 3466 out: 3467 return -EINVAL; 3468 } 3469 3470 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3471 pte_t **ptepp, spinlock_t **ptlp) 3472 { 3473 int res; 3474 3475 /* (void) is needed to make gcc happy */ 3476 (void) __cond_lock(*ptlp, 3477 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3478 return res; 3479 } 3480 3481 /** 3482 * follow_pfn - look up PFN at a user virtual address 3483 * @vma: memory mapping 3484 * @address: user virtual address 3485 * @pfn: location to store found PFN 3486 * 3487 * Only IO mappings and raw PFN mappings are allowed. 3488 * 3489 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3490 */ 3491 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3492 unsigned long *pfn) 3493 { 3494 int ret = -EINVAL; 3495 spinlock_t *ptl; 3496 pte_t *ptep; 3497 3498 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3499 return ret; 3500 3501 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3502 if (ret) 3503 return ret; 3504 *pfn = pte_pfn(*ptep); 3505 pte_unmap_unlock(ptep, ptl); 3506 return 0; 3507 } 3508 EXPORT_SYMBOL(follow_pfn); 3509 3510 #ifdef CONFIG_HAVE_IOREMAP_PROT 3511 int follow_phys(struct vm_area_struct *vma, 3512 unsigned long address, unsigned int flags, 3513 unsigned long *prot, resource_size_t *phys) 3514 { 3515 int ret = -EINVAL; 3516 pte_t *ptep, pte; 3517 spinlock_t *ptl; 3518 3519 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3520 goto out; 3521 3522 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3523 goto out; 3524 pte = *ptep; 3525 3526 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3527 goto unlock; 3528 3529 *prot = pgprot_val(pte_pgprot(pte)); 3530 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3531 3532 ret = 0; 3533 unlock: 3534 pte_unmap_unlock(ptep, ptl); 3535 out: 3536 return ret; 3537 } 3538 3539 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3540 void *buf, int len, int write) 3541 { 3542 resource_size_t phys_addr; 3543 unsigned long prot = 0; 3544 void __iomem *maddr; 3545 int offset = addr & (PAGE_SIZE-1); 3546 3547 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3548 return -EINVAL; 3549 3550 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3551 if (write) 3552 memcpy_toio(maddr + offset, buf, len); 3553 else 3554 memcpy_fromio(buf, maddr + offset, len); 3555 iounmap(maddr); 3556 3557 return len; 3558 } 3559 EXPORT_SYMBOL_GPL(generic_access_phys); 3560 #endif 3561 3562 /* 3563 * Access another process' address space as given in mm. If non-NULL, use the 3564 * given task for page fault accounting. 3565 */ 3566 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3567 unsigned long addr, void *buf, int len, int write) 3568 { 3569 struct vm_area_struct *vma; 3570 void *old_buf = buf; 3571 3572 down_read(&mm->mmap_sem); 3573 /* ignore errors, just check how much was successfully transferred */ 3574 while (len) { 3575 int bytes, ret, offset; 3576 void *maddr; 3577 struct page *page = NULL; 3578 3579 ret = get_user_pages(tsk, mm, addr, 1, 3580 write, 1, &page, &vma); 3581 if (ret <= 0) { 3582 #ifndef CONFIG_HAVE_IOREMAP_PROT 3583 break; 3584 #else 3585 /* 3586 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3587 * we can access using slightly different code. 3588 */ 3589 vma = find_vma(mm, addr); 3590 if (!vma || vma->vm_start > addr) 3591 break; 3592 if (vma->vm_ops && vma->vm_ops->access) 3593 ret = vma->vm_ops->access(vma, addr, buf, 3594 len, write); 3595 if (ret <= 0) 3596 break; 3597 bytes = ret; 3598 #endif 3599 } else { 3600 bytes = len; 3601 offset = addr & (PAGE_SIZE-1); 3602 if (bytes > PAGE_SIZE-offset) 3603 bytes = PAGE_SIZE-offset; 3604 3605 maddr = kmap(page); 3606 if (write) { 3607 copy_to_user_page(vma, page, addr, 3608 maddr + offset, buf, bytes); 3609 set_page_dirty_lock(page); 3610 } else { 3611 copy_from_user_page(vma, page, addr, 3612 buf, maddr + offset, bytes); 3613 } 3614 kunmap(page); 3615 page_cache_release(page); 3616 } 3617 len -= bytes; 3618 buf += bytes; 3619 addr += bytes; 3620 } 3621 up_read(&mm->mmap_sem); 3622 3623 return buf - old_buf; 3624 } 3625 3626 /** 3627 * access_remote_vm - access another process' address space 3628 * @mm: the mm_struct of the target address space 3629 * @addr: start address to access 3630 * @buf: source or destination buffer 3631 * @len: number of bytes to transfer 3632 * @write: whether the access is a write 3633 * 3634 * The caller must hold a reference on @mm. 3635 */ 3636 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3637 void *buf, int len, int write) 3638 { 3639 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3640 } 3641 3642 /* 3643 * Access another process' address space. 3644 * Source/target buffer must be kernel space, 3645 * Do not walk the page table directly, use get_user_pages 3646 */ 3647 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3648 void *buf, int len, int write) 3649 { 3650 struct mm_struct *mm; 3651 int ret; 3652 3653 mm = get_task_mm(tsk); 3654 if (!mm) 3655 return 0; 3656 3657 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3658 mmput(mm); 3659 3660 return ret; 3661 } 3662 3663 /* 3664 * Print the name of a VMA. 3665 */ 3666 void print_vma_addr(char *prefix, unsigned long ip) 3667 { 3668 struct mm_struct *mm = current->mm; 3669 struct vm_area_struct *vma; 3670 3671 /* 3672 * Do not print if we are in atomic 3673 * contexts (in exception stacks, etc.): 3674 */ 3675 if (preempt_count()) 3676 return; 3677 3678 down_read(&mm->mmap_sem); 3679 vma = find_vma(mm, ip); 3680 if (vma && vma->vm_file) { 3681 struct file *f = vma->vm_file; 3682 char *buf = (char *)__get_free_page(GFP_KERNEL); 3683 if (buf) { 3684 char *p; 3685 3686 p = d_path(&f->f_path, buf, PAGE_SIZE); 3687 if (IS_ERR(p)) 3688 p = "?"; 3689 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3690 vma->vm_start, 3691 vma->vm_end - vma->vm_start); 3692 free_page((unsigned long)buf); 3693 } 3694 } 3695 up_read(&mm->mmap_sem); 3696 } 3697 3698 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3699 void might_fault(void) 3700 { 3701 /* 3702 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3703 * holding the mmap_sem, this is safe because kernel memory doesn't 3704 * get paged out, therefore we'll never actually fault, and the 3705 * below annotations will generate false positives. 3706 */ 3707 if (segment_eq(get_fs(), KERNEL_DS)) 3708 return; 3709 3710 /* 3711 * it would be nicer only to annotate paths which are not under 3712 * pagefault_disable, however that requires a larger audit and 3713 * providing helpers like get_user_atomic. 3714 */ 3715 if (in_atomic()) 3716 return; 3717 3718 __might_sleep(__FILE__, __LINE__, 0); 3719 3720 if (current->mm) 3721 might_lock_read(¤t->mm->mmap_sem); 3722 } 3723 EXPORT_SYMBOL(might_fault); 3724 #endif 3725 3726 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3727 static void clear_gigantic_page(struct page *page, 3728 unsigned long addr, 3729 unsigned int pages_per_huge_page) 3730 { 3731 int i; 3732 struct page *p = page; 3733 3734 might_sleep(); 3735 for (i = 0; i < pages_per_huge_page; 3736 i++, p = mem_map_next(p, page, i)) { 3737 cond_resched(); 3738 clear_user_highpage(p, addr + i * PAGE_SIZE); 3739 } 3740 } 3741 void clear_huge_page(struct page *page, 3742 unsigned long addr, unsigned int pages_per_huge_page) 3743 { 3744 int i; 3745 3746 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3747 clear_gigantic_page(page, addr, pages_per_huge_page); 3748 return; 3749 } 3750 3751 might_sleep(); 3752 for (i = 0; i < pages_per_huge_page; i++) { 3753 cond_resched(); 3754 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3755 } 3756 } 3757 3758 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3759 unsigned long addr, 3760 struct vm_area_struct *vma, 3761 unsigned int pages_per_huge_page) 3762 { 3763 int i; 3764 struct page *dst_base = dst; 3765 struct page *src_base = src; 3766 3767 for (i = 0; i < pages_per_huge_page; ) { 3768 cond_resched(); 3769 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3770 3771 i++; 3772 dst = mem_map_next(dst, dst_base, i); 3773 src = mem_map_next(src, src_base, i); 3774 } 3775 } 3776 3777 void copy_user_huge_page(struct page *dst, struct page *src, 3778 unsigned long addr, struct vm_area_struct *vma, 3779 unsigned int pages_per_huge_page) 3780 { 3781 int i; 3782 3783 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3784 copy_user_gigantic_page(dst, src, addr, vma, 3785 pages_per_huge_page); 3786 return; 3787 } 3788 3789 might_sleep(); 3790 for (i = 0; i < pages_per_huge_page; i++) { 3791 cond_resched(); 3792 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3793 } 3794 } 3795 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3796 3797 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3798 3799 static struct kmem_cache *page_ptl_cachep; 3800 3801 void __init ptlock_cache_init(void) 3802 { 3803 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3804 SLAB_PANIC, NULL); 3805 } 3806 3807 bool ptlock_alloc(struct page *page) 3808 { 3809 spinlock_t *ptl; 3810 3811 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3812 if (!ptl) 3813 return false; 3814 page->ptl = ptl; 3815 return true; 3816 } 3817 3818 void ptlock_free(struct page *page) 3819 { 3820 kmem_cache_free(page_ptl_cachep, page->ptl); 3821 } 3822 #endif 3823