xref: /openbmc/linux/mm/memory.c (revision 5c041f5d1f23d3a172dd0db3215634c484b4acd6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include "swap.h"
90 
91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93 #endif
94 
95 #ifndef CONFIG_NUMA
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98 
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102 
103 static vm_fault_t do_fault(struct vm_fault *vmf);
104 
105 /*
106  * A number of key systems in x86 including ioremap() rely on the assumption
107  * that high_memory defines the upper bound on direct map memory, then end
108  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
109  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110  * and ZONE_HIGHMEM.
111  */
112 void *high_memory;
113 EXPORT_SYMBOL(high_memory);
114 
115 /*
116  * Randomize the address space (stacks, mmaps, brk, etc.).
117  *
118  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119  *   as ancient (libc5 based) binaries can segfault. )
120  */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 					1;
124 #else
125 					2;
126 #endif
127 
128 #ifndef arch_faults_on_old_pte
129 static inline bool arch_faults_on_old_pte(void)
130 {
131 	/*
132 	 * Those arches which don't have hw access flag feature need to
133 	 * implement their own helper. By default, "true" means pagefault
134 	 * will be hit on old pte.
135 	 */
136 	return true;
137 }
138 #endif
139 
140 #ifndef arch_wants_old_prefaulted_pte
141 static inline bool arch_wants_old_prefaulted_pte(void)
142 {
143 	/*
144 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
145 	 * some architectures, even if it's performed in hardware. By
146 	 * default, "false" means prefaulted entries will be 'young'.
147 	 */
148 	return false;
149 }
150 #endif
151 
152 static int __init disable_randmaps(char *s)
153 {
154 	randomize_va_space = 0;
155 	return 1;
156 }
157 __setup("norandmaps", disable_randmaps);
158 
159 unsigned long zero_pfn __read_mostly;
160 EXPORT_SYMBOL(zero_pfn);
161 
162 unsigned long highest_memmap_pfn __read_mostly;
163 
164 /*
165  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166  */
167 static int __init init_zero_pfn(void)
168 {
169 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
170 	return 0;
171 }
172 early_initcall(init_zero_pfn);
173 
174 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
175 {
176 	trace_rss_stat(mm, member, count);
177 }
178 
179 #if defined(SPLIT_RSS_COUNTING)
180 
181 void sync_mm_rss(struct mm_struct *mm)
182 {
183 	int i;
184 
185 	for (i = 0; i < NR_MM_COUNTERS; i++) {
186 		if (current->rss_stat.count[i]) {
187 			add_mm_counter(mm, i, current->rss_stat.count[i]);
188 			current->rss_stat.count[i] = 0;
189 		}
190 	}
191 	current->rss_stat.events = 0;
192 }
193 
194 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195 {
196 	struct task_struct *task = current;
197 
198 	if (likely(task->mm == mm))
199 		task->rss_stat.count[member] += val;
200 	else
201 		add_mm_counter(mm, member, val);
202 }
203 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205 
206 /* sync counter once per 64 page faults */
207 #define TASK_RSS_EVENTS_THRESH	(64)
208 static void check_sync_rss_stat(struct task_struct *task)
209 {
210 	if (unlikely(task != current))
211 		return;
212 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
213 		sync_mm_rss(task->mm);
214 }
215 #else /* SPLIT_RSS_COUNTING */
216 
217 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219 
220 static void check_sync_rss_stat(struct task_struct *task)
221 {
222 }
223 
224 #endif /* SPLIT_RSS_COUNTING */
225 
226 /*
227  * Note: this doesn't free the actual pages themselves. That
228  * has been handled earlier when unmapping all the memory regions.
229  */
230 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231 			   unsigned long addr)
232 {
233 	pgtable_t token = pmd_pgtable(*pmd);
234 	pmd_clear(pmd);
235 	pte_free_tlb(tlb, token, addr);
236 	mm_dec_nr_ptes(tlb->mm);
237 }
238 
239 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240 				unsigned long addr, unsigned long end,
241 				unsigned long floor, unsigned long ceiling)
242 {
243 	pmd_t *pmd;
244 	unsigned long next;
245 	unsigned long start;
246 
247 	start = addr;
248 	pmd = pmd_offset(pud, addr);
249 	do {
250 		next = pmd_addr_end(addr, end);
251 		if (pmd_none_or_clear_bad(pmd))
252 			continue;
253 		free_pte_range(tlb, pmd, addr);
254 	} while (pmd++, addr = next, addr != end);
255 
256 	start &= PUD_MASK;
257 	if (start < floor)
258 		return;
259 	if (ceiling) {
260 		ceiling &= PUD_MASK;
261 		if (!ceiling)
262 			return;
263 	}
264 	if (end - 1 > ceiling - 1)
265 		return;
266 
267 	pmd = pmd_offset(pud, start);
268 	pud_clear(pud);
269 	pmd_free_tlb(tlb, pmd, start);
270 	mm_dec_nr_pmds(tlb->mm);
271 }
272 
273 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
274 				unsigned long addr, unsigned long end,
275 				unsigned long floor, unsigned long ceiling)
276 {
277 	pud_t *pud;
278 	unsigned long next;
279 	unsigned long start;
280 
281 	start = addr;
282 	pud = pud_offset(p4d, addr);
283 	do {
284 		next = pud_addr_end(addr, end);
285 		if (pud_none_or_clear_bad(pud))
286 			continue;
287 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
288 	} while (pud++, addr = next, addr != end);
289 
290 	start &= P4D_MASK;
291 	if (start < floor)
292 		return;
293 	if (ceiling) {
294 		ceiling &= P4D_MASK;
295 		if (!ceiling)
296 			return;
297 	}
298 	if (end - 1 > ceiling - 1)
299 		return;
300 
301 	pud = pud_offset(p4d, start);
302 	p4d_clear(p4d);
303 	pud_free_tlb(tlb, pud, start);
304 	mm_dec_nr_puds(tlb->mm);
305 }
306 
307 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308 				unsigned long addr, unsigned long end,
309 				unsigned long floor, unsigned long ceiling)
310 {
311 	p4d_t *p4d;
312 	unsigned long next;
313 	unsigned long start;
314 
315 	start = addr;
316 	p4d = p4d_offset(pgd, addr);
317 	do {
318 		next = p4d_addr_end(addr, end);
319 		if (p4d_none_or_clear_bad(p4d))
320 			continue;
321 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322 	} while (p4d++, addr = next, addr != end);
323 
324 	start &= PGDIR_MASK;
325 	if (start < floor)
326 		return;
327 	if (ceiling) {
328 		ceiling &= PGDIR_MASK;
329 		if (!ceiling)
330 			return;
331 	}
332 	if (end - 1 > ceiling - 1)
333 		return;
334 
335 	p4d = p4d_offset(pgd, start);
336 	pgd_clear(pgd);
337 	p4d_free_tlb(tlb, p4d, start);
338 }
339 
340 /*
341  * This function frees user-level page tables of a process.
342  */
343 void free_pgd_range(struct mmu_gather *tlb,
344 			unsigned long addr, unsigned long end,
345 			unsigned long floor, unsigned long ceiling)
346 {
347 	pgd_t *pgd;
348 	unsigned long next;
349 
350 	/*
351 	 * The next few lines have given us lots of grief...
352 	 *
353 	 * Why are we testing PMD* at this top level?  Because often
354 	 * there will be no work to do at all, and we'd prefer not to
355 	 * go all the way down to the bottom just to discover that.
356 	 *
357 	 * Why all these "- 1"s?  Because 0 represents both the bottom
358 	 * of the address space and the top of it (using -1 for the
359 	 * top wouldn't help much: the masks would do the wrong thing).
360 	 * The rule is that addr 0 and floor 0 refer to the bottom of
361 	 * the address space, but end 0 and ceiling 0 refer to the top
362 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
363 	 * that end 0 case should be mythical).
364 	 *
365 	 * Wherever addr is brought up or ceiling brought down, we must
366 	 * be careful to reject "the opposite 0" before it confuses the
367 	 * subsequent tests.  But what about where end is brought down
368 	 * by PMD_SIZE below? no, end can't go down to 0 there.
369 	 *
370 	 * Whereas we round start (addr) and ceiling down, by different
371 	 * masks at different levels, in order to test whether a table
372 	 * now has no other vmas using it, so can be freed, we don't
373 	 * bother to round floor or end up - the tests don't need that.
374 	 */
375 
376 	addr &= PMD_MASK;
377 	if (addr < floor) {
378 		addr += PMD_SIZE;
379 		if (!addr)
380 			return;
381 	}
382 	if (ceiling) {
383 		ceiling &= PMD_MASK;
384 		if (!ceiling)
385 			return;
386 	}
387 	if (end - 1 > ceiling - 1)
388 		end -= PMD_SIZE;
389 	if (addr > end - 1)
390 		return;
391 	/*
392 	 * We add page table cache pages with PAGE_SIZE,
393 	 * (see pte_free_tlb()), flush the tlb if we need
394 	 */
395 	tlb_change_page_size(tlb, PAGE_SIZE);
396 	pgd = pgd_offset(tlb->mm, addr);
397 	do {
398 		next = pgd_addr_end(addr, end);
399 		if (pgd_none_or_clear_bad(pgd))
400 			continue;
401 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
402 	} while (pgd++, addr = next, addr != end);
403 }
404 
405 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
406 		unsigned long floor, unsigned long ceiling)
407 {
408 	while (vma) {
409 		struct vm_area_struct *next = vma->vm_next;
410 		unsigned long addr = vma->vm_start;
411 
412 		/*
413 		 * Hide vma from rmap and truncate_pagecache before freeing
414 		 * pgtables
415 		 */
416 		unlink_anon_vmas(vma);
417 		unlink_file_vma(vma);
418 
419 		if (is_vm_hugetlb_page(vma)) {
420 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 				floor, next ? next->vm_start : ceiling);
422 		} else {
423 			/*
424 			 * Optimization: gather nearby vmas into one call down
425 			 */
426 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 			       && !is_vm_hugetlb_page(next)) {
428 				vma = next;
429 				next = vma->vm_next;
430 				unlink_anon_vmas(vma);
431 				unlink_file_vma(vma);
432 			}
433 			free_pgd_range(tlb, addr, vma->vm_end,
434 				floor, next ? next->vm_start : ceiling);
435 		}
436 		vma = next;
437 	}
438 }
439 
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442 	spinlock_t *ptl = pmd_lock(mm, pmd);
443 
444 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
445 		mm_inc_nr_ptes(mm);
446 		/*
447 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 		 * visible before the pte is made visible to other CPUs by being
449 		 * put into page tables.
450 		 *
451 		 * The other side of the story is the pointer chasing in the page
452 		 * table walking code (when walking the page table without locking;
453 		 * ie. most of the time). Fortunately, these data accesses consist
454 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 		 * being the notable exception) will already guarantee loads are
456 		 * seen in-order. See the alpha page table accessors for the
457 		 * smp_rmb() barriers in page table walking code.
458 		 */
459 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 		pmd_populate(mm, pmd, *pte);
461 		*pte = NULL;
462 	}
463 	spin_unlock(ptl);
464 }
465 
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468 	pgtable_t new = pte_alloc_one(mm);
469 	if (!new)
470 		return -ENOMEM;
471 
472 	pmd_install(mm, pmd, &new);
473 	if (new)
474 		pte_free(mm, new);
475 	return 0;
476 }
477 
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480 	pte_t *new = pte_alloc_one_kernel(&init_mm);
481 	if (!new)
482 		return -ENOMEM;
483 
484 	spin_lock(&init_mm.page_table_lock);
485 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
486 		smp_wmb(); /* See comment in pmd_install() */
487 		pmd_populate_kernel(&init_mm, pmd, new);
488 		new = NULL;
489 	}
490 	spin_unlock(&init_mm.page_table_lock);
491 	if (new)
492 		pte_free_kernel(&init_mm, new);
493 	return 0;
494 }
495 
496 static inline void init_rss_vec(int *rss)
497 {
498 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500 
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503 	int i;
504 
505 	if (current->mm == mm)
506 		sync_mm_rss(mm);
507 	for (i = 0; i < NR_MM_COUNTERS; i++)
508 		if (rss[i])
509 			add_mm_counter(mm, i, rss[i]);
510 }
511 
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 			  pte_t pte, struct page *page)
521 {
522 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 	p4d_t *p4d = p4d_offset(pgd, addr);
524 	pud_t *pud = pud_offset(p4d, addr);
525 	pmd_t *pmd = pmd_offset(pud, addr);
526 	struct address_space *mapping;
527 	pgoff_t index;
528 	static unsigned long resume;
529 	static unsigned long nr_shown;
530 	static unsigned long nr_unshown;
531 
532 	/*
533 	 * Allow a burst of 60 reports, then keep quiet for that minute;
534 	 * or allow a steady drip of one report per second.
535 	 */
536 	if (nr_shown == 60) {
537 		if (time_before(jiffies, resume)) {
538 			nr_unshown++;
539 			return;
540 		}
541 		if (nr_unshown) {
542 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 				 nr_unshown);
544 			nr_unshown = 0;
545 		}
546 		nr_shown = 0;
547 	}
548 	if (nr_shown++ == 0)
549 		resume = jiffies + 60 * HZ;
550 
551 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 	index = linear_page_index(vma, addr);
553 
554 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555 		 current->comm,
556 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 	if (page)
558 		dump_page(page, "bad pte");
559 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
562 		 vma->vm_file,
563 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 		 mapping ? mapping->a_ops->readpage : NULL);
566 	dump_stack();
567 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569 
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 			    pte_t pte)
614 {
615 	unsigned long pfn = pte_pfn(pte);
616 
617 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 		if (likely(!pte_special(pte)))
619 			goto check_pfn;
620 		if (vma->vm_ops && vma->vm_ops->find_special_page)
621 			return vma->vm_ops->find_special_page(vma, addr);
622 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 			return NULL;
624 		if (is_zero_pfn(pfn))
625 			return NULL;
626 		if (pte_devmap(pte))
627 			return NULL;
628 
629 		print_bad_pte(vma, addr, pte, NULL);
630 		return NULL;
631 	}
632 
633 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
634 
635 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
636 		if (vma->vm_flags & VM_MIXEDMAP) {
637 			if (!pfn_valid(pfn))
638 				return NULL;
639 			goto out;
640 		} else {
641 			unsigned long off;
642 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
643 			if (pfn == vma->vm_pgoff + off)
644 				return NULL;
645 			if (!is_cow_mapping(vma->vm_flags))
646 				return NULL;
647 		}
648 	}
649 
650 	if (is_zero_pfn(pfn))
651 		return NULL;
652 
653 check_pfn:
654 	if (unlikely(pfn > highest_memmap_pfn)) {
655 		print_bad_pte(vma, addr, pte, NULL);
656 		return NULL;
657 	}
658 
659 	/*
660 	 * NOTE! We still have PageReserved() pages in the page tables.
661 	 * eg. VDSO mappings can cause them to exist.
662 	 */
663 out:
664 	return pfn_to_page(pfn);
665 }
666 
667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 				pmd_t pmd)
670 {
671 	unsigned long pfn = pmd_pfn(pmd);
672 
673 	/*
674 	 * There is no pmd_special() but there may be special pmds, e.g.
675 	 * in a direct-access (dax) mapping, so let's just replicate the
676 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
677 	 */
678 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679 		if (vma->vm_flags & VM_MIXEDMAP) {
680 			if (!pfn_valid(pfn))
681 				return NULL;
682 			goto out;
683 		} else {
684 			unsigned long off;
685 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
686 			if (pfn == vma->vm_pgoff + off)
687 				return NULL;
688 			if (!is_cow_mapping(vma->vm_flags))
689 				return NULL;
690 		}
691 	}
692 
693 	if (pmd_devmap(pmd))
694 		return NULL;
695 	if (is_huge_zero_pmd(pmd))
696 		return NULL;
697 	if (unlikely(pfn > highest_memmap_pfn))
698 		return NULL;
699 
700 	/*
701 	 * NOTE! We still have PageReserved() pages in the page tables.
702 	 * eg. VDSO mappings can cause them to exist.
703 	 */
704 out:
705 	return pfn_to_page(pfn);
706 }
707 #endif
708 
709 static void restore_exclusive_pte(struct vm_area_struct *vma,
710 				  struct page *page, unsigned long address,
711 				  pte_t *ptep)
712 {
713 	pte_t pte;
714 	swp_entry_t entry;
715 
716 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
717 	if (pte_swp_soft_dirty(*ptep))
718 		pte = pte_mksoft_dirty(pte);
719 
720 	entry = pte_to_swp_entry(*ptep);
721 	if (pte_swp_uffd_wp(*ptep))
722 		pte = pte_mkuffd_wp(pte);
723 	else if (is_writable_device_exclusive_entry(entry))
724 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
725 
726 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
727 
728 	/*
729 	 * No need to take a page reference as one was already
730 	 * created when the swap entry was made.
731 	 */
732 	if (PageAnon(page))
733 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
734 	else
735 		/*
736 		 * Currently device exclusive access only supports anonymous
737 		 * memory so the entry shouldn't point to a filebacked page.
738 		 */
739 		WARN_ON_ONCE(!PageAnon(page));
740 
741 	set_pte_at(vma->vm_mm, address, ptep, pte);
742 
743 	/*
744 	 * No need to invalidate - it was non-present before. However
745 	 * secondary CPUs may have mappings that need invalidating.
746 	 */
747 	update_mmu_cache(vma, address, ptep);
748 }
749 
750 /*
751  * Tries to restore an exclusive pte if the page lock can be acquired without
752  * sleeping.
753  */
754 static int
755 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
756 			unsigned long addr)
757 {
758 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
759 	struct page *page = pfn_swap_entry_to_page(entry);
760 
761 	if (trylock_page(page)) {
762 		restore_exclusive_pte(vma, page, addr, src_pte);
763 		unlock_page(page);
764 		return 0;
765 	}
766 
767 	return -EBUSY;
768 }
769 
770 /*
771  * copy one vm_area from one task to the other. Assumes the page tables
772  * already present in the new task to be cleared in the whole range
773  * covered by this vma.
774  */
775 
776 static unsigned long
777 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
778 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
779 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
780 {
781 	unsigned long vm_flags = dst_vma->vm_flags;
782 	pte_t pte = *src_pte;
783 	struct page *page;
784 	swp_entry_t entry = pte_to_swp_entry(pte);
785 
786 	if (likely(!non_swap_entry(entry))) {
787 		if (swap_duplicate(entry) < 0)
788 			return -EIO;
789 
790 		/* make sure dst_mm is on swapoff's mmlist. */
791 		if (unlikely(list_empty(&dst_mm->mmlist))) {
792 			spin_lock(&mmlist_lock);
793 			if (list_empty(&dst_mm->mmlist))
794 				list_add(&dst_mm->mmlist,
795 						&src_mm->mmlist);
796 			spin_unlock(&mmlist_lock);
797 		}
798 		/* Mark the swap entry as shared. */
799 		if (pte_swp_exclusive(*src_pte)) {
800 			pte = pte_swp_clear_exclusive(*src_pte);
801 			set_pte_at(src_mm, addr, src_pte, pte);
802 		}
803 		rss[MM_SWAPENTS]++;
804 	} else if (is_migration_entry(entry)) {
805 		page = pfn_swap_entry_to_page(entry);
806 
807 		rss[mm_counter(page)]++;
808 
809 		if (!is_readable_migration_entry(entry) &&
810 				is_cow_mapping(vm_flags)) {
811 			/*
812 			 * COW mappings require pages in both parent and child
813 			 * to be set to read. A previously exclusive entry is
814 			 * now shared.
815 			 */
816 			entry = make_readable_migration_entry(
817 							swp_offset(entry));
818 			pte = swp_entry_to_pte(entry);
819 			if (pte_swp_soft_dirty(*src_pte))
820 				pte = pte_swp_mksoft_dirty(pte);
821 			if (pte_swp_uffd_wp(*src_pte))
822 				pte = pte_swp_mkuffd_wp(pte);
823 			set_pte_at(src_mm, addr, src_pte, pte);
824 		}
825 	} else if (is_device_private_entry(entry)) {
826 		page = pfn_swap_entry_to_page(entry);
827 
828 		/*
829 		 * Update rss count even for unaddressable pages, as
830 		 * they should treated just like normal pages in this
831 		 * respect.
832 		 *
833 		 * We will likely want to have some new rss counters
834 		 * for unaddressable pages, at some point. But for now
835 		 * keep things as they are.
836 		 */
837 		get_page(page);
838 		rss[mm_counter(page)]++;
839 		/* Cannot fail as these pages cannot get pinned. */
840 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
841 
842 		/*
843 		 * We do not preserve soft-dirty information, because so
844 		 * far, checkpoint/restore is the only feature that
845 		 * requires that. And checkpoint/restore does not work
846 		 * when a device driver is involved (you cannot easily
847 		 * save and restore device driver state).
848 		 */
849 		if (is_writable_device_private_entry(entry) &&
850 		    is_cow_mapping(vm_flags)) {
851 			entry = make_readable_device_private_entry(
852 							swp_offset(entry));
853 			pte = swp_entry_to_pte(entry);
854 			if (pte_swp_uffd_wp(*src_pte))
855 				pte = pte_swp_mkuffd_wp(pte);
856 			set_pte_at(src_mm, addr, src_pte, pte);
857 		}
858 	} else if (is_device_exclusive_entry(entry)) {
859 		/*
860 		 * Make device exclusive entries present by restoring the
861 		 * original entry then copying as for a present pte. Device
862 		 * exclusive entries currently only support private writable
863 		 * (ie. COW) mappings.
864 		 */
865 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
866 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
867 			return -EBUSY;
868 		return -ENOENT;
869 	}
870 	if (!userfaultfd_wp(dst_vma))
871 		pte = pte_swp_clear_uffd_wp(pte);
872 	set_pte_at(dst_mm, addr, dst_pte, pte);
873 	return 0;
874 }
875 
876 /*
877  * Copy a present and normal page.
878  *
879  * NOTE! The usual case is that this isn't required;
880  * instead, the caller can just increase the page refcount
881  * and re-use the pte the traditional way.
882  *
883  * And if we need a pre-allocated page but don't yet have
884  * one, return a negative error to let the preallocation
885  * code know so that it can do so outside the page table
886  * lock.
887  */
888 static inline int
889 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
890 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
891 		  struct page **prealloc, struct page *page)
892 {
893 	struct page *new_page;
894 	pte_t pte;
895 
896 	new_page = *prealloc;
897 	if (!new_page)
898 		return -EAGAIN;
899 
900 	/*
901 	 * We have a prealloc page, all good!  Take it
902 	 * over and copy the page & arm it.
903 	 */
904 	*prealloc = NULL;
905 	copy_user_highpage(new_page, page, addr, src_vma);
906 	__SetPageUptodate(new_page);
907 	page_add_new_anon_rmap(new_page, dst_vma, addr);
908 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
909 	rss[mm_counter(new_page)]++;
910 
911 	/* All done, just insert the new page copy in the child */
912 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
913 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
914 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
915 		/* Uffd-wp needs to be delivered to dest pte as well */
916 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
917 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
918 	return 0;
919 }
920 
921 /*
922  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
923  * is required to copy this pte.
924  */
925 static inline int
926 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
927 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
928 		 struct page **prealloc)
929 {
930 	struct mm_struct *src_mm = src_vma->vm_mm;
931 	unsigned long vm_flags = src_vma->vm_flags;
932 	pte_t pte = *src_pte;
933 	struct page *page;
934 
935 	page = vm_normal_page(src_vma, addr, pte);
936 	if (page && PageAnon(page)) {
937 		/*
938 		 * If this page may have been pinned by the parent process,
939 		 * copy the page immediately for the child so that we'll always
940 		 * guarantee the pinned page won't be randomly replaced in the
941 		 * future.
942 		 */
943 		get_page(page);
944 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 			/* Page maybe pinned, we have to copy. */
946 			put_page(page);
947 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 						 addr, rss, prealloc, page);
949 		}
950 		rss[mm_counter(page)]++;
951 	} else if (page) {
952 		get_page(page);
953 		page_dup_file_rmap(page, false);
954 		rss[mm_counter(page)]++;
955 	}
956 
957 	/*
958 	 * If it's a COW mapping, write protect it both
959 	 * in the parent and the child
960 	 */
961 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 		ptep_set_wrprotect(src_mm, addr, src_pte);
963 		pte = pte_wrprotect(pte);
964 	}
965 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
966 
967 	/*
968 	 * If it's a shared mapping, mark it clean in
969 	 * the child
970 	 */
971 	if (vm_flags & VM_SHARED)
972 		pte = pte_mkclean(pte);
973 	pte = pte_mkold(pte);
974 
975 	if (!userfaultfd_wp(dst_vma))
976 		pte = pte_clear_uffd_wp(pte);
977 
978 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 	return 0;
980 }
981 
982 static inline struct page *
983 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
984 		   unsigned long addr)
985 {
986 	struct page *new_page;
987 
988 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
989 	if (!new_page)
990 		return NULL;
991 
992 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
993 		put_page(new_page);
994 		return NULL;
995 	}
996 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
997 
998 	return new_page;
999 }
1000 
1001 static int
1002 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1003 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1004 	       unsigned long end)
1005 {
1006 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1007 	struct mm_struct *src_mm = src_vma->vm_mm;
1008 	pte_t *orig_src_pte, *orig_dst_pte;
1009 	pte_t *src_pte, *dst_pte;
1010 	spinlock_t *src_ptl, *dst_ptl;
1011 	int progress, ret = 0;
1012 	int rss[NR_MM_COUNTERS];
1013 	swp_entry_t entry = (swp_entry_t){0};
1014 	struct page *prealloc = NULL;
1015 
1016 again:
1017 	progress = 0;
1018 	init_rss_vec(rss);
1019 
1020 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1021 	if (!dst_pte) {
1022 		ret = -ENOMEM;
1023 		goto out;
1024 	}
1025 	src_pte = pte_offset_map(src_pmd, addr);
1026 	src_ptl = pte_lockptr(src_mm, src_pmd);
1027 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1028 	orig_src_pte = src_pte;
1029 	orig_dst_pte = dst_pte;
1030 	arch_enter_lazy_mmu_mode();
1031 
1032 	do {
1033 		/*
1034 		 * We are holding two locks at this point - either of them
1035 		 * could generate latencies in another task on another CPU.
1036 		 */
1037 		if (progress >= 32) {
1038 			progress = 0;
1039 			if (need_resched() ||
1040 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1041 				break;
1042 		}
1043 		if (pte_none(*src_pte)) {
1044 			progress++;
1045 			continue;
1046 		}
1047 		if (unlikely(!pte_present(*src_pte))) {
1048 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1049 						  dst_pte, src_pte,
1050 						  dst_vma, src_vma,
1051 						  addr, rss);
1052 			if (ret == -EIO) {
1053 				entry = pte_to_swp_entry(*src_pte);
1054 				break;
1055 			} else if (ret == -EBUSY) {
1056 				break;
1057 			} else if (!ret) {
1058 				progress += 8;
1059 				continue;
1060 			}
1061 
1062 			/*
1063 			 * Device exclusive entry restored, continue by copying
1064 			 * the now present pte.
1065 			 */
1066 			WARN_ON_ONCE(ret != -ENOENT);
1067 		}
1068 		/* copy_present_pte() will clear `*prealloc' if consumed */
1069 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1070 				       addr, rss, &prealloc);
1071 		/*
1072 		 * If we need a pre-allocated page for this pte, drop the
1073 		 * locks, allocate, and try again.
1074 		 */
1075 		if (unlikely(ret == -EAGAIN))
1076 			break;
1077 		if (unlikely(prealloc)) {
1078 			/*
1079 			 * pre-alloc page cannot be reused by next time so as
1080 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1081 			 * will allocate page according to address).  This
1082 			 * could only happen if one pinned pte changed.
1083 			 */
1084 			put_page(prealloc);
1085 			prealloc = NULL;
1086 		}
1087 		progress += 8;
1088 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1089 
1090 	arch_leave_lazy_mmu_mode();
1091 	spin_unlock(src_ptl);
1092 	pte_unmap(orig_src_pte);
1093 	add_mm_rss_vec(dst_mm, rss);
1094 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1095 	cond_resched();
1096 
1097 	if (ret == -EIO) {
1098 		VM_WARN_ON_ONCE(!entry.val);
1099 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1100 			ret = -ENOMEM;
1101 			goto out;
1102 		}
1103 		entry.val = 0;
1104 	} else if (ret == -EBUSY) {
1105 		goto out;
1106 	} else if (ret ==  -EAGAIN) {
1107 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1108 		if (!prealloc)
1109 			return -ENOMEM;
1110 	} else if (ret) {
1111 		VM_WARN_ON_ONCE(1);
1112 	}
1113 
1114 	/* We've captured and resolved the error. Reset, try again. */
1115 	ret = 0;
1116 
1117 	if (addr != end)
1118 		goto again;
1119 out:
1120 	if (unlikely(prealloc))
1121 		put_page(prealloc);
1122 	return ret;
1123 }
1124 
1125 static inline int
1126 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1127 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1128 	       unsigned long end)
1129 {
1130 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1131 	struct mm_struct *src_mm = src_vma->vm_mm;
1132 	pmd_t *src_pmd, *dst_pmd;
1133 	unsigned long next;
1134 
1135 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1136 	if (!dst_pmd)
1137 		return -ENOMEM;
1138 	src_pmd = pmd_offset(src_pud, addr);
1139 	do {
1140 		next = pmd_addr_end(addr, end);
1141 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1142 			|| pmd_devmap(*src_pmd)) {
1143 			int err;
1144 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1145 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1146 					    addr, dst_vma, src_vma);
1147 			if (err == -ENOMEM)
1148 				return -ENOMEM;
1149 			if (!err)
1150 				continue;
1151 			/* fall through */
1152 		}
1153 		if (pmd_none_or_clear_bad(src_pmd))
1154 			continue;
1155 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1156 				   addr, next))
1157 			return -ENOMEM;
1158 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1159 	return 0;
1160 }
1161 
1162 static inline int
1163 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1164 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1165 	       unsigned long end)
1166 {
1167 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1168 	struct mm_struct *src_mm = src_vma->vm_mm;
1169 	pud_t *src_pud, *dst_pud;
1170 	unsigned long next;
1171 
1172 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1173 	if (!dst_pud)
1174 		return -ENOMEM;
1175 	src_pud = pud_offset(src_p4d, addr);
1176 	do {
1177 		next = pud_addr_end(addr, end);
1178 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1179 			int err;
1180 
1181 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1182 			err = copy_huge_pud(dst_mm, src_mm,
1183 					    dst_pud, src_pud, addr, src_vma);
1184 			if (err == -ENOMEM)
1185 				return -ENOMEM;
1186 			if (!err)
1187 				continue;
1188 			/* fall through */
1189 		}
1190 		if (pud_none_or_clear_bad(src_pud))
1191 			continue;
1192 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1193 				   addr, next))
1194 			return -ENOMEM;
1195 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1196 	return 0;
1197 }
1198 
1199 static inline int
1200 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1201 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1202 	       unsigned long end)
1203 {
1204 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1205 	p4d_t *src_p4d, *dst_p4d;
1206 	unsigned long next;
1207 
1208 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1209 	if (!dst_p4d)
1210 		return -ENOMEM;
1211 	src_p4d = p4d_offset(src_pgd, addr);
1212 	do {
1213 		next = p4d_addr_end(addr, end);
1214 		if (p4d_none_or_clear_bad(src_p4d))
1215 			continue;
1216 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1217 				   addr, next))
1218 			return -ENOMEM;
1219 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1220 	return 0;
1221 }
1222 
1223 int
1224 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1225 {
1226 	pgd_t *src_pgd, *dst_pgd;
1227 	unsigned long next;
1228 	unsigned long addr = src_vma->vm_start;
1229 	unsigned long end = src_vma->vm_end;
1230 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1231 	struct mm_struct *src_mm = src_vma->vm_mm;
1232 	struct mmu_notifier_range range;
1233 	bool is_cow;
1234 	int ret;
1235 
1236 	/*
1237 	 * Don't copy ptes where a page fault will fill them correctly.
1238 	 * Fork becomes much lighter when there are big shared or private
1239 	 * readonly mappings. The tradeoff is that copy_page_range is more
1240 	 * efficient than faulting.
1241 	 */
1242 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1243 	    !src_vma->anon_vma)
1244 		return 0;
1245 
1246 	if (is_vm_hugetlb_page(src_vma))
1247 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1248 
1249 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1250 		/*
1251 		 * We do not free on error cases below as remove_vma
1252 		 * gets called on error from higher level routine
1253 		 */
1254 		ret = track_pfn_copy(src_vma);
1255 		if (ret)
1256 			return ret;
1257 	}
1258 
1259 	/*
1260 	 * We need to invalidate the secondary MMU mappings only when
1261 	 * there could be a permission downgrade on the ptes of the
1262 	 * parent mm. And a permission downgrade will only happen if
1263 	 * is_cow_mapping() returns true.
1264 	 */
1265 	is_cow = is_cow_mapping(src_vma->vm_flags);
1266 
1267 	if (is_cow) {
1268 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1269 					0, src_vma, src_mm, addr, end);
1270 		mmu_notifier_invalidate_range_start(&range);
1271 		/*
1272 		 * Disabling preemption is not needed for the write side, as
1273 		 * the read side doesn't spin, but goes to the mmap_lock.
1274 		 *
1275 		 * Use the raw variant of the seqcount_t write API to avoid
1276 		 * lockdep complaining about preemptibility.
1277 		 */
1278 		mmap_assert_write_locked(src_mm);
1279 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1280 	}
1281 
1282 	ret = 0;
1283 	dst_pgd = pgd_offset(dst_mm, addr);
1284 	src_pgd = pgd_offset(src_mm, addr);
1285 	do {
1286 		next = pgd_addr_end(addr, end);
1287 		if (pgd_none_or_clear_bad(src_pgd))
1288 			continue;
1289 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1290 					    addr, next))) {
1291 			ret = -ENOMEM;
1292 			break;
1293 		}
1294 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1295 
1296 	if (is_cow) {
1297 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1298 		mmu_notifier_invalidate_range_end(&range);
1299 	}
1300 	return ret;
1301 }
1302 
1303 /*
1304  * Parameter block passed down to zap_pte_range in exceptional cases.
1305  */
1306 struct zap_details {
1307 	struct folio *single_folio;	/* Locked folio to be unmapped */
1308 	bool even_cows;			/* Zap COWed private pages too? */
1309 };
1310 
1311 /* Whether we should zap all COWed (private) pages too */
1312 static inline bool should_zap_cows(struct zap_details *details)
1313 {
1314 	/* By default, zap all pages */
1315 	if (!details)
1316 		return true;
1317 
1318 	/* Or, we zap COWed pages only if the caller wants to */
1319 	return details->even_cows;
1320 }
1321 
1322 /* Decides whether we should zap this page with the page pointer specified */
1323 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1324 {
1325 	/* If we can make a decision without *page.. */
1326 	if (should_zap_cows(details))
1327 		return true;
1328 
1329 	/* E.g. the caller passes NULL for the case of a zero page */
1330 	if (!page)
1331 		return true;
1332 
1333 	/* Otherwise we should only zap non-anon pages */
1334 	return !PageAnon(page);
1335 }
1336 
1337 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1338 				struct vm_area_struct *vma, pmd_t *pmd,
1339 				unsigned long addr, unsigned long end,
1340 				struct zap_details *details)
1341 {
1342 	struct mm_struct *mm = tlb->mm;
1343 	int force_flush = 0;
1344 	int rss[NR_MM_COUNTERS];
1345 	spinlock_t *ptl;
1346 	pte_t *start_pte;
1347 	pte_t *pte;
1348 	swp_entry_t entry;
1349 
1350 	tlb_change_page_size(tlb, PAGE_SIZE);
1351 again:
1352 	init_rss_vec(rss);
1353 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1354 	pte = start_pte;
1355 	flush_tlb_batched_pending(mm);
1356 	arch_enter_lazy_mmu_mode();
1357 	do {
1358 		pte_t ptent = *pte;
1359 		struct page *page;
1360 
1361 		if (pte_none(ptent))
1362 			continue;
1363 
1364 		if (need_resched())
1365 			break;
1366 
1367 		if (pte_present(ptent)) {
1368 			page = vm_normal_page(vma, addr, ptent);
1369 			if (unlikely(!should_zap_page(details, page)))
1370 				continue;
1371 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1372 							tlb->fullmm);
1373 			tlb_remove_tlb_entry(tlb, pte, addr);
1374 			if (unlikely(!page))
1375 				continue;
1376 
1377 			if (!PageAnon(page)) {
1378 				if (pte_dirty(ptent)) {
1379 					force_flush = 1;
1380 					set_page_dirty(page);
1381 				}
1382 				if (pte_young(ptent) &&
1383 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1384 					mark_page_accessed(page);
1385 			}
1386 			rss[mm_counter(page)]--;
1387 			page_remove_rmap(page, vma, false);
1388 			if (unlikely(page_mapcount(page) < 0))
1389 				print_bad_pte(vma, addr, ptent, page);
1390 			if (unlikely(__tlb_remove_page(tlb, page))) {
1391 				force_flush = 1;
1392 				addr += PAGE_SIZE;
1393 				break;
1394 			}
1395 			continue;
1396 		}
1397 
1398 		entry = pte_to_swp_entry(ptent);
1399 		if (is_device_private_entry(entry) ||
1400 		    is_device_exclusive_entry(entry)) {
1401 			page = pfn_swap_entry_to_page(entry);
1402 			if (unlikely(!should_zap_page(details, page)))
1403 				continue;
1404 			rss[mm_counter(page)]--;
1405 			if (is_device_private_entry(entry))
1406 				page_remove_rmap(page, vma, false);
1407 			put_page(page);
1408 		} else if (!non_swap_entry(entry)) {
1409 			/* Genuine swap entry, hence a private anon page */
1410 			if (!should_zap_cows(details))
1411 				continue;
1412 			rss[MM_SWAPENTS]--;
1413 			if (unlikely(!free_swap_and_cache(entry)))
1414 				print_bad_pte(vma, addr, ptent, NULL);
1415 		} else if (is_migration_entry(entry)) {
1416 			page = pfn_swap_entry_to_page(entry);
1417 			if (!should_zap_page(details, page))
1418 				continue;
1419 			rss[mm_counter(page)]--;
1420 		} else if (is_pte_marker_entry(entry)) {
1421 			/* By default, simply drop all pte markers when zap */
1422 		} else if (is_hwpoison_entry(entry)) {
1423 			if (!should_zap_cows(details))
1424 				continue;
1425 		} else {
1426 			/* We should have covered all the swap entry types */
1427 			WARN_ON_ONCE(1);
1428 		}
1429 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1430 	} while (pte++, addr += PAGE_SIZE, addr != end);
1431 
1432 	add_mm_rss_vec(mm, rss);
1433 	arch_leave_lazy_mmu_mode();
1434 
1435 	/* Do the actual TLB flush before dropping ptl */
1436 	if (force_flush)
1437 		tlb_flush_mmu_tlbonly(tlb);
1438 	pte_unmap_unlock(start_pte, ptl);
1439 
1440 	/*
1441 	 * If we forced a TLB flush (either due to running out of
1442 	 * batch buffers or because we needed to flush dirty TLB
1443 	 * entries before releasing the ptl), free the batched
1444 	 * memory too. Restart if we didn't do everything.
1445 	 */
1446 	if (force_flush) {
1447 		force_flush = 0;
1448 		tlb_flush_mmu(tlb);
1449 	}
1450 
1451 	if (addr != end) {
1452 		cond_resched();
1453 		goto again;
1454 	}
1455 
1456 	return addr;
1457 }
1458 
1459 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1460 				struct vm_area_struct *vma, pud_t *pud,
1461 				unsigned long addr, unsigned long end,
1462 				struct zap_details *details)
1463 {
1464 	pmd_t *pmd;
1465 	unsigned long next;
1466 
1467 	pmd = pmd_offset(pud, addr);
1468 	do {
1469 		next = pmd_addr_end(addr, end);
1470 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1471 			if (next - addr != HPAGE_PMD_SIZE)
1472 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1473 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1474 				goto next;
1475 			/* fall through */
1476 		} else if (details && details->single_folio &&
1477 			   folio_test_pmd_mappable(details->single_folio) &&
1478 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1479 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1480 			/*
1481 			 * Take and drop THP pmd lock so that we cannot return
1482 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1483 			 * but not yet decremented compound_mapcount().
1484 			 */
1485 			spin_unlock(ptl);
1486 		}
1487 
1488 		/*
1489 		 * Here there can be other concurrent MADV_DONTNEED or
1490 		 * trans huge page faults running, and if the pmd is
1491 		 * none or trans huge it can change under us. This is
1492 		 * because MADV_DONTNEED holds the mmap_lock in read
1493 		 * mode.
1494 		 */
1495 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1496 			goto next;
1497 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1498 next:
1499 		cond_resched();
1500 	} while (pmd++, addr = next, addr != end);
1501 
1502 	return addr;
1503 }
1504 
1505 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1506 				struct vm_area_struct *vma, p4d_t *p4d,
1507 				unsigned long addr, unsigned long end,
1508 				struct zap_details *details)
1509 {
1510 	pud_t *pud;
1511 	unsigned long next;
1512 
1513 	pud = pud_offset(p4d, addr);
1514 	do {
1515 		next = pud_addr_end(addr, end);
1516 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1517 			if (next - addr != HPAGE_PUD_SIZE) {
1518 				mmap_assert_locked(tlb->mm);
1519 				split_huge_pud(vma, pud, addr);
1520 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1521 				goto next;
1522 			/* fall through */
1523 		}
1524 		if (pud_none_or_clear_bad(pud))
1525 			continue;
1526 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1527 next:
1528 		cond_resched();
1529 	} while (pud++, addr = next, addr != end);
1530 
1531 	return addr;
1532 }
1533 
1534 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1535 				struct vm_area_struct *vma, pgd_t *pgd,
1536 				unsigned long addr, unsigned long end,
1537 				struct zap_details *details)
1538 {
1539 	p4d_t *p4d;
1540 	unsigned long next;
1541 
1542 	p4d = p4d_offset(pgd, addr);
1543 	do {
1544 		next = p4d_addr_end(addr, end);
1545 		if (p4d_none_or_clear_bad(p4d))
1546 			continue;
1547 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1548 	} while (p4d++, addr = next, addr != end);
1549 
1550 	return addr;
1551 }
1552 
1553 void unmap_page_range(struct mmu_gather *tlb,
1554 			     struct vm_area_struct *vma,
1555 			     unsigned long addr, unsigned long end,
1556 			     struct zap_details *details)
1557 {
1558 	pgd_t *pgd;
1559 	unsigned long next;
1560 
1561 	BUG_ON(addr >= end);
1562 	tlb_start_vma(tlb, vma);
1563 	pgd = pgd_offset(vma->vm_mm, addr);
1564 	do {
1565 		next = pgd_addr_end(addr, end);
1566 		if (pgd_none_or_clear_bad(pgd))
1567 			continue;
1568 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1569 	} while (pgd++, addr = next, addr != end);
1570 	tlb_end_vma(tlb, vma);
1571 }
1572 
1573 
1574 static void unmap_single_vma(struct mmu_gather *tlb,
1575 		struct vm_area_struct *vma, unsigned long start_addr,
1576 		unsigned long end_addr,
1577 		struct zap_details *details)
1578 {
1579 	unsigned long start = max(vma->vm_start, start_addr);
1580 	unsigned long end;
1581 
1582 	if (start >= vma->vm_end)
1583 		return;
1584 	end = min(vma->vm_end, end_addr);
1585 	if (end <= vma->vm_start)
1586 		return;
1587 
1588 	if (vma->vm_file)
1589 		uprobe_munmap(vma, start, end);
1590 
1591 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1592 		untrack_pfn(vma, 0, 0);
1593 
1594 	if (start != end) {
1595 		if (unlikely(is_vm_hugetlb_page(vma))) {
1596 			/*
1597 			 * It is undesirable to test vma->vm_file as it
1598 			 * should be non-null for valid hugetlb area.
1599 			 * However, vm_file will be NULL in the error
1600 			 * cleanup path of mmap_region. When
1601 			 * hugetlbfs ->mmap method fails,
1602 			 * mmap_region() nullifies vma->vm_file
1603 			 * before calling this function to clean up.
1604 			 * Since no pte has actually been setup, it is
1605 			 * safe to do nothing in this case.
1606 			 */
1607 			if (vma->vm_file) {
1608 				i_mmap_lock_write(vma->vm_file->f_mapping);
1609 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1610 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1611 			}
1612 		} else
1613 			unmap_page_range(tlb, vma, start, end, details);
1614 	}
1615 }
1616 
1617 /**
1618  * unmap_vmas - unmap a range of memory covered by a list of vma's
1619  * @tlb: address of the caller's struct mmu_gather
1620  * @vma: the starting vma
1621  * @start_addr: virtual address at which to start unmapping
1622  * @end_addr: virtual address at which to end unmapping
1623  *
1624  * Unmap all pages in the vma list.
1625  *
1626  * Only addresses between `start' and `end' will be unmapped.
1627  *
1628  * The VMA list must be sorted in ascending virtual address order.
1629  *
1630  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1631  * range after unmap_vmas() returns.  So the only responsibility here is to
1632  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1633  * drops the lock and schedules.
1634  */
1635 void unmap_vmas(struct mmu_gather *tlb,
1636 		struct vm_area_struct *vma, unsigned long start_addr,
1637 		unsigned long end_addr)
1638 {
1639 	struct mmu_notifier_range range;
1640 
1641 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1642 				start_addr, end_addr);
1643 	mmu_notifier_invalidate_range_start(&range);
1644 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1645 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1646 	mmu_notifier_invalidate_range_end(&range);
1647 }
1648 
1649 /**
1650  * zap_page_range - remove user pages in a given range
1651  * @vma: vm_area_struct holding the applicable pages
1652  * @start: starting address of pages to zap
1653  * @size: number of bytes to zap
1654  *
1655  * Caller must protect the VMA list
1656  */
1657 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1658 		unsigned long size)
1659 {
1660 	struct mmu_notifier_range range;
1661 	struct mmu_gather tlb;
1662 
1663 	lru_add_drain();
1664 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1665 				start, start + size);
1666 	tlb_gather_mmu(&tlb, vma->vm_mm);
1667 	update_hiwater_rss(vma->vm_mm);
1668 	mmu_notifier_invalidate_range_start(&range);
1669 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1670 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1671 	mmu_notifier_invalidate_range_end(&range);
1672 	tlb_finish_mmu(&tlb);
1673 }
1674 
1675 /**
1676  * zap_page_range_single - remove user pages in a given range
1677  * @vma: vm_area_struct holding the applicable pages
1678  * @address: starting address of pages to zap
1679  * @size: number of bytes to zap
1680  * @details: details of shared cache invalidation
1681  *
1682  * The range must fit into one VMA.
1683  */
1684 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1685 		unsigned long size, struct zap_details *details)
1686 {
1687 	struct mmu_notifier_range range;
1688 	struct mmu_gather tlb;
1689 
1690 	lru_add_drain();
1691 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1692 				address, address + size);
1693 	tlb_gather_mmu(&tlb, vma->vm_mm);
1694 	update_hiwater_rss(vma->vm_mm);
1695 	mmu_notifier_invalidate_range_start(&range);
1696 	unmap_single_vma(&tlb, vma, address, range.end, details);
1697 	mmu_notifier_invalidate_range_end(&range);
1698 	tlb_finish_mmu(&tlb);
1699 }
1700 
1701 /**
1702  * zap_vma_ptes - remove ptes mapping the vma
1703  * @vma: vm_area_struct holding ptes to be zapped
1704  * @address: starting address of pages to zap
1705  * @size: number of bytes to zap
1706  *
1707  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1708  *
1709  * The entire address range must be fully contained within the vma.
1710  *
1711  */
1712 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1713 		unsigned long size)
1714 {
1715 	if (!range_in_vma(vma, address, address + size) ||
1716 	    		!(vma->vm_flags & VM_PFNMAP))
1717 		return;
1718 
1719 	zap_page_range_single(vma, address, size, NULL);
1720 }
1721 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1722 
1723 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1724 {
1725 	pgd_t *pgd;
1726 	p4d_t *p4d;
1727 	pud_t *pud;
1728 	pmd_t *pmd;
1729 
1730 	pgd = pgd_offset(mm, addr);
1731 	p4d = p4d_alloc(mm, pgd, addr);
1732 	if (!p4d)
1733 		return NULL;
1734 	pud = pud_alloc(mm, p4d, addr);
1735 	if (!pud)
1736 		return NULL;
1737 	pmd = pmd_alloc(mm, pud, addr);
1738 	if (!pmd)
1739 		return NULL;
1740 
1741 	VM_BUG_ON(pmd_trans_huge(*pmd));
1742 	return pmd;
1743 }
1744 
1745 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1746 			spinlock_t **ptl)
1747 {
1748 	pmd_t *pmd = walk_to_pmd(mm, addr);
1749 
1750 	if (!pmd)
1751 		return NULL;
1752 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1753 }
1754 
1755 static int validate_page_before_insert(struct page *page)
1756 {
1757 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1758 		return -EINVAL;
1759 	flush_dcache_page(page);
1760 	return 0;
1761 }
1762 
1763 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1764 			unsigned long addr, struct page *page, pgprot_t prot)
1765 {
1766 	if (!pte_none(*pte))
1767 		return -EBUSY;
1768 	/* Ok, finally just insert the thing.. */
1769 	get_page(page);
1770 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1771 	page_add_file_rmap(page, vma, false);
1772 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1773 	return 0;
1774 }
1775 
1776 /*
1777  * This is the old fallback for page remapping.
1778  *
1779  * For historical reasons, it only allows reserved pages. Only
1780  * old drivers should use this, and they needed to mark their
1781  * pages reserved for the old functions anyway.
1782  */
1783 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1784 			struct page *page, pgprot_t prot)
1785 {
1786 	int retval;
1787 	pte_t *pte;
1788 	spinlock_t *ptl;
1789 
1790 	retval = validate_page_before_insert(page);
1791 	if (retval)
1792 		goto out;
1793 	retval = -ENOMEM;
1794 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1795 	if (!pte)
1796 		goto out;
1797 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1798 	pte_unmap_unlock(pte, ptl);
1799 out:
1800 	return retval;
1801 }
1802 
1803 #ifdef pte_index
1804 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1805 			unsigned long addr, struct page *page, pgprot_t prot)
1806 {
1807 	int err;
1808 
1809 	if (!page_count(page))
1810 		return -EINVAL;
1811 	err = validate_page_before_insert(page);
1812 	if (err)
1813 		return err;
1814 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1815 }
1816 
1817 /* insert_pages() amortizes the cost of spinlock operations
1818  * when inserting pages in a loop. Arch *must* define pte_index.
1819  */
1820 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1821 			struct page **pages, unsigned long *num, pgprot_t prot)
1822 {
1823 	pmd_t *pmd = NULL;
1824 	pte_t *start_pte, *pte;
1825 	spinlock_t *pte_lock;
1826 	struct mm_struct *const mm = vma->vm_mm;
1827 	unsigned long curr_page_idx = 0;
1828 	unsigned long remaining_pages_total = *num;
1829 	unsigned long pages_to_write_in_pmd;
1830 	int ret;
1831 more:
1832 	ret = -EFAULT;
1833 	pmd = walk_to_pmd(mm, addr);
1834 	if (!pmd)
1835 		goto out;
1836 
1837 	pages_to_write_in_pmd = min_t(unsigned long,
1838 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1839 
1840 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1841 	ret = -ENOMEM;
1842 	if (pte_alloc(mm, pmd))
1843 		goto out;
1844 
1845 	while (pages_to_write_in_pmd) {
1846 		int pte_idx = 0;
1847 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1848 
1849 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1850 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1851 			int err = insert_page_in_batch_locked(vma, pte,
1852 				addr, pages[curr_page_idx], prot);
1853 			if (unlikely(err)) {
1854 				pte_unmap_unlock(start_pte, pte_lock);
1855 				ret = err;
1856 				remaining_pages_total -= pte_idx;
1857 				goto out;
1858 			}
1859 			addr += PAGE_SIZE;
1860 			++curr_page_idx;
1861 		}
1862 		pte_unmap_unlock(start_pte, pte_lock);
1863 		pages_to_write_in_pmd -= batch_size;
1864 		remaining_pages_total -= batch_size;
1865 	}
1866 	if (remaining_pages_total)
1867 		goto more;
1868 	ret = 0;
1869 out:
1870 	*num = remaining_pages_total;
1871 	return ret;
1872 }
1873 #endif  /* ifdef pte_index */
1874 
1875 /**
1876  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1877  * @vma: user vma to map to
1878  * @addr: target start user address of these pages
1879  * @pages: source kernel pages
1880  * @num: in: number of pages to map. out: number of pages that were *not*
1881  * mapped. (0 means all pages were successfully mapped).
1882  *
1883  * Preferred over vm_insert_page() when inserting multiple pages.
1884  *
1885  * In case of error, we may have mapped a subset of the provided
1886  * pages. It is the caller's responsibility to account for this case.
1887  *
1888  * The same restrictions apply as in vm_insert_page().
1889  */
1890 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1891 			struct page **pages, unsigned long *num)
1892 {
1893 #ifdef pte_index
1894 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1895 
1896 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1897 		return -EFAULT;
1898 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1899 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1900 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1901 		vma->vm_flags |= VM_MIXEDMAP;
1902 	}
1903 	/* Defer page refcount checking till we're about to map that page. */
1904 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1905 #else
1906 	unsigned long idx = 0, pgcount = *num;
1907 	int err = -EINVAL;
1908 
1909 	for (; idx < pgcount; ++idx) {
1910 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1911 		if (err)
1912 			break;
1913 	}
1914 	*num = pgcount - idx;
1915 	return err;
1916 #endif  /* ifdef pte_index */
1917 }
1918 EXPORT_SYMBOL(vm_insert_pages);
1919 
1920 /**
1921  * vm_insert_page - insert single page into user vma
1922  * @vma: user vma to map to
1923  * @addr: target user address of this page
1924  * @page: source kernel page
1925  *
1926  * This allows drivers to insert individual pages they've allocated
1927  * into a user vma.
1928  *
1929  * The page has to be a nice clean _individual_ kernel allocation.
1930  * If you allocate a compound page, you need to have marked it as
1931  * such (__GFP_COMP), or manually just split the page up yourself
1932  * (see split_page()).
1933  *
1934  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1935  * took an arbitrary page protection parameter. This doesn't allow
1936  * that. Your vma protection will have to be set up correctly, which
1937  * means that if you want a shared writable mapping, you'd better
1938  * ask for a shared writable mapping!
1939  *
1940  * The page does not need to be reserved.
1941  *
1942  * Usually this function is called from f_op->mmap() handler
1943  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1944  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1945  * function from other places, for example from page-fault handler.
1946  *
1947  * Return: %0 on success, negative error code otherwise.
1948  */
1949 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1950 			struct page *page)
1951 {
1952 	if (addr < vma->vm_start || addr >= vma->vm_end)
1953 		return -EFAULT;
1954 	if (!page_count(page))
1955 		return -EINVAL;
1956 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1958 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1959 		vma->vm_flags |= VM_MIXEDMAP;
1960 	}
1961 	return insert_page(vma, addr, page, vma->vm_page_prot);
1962 }
1963 EXPORT_SYMBOL(vm_insert_page);
1964 
1965 /*
1966  * __vm_map_pages - maps range of kernel pages into user vma
1967  * @vma: user vma to map to
1968  * @pages: pointer to array of source kernel pages
1969  * @num: number of pages in page array
1970  * @offset: user's requested vm_pgoff
1971  *
1972  * This allows drivers to map range of kernel pages into a user vma.
1973  *
1974  * Return: 0 on success and error code otherwise.
1975  */
1976 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1977 				unsigned long num, unsigned long offset)
1978 {
1979 	unsigned long count = vma_pages(vma);
1980 	unsigned long uaddr = vma->vm_start;
1981 	int ret, i;
1982 
1983 	/* Fail if the user requested offset is beyond the end of the object */
1984 	if (offset >= num)
1985 		return -ENXIO;
1986 
1987 	/* Fail if the user requested size exceeds available object size */
1988 	if (count > num - offset)
1989 		return -ENXIO;
1990 
1991 	for (i = 0; i < count; i++) {
1992 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1993 		if (ret < 0)
1994 			return ret;
1995 		uaddr += PAGE_SIZE;
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 /**
2002  * vm_map_pages - maps range of kernel pages starts with non zero offset
2003  * @vma: user vma to map to
2004  * @pages: pointer to array of source kernel pages
2005  * @num: number of pages in page array
2006  *
2007  * Maps an object consisting of @num pages, catering for the user's
2008  * requested vm_pgoff
2009  *
2010  * If we fail to insert any page into the vma, the function will return
2011  * immediately leaving any previously inserted pages present.  Callers
2012  * from the mmap handler may immediately return the error as their caller
2013  * will destroy the vma, removing any successfully inserted pages. Other
2014  * callers should make their own arrangements for calling unmap_region().
2015  *
2016  * Context: Process context. Called by mmap handlers.
2017  * Return: 0 on success and error code otherwise.
2018  */
2019 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020 				unsigned long num)
2021 {
2022 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2023 }
2024 EXPORT_SYMBOL(vm_map_pages);
2025 
2026 /**
2027  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2028  * @vma: user vma to map to
2029  * @pages: pointer to array of source kernel pages
2030  * @num: number of pages in page array
2031  *
2032  * Similar to vm_map_pages(), except that it explicitly sets the offset
2033  * to 0. This function is intended for the drivers that did not consider
2034  * vm_pgoff.
2035  *
2036  * Context: Process context. Called by mmap handlers.
2037  * Return: 0 on success and error code otherwise.
2038  */
2039 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2040 				unsigned long num)
2041 {
2042 	return __vm_map_pages(vma, pages, num, 0);
2043 }
2044 EXPORT_SYMBOL(vm_map_pages_zero);
2045 
2046 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2048 {
2049 	struct mm_struct *mm = vma->vm_mm;
2050 	pte_t *pte, entry;
2051 	spinlock_t *ptl;
2052 
2053 	pte = get_locked_pte(mm, addr, &ptl);
2054 	if (!pte)
2055 		return VM_FAULT_OOM;
2056 	if (!pte_none(*pte)) {
2057 		if (mkwrite) {
2058 			/*
2059 			 * For read faults on private mappings the PFN passed
2060 			 * in may not match the PFN we have mapped if the
2061 			 * mapped PFN is a writeable COW page.  In the mkwrite
2062 			 * case we are creating a writable PTE for a shared
2063 			 * mapping and we expect the PFNs to match. If they
2064 			 * don't match, we are likely racing with block
2065 			 * allocation and mapping invalidation so just skip the
2066 			 * update.
2067 			 */
2068 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2069 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2070 				goto out_unlock;
2071 			}
2072 			entry = pte_mkyoung(*pte);
2073 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2075 				update_mmu_cache(vma, addr, pte);
2076 		}
2077 		goto out_unlock;
2078 	}
2079 
2080 	/* Ok, finally just insert the thing.. */
2081 	if (pfn_t_devmap(pfn))
2082 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2083 	else
2084 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2085 
2086 	if (mkwrite) {
2087 		entry = pte_mkyoung(entry);
2088 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2089 	}
2090 
2091 	set_pte_at(mm, addr, pte, entry);
2092 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2093 
2094 out_unlock:
2095 	pte_unmap_unlock(pte, ptl);
2096 	return VM_FAULT_NOPAGE;
2097 }
2098 
2099 /**
2100  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2101  * @vma: user vma to map to
2102  * @addr: target user address of this page
2103  * @pfn: source kernel pfn
2104  * @pgprot: pgprot flags for the inserted page
2105  *
2106  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2107  * to override pgprot on a per-page basis.
2108  *
2109  * This only makes sense for IO mappings, and it makes no sense for
2110  * COW mappings.  In general, using multiple vmas is preferable;
2111  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2112  * impractical.
2113  *
2114  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2115  * a value of @pgprot different from that of @vma->vm_page_prot.
2116  *
2117  * Context: Process context.  May allocate using %GFP_KERNEL.
2118  * Return: vm_fault_t value.
2119  */
2120 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2121 			unsigned long pfn, pgprot_t pgprot)
2122 {
2123 	/*
2124 	 * Technically, architectures with pte_special can avoid all these
2125 	 * restrictions (same for remap_pfn_range).  However we would like
2126 	 * consistency in testing and feature parity among all, so we should
2127 	 * try to keep these invariants in place for everybody.
2128 	 */
2129 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2130 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2131 						(VM_PFNMAP|VM_MIXEDMAP));
2132 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2133 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2134 
2135 	if (addr < vma->vm_start || addr >= vma->vm_end)
2136 		return VM_FAULT_SIGBUS;
2137 
2138 	if (!pfn_modify_allowed(pfn, pgprot))
2139 		return VM_FAULT_SIGBUS;
2140 
2141 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2142 
2143 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2144 			false);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2147 
2148 /**
2149  * vmf_insert_pfn - insert single pfn into user vma
2150  * @vma: user vma to map to
2151  * @addr: target user address of this page
2152  * @pfn: source kernel pfn
2153  *
2154  * Similar to vm_insert_page, this allows drivers to insert individual pages
2155  * they've allocated into a user vma. Same comments apply.
2156  *
2157  * This function should only be called from a vm_ops->fault handler, and
2158  * in that case the handler should return the result of this function.
2159  *
2160  * vma cannot be a COW mapping.
2161  *
2162  * As this is called only for pages that do not currently exist, we
2163  * do not need to flush old virtual caches or the TLB.
2164  *
2165  * Context: Process context.  May allocate using %GFP_KERNEL.
2166  * Return: vm_fault_t value.
2167  */
2168 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2169 			unsigned long pfn)
2170 {
2171 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2172 }
2173 EXPORT_SYMBOL(vmf_insert_pfn);
2174 
2175 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2176 {
2177 	/* these checks mirror the abort conditions in vm_normal_page */
2178 	if (vma->vm_flags & VM_MIXEDMAP)
2179 		return true;
2180 	if (pfn_t_devmap(pfn))
2181 		return true;
2182 	if (pfn_t_special(pfn))
2183 		return true;
2184 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2185 		return true;
2186 	return false;
2187 }
2188 
2189 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2190 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2191 		bool mkwrite)
2192 {
2193 	int err;
2194 
2195 	BUG_ON(!vm_mixed_ok(vma, pfn));
2196 
2197 	if (addr < vma->vm_start || addr >= vma->vm_end)
2198 		return VM_FAULT_SIGBUS;
2199 
2200 	track_pfn_insert(vma, &pgprot, pfn);
2201 
2202 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2203 		return VM_FAULT_SIGBUS;
2204 
2205 	/*
2206 	 * If we don't have pte special, then we have to use the pfn_valid()
2207 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2208 	 * refcount the page if pfn_valid is true (hence insert_page rather
2209 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2210 	 * without pte special, it would there be refcounted as a normal page.
2211 	 */
2212 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2213 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2214 		struct page *page;
2215 
2216 		/*
2217 		 * At this point we are committed to insert_page()
2218 		 * regardless of whether the caller specified flags that
2219 		 * result in pfn_t_has_page() == false.
2220 		 */
2221 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2222 		err = insert_page(vma, addr, page, pgprot);
2223 	} else {
2224 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2225 	}
2226 
2227 	if (err == -ENOMEM)
2228 		return VM_FAULT_OOM;
2229 	if (err < 0 && err != -EBUSY)
2230 		return VM_FAULT_SIGBUS;
2231 
2232 	return VM_FAULT_NOPAGE;
2233 }
2234 
2235 /**
2236  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2237  * @vma: user vma to map to
2238  * @addr: target user address of this page
2239  * @pfn: source kernel pfn
2240  * @pgprot: pgprot flags for the inserted page
2241  *
2242  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2243  * to override pgprot on a per-page basis.
2244  *
2245  * Typically this function should be used by drivers to set caching- and
2246  * encryption bits different than those of @vma->vm_page_prot, because
2247  * the caching- or encryption mode may not be known at mmap() time.
2248  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2249  * to set caching and encryption bits for those vmas (except for COW pages).
2250  * This is ensured by core vm only modifying these page table entries using
2251  * functions that don't touch caching- or encryption bits, using pte_modify()
2252  * if needed. (See for example mprotect()).
2253  * Also when new page-table entries are created, this is only done using the
2254  * fault() callback, and never using the value of vma->vm_page_prot,
2255  * except for page-table entries that point to anonymous pages as the result
2256  * of COW.
2257  *
2258  * Context: Process context.  May allocate using %GFP_KERNEL.
2259  * Return: vm_fault_t value.
2260  */
2261 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2262 				 pfn_t pfn, pgprot_t pgprot)
2263 {
2264 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2265 }
2266 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2267 
2268 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2269 		pfn_t pfn)
2270 {
2271 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2272 }
2273 EXPORT_SYMBOL(vmf_insert_mixed);
2274 
2275 /*
2276  *  If the insertion of PTE failed because someone else already added a
2277  *  different entry in the mean time, we treat that as success as we assume
2278  *  the same entry was actually inserted.
2279  */
2280 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2281 		unsigned long addr, pfn_t pfn)
2282 {
2283 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2284 }
2285 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2286 
2287 /*
2288  * maps a range of physical memory into the requested pages. the old
2289  * mappings are removed. any references to nonexistent pages results
2290  * in null mappings (currently treated as "copy-on-access")
2291  */
2292 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2293 			unsigned long addr, unsigned long end,
2294 			unsigned long pfn, pgprot_t prot)
2295 {
2296 	pte_t *pte, *mapped_pte;
2297 	spinlock_t *ptl;
2298 	int err = 0;
2299 
2300 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2301 	if (!pte)
2302 		return -ENOMEM;
2303 	arch_enter_lazy_mmu_mode();
2304 	do {
2305 		BUG_ON(!pte_none(*pte));
2306 		if (!pfn_modify_allowed(pfn, prot)) {
2307 			err = -EACCES;
2308 			break;
2309 		}
2310 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2311 		pfn++;
2312 	} while (pte++, addr += PAGE_SIZE, addr != end);
2313 	arch_leave_lazy_mmu_mode();
2314 	pte_unmap_unlock(mapped_pte, ptl);
2315 	return err;
2316 }
2317 
2318 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2319 			unsigned long addr, unsigned long end,
2320 			unsigned long pfn, pgprot_t prot)
2321 {
2322 	pmd_t *pmd;
2323 	unsigned long next;
2324 	int err;
2325 
2326 	pfn -= addr >> PAGE_SHIFT;
2327 	pmd = pmd_alloc(mm, pud, addr);
2328 	if (!pmd)
2329 		return -ENOMEM;
2330 	VM_BUG_ON(pmd_trans_huge(*pmd));
2331 	do {
2332 		next = pmd_addr_end(addr, end);
2333 		err = remap_pte_range(mm, pmd, addr, next,
2334 				pfn + (addr >> PAGE_SHIFT), prot);
2335 		if (err)
2336 			return err;
2337 	} while (pmd++, addr = next, addr != end);
2338 	return 0;
2339 }
2340 
2341 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2342 			unsigned long addr, unsigned long end,
2343 			unsigned long pfn, pgprot_t prot)
2344 {
2345 	pud_t *pud;
2346 	unsigned long next;
2347 	int err;
2348 
2349 	pfn -= addr >> PAGE_SHIFT;
2350 	pud = pud_alloc(mm, p4d, addr);
2351 	if (!pud)
2352 		return -ENOMEM;
2353 	do {
2354 		next = pud_addr_end(addr, end);
2355 		err = remap_pmd_range(mm, pud, addr, next,
2356 				pfn + (addr >> PAGE_SHIFT), prot);
2357 		if (err)
2358 			return err;
2359 	} while (pud++, addr = next, addr != end);
2360 	return 0;
2361 }
2362 
2363 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2364 			unsigned long addr, unsigned long end,
2365 			unsigned long pfn, pgprot_t prot)
2366 {
2367 	p4d_t *p4d;
2368 	unsigned long next;
2369 	int err;
2370 
2371 	pfn -= addr >> PAGE_SHIFT;
2372 	p4d = p4d_alloc(mm, pgd, addr);
2373 	if (!p4d)
2374 		return -ENOMEM;
2375 	do {
2376 		next = p4d_addr_end(addr, end);
2377 		err = remap_pud_range(mm, p4d, addr, next,
2378 				pfn + (addr >> PAGE_SHIFT), prot);
2379 		if (err)
2380 			return err;
2381 	} while (p4d++, addr = next, addr != end);
2382 	return 0;
2383 }
2384 
2385 /*
2386  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2387  * must have pre-validated the caching bits of the pgprot_t.
2388  */
2389 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2390 		unsigned long pfn, unsigned long size, pgprot_t prot)
2391 {
2392 	pgd_t *pgd;
2393 	unsigned long next;
2394 	unsigned long end = addr + PAGE_ALIGN(size);
2395 	struct mm_struct *mm = vma->vm_mm;
2396 	int err;
2397 
2398 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2399 		return -EINVAL;
2400 
2401 	/*
2402 	 * Physically remapped pages are special. Tell the
2403 	 * rest of the world about it:
2404 	 *   VM_IO tells people not to look at these pages
2405 	 *	(accesses can have side effects).
2406 	 *   VM_PFNMAP tells the core MM that the base pages are just
2407 	 *	raw PFN mappings, and do not have a "struct page" associated
2408 	 *	with them.
2409 	 *   VM_DONTEXPAND
2410 	 *      Disable vma merging and expanding with mremap().
2411 	 *   VM_DONTDUMP
2412 	 *      Omit vma from core dump, even when VM_IO turned off.
2413 	 *
2414 	 * There's a horrible special case to handle copy-on-write
2415 	 * behaviour that some programs depend on. We mark the "original"
2416 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2417 	 * See vm_normal_page() for details.
2418 	 */
2419 	if (is_cow_mapping(vma->vm_flags)) {
2420 		if (addr != vma->vm_start || end != vma->vm_end)
2421 			return -EINVAL;
2422 		vma->vm_pgoff = pfn;
2423 	}
2424 
2425 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2426 
2427 	BUG_ON(addr >= end);
2428 	pfn -= addr >> PAGE_SHIFT;
2429 	pgd = pgd_offset(mm, addr);
2430 	flush_cache_range(vma, addr, end);
2431 	do {
2432 		next = pgd_addr_end(addr, end);
2433 		err = remap_p4d_range(mm, pgd, addr, next,
2434 				pfn + (addr >> PAGE_SHIFT), prot);
2435 		if (err)
2436 			return err;
2437 	} while (pgd++, addr = next, addr != end);
2438 
2439 	return 0;
2440 }
2441 
2442 /**
2443  * remap_pfn_range - remap kernel memory to userspace
2444  * @vma: user vma to map to
2445  * @addr: target page aligned user address to start at
2446  * @pfn: page frame number of kernel physical memory address
2447  * @size: size of mapping area
2448  * @prot: page protection flags for this mapping
2449  *
2450  * Note: this is only safe if the mm semaphore is held when called.
2451  *
2452  * Return: %0 on success, negative error code otherwise.
2453  */
2454 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2455 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2456 {
2457 	int err;
2458 
2459 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2460 	if (err)
2461 		return -EINVAL;
2462 
2463 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2464 	if (err)
2465 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2466 	return err;
2467 }
2468 EXPORT_SYMBOL(remap_pfn_range);
2469 
2470 /**
2471  * vm_iomap_memory - remap memory to userspace
2472  * @vma: user vma to map to
2473  * @start: start of the physical memory to be mapped
2474  * @len: size of area
2475  *
2476  * This is a simplified io_remap_pfn_range() for common driver use. The
2477  * driver just needs to give us the physical memory range to be mapped,
2478  * we'll figure out the rest from the vma information.
2479  *
2480  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2481  * whatever write-combining details or similar.
2482  *
2483  * Return: %0 on success, negative error code otherwise.
2484  */
2485 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2486 {
2487 	unsigned long vm_len, pfn, pages;
2488 
2489 	/* Check that the physical memory area passed in looks valid */
2490 	if (start + len < start)
2491 		return -EINVAL;
2492 	/*
2493 	 * You *really* shouldn't map things that aren't page-aligned,
2494 	 * but we've historically allowed it because IO memory might
2495 	 * just have smaller alignment.
2496 	 */
2497 	len += start & ~PAGE_MASK;
2498 	pfn = start >> PAGE_SHIFT;
2499 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2500 	if (pfn + pages < pfn)
2501 		return -EINVAL;
2502 
2503 	/* We start the mapping 'vm_pgoff' pages into the area */
2504 	if (vma->vm_pgoff > pages)
2505 		return -EINVAL;
2506 	pfn += vma->vm_pgoff;
2507 	pages -= vma->vm_pgoff;
2508 
2509 	/* Can we fit all of the mapping? */
2510 	vm_len = vma->vm_end - vma->vm_start;
2511 	if (vm_len >> PAGE_SHIFT > pages)
2512 		return -EINVAL;
2513 
2514 	/* Ok, let it rip */
2515 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2516 }
2517 EXPORT_SYMBOL(vm_iomap_memory);
2518 
2519 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2520 				     unsigned long addr, unsigned long end,
2521 				     pte_fn_t fn, void *data, bool create,
2522 				     pgtbl_mod_mask *mask)
2523 {
2524 	pte_t *pte, *mapped_pte;
2525 	int err = 0;
2526 	spinlock_t *ptl;
2527 
2528 	if (create) {
2529 		mapped_pte = pte = (mm == &init_mm) ?
2530 			pte_alloc_kernel_track(pmd, addr, mask) :
2531 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2532 		if (!pte)
2533 			return -ENOMEM;
2534 	} else {
2535 		mapped_pte = pte = (mm == &init_mm) ?
2536 			pte_offset_kernel(pmd, addr) :
2537 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2538 	}
2539 
2540 	BUG_ON(pmd_huge(*pmd));
2541 
2542 	arch_enter_lazy_mmu_mode();
2543 
2544 	if (fn) {
2545 		do {
2546 			if (create || !pte_none(*pte)) {
2547 				err = fn(pte++, addr, data);
2548 				if (err)
2549 					break;
2550 			}
2551 		} while (addr += PAGE_SIZE, addr != end);
2552 	}
2553 	*mask |= PGTBL_PTE_MODIFIED;
2554 
2555 	arch_leave_lazy_mmu_mode();
2556 
2557 	if (mm != &init_mm)
2558 		pte_unmap_unlock(mapped_pte, ptl);
2559 	return err;
2560 }
2561 
2562 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2563 				     unsigned long addr, unsigned long end,
2564 				     pte_fn_t fn, void *data, bool create,
2565 				     pgtbl_mod_mask *mask)
2566 {
2567 	pmd_t *pmd;
2568 	unsigned long next;
2569 	int err = 0;
2570 
2571 	BUG_ON(pud_huge(*pud));
2572 
2573 	if (create) {
2574 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2575 		if (!pmd)
2576 			return -ENOMEM;
2577 	} else {
2578 		pmd = pmd_offset(pud, addr);
2579 	}
2580 	do {
2581 		next = pmd_addr_end(addr, end);
2582 		if (pmd_none(*pmd) && !create)
2583 			continue;
2584 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2585 			return -EINVAL;
2586 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2587 			if (!create)
2588 				continue;
2589 			pmd_clear_bad(pmd);
2590 		}
2591 		err = apply_to_pte_range(mm, pmd, addr, next,
2592 					 fn, data, create, mask);
2593 		if (err)
2594 			break;
2595 	} while (pmd++, addr = next, addr != end);
2596 
2597 	return err;
2598 }
2599 
2600 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2601 				     unsigned long addr, unsigned long end,
2602 				     pte_fn_t fn, void *data, bool create,
2603 				     pgtbl_mod_mask *mask)
2604 {
2605 	pud_t *pud;
2606 	unsigned long next;
2607 	int err = 0;
2608 
2609 	if (create) {
2610 		pud = pud_alloc_track(mm, p4d, addr, mask);
2611 		if (!pud)
2612 			return -ENOMEM;
2613 	} else {
2614 		pud = pud_offset(p4d, addr);
2615 	}
2616 	do {
2617 		next = pud_addr_end(addr, end);
2618 		if (pud_none(*pud) && !create)
2619 			continue;
2620 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2621 			return -EINVAL;
2622 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2623 			if (!create)
2624 				continue;
2625 			pud_clear_bad(pud);
2626 		}
2627 		err = apply_to_pmd_range(mm, pud, addr, next,
2628 					 fn, data, create, mask);
2629 		if (err)
2630 			break;
2631 	} while (pud++, addr = next, addr != end);
2632 
2633 	return err;
2634 }
2635 
2636 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2637 				     unsigned long addr, unsigned long end,
2638 				     pte_fn_t fn, void *data, bool create,
2639 				     pgtbl_mod_mask *mask)
2640 {
2641 	p4d_t *p4d;
2642 	unsigned long next;
2643 	int err = 0;
2644 
2645 	if (create) {
2646 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2647 		if (!p4d)
2648 			return -ENOMEM;
2649 	} else {
2650 		p4d = p4d_offset(pgd, addr);
2651 	}
2652 	do {
2653 		next = p4d_addr_end(addr, end);
2654 		if (p4d_none(*p4d) && !create)
2655 			continue;
2656 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2657 			return -EINVAL;
2658 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2659 			if (!create)
2660 				continue;
2661 			p4d_clear_bad(p4d);
2662 		}
2663 		err = apply_to_pud_range(mm, p4d, addr, next,
2664 					 fn, data, create, mask);
2665 		if (err)
2666 			break;
2667 	} while (p4d++, addr = next, addr != end);
2668 
2669 	return err;
2670 }
2671 
2672 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2673 				 unsigned long size, pte_fn_t fn,
2674 				 void *data, bool create)
2675 {
2676 	pgd_t *pgd;
2677 	unsigned long start = addr, next;
2678 	unsigned long end = addr + size;
2679 	pgtbl_mod_mask mask = 0;
2680 	int err = 0;
2681 
2682 	if (WARN_ON(addr >= end))
2683 		return -EINVAL;
2684 
2685 	pgd = pgd_offset(mm, addr);
2686 	do {
2687 		next = pgd_addr_end(addr, end);
2688 		if (pgd_none(*pgd) && !create)
2689 			continue;
2690 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2691 			return -EINVAL;
2692 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2693 			if (!create)
2694 				continue;
2695 			pgd_clear_bad(pgd);
2696 		}
2697 		err = apply_to_p4d_range(mm, pgd, addr, next,
2698 					 fn, data, create, &mask);
2699 		if (err)
2700 			break;
2701 	} while (pgd++, addr = next, addr != end);
2702 
2703 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2704 		arch_sync_kernel_mappings(start, start + size);
2705 
2706 	return err;
2707 }
2708 
2709 /*
2710  * Scan a region of virtual memory, filling in page tables as necessary
2711  * and calling a provided function on each leaf page table.
2712  */
2713 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2714 			unsigned long size, pte_fn_t fn, void *data)
2715 {
2716 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2717 }
2718 EXPORT_SYMBOL_GPL(apply_to_page_range);
2719 
2720 /*
2721  * Scan a region of virtual memory, calling a provided function on
2722  * each leaf page table where it exists.
2723  *
2724  * Unlike apply_to_page_range, this does _not_ fill in page tables
2725  * where they are absent.
2726  */
2727 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2728 				 unsigned long size, pte_fn_t fn, void *data)
2729 {
2730 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2731 }
2732 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2733 
2734 /*
2735  * handle_pte_fault chooses page fault handler according to an entry which was
2736  * read non-atomically.  Before making any commitment, on those architectures
2737  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2738  * parts, do_swap_page must check under lock before unmapping the pte and
2739  * proceeding (but do_wp_page is only called after already making such a check;
2740  * and do_anonymous_page can safely check later on).
2741  */
2742 static inline int pte_unmap_same(struct vm_fault *vmf)
2743 {
2744 	int same = 1;
2745 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2746 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2747 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2748 		spin_lock(ptl);
2749 		same = pte_same(*vmf->pte, vmf->orig_pte);
2750 		spin_unlock(ptl);
2751 	}
2752 #endif
2753 	pte_unmap(vmf->pte);
2754 	vmf->pte = NULL;
2755 	return same;
2756 }
2757 
2758 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2759 				       struct vm_fault *vmf)
2760 {
2761 	bool ret;
2762 	void *kaddr;
2763 	void __user *uaddr;
2764 	bool locked = false;
2765 	struct vm_area_struct *vma = vmf->vma;
2766 	struct mm_struct *mm = vma->vm_mm;
2767 	unsigned long addr = vmf->address;
2768 
2769 	if (likely(src)) {
2770 		copy_user_highpage(dst, src, addr, vma);
2771 		return true;
2772 	}
2773 
2774 	/*
2775 	 * If the source page was a PFN mapping, we don't have
2776 	 * a "struct page" for it. We do a best-effort copy by
2777 	 * just copying from the original user address. If that
2778 	 * fails, we just zero-fill it. Live with it.
2779 	 */
2780 	kaddr = kmap_atomic(dst);
2781 	uaddr = (void __user *)(addr & PAGE_MASK);
2782 
2783 	/*
2784 	 * On architectures with software "accessed" bits, we would
2785 	 * take a double page fault, so mark it accessed here.
2786 	 */
2787 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2788 		pte_t entry;
2789 
2790 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2791 		locked = true;
2792 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2793 			/*
2794 			 * Other thread has already handled the fault
2795 			 * and update local tlb only
2796 			 */
2797 			update_mmu_tlb(vma, addr, vmf->pte);
2798 			ret = false;
2799 			goto pte_unlock;
2800 		}
2801 
2802 		entry = pte_mkyoung(vmf->orig_pte);
2803 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2804 			update_mmu_cache(vma, addr, vmf->pte);
2805 	}
2806 
2807 	/*
2808 	 * This really shouldn't fail, because the page is there
2809 	 * in the page tables. But it might just be unreadable,
2810 	 * in which case we just give up and fill the result with
2811 	 * zeroes.
2812 	 */
2813 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2814 		if (locked)
2815 			goto warn;
2816 
2817 		/* Re-validate under PTL if the page is still mapped */
2818 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2819 		locked = true;
2820 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2821 			/* The PTE changed under us, update local tlb */
2822 			update_mmu_tlb(vma, addr, vmf->pte);
2823 			ret = false;
2824 			goto pte_unlock;
2825 		}
2826 
2827 		/*
2828 		 * The same page can be mapped back since last copy attempt.
2829 		 * Try to copy again under PTL.
2830 		 */
2831 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2832 			/*
2833 			 * Give a warn in case there can be some obscure
2834 			 * use-case
2835 			 */
2836 warn:
2837 			WARN_ON_ONCE(1);
2838 			clear_page(kaddr);
2839 		}
2840 	}
2841 
2842 	ret = true;
2843 
2844 pte_unlock:
2845 	if (locked)
2846 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2847 	kunmap_atomic(kaddr);
2848 	flush_dcache_page(dst);
2849 
2850 	return ret;
2851 }
2852 
2853 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2854 {
2855 	struct file *vm_file = vma->vm_file;
2856 
2857 	if (vm_file)
2858 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2859 
2860 	/*
2861 	 * Special mappings (e.g. VDSO) do not have any file so fake
2862 	 * a default GFP_KERNEL for them.
2863 	 */
2864 	return GFP_KERNEL;
2865 }
2866 
2867 /*
2868  * Notify the address space that the page is about to become writable so that
2869  * it can prohibit this or wait for the page to get into an appropriate state.
2870  *
2871  * We do this without the lock held, so that it can sleep if it needs to.
2872  */
2873 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2874 {
2875 	vm_fault_t ret;
2876 	struct page *page = vmf->page;
2877 	unsigned int old_flags = vmf->flags;
2878 
2879 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2880 
2881 	if (vmf->vma->vm_file &&
2882 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2883 		return VM_FAULT_SIGBUS;
2884 
2885 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2886 	/* Restore original flags so that caller is not surprised */
2887 	vmf->flags = old_flags;
2888 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2889 		return ret;
2890 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2891 		lock_page(page);
2892 		if (!page->mapping) {
2893 			unlock_page(page);
2894 			return 0; /* retry */
2895 		}
2896 		ret |= VM_FAULT_LOCKED;
2897 	} else
2898 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2899 	return ret;
2900 }
2901 
2902 /*
2903  * Handle dirtying of a page in shared file mapping on a write fault.
2904  *
2905  * The function expects the page to be locked and unlocks it.
2906  */
2907 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2908 {
2909 	struct vm_area_struct *vma = vmf->vma;
2910 	struct address_space *mapping;
2911 	struct page *page = vmf->page;
2912 	bool dirtied;
2913 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2914 
2915 	dirtied = set_page_dirty(page);
2916 	VM_BUG_ON_PAGE(PageAnon(page), page);
2917 	/*
2918 	 * Take a local copy of the address_space - page.mapping may be zeroed
2919 	 * by truncate after unlock_page().   The address_space itself remains
2920 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2921 	 * release semantics to prevent the compiler from undoing this copying.
2922 	 */
2923 	mapping = page_rmapping(page);
2924 	unlock_page(page);
2925 
2926 	if (!page_mkwrite)
2927 		file_update_time(vma->vm_file);
2928 
2929 	/*
2930 	 * Throttle page dirtying rate down to writeback speed.
2931 	 *
2932 	 * mapping may be NULL here because some device drivers do not
2933 	 * set page.mapping but still dirty their pages
2934 	 *
2935 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2936 	 * is pinning the mapping, as per above.
2937 	 */
2938 	if ((dirtied || page_mkwrite) && mapping) {
2939 		struct file *fpin;
2940 
2941 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2942 		balance_dirty_pages_ratelimited(mapping);
2943 		if (fpin) {
2944 			fput(fpin);
2945 			return VM_FAULT_RETRY;
2946 		}
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 /*
2953  * Handle write page faults for pages that can be reused in the current vma
2954  *
2955  * This can happen either due to the mapping being with the VM_SHARED flag,
2956  * or due to us being the last reference standing to the page. In either
2957  * case, all we need to do here is to mark the page as writable and update
2958  * any related book-keeping.
2959  */
2960 static inline void wp_page_reuse(struct vm_fault *vmf)
2961 	__releases(vmf->ptl)
2962 {
2963 	struct vm_area_struct *vma = vmf->vma;
2964 	struct page *page = vmf->page;
2965 	pte_t entry;
2966 
2967 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
2968 	VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page));
2969 
2970 	/*
2971 	 * Clear the pages cpupid information as the existing
2972 	 * information potentially belongs to a now completely
2973 	 * unrelated process.
2974 	 */
2975 	if (page)
2976 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2977 
2978 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2979 	entry = pte_mkyoung(vmf->orig_pte);
2980 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2981 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2982 		update_mmu_cache(vma, vmf->address, vmf->pte);
2983 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2984 	count_vm_event(PGREUSE);
2985 }
2986 
2987 /*
2988  * Handle the case of a page which we actually need to copy to a new page,
2989  * either due to COW or unsharing.
2990  *
2991  * Called with mmap_lock locked and the old page referenced, but
2992  * without the ptl held.
2993  *
2994  * High level logic flow:
2995  *
2996  * - Allocate a page, copy the content of the old page to the new one.
2997  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2998  * - Take the PTL. If the pte changed, bail out and release the allocated page
2999  * - If the pte is still the way we remember it, update the page table and all
3000  *   relevant references. This includes dropping the reference the page-table
3001  *   held to the old page, as well as updating the rmap.
3002  * - In any case, unlock the PTL and drop the reference we took to the old page.
3003  */
3004 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3005 {
3006 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3007 	struct vm_area_struct *vma = vmf->vma;
3008 	struct mm_struct *mm = vma->vm_mm;
3009 	struct page *old_page = vmf->page;
3010 	struct page *new_page = NULL;
3011 	pte_t entry;
3012 	int page_copied = 0;
3013 	struct mmu_notifier_range range;
3014 
3015 	if (unlikely(anon_vma_prepare(vma)))
3016 		goto oom;
3017 
3018 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3019 		new_page = alloc_zeroed_user_highpage_movable(vma,
3020 							      vmf->address);
3021 		if (!new_page)
3022 			goto oom;
3023 	} else {
3024 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3025 				vmf->address);
3026 		if (!new_page)
3027 			goto oom;
3028 
3029 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3030 			/*
3031 			 * COW failed, if the fault was solved by other,
3032 			 * it's fine. If not, userspace would re-fault on
3033 			 * the same address and we will handle the fault
3034 			 * from the second attempt.
3035 			 */
3036 			put_page(new_page);
3037 			if (old_page)
3038 				put_page(old_page);
3039 			return 0;
3040 		}
3041 	}
3042 
3043 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3044 		goto oom_free_new;
3045 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3046 
3047 	__SetPageUptodate(new_page);
3048 
3049 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3050 				vmf->address & PAGE_MASK,
3051 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3052 	mmu_notifier_invalidate_range_start(&range);
3053 
3054 	/*
3055 	 * Re-check the pte - we dropped the lock
3056 	 */
3057 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3058 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3059 		if (old_page) {
3060 			if (!PageAnon(old_page)) {
3061 				dec_mm_counter_fast(mm,
3062 						mm_counter_file(old_page));
3063 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3064 			}
3065 		} else {
3066 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3067 		}
3068 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3069 		entry = mk_pte(new_page, vma->vm_page_prot);
3070 		entry = pte_sw_mkyoung(entry);
3071 		if (unlikely(unshare)) {
3072 			if (pte_soft_dirty(vmf->orig_pte))
3073 				entry = pte_mksoft_dirty(entry);
3074 			if (pte_uffd_wp(vmf->orig_pte))
3075 				entry = pte_mkuffd_wp(entry);
3076 		} else {
3077 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3078 		}
3079 
3080 		/*
3081 		 * Clear the pte entry and flush it first, before updating the
3082 		 * pte with the new entry, to keep TLBs on different CPUs in
3083 		 * sync. This code used to set the new PTE then flush TLBs, but
3084 		 * that left a window where the new PTE could be loaded into
3085 		 * some TLBs while the old PTE remains in others.
3086 		 */
3087 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3088 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3089 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3090 		/*
3091 		 * We call the notify macro here because, when using secondary
3092 		 * mmu page tables (such as kvm shadow page tables), we want the
3093 		 * new page to be mapped directly into the secondary page table.
3094 		 */
3095 		BUG_ON(unshare && pte_write(entry));
3096 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3097 		update_mmu_cache(vma, vmf->address, vmf->pte);
3098 		if (old_page) {
3099 			/*
3100 			 * Only after switching the pte to the new page may
3101 			 * we remove the mapcount here. Otherwise another
3102 			 * process may come and find the rmap count decremented
3103 			 * before the pte is switched to the new page, and
3104 			 * "reuse" the old page writing into it while our pte
3105 			 * here still points into it and can be read by other
3106 			 * threads.
3107 			 *
3108 			 * The critical issue is to order this
3109 			 * page_remove_rmap with the ptp_clear_flush above.
3110 			 * Those stores are ordered by (if nothing else,)
3111 			 * the barrier present in the atomic_add_negative
3112 			 * in page_remove_rmap.
3113 			 *
3114 			 * Then the TLB flush in ptep_clear_flush ensures that
3115 			 * no process can access the old page before the
3116 			 * decremented mapcount is visible. And the old page
3117 			 * cannot be reused until after the decremented
3118 			 * mapcount is visible. So transitively, TLBs to
3119 			 * old page will be flushed before it can be reused.
3120 			 */
3121 			page_remove_rmap(old_page, vma, false);
3122 		}
3123 
3124 		/* Free the old page.. */
3125 		new_page = old_page;
3126 		page_copied = 1;
3127 	} else {
3128 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3129 	}
3130 
3131 	if (new_page)
3132 		put_page(new_page);
3133 
3134 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3135 	/*
3136 	 * No need to double call mmu_notifier->invalidate_range() callback as
3137 	 * the above ptep_clear_flush_notify() did already call it.
3138 	 */
3139 	mmu_notifier_invalidate_range_only_end(&range);
3140 	if (old_page) {
3141 		if (page_copied)
3142 			free_swap_cache(old_page);
3143 		put_page(old_page);
3144 	}
3145 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3146 oom_free_new:
3147 	put_page(new_page);
3148 oom:
3149 	if (old_page)
3150 		put_page(old_page);
3151 	return VM_FAULT_OOM;
3152 }
3153 
3154 /**
3155  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3156  *			  writeable once the page is prepared
3157  *
3158  * @vmf: structure describing the fault
3159  *
3160  * This function handles all that is needed to finish a write page fault in a
3161  * shared mapping due to PTE being read-only once the mapped page is prepared.
3162  * It handles locking of PTE and modifying it.
3163  *
3164  * The function expects the page to be locked or other protection against
3165  * concurrent faults / writeback (such as DAX radix tree locks).
3166  *
3167  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3168  * we acquired PTE lock.
3169  */
3170 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3171 {
3172 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3173 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3174 				       &vmf->ptl);
3175 	/*
3176 	 * We might have raced with another page fault while we released the
3177 	 * pte_offset_map_lock.
3178 	 */
3179 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3180 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3181 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3182 		return VM_FAULT_NOPAGE;
3183 	}
3184 	wp_page_reuse(vmf);
3185 	return 0;
3186 }
3187 
3188 /*
3189  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3190  * mapping
3191  */
3192 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3193 {
3194 	struct vm_area_struct *vma = vmf->vma;
3195 
3196 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3197 		vm_fault_t ret;
3198 
3199 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3200 		vmf->flags |= FAULT_FLAG_MKWRITE;
3201 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3202 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3203 			return ret;
3204 		return finish_mkwrite_fault(vmf);
3205 	}
3206 	wp_page_reuse(vmf);
3207 	return VM_FAULT_WRITE;
3208 }
3209 
3210 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3211 	__releases(vmf->ptl)
3212 {
3213 	struct vm_area_struct *vma = vmf->vma;
3214 	vm_fault_t ret = VM_FAULT_WRITE;
3215 
3216 	get_page(vmf->page);
3217 
3218 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3219 		vm_fault_t tmp;
3220 
3221 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3222 		tmp = do_page_mkwrite(vmf);
3223 		if (unlikely(!tmp || (tmp &
3224 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3225 			put_page(vmf->page);
3226 			return tmp;
3227 		}
3228 		tmp = finish_mkwrite_fault(vmf);
3229 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3230 			unlock_page(vmf->page);
3231 			put_page(vmf->page);
3232 			return tmp;
3233 		}
3234 	} else {
3235 		wp_page_reuse(vmf);
3236 		lock_page(vmf->page);
3237 	}
3238 	ret |= fault_dirty_shared_page(vmf);
3239 	put_page(vmf->page);
3240 
3241 	return ret;
3242 }
3243 
3244 /*
3245  * This routine handles present pages, when
3246  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3247  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3248  *   (FAULT_FLAG_UNSHARE)
3249  *
3250  * It is done by copying the page to a new address and decrementing the
3251  * shared-page counter for the old page.
3252  *
3253  * Note that this routine assumes that the protection checks have been
3254  * done by the caller (the low-level page fault routine in most cases).
3255  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3256  * done any necessary COW.
3257  *
3258  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3259  * though the page will change only once the write actually happens. This
3260  * avoids a few races, and potentially makes it more efficient.
3261  *
3262  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3263  * but allow concurrent faults), with pte both mapped and locked.
3264  * We return with mmap_lock still held, but pte unmapped and unlocked.
3265  */
3266 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3267 	__releases(vmf->ptl)
3268 {
3269 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3270 	struct vm_area_struct *vma = vmf->vma;
3271 
3272 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3273 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3274 
3275 	if (likely(!unshare)) {
3276 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3277 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3278 			return handle_userfault(vmf, VM_UFFD_WP);
3279 		}
3280 
3281 		/*
3282 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3283 		 * is flushed in this case before copying.
3284 		 */
3285 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3286 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3287 			flush_tlb_page(vmf->vma, vmf->address);
3288 	}
3289 
3290 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3291 	if (!vmf->page) {
3292 		if (unlikely(unshare)) {
3293 			/* No anonymous page -> nothing to do. */
3294 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3295 			return 0;
3296 		}
3297 
3298 		/*
3299 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3300 		 * VM_PFNMAP VMA.
3301 		 *
3302 		 * We should not cow pages in a shared writeable mapping.
3303 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3304 		 */
3305 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3306 				     (VM_WRITE|VM_SHARED))
3307 			return wp_pfn_shared(vmf);
3308 
3309 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3310 		return wp_page_copy(vmf);
3311 	}
3312 
3313 	/*
3314 	 * Take out anonymous pages first, anonymous shared vmas are
3315 	 * not dirty accountable.
3316 	 */
3317 	if (PageAnon(vmf->page)) {
3318 		struct page *page = vmf->page;
3319 
3320 		/*
3321 		 * If the page is exclusive to this process we must reuse the
3322 		 * page without further checks.
3323 		 */
3324 		if (PageAnonExclusive(page))
3325 			goto reuse;
3326 
3327 		/*
3328 		 * We have to verify under page lock: these early checks are
3329 		 * just an optimization to avoid locking the page and freeing
3330 		 * the swapcache if there is little hope that we can reuse.
3331 		 *
3332 		 * PageKsm() doesn't necessarily raise the page refcount.
3333 		 */
3334 		if (PageKsm(page) || page_count(page) > 3)
3335 			goto copy;
3336 		if (!PageLRU(page))
3337 			/*
3338 			 * Note: We cannot easily detect+handle references from
3339 			 * remote LRU pagevecs or references to PageLRU() pages.
3340 			 */
3341 			lru_add_drain();
3342 		if (page_count(page) > 1 + PageSwapCache(page))
3343 			goto copy;
3344 		if (!trylock_page(page))
3345 			goto copy;
3346 		if (PageSwapCache(page))
3347 			try_to_free_swap(page);
3348 		if (PageKsm(page) || page_count(page) != 1) {
3349 			unlock_page(page);
3350 			goto copy;
3351 		}
3352 		/*
3353 		 * Ok, we've got the only page reference from our mapping
3354 		 * and the page is locked, it's dark out, and we're wearing
3355 		 * sunglasses. Hit it.
3356 		 */
3357 		page_move_anon_rmap(page, vma);
3358 		unlock_page(page);
3359 reuse:
3360 		if (unlikely(unshare)) {
3361 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3362 			return 0;
3363 		}
3364 		wp_page_reuse(vmf);
3365 		return VM_FAULT_WRITE;
3366 	} else if (unshare) {
3367 		/* No anonymous page -> nothing to do. */
3368 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3369 		return 0;
3370 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3371 					(VM_WRITE|VM_SHARED))) {
3372 		return wp_page_shared(vmf);
3373 	}
3374 copy:
3375 	/*
3376 	 * Ok, we need to copy. Oh, well..
3377 	 */
3378 	get_page(vmf->page);
3379 
3380 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 #ifdef CONFIG_KSM
3382 	if (PageKsm(vmf->page))
3383 		count_vm_event(COW_KSM);
3384 #endif
3385 	return wp_page_copy(vmf);
3386 }
3387 
3388 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3389 		unsigned long start_addr, unsigned long end_addr,
3390 		struct zap_details *details)
3391 {
3392 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3393 }
3394 
3395 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3396 					    pgoff_t first_index,
3397 					    pgoff_t last_index,
3398 					    struct zap_details *details)
3399 {
3400 	struct vm_area_struct *vma;
3401 	pgoff_t vba, vea, zba, zea;
3402 
3403 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3404 		vba = vma->vm_pgoff;
3405 		vea = vba + vma_pages(vma) - 1;
3406 		zba = max(first_index, vba);
3407 		zea = min(last_index, vea);
3408 
3409 		unmap_mapping_range_vma(vma,
3410 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3411 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3412 				details);
3413 	}
3414 }
3415 
3416 /**
3417  * unmap_mapping_folio() - Unmap single folio from processes.
3418  * @folio: The locked folio to be unmapped.
3419  *
3420  * Unmap this folio from any userspace process which still has it mmaped.
3421  * Typically, for efficiency, the range of nearby pages has already been
3422  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3423  * truncation or invalidation holds the lock on a folio, it may find that
3424  * the page has been remapped again: and then uses unmap_mapping_folio()
3425  * to unmap it finally.
3426  */
3427 void unmap_mapping_folio(struct folio *folio)
3428 {
3429 	struct address_space *mapping = folio->mapping;
3430 	struct zap_details details = { };
3431 	pgoff_t	first_index;
3432 	pgoff_t	last_index;
3433 
3434 	VM_BUG_ON(!folio_test_locked(folio));
3435 
3436 	first_index = folio->index;
3437 	last_index = folio->index + folio_nr_pages(folio) - 1;
3438 
3439 	details.even_cows = false;
3440 	details.single_folio = folio;
3441 
3442 	i_mmap_lock_read(mapping);
3443 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3444 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3445 					 last_index, &details);
3446 	i_mmap_unlock_read(mapping);
3447 }
3448 
3449 /**
3450  * unmap_mapping_pages() - Unmap pages from processes.
3451  * @mapping: The address space containing pages to be unmapped.
3452  * @start: Index of first page to be unmapped.
3453  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3454  * @even_cows: Whether to unmap even private COWed pages.
3455  *
3456  * Unmap the pages in this address space from any userspace process which
3457  * has them mmaped.  Generally, you want to remove COWed pages as well when
3458  * a file is being truncated, but not when invalidating pages from the page
3459  * cache.
3460  */
3461 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3462 		pgoff_t nr, bool even_cows)
3463 {
3464 	struct zap_details details = { };
3465 	pgoff_t	first_index = start;
3466 	pgoff_t	last_index = start + nr - 1;
3467 
3468 	details.even_cows = even_cows;
3469 	if (last_index < first_index)
3470 		last_index = ULONG_MAX;
3471 
3472 	i_mmap_lock_read(mapping);
3473 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3474 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3475 					 last_index, &details);
3476 	i_mmap_unlock_read(mapping);
3477 }
3478 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3479 
3480 /**
3481  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3482  * address_space corresponding to the specified byte range in the underlying
3483  * file.
3484  *
3485  * @mapping: the address space containing mmaps to be unmapped.
3486  * @holebegin: byte in first page to unmap, relative to the start of
3487  * the underlying file.  This will be rounded down to a PAGE_SIZE
3488  * boundary.  Note that this is different from truncate_pagecache(), which
3489  * must keep the partial page.  In contrast, we must get rid of
3490  * partial pages.
3491  * @holelen: size of prospective hole in bytes.  This will be rounded
3492  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3493  * end of the file.
3494  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3495  * but 0 when invalidating pagecache, don't throw away private data.
3496  */
3497 void unmap_mapping_range(struct address_space *mapping,
3498 		loff_t const holebegin, loff_t const holelen, int even_cows)
3499 {
3500 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3501 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3502 
3503 	/* Check for overflow. */
3504 	if (sizeof(holelen) > sizeof(hlen)) {
3505 		long long holeend =
3506 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3507 		if (holeend & ~(long long)ULONG_MAX)
3508 			hlen = ULONG_MAX - hba + 1;
3509 	}
3510 
3511 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3512 }
3513 EXPORT_SYMBOL(unmap_mapping_range);
3514 
3515 /*
3516  * Restore a potential device exclusive pte to a working pte entry
3517  */
3518 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3519 {
3520 	struct page *page = vmf->page;
3521 	struct vm_area_struct *vma = vmf->vma;
3522 	struct mmu_notifier_range range;
3523 
3524 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3525 		return VM_FAULT_RETRY;
3526 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3527 				vma->vm_mm, vmf->address & PAGE_MASK,
3528 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3529 	mmu_notifier_invalidate_range_start(&range);
3530 
3531 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3532 				&vmf->ptl);
3533 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3534 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3535 
3536 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3537 	unlock_page(page);
3538 
3539 	mmu_notifier_invalidate_range_end(&range);
3540 	return 0;
3541 }
3542 
3543 static inline bool should_try_to_free_swap(struct page *page,
3544 					   struct vm_area_struct *vma,
3545 					   unsigned int fault_flags)
3546 {
3547 	if (!PageSwapCache(page))
3548 		return false;
3549 	if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3550 	    PageMlocked(page))
3551 		return true;
3552 	/*
3553 	 * If we want to map a page that's in the swapcache writable, we
3554 	 * have to detect via the refcount if we're really the exclusive
3555 	 * user. Try freeing the swapcache to get rid of the swapcache
3556 	 * reference only in case it's likely that we'll be the exlusive user.
3557 	 */
3558 	return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3559 		page_count(page) == 2;
3560 }
3561 
3562 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3563 {
3564 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3565 	unsigned long marker = pte_marker_get(entry);
3566 
3567 	/*
3568 	 * PTE markers should always be with file-backed memories, and the
3569 	 * marker should never be empty.  If anything weird happened, the best
3570 	 * thing to do is to kill the process along with its mm.
3571 	 */
3572 	if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3573 		return VM_FAULT_SIGBUS;
3574 
3575 	/* TODO: handle pte markers */
3576 	return 0;
3577 }
3578 
3579 /*
3580  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3581  * but allow concurrent faults), and pte mapped but not yet locked.
3582  * We return with pte unmapped and unlocked.
3583  *
3584  * We return with the mmap_lock locked or unlocked in the same cases
3585  * as does filemap_fault().
3586  */
3587 vm_fault_t do_swap_page(struct vm_fault *vmf)
3588 {
3589 	struct vm_area_struct *vma = vmf->vma;
3590 	struct page *page = NULL, *swapcache;
3591 	struct swap_info_struct *si = NULL;
3592 	rmap_t rmap_flags = RMAP_NONE;
3593 	bool exclusive = false;
3594 	swp_entry_t entry;
3595 	pte_t pte;
3596 	int locked;
3597 	vm_fault_t ret = 0;
3598 	void *shadow = NULL;
3599 
3600 	if (!pte_unmap_same(vmf))
3601 		goto out;
3602 
3603 	entry = pte_to_swp_entry(vmf->orig_pte);
3604 	if (unlikely(non_swap_entry(entry))) {
3605 		if (is_migration_entry(entry)) {
3606 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3607 					     vmf->address);
3608 		} else if (is_device_exclusive_entry(entry)) {
3609 			vmf->page = pfn_swap_entry_to_page(entry);
3610 			ret = remove_device_exclusive_entry(vmf);
3611 		} else if (is_device_private_entry(entry)) {
3612 			vmf->page = pfn_swap_entry_to_page(entry);
3613 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3614 		} else if (is_hwpoison_entry(entry)) {
3615 			ret = VM_FAULT_HWPOISON;
3616 		} else if (is_pte_marker_entry(entry)) {
3617 			ret = handle_pte_marker(vmf);
3618 		} else {
3619 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3620 			ret = VM_FAULT_SIGBUS;
3621 		}
3622 		goto out;
3623 	}
3624 
3625 	/* Prevent swapoff from happening to us. */
3626 	si = get_swap_device(entry);
3627 	if (unlikely(!si))
3628 		goto out;
3629 
3630 	page = lookup_swap_cache(entry, vma, vmf->address);
3631 	swapcache = page;
3632 
3633 	if (!page) {
3634 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3635 		    __swap_count(entry) == 1) {
3636 			/* skip swapcache */
3637 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3638 							vmf->address);
3639 			if (page) {
3640 				__SetPageLocked(page);
3641 				__SetPageSwapBacked(page);
3642 
3643 				if (mem_cgroup_swapin_charge_page(page,
3644 					vma->vm_mm, GFP_KERNEL, entry)) {
3645 					ret = VM_FAULT_OOM;
3646 					goto out_page;
3647 				}
3648 				mem_cgroup_swapin_uncharge_swap(entry);
3649 
3650 				shadow = get_shadow_from_swap_cache(entry);
3651 				if (shadow)
3652 					workingset_refault(page_folio(page),
3653 								shadow);
3654 
3655 				lru_cache_add(page);
3656 
3657 				/* To provide entry to swap_readpage() */
3658 				set_page_private(page, entry.val);
3659 				swap_readpage(page, true, NULL);
3660 				set_page_private(page, 0);
3661 			}
3662 		} else {
3663 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3664 						vmf);
3665 			swapcache = page;
3666 		}
3667 
3668 		if (!page) {
3669 			/*
3670 			 * Back out if somebody else faulted in this pte
3671 			 * while we released the pte lock.
3672 			 */
3673 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3674 					vmf->address, &vmf->ptl);
3675 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3676 				ret = VM_FAULT_OOM;
3677 			goto unlock;
3678 		}
3679 
3680 		/* Had to read the page from swap area: Major fault */
3681 		ret = VM_FAULT_MAJOR;
3682 		count_vm_event(PGMAJFAULT);
3683 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3684 	} else if (PageHWPoison(page)) {
3685 		/*
3686 		 * hwpoisoned dirty swapcache pages are kept for killing
3687 		 * owner processes (which may be unknown at hwpoison time)
3688 		 */
3689 		ret = VM_FAULT_HWPOISON;
3690 		goto out_release;
3691 	}
3692 
3693 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3694 
3695 	if (!locked) {
3696 		ret |= VM_FAULT_RETRY;
3697 		goto out_release;
3698 	}
3699 
3700 	if (swapcache) {
3701 		/*
3702 		 * Make sure try_to_free_swap or swapoff did not release the
3703 		 * swapcache from under us.  The page pin, and pte_same test
3704 		 * below, are not enough to exclude that.  Even if it is still
3705 		 * swapcache, we need to check that the page's swap has not
3706 		 * changed.
3707 		 */
3708 		if (unlikely(!PageSwapCache(page) ||
3709 			     page_private(page) != entry.val))
3710 			goto out_page;
3711 
3712 		/*
3713 		 * KSM sometimes has to copy on read faults, for example, if
3714 		 * page->index of !PageKSM() pages would be nonlinear inside the
3715 		 * anon VMA -- PageKSM() is lost on actual swapout.
3716 		 */
3717 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3718 		if (unlikely(!page)) {
3719 			ret = VM_FAULT_OOM;
3720 			page = swapcache;
3721 			goto out_page;
3722 		}
3723 
3724 		/*
3725 		 * If we want to map a page that's in the swapcache writable, we
3726 		 * have to detect via the refcount if we're really the exclusive
3727 		 * owner. Try removing the extra reference from the local LRU
3728 		 * pagevecs if required.
3729 		 */
3730 		if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3731 		    !PageKsm(page) && !PageLRU(page))
3732 			lru_add_drain();
3733 	}
3734 
3735 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3736 
3737 	/*
3738 	 * Back out if somebody else already faulted in this pte.
3739 	 */
3740 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3741 			&vmf->ptl);
3742 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3743 		goto out_nomap;
3744 
3745 	if (unlikely(!PageUptodate(page))) {
3746 		ret = VM_FAULT_SIGBUS;
3747 		goto out_nomap;
3748 	}
3749 
3750 	/*
3751 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3752 	 * must never point at an anonymous page in the swapcache that is
3753 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3754 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3755 	 * check after taking the PT lock and making sure that nobody
3756 	 * concurrently faulted in this page and set PG_anon_exclusive.
3757 	 */
3758 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3759 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3760 
3761 	/*
3762 	 * Check under PT lock (to protect against concurrent fork() sharing
3763 	 * the swap entry concurrently) for certainly exclusive pages.
3764 	 */
3765 	if (!PageKsm(page)) {
3766 		/*
3767 		 * Note that pte_swp_exclusive() == false for architectures
3768 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3769 		 */
3770 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3771 		if (page != swapcache) {
3772 			/*
3773 			 * We have a fresh page that is not exposed to the
3774 			 * swapcache -> certainly exclusive.
3775 			 */
3776 			exclusive = true;
3777 		} else if (exclusive && PageWriteback(page) &&
3778 			  (swp_swap_info(entry)->flags & SWP_STABLE_WRITES)) {
3779 			/*
3780 			 * This is tricky: not all swap backends support
3781 			 * concurrent page modifications while under writeback.
3782 			 *
3783 			 * So if we stumble over such a page in the swapcache
3784 			 * we must not set the page exclusive, otherwise we can
3785 			 * map it writable without further checks and modify it
3786 			 * while still under writeback.
3787 			 *
3788 			 * For these problematic swap backends, simply drop the
3789 			 * exclusive marker: this is perfectly fine as we start
3790 			 * writeback only if we fully unmapped the page and
3791 			 * there are no unexpected references on the page after
3792 			 * unmapping succeeded. After fully unmapped, no
3793 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3794 			 * appear, so dropping the exclusive marker and mapping
3795 			 * it only R/O is fine.
3796 			 */
3797 			exclusive = false;
3798 		}
3799 	}
3800 
3801 	/*
3802 	 * Remove the swap entry and conditionally try to free up the swapcache.
3803 	 * We're already holding a reference on the page but haven't mapped it
3804 	 * yet.
3805 	 */
3806 	swap_free(entry);
3807 	if (should_try_to_free_swap(page, vma, vmf->flags))
3808 		try_to_free_swap(page);
3809 
3810 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3811 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3812 	pte = mk_pte(page, vma->vm_page_prot);
3813 
3814 	/*
3815 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3816 	 * certainly not shared either because we just allocated them without
3817 	 * exposing them to the swapcache or because the swap entry indicates
3818 	 * exclusivity.
3819 	 */
3820 	if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3821 		if (vmf->flags & FAULT_FLAG_WRITE) {
3822 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3823 			vmf->flags &= ~FAULT_FLAG_WRITE;
3824 			ret |= VM_FAULT_WRITE;
3825 		}
3826 		rmap_flags |= RMAP_EXCLUSIVE;
3827 	}
3828 	flush_icache_page(vma, page);
3829 	if (pte_swp_soft_dirty(vmf->orig_pte))
3830 		pte = pte_mksoft_dirty(pte);
3831 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3832 		pte = pte_mkuffd_wp(pte);
3833 		pte = pte_wrprotect(pte);
3834 	}
3835 	vmf->orig_pte = pte;
3836 
3837 	/* ksm created a completely new copy */
3838 	if (unlikely(page != swapcache && swapcache)) {
3839 		page_add_new_anon_rmap(page, vma, vmf->address);
3840 		lru_cache_add_inactive_or_unevictable(page, vma);
3841 	} else {
3842 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3843 	}
3844 
3845 	VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3846 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3847 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3848 
3849 	unlock_page(page);
3850 	if (page != swapcache && swapcache) {
3851 		/*
3852 		 * Hold the lock to avoid the swap entry to be reused
3853 		 * until we take the PT lock for the pte_same() check
3854 		 * (to avoid false positives from pte_same). For
3855 		 * further safety release the lock after the swap_free
3856 		 * so that the swap count won't change under a
3857 		 * parallel locked swapcache.
3858 		 */
3859 		unlock_page(swapcache);
3860 		put_page(swapcache);
3861 	}
3862 
3863 	if (vmf->flags & FAULT_FLAG_WRITE) {
3864 		ret |= do_wp_page(vmf);
3865 		if (ret & VM_FAULT_ERROR)
3866 			ret &= VM_FAULT_ERROR;
3867 		goto out;
3868 	}
3869 
3870 	/* No need to invalidate - it was non-present before */
3871 	update_mmu_cache(vma, vmf->address, vmf->pte);
3872 unlock:
3873 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3874 out:
3875 	if (si)
3876 		put_swap_device(si);
3877 	return ret;
3878 out_nomap:
3879 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3880 out_page:
3881 	unlock_page(page);
3882 out_release:
3883 	put_page(page);
3884 	if (page != swapcache && swapcache) {
3885 		unlock_page(swapcache);
3886 		put_page(swapcache);
3887 	}
3888 	if (si)
3889 		put_swap_device(si);
3890 	return ret;
3891 }
3892 
3893 /*
3894  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3895  * but allow concurrent faults), and pte mapped but not yet locked.
3896  * We return with mmap_lock still held, but pte unmapped and unlocked.
3897  */
3898 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3899 {
3900 	struct vm_area_struct *vma = vmf->vma;
3901 	struct page *page;
3902 	vm_fault_t ret = 0;
3903 	pte_t entry;
3904 
3905 	/* File mapping without ->vm_ops ? */
3906 	if (vma->vm_flags & VM_SHARED)
3907 		return VM_FAULT_SIGBUS;
3908 
3909 	/*
3910 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3911 	 * pte_offset_map() on pmds where a huge pmd might be created
3912 	 * from a different thread.
3913 	 *
3914 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3915 	 * parallel threads are excluded by other means.
3916 	 *
3917 	 * Here we only have mmap_read_lock(mm).
3918 	 */
3919 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3920 		return VM_FAULT_OOM;
3921 
3922 	/* See comment in handle_pte_fault() */
3923 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3924 		return 0;
3925 
3926 	/* Use the zero-page for reads */
3927 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3928 			!mm_forbids_zeropage(vma->vm_mm)) {
3929 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3930 						vma->vm_page_prot));
3931 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3932 				vmf->address, &vmf->ptl);
3933 		if (!pte_none(*vmf->pte)) {
3934 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3935 			goto unlock;
3936 		}
3937 		ret = check_stable_address_space(vma->vm_mm);
3938 		if (ret)
3939 			goto unlock;
3940 		/* Deliver the page fault to userland, check inside PT lock */
3941 		if (userfaultfd_missing(vma)) {
3942 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3943 			return handle_userfault(vmf, VM_UFFD_MISSING);
3944 		}
3945 		goto setpte;
3946 	}
3947 
3948 	/* Allocate our own private page. */
3949 	if (unlikely(anon_vma_prepare(vma)))
3950 		goto oom;
3951 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3952 	if (!page)
3953 		goto oom;
3954 
3955 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3956 		goto oom_free_page;
3957 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3958 
3959 	/*
3960 	 * The memory barrier inside __SetPageUptodate makes sure that
3961 	 * preceding stores to the page contents become visible before
3962 	 * the set_pte_at() write.
3963 	 */
3964 	__SetPageUptodate(page);
3965 
3966 	entry = mk_pte(page, vma->vm_page_prot);
3967 	entry = pte_sw_mkyoung(entry);
3968 	if (vma->vm_flags & VM_WRITE)
3969 		entry = pte_mkwrite(pte_mkdirty(entry));
3970 
3971 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3972 			&vmf->ptl);
3973 	if (!pte_none(*vmf->pte)) {
3974 		update_mmu_cache(vma, vmf->address, vmf->pte);
3975 		goto release;
3976 	}
3977 
3978 	ret = check_stable_address_space(vma->vm_mm);
3979 	if (ret)
3980 		goto release;
3981 
3982 	/* Deliver the page fault to userland, check inside PT lock */
3983 	if (userfaultfd_missing(vma)) {
3984 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3985 		put_page(page);
3986 		return handle_userfault(vmf, VM_UFFD_MISSING);
3987 	}
3988 
3989 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3990 	page_add_new_anon_rmap(page, vma, vmf->address);
3991 	lru_cache_add_inactive_or_unevictable(page, vma);
3992 setpte:
3993 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3994 
3995 	/* No need to invalidate - it was non-present before */
3996 	update_mmu_cache(vma, vmf->address, vmf->pte);
3997 unlock:
3998 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3999 	return ret;
4000 release:
4001 	put_page(page);
4002 	goto unlock;
4003 oom_free_page:
4004 	put_page(page);
4005 oom:
4006 	return VM_FAULT_OOM;
4007 }
4008 
4009 /*
4010  * The mmap_lock must have been held on entry, and may have been
4011  * released depending on flags and vma->vm_ops->fault() return value.
4012  * See filemap_fault() and __lock_page_retry().
4013  */
4014 static vm_fault_t __do_fault(struct vm_fault *vmf)
4015 {
4016 	struct vm_area_struct *vma = vmf->vma;
4017 	vm_fault_t ret;
4018 
4019 	/*
4020 	 * Preallocate pte before we take page_lock because this might lead to
4021 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4022 	 *				lock_page(A)
4023 	 *				SetPageWriteback(A)
4024 	 *				unlock_page(A)
4025 	 * lock_page(B)
4026 	 *				lock_page(B)
4027 	 * pte_alloc_one
4028 	 *   shrink_page_list
4029 	 *     wait_on_page_writeback(A)
4030 	 *				SetPageWriteback(B)
4031 	 *				unlock_page(B)
4032 	 *				# flush A, B to clear the writeback
4033 	 */
4034 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4035 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4036 		if (!vmf->prealloc_pte)
4037 			return VM_FAULT_OOM;
4038 	}
4039 
4040 	ret = vma->vm_ops->fault(vmf);
4041 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4042 			    VM_FAULT_DONE_COW)))
4043 		return ret;
4044 
4045 	if (unlikely(PageHWPoison(vmf->page))) {
4046 		struct page *page = vmf->page;
4047 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4048 		if (ret & VM_FAULT_LOCKED) {
4049 			if (page_mapped(page))
4050 				unmap_mapping_pages(page_mapping(page),
4051 						    page->index, 1, false);
4052 			/* Retry if a clean page was removed from the cache. */
4053 			if (invalidate_inode_page(page))
4054 				poisonret = VM_FAULT_NOPAGE;
4055 			unlock_page(page);
4056 		}
4057 		put_page(page);
4058 		vmf->page = NULL;
4059 		return poisonret;
4060 	}
4061 
4062 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4063 		lock_page(vmf->page);
4064 	else
4065 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4066 
4067 	return ret;
4068 }
4069 
4070 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4071 static void deposit_prealloc_pte(struct vm_fault *vmf)
4072 {
4073 	struct vm_area_struct *vma = vmf->vma;
4074 
4075 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4076 	/*
4077 	 * We are going to consume the prealloc table,
4078 	 * count that as nr_ptes.
4079 	 */
4080 	mm_inc_nr_ptes(vma->vm_mm);
4081 	vmf->prealloc_pte = NULL;
4082 }
4083 
4084 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4085 {
4086 	struct vm_area_struct *vma = vmf->vma;
4087 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4088 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4089 	pmd_t entry;
4090 	int i;
4091 	vm_fault_t ret = VM_FAULT_FALLBACK;
4092 
4093 	if (!transhuge_vma_suitable(vma, haddr))
4094 		return ret;
4095 
4096 	page = compound_head(page);
4097 	if (compound_order(page) != HPAGE_PMD_ORDER)
4098 		return ret;
4099 
4100 	/*
4101 	 * Just backoff if any subpage of a THP is corrupted otherwise
4102 	 * the corrupted page may mapped by PMD silently to escape the
4103 	 * check.  This kind of THP just can be PTE mapped.  Access to
4104 	 * the corrupted subpage should trigger SIGBUS as expected.
4105 	 */
4106 	if (unlikely(PageHasHWPoisoned(page)))
4107 		return ret;
4108 
4109 	/*
4110 	 * Archs like ppc64 need additional space to store information
4111 	 * related to pte entry. Use the preallocated table for that.
4112 	 */
4113 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4114 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4115 		if (!vmf->prealloc_pte)
4116 			return VM_FAULT_OOM;
4117 	}
4118 
4119 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4120 	if (unlikely(!pmd_none(*vmf->pmd)))
4121 		goto out;
4122 
4123 	for (i = 0; i < HPAGE_PMD_NR; i++)
4124 		flush_icache_page(vma, page + i);
4125 
4126 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4127 	if (write)
4128 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4129 
4130 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4131 	page_add_file_rmap(page, vma, true);
4132 
4133 	/*
4134 	 * deposit and withdraw with pmd lock held
4135 	 */
4136 	if (arch_needs_pgtable_deposit())
4137 		deposit_prealloc_pte(vmf);
4138 
4139 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4140 
4141 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4142 
4143 	/* fault is handled */
4144 	ret = 0;
4145 	count_vm_event(THP_FILE_MAPPED);
4146 out:
4147 	spin_unlock(vmf->ptl);
4148 	return ret;
4149 }
4150 #else
4151 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4152 {
4153 	return VM_FAULT_FALLBACK;
4154 }
4155 #endif
4156 
4157 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4158 {
4159 	struct vm_area_struct *vma = vmf->vma;
4160 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4161 	bool prefault = vmf->address != addr;
4162 	pte_t entry;
4163 
4164 	flush_icache_page(vma, page);
4165 	entry = mk_pte(page, vma->vm_page_prot);
4166 
4167 	if (prefault && arch_wants_old_prefaulted_pte())
4168 		entry = pte_mkold(entry);
4169 	else
4170 		entry = pte_sw_mkyoung(entry);
4171 
4172 	if (write)
4173 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4174 	/* copy-on-write page */
4175 	if (write && !(vma->vm_flags & VM_SHARED)) {
4176 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4177 		page_add_new_anon_rmap(page, vma, addr);
4178 		lru_cache_add_inactive_or_unevictable(page, vma);
4179 	} else {
4180 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4181 		page_add_file_rmap(page, vma, false);
4182 	}
4183 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4184 }
4185 
4186 /**
4187  * finish_fault - finish page fault once we have prepared the page to fault
4188  *
4189  * @vmf: structure describing the fault
4190  *
4191  * This function handles all that is needed to finish a page fault once the
4192  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4193  * given page, adds reverse page mapping, handles memcg charges and LRU
4194  * addition.
4195  *
4196  * The function expects the page to be locked and on success it consumes a
4197  * reference of a page being mapped (for the PTE which maps it).
4198  *
4199  * Return: %0 on success, %VM_FAULT_ code in case of error.
4200  */
4201 vm_fault_t finish_fault(struct vm_fault *vmf)
4202 {
4203 	struct vm_area_struct *vma = vmf->vma;
4204 	struct page *page;
4205 	vm_fault_t ret;
4206 
4207 	/* Did we COW the page? */
4208 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4209 		page = vmf->cow_page;
4210 	else
4211 		page = vmf->page;
4212 
4213 	/*
4214 	 * check even for read faults because we might have lost our CoWed
4215 	 * page
4216 	 */
4217 	if (!(vma->vm_flags & VM_SHARED)) {
4218 		ret = check_stable_address_space(vma->vm_mm);
4219 		if (ret)
4220 			return ret;
4221 	}
4222 
4223 	if (pmd_none(*vmf->pmd)) {
4224 		if (PageTransCompound(page)) {
4225 			ret = do_set_pmd(vmf, page);
4226 			if (ret != VM_FAULT_FALLBACK)
4227 				return ret;
4228 		}
4229 
4230 		if (vmf->prealloc_pte)
4231 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4232 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4233 			return VM_FAULT_OOM;
4234 	}
4235 
4236 	/* See comment in handle_pte_fault() */
4237 	if (pmd_devmap_trans_unstable(vmf->pmd))
4238 		return 0;
4239 
4240 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4241 				      vmf->address, &vmf->ptl);
4242 	ret = 0;
4243 	/* Re-check under ptl */
4244 	if (likely(pte_none(*vmf->pte)))
4245 		do_set_pte(vmf, page, vmf->address);
4246 	else
4247 		ret = VM_FAULT_NOPAGE;
4248 
4249 	update_mmu_tlb(vma, vmf->address, vmf->pte);
4250 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4251 	return ret;
4252 }
4253 
4254 static unsigned long fault_around_bytes __read_mostly =
4255 	rounddown_pow_of_two(65536);
4256 
4257 #ifdef CONFIG_DEBUG_FS
4258 static int fault_around_bytes_get(void *data, u64 *val)
4259 {
4260 	*val = fault_around_bytes;
4261 	return 0;
4262 }
4263 
4264 /*
4265  * fault_around_bytes must be rounded down to the nearest page order as it's
4266  * what do_fault_around() expects to see.
4267  */
4268 static int fault_around_bytes_set(void *data, u64 val)
4269 {
4270 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4271 		return -EINVAL;
4272 	if (val > PAGE_SIZE)
4273 		fault_around_bytes = rounddown_pow_of_two(val);
4274 	else
4275 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4276 	return 0;
4277 }
4278 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4279 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4280 
4281 static int __init fault_around_debugfs(void)
4282 {
4283 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4284 				   &fault_around_bytes_fops);
4285 	return 0;
4286 }
4287 late_initcall(fault_around_debugfs);
4288 #endif
4289 
4290 /*
4291  * do_fault_around() tries to map few pages around the fault address. The hope
4292  * is that the pages will be needed soon and this will lower the number of
4293  * faults to handle.
4294  *
4295  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4296  * not ready to be mapped: not up-to-date, locked, etc.
4297  *
4298  * This function is called with the page table lock taken. In the split ptlock
4299  * case the page table lock only protects only those entries which belong to
4300  * the page table corresponding to the fault address.
4301  *
4302  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4303  * only once.
4304  *
4305  * fault_around_bytes defines how many bytes we'll try to map.
4306  * do_fault_around() expects it to be set to a power of two less than or equal
4307  * to PTRS_PER_PTE.
4308  *
4309  * The virtual address of the area that we map is naturally aligned to
4310  * fault_around_bytes rounded down to the machine page size
4311  * (and therefore to page order).  This way it's easier to guarantee
4312  * that we don't cross page table boundaries.
4313  */
4314 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4315 {
4316 	unsigned long address = vmf->address, nr_pages, mask;
4317 	pgoff_t start_pgoff = vmf->pgoff;
4318 	pgoff_t end_pgoff;
4319 	int off;
4320 
4321 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4322 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4323 
4324 	address = max(address & mask, vmf->vma->vm_start);
4325 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4326 	start_pgoff -= off;
4327 
4328 	/*
4329 	 *  end_pgoff is either the end of the page table, the end of
4330 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4331 	 */
4332 	end_pgoff = start_pgoff -
4333 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4334 		PTRS_PER_PTE - 1;
4335 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4336 			start_pgoff + nr_pages - 1);
4337 
4338 	if (pmd_none(*vmf->pmd)) {
4339 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4340 		if (!vmf->prealloc_pte)
4341 			return VM_FAULT_OOM;
4342 	}
4343 
4344 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4345 }
4346 
4347 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4348 {
4349 	struct vm_area_struct *vma = vmf->vma;
4350 	vm_fault_t ret = 0;
4351 
4352 	/*
4353 	 * Let's call ->map_pages() first and use ->fault() as fallback
4354 	 * if page by the offset is not ready to be mapped (cold cache or
4355 	 * something).
4356 	 */
4357 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4358 		if (likely(!userfaultfd_minor(vmf->vma))) {
4359 			ret = do_fault_around(vmf);
4360 			if (ret)
4361 				return ret;
4362 		}
4363 	}
4364 
4365 	ret = __do_fault(vmf);
4366 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4367 		return ret;
4368 
4369 	ret |= finish_fault(vmf);
4370 	unlock_page(vmf->page);
4371 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4372 		put_page(vmf->page);
4373 	return ret;
4374 }
4375 
4376 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4377 {
4378 	struct vm_area_struct *vma = vmf->vma;
4379 	vm_fault_t ret;
4380 
4381 	if (unlikely(anon_vma_prepare(vma)))
4382 		return VM_FAULT_OOM;
4383 
4384 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4385 	if (!vmf->cow_page)
4386 		return VM_FAULT_OOM;
4387 
4388 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4389 				GFP_KERNEL)) {
4390 		put_page(vmf->cow_page);
4391 		return VM_FAULT_OOM;
4392 	}
4393 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4394 
4395 	ret = __do_fault(vmf);
4396 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4397 		goto uncharge_out;
4398 	if (ret & VM_FAULT_DONE_COW)
4399 		return ret;
4400 
4401 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4402 	__SetPageUptodate(vmf->cow_page);
4403 
4404 	ret |= finish_fault(vmf);
4405 	unlock_page(vmf->page);
4406 	put_page(vmf->page);
4407 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4408 		goto uncharge_out;
4409 	return ret;
4410 uncharge_out:
4411 	put_page(vmf->cow_page);
4412 	return ret;
4413 }
4414 
4415 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4416 {
4417 	struct vm_area_struct *vma = vmf->vma;
4418 	vm_fault_t ret, tmp;
4419 
4420 	ret = __do_fault(vmf);
4421 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4422 		return ret;
4423 
4424 	/*
4425 	 * Check if the backing address space wants to know that the page is
4426 	 * about to become writable
4427 	 */
4428 	if (vma->vm_ops->page_mkwrite) {
4429 		unlock_page(vmf->page);
4430 		tmp = do_page_mkwrite(vmf);
4431 		if (unlikely(!tmp ||
4432 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4433 			put_page(vmf->page);
4434 			return tmp;
4435 		}
4436 	}
4437 
4438 	ret |= finish_fault(vmf);
4439 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4440 					VM_FAULT_RETRY))) {
4441 		unlock_page(vmf->page);
4442 		put_page(vmf->page);
4443 		return ret;
4444 	}
4445 
4446 	ret |= fault_dirty_shared_page(vmf);
4447 	return ret;
4448 }
4449 
4450 /*
4451  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4452  * but allow concurrent faults).
4453  * The mmap_lock may have been released depending on flags and our
4454  * return value.  See filemap_fault() and __folio_lock_or_retry().
4455  * If mmap_lock is released, vma may become invalid (for example
4456  * by other thread calling munmap()).
4457  */
4458 static vm_fault_t do_fault(struct vm_fault *vmf)
4459 {
4460 	struct vm_area_struct *vma = vmf->vma;
4461 	struct mm_struct *vm_mm = vma->vm_mm;
4462 	vm_fault_t ret;
4463 
4464 	/*
4465 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4466 	 */
4467 	if (!vma->vm_ops->fault) {
4468 		/*
4469 		 * If we find a migration pmd entry or a none pmd entry, which
4470 		 * should never happen, return SIGBUS
4471 		 */
4472 		if (unlikely(!pmd_present(*vmf->pmd)))
4473 			ret = VM_FAULT_SIGBUS;
4474 		else {
4475 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4476 						       vmf->pmd,
4477 						       vmf->address,
4478 						       &vmf->ptl);
4479 			/*
4480 			 * Make sure this is not a temporary clearing of pte
4481 			 * by holding ptl and checking again. A R/M/W update
4482 			 * of pte involves: take ptl, clearing the pte so that
4483 			 * we don't have concurrent modification by hardware
4484 			 * followed by an update.
4485 			 */
4486 			if (unlikely(pte_none(*vmf->pte)))
4487 				ret = VM_FAULT_SIGBUS;
4488 			else
4489 				ret = VM_FAULT_NOPAGE;
4490 
4491 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4492 		}
4493 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4494 		ret = do_read_fault(vmf);
4495 	else if (!(vma->vm_flags & VM_SHARED))
4496 		ret = do_cow_fault(vmf);
4497 	else
4498 		ret = do_shared_fault(vmf);
4499 
4500 	/* preallocated pagetable is unused: free it */
4501 	if (vmf->prealloc_pte) {
4502 		pte_free(vm_mm, vmf->prealloc_pte);
4503 		vmf->prealloc_pte = NULL;
4504 	}
4505 	return ret;
4506 }
4507 
4508 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4509 		      unsigned long addr, int page_nid, int *flags)
4510 {
4511 	get_page(page);
4512 
4513 	count_vm_numa_event(NUMA_HINT_FAULTS);
4514 	if (page_nid == numa_node_id()) {
4515 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4516 		*flags |= TNF_FAULT_LOCAL;
4517 	}
4518 
4519 	return mpol_misplaced(page, vma, addr);
4520 }
4521 
4522 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4523 {
4524 	struct vm_area_struct *vma = vmf->vma;
4525 	struct page *page = NULL;
4526 	int page_nid = NUMA_NO_NODE;
4527 	int last_cpupid;
4528 	int target_nid;
4529 	pte_t pte, old_pte;
4530 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4531 	int flags = 0;
4532 
4533 	/*
4534 	 * The "pte" at this point cannot be used safely without
4535 	 * validation through pte_unmap_same(). It's of NUMA type but
4536 	 * the pfn may be screwed if the read is non atomic.
4537 	 */
4538 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4539 	spin_lock(vmf->ptl);
4540 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4541 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4542 		goto out;
4543 	}
4544 
4545 	/* Get the normal PTE  */
4546 	old_pte = ptep_get(vmf->pte);
4547 	pte = pte_modify(old_pte, vma->vm_page_prot);
4548 
4549 	page = vm_normal_page(vma, vmf->address, pte);
4550 	if (!page)
4551 		goto out_map;
4552 
4553 	/* TODO: handle PTE-mapped THP */
4554 	if (PageCompound(page))
4555 		goto out_map;
4556 
4557 	/*
4558 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4559 	 * much anyway since they can be in shared cache state. This misses
4560 	 * the case where a mapping is writable but the process never writes
4561 	 * to it but pte_write gets cleared during protection updates and
4562 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4563 	 * background writeback, dirty balancing and application behaviour.
4564 	 */
4565 	if (!was_writable)
4566 		flags |= TNF_NO_GROUP;
4567 
4568 	/*
4569 	 * Flag if the page is shared between multiple address spaces. This
4570 	 * is later used when determining whether to group tasks together
4571 	 */
4572 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4573 		flags |= TNF_SHARED;
4574 
4575 	last_cpupid = page_cpupid_last(page);
4576 	page_nid = page_to_nid(page);
4577 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4578 			&flags);
4579 	if (target_nid == NUMA_NO_NODE) {
4580 		put_page(page);
4581 		goto out_map;
4582 	}
4583 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4584 
4585 	/* Migrate to the requested node */
4586 	if (migrate_misplaced_page(page, vma, target_nid)) {
4587 		page_nid = target_nid;
4588 		flags |= TNF_MIGRATED;
4589 	} else {
4590 		flags |= TNF_MIGRATE_FAIL;
4591 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4592 		spin_lock(vmf->ptl);
4593 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4594 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4595 			goto out;
4596 		}
4597 		goto out_map;
4598 	}
4599 
4600 out:
4601 	if (page_nid != NUMA_NO_NODE)
4602 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4603 	return 0;
4604 out_map:
4605 	/*
4606 	 * Make it present again, depending on how arch implements
4607 	 * non-accessible ptes, some can allow access by kernel mode.
4608 	 */
4609 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4610 	pte = pte_modify(old_pte, vma->vm_page_prot);
4611 	pte = pte_mkyoung(pte);
4612 	if (was_writable)
4613 		pte = pte_mkwrite(pte);
4614 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4615 	update_mmu_cache(vma, vmf->address, vmf->pte);
4616 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4617 	goto out;
4618 }
4619 
4620 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4621 {
4622 	if (vma_is_anonymous(vmf->vma))
4623 		return do_huge_pmd_anonymous_page(vmf);
4624 	if (vmf->vma->vm_ops->huge_fault)
4625 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4626 	return VM_FAULT_FALLBACK;
4627 }
4628 
4629 /* `inline' is required to avoid gcc 4.1.2 build error */
4630 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4631 {
4632 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4633 
4634 	if (vma_is_anonymous(vmf->vma)) {
4635 		if (likely(!unshare) &&
4636 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4637 			return handle_userfault(vmf, VM_UFFD_WP);
4638 		return do_huge_pmd_wp_page(vmf);
4639 	}
4640 	if (vmf->vma->vm_ops->huge_fault) {
4641 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4642 
4643 		if (!(ret & VM_FAULT_FALLBACK))
4644 			return ret;
4645 	}
4646 
4647 	/* COW or write-notify handled on pte level: split pmd. */
4648 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4649 
4650 	return VM_FAULT_FALLBACK;
4651 }
4652 
4653 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4654 {
4655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4656 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4657 	/* No support for anonymous transparent PUD pages yet */
4658 	if (vma_is_anonymous(vmf->vma))
4659 		goto split;
4660 	if (vmf->vma->vm_ops->huge_fault) {
4661 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4662 
4663 		if (!(ret & VM_FAULT_FALLBACK))
4664 			return ret;
4665 	}
4666 split:
4667 	/* COW or write-notify not handled on PUD level: split pud.*/
4668 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4669 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4670 	return VM_FAULT_FALLBACK;
4671 }
4672 
4673 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4674 {
4675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4676 	/* No support for anonymous transparent PUD pages yet */
4677 	if (vma_is_anonymous(vmf->vma))
4678 		return VM_FAULT_FALLBACK;
4679 	if (vmf->vma->vm_ops->huge_fault)
4680 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4681 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4682 	return VM_FAULT_FALLBACK;
4683 }
4684 
4685 /*
4686  * These routines also need to handle stuff like marking pages dirty
4687  * and/or accessed for architectures that don't do it in hardware (most
4688  * RISC architectures).  The early dirtying is also good on the i386.
4689  *
4690  * There is also a hook called "update_mmu_cache()" that architectures
4691  * with external mmu caches can use to update those (ie the Sparc or
4692  * PowerPC hashed page tables that act as extended TLBs).
4693  *
4694  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4695  * concurrent faults).
4696  *
4697  * The mmap_lock may have been released depending on flags and our return value.
4698  * See filemap_fault() and __folio_lock_or_retry().
4699  */
4700 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4701 {
4702 	pte_t entry;
4703 
4704 	if (unlikely(pmd_none(*vmf->pmd))) {
4705 		/*
4706 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4707 		 * want to allocate huge page, and if we expose page table
4708 		 * for an instant, it will be difficult to retract from
4709 		 * concurrent faults and from rmap lookups.
4710 		 */
4711 		vmf->pte = NULL;
4712 	} else {
4713 		/*
4714 		 * If a huge pmd materialized under us just retry later.  Use
4715 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4716 		 * of pmd_trans_huge() to ensure the pmd didn't become
4717 		 * pmd_trans_huge under us and then back to pmd_none, as a
4718 		 * result of MADV_DONTNEED running immediately after a huge pmd
4719 		 * fault in a different thread of this mm, in turn leading to a
4720 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4721 		 * that it is a regular pmd that we can walk with
4722 		 * pte_offset_map() and we can do that through an atomic read
4723 		 * in C, which is what pmd_trans_unstable() provides.
4724 		 */
4725 		if (pmd_devmap_trans_unstable(vmf->pmd))
4726 			return 0;
4727 		/*
4728 		 * A regular pmd is established and it can't morph into a huge
4729 		 * pmd from under us anymore at this point because we hold the
4730 		 * mmap_lock read mode and khugepaged takes it in write mode.
4731 		 * So now it's safe to run pte_offset_map().
4732 		 */
4733 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4734 		vmf->orig_pte = *vmf->pte;
4735 
4736 		/*
4737 		 * some architectures can have larger ptes than wordsize,
4738 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4739 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4740 		 * accesses.  The code below just needs a consistent view
4741 		 * for the ifs and we later double check anyway with the
4742 		 * ptl lock held. So here a barrier will do.
4743 		 */
4744 		barrier();
4745 		if (pte_none(vmf->orig_pte)) {
4746 			pte_unmap(vmf->pte);
4747 			vmf->pte = NULL;
4748 		}
4749 	}
4750 
4751 	if (!vmf->pte) {
4752 		if (vma_is_anonymous(vmf->vma))
4753 			return do_anonymous_page(vmf);
4754 		else
4755 			return do_fault(vmf);
4756 	}
4757 
4758 	if (!pte_present(vmf->orig_pte))
4759 		return do_swap_page(vmf);
4760 
4761 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4762 		return do_numa_page(vmf);
4763 
4764 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4765 	spin_lock(vmf->ptl);
4766 	entry = vmf->orig_pte;
4767 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4768 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4769 		goto unlock;
4770 	}
4771 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4772 		if (!pte_write(entry))
4773 			return do_wp_page(vmf);
4774 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4775 			entry = pte_mkdirty(entry);
4776 	}
4777 	entry = pte_mkyoung(entry);
4778 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4779 				vmf->flags & FAULT_FLAG_WRITE)) {
4780 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4781 	} else {
4782 		/* Skip spurious TLB flush for retried page fault */
4783 		if (vmf->flags & FAULT_FLAG_TRIED)
4784 			goto unlock;
4785 		/*
4786 		 * This is needed only for protection faults but the arch code
4787 		 * is not yet telling us if this is a protection fault or not.
4788 		 * This still avoids useless tlb flushes for .text page faults
4789 		 * with threads.
4790 		 */
4791 		if (vmf->flags & FAULT_FLAG_WRITE)
4792 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4793 	}
4794 unlock:
4795 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4796 	return 0;
4797 }
4798 
4799 /*
4800  * By the time we get here, we already hold the mm semaphore
4801  *
4802  * The mmap_lock may have been released depending on flags and our
4803  * return value.  See filemap_fault() and __folio_lock_or_retry().
4804  */
4805 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4806 		unsigned long address, unsigned int flags)
4807 {
4808 	struct vm_fault vmf = {
4809 		.vma = vma,
4810 		.address = address & PAGE_MASK,
4811 		.real_address = address,
4812 		.flags = flags,
4813 		.pgoff = linear_page_index(vma, address),
4814 		.gfp_mask = __get_fault_gfp_mask(vma),
4815 	};
4816 	struct mm_struct *mm = vma->vm_mm;
4817 	pgd_t *pgd;
4818 	p4d_t *p4d;
4819 	vm_fault_t ret;
4820 
4821 	pgd = pgd_offset(mm, address);
4822 	p4d = p4d_alloc(mm, pgd, address);
4823 	if (!p4d)
4824 		return VM_FAULT_OOM;
4825 
4826 	vmf.pud = pud_alloc(mm, p4d, address);
4827 	if (!vmf.pud)
4828 		return VM_FAULT_OOM;
4829 retry_pud:
4830 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4831 		ret = create_huge_pud(&vmf);
4832 		if (!(ret & VM_FAULT_FALLBACK))
4833 			return ret;
4834 	} else {
4835 		pud_t orig_pud = *vmf.pud;
4836 
4837 		barrier();
4838 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4839 
4840 			/*
4841 			 * TODO once we support anonymous PUDs: NUMA case and
4842 			 * FAULT_FLAG_UNSHARE handling.
4843 			 */
4844 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
4845 				ret = wp_huge_pud(&vmf, orig_pud);
4846 				if (!(ret & VM_FAULT_FALLBACK))
4847 					return ret;
4848 			} else {
4849 				huge_pud_set_accessed(&vmf, orig_pud);
4850 				return 0;
4851 			}
4852 		}
4853 	}
4854 
4855 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4856 	if (!vmf.pmd)
4857 		return VM_FAULT_OOM;
4858 
4859 	/* Huge pud page fault raced with pmd_alloc? */
4860 	if (pud_trans_unstable(vmf.pud))
4861 		goto retry_pud;
4862 
4863 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4864 		ret = create_huge_pmd(&vmf);
4865 		if (!(ret & VM_FAULT_FALLBACK))
4866 			return ret;
4867 	} else {
4868 		vmf.orig_pmd = *vmf.pmd;
4869 
4870 		barrier();
4871 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4872 			VM_BUG_ON(thp_migration_supported() &&
4873 					  !is_pmd_migration_entry(vmf.orig_pmd));
4874 			if (is_pmd_migration_entry(vmf.orig_pmd))
4875 				pmd_migration_entry_wait(mm, vmf.pmd);
4876 			return 0;
4877 		}
4878 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4879 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4880 				return do_huge_pmd_numa_page(&vmf);
4881 
4882 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
4883 			    !pmd_write(vmf.orig_pmd)) {
4884 				ret = wp_huge_pmd(&vmf);
4885 				if (!(ret & VM_FAULT_FALLBACK))
4886 					return ret;
4887 			} else {
4888 				huge_pmd_set_accessed(&vmf);
4889 				return 0;
4890 			}
4891 		}
4892 	}
4893 
4894 	return handle_pte_fault(&vmf);
4895 }
4896 
4897 /**
4898  * mm_account_fault - Do page fault accounting
4899  *
4900  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4901  *        of perf event counters, but we'll still do the per-task accounting to
4902  *        the task who triggered this page fault.
4903  * @address: the faulted address.
4904  * @flags: the fault flags.
4905  * @ret: the fault retcode.
4906  *
4907  * This will take care of most of the page fault accounting.  Meanwhile, it
4908  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4909  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4910  * still be in per-arch page fault handlers at the entry of page fault.
4911  */
4912 static inline void mm_account_fault(struct pt_regs *regs,
4913 				    unsigned long address, unsigned int flags,
4914 				    vm_fault_t ret)
4915 {
4916 	bool major;
4917 
4918 	/*
4919 	 * We don't do accounting for some specific faults:
4920 	 *
4921 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4922 	 *   includes arch_vma_access_permitted() failing before reaching here.
4923 	 *   So this is not a "this many hardware page faults" counter.  We
4924 	 *   should use the hw profiling for that.
4925 	 *
4926 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4927 	 *   once they're completed.
4928 	 */
4929 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4930 		return;
4931 
4932 	/*
4933 	 * We define the fault as a major fault when the final successful fault
4934 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4935 	 * handle it immediately previously).
4936 	 */
4937 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4938 
4939 	if (major)
4940 		current->maj_flt++;
4941 	else
4942 		current->min_flt++;
4943 
4944 	/*
4945 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4946 	 * accounting for the per thread fault counters who triggered the
4947 	 * fault, and we skip the perf event updates.
4948 	 */
4949 	if (!regs)
4950 		return;
4951 
4952 	if (major)
4953 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4954 	else
4955 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4956 }
4957 
4958 /*
4959  * By the time we get here, we already hold the mm semaphore
4960  *
4961  * The mmap_lock may have been released depending on flags and our
4962  * return value.  See filemap_fault() and __folio_lock_or_retry().
4963  */
4964 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4965 			   unsigned int flags, struct pt_regs *regs)
4966 {
4967 	vm_fault_t ret;
4968 
4969 	__set_current_state(TASK_RUNNING);
4970 
4971 	count_vm_event(PGFAULT);
4972 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4973 
4974 	/* do counter updates before entering really critical section. */
4975 	check_sync_rss_stat(current);
4976 
4977 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4978 					    flags & FAULT_FLAG_INSTRUCTION,
4979 					    flags & FAULT_FLAG_REMOTE))
4980 		return VM_FAULT_SIGSEGV;
4981 
4982 	/*
4983 	 * Enable the memcg OOM handling for faults triggered in user
4984 	 * space.  Kernel faults are handled more gracefully.
4985 	 */
4986 	if (flags & FAULT_FLAG_USER)
4987 		mem_cgroup_enter_user_fault();
4988 
4989 	if (unlikely(is_vm_hugetlb_page(vma)))
4990 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4991 	else
4992 		ret = __handle_mm_fault(vma, address, flags);
4993 
4994 	if (flags & FAULT_FLAG_USER) {
4995 		mem_cgroup_exit_user_fault();
4996 		/*
4997 		 * The task may have entered a memcg OOM situation but
4998 		 * if the allocation error was handled gracefully (no
4999 		 * VM_FAULT_OOM), there is no need to kill anything.
5000 		 * Just clean up the OOM state peacefully.
5001 		 */
5002 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5003 			mem_cgroup_oom_synchronize(false);
5004 	}
5005 
5006 	mm_account_fault(regs, address, flags, ret);
5007 
5008 	return ret;
5009 }
5010 EXPORT_SYMBOL_GPL(handle_mm_fault);
5011 
5012 #ifndef __PAGETABLE_P4D_FOLDED
5013 /*
5014  * Allocate p4d page table.
5015  * We've already handled the fast-path in-line.
5016  */
5017 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5018 {
5019 	p4d_t *new = p4d_alloc_one(mm, address);
5020 	if (!new)
5021 		return -ENOMEM;
5022 
5023 	spin_lock(&mm->page_table_lock);
5024 	if (pgd_present(*pgd)) {	/* Another has populated it */
5025 		p4d_free(mm, new);
5026 	} else {
5027 		smp_wmb(); /* See comment in pmd_install() */
5028 		pgd_populate(mm, pgd, new);
5029 	}
5030 	spin_unlock(&mm->page_table_lock);
5031 	return 0;
5032 }
5033 #endif /* __PAGETABLE_P4D_FOLDED */
5034 
5035 #ifndef __PAGETABLE_PUD_FOLDED
5036 /*
5037  * Allocate page upper directory.
5038  * We've already handled the fast-path in-line.
5039  */
5040 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5041 {
5042 	pud_t *new = pud_alloc_one(mm, address);
5043 	if (!new)
5044 		return -ENOMEM;
5045 
5046 	spin_lock(&mm->page_table_lock);
5047 	if (!p4d_present(*p4d)) {
5048 		mm_inc_nr_puds(mm);
5049 		smp_wmb(); /* See comment in pmd_install() */
5050 		p4d_populate(mm, p4d, new);
5051 	} else	/* Another has populated it */
5052 		pud_free(mm, new);
5053 	spin_unlock(&mm->page_table_lock);
5054 	return 0;
5055 }
5056 #endif /* __PAGETABLE_PUD_FOLDED */
5057 
5058 #ifndef __PAGETABLE_PMD_FOLDED
5059 /*
5060  * Allocate page middle directory.
5061  * We've already handled the fast-path in-line.
5062  */
5063 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5064 {
5065 	spinlock_t *ptl;
5066 	pmd_t *new = pmd_alloc_one(mm, address);
5067 	if (!new)
5068 		return -ENOMEM;
5069 
5070 	ptl = pud_lock(mm, pud);
5071 	if (!pud_present(*pud)) {
5072 		mm_inc_nr_pmds(mm);
5073 		smp_wmb(); /* See comment in pmd_install() */
5074 		pud_populate(mm, pud, new);
5075 	} else {	/* Another has populated it */
5076 		pmd_free(mm, new);
5077 	}
5078 	spin_unlock(ptl);
5079 	return 0;
5080 }
5081 #endif /* __PAGETABLE_PMD_FOLDED */
5082 
5083 /**
5084  * follow_pte - look up PTE at a user virtual address
5085  * @mm: the mm_struct of the target address space
5086  * @address: user virtual address
5087  * @ptepp: location to store found PTE
5088  * @ptlp: location to store the lock for the PTE
5089  *
5090  * On a successful return, the pointer to the PTE is stored in @ptepp;
5091  * the corresponding lock is taken and its location is stored in @ptlp.
5092  * The contents of the PTE are only stable until @ptlp is released;
5093  * any further use, if any, must be protected against invalidation
5094  * with MMU notifiers.
5095  *
5096  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5097  * should be taken for read.
5098  *
5099  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5100  * it is not a good general-purpose API.
5101  *
5102  * Return: zero on success, -ve otherwise.
5103  */
5104 int follow_pte(struct mm_struct *mm, unsigned long address,
5105 	       pte_t **ptepp, spinlock_t **ptlp)
5106 {
5107 	pgd_t *pgd;
5108 	p4d_t *p4d;
5109 	pud_t *pud;
5110 	pmd_t *pmd;
5111 	pte_t *ptep;
5112 
5113 	pgd = pgd_offset(mm, address);
5114 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5115 		goto out;
5116 
5117 	p4d = p4d_offset(pgd, address);
5118 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5119 		goto out;
5120 
5121 	pud = pud_offset(p4d, address);
5122 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5123 		goto out;
5124 
5125 	pmd = pmd_offset(pud, address);
5126 	VM_BUG_ON(pmd_trans_huge(*pmd));
5127 
5128 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5129 		goto out;
5130 
5131 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5132 	if (!pte_present(*ptep))
5133 		goto unlock;
5134 	*ptepp = ptep;
5135 	return 0;
5136 unlock:
5137 	pte_unmap_unlock(ptep, *ptlp);
5138 out:
5139 	return -EINVAL;
5140 }
5141 EXPORT_SYMBOL_GPL(follow_pte);
5142 
5143 /**
5144  * follow_pfn - look up PFN at a user virtual address
5145  * @vma: memory mapping
5146  * @address: user virtual address
5147  * @pfn: location to store found PFN
5148  *
5149  * Only IO mappings and raw PFN mappings are allowed.
5150  *
5151  * This function does not allow the caller to read the permissions
5152  * of the PTE.  Do not use it.
5153  *
5154  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5155  */
5156 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5157 	unsigned long *pfn)
5158 {
5159 	int ret = -EINVAL;
5160 	spinlock_t *ptl;
5161 	pte_t *ptep;
5162 
5163 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5164 		return ret;
5165 
5166 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5167 	if (ret)
5168 		return ret;
5169 	*pfn = pte_pfn(*ptep);
5170 	pte_unmap_unlock(ptep, ptl);
5171 	return 0;
5172 }
5173 EXPORT_SYMBOL(follow_pfn);
5174 
5175 #ifdef CONFIG_HAVE_IOREMAP_PROT
5176 int follow_phys(struct vm_area_struct *vma,
5177 		unsigned long address, unsigned int flags,
5178 		unsigned long *prot, resource_size_t *phys)
5179 {
5180 	int ret = -EINVAL;
5181 	pte_t *ptep, pte;
5182 	spinlock_t *ptl;
5183 
5184 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5185 		goto out;
5186 
5187 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5188 		goto out;
5189 	pte = *ptep;
5190 
5191 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5192 		goto unlock;
5193 
5194 	*prot = pgprot_val(pte_pgprot(pte));
5195 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5196 
5197 	ret = 0;
5198 unlock:
5199 	pte_unmap_unlock(ptep, ptl);
5200 out:
5201 	return ret;
5202 }
5203 
5204 /**
5205  * generic_access_phys - generic implementation for iomem mmap access
5206  * @vma: the vma to access
5207  * @addr: userspace address, not relative offset within @vma
5208  * @buf: buffer to read/write
5209  * @len: length of transfer
5210  * @write: set to FOLL_WRITE when writing, otherwise reading
5211  *
5212  * This is a generic implementation for &vm_operations_struct.access for an
5213  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5214  * not page based.
5215  */
5216 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5217 			void *buf, int len, int write)
5218 {
5219 	resource_size_t phys_addr;
5220 	unsigned long prot = 0;
5221 	void __iomem *maddr;
5222 	pte_t *ptep, pte;
5223 	spinlock_t *ptl;
5224 	int offset = offset_in_page(addr);
5225 	int ret = -EINVAL;
5226 
5227 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5228 		return -EINVAL;
5229 
5230 retry:
5231 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5232 		return -EINVAL;
5233 	pte = *ptep;
5234 	pte_unmap_unlock(ptep, ptl);
5235 
5236 	prot = pgprot_val(pte_pgprot(pte));
5237 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5238 
5239 	if ((write & FOLL_WRITE) && !pte_write(pte))
5240 		return -EINVAL;
5241 
5242 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5243 	if (!maddr)
5244 		return -ENOMEM;
5245 
5246 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5247 		goto out_unmap;
5248 
5249 	if (!pte_same(pte, *ptep)) {
5250 		pte_unmap_unlock(ptep, ptl);
5251 		iounmap(maddr);
5252 
5253 		goto retry;
5254 	}
5255 
5256 	if (write)
5257 		memcpy_toio(maddr + offset, buf, len);
5258 	else
5259 		memcpy_fromio(buf, maddr + offset, len);
5260 	ret = len;
5261 	pte_unmap_unlock(ptep, ptl);
5262 out_unmap:
5263 	iounmap(maddr);
5264 
5265 	return ret;
5266 }
5267 EXPORT_SYMBOL_GPL(generic_access_phys);
5268 #endif
5269 
5270 /*
5271  * Access another process' address space as given in mm.
5272  */
5273 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5274 		       int len, unsigned int gup_flags)
5275 {
5276 	struct vm_area_struct *vma;
5277 	void *old_buf = buf;
5278 	int write = gup_flags & FOLL_WRITE;
5279 
5280 	if (mmap_read_lock_killable(mm))
5281 		return 0;
5282 
5283 	/* ignore errors, just check how much was successfully transferred */
5284 	while (len) {
5285 		int bytes, ret, offset;
5286 		void *maddr;
5287 		struct page *page = NULL;
5288 
5289 		ret = get_user_pages_remote(mm, addr, 1,
5290 				gup_flags, &page, &vma, NULL);
5291 		if (ret <= 0) {
5292 #ifndef CONFIG_HAVE_IOREMAP_PROT
5293 			break;
5294 #else
5295 			/*
5296 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5297 			 * we can access using slightly different code.
5298 			 */
5299 			vma = vma_lookup(mm, addr);
5300 			if (!vma)
5301 				break;
5302 			if (vma->vm_ops && vma->vm_ops->access)
5303 				ret = vma->vm_ops->access(vma, addr, buf,
5304 							  len, write);
5305 			if (ret <= 0)
5306 				break;
5307 			bytes = ret;
5308 #endif
5309 		} else {
5310 			bytes = len;
5311 			offset = addr & (PAGE_SIZE-1);
5312 			if (bytes > PAGE_SIZE-offset)
5313 				bytes = PAGE_SIZE-offset;
5314 
5315 			maddr = kmap(page);
5316 			if (write) {
5317 				copy_to_user_page(vma, page, addr,
5318 						  maddr + offset, buf, bytes);
5319 				set_page_dirty_lock(page);
5320 			} else {
5321 				copy_from_user_page(vma, page, addr,
5322 						    buf, maddr + offset, bytes);
5323 			}
5324 			kunmap(page);
5325 			put_page(page);
5326 		}
5327 		len -= bytes;
5328 		buf += bytes;
5329 		addr += bytes;
5330 	}
5331 	mmap_read_unlock(mm);
5332 
5333 	return buf - old_buf;
5334 }
5335 
5336 /**
5337  * access_remote_vm - access another process' address space
5338  * @mm:		the mm_struct of the target address space
5339  * @addr:	start address to access
5340  * @buf:	source or destination buffer
5341  * @len:	number of bytes to transfer
5342  * @gup_flags:	flags modifying lookup behaviour
5343  *
5344  * The caller must hold a reference on @mm.
5345  *
5346  * Return: number of bytes copied from source to destination.
5347  */
5348 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5349 		void *buf, int len, unsigned int gup_flags)
5350 {
5351 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5352 }
5353 
5354 /*
5355  * Access another process' address space.
5356  * Source/target buffer must be kernel space,
5357  * Do not walk the page table directly, use get_user_pages
5358  */
5359 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5360 		void *buf, int len, unsigned int gup_flags)
5361 {
5362 	struct mm_struct *mm;
5363 	int ret;
5364 
5365 	mm = get_task_mm(tsk);
5366 	if (!mm)
5367 		return 0;
5368 
5369 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5370 
5371 	mmput(mm);
5372 
5373 	return ret;
5374 }
5375 EXPORT_SYMBOL_GPL(access_process_vm);
5376 
5377 /*
5378  * Print the name of a VMA.
5379  */
5380 void print_vma_addr(char *prefix, unsigned long ip)
5381 {
5382 	struct mm_struct *mm = current->mm;
5383 	struct vm_area_struct *vma;
5384 
5385 	/*
5386 	 * we might be running from an atomic context so we cannot sleep
5387 	 */
5388 	if (!mmap_read_trylock(mm))
5389 		return;
5390 
5391 	vma = find_vma(mm, ip);
5392 	if (vma && vma->vm_file) {
5393 		struct file *f = vma->vm_file;
5394 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5395 		if (buf) {
5396 			char *p;
5397 
5398 			p = file_path(f, buf, PAGE_SIZE);
5399 			if (IS_ERR(p))
5400 				p = "?";
5401 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5402 					vma->vm_start,
5403 					vma->vm_end - vma->vm_start);
5404 			free_page((unsigned long)buf);
5405 		}
5406 	}
5407 	mmap_read_unlock(mm);
5408 }
5409 
5410 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5411 void __might_fault(const char *file, int line)
5412 {
5413 	if (pagefault_disabled())
5414 		return;
5415 	__might_sleep(file, line);
5416 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5417 	if (current->mm)
5418 		might_lock_read(&current->mm->mmap_lock);
5419 #endif
5420 }
5421 EXPORT_SYMBOL(__might_fault);
5422 #endif
5423 
5424 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5425 /*
5426  * Process all subpages of the specified huge page with the specified
5427  * operation.  The target subpage will be processed last to keep its
5428  * cache lines hot.
5429  */
5430 static inline void process_huge_page(
5431 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5432 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5433 	void *arg)
5434 {
5435 	int i, n, base, l;
5436 	unsigned long addr = addr_hint &
5437 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5438 
5439 	/* Process target subpage last to keep its cache lines hot */
5440 	might_sleep();
5441 	n = (addr_hint - addr) / PAGE_SIZE;
5442 	if (2 * n <= pages_per_huge_page) {
5443 		/* If target subpage in first half of huge page */
5444 		base = 0;
5445 		l = n;
5446 		/* Process subpages at the end of huge page */
5447 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5448 			cond_resched();
5449 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5450 		}
5451 	} else {
5452 		/* If target subpage in second half of huge page */
5453 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5454 		l = pages_per_huge_page - n;
5455 		/* Process subpages at the begin of huge page */
5456 		for (i = 0; i < base; i++) {
5457 			cond_resched();
5458 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5459 		}
5460 	}
5461 	/*
5462 	 * Process remaining subpages in left-right-left-right pattern
5463 	 * towards the target subpage
5464 	 */
5465 	for (i = 0; i < l; i++) {
5466 		int left_idx = base + i;
5467 		int right_idx = base + 2 * l - 1 - i;
5468 
5469 		cond_resched();
5470 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5471 		cond_resched();
5472 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5473 	}
5474 }
5475 
5476 static void clear_gigantic_page(struct page *page,
5477 				unsigned long addr,
5478 				unsigned int pages_per_huge_page)
5479 {
5480 	int i;
5481 	struct page *p = page;
5482 
5483 	might_sleep();
5484 	for (i = 0; i < pages_per_huge_page;
5485 	     i++, p = mem_map_next(p, page, i)) {
5486 		cond_resched();
5487 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5488 	}
5489 }
5490 
5491 static void clear_subpage(unsigned long addr, int idx, void *arg)
5492 {
5493 	struct page *page = arg;
5494 
5495 	clear_user_highpage(page + idx, addr);
5496 }
5497 
5498 void clear_huge_page(struct page *page,
5499 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5500 {
5501 	unsigned long addr = addr_hint &
5502 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5503 
5504 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5505 		clear_gigantic_page(page, addr, pages_per_huge_page);
5506 		return;
5507 	}
5508 
5509 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5510 }
5511 
5512 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5513 				    unsigned long addr,
5514 				    struct vm_area_struct *vma,
5515 				    unsigned int pages_per_huge_page)
5516 {
5517 	int i;
5518 	struct page *dst_base = dst;
5519 	struct page *src_base = src;
5520 
5521 	for (i = 0; i < pages_per_huge_page; ) {
5522 		cond_resched();
5523 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5524 
5525 		i++;
5526 		dst = mem_map_next(dst, dst_base, i);
5527 		src = mem_map_next(src, src_base, i);
5528 	}
5529 }
5530 
5531 struct copy_subpage_arg {
5532 	struct page *dst;
5533 	struct page *src;
5534 	struct vm_area_struct *vma;
5535 };
5536 
5537 static void copy_subpage(unsigned long addr, int idx, void *arg)
5538 {
5539 	struct copy_subpage_arg *copy_arg = arg;
5540 
5541 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5542 			   addr, copy_arg->vma);
5543 }
5544 
5545 void copy_user_huge_page(struct page *dst, struct page *src,
5546 			 unsigned long addr_hint, struct vm_area_struct *vma,
5547 			 unsigned int pages_per_huge_page)
5548 {
5549 	unsigned long addr = addr_hint &
5550 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5551 	struct copy_subpage_arg arg = {
5552 		.dst = dst,
5553 		.src = src,
5554 		.vma = vma,
5555 	};
5556 
5557 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5558 		copy_user_gigantic_page(dst, src, addr, vma,
5559 					pages_per_huge_page);
5560 		return;
5561 	}
5562 
5563 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5564 }
5565 
5566 long copy_huge_page_from_user(struct page *dst_page,
5567 				const void __user *usr_src,
5568 				unsigned int pages_per_huge_page,
5569 				bool allow_pagefault)
5570 {
5571 	void *page_kaddr;
5572 	unsigned long i, rc = 0;
5573 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5574 	struct page *subpage = dst_page;
5575 
5576 	for (i = 0; i < pages_per_huge_page;
5577 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5578 		if (allow_pagefault)
5579 			page_kaddr = kmap(subpage);
5580 		else
5581 			page_kaddr = kmap_atomic(subpage);
5582 		rc = copy_from_user(page_kaddr,
5583 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5584 		if (allow_pagefault)
5585 			kunmap(subpage);
5586 		else
5587 			kunmap_atomic(page_kaddr);
5588 
5589 		ret_val -= (PAGE_SIZE - rc);
5590 		if (rc)
5591 			break;
5592 
5593 		flush_dcache_page(subpage);
5594 
5595 		cond_resched();
5596 	}
5597 	return ret_val;
5598 }
5599 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5600 
5601 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5602 
5603 static struct kmem_cache *page_ptl_cachep;
5604 
5605 void __init ptlock_cache_init(void)
5606 {
5607 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5608 			SLAB_PANIC, NULL);
5609 }
5610 
5611 bool ptlock_alloc(struct page *page)
5612 {
5613 	spinlock_t *ptl;
5614 
5615 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5616 	if (!ptl)
5617 		return false;
5618 	page->ptl = ptl;
5619 	return true;
5620 }
5621 
5622 void ptlock_free(struct page *page)
5623 {
5624 	kmem_cache_free(page_ptl_cachep, page->ptl);
5625 }
5626 #endif
5627