1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 #include "swap.h" 90 91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 93 #endif 94 95 #ifndef CONFIG_NUMA 96 unsigned long max_mapnr; 97 EXPORT_SYMBOL(max_mapnr); 98 99 struct page *mem_map; 100 EXPORT_SYMBOL(mem_map); 101 #endif 102 103 static vm_fault_t do_fault(struct vm_fault *vmf); 104 105 /* 106 * A number of key systems in x86 including ioremap() rely on the assumption 107 * that high_memory defines the upper bound on direct map memory, then end 108 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 109 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 110 * and ZONE_HIGHMEM. 111 */ 112 void *high_memory; 113 EXPORT_SYMBOL(high_memory); 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 #ifndef arch_faults_on_old_pte 129 static inline bool arch_faults_on_old_pte(void) 130 { 131 /* 132 * Those arches which don't have hw access flag feature need to 133 * implement their own helper. By default, "true" means pagefault 134 * will be hit on old pte. 135 */ 136 return true; 137 } 138 #endif 139 140 #ifndef arch_wants_old_prefaulted_pte 141 static inline bool arch_wants_old_prefaulted_pte(void) 142 { 143 /* 144 * Transitioning a PTE from 'old' to 'young' can be expensive on 145 * some architectures, even if it's performed in hardware. By 146 * default, "false" means prefaulted entries will be 'young'. 147 */ 148 return false; 149 } 150 #endif 151 152 static int __init disable_randmaps(char *s) 153 { 154 randomize_va_space = 0; 155 return 1; 156 } 157 __setup("norandmaps", disable_randmaps); 158 159 unsigned long zero_pfn __read_mostly; 160 EXPORT_SYMBOL(zero_pfn); 161 162 unsigned long highest_memmap_pfn __read_mostly; 163 164 /* 165 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 166 */ 167 static int __init init_zero_pfn(void) 168 { 169 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 170 return 0; 171 } 172 early_initcall(init_zero_pfn); 173 174 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 175 { 176 trace_rss_stat(mm, member, count); 177 } 178 179 #if defined(SPLIT_RSS_COUNTING) 180 181 void sync_mm_rss(struct mm_struct *mm) 182 { 183 int i; 184 185 for (i = 0; i < NR_MM_COUNTERS; i++) { 186 if (current->rss_stat.count[i]) { 187 add_mm_counter(mm, i, current->rss_stat.count[i]); 188 current->rss_stat.count[i] = 0; 189 } 190 } 191 current->rss_stat.events = 0; 192 } 193 194 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 195 { 196 struct task_struct *task = current; 197 198 if (likely(task->mm == mm)) 199 task->rss_stat.count[member] += val; 200 else 201 add_mm_counter(mm, member, val); 202 } 203 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 204 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 205 206 /* sync counter once per 64 page faults */ 207 #define TASK_RSS_EVENTS_THRESH (64) 208 static void check_sync_rss_stat(struct task_struct *task) 209 { 210 if (unlikely(task != current)) 211 return; 212 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 213 sync_mm_rss(task->mm); 214 } 215 #else /* SPLIT_RSS_COUNTING */ 216 217 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 218 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 219 220 static void check_sync_rss_stat(struct task_struct *task) 221 { 222 } 223 224 #endif /* SPLIT_RSS_COUNTING */ 225 226 /* 227 * Note: this doesn't free the actual pages themselves. That 228 * has been handled earlier when unmapping all the memory regions. 229 */ 230 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 231 unsigned long addr) 232 { 233 pgtable_t token = pmd_pgtable(*pmd); 234 pmd_clear(pmd); 235 pte_free_tlb(tlb, token, addr); 236 mm_dec_nr_ptes(tlb->mm); 237 } 238 239 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 240 unsigned long addr, unsigned long end, 241 unsigned long floor, unsigned long ceiling) 242 { 243 pmd_t *pmd; 244 unsigned long next; 245 unsigned long start; 246 247 start = addr; 248 pmd = pmd_offset(pud, addr); 249 do { 250 next = pmd_addr_end(addr, end); 251 if (pmd_none_or_clear_bad(pmd)) 252 continue; 253 free_pte_range(tlb, pmd, addr); 254 } while (pmd++, addr = next, addr != end); 255 256 start &= PUD_MASK; 257 if (start < floor) 258 return; 259 if (ceiling) { 260 ceiling &= PUD_MASK; 261 if (!ceiling) 262 return; 263 } 264 if (end - 1 > ceiling - 1) 265 return; 266 267 pmd = pmd_offset(pud, start); 268 pud_clear(pud); 269 pmd_free_tlb(tlb, pmd, start); 270 mm_dec_nr_pmds(tlb->mm); 271 } 272 273 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 274 unsigned long addr, unsigned long end, 275 unsigned long floor, unsigned long ceiling) 276 { 277 pud_t *pud; 278 unsigned long next; 279 unsigned long start; 280 281 start = addr; 282 pud = pud_offset(p4d, addr); 283 do { 284 next = pud_addr_end(addr, end); 285 if (pud_none_or_clear_bad(pud)) 286 continue; 287 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 288 } while (pud++, addr = next, addr != end); 289 290 start &= P4D_MASK; 291 if (start < floor) 292 return; 293 if (ceiling) { 294 ceiling &= P4D_MASK; 295 if (!ceiling) 296 return; 297 } 298 if (end - 1 > ceiling - 1) 299 return; 300 301 pud = pud_offset(p4d, start); 302 p4d_clear(p4d); 303 pud_free_tlb(tlb, pud, start); 304 mm_dec_nr_puds(tlb->mm); 305 } 306 307 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 308 unsigned long addr, unsigned long end, 309 unsigned long floor, unsigned long ceiling) 310 { 311 p4d_t *p4d; 312 unsigned long next; 313 unsigned long start; 314 315 start = addr; 316 p4d = p4d_offset(pgd, addr); 317 do { 318 next = p4d_addr_end(addr, end); 319 if (p4d_none_or_clear_bad(p4d)) 320 continue; 321 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 322 } while (p4d++, addr = next, addr != end); 323 324 start &= PGDIR_MASK; 325 if (start < floor) 326 return; 327 if (ceiling) { 328 ceiling &= PGDIR_MASK; 329 if (!ceiling) 330 return; 331 } 332 if (end - 1 > ceiling - 1) 333 return; 334 335 p4d = p4d_offset(pgd, start); 336 pgd_clear(pgd); 337 p4d_free_tlb(tlb, p4d, start); 338 } 339 340 /* 341 * This function frees user-level page tables of a process. 342 */ 343 void free_pgd_range(struct mmu_gather *tlb, 344 unsigned long addr, unsigned long end, 345 unsigned long floor, unsigned long ceiling) 346 { 347 pgd_t *pgd; 348 unsigned long next; 349 350 /* 351 * The next few lines have given us lots of grief... 352 * 353 * Why are we testing PMD* at this top level? Because often 354 * there will be no work to do at all, and we'd prefer not to 355 * go all the way down to the bottom just to discover that. 356 * 357 * Why all these "- 1"s? Because 0 represents both the bottom 358 * of the address space and the top of it (using -1 for the 359 * top wouldn't help much: the masks would do the wrong thing). 360 * The rule is that addr 0 and floor 0 refer to the bottom of 361 * the address space, but end 0 and ceiling 0 refer to the top 362 * Comparisons need to use "end - 1" and "ceiling - 1" (though 363 * that end 0 case should be mythical). 364 * 365 * Wherever addr is brought up or ceiling brought down, we must 366 * be careful to reject "the opposite 0" before it confuses the 367 * subsequent tests. But what about where end is brought down 368 * by PMD_SIZE below? no, end can't go down to 0 there. 369 * 370 * Whereas we round start (addr) and ceiling down, by different 371 * masks at different levels, in order to test whether a table 372 * now has no other vmas using it, so can be freed, we don't 373 * bother to round floor or end up - the tests don't need that. 374 */ 375 376 addr &= PMD_MASK; 377 if (addr < floor) { 378 addr += PMD_SIZE; 379 if (!addr) 380 return; 381 } 382 if (ceiling) { 383 ceiling &= PMD_MASK; 384 if (!ceiling) 385 return; 386 } 387 if (end - 1 > ceiling - 1) 388 end -= PMD_SIZE; 389 if (addr > end - 1) 390 return; 391 /* 392 * We add page table cache pages with PAGE_SIZE, 393 * (see pte_free_tlb()), flush the tlb if we need 394 */ 395 tlb_change_page_size(tlb, PAGE_SIZE); 396 pgd = pgd_offset(tlb->mm, addr); 397 do { 398 next = pgd_addr_end(addr, end); 399 if (pgd_none_or_clear_bad(pgd)) 400 continue; 401 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 402 } while (pgd++, addr = next, addr != end); 403 } 404 405 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 406 unsigned long floor, unsigned long ceiling) 407 { 408 while (vma) { 409 struct vm_area_struct *next = vma->vm_next; 410 unsigned long addr = vma->vm_start; 411 412 /* 413 * Hide vma from rmap and truncate_pagecache before freeing 414 * pgtables 415 */ 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 419 if (is_vm_hugetlb_page(vma)) { 420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 421 floor, next ? next->vm_start : ceiling); 422 } else { 423 /* 424 * Optimization: gather nearby vmas into one call down 425 */ 426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 427 && !is_vm_hugetlb_page(next)) { 428 vma = next; 429 next = vma->vm_next; 430 unlink_anon_vmas(vma); 431 unlink_file_vma(vma); 432 } 433 free_pgd_range(tlb, addr, vma->vm_end, 434 floor, next ? next->vm_start : ceiling); 435 } 436 vma = next; 437 } 438 } 439 440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 441 { 442 spinlock_t *ptl = pmd_lock(mm, pmd); 443 444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 445 mm_inc_nr_ptes(mm); 446 /* 447 * Ensure all pte setup (eg. pte page lock and page clearing) are 448 * visible before the pte is made visible to other CPUs by being 449 * put into page tables. 450 * 451 * The other side of the story is the pointer chasing in the page 452 * table walking code (when walking the page table without locking; 453 * ie. most of the time). Fortunately, these data accesses consist 454 * of a chain of data-dependent loads, meaning most CPUs (alpha 455 * being the notable exception) will already guarantee loads are 456 * seen in-order. See the alpha page table accessors for the 457 * smp_rmb() barriers in page table walking code. 458 */ 459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 460 pmd_populate(mm, pmd, *pte); 461 *pte = NULL; 462 } 463 spin_unlock(ptl); 464 } 465 466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 467 { 468 pgtable_t new = pte_alloc_one(mm); 469 if (!new) 470 return -ENOMEM; 471 472 pmd_install(mm, pmd, &new); 473 if (new) 474 pte_free(mm, new); 475 return 0; 476 } 477 478 int __pte_alloc_kernel(pmd_t *pmd) 479 { 480 pte_t *new = pte_alloc_one_kernel(&init_mm); 481 if (!new) 482 return -ENOMEM; 483 484 spin_lock(&init_mm.page_table_lock); 485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 486 smp_wmb(); /* See comment in pmd_install() */ 487 pmd_populate_kernel(&init_mm, pmd, new); 488 new = NULL; 489 } 490 spin_unlock(&init_mm.page_table_lock); 491 if (new) 492 pte_free_kernel(&init_mm, new); 493 return 0; 494 } 495 496 static inline void init_rss_vec(int *rss) 497 { 498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 499 } 500 501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 502 { 503 int i; 504 505 if (current->mm == mm) 506 sync_mm_rss(mm); 507 for (i = 0; i < NR_MM_COUNTERS; i++) 508 if (rss[i]) 509 add_mm_counter(mm, i, rss[i]); 510 } 511 512 /* 513 * This function is called to print an error when a bad pte 514 * is found. For example, we might have a PFN-mapped pte in 515 * a region that doesn't allow it. 516 * 517 * The calling function must still handle the error. 518 */ 519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 520 pte_t pte, struct page *page) 521 { 522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 523 p4d_t *p4d = p4d_offset(pgd, addr); 524 pud_t *pud = pud_offset(p4d, addr); 525 pmd_t *pmd = pmd_offset(pud, addr); 526 struct address_space *mapping; 527 pgoff_t index; 528 static unsigned long resume; 529 static unsigned long nr_shown; 530 static unsigned long nr_unshown; 531 532 /* 533 * Allow a burst of 60 reports, then keep quiet for that minute; 534 * or allow a steady drip of one report per second. 535 */ 536 if (nr_shown == 60) { 537 if (time_before(jiffies, resume)) { 538 nr_unshown++; 539 return; 540 } 541 if (nr_unshown) { 542 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 543 nr_unshown); 544 nr_unshown = 0; 545 } 546 nr_shown = 0; 547 } 548 if (nr_shown++ == 0) 549 resume = jiffies + 60 * HZ; 550 551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 552 index = linear_page_index(vma, addr); 553 554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 555 current->comm, 556 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 557 if (page) 558 dump_page(page, "bad pte"); 559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 561 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 562 vma->vm_file, 563 vma->vm_ops ? vma->vm_ops->fault : NULL, 564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 565 mapping ? mapping->a_ops->readpage : NULL); 566 dump_stack(); 567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 568 } 569 570 /* 571 * vm_normal_page -- This function gets the "struct page" associated with a pte. 572 * 573 * "Special" mappings do not wish to be associated with a "struct page" (either 574 * it doesn't exist, or it exists but they don't want to touch it). In this 575 * case, NULL is returned here. "Normal" mappings do have a struct page. 576 * 577 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 578 * pte bit, in which case this function is trivial. Secondly, an architecture 579 * may not have a spare pte bit, which requires a more complicated scheme, 580 * described below. 581 * 582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 583 * special mapping (even if there are underlying and valid "struct pages"). 584 * COWed pages of a VM_PFNMAP are always normal. 585 * 586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 589 * mapping will always honor the rule 590 * 591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 592 * 593 * And for normal mappings this is false. 594 * 595 * This restricts such mappings to be a linear translation from virtual address 596 * to pfn. To get around this restriction, we allow arbitrary mappings so long 597 * as the vma is not a COW mapping; in that case, we know that all ptes are 598 * special (because none can have been COWed). 599 * 600 * 601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 602 * 603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 604 * page" backing, however the difference is that _all_ pages with a struct 605 * page (that is, those where pfn_valid is true) are refcounted and considered 606 * normal pages by the VM. The disadvantage is that pages are refcounted 607 * (which can be slower and simply not an option for some PFNMAP users). The 608 * advantage is that we don't have to follow the strict linearity rule of 609 * PFNMAP mappings in order to support COWable mappings. 610 * 611 */ 612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 613 pte_t pte) 614 { 615 unsigned long pfn = pte_pfn(pte); 616 617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 618 if (likely(!pte_special(pte))) 619 goto check_pfn; 620 if (vma->vm_ops && vma->vm_ops->find_special_page) 621 return vma->vm_ops->find_special_page(vma, addr); 622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 623 return NULL; 624 if (is_zero_pfn(pfn)) 625 return NULL; 626 if (pte_devmap(pte)) 627 return NULL; 628 629 print_bad_pte(vma, addr, pte, NULL); 630 return NULL; 631 } 632 633 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 634 635 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 636 if (vma->vm_flags & VM_MIXEDMAP) { 637 if (!pfn_valid(pfn)) 638 return NULL; 639 goto out; 640 } else { 641 unsigned long off; 642 off = (addr - vma->vm_start) >> PAGE_SHIFT; 643 if (pfn == vma->vm_pgoff + off) 644 return NULL; 645 if (!is_cow_mapping(vma->vm_flags)) 646 return NULL; 647 } 648 } 649 650 if (is_zero_pfn(pfn)) 651 return NULL; 652 653 check_pfn: 654 if (unlikely(pfn > highest_memmap_pfn)) { 655 print_bad_pte(vma, addr, pte, NULL); 656 return NULL; 657 } 658 659 /* 660 * NOTE! We still have PageReserved() pages in the page tables. 661 * eg. VDSO mappings can cause them to exist. 662 */ 663 out: 664 return pfn_to_page(pfn); 665 } 666 667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 669 pmd_t pmd) 670 { 671 unsigned long pfn = pmd_pfn(pmd); 672 673 /* 674 * There is no pmd_special() but there may be special pmds, e.g. 675 * in a direct-access (dax) mapping, so let's just replicate the 676 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 677 */ 678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 679 if (vma->vm_flags & VM_MIXEDMAP) { 680 if (!pfn_valid(pfn)) 681 return NULL; 682 goto out; 683 } else { 684 unsigned long off; 685 off = (addr - vma->vm_start) >> PAGE_SHIFT; 686 if (pfn == vma->vm_pgoff + off) 687 return NULL; 688 if (!is_cow_mapping(vma->vm_flags)) 689 return NULL; 690 } 691 } 692 693 if (pmd_devmap(pmd)) 694 return NULL; 695 if (is_huge_zero_pmd(pmd)) 696 return NULL; 697 if (unlikely(pfn > highest_memmap_pfn)) 698 return NULL; 699 700 /* 701 * NOTE! We still have PageReserved() pages in the page tables. 702 * eg. VDSO mappings can cause them to exist. 703 */ 704 out: 705 return pfn_to_page(pfn); 706 } 707 #endif 708 709 static void restore_exclusive_pte(struct vm_area_struct *vma, 710 struct page *page, unsigned long address, 711 pte_t *ptep) 712 { 713 pte_t pte; 714 swp_entry_t entry; 715 716 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 717 if (pte_swp_soft_dirty(*ptep)) 718 pte = pte_mksoft_dirty(pte); 719 720 entry = pte_to_swp_entry(*ptep); 721 if (pte_swp_uffd_wp(*ptep)) 722 pte = pte_mkuffd_wp(pte); 723 else if (is_writable_device_exclusive_entry(entry)) 724 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 725 726 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 727 728 /* 729 * No need to take a page reference as one was already 730 * created when the swap entry was made. 731 */ 732 if (PageAnon(page)) 733 page_add_anon_rmap(page, vma, address, RMAP_NONE); 734 else 735 /* 736 * Currently device exclusive access only supports anonymous 737 * memory so the entry shouldn't point to a filebacked page. 738 */ 739 WARN_ON_ONCE(!PageAnon(page)); 740 741 set_pte_at(vma->vm_mm, address, ptep, pte); 742 743 /* 744 * No need to invalidate - it was non-present before. However 745 * secondary CPUs may have mappings that need invalidating. 746 */ 747 update_mmu_cache(vma, address, ptep); 748 } 749 750 /* 751 * Tries to restore an exclusive pte if the page lock can be acquired without 752 * sleeping. 753 */ 754 static int 755 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 756 unsigned long addr) 757 { 758 swp_entry_t entry = pte_to_swp_entry(*src_pte); 759 struct page *page = pfn_swap_entry_to_page(entry); 760 761 if (trylock_page(page)) { 762 restore_exclusive_pte(vma, page, addr, src_pte); 763 unlock_page(page); 764 return 0; 765 } 766 767 return -EBUSY; 768 } 769 770 /* 771 * copy one vm_area from one task to the other. Assumes the page tables 772 * already present in the new task to be cleared in the whole range 773 * covered by this vma. 774 */ 775 776 static unsigned long 777 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 778 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 779 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 780 { 781 unsigned long vm_flags = dst_vma->vm_flags; 782 pte_t pte = *src_pte; 783 struct page *page; 784 swp_entry_t entry = pte_to_swp_entry(pte); 785 786 if (likely(!non_swap_entry(entry))) { 787 if (swap_duplicate(entry) < 0) 788 return -EIO; 789 790 /* make sure dst_mm is on swapoff's mmlist. */ 791 if (unlikely(list_empty(&dst_mm->mmlist))) { 792 spin_lock(&mmlist_lock); 793 if (list_empty(&dst_mm->mmlist)) 794 list_add(&dst_mm->mmlist, 795 &src_mm->mmlist); 796 spin_unlock(&mmlist_lock); 797 } 798 /* Mark the swap entry as shared. */ 799 if (pte_swp_exclusive(*src_pte)) { 800 pte = pte_swp_clear_exclusive(*src_pte); 801 set_pte_at(src_mm, addr, src_pte, pte); 802 } 803 rss[MM_SWAPENTS]++; 804 } else if (is_migration_entry(entry)) { 805 page = pfn_swap_entry_to_page(entry); 806 807 rss[mm_counter(page)]++; 808 809 if (!is_readable_migration_entry(entry) && 810 is_cow_mapping(vm_flags)) { 811 /* 812 * COW mappings require pages in both parent and child 813 * to be set to read. A previously exclusive entry is 814 * now shared. 815 */ 816 entry = make_readable_migration_entry( 817 swp_offset(entry)); 818 pte = swp_entry_to_pte(entry); 819 if (pte_swp_soft_dirty(*src_pte)) 820 pte = pte_swp_mksoft_dirty(pte); 821 if (pte_swp_uffd_wp(*src_pte)) 822 pte = pte_swp_mkuffd_wp(pte); 823 set_pte_at(src_mm, addr, src_pte, pte); 824 } 825 } else if (is_device_private_entry(entry)) { 826 page = pfn_swap_entry_to_page(entry); 827 828 /* 829 * Update rss count even for unaddressable pages, as 830 * they should treated just like normal pages in this 831 * respect. 832 * 833 * We will likely want to have some new rss counters 834 * for unaddressable pages, at some point. But for now 835 * keep things as they are. 836 */ 837 get_page(page); 838 rss[mm_counter(page)]++; 839 /* Cannot fail as these pages cannot get pinned. */ 840 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 841 842 /* 843 * We do not preserve soft-dirty information, because so 844 * far, checkpoint/restore is the only feature that 845 * requires that. And checkpoint/restore does not work 846 * when a device driver is involved (you cannot easily 847 * save and restore device driver state). 848 */ 849 if (is_writable_device_private_entry(entry) && 850 is_cow_mapping(vm_flags)) { 851 entry = make_readable_device_private_entry( 852 swp_offset(entry)); 853 pte = swp_entry_to_pte(entry); 854 if (pte_swp_uffd_wp(*src_pte)) 855 pte = pte_swp_mkuffd_wp(pte); 856 set_pte_at(src_mm, addr, src_pte, pte); 857 } 858 } else if (is_device_exclusive_entry(entry)) { 859 /* 860 * Make device exclusive entries present by restoring the 861 * original entry then copying as for a present pte. Device 862 * exclusive entries currently only support private writable 863 * (ie. COW) mappings. 864 */ 865 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 866 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 867 return -EBUSY; 868 return -ENOENT; 869 } 870 if (!userfaultfd_wp(dst_vma)) 871 pte = pte_swp_clear_uffd_wp(pte); 872 set_pte_at(dst_mm, addr, dst_pte, pte); 873 return 0; 874 } 875 876 /* 877 * Copy a present and normal page. 878 * 879 * NOTE! The usual case is that this isn't required; 880 * instead, the caller can just increase the page refcount 881 * and re-use the pte the traditional way. 882 * 883 * And if we need a pre-allocated page but don't yet have 884 * one, return a negative error to let the preallocation 885 * code know so that it can do so outside the page table 886 * lock. 887 */ 888 static inline int 889 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 890 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 891 struct page **prealloc, struct page *page) 892 { 893 struct page *new_page; 894 pte_t pte; 895 896 new_page = *prealloc; 897 if (!new_page) 898 return -EAGAIN; 899 900 /* 901 * We have a prealloc page, all good! Take it 902 * over and copy the page & arm it. 903 */ 904 *prealloc = NULL; 905 copy_user_highpage(new_page, page, addr, src_vma); 906 __SetPageUptodate(new_page); 907 page_add_new_anon_rmap(new_page, dst_vma, addr); 908 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 909 rss[mm_counter(new_page)]++; 910 911 /* All done, just insert the new page copy in the child */ 912 pte = mk_pte(new_page, dst_vma->vm_page_prot); 913 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 914 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 915 /* Uffd-wp needs to be delivered to dest pte as well */ 916 pte = pte_wrprotect(pte_mkuffd_wp(pte)); 917 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 918 return 0; 919 } 920 921 /* 922 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 923 * is required to copy this pte. 924 */ 925 static inline int 926 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 927 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 928 struct page **prealloc) 929 { 930 struct mm_struct *src_mm = src_vma->vm_mm; 931 unsigned long vm_flags = src_vma->vm_flags; 932 pte_t pte = *src_pte; 933 struct page *page; 934 935 page = vm_normal_page(src_vma, addr, pte); 936 if (page && PageAnon(page)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 get_page(page); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page maybe pinned, we have to copy. */ 946 put_page(page); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[mm_counter(page)]++; 951 } else if (page) { 952 get_page(page); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct page * 983 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 984 unsigned long addr) 985 { 986 struct page *new_page; 987 988 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 989 if (!new_page) 990 return NULL; 991 992 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) { 993 put_page(new_page); 994 return NULL; 995 } 996 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 997 998 return new_page; 999 } 1000 1001 static int 1002 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1003 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1004 unsigned long end) 1005 { 1006 struct mm_struct *dst_mm = dst_vma->vm_mm; 1007 struct mm_struct *src_mm = src_vma->vm_mm; 1008 pte_t *orig_src_pte, *orig_dst_pte; 1009 pte_t *src_pte, *dst_pte; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct page *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1021 if (!dst_pte) { 1022 ret = -ENOMEM; 1023 goto out; 1024 } 1025 src_pte = pte_offset_map(src_pmd, addr); 1026 src_ptl = pte_lockptr(src_mm, src_pmd); 1027 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1028 orig_src_pte = src_pte; 1029 orig_dst_pte = dst_pte; 1030 arch_enter_lazy_mmu_mode(); 1031 1032 do { 1033 /* 1034 * We are holding two locks at this point - either of them 1035 * could generate latencies in another task on another CPU. 1036 */ 1037 if (progress >= 32) { 1038 progress = 0; 1039 if (need_resched() || 1040 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1041 break; 1042 } 1043 if (pte_none(*src_pte)) { 1044 progress++; 1045 continue; 1046 } 1047 if (unlikely(!pte_present(*src_pte))) { 1048 ret = copy_nonpresent_pte(dst_mm, src_mm, 1049 dst_pte, src_pte, 1050 dst_vma, src_vma, 1051 addr, rss); 1052 if (ret == -EIO) { 1053 entry = pte_to_swp_entry(*src_pte); 1054 break; 1055 } else if (ret == -EBUSY) { 1056 break; 1057 } else if (!ret) { 1058 progress += 8; 1059 continue; 1060 } 1061 1062 /* 1063 * Device exclusive entry restored, continue by copying 1064 * the now present pte. 1065 */ 1066 WARN_ON_ONCE(ret != -ENOENT); 1067 } 1068 /* copy_present_pte() will clear `*prealloc' if consumed */ 1069 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1070 addr, rss, &prealloc); 1071 /* 1072 * If we need a pre-allocated page for this pte, drop the 1073 * locks, allocate, and try again. 1074 */ 1075 if (unlikely(ret == -EAGAIN)) 1076 break; 1077 if (unlikely(prealloc)) { 1078 /* 1079 * pre-alloc page cannot be reused by next time so as 1080 * to strictly follow mempolicy (e.g., alloc_page_vma() 1081 * will allocate page according to address). This 1082 * could only happen if one pinned pte changed. 1083 */ 1084 put_page(prealloc); 1085 prealloc = NULL; 1086 } 1087 progress += 8; 1088 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1089 1090 arch_leave_lazy_mmu_mode(); 1091 spin_unlock(src_ptl); 1092 pte_unmap(orig_src_pte); 1093 add_mm_rss_vec(dst_mm, rss); 1094 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1095 cond_resched(); 1096 1097 if (ret == -EIO) { 1098 VM_WARN_ON_ONCE(!entry.val); 1099 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1100 ret = -ENOMEM; 1101 goto out; 1102 } 1103 entry.val = 0; 1104 } else if (ret == -EBUSY) { 1105 goto out; 1106 } else if (ret == -EAGAIN) { 1107 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1108 if (!prealloc) 1109 return -ENOMEM; 1110 } else if (ret) { 1111 VM_WARN_ON_ONCE(1); 1112 } 1113 1114 /* We've captured and resolved the error. Reset, try again. */ 1115 ret = 0; 1116 1117 if (addr != end) 1118 goto again; 1119 out: 1120 if (unlikely(prealloc)) 1121 put_page(prealloc); 1122 return ret; 1123 } 1124 1125 static inline int 1126 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1127 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1128 unsigned long end) 1129 { 1130 struct mm_struct *dst_mm = dst_vma->vm_mm; 1131 struct mm_struct *src_mm = src_vma->vm_mm; 1132 pmd_t *src_pmd, *dst_pmd; 1133 unsigned long next; 1134 1135 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1136 if (!dst_pmd) 1137 return -ENOMEM; 1138 src_pmd = pmd_offset(src_pud, addr); 1139 do { 1140 next = pmd_addr_end(addr, end); 1141 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1142 || pmd_devmap(*src_pmd)) { 1143 int err; 1144 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1145 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1146 addr, dst_vma, src_vma); 1147 if (err == -ENOMEM) 1148 return -ENOMEM; 1149 if (!err) 1150 continue; 1151 /* fall through */ 1152 } 1153 if (pmd_none_or_clear_bad(src_pmd)) 1154 continue; 1155 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1156 addr, next)) 1157 return -ENOMEM; 1158 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1159 return 0; 1160 } 1161 1162 static inline int 1163 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1164 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1165 unsigned long end) 1166 { 1167 struct mm_struct *dst_mm = dst_vma->vm_mm; 1168 struct mm_struct *src_mm = src_vma->vm_mm; 1169 pud_t *src_pud, *dst_pud; 1170 unsigned long next; 1171 1172 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1173 if (!dst_pud) 1174 return -ENOMEM; 1175 src_pud = pud_offset(src_p4d, addr); 1176 do { 1177 next = pud_addr_end(addr, end); 1178 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1179 int err; 1180 1181 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1182 err = copy_huge_pud(dst_mm, src_mm, 1183 dst_pud, src_pud, addr, src_vma); 1184 if (err == -ENOMEM) 1185 return -ENOMEM; 1186 if (!err) 1187 continue; 1188 /* fall through */ 1189 } 1190 if (pud_none_or_clear_bad(src_pud)) 1191 continue; 1192 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1193 addr, next)) 1194 return -ENOMEM; 1195 } while (dst_pud++, src_pud++, addr = next, addr != end); 1196 return 0; 1197 } 1198 1199 static inline int 1200 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1201 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1202 unsigned long end) 1203 { 1204 struct mm_struct *dst_mm = dst_vma->vm_mm; 1205 p4d_t *src_p4d, *dst_p4d; 1206 unsigned long next; 1207 1208 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1209 if (!dst_p4d) 1210 return -ENOMEM; 1211 src_p4d = p4d_offset(src_pgd, addr); 1212 do { 1213 next = p4d_addr_end(addr, end); 1214 if (p4d_none_or_clear_bad(src_p4d)) 1215 continue; 1216 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1217 addr, next)) 1218 return -ENOMEM; 1219 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1220 return 0; 1221 } 1222 1223 int 1224 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1225 { 1226 pgd_t *src_pgd, *dst_pgd; 1227 unsigned long next; 1228 unsigned long addr = src_vma->vm_start; 1229 unsigned long end = src_vma->vm_end; 1230 struct mm_struct *dst_mm = dst_vma->vm_mm; 1231 struct mm_struct *src_mm = src_vma->vm_mm; 1232 struct mmu_notifier_range range; 1233 bool is_cow; 1234 int ret; 1235 1236 /* 1237 * Don't copy ptes where a page fault will fill them correctly. 1238 * Fork becomes much lighter when there are big shared or private 1239 * readonly mappings. The tradeoff is that copy_page_range is more 1240 * efficient than faulting. 1241 */ 1242 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1243 !src_vma->anon_vma) 1244 return 0; 1245 1246 if (is_vm_hugetlb_page(src_vma)) 1247 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1248 1249 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1250 /* 1251 * We do not free on error cases below as remove_vma 1252 * gets called on error from higher level routine 1253 */ 1254 ret = track_pfn_copy(src_vma); 1255 if (ret) 1256 return ret; 1257 } 1258 1259 /* 1260 * We need to invalidate the secondary MMU mappings only when 1261 * there could be a permission downgrade on the ptes of the 1262 * parent mm. And a permission downgrade will only happen if 1263 * is_cow_mapping() returns true. 1264 */ 1265 is_cow = is_cow_mapping(src_vma->vm_flags); 1266 1267 if (is_cow) { 1268 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1269 0, src_vma, src_mm, addr, end); 1270 mmu_notifier_invalidate_range_start(&range); 1271 /* 1272 * Disabling preemption is not needed for the write side, as 1273 * the read side doesn't spin, but goes to the mmap_lock. 1274 * 1275 * Use the raw variant of the seqcount_t write API to avoid 1276 * lockdep complaining about preemptibility. 1277 */ 1278 mmap_assert_write_locked(src_mm); 1279 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1280 } 1281 1282 ret = 0; 1283 dst_pgd = pgd_offset(dst_mm, addr); 1284 src_pgd = pgd_offset(src_mm, addr); 1285 do { 1286 next = pgd_addr_end(addr, end); 1287 if (pgd_none_or_clear_bad(src_pgd)) 1288 continue; 1289 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1290 addr, next))) { 1291 ret = -ENOMEM; 1292 break; 1293 } 1294 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1295 1296 if (is_cow) { 1297 raw_write_seqcount_end(&src_mm->write_protect_seq); 1298 mmu_notifier_invalidate_range_end(&range); 1299 } 1300 return ret; 1301 } 1302 1303 /* 1304 * Parameter block passed down to zap_pte_range in exceptional cases. 1305 */ 1306 struct zap_details { 1307 struct folio *single_folio; /* Locked folio to be unmapped */ 1308 bool even_cows; /* Zap COWed private pages too? */ 1309 }; 1310 1311 /* Whether we should zap all COWed (private) pages too */ 1312 static inline bool should_zap_cows(struct zap_details *details) 1313 { 1314 /* By default, zap all pages */ 1315 if (!details) 1316 return true; 1317 1318 /* Or, we zap COWed pages only if the caller wants to */ 1319 return details->even_cows; 1320 } 1321 1322 /* Decides whether we should zap this page with the page pointer specified */ 1323 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1324 { 1325 /* If we can make a decision without *page.. */ 1326 if (should_zap_cows(details)) 1327 return true; 1328 1329 /* E.g. the caller passes NULL for the case of a zero page */ 1330 if (!page) 1331 return true; 1332 1333 /* Otherwise we should only zap non-anon pages */ 1334 return !PageAnon(page); 1335 } 1336 1337 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1338 struct vm_area_struct *vma, pmd_t *pmd, 1339 unsigned long addr, unsigned long end, 1340 struct zap_details *details) 1341 { 1342 struct mm_struct *mm = tlb->mm; 1343 int force_flush = 0; 1344 int rss[NR_MM_COUNTERS]; 1345 spinlock_t *ptl; 1346 pte_t *start_pte; 1347 pte_t *pte; 1348 swp_entry_t entry; 1349 1350 tlb_change_page_size(tlb, PAGE_SIZE); 1351 again: 1352 init_rss_vec(rss); 1353 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1354 pte = start_pte; 1355 flush_tlb_batched_pending(mm); 1356 arch_enter_lazy_mmu_mode(); 1357 do { 1358 pte_t ptent = *pte; 1359 struct page *page; 1360 1361 if (pte_none(ptent)) 1362 continue; 1363 1364 if (need_resched()) 1365 break; 1366 1367 if (pte_present(ptent)) { 1368 page = vm_normal_page(vma, addr, ptent); 1369 if (unlikely(!should_zap_page(details, page))) 1370 continue; 1371 ptent = ptep_get_and_clear_full(mm, addr, pte, 1372 tlb->fullmm); 1373 tlb_remove_tlb_entry(tlb, pte, addr); 1374 if (unlikely(!page)) 1375 continue; 1376 1377 if (!PageAnon(page)) { 1378 if (pte_dirty(ptent)) { 1379 force_flush = 1; 1380 set_page_dirty(page); 1381 } 1382 if (pte_young(ptent) && 1383 likely(!(vma->vm_flags & VM_SEQ_READ))) 1384 mark_page_accessed(page); 1385 } 1386 rss[mm_counter(page)]--; 1387 page_remove_rmap(page, vma, false); 1388 if (unlikely(page_mapcount(page) < 0)) 1389 print_bad_pte(vma, addr, ptent, page); 1390 if (unlikely(__tlb_remove_page(tlb, page))) { 1391 force_flush = 1; 1392 addr += PAGE_SIZE; 1393 break; 1394 } 1395 continue; 1396 } 1397 1398 entry = pte_to_swp_entry(ptent); 1399 if (is_device_private_entry(entry) || 1400 is_device_exclusive_entry(entry)) { 1401 page = pfn_swap_entry_to_page(entry); 1402 if (unlikely(!should_zap_page(details, page))) 1403 continue; 1404 rss[mm_counter(page)]--; 1405 if (is_device_private_entry(entry)) 1406 page_remove_rmap(page, vma, false); 1407 put_page(page); 1408 } else if (!non_swap_entry(entry)) { 1409 /* Genuine swap entry, hence a private anon page */ 1410 if (!should_zap_cows(details)) 1411 continue; 1412 rss[MM_SWAPENTS]--; 1413 if (unlikely(!free_swap_and_cache(entry))) 1414 print_bad_pte(vma, addr, ptent, NULL); 1415 } else if (is_migration_entry(entry)) { 1416 page = pfn_swap_entry_to_page(entry); 1417 if (!should_zap_page(details, page)) 1418 continue; 1419 rss[mm_counter(page)]--; 1420 } else if (is_pte_marker_entry(entry)) { 1421 /* By default, simply drop all pte markers when zap */ 1422 } else if (is_hwpoison_entry(entry)) { 1423 if (!should_zap_cows(details)) 1424 continue; 1425 } else { 1426 /* We should have covered all the swap entry types */ 1427 WARN_ON_ONCE(1); 1428 } 1429 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1430 } while (pte++, addr += PAGE_SIZE, addr != end); 1431 1432 add_mm_rss_vec(mm, rss); 1433 arch_leave_lazy_mmu_mode(); 1434 1435 /* Do the actual TLB flush before dropping ptl */ 1436 if (force_flush) 1437 tlb_flush_mmu_tlbonly(tlb); 1438 pte_unmap_unlock(start_pte, ptl); 1439 1440 /* 1441 * If we forced a TLB flush (either due to running out of 1442 * batch buffers or because we needed to flush dirty TLB 1443 * entries before releasing the ptl), free the batched 1444 * memory too. Restart if we didn't do everything. 1445 */ 1446 if (force_flush) { 1447 force_flush = 0; 1448 tlb_flush_mmu(tlb); 1449 } 1450 1451 if (addr != end) { 1452 cond_resched(); 1453 goto again; 1454 } 1455 1456 return addr; 1457 } 1458 1459 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1460 struct vm_area_struct *vma, pud_t *pud, 1461 unsigned long addr, unsigned long end, 1462 struct zap_details *details) 1463 { 1464 pmd_t *pmd; 1465 unsigned long next; 1466 1467 pmd = pmd_offset(pud, addr); 1468 do { 1469 next = pmd_addr_end(addr, end); 1470 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1471 if (next - addr != HPAGE_PMD_SIZE) 1472 __split_huge_pmd(vma, pmd, addr, false, NULL); 1473 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1474 goto next; 1475 /* fall through */ 1476 } else if (details && details->single_folio && 1477 folio_test_pmd_mappable(details->single_folio) && 1478 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1479 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1480 /* 1481 * Take and drop THP pmd lock so that we cannot return 1482 * prematurely, while zap_huge_pmd() has cleared *pmd, 1483 * but not yet decremented compound_mapcount(). 1484 */ 1485 spin_unlock(ptl); 1486 } 1487 1488 /* 1489 * Here there can be other concurrent MADV_DONTNEED or 1490 * trans huge page faults running, and if the pmd is 1491 * none or trans huge it can change under us. This is 1492 * because MADV_DONTNEED holds the mmap_lock in read 1493 * mode. 1494 */ 1495 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1496 goto next; 1497 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1498 next: 1499 cond_resched(); 1500 } while (pmd++, addr = next, addr != end); 1501 1502 return addr; 1503 } 1504 1505 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1506 struct vm_area_struct *vma, p4d_t *p4d, 1507 unsigned long addr, unsigned long end, 1508 struct zap_details *details) 1509 { 1510 pud_t *pud; 1511 unsigned long next; 1512 1513 pud = pud_offset(p4d, addr); 1514 do { 1515 next = pud_addr_end(addr, end); 1516 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1517 if (next - addr != HPAGE_PUD_SIZE) { 1518 mmap_assert_locked(tlb->mm); 1519 split_huge_pud(vma, pud, addr); 1520 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1521 goto next; 1522 /* fall through */ 1523 } 1524 if (pud_none_or_clear_bad(pud)) 1525 continue; 1526 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1527 next: 1528 cond_resched(); 1529 } while (pud++, addr = next, addr != end); 1530 1531 return addr; 1532 } 1533 1534 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1535 struct vm_area_struct *vma, pgd_t *pgd, 1536 unsigned long addr, unsigned long end, 1537 struct zap_details *details) 1538 { 1539 p4d_t *p4d; 1540 unsigned long next; 1541 1542 p4d = p4d_offset(pgd, addr); 1543 do { 1544 next = p4d_addr_end(addr, end); 1545 if (p4d_none_or_clear_bad(p4d)) 1546 continue; 1547 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1548 } while (p4d++, addr = next, addr != end); 1549 1550 return addr; 1551 } 1552 1553 void unmap_page_range(struct mmu_gather *tlb, 1554 struct vm_area_struct *vma, 1555 unsigned long addr, unsigned long end, 1556 struct zap_details *details) 1557 { 1558 pgd_t *pgd; 1559 unsigned long next; 1560 1561 BUG_ON(addr >= end); 1562 tlb_start_vma(tlb, vma); 1563 pgd = pgd_offset(vma->vm_mm, addr); 1564 do { 1565 next = pgd_addr_end(addr, end); 1566 if (pgd_none_or_clear_bad(pgd)) 1567 continue; 1568 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1569 } while (pgd++, addr = next, addr != end); 1570 tlb_end_vma(tlb, vma); 1571 } 1572 1573 1574 static void unmap_single_vma(struct mmu_gather *tlb, 1575 struct vm_area_struct *vma, unsigned long start_addr, 1576 unsigned long end_addr, 1577 struct zap_details *details) 1578 { 1579 unsigned long start = max(vma->vm_start, start_addr); 1580 unsigned long end; 1581 1582 if (start >= vma->vm_end) 1583 return; 1584 end = min(vma->vm_end, end_addr); 1585 if (end <= vma->vm_start) 1586 return; 1587 1588 if (vma->vm_file) 1589 uprobe_munmap(vma, start, end); 1590 1591 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1592 untrack_pfn(vma, 0, 0); 1593 1594 if (start != end) { 1595 if (unlikely(is_vm_hugetlb_page(vma))) { 1596 /* 1597 * It is undesirable to test vma->vm_file as it 1598 * should be non-null for valid hugetlb area. 1599 * However, vm_file will be NULL in the error 1600 * cleanup path of mmap_region. When 1601 * hugetlbfs ->mmap method fails, 1602 * mmap_region() nullifies vma->vm_file 1603 * before calling this function to clean up. 1604 * Since no pte has actually been setup, it is 1605 * safe to do nothing in this case. 1606 */ 1607 if (vma->vm_file) { 1608 i_mmap_lock_write(vma->vm_file->f_mapping); 1609 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1610 i_mmap_unlock_write(vma->vm_file->f_mapping); 1611 } 1612 } else 1613 unmap_page_range(tlb, vma, start, end, details); 1614 } 1615 } 1616 1617 /** 1618 * unmap_vmas - unmap a range of memory covered by a list of vma's 1619 * @tlb: address of the caller's struct mmu_gather 1620 * @vma: the starting vma 1621 * @start_addr: virtual address at which to start unmapping 1622 * @end_addr: virtual address at which to end unmapping 1623 * 1624 * Unmap all pages in the vma list. 1625 * 1626 * Only addresses between `start' and `end' will be unmapped. 1627 * 1628 * The VMA list must be sorted in ascending virtual address order. 1629 * 1630 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1631 * range after unmap_vmas() returns. So the only responsibility here is to 1632 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1633 * drops the lock and schedules. 1634 */ 1635 void unmap_vmas(struct mmu_gather *tlb, 1636 struct vm_area_struct *vma, unsigned long start_addr, 1637 unsigned long end_addr) 1638 { 1639 struct mmu_notifier_range range; 1640 1641 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1642 start_addr, end_addr); 1643 mmu_notifier_invalidate_range_start(&range); 1644 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1645 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1646 mmu_notifier_invalidate_range_end(&range); 1647 } 1648 1649 /** 1650 * zap_page_range - remove user pages in a given range 1651 * @vma: vm_area_struct holding the applicable pages 1652 * @start: starting address of pages to zap 1653 * @size: number of bytes to zap 1654 * 1655 * Caller must protect the VMA list 1656 */ 1657 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1658 unsigned long size) 1659 { 1660 struct mmu_notifier_range range; 1661 struct mmu_gather tlb; 1662 1663 lru_add_drain(); 1664 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1665 start, start + size); 1666 tlb_gather_mmu(&tlb, vma->vm_mm); 1667 update_hiwater_rss(vma->vm_mm); 1668 mmu_notifier_invalidate_range_start(&range); 1669 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1670 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1671 mmu_notifier_invalidate_range_end(&range); 1672 tlb_finish_mmu(&tlb); 1673 } 1674 1675 /** 1676 * zap_page_range_single - remove user pages in a given range 1677 * @vma: vm_area_struct holding the applicable pages 1678 * @address: starting address of pages to zap 1679 * @size: number of bytes to zap 1680 * @details: details of shared cache invalidation 1681 * 1682 * The range must fit into one VMA. 1683 */ 1684 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1685 unsigned long size, struct zap_details *details) 1686 { 1687 struct mmu_notifier_range range; 1688 struct mmu_gather tlb; 1689 1690 lru_add_drain(); 1691 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1692 address, address + size); 1693 tlb_gather_mmu(&tlb, vma->vm_mm); 1694 update_hiwater_rss(vma->vm_mm); 1695 mmu_notifier_invalidate_range_start(&range); 1696 unmap_single_vma(&tlb, vma, address, range.end, details); 1697 mmu_notifier_invalidate_range_end(&range); 1698 tlb_finish_mmu(&tlb); 1699 } 1700 1701 /** 1702 * zap_vma_ptes - remove ptes mapping the vma 1703 * @vma: vm_area_struct holding ptes to be zapped 1704 * @address: starting address of pages to zap 1705 * @size: number of bytes to zap 1706 * 1707 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1708 * 1709 * The entire address range must be fully contained within the vma. 1710 * 1711 */ 1712 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1713 unsigned long size) 1714 { 1715 if (!range_in_vma(vma, address, address + size) || 1716 !(vma->vm_flags & VM_PFNMAP)) 1717 return; 1718 1719 zap_page_range_single(vma, address, size, NULL); 1720 } 1721 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1722 1723 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1724 { 1725 pgd_t *pgd; 1726 p4d_t *p4d; 1727 pud_t *pud; 1728 pmd_t *pmd; 1729 1730 pgd = pgd_offset(mm, addr); 1731 p4d = p4d_alloc(mm, pgd, addr); 1732 if (!p4d) 1733 return NULL; 1734 pud = pud_alloc(mm, p4d, addr); 1735 if (!pud) 1736 return NULL; 1737 pmd = pmd_alloc(mm, pud, addr); 1738 if (!pmd) 1739 return NULL; 1740 1741 VM_BUG_ON(pmd_trans_huge(*pmd)); 1742 return pmd; 1743 } 1744 1745 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1746 spinlock_t **ptl) 1747 { 1748 pmd_t *pmd = walk_to_pmd(mm, addr); 1749 1750 if (!pmd) 1751 return NULL; 1752 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1753 } 1754 1755 static int validate_page_before_insert(struct page *page) 1756 { 1757 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1758 return -EINVAL; 1759 flush_dcache_page(page); 1760 return 0; 1761 } 1762 1763 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1764 unsigned long addr, struct page *page, pgprot_t prot) 1765 { 1766 if (!pte_none(*pte)) 1767 return -EBUSY; 1768 /* Ok, finally just insert the thing.. */ 1769 get_page(page); 1770 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 1771 page_add_file_rmap(page, vma, false); 1772 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1773 return 0; 1774 } 1775 1776 /* 1777 * This is the old fallback for page remapping. 1778 * 1779 * For historical reasons, it only allows reserved pages. Only 1780 * old drivers should use this, and they needed to mark their 1781 * pages reserved for the old functions anyway. 1782 */ 1783 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1784 struct page *page, pgprot_t prot) 1785 { 1786 int retval; 1787 pte_t *pte; 1788 spinlock_t *ptl; 1789 1790 retval = validate_page_before_insert(page); 1791 if (retval) 1792 goto out; 1793 retval = -ENOMEM; 1794 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1795 if (!pte) 1796 goto out; 1797 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1798 pte_unmap_unlock(pte, ptl); 1799 out: 1800 return retval; 1801 } 1802 1803 #ifdef pte_index 1804 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1805 unsigned long addr, struct page *page, pgprot_t prot) 1806 { 1807 int err; 1808 1809 if (!page_count(page)) 1810 return -EINVAL; 1811 err = validate_page_before_insert(page); 1812 if (err) 1813 return err; 1814 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1815 } 1816 1817 /* insert_pages() amortizes the cost of spinlock operations 1818 * when inserting pages in a loop. Arch *must* define pte_index. 1819 */ 1820 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1821 struct page **pages, unsigned long *num, pgprot_t prot) 1822 { 1823 pmd_t *pmd = NULL; 1824 pte_t *start_pte, *pte; 1825 spinlock_t *pte_lock; 1826 struct mm_struct *const mm = vma->vm_mm; 1827 unsigned long curr_page_idx = 0; 1828 unsigned long remaining_pages_total = *num; 1829 unsigned long pages_to_write_in_pmd; 1830 int ret; 1831 more: 1832 ret = -EFAULT; 1833 pmd = walk_to_pmd(mm, addr); 1834 if (!pmd) 1835 goto out; 1836 1837 pages_to_write_in_pmd = min_t(unsigned long, 1838 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1839 1840 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1841 ret = -ENOMEM; 1842 if (pte_alloc(mm, pmd)) 1843 goto out; 1844 1845 while (pages_to_write_in_pmd) { 1846 int pte_idx = 0; 1847 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1848 1849 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1850 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1851 int err = insert_page_in_batch_locked(vma, pte, 1852 addr, pages[curr_page_idx], prot); 1853 if (unlikely(err)) { 1854 pte_unmap_unlock(start_pte, pte_lock); 1855 ret = err; 1856 remaining_pages_total -= pte_idx; 1857 goto out; 1858 } 1859 addr += PAGE_SIZE; 1860 ++curr_page_idx; 1861 } 1862 pte_unmap_unlock(start_pte, pte_lock); 1863 pages_to_write_in_pmd -= batch_size; 1864 remaining_pages_total -= batch_size; 1865 } 1866 if (remaining_pages_total) 1867 goto more; 1868 ret = 0; 1869 out: 1870 *num = remaining_pages_total; 1871 return ret; 1872 } 1873 #endif /* ifdef pte_index */ 1874 1875 /** 1876 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1877 * @vma: user vma to map to 1878 * @addr: target start user address of these pages 1879 * @pages: source kernel pages 1880 * @num: in: number of pages to map. out: number of pages that were *not* 1881 * mapped. (0 means all pages were successfully mapped). 1882 * 1883 * Preferred over vm_insert_page() when inserting multiple pages. 1884 * 1885 * In case of error, we may have mapped a subset of the provided 1886 * pages. It is the caller's responsibility to account for this case. 1887 * 1888 * The same restrictions apply as in vm_insert_page(). 1889 */ 1890 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1891 struct page **pages, unsigned long *num) 1892 { 1893 #ifdef pte_index 1894 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1895 1896 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1897 return -EFAULT; 1898 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1899 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1900 BUG_ON(vma->vm_flags & VM_PFNMAP); 1901 vma->vm_flags |= VM_MIXEDMAP; 1902 } 1903 /* Defer page refcount checking till we're about to map that page. */ 1904 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1905 #else 1906 unsigned long idx = 0, pgcount = *num; 1907 int err = -EINVAL; 1908 1909 for (; idx < pgcount; ++idx) { 1910 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1911 if (err) 1912 break; 1913 } 1914 *num = pgcount - idx; 1915 return err; 1916 #endif /* ifdef pte_index */ 1917 } 1918 EXPORT_SYMBOL(vm_insert_pages); 1919 1920 /** 1921 * vm_insert_page - insert single page into user vma 1922 * @vma: user vma to map to 1923 * @addr: target user address of this page 1924 * @page: source kernel page 1925 * 1926 * This allows drivers to insert individual pages they've allocated 1927 * into a user vma. 1928 * 1929 * The page has to be a nice clean _individual_ kernel allocation. 1930 * If you allocate a compound page, you need to have marked it as 1931 * such (__GFP_COMP), or manually just split the page up yourself 1932 * (see split_page()). 1933 * 1934 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1935 * took an arbitrary page protection parameter. This doesn't allow 1936 * that. Your vma protection will have to be set up correctly, which 1937 * means that if you want a shared writable mapping, you'd better 1938 * ask for a shared writable mapping! 1939 * 1940 * The page does not need to be reserved. 1941 * 1942 * Usually this function is called from f_op->mmap() handler 1943 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1944 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1945 * function from other places, for example from page-fault handler. 1946 * 1947 * Return: %0 on success, negative error code otherwise. 1948 */ 1949 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1950 struct page *page) 1951 { 1952 if (addr < vma->vm_start || addr >= vma->vm_end) 1953 return -EFAULT; 1954 if (!page_count(page)) 1955 return -EINVAL; 1956 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1957 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1958 BUG_ON(vma->vm_flags & VM_PFNMAP); 1959 vma->vm_flags |= VM_MIXEDMAP; 1960 } 1961 return insert_page(vma, addr, page, vma->vm_page_prot); 1962 } 1963 EXPORT_SYMBOL(vm_insert_page); 1964 1965 /* 1966 * __vm_map_pages - maps range of kernel pages into user vma 1967 * @vma: user vma to map to 1968 * @pages: pointer to array of source kernel pages 1969 * @num: number of pages in page array 1970 * @offset: user's requested vm_pgoff 1971 * 1972 * This allows drivers to map range of kernel pages into a user vma. 1973 * 1974 * Return: 0 on success and error code otherwise. 1975 */ 1976 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1977 unsigned long num, unsigned long offset) 1978 { 1979 unsigned long count = vma_pages(vma); 1980 unsigned long uaddr = vma->vm_start; 1981 int ret, i; 1982 1983 /* Fail if the user requested offset is beyond the end of the object */ 1984 if (offset >= num) 1985 return -ENXIO; 1986 1987 /* Fail if the user requested size exceeds available object size */ 1988 if (count > num - offset) 1989 return -ENXIO; 1990 1991 for (i = 0; i < count; i++) { 1992 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1993 if (ret < 0) 1994 return ret; 1995 uaddr += PAGE_SIZE; 1996 } 1997 1998 return 0; 1999 } 2000 2001 /** 2002 * vm_map_pages - maps range of kernel pages starts with non zero offset 2003 * @vma: user vma to map to 2004 * @pages: pointer to array of source kernel pages 2005 * @num: number of pages in page array 2006 * 2007 * Maps an object consisting of @num pages, catering for the user's 2008 * requested vm_pgoff 2009 * 2010 * If we fail to insert any page into the vma, the function will return 2011 * immediately leaving any previously inserted pages present. Callers 2012 * from the mmap handler may immediately return the error as their caller 2013 * will destroy the vma, removing any successfully inserted pages. Other 2014 * callers should make their own arrangements for calling unmap_region(). 2015 * 2016 * Context: Process context. Called by mmap handlers. 2017 * Return: 0 on success and error code otherwise. 2018 */ 2019 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2020 unsigned long num) 2021 { 2022 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2023 } 2024 EXPORT_SYMBOL(vm_map_pages); 2025 2026 /** 2027 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2028 * @vma: user vma to map to 2029 * @pages: pointer to array of source kernel pages 2030 * @num: number of pages in page array 2031 * 2032 * Similar to vm_map_pages(), except that it explicitly sets the offset 2033 * to 0. This function is intended for the drivers that did not consider 2034 * vm_pgoff. 2035 * 2036 * Context: Process context. Called by mmap handlers. 2037 * Return: 0 on success and error code otherwise. 2038 */ 2039 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2040 unsigned long num) 2041 { 2042 return __vm_map_pages(vma, pages, num, 0); 2043 } 2044 EXPORT_SYMBOL(vm_map_pages_zero); 2045 2046 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2047 pfn_t pfn, pgprot_t prot, bool mkwrite) 2048 { 2049 struct mm_struct *mm = vma->vm_mm; 2050 pte_t *pte, entry; 2051 spinlock_t *ptl; 2052 2053 pte = get_locked_pte(mm, addr, &ptl); 2054 if (!pte) 2055 return VM_FAULT_OOM; 2056 if (!pte_none(*pte)) { 2057 if (mkwrite) { 2058 /* 2059 * For read faults on private mappings the PFN passed 2060 * in may not match the PFN we have mapped if the 2061 * mapped PFN is a writeable COW page. In the mkwrite 2062 * case we are creating a writable PTE for a shared 2063 * mapping and we expect the PFNs to match. If they 2064 * don't match, we are likely racing with block 2065 * allocation and mapping invalidation so just skip the 2066 * update. 2067 */ 2068 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2069 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2070 goto out_unlock; 2071 } 2072 entry = pte_mkyoung(*pte); 2073 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2074 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2075 update_mmu_cache(vma, addr, pte); 2076 } 2077 goto out_unlock; 2078 } 2079 2080 /* Ok, finally just insert the thing.. */ 2081 if (pfn_t_devmap(pfn)) 2082 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2083 else 2084 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2085 2086 if (mkwrite) { 2087 entry = pte_mkyoung(entry); 2088 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2089 } 2090 2091 set_pte_at(mm, addr, pte, entry); 2092 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2093 2094 out_unlock: 2095 pte_unmap_unlock(pte, ptl); 2096 return VM_FAULT_NOPAGE; 2097 } 2098 2099 /** 2100 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2101 * @vma: user vma to map to 2102 * @addr: target user address of this page 2103 * @pfn: source kernel pfn 2104 * @pgprot: pgprot flags for the inserted page 2105 * 2106 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2107 * to override pgprot on a per-page basis. 2108 * 2109 * This only makes sense for IO mappings, and it makes no sense for 2110 * COW mappings. In general, using multiple vmas is preferable; 2111 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2112 * impractical. 2113 * 2114 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2115 * a value of @pgprot different from that of @vma->vm_page_prot. 2116 * 2117 * Context: Process context. May allocate using %GFP_KERNEL. 2118 * Return: vm_fault_t value. 2119 */ 2120 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2121 unsigned long pfn, pgprot_t pgprot) 2122 { 2123 /* 2124 * Technically, architectures with pte_special can avoid all these 2125 * restrictions (same for remap_pfn_range). However we would like 2126 * consistency in testing and feature parity among all, so we should 2127 * try to keep these invariants in place for everybody. 2128 */ 2129 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2130 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2131 (VM_PFNMAP|VM_MIXEDMAP)); 2132 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2133 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2134 2135 if (addr < vma->vm_start || addr >= vma->vm_end) 2136 return VM_FAULT_SIGBUS; 2137 2138 if (!pfn_modify_allowed(pfn, pgprot)) 2139 return VM_FAULT_SIGBUS; 2140 2141 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2142 2143 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2144 false); 2145 } 2146 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2147 2148 /** 2149 * vmf_insert_pfn - insert single pfn into user vma 2150 * @vma: user vma to map to 2151 * @addr: target user address of this page 2152 * @pfn: source kernel pfn 2153 * 2154 * Similar to vm_insert_page, this allows drivers to insert individual pages 2155 * they've allocated into a user vma. Same comments apply. 2156 * 2157 * This function should only be called from a vm_ops->fault handler, and 2158 * in that case the handler should return the result of this function. 2159 * 2160 * vma cannot be a COW mapping. 2161 * 2162 * As this is called only for pages that do not currently exist, we 2163 * do not need to flush old virtual caches or the TLB. 2164 * 2165 * Context: Process context. May allocate using %GFP_KERNEL. 2166 * Return: vm_fault_t value. 2167 */ 2168 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2169 unsigned long pfn) 2170 { 2171 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2172 } 2173 EXPORT_SYMBOL(vmf_insert_pfn); 2174 2175 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2176 { 2177 /* these checks mirror the abort conditions in vm_normal_page */ 2178 if (vma->vm_flags & VM_MIXEDMAP) 2179 return true; 2180 if (pfn_t_devmap(pfn)) 2181 return true; 2182 if (pfn_t_special(pfn)) 2183 return true; 2184 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2185 return true; 2186 return false; 2187 } 2188 2189 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2190 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2191 bool mkwrite) 2192 { 2193 int err; 2194 2195 BUG_ON(!vm_mixed_ok(vma, pfn)); 2196 2197 if (addr < vma->vm_start || addr >= vma->vm_end) 2198 return VM_FAULT_SIGBUS; 2199 2200 track_pfn_insert(vma, &pgprot, pfn); 2201 2202 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2203 return VM_FAULT_SIGBUS; 2204 2205 /* 2206 * If we don't have pte special, then we have to use the pfn_valid() 2207 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2208 * refcount the page if pfn_valid is true (hence insert_page rather 2209 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2210 * without pte special, it would there be refcounted as a normal page. 2211 */ 2212 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2213 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2214 struct page *page; 2215 2216 /* 2217 * At this point we are committed to insert_page() 2218 * regardless of whether the caller specified flags that 2219 * result in pfn_t_has_page() == false. 2220 */ 2221 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2222 err = insert_page(vma, addr, page, pgprot); 2223 } else { 2224 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2225 } 2226 2227 if (err == -ENOMEM) 2228 return VM_FAULT_OOM; 2229 if (err < 0 && err != -EBUSY) 2230 return VM_FAULT_SIGBUS; 2231 2232 return VM_FAULT_NOPAGE; 2233 } 2234 2235 /** 2236 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2237 * @vma: user vma to map to 2238 * @addr: target user address of this page 2239 * @pfn: source kernel pfn 2240 * @pgprot: pgprot flags for the inserted page 2241 * 2242 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2243 * to override pgprot on a per-page basis. 2244 * 2245 * Typically this function should be used by drivers to set caching- and 2246 * encryption bits different than those of @vma->vm_page_prot, because 2247 * the caching- or encryption mode may not be known at mmap() time. 2248 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2249 * to set caching and encryption bits for those vmas (except for COW pages). 2250 * This is ensured by core vm only modifying these page table entries using 2251 * functions that don't touch caching- or encryption bits, using pte_modify() 2252 * if needed. (See for example mprotect()). 2253 * Also when new page-table entries are created, this is only done using the 2254 * fault() callback, and never using the value of vma->vm_page_prot, 2255 * except for page-table entries that point to anonymous pages as the result 2256 * of COW. 2257 * 2258 * Context: Process context. May allocate using %GFP_KERNEL. 2259 * Return: vm_fault_t value. 2260 */ 2261 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2262 pfn_t pfn, pgprot_t pgprot) 2263 { 2264 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2265 } 2266 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2267 2268 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2269 pfn_t pfn) 2270 { 2271 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2272 } 2273 EXPORT_SYMBOL(vmf_insert_mixed); 2274 2275 /* 2276 * If the insertion of PTE failed because someone else already added a 2277 * different entry in the mean time, we treat that as success as we assume 2278 * the same entry was actually inserted. 2279 */ 2280 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2281 unsigned long addr, pfn_t pfn) 2282 { 2283 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2284 } 2285 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2286 2287 /* 2288 * maps a range of physical memory into the requested pages. the old 2289 * mappings are removed. any references to nonexistent pages results 2290 * in null mappings (currently treated as "copy-on-access") 2291 */ 2292 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2293 unsigned long addr, unsigned long end, 2294 unsigned long pfn, pgprot_t prot) 2295 { 2296 pte_t *pte, *mapped_pte; 2297 spinlock_t *ptl; 2298 int err = 0; 2299 2300 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2301 if (!pte) 2302 return -ENOMEM; 2303 arch_enter_lazy_mmu_mode(); 2304 do { 2305 BUG_ON(!pte_none(*pte)); 2306 if (!pfn_modify_allowed(pfn, prot)) { 2307 err = -EACCES; 2308 break; 2309 } 2310 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2311 pfn++; 2312 } while (pte++, addr += PAGE_SIZE, addr != end); 2313 arch_leave_lazy_mmu_mode(); 2314 pte_unmap_unlock(mapped_pte, ptl); 2315 return err; 2316 } 2317 2318 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2319 unsigned long addr, unsigned long end, 2320 unsigned long pfn, pgprot_t prot) 2321 { 2322 pmd_t *pmd; 2323 unsigned long next; 2324 int err; 2325 2326 pfn -= addr >> PAGE_SHIFT; 2327 pmd = pmd_alloc(mm, pud, addr); 2328 if (!pmd) 2329 return -ENOMEM; 2330 VM_BUG_ON(pmd_trans_huge(*pmd)); 2331 do { 2332 next = pmd_addr_end(addr, end); 2333 err = remap_pte_range(mm, pmd, addr, next, 2334 pfn + (addr >> PAGE_SHIFT), prot); 2335 if (err) 2336 return err; 2337 } while (pmd++, addr = next, addr != end); 2338 return 0; 2339 } 2340 2341 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2342 unsigned long addr, unsigned long end, 2343 unsigned long pfn, pgprot_t prot) 2344 { 2345 pud_t *pud; 2346 unsigned long next; 2347 int err; 2348 2349 pfn -= addr >> PAGE_SHIFT; 2350 pud = pud_alloc(mm, p4d, addr); 2351 if (!pud) 2352 return -ENOMEM; 2353 do { 2354 next = pud_addr_end(addr, end); 2355 err = remap_pmd_range(mm, pud, addr, next, 2356 pfn + (addr >> PAGE_SHIFT), prot); 2357 if (err) 2358 return err; 2359 } while (pud++, addr = next, addr != end); 2360 return 0; 2361 } 2362 2363 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2364 unsigned long addr, unsigned long end, 2365 unsigned long pfn, pgprot_t prot) 2366 { 2367 p4d_t *p4d; 2368 unsigned long next; 2369 int err; 2370 2371 pfn -= addr >> PAGE_SHIFT; 2372 p4d = p4d_alloc(mm, pgd, addr); 2373 if (!p4d) 2374 return -ENOMEM; 2375 do { 2376 next = p4d_addr_end(addr, end); 2377 err = remap_pud_range(mm, p4d, addr, next, 2378 pfn + (addr >> PAGE_SHIFT), prot); 2379 if (err) 2380 return err; 2381 } while (p4d++, addr = next, addr != end); 2382 return 0; 2383 } 2384 2385 /* 2386 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2387 * must have pre-validated the caching bits of the pgprot_t. 2388 */ 2389 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2390 unsigned long pfn, unsigned long size, pgprot_t prot) 2391 { 2392 pgd_t *pgd; 2393 unsigned long next; 2394 unsigned long end = addr + PAGE_ALIGN(size); 2395 struct mm_struct *mm = vma->vm_mm; 2396 int err; 2397 2398 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2399 return -EINVAL; 2400 2401 /* 2402 * Physically remapped pages are special. Tell the 2403 * rest of the world about it: 2404 * VM_IO tells people not to look at these pages 2405 * (accesses can have side effects). 2406 * VM_PFNMAP tells the core MM that the base pages are just 2407 * raw PFN mappings, and do not have a "struct page" associated 2408 * with them. 2409 * VM_DONTEXPAND 2410 * Disable vma merging and expanding with mremap(). 2411 * VM_DONTDUMP 2412 * Omit vma from core dump, even when VM_IO turned off. 2413 * 2414 * There's a horrible special case to handle copy-on-write 2415 * behaviour that some programs depend on. We mark the "original" 2416 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2417 * See vm_normal_page() for details. 2418 */ 2419 if (is_cow_mapping(vma->vm_flags)) { 2420 if (addr != vma->vm_start || end != vma->vm_end) 2421 return -EINVAL; 2422 vma->vm_pgoff = pfn; 2423 } 2424 2425 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2426 2427 BUG_ON(addr >= end); 2428 pfn -= addr >> PAGE_SHIFT; 2429 pgd = pgd_offset(mm, addr); 2430 flush_cache_range(vma, addr, end); 2431 do { 2432 next = pgd_addr_end(addr, end); 2433 err = remap_p4d_range(mm, pgd, addr, next, 2434 pfn + (addr >> PAGE_SHIFT), prot); 2435 if (err) 2436 return err; 2437 } while (pgd++, addr = next, addr != end); 2438 2439 return 0; 2440 } 2441 2442 /** 2443 * remap_pfn_range - remap kernel memory to userspace 2444 * @vma: user vma to map to 2445 * @addr: target page aligned user address to start at 2446 * @pfn: page frame number of kernel physical memory address 2447 * @size: size of mapping area 2448 * @prot: page protection flags for this mapping 2449 * 2450 * Note: this is only safe if the mm semaphore is held when called. 2451 * 2452 * Return: %0 on success, negative error code otherwise. 2453 */ 2454 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2455 unsigned long pfn, unsigned long size, pgprot_t prot) 2456 { 2457 int err; 2458 2459 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2460 if (err) 2461 return -EINVAL; 2462 2463 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2464 if (err) 2465 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2466 return err; 2467 } 2468 EXPORT_SYMBOL(remap_pfn_range); 2469 2470 /** 2471 * vm_iomap_memory - remap memory to userspace 2472 * @vma: user vma to map to 2473 * @start: start of the physical memory to be mapped 2474 * @len: size of area 2475 * 2476 * This is a simplified io_remap_pfn_range() for common driver use. The 2477 * driver just needs to give us the physical memory range to be mapped, 2478 * we'll figure out the rest from the vma information. 2479 * 2480 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2481 * whatever write-combining details or similar. 2482 * 2483 * Return: %0 on success, negative error code otherwise. 2484 */ 2485 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2486 { 2487 unsigned long vm_len, pfn, pages; 2488 2489 /* Check that the physical memory area passed in looks valid */ 2490 if (start + len < start) 2491 return -EINVAL; 2492 /* 2493 * You *really* shouldn't map things that aren't page-aligned, 2494 * but we've historically allowed it because IO memory might 2495 * just have smaller alignment. 2496 */ 2497 len += start & ~PAGE_MASK; 2498 pfn = start >> PAGE_SHIFT; 2499 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2500 if (pfn + pages < pfn) 2501 return -EINVAL; 2502 2503 /* We start the mapping 'vm_pgoff' pages into the area */ 2504 if (vma->vm_pgoff > pages) 2505 return -EINVAL; 2506 pfn += vma->vm_pgoff; 2507 pages -= vma->vm_pgoff; 2508 2509 /* Can we fit all of the mapping? */ 2510 vm_len = vma->vm_end - vma->vm_start; 2511 if (vm_len >> PAGE_SHIFT > pages) 2512 return -EINVAL; 2513 2514 /* Ok, let it rip */ 2515 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2516 } 2517 EXPORT_SYMBOL(vm_iomap_memory); 2518 2519 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2520 unsigned long addr, unsigned long end, 2521 pte_fn_t fn, void *data, bool create, 2522 pgtbl_mod_mask *mask) 2523 { 2524 pte_t *pte, *mapped_pte; 2525 int err = 0; 2526 spinlock_t *ptl; 2527 2528 if (create) { 2529 mapped_pte = pte = (mm == &init_mm) ? 2530 pte_alloc_kernel_track(pmd, addr, mask) : 2531 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2532 if (!pte) 2533 return -ENOMEM; 2534 } else { 2535 mapped_pte = pte = (mm == &init_mm) ? 2536 pte_offset_kernel(pmd, addr) : 2537 pte_offset_map_lock(mm, pmd, addr, &ptl); 2538 } 2539 2540 BUG_ON(pmd_huge(*pmd)); 2541 2542 arch_enter_lazy_mmu_mode(); 2543 2544 if (fn) { 2545 do { 2546 if (create || !pte_none(*pte)) { 2547 err = fn(pte++, addr, data); 2548 if (err) 2549 break; 2550 } 2551 } while (addr += PAGE_SIZE, addr != end); 2552 } 2553 *mask |= PGTBL_PTE_MODIFIED; 2554 2555 arch_leave_lazy_mmu_mode(); 2556 2557 if (mm != &init_mm) 2558 pte_unmap_unlock(mapped_pte, ptl); 2559 return err; 2560 } 2561 2562 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2563 unsigned long addr, unsigned long end, 2564 pte_fn_t fn, void *data, bool create, 2565 pgtbl_mod_mask *mask) 2566 { 2567 pmd_t *pmd; 2568 unsigned long next; 2569 int err = 0; 2570 2571 BUG_ON(pud_huge(*pud)); 2572 2573 if (create) { 2574 pmd = pmd_alloc_track(mm, pud, addr, mask); 2575 if (!pmd) 2576 return -ENOMEM; 2577 } else { 2578 pmd = pmd_offset(pud, addr); 2579 } 2580 do { 2581 next = pmd_addr_end(addr, end); 2582 if (pmd_none(*pmd) && !create) 2583 continue; 2584 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2585 return -EINVAL; 2586 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2587 if (!create) 2588 continue; 2589 pmd_clear_bad(pmd); 2590 } 2591 err = apply_to_pte_range(mm, pmd, addr, next, 2592 fn, data, create, mask); 2593 if (err) 2594 break; 2595 } while (pmd++, addr = next, addr != end); 2596 2597 return err; 2598 } 2599 2600 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2601 unsigned long addr, unsigned long end, 2602 pte_fn_t fn, void *data, bool create, 2603 pgtbl_mod_mask *mask) 2604 { 2605 pud_t *pud; 2606 unsigned long next; 2607 int err = 0; 2608 2609 if (create) { 2610 pud = pud_alloc_track(mm, p4d, addr, mask); 2611 if (!pud) 2612 return -ENOMEM; 2613 } else { 2614 pud = pud_offset(p4d, addr); 2615 } 2616 do { 2617 next = pud_addr_end(addr, end); 2618 if (pud_none(*pud) && !create) 2619 continue; 2620 if (WARN_ON_ONCE(pud_leaf(*pud))) 2621 return -EINVAL; 2622 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2623 if (!create) 2624 continue; 2625 pud_clear_bad(pud); 2626 } 2627 err = apply_to_pmd_range(mm, pud, addr, next, 2628 fn, data, create, mask); 2629 if (err) 2630 break; 2631 } while (pud++, addr = next, addr != end); 2632 2633 return err; 2634 } 2635 2636 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2637 unsigned long addr, unsigned long end, 2638 pte_fn_t fn, void *data, bool create, 2639 pgtbl_mod_mask *mask) 2640 { 2641 p4d_t *p4d; 2642 unsigned long next; 2643 int err = 0; 2644 2645 if (create) { 2646 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2647 if (!p4d) 2648 return -ENOMEM; 2649 } else { 2650 p4d = p4d_offset(pgd, addr); 2651 } 2652 do { 2653 next = p4d_addr_end(addr, end); 2654 if (p4d_none(*p4d) && !create) 2655 continue; 2656 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2657 return -EINVAL; 2658 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2659 if (!create) 2660 continue; 2661 p4d_clear_bad(p4d); 2662 } 2663 err = apply_to_pud_range(mm, p4d, addr, next, 2664 fn, data, create, mask); 2665 if (err) 2666 break; 2667 } while (p4d++, addr = next, addr != end); 2668 2669 return err; 2670 } 2671 2672 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2673 unsigned long size, pte_fn_t fn, 2674 void *data, bool create) 2675 { 2676 pgd_t *pgd; 2677 unsigned long start = addr, next; 2678 unsigned long end = addr + size; 2679 pgtbl_mod_mask mask = 0; 2680 int err = 0; 2681 2682 if (WARN_ON(addr >= end)) 2683 return -EINVAL; 2684 2685 pgd = pgd_offset(mm, addr); 2686 do { 2687 next = pgd_addr_end(addr, end); 2688 if (pgd_none(*pgd) && !create) 2689 continue; 2690 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2691 return -EINVAL; 2692 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2693 if (!create) 2694 continue; 2695 pgd_clear_bad(pgd); 2696 } 2697 err = apply_to_p4d_range(mm, pgd, addr, next, 2698 fn, data, create, &mask); 2699 if (err) 2700 break; 2701 } while (pgd++, addr = next, addr != end); 2702 2703 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2704 arch_sync_kernel_mappings(start, start + size); 2705 2706 return err; 2707 } 2708 2709 /* 2710 * Scan a region of virtual memory, filling in page tables as necessary 2711 * and calling a provided function on each leaf page table. 2712 */ 2713 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2714 unsigned long size, pte_fn_t fn, void *data) 2715 { 2716 return __apply_to_page_range(mm, addr, size, fn, data, true); 2717 } 2718 EXPORT_SYMBOL_GPL(apply_to_page_range); 2719 2720 /* 2721 * Scan a region of virtual memory, calling a provided function on 2722 * each leaf page table where it exists. 2723 * 2724 * Unlike apply_to_page_range, this does _not_ fill in page tables 2725 * where they are absent. 2726 */ 2727 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2728 unsigned long size, pte_fn_t fn, void *data) 2729 { 2730 return __apply_to_page_range(mm, addr, size, fn, data, false); 2731 } 2732 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2733 2734 /* 2735 * handle_pte_fault chooses page fault handler according to an entry which was 2736 * read non-atomically. Before making any commitment, on those architectures 2737 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2738 * parts, do_swap_page must check under lock before unmapping the pte and 2739 * proceeding (but do_wp_page is only called after already making such a check; 2740 * and do_anonymous_page can safely check later on). 2741 */ 2742 static inline int pte_unmap_same(struct vm_fault *vmf) 2743 { 2744 int same = 1; 2745 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2746 if (sizeof(pte_t) > sizeof(unsigned long)) { 2747 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2748 spin_lock(ptl); 2749 same = pte_same(*vmf->pte, vmf->orig_pte); 2750 spin_unlock(ptl); 2751 } 2752 #endif 2753 pte_unmap(vmf->pte); 2754 vmf->pte = NULL; 2755 return same; 2756 } 2757 2758 static inline bool __wp_page_copy_user(struct page *dst, struct page *src, 2759 struct vm_fault *vmf) 2760 { 2761 bool ret; 2762 void *kaddr; 2763 void __user *uaddr; 2764 bool locked = false; 2765 struct vm_area_struct *vma = vmf->vma; 2766 struct mm_struct *mm = vma->vm_mm; 2767 unsigned long addr = vmf->address; 2768 2769 if (likely(src)) { 2770 copy_user_highpage(dst, src, addr, vma); 2771 return true; 2772 } 2773 2774 /* 2775 * If the source page was a PFN mapping, we don't have 2776 * a "struct page" for it. We do a best-effort copy by 2777 * just copying from the original user address. If that 2778 * fails, we just zero-fill it. Live with it. 2779 */ 2780 kaddr = kmap_atomic(dst); 2781 uaddr = (void __user *)(addr & PAGE_MASK); 2782 2783 /* 2784 * On architectures with software "accessed" bits, we would 2785 * take a double page fault, so mark it accessed here. 2786 */ 2787 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2788 pte_t entry; 2789 2790 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2791 locked = true; 2792 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2793 /* 2794 * Other thread has already handled the fault 2795 * and update local tlb only 2796 */ 2797 update_mmu_tlb(vma, addr, vmf->pte); 2798 ret = false; 2799 goto pte_unlock; 2800 } 2801 2802 entry = pte_mkyoung(vmf->orig_pte); 2803 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2804 update_mmu_cache(vma, addr, vmf->pte); 2805 } 2806 2807 /* 2808 * This really shouldn't fail, because the page is there 2809 * in the page tables. But it might just be unreadable, 2810 * in which case we just give up and fill the result with 2811 * zeroes. 2812 */ 2813 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2814 if (locked) 2815 goto warn; 2816 2817 /* Re-validate under PTL if the page is still mapped */ 2818 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2819 locked = true; 2820 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2821 /* The PTE changed under us, update local tlb */ 2822 update_mmu_tlb(vma, addr, vmf->pte); 2823 ret = false; 2824 goto pte_unlock; 2825 } 2826 2827 /* 2828 * The same page can be mapped back since last copy attempt. 2829 * Try to copy again under PTL. 2830 */ 2831 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2832 /* 2833 * Give a warn in case there can be some obscure 2834 * use-case 2835 */ 2836 warn: 2837 WARN_ON_ONCE(1); 2838 clear_page(kaddr); 2839 } 2840 } 2841 2842 ret = true; 2843 2844 pte_unlock: 2845 if (locked) 2846 pte_unmap_unlock(vmf->pte, vmf->ptl); 2847 kunmap_atomic(kaddr); 2848 flush_dcache_page(dst); 2849 2850 return ret; 2851 } 2852 2853 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2854 { 2855 struct file *vm_file = vma->vm_file; 2856 2857 if (vm_file) 2858 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2859 2860 /* 2861 * Special mappings (e.g. VDSO) do not have any file so fake 2862 * a default GFP_KERNEL for them. 2863 */ 2864 return GFP_KERNEL; 2865 } 2866 2867 /* 2868 * Notify the address space that the page is about to become writable so that 2869 * it can prohibit this or wait for the page to get into an appropriate state. 2870 * 2871 * We do this without the lock held, so that it can sleep if it needs to. 2872 */ 2873 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2874 { 2875 vm_fault_t ret; 2876 struct page *page = vmf->page; 2877 unsigned int old_flags = vmf->flags; 2878 2879 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2880 2881 if (vmf->vma->vm_file && 2882 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2883 return VM_FAULT_SIGBUS; 2884 2885 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2886 /* Restore original flags so that caller is not surprised */ 2887 vmf->flags = old_flags; 2888 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2889 return ret; 2890 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2891 lock_page(page); 2892 if (!page->mapping) { 2893 unlock_page(page); 2894 return 0; /* retry */ 2895 } 2896 ret |= VM_FAULT_LOCKED; 2897 } else 2898 VM_BUG_ON_PAGE(!PageLocked(page), page); 2899 return ret; 2900 } 2901 2902 /* 2903 * Handle dirtying of a page in shared file mapping on a write fault. 2904 * 2905 * The function expects the page to be locked and unlocks it. 2906 */ 2907 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2908 { 2909 struct vm_area_struct *vma = vmf->vma; 2910 struct address_space *mapping; 2911 struct page *page = vmf->page; 2912 bool dirtied; 2913 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2914 2915 dirtied = set_page_dirty(page); 2916 VM_BUG_ON_PAGE(PageAnon(page), page); 2917 /* 2918 * Take a local copy of the address_space - page.mapping may be zeroed 2919 * by truncate after unlock_page(). The address_space itself remains 2920 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2921 * release semantics to prevent the compiler from undoing this copying. 2922 */ 2923 mapping = page_rmapping(page); 2924 unlock_page(page); 2925 2926 if (!page_mkwrite) 2927 file_update_time(vma->vm_file); 2928 2929 /* 2930 * Throttle page dirtying rate down to writeback speed. 2931 * 2932 * mapping may be NULL here because some device drivers do not 2933 * set page.mapping but still dirty their pages 2934 * 2935 * Drop the mmap_lock before waiting on IO, if we can. The file 2936 * is pinning the mapping, as per above. 2937 */ 2938 if ((dirtied || page_mkwrite) && mapping) { 2939 struct file *fpin; 2940 2941 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2942 balance_dirty_pages_ratelimited(mapping); 2943 if (fpin) { 2944 fput(fpin); 2945 return VM_FAULT_RETRY; 2946 } 2947 } 2948 2949 return 0; 2950 } 2951 2952 /* 2953 * Handle write page faults for pages that can be reused in the current vma 2954 * 2955 * This can happen either due to the mapping being with the VM_SHARED flag, 2956 * or due to us being the last reference standing to the page. In either 2957 * case, all we need to do here is to mark the page as writable and update 2958 * any related book-keeping. 2959 */ 2960 static inline void wp_page_reuse(struct vm_fault *vmf) 2961 __releases(vmf->ptl) 2962 { 2963 struct vm_area_struct *vma = vmf->vma; 2964 struct page *page = vmf->page; 2965 pte_t entry; 2966 2967 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 2968 VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page)); 2969 2970 /* 2971 * Clear the pages cpupid information as the existing 2972 * information potentially belongs to a now completely 2973 * unrelated process. 2974 */ 2975 if (page) 2976 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2977 2978 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2979 entry = pte_mkyoung(vmf->orig_pte); 2980 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2981 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2982 update_mmu_cache(vma, vmf->address, vmf->pte); 2983 pte_unmap_unlock(vmf->pte, vmf->ptl); 2984 count_vm_event(PGREUSE); 2985 } 2986 2987 /* 2988 * Handle the case of a page which we actually need to copy to a new page, 2989 * either due to COW or unsharing. 2990 * 2991 * Called with mmap_lock locked and the old page referenced, but 2992 * without the ptl held. 2993 * 2994 * High level logic flow: 2995 * 2996 * - Allocate a page, copy the content of the old page to the new one. 2997 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2998 * - Take the PTL. If the pte changed, bail out and release the allocated page 2999 * - If the pte is still the way we remember it, update the page table and all 3000 * relevant references. This includes dropping the reference the page-table 3001 * held to the old page, as well as updating the rmap. 3002 * - In any case, unlock the PTL and drop the reference we took to the old page. 3003 */ 3004 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3005 { 3006 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3007 struct vm_area_struct *vma = vmf->vma; 3008 struct mm_struct *mm = vma->vm_mm; 3009 struct page *old_page = vmf->page; 3010 struct page *new_page = NULL; 3011 pte_t entry; 3012 int page_copied = 0; 3013 struct mmu_notifier_range range; 3014 3015 if (unlikely(anon_vma_prepare(vma))) 3016 goto oom; 3017 3018 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3019 new_page = alloc_zeroed_user_highpage_movable(vma, 3020 vmf->address); 3021 if (!new_page) 3022 goto oom; 3023 } else { 3024 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3025 vmf->address); 3026 if (!new_page) 3027 goto oom; 3028 3029 if (!__wp_page_copy_user(new_page, old_page, vmf)) { 3030 /* 3031 * COW failed, if the fault was solved by other, 3032 * it's fine. If not, userspace would re-fault on 3033 * the same address and we will handle the fault 3034 * from the second attempt. 3035 */ 3036 put_page(new_page); 3037 if (old_page) 3038 put_page(old_page); 3039 return 0; 3040 } 3041 } 3042 3043 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL)) 3044 goto oom_free_new; 3045 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 3046 3047 __SetPageUptodate(new_page); 3048 3049 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 3050 vmf->address & PAGE_MASK, 3051 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3052 mmu_notifier_invalidate_range_start(&range); 3053 3054 /* 3055 * Re-check the pte - we dropped the lock 3056 */ 3057 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3058 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3059 if (old_page) { 3060 if (!PageAnon(old_page)) { 3061 dec_mm_counter_fast(mm, 3062 mm_counter_file(old_page)); 3063 inc_mm_counter_fast(mm, MM_ANONPAGES); 3064 } 3065 } else { 3066 inc_mm_counter_fast(mm, MM_ANONPAGES); 3067 } 3068 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3069 entry = mk_pte(new_page, vma->vm_page_prot); 3070 entry = pte_sw_mkyoung(entry); 3071 if (unlikely(unshare)) { 3072 if (pte_soft_dirty(vmf->orig_pte)) 3073 entry = pte_mksoft_dirty(entry); 3074 if (pte_uffd_wp(vmf->orig_pte)) 3075 entry = pte_mkuffd_wp(entry); 3076 } else { 3077 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3078 } 3079 3080 /* 3081 * Clear the pte entry and flush it first, before updating the 3082 * pte with the new entry, to keep TLBs on different CPUs in 3083 * sync. This code used to set the new PTE then flush TLBs, but 3084 * that left a window where the new PTE could be loaded into 3085 * some TLBs while the old PTE remains in others. 3086 */ 3087 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3088 page_add_new_anon_rmap(new_page, vma, vmf->address); 3089 lru_cache_add_inactive_or_unevictable(new_page, vma); 3090 /* 3091 * We call the notify macro here because, when using secondary 3092 * mmu page tables (such as kvm shadow page tables), we want the 3093 * new page to be mapped directly into the secondary page table. 3094 */ 3095 BUG_ON(unshare && pte_write(entry)); 3096 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3097 update_mmu_cache(vma, vmf->address, vmf->pte); 3098 if (old_page) { 3099 /* 3100 * Only after switching the pte to the new page may 3101 * we remove the mapcount here. Otherwise another 3102 * process may come and find the rmap count decremented 3103 * before the pte is switched to the new page, and 3104 * "reuse" the old page writing into it while our pte 3105 * here still points into it and can be read by other 3106 * threads. 3107 * 3108 * The critical issue is to order this 3109 * page_remove_rmap with the ptp_clear_flush above. 3110 * Those stores are ordered by (if nothing else,) 3111 * the barrier present in the atomic_add_negative 3112 * in page_remove_rmap. 3113 * 3114 * Then the TLB flush in ptep_clear_flush ensures that 3115 * no process can access the old page before the 3116 * decremented mapcount is visible. And the old page 3117 * cannot be reused until after the decremented 3118 * mapcount is visible. So transitively, TLBs to 3119 * old page will be flushed before it can be reused. 3120 */ 3121 page_remove_rmap(old_page, vma, false); 3122 } 3123 3124 /* Free the old page.. */ 3125 new_page = old_page; 3126 page_copied = 1; 3127 } else { 3128 update_mmu_tlb(vma, vmf->address, vmf->pte); 3129 } 3130 3131 if (new_page) 3132 put_page(new_page); 3133 3134 pte_unmap_unlock(vmf->pte, vmf->ptl); 3135 /* 3136 * No need to double call mmu_notifier->invalidate_range() callback as 3137 * the above ptep_clear_flush_notify() did already call it. 3138 */ 3139 mmu_notifier_invalidate_range_only_end(&range); 3140 if (old_page) { 3141 if (page_copied) 3142 free_swap_cache(old_page); 3143 put_page(old_page); 3144 } 3145 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0; 3146 oom_free_new: 3147 put_page(new_page); 3148 oom: 3149 if (old_page) 3150 put_page(old_page); 3151 return VM_FAULT_OOM; 3152 } 3153 3154 /** 3155 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3156 * writeable once the page is prepared 3157 * 3158 * @vmf: structure describing the fault 3159 * 3160 * This function handles all that is needed to finish a write page fault in a 3161 * shared mapping due to PTE being read-only once the mapped page is prepared. 3162 * It handles locking of PTE and modifying it. 3163 * 3164 * The function expects the page to be locked or other protection against 3165 * concurrent faults / writeback (such as DAX radix tree locks). 3166 * 3167 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3168 * we acquired PTE lock. 3169 */ 3170 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3171 { 3172 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3173 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3174 &vmf->ptl); 3175 /* 3176 * We might have raced with another page fault while we released the 3177 * pte_offset_map_lock. 3178 */ 3179 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3180 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3181 pte_unmap_unlock(vmf->pte, vmf->ptl); 3182 return VM_FAULT_NOPAGE; 3183 } 3184 wp_page_reuse(vmf); 3185 return 0; 3186 } 3187 3188 /* 3189 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3190 * mapping 3191 */ 3192 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3193 { 3194 struct vm_area_struct *vma = vmf->vma; 3195 3196 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3197 vm_fault_t ret; 3198 3199 pte_unmap_unlock(vmf->pte, vmf->ptl); 3200 vmf->flags |= FAULT_FLAG_MKWRITE; 3201 ret = vma->vm_ops->pfn_mkwrite(vmf); 3202 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3203 return ret; 3204 return finish_mkwrite_fault(vmf); 3205 } 3206 wp_page_reuse(vmf); 3207 return VM_FAULT_WRITE; 3208 } 3209 3210 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3211 __releases(vmf->ptl) 3212 { 3213 struct vm_area_struct *vma = vmf->vma; 3214 vm_fault_t ret = VM_FAULT_WRITE; 3215 3216 get_page(vmf->page); 3217 3218 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3219 vm_fault_t tmp; 3220 3221 pte_unmap_unlock(vmf->pte, vmf->ptl); 3222 tmp = do_page_mkwrite(vmf); 3223 if (unlikely(!tmp || (tmp & 3224 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3225 put_page(vmf->page); 3226 return tmp; 3227 } 3228 tmp = finish_mkwrite_fault(vmf); 3229 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3230 unlock_page(vmf->page); 3231 put_page(vmf->page); 3232 return tmp; 3233 } 3234 } else { 3235 wp_page_reuse(vmf); 3236 lock_page(vmf->page); 3237 } 3238 ret |= fault_dirty_shared_page(vmf); 3239 put_page(vmf->page); 3240 3241 return ret; 3242 } 3243 3244 /* 3245 * This routine handles present pages, when 3246 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3247 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3248 * (FAULT_FLAG_UNSHARE) 3249 * 3250 * It is done by copying the page to a new address and decrementing the 3251 * shared-page counter for the old page. 3252 * 3253 * Note that this routine assumes that the protection checks have been 3254 * done by the caller (the low-level page fault routine in most cases). 3255 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3256 * done any necessary COW. 3257 * 3258 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3259 * though the page will change only once the write actually happens. This 3260 * avoids a few races, and potentially makes it more efficient. 3261 * 3262 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3263 * but allow concurrent faults), with pte both mapped and locked. 3264 * We return with mmap_lock still held, but pte unmapped and unlocked. 3265 */ 3266 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3267 __releases(vmf->ptl) 3268 { 3269 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3270 struct vm_area_struct *vma = vmf->vma; 3271 3272 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE)); 3273 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE)); 3274 3275 if (likely(!unshare)) { 3276 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3277 pte_unmap_unlock(vmf->pte, vmf->ptl); 3278 return handle_userfault(vmf, VM_UFFD_WP); 3279 } 3280 3281 /* 3282 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3283 * is flushed in this case before copying. 3284 */ 3285 if (unlikely(userfaultfd_wp(vmf->vma) && 3286 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3287 flush_tlb_page(vmf->vma, vmf->address); 3288 } 3289 3290 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3291 if (!vmf->page) { 3292 if (unlikely(unshare)) { 3293 /* No anonymous page -> nothing to do. */ 3294 pte_unmap_unlock(vmf->pte, vmf->ptl); 3295 return 0; 3296 } 3297 3298 /* 3299 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3300 * VM_PFNMAP VMA. 3301 * 3302 * We should not cow pages in a shared writeable mapping. 3303 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3304 */ 3305 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3306 (VM_WRITE|VM_SHARED)) 3307 return wp_pfn_shared(vmf); 3308 3309 pte_unmap_unlock(vmf->pte, vmf->ptl); 3310 return wp_page_copy(vmf); 3311 } 3312 3313 /* 3314 * Take out anonymous pages first, anonymous shared vmas are 3315 * not dirty accountable. 3316 */ 3317 if (PageAnon(vmf->page)) { 3318 struct page *page = vmf->page; 3319 3320 /* 3321 * If the page is exclusive to this process we must reuse the 3322 * page without further checks. 3323 */ 3324 if (PageAnonExclusive(page)) 3325 goto reuse; 3326 3327 /* 3328 * We have to verify under page lock: these early checks are 3329 * just an optimization to avoid locking the page and freeing 3330 * the swapcache if there is little hope that we can reuse. 3331 * 3332 * PageKsm() doesn't necessarily raise the page refcount. 3333 */ 3334 if (PageKsm(page) || page_count(page) > 3) 3335 goto copy; 3336 if (!PageLRU(page)) 3337 /* 3338 * Note: We cannot easily detect+handle references from 3339 * remote LRU pagevecs or references to PageLRU() pages. 3340 */ 3341 lru_add_drain(); 3342 if (page_count(page) > 1 + PageSwapCache(page)) 3343 goto copy; 3344 if (!trylock_page(page)) 3345 goto copy; 3346 if (PageSwapCache(page)) 3347 try_to_free_swap(page); 3348 if (PageKsm(page) || page_count(page) != 1) { 3349 unlock_page(page); 3350 goto copy; 3351 } 3352 /* 3353 * Ok, we've got the only page reference from our mapping 3354 * and the page is locked, it's dark out, and we're wearing 3355 * sunglasses. Hit it. 3356 */ 3357 page_move_anon_rmap(page, vma); 3358 unlock_page(page); 3359 reuse: 3360 if (unlikely(unshare)) { 3361 pte_unmap_unlock(vmf->pte, vmf->ptl); 3362 return 0; 3363 } 3364 wp_page_reuse(vmf); 3365 return VM_FAULT_WRITE; 3366 } else if (unshare) { 3367 /* No anonymous page -> nothing to do. */ 3368 pte_unmap_unlock(vmf->pte, vmf->ptl); 3369 return 0; 3370 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3371 (VM_WRITE|VM_SHARED))) { 3372 return wp_page_shared(vmf); 3373 } 3374 copy: 3375 /* 3376 * Ok, we need to copy. Oh, well.. 3377 */ 3378 get_page(vmf->page); 3379 3380 pte_unmap_unlock(vmf->pte, vmf->ptl); 3381 #ifdef CONFIG_KSM 3382 if (PageKsm(vmf->page)) 3383 count_vm_event(COW_KSM); 3384 #endif 3385 return wp_page_copy(vmf); 3386 } 3387 3388 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3389 unsigned long start_addr, unsigned long end_addr, 3390 struct zap_details *details) 3391 { 3392 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3393 } 3394 3395 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3396 pgoff_t first_index, 3397 pgoff_t last_index, 3398 struct zap_details *details) 3399 { 3400 struct vm_area_struct *vma; 3401 pgoff_t vba, vea, zba, zea; 3402 3403 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3404 vba = vma->vm_pgoff; 3405 vea = vba + vma_pages(vma) - 1; 3406 zba = max(first_index, vba); 3407 zea = min(last_index, vea); 3408 3409 unmap_mapping_range_vma(vma, 3410 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3411 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3412 details); 3413 } 3414 } 3415 3416 /** 3417 * unmap_mapping_folio() - Unmap single folio from processes. 3418 * @folio: The locked folio to be unmapped. 3419 * 3420 * Unmap this folio from any userspace process which still has it mmaped. 3421 * Typically, for efficiency, the range of nearby pages has already been 3422 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3423 * truncation or invalidation holds the lock on a folio, it may find that 3424 * the page has been remapped again: and then uses unmap_mapping_folio() 3425 * to unmap it finally. 3426 */ 3427 void unmap_mapping_folio(struct folio *folio) 3428 { 3429 struct address_space *mapping = folio->mapping; 3430 struct zap_details details = { }; 3431 pgoff_t first_index; 3432 pgoff_t last_index; 3433 3434 VM_BUG_ON(!folio_test_locked(folio)); 3435 3436 first_index = folio->index; 3437 last_index = folio->index + folio_nr_pages(folio) - 1; 3438 3439 details.even_cows = false; 3440 details.single_folio = folio; 3441 3442 i_mmap_lock_read(mapping); 3443 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3444 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3445 last_index, &details); 3446 i_mmap_unlock_read(mapping); 3447 } 3448 3449 /** 3450 * unmap_mapping_pages() - Unmap pages from processes. 3451 * @mapping: The address space containing pages to be unmapped. 3452 * @start: Index of first page to be unmapped. 3453 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3454 * @even_cows: Whether to unmap even private COWed pages. 3455 * 3456 * Unmap the pages in this address space from any userspace process which 3457 * has them mmaped. Generally, you want to remove COWed pages as well when 3458 * a file is being truncated, but not when invalidating pages from the page 3459 * cache. 3460 */ 3461 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3462 pgoff_t nr, bool even_cows) 3463 { 3464 struct zap_details details = { }; 3465 pgoff_t first_index = start; 3466 pgoff_t last_index = start + nr - 1; 3467 3468 details.even_cows = even_cows; 3469 if (last_index < first_index) 3470 last_index = ULONG_MAX; 3471 3472 i_mmap_lock_read(mapping); 3473 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3474 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3475 last_index, &details); 3476 i_mmap_unlock_read(mapping); 3477 } 3478 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3479 3480 /** 3481 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3482 * address_space corresponding to the specified byte range in the underlying 3483 * file. 3484 * 3485 * @mapping: the address space containing mmaps to be unmapped. 3486 * @holebegin: byte in first page to unmap, relative to the start of 3487 * the underlying file. This will be rounded down to a PAGE_SIZE 3488 * boundary. Note that this is different from truncate_pagecache(), which 3489 * must keep the partial page. In contrast, we must get rid of 3490 * partial pages. 3491 * @holelen: size of prospective hole in bytes. This will be rounded 3492 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3493 * end of the file. 3494 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3495 * but 0 when invalidating pagecache, don't throw away private data. 3496 */ 3497 void unmap_mapping_range(struct address_space *mapping, 3498 loff_t const holebegin, loff_t const holelen, int even_cows) 3499 { 3500 pgoff_t hba = holebegin >> PAGE_SHIFT; 3501 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3502 3503 /* Check for overflow. */ 3504 if (sizeof(holelen) > sizeof(hlen)) { 3505 long long holeend = 3506 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3507 if (holeend & ~(long long)ULONG_MAX) 3508 hlen = ULONG_MAX - hba + 1; 3509 } 3510 3511 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3512 } 3513 EXPORT_SYMBOL(unmap_mapping_range); 3514 3515 /* 3516 * Restore a potential device exclusive pte to a working pte entry 3517 */ 3518 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3519 { 3520 struct page *page = vmf->page; 3521 struct vm_area_struct *vma = vmf->vma; 3522 struct mmu_notifier_range range; 3523 3524 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) 3525 return VM_FAULT_RETRY; 3526 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, 3527 vma->vm_mm, vmf->address & PAGE_MASK, 3528 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3529 mmu_notifier_invalidate_range_start(&range); 3530 3531 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3532 &vmf->ptl); 3533 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3534 restore_exclusive_pte(vma, page, vmf->address, vmf->pte); 3535 3536 pte_unmap_unlock(vmf->pte, vmf->ptl); 3537 unlock_page(page); 3538 3539 mmu_notifier_invalidate_range_end(&range); 3540 return 0; 3541 } 3542 3543 static inline bool should_try_to_free_swap(struct page *page, 3544 struct vm_area_struct *vma, 3545 unsigned int fault_flags) 3546 { 3547 if (!PageSwapCache(page)) 3548 return false; 3549 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || 3550 PageMlocked(page)) 3551 return true; 3552 /* 3553 * If we want to map a page that's in the swapcache writable, we 3554 * have to detect via the refcount if we're really the exclusive 3555 * user. Try freeing the swapcache to get rid of the swapcache 3556 * reference only in case it's likely that we'll be the exlusive user. 3557 */ 3558 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) && 3559 page_count(page) == 2; 3560 } 3561 3562 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3563 { 3564 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3565 unsigned long marker = pte_marker_get(entry); 3566 3567 /* 3568 * PTE markers should always be with file-backed memories, and the 3569 * marker should never be empty. If anything weird happened, the best 3570 * thing to do is to kill the process along with its mm. 3571 */ 3572 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker)) 3573 return VM_FAULT_SIGBUS; 3574 3575 /* TODO: handle pte markers */ 3576 return 0; 3577 } 3578 3579 /* 3580 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3581 * but allow concurrent faults), and pte mapped but not yet locked. 3582 * We return with pte unmapped and unlocked. 3583 * 3584 * We return with the mmap_lock locked or unlocked in the same cases 3585 * as does filemap_fault(). 3586 */ 3587 vm_fault_t do_swap_page(struct vm_fault *vmf) 3588 { 3589 struct vm_area_struct *vma = vmf->vma; 3590 struct page *page = NULL, *swapcache; 3591 struct swap_info_struct *si = NULL; 3592 rmap_t rmap_flags = RMAP_NONE; 3593 bool exclusive = false; 3594 swp_entry_t entry; 3595 pte_t pte; 3596 int locked; 3597 vm_fault_t ret = 0; 3598 void *shadow = NULL; 3599 3600 if (!pte_unmap_same(vmf)) 3601 goto out; 3602 3603 entry = pte_to_swp_entry(vmf->orig_pte); 3604 if (unlikely(non_swap_entry(entry))) { 3605 if (is_migration_entry(entry)) { 3606 migration_entry_wait(vma->vm_mm, vmf->pmd, 3607 vmf->address); 3608 } else if (is_device_exclusive_entry(entry)) { 3609 vmf->page = pfn_swap_entry_to_page(entry); 3610 ret = remove_device_exclusive_entry(vmf); 3611 } else if (is_device_private_entry(entry)) { 3612 vmf->page = pfn_swap_entry_to_page(entry); 3613 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3614 } else if (is_hwpoison_entry(entry)) { 3615 ret = VM_FAULT_HWPOISON; 3616 } else if (is_pte_marker_entry(entry)) { 3617 ret = handle_pte_marker(vmf); 3618 } else { 3619 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3620 ret = VM_FAULT_SIGBUS; 3621 } 3622 goto out; 3623 } 3624 3625 /* Prevent swapoff from happening to us. */ 3626 si = get_swap_device(entry); 3627 if (unlikely(!si)) 3628 goto out; 3629 3630 page = lookup_swap_cache(entry, vma, vmf->address); 3631 swapcache = page; 3632 3633 if (!page) { 3634 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3635 __swap_count(entry) == 1) { 3636 /* skip swapcache */ 3637 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3638 vmf->address); 3639 if (page) { 3640 __SetPageLocked(page); 3641 __SetPageSwapBacked(page); 3642 3643 if (mem_cgroup_swapin_charge_page(page, 3644 vma->vm_mm, GFP_KERNEL, entry)) { 3645 ret = VM_FAULT_OOM; 3646 goto out_page; 3647 } 3648 mem_cgroup_swapin_uncharge_swap(entry); 3649 3650 shadow = get_shadow_from_swap_cache(entry); 3651 if (shadow) 3652 workingset_refault(page_folio(page), 3653 shadow); 3654 3655 lru_cache_add(page); 3656 3657 /* To provide entry to swap_readpage() */ 3658 set_page_private(page, entry.val); 3659 swap_readpage(page, true, NULL); 3660 set_page_private(page, 0); 3661 } 3662 } else { 3663 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3664 vmf); 3665 swapcache = page; 3666 } 3667 3668 if (!page) { 3669 /* 3670 * Back out if somebody else faulted in this pte 3671 * while we released the pte lock. 3672 */ 3673 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3674 vmf->address, &vmf->ptl); 3675 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3676 ret = VM_FAULT_OOM; 3677 goto unlock; 3678 } 3679 3680 /* Had to read the page from swap area: Major fault */ 3681 ret = VM_FAULT_MAJOR; 3682 count_vm_event(PGMAJFAULT); 3683 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3684 } else if (PageHWPoison(page)) { 3685 /* 3686 * hwpoisoned dirty swapcache pages are kept for killing 3687 * owner processes (which may be unknown at hwpoison time) 3688 */ 3689 ret = VM_FAULT_HWPOISON; 3690 goto out_release; 3691 } 3692 3693 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3694 3695 if (!locked) { 3696 ret |= VM_FAULT_RETRY; 3697 goto out_release; 3698 } 3699 3700 if (swapcache) { 3701 /* 3702 * Make sure try_to_free_swap or swapoff did not release the 3703 * swapcache from under us. The page pin, and pte_same test 3704 * below, are not enough to exclude that. Even if it is still 3705 * swapcache, we need to check that the page's swap has not 3706 * changed. 3707 */ 3708 if (unlikely(!PageSwapCache(page) || 3709 page_private(page) != entry.val)) 3710 goto out_page; 3711 3712 /* 3713 * KSM sometimes has to copy on read faults, for example, if 3714 * page->index of !PageKSM() pages would be nonlinear inside the 3715 * anon VMA -- PageKSM() is lost on actual swapout. 3716 */ 3717 page = ksm_might_need_to_copy(page, vma, vmf->address); 3718 if (unlikely(!page)) { 3719 ret = VM_FAULT_OOM; 3720 page = swapcache; 3721 goto out_page; 3722 } 3723 3724 /* 3725 * If we want to map a page that's in the swapcache writable, we 3726 * have to detect via the refcount if we're really the exclusive 3727 * owner. Try removing the extra reference from the local LRU 3728 * pagevecs if required. 3729 */ 3730 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache && 3731 !PageKsm(page) && !PageLRU(page)) 3732 lru_add_drain(); 3733 } 3734 3735 cgroup_throttle_swaprate(page, GFP_KERNEL); 3736 3737 /* 3738 * Back out if somebody else already faulted in this pte. 3739 */ 3740 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3741 &vmf->ptl); 3742 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3743 goto out_nomap; 3744 3745 if (unlikely(!PageUptodate(page))) { 3746 ret = VM_FAULT_SIGBUS; 3747 goto out_nomap; 3748 } 3749 3750 /* 3751 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3752 * must never point at an anonymous page in the swapcache that is 3753 * PG_anon_exclusive. Sanity check that this holds and especially, that 3754 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3755 * check after taking the PT lock and making sure that nobody 3756 * concurrently faulted in this page and set PG_anon_exclusive. 3757 */ 3758 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 3759 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 3760 3761 /* 3762 * Check under PT lock (to protect against concurrent fork() sharing 3763 * the swap entry concurrently) for certainly exclusive pages. 3764 */ 3765 if (!PageKsm(page)) { 3766 /* 3767 * Note that pte_swp_exclusive() == false for architectures 3768 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. 3769 */ 3770 exclusive = pte_swp_exclusive(vmf->orig_pte); 3771 if (page != swapcache) { 3772 /* 3773 * We have a fresh page that is not exposed to the 3774 * swapcache -> certainly exclusive. 3775 */ 3776 exclusive = true; 3777 } else if (exclusive && PageWriteback(page) && 3778 (swp_swap_info(entry)->flags & SWP_STABLE_WRITES)) { 3779 /* 3780 * This is tricky: not all swap backends support 3781 * concurrent page modifications while under writeback. 3782 * 3783 * So if we stumble over such a page in the swapcache 3784 * we must not set the page exclusive, otherwise we can 3785 * map it writable without further checks and modify it 3786 * while still under writeback. 3787 * 3788 * For these problematic swap backends, simply drop the 3789 * exclusive marker: this is perfectly fine as we start 3790 * writeback only if we fully unmapped the page and 3791 * there are no unexpected references on the page after 3792 * unmapping succeeded. After fully unmapped, no 3793 * further GUP references (FOLL_GET and FOLL_PIN) can 3794 * appear, so dropping the exclusive marker and mapping 3795 * it only R/O is fine. 3796 */ 3797 exclusive = false; 3798 } 3799 } 3800 3801 /* 3802 * Remove the swap entry and conditionally try to free up the swapcache. 3803 * We're already holding a reference on the page but haven't mapped it 3804 * yet. 3805 */ 3806 swap_free(entry); 3807 if (should_try_to_free_swap(page, vma, vmf->flags)) 3808 try_to_free_swap(page); 3809 3810 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3811 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3812 pte = mk_pte(page, vma->vm_page_prot); 3813 3814 /* 3815 * Same logic as in do_wp_page(); however, optimize for pages that are 3816 * certainly not shared either because we just allocated them without 3817 * exposing them to the swapcache or because the swap entry indicates 3818 * exclusivity. 3819 */ 3820 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) { 3821 if (vmf->flags & FAULT_FLAG_WRITE) { 3822 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3823 vmf->flags &= ~FAULT_FLAG_WRITE; 3824 ret |= VM_FAULT_WRITE; 3825 } 3826 rmap_flags |= RMAP_EXCLUSIVE; 3827 } 3828 flush_icache_page(vma, page); 3829 if (pte_swp_soft_dirty(vmf->orig_pte)) 3830 pte = pte_mksoft_dirty(pte); 3831 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3832 pte = pte_mkuffd_wp(pte); 3833 pte = pte_wrprotect(pte); 3834 } 3835 vmf->orig_pte = pte; 3836 3837 /* ksm created a completely new copy */ 3838 if (unlikely(page != swapcache && swapcache)) { 3839 page_add_new_anon_rmap(page, vma, vmf->address); 3840 lru_cache_add_inactive_or_unevictable(page, vma); 3841 } else { 3842 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3843 } 3844 3845 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page))); 3846 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3847 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3848 3849 unlock_page(page); 3850 if (page != swapcache && swapcache) { 3851 /* 3852 * Hold the lock to avoid the swap entry to be reused 3853 * until we take the PT lock for the pte_same() check 3854 * (to avoid false positives from pte_same). For 3855 * further safety release the lock after the swap_free 3856 * so that the swap count won't change under a 3857 * parallel locked swapcache. 3858 */ 3859 unlock_page(swapcache); 3860 put_page(swapcache); 3861 } 3862 3863 if (vmf->flags & FAULT_FLAG_WRITE) { 3864 ret |= do_wp_page(vmf); 3865 if (ret & VM_FAULT_ERROR) 3866 ret &= VM_FAULT_ERROR; 3867 goto out; 3868 } 3869 3870 /* No need to invalidate - it was non-present before */ 3871 update_mmu_cache(vma, vmf->address, vmf->pte); 3872 unlock: 3873 pte_unmap_unlock(vmf->pte, vmf->ptl); 3874 out: 3875 if (si) 3876 put_swap_device(si); 3877 return ret; 3878 out_nomap: 3879 pte_unmap_unlock(vmf->pte, vmf->ptl); 3880 out_page: 3881 unlock_page(page); 3882 out_release: 3883 put_page(page); 3884 if (page != swapcache && swapcache) { 3885 unlock_page(swapcache); 3886 put_page(swapcache); 3887 } 3888 if (si) 3889 put_swap_device(si); 3890 return ret; 3891 } 3892 3893 /* 3894 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3895 * but allow concurrent faults), and pte mapped but not yet locked. 3896 * We return with mmap_lock still held, but pte unmapped and unlocked. 3897 */ 3898 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3899 { 3900 struct vm_area_struct *vma = vmf->vma; 3901 struct page *page; 3902 vm_fault_t ret = 0; 3903 pte_t entry; 3904 3905 /* File mapping without ->vm_ops ? */ 3906 if (vma->vm_flags & VM_SHARED) 3907 return VM_FAULT_SIGBUS; 3908 3909 /* 3910 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3911 * pte_offset_map() on pmds where a huge pmd might be created 3912 * from a different thread. 3913 * 3914 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3915 * parallel threads are excluded by other means. 3916 * 3917 * Here we only have mmap_read_lock(mm). 3918 */ 3919 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3920 return VM_FAULT_OOM; 3921 3922 /* See comment in handle_pte_fault() */ 3923 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3924 return 0; 3925 3926 /* Use the zero-page for reads */ 3927 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3928 !mm_forbids_zeropage(vma->vm_mm)) { 3929 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3930 vma->vm_page_prot)); 3931 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3932 vmf->address, &vmf->ptl); 3933 if (!pte_none(*vmf->pte)) { 3934 update_mmu_tlb(vma, vmf->address, vmf->pte); 3935 goto unlock; 3936 } 3937 ret = check_stable_address_space(vma->vm_mm); 3938 if (ret) 3939 goto unlock; 3940 /* Deliver the page fault to userland, check inside PT lock */ 3941 if (userfaultfd_missing(vma)) { 3942 pte_unmap_unlock(vmf->pte, vmf->ptl); 3943 return handle_userfault(vmf, VM_UFFD_MISSING); 3944 } 3945 goto setpte; 3946 } 3947 3948 /* Allocate our own private page. */ 3949 if (unlikely(anon_vma_prepare(vma))) 3950 goto oom; 3951 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3952 if (!page) 3953 goto oom; 3954 3955 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 3956 goto oom_free_page; 3957 cgroup_throttle_swaprate(page, GFP_KERNEL); 3958 3959 /* 3960 * The memory barrier inside __SetPageUptodate makes sure that 3961 * preceding stores to the page contents become visible before 3962 * the set_pte_at() write. 3963 */ 3964 __SetPageUptodate(page); 3965 3966 entry = mk_pte(page, vma->vm_page_prot); 3967 entry = pte_sw_mkyoung(entry); 3968 if (vma->vm_flags & VM_WRITE) 3969 entry = pte_mkwrite(pte_mkdirty(entry)); 3970 3971 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3972 &vmf->ptl); 3973 if (!pte_none(*vmf->pte)) { 3974 update_mmu_cache(vma, vmf->address, vmf->pte); 3975 goto release; 3976 } 3977 3978 ret = check_stable_address_space(vma->vm_mm); 3979 if (ret) 3980 goto release; 3981 3982 /* Deliver the page fault to userland, check inside PT lock */ 3983 if (userfaultfd_missing(vma)) { 3984 pte_unmap_unlock(vmf->pte, vmf->ptl); 3985 put_page(page); 3986 return handle_userfault(vmf, VM_UFFD_MISSING); 3987 } 3988 3989 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3990 page_add_new_anon_rmap(page, vma, vmf->address); 3991 lru_cache_add_inactive_or_unevictable(page, vma); 3992 setpte: 3993 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3994 3995 /* No need to invalidate - it was non-present before */ 3996 update_mmu_cache(vma, vmf->address, vmf->pte); 3997 unlock: 3998 pte_unmap_unlock(vmf->pte, vmf->ptl); 3999 return ret; 4000 release: 4001 put_page(page); 4002 goto unlock; 4003 oom_free_page: 4004 put_page(page); 4005 oom: 4006 return VM_FAULT_OOM; 4007 } 4008 4009 /* 4010 * The mmap_lock must have been held on entry, and may have been 4011 * released depending on flags and vma->vm_ops->fault() return value. 4012 * See filemap_fault() and __lock_page_retry(). 4013 */ 4014 static vm_fault_t __do_fault(struct vm_fault *vmf) 4015 { 4016 struct vm_area_struct *vma = vmf->vma; 4017 vm_fault_t ret; 4018 4019 /* 4020 * Preallocate pte before we take page_lock because this might lead to 4021 * deadlocks for memcg reclaim which waits for pages under writeback: 4022 * lock_page(A) 4023 * SetPageWriteback(A) 4024 * unlock_page(A) 4025 * lock_page(B) 4026 * lock_page(B) 4027 * pte_alloc_one 4028 * shrink_page_list 4029 * wait_on_page_writeback(A) 4030 * SetPageWriteback(B) 4031 * unlock_page(B) 4032 * # flush A, B to clear the writeback 4033 */ 4034 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4035 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4036 if (!vmf->prealloc_pte) 4037 return VM_FAULT_OOM; 4038 } 4039 4040 ret = vma->vm_ops->fault(vmf); 4041 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4042 VM_FAULT_DONE_COW))) 4043 return ret; 4044 4045 if (unlikely(PageHWPoison(vmf->page))) { 4046 struct page *page = vmf->page; 4047 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4048 if (ret & VM_FAULT_LOCKED) { 4049 if (page_mapped(page)) 4050 unmap_mapping_pages(page_mapping(page), 4051 page->index, 1, false); 4052 /* Retry if a clean page was removed from the cache. */ 4053 if (invalidate_inode_page(page)) 4054 poisonret = VM_FAULT_NOPAGE; 4055 unlock_page(page); 4056 } 4057 put_page(page); 4058 vmf->page = NULL; 4059 return poisonret; 4060 } 4061 4062 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4063 lock_page(vmf->page); 4064 else 4065 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4066 4067 return ret; 4068 } 4069 4070 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4071 static void deposit_prealloc_pte(struct vm_fault *vmf) 4072 { 4073 struct vm_area_struct *vma = vmf->vma; 4074 4075 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4076 /* 4077 * We are going to consume the prealloc table, 4078 * count that as nr_ptes. 4079 */ 4080 mm_inc_nr_ptes(vma->vm_mm); 4081 vmf->prealloc_pte = NULL; 4082 } 4083 4084 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4085 { 4086 struct vm_area_struct *vma = vmf->vma; 4087 bool write = vmf->flags & FAULT_FLAG_WRITE; 4088 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4089 pmd_t entry; 4090 int i; 4091 vm_fault_t ret = VM_FAULT_FALLBACK; 4092 4093 if (!transhuge_vma_suitable(vma, haddr)) 4094 return ret; 4095 4096 page = compound_head(page); 4097 if (compound_order(page) != HPAGE_PMD_ORDER) 4098 return ret; 4099 4100 /* 4101 * Just backoff if any subpage of a THP is corrupted otherwise 4102 * the corrupted page may mapped by PMD silently to escape the 4103 * check. This kind of THP just can be PTE mapped. Access to 4104 * the corrupted subpage should trigger SIGBUS as expected. 4105 */ 4106 if (unlikely(PageHasHWPoisoned(page))) 4107 return ret; 4108 4109 /* 4110 * Archs like ppc64 need additional space to store information 4111 * related to pte entry. Use the preallocated table for that. 4112 */ 4113 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4114 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4115 if (!vmf->prealloc_pte) 4116 return VM_FAULT_OOM; 4117 } 4118 4119 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4120 if (unlikely(!pmd_none(*vmf->pmd))) 4121 goto out; 4122 4123 for (i = 0; i < HPAGE_PMD_NR; i++) 4124 flush_icache_page(vma, page + i); 4125 4126 entry = mk_huge_pmd(page, vma->vm_page_prot); 4127 if (write) 4128 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4129 4130 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4131 page_add_file_rmap(page, vma, true); 4132 4133 /* 4134 * deposit and withdraw with pmd lock held 4135 */ 4136 if (arch_needs_pgtable_deposit()) 4137 deposit_prealloc_pte(vmf); 4138 4139 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4140 4141 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4142 4143 /* fault is handled */ 4144 ret = 0; 4145 count_vm_event(THP_FILE_MAPPED); 4146 out: 4147 spin_unlock(vmf->ptl); 4148 return ret; 4149 } 4150 #else 4151 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4152 { 4153 return VM_FAULT_FALLBACK; 4154 } 4155 #endif 4156 4157 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4158 { 4159 struct vm_area_struct *vma = vmf->vma; 4160 bool write = vmf->flags & FAULT_FLAG_WRITE; 4161 bool prefault = vmf->address != addr; 4162 pte_t entry; 4163 4164 flush_icache_page(vma, page); 4165 entry = mk_pte(page, vma->vm_page_prot); 4166 4167 if (prefault && arch_wants_old_prefaulted_pte()) 4168 entry = pte_mkold(entry); 4169 else 4170 entry = pte_sw_mkyoung(entry); 4171 4172 if (write) 4173 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4174 /* copy-on-write page */ 4175 if (write && !(vma->vm_flags & VM_SHARED)) { 4176 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 4177 page_add_new_anon_rmap(page, vma, addr); 4178 lru_cache_add_inactive_or_unevictable(page, vma); 4179 } else { 4180 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 4181 page_add_file_rmap(page, vma, false); 4182 } 4183 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4184 } 4185 4186 /** 4187 * finish_fault - finish page fault once we have prepared the page to fault 4188 * 4189 * @vmf: structure describing the fault 4190 * 4191 * This function handles all that is needed to finish a page fault once the 4192 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4193 * given page, adds reverse page mapping, handles memcg charges and LRU 4194 * addition. 4195 * 4196 * The function expects the page to be locked and on success it consumes a 4197 * reference of a page being mapped (for the PTE which maps it). 4198 * 4199 * Return: %0 on success, %VM_FAULT_ code in case of error. 4200 */ 4201 vm_fault_t finish_fault(struct vm_fault *vmf) 4202 { 4203 struct vm_area_struct *vma = vmf->vma; 4204 struct page *page; 4205 vm_fault_t ret; 4206 4207 /* Did we COW the page? */ 4208 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4209 page = vmf->cow_page; 4210 else 4211 page = vmf->page; 4212 4213 /* 4214 * check even for read faults because we might have lost our CoWed 4215 * page 4216 */ 4217 if (!(vma->vm_flags & VM_SHARED)) { 4218 ret = check_stable_address_space(vma->vm_mm); 4219 if (ret) 4220 return ret; 4221 } 4222 4223 if (pmd_none(*vmf->pmd)) { 4224 if (PageTransCompound(page)) { 4225 ret = do_set_pmd(vmf, page); 4226 if (ret != VM_FAULT_FALLBACK) 4227 return ret; 4228 } 4229 4230 if (vmf->prealloc_pte) 4231 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4232 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4233 return VM_FAULT_OOM; 4234 } 4235 4236 /* See comment in handle_pte_fault() */ 4237 if (pmd_devmap_trans_unstable(vmf->pmd)) 4238 return 0; 4239 4240 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4241 vmf->address, &vmf->ptl); 4242 ret = 0; 4243 /* Re-check under ptl */ 4244 if (likely(pte_none(*vmf->pte))) 4245 do_set_pte(vmf, page, vmf->address); 4246 else 4247 ret = VM_FAULT_NOPAGE; 4248 4249 update_mmu_tlb(vma, vmf->address, vmf->pte); 4250 pte_unmap_unlock(vmf->pte, vmf->ptl); 4251 return ret; 4252 } 4253 4254 static unsigned long fault_around_bytes __read_mostly = 4255 rounddown_pow_of_two(65536); 4256 4257 #ifdef CONFIG_DEBUG_FS 4258 static int fault_around_bytes_get(void *data, u64 *val) 4259 { 4260 *val = fault_around_bytes; 4261 return 0; 4262 } 4263 4264 /* 4265 * fault_around_bytes must be rounded down to the nearest page order as it's 4266 * what do_fault_around() expects to see. 4267 */ 4268 static int fault_around_bytes_set(void *data, u64 val) 4269 { 4270 if (val / PAGE_SIZE > PTRS_PER_PTE) 4271 return -EINVAL; 4272 if (val > PAGE_SIZE) 4273 fault_around_bytes = rounddown_pow_of_two(val); 4274 else 4275 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4276 return 0; 4277 } 4278 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4279 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4280 4281 static int __init fault_around_debugfs(void) 4282 { 4283 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4284 &fault_around_bytes_fops); 4285 return 0; 4286 } 4287 late_initcall(fault_around_debugfs); 4288 #endif 4289 4290 /* 4291 * do_fault_around() tries to map few pages around the fault address. The hope 4292 * is that the pages will be needed soon and this will lower the number of 4293 * faults to handle. 4294 * 4295 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4296 * not ready to be mapped: not up-to-date, locked, etc. 4297 * 4298 * This function is called with the page table lock taken. In the split ptlock 4299 * case the page table lock only protects only those entries which belong to 4300 * the page table corresponding to the fault address. 4301 * 4302 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4303 * only once. 4304 * 4305 * fault_around_bytes defines how many bytes we'll try to map. 4306 * do_fault_around() expects it to be set to a power of two less than or equal 4307 * to PTRS_PER_PTE. 4308 * 4309 * The virtual address of the area that we map is naturally aligned to 4310 * fault_around_bytes rounded down to the machine page size 4311 * (and therefore to page order). This way it's easier to guarantee 4312 * that we don't cross page table boundaries. 4313 */ 4314 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4315 { 4316 unsigned long address = vmf->address, nr_pages, mask; 4317 pgoff_t start_pgoff = vmf->pgoff; 4318 pgoff_t end_pgoff; 4319 int off; 4320 4321 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4322 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4323 4324 address = max(address & mask, vmf->vma->vm_start); 4325 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4326 start_pgoff -= off; 4327 4328 /* 4329 * end_pgoff is either the end of the page table, the end of 4330 * the vma or nr_pages from start_pgoff, depending what is nearest. 4331 */ 4332 end_pgoff = start_pgoff - 4333 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4334 PTRS_PER_PTE - 1; 4335 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4336 start_pgoff + nr_pages - 1); 4337 4338 if (pmd_none(*vmf->pmd)) { 4339 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4340 if (!vmf->prealloc_pte) 4341 return VM_FAULT_OOM; 4342 } 4343 4344 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4345 } 4346 4347 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4348 { 4349 struct vm_area_struct *vma = vmf->vma; 4350 vm_fault_t ret = 0; 4351 4352 /* 4353 * Let's call ->map_pages() first and use ->fault() as fallback 4354 * if page by the offset is not ready to be mapped (cold cache or 4355 * something). 4356 */ 4357 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 4358 if (likely(!userfaultfd_minor(vmf->vma))) { 4359 ret = do_fault_around(vmf); 4360 if (ret) 4361 return ret; 4362 } 4363 } 4364 4365 ret = __do_fault(vmf); 4366 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4367 return ret; 4368 4369 ret |= finish_fault(vmf); 4370 unlock_page(vmf->page); 4371 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4372 put_page(vmf->page); 4373 return ret; 4374 } 4375 4376 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4377 { 4378 struct vm_area_struct *vma = vmf->vma; 4379 vm_fault_t ret; 4380 4381 if (unlikely(anon_vma_prepare(vma))) 4382 return VM_FAULT_OOM; 4383 4384 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4385 if (!vmf->cow_page) 4386 return VM_FAULT_OOM; 4387 4388 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4389 GFP_KERNEL)) { 4390 put_page(vmf->cow_page); 4391 return VM_FAULT_OOM; 4392 } 4393 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4394 4395 ret = __do_fault(vmf); 4396 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4397 goto uncharge_out; 4398 if (ret & VM_FAULT_DONE_COW) 4399 return ret; 4400 4401 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4402 __SetPageUptodate(vmf->cow_page); 4403 4404 ret |= finish_fault(vmf); 4405 unlock_page(vmf->page); 4406 put_page(vmf->page); 4407 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4408 goto uncharge_out; 4409 return ret; 4410 uncharge_out: 4411 put_page(vmf->cow_page); 4412 return ret; 4413 } 4414 4415 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4416 { 4417 struct vm_area_struct *vma = vmf->vma; 4418 vm_fault_t ret, tmp; 4419 4420 ret = __do_fault(vmf); 4421 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4422 return ret; 4423 4424 /* 4425 * Check if the backing address space wants to know that the page is 4426 * about to become writable 4427 */ 4428 if (vma->vm_ops->page_mkwrite) { 4429 unlock_page(vmf->page); 4430 tmp = do_page_mkwrite(vmf); 4431 if (unlikely(!tmp || 4432 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4433 put_page(vmf->page); 4434 return tmp; 4435 } 4436 } 4437 4438 ret |= finish_fault(vmf); 4439 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4440 VM_FAULT_RETRY))) { 4441 unlock_page(vmf->page); 4442 put_page(vmf->page); 4443 return ret; 4444 } 4445 4446 ret |= fault_dirty_shared_page(vmf); 4447 return ret; 4448 } 4449 4450 /* 4451 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4452 * but allow concurrent faults). 4453 * The mmap_lock may have been released depending on flags and our 4454 * return value. See filemap_fault() and __folio_lock_or_retry(). 4455 * If mmap_lock is released, vma may become invalid (for example 4456 * by other thread calling munmap()). 4457 */ 4458 static vm_fault_t do_fault(struct vm_fault *vmf) 4459 { 4460 struct vm_area_struct *vma = vmf->vma; 4461 struct mm_struct *vm_mm = vma->vm_mm; 4462 vm_fault_t ret; 4463 4464 /* 4465 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4466 */ 4467 if (!vma->vm_ops->fault) { 4468 /* 4469 * If we find a migration pmd entry or a none pmd entry, which 4470 * should never happen, return SIGBUS 4471 */ 4472 if (unlikely(!pmd_present(*vmf->pmd))) 4473 ret = VM_FAULT_SIGBUS; 4474 else { 4475 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4476 vmf->pmd, 4477 vmf->address, 4478 &vmf->ptl); 4479 /* 4480 * Make sure this is not a temporary clearing of pte 4481 * by holding ptl and checking again. A R/M/W update 4482 * of pte involves: take ptl, clearing the pte so that 4483 * we don't have concurrent modification by hardware 4484 * followed by an update. 4485 */ 4486 if (unlikely(pte_none(*vmf->pte))) 4487 ret = VM_FAULT_SIGBUS; 4488 else 4489 ret = VM_FAULT_NOPAGE; 4490 4491 pte_unmap_unlock(vmf->pte, vmf->ptl); 4492 } 4493 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4494 ret = do_read_fault(vmf); 4495 else if (!(vma->vm_flags & VM_SHARED)) 4496 ret = do_cow_fault(vmf); 4497 else 4498 ret = do_shared_fault(vmf); 4499 4500 /* preallocated pagetable is unused: free it */ 4501 if (vmf->prealloc_pte) { 4502 pte_free(vm_mm, vmf->prealloc_pte); 4503 vmf->prealloc_pte = NULL; 4504 } 4505 return ret; 4506 } 4507 4508 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4509 unsigned long addr, int page_nid, int *flags) 4510 { 4511 get_page(page); 4512 4513 count_vm_numa_event(NUMA_HINT_FAULTS); 4514 if (page_nid == numa_node_id()) { 4515 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4516 *flags |= TNF_FAULT_LOCAL; 4517 } 4518 4519 return mpol_misplaced(page, vma, addr); 4520 } 4521 4522 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4523 { 4524 struct vm_area_struct *vma = vmf->vma; 4525 struct page *page = NULL; 4526 int page_nid = NUMA_NO_NODE; 4527 int last_cpupid; 4528 int target_nid; 4529 pte_t pte, old_pte; 4530 bool was_writable = pte_savedwrite(vmf->orig_pte); 4531 int flags = 0; 4532 4533 /* 4534 * The "pte" at this point cannot be used safely without 4535 * validation through pte_unmap_same(). It's of NUMA type but 4536 * the pfn may be screwed if the read is non atomic. 4537 */ 4538 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4539 spin_lock(vmf->ptl); 4540 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4541 pte_unmap_unlock(vmf->pte, vmf->ptl); 4542 goto out; 4543 } 4544 4545 /* Get the normal PTE */ 4546 old_pte = ptep_get(vmf->pte); 4547 pte = pte_modify(old_pte, vma->vm_page_prot); 4548 4549 page = vm_normal_page(vma, vmf->address, pte); 4550 if (!page) 4551 goto out_map; 4552 4553 /* TODO: handle PTE-mapped THP */ 4554 if (PageCompound(page)) 4555 goto out_map; 4556 4557 /* 4558 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4559 * much anyway since they can be in shared cache state. This misses 4560 * the case where a mapping is writable but the process never writes 4561 * to it but pte_write gets cleared during protection updates and 4562 * pte_dirty has unpredictable behaviour between PTE scan updates, 4563 * background writeback, dirty balancing and application behaviour. 4564 */ 4565 if (!was_writable) 4566 flags |= TNF_NO_GROUP; 4567 4568 /* 4569 * Flag if the page is shared between multiple address spaces. This 4570 * is later used when determining whether to group tasks together 4571 */ 4572 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4573 flags |= TNF_SHARED; 4574 4575 last_cpupid = page_cpupid_last(page); 4576 page_nid = page_to_nid(page); 4577 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4578 &flags); 4579 if (target_nid == NUMA_NO_NODE) { 4580 put_page(page); 4581 goto out_map; 4582 } 4583 pte_unmap_unlock(vmf->pte, vmf->ptl); 4584 4585 /* Migrate to the requested node */ 4586 if (migrate_misplaced_page(page, vma, target_nid)) { 4587 page_nid = target_nid; 4588 flags |= TNF_MIGRATED; 4589 } else { 4590 flags |= TNF_MIGRATE_FAIL; 4591 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4592 spin_lock(vmf->ptl); 4593 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4594 pte_unmap_unlock(vmf->pte, vmf->ptl); 4595 goto out; 4596 } 4597 goto out_map; 4598 } 4599 4600 out: 4601 if (page_nid != NUMA_NO_NODE) 4602 task_numa_fault(last_cpupid, page_nid, 1, flags); 4603 return 0; 4604 out_map: 4605 /* 4606 * Make it present again, depending on how arch implements 4607 * non-accessible ptes, some can allow access by kernel mode. 4608 */ 4609 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4610 pte = pte_modify(old_pte, vma->vm_page_prot); 4611 pte = pte_mkyoung(pte); 4612 if (was_writable) 4613 pte = pte_mkwrite(pte); 4614 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4615 update_mmu_cache(vma, vmf->address, vmf->pte); 4616 pte_unmap_unlock(vmf->pte, vmf->ptl); 4617 goto out; 4618 } 4619 4620 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4621 { 4622 if (vma_is_anonymous(vmf->vma)) 4623 return do_huge_pmd_anonymous_page(vmf); 4624 if (vmf->vma->vm_ops->huge_fault) 4625 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4626 return VM_FAULT_FALLBACK; 4627 } 4628 4629 /* `inline' is required to avoid gcc 4.1.2 build error */ 4630 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4631 { 4632 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4633 4634 if (vma_is_anonymous(vmf->vma)) { 4635 if (likely(!unshare) && 4636 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4637 return handle_userfault(vmf, VM_UFFD_WP); 4638 return do_huge_pmd_wp_page(vmf); 4639 } 4640 if (vmf->vma->vm_ops->huge_fault) { 4641 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4642 4643 if (!(ret & VM_FAULT_FALLBACK)) 4644 return ret; 4645 } 4646 4647 /* COW or write-notify handled on pte level: split pmd. */ 4648 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4649 4650 return VM_FAULT_FALLBACK; 4651 } 4652 4653 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4654 { 4655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4656 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4657 /* No support for anonymous transparent PUD pages yet */ 4658 if (vma_is_anonymous(vmf->vma)) 4659 goto split; 4660 if (vmf->vma->vm_ops->huge_fault) { 4661 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4662 4663 if (!(ret & VM_FAULT_FALLBACK)) 4664 return ret; 4665 } 4666 split: 4667 /* COW or write-notify not handled on PUD level: split pud.*/ 4668 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4669 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4670 return VM_FAULT_FALLBACK; 4671 } 4672 4673 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4674 { 4675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4676 /* No support for anonymous transparent PUD pages yet */ 4677 if (vma_is_anonymous(vmf->vma)) 4678 return VM_FAULT_FALLBACK; 4679 if (vmf->vma->vm_ops->huge_fault) 4680 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4681 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4682 return VM_FAULT_FALLBACK; 4683 } 4684 4685 /* 4686 * These routines also need to handle stuff like marking pages dirty 4687 * and/or accessed for architectures that don't do it in hardware (most 4688 * RISC architectures). The early dirtying is also good on the i386. 4689 * 4690 * There is also a hook called "update_mmu_cache()" that architectures 4691 * with external mmu caches can use to update those (ie the Sparc or 4692 * PowerPC hashed page tables that act as extended TLBs). 4693 * 4694 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4695 * concurrent faults). 4696 * 4697 * The mmap_lock may have been released depending on flags and our return value. 4698 * See filemap_fault() and __folio_lock_or_retry(). 4699 */ 4700 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4701 { 4702 pte_t entry; 4703 4704 if (unlikely(pmd_none(*vmf->pmd))) { 4705 /* 4706 * Leave __pte_alloc() until later: because vm_ops->fault may 4707 * want to allocate huge page, and if we expose page table 4708 * for an instant, it will be difficult to retract from 4709 * concurrent faults and from rmap lookups. 4710 */ 4711 vmf->pte = NULL; 4712 } else { 4713 /* 4714 * If a huge pmd materialized under us just retry later. Use 4715 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4716 * of pmd_trans_huge() to ensure the pmd didn't become 4717 * pmd_trans_huge under us and then back to pmd_none, as a 4718 * result of MADV_DONTNEED running immediately after a huge pmd 4719 * fault in a different thread of this mm, in turn leading to a 4720 * misleading pmd_trans_huge() retval. All we have to ensure is 4721 * that it is a regular pmd that we can walk with 4722 * pte_offset_map() and we can do that through an atomic read 4723 * in C, which is what pmd_trans_unstable() provides. 4724 */ 4725 if (pmd_devmap_trans_unstable(vmf->pmd)) 4726 return 0; 4727 /* 4728 * A regular pmd is established and it can't morph into a huge 4729 * pmd from under us anymore at this point because we hold the 4730 * mmap_lock read mode and khugepaged takes it in write mode. 4731 * So now it's safe to run pte_offset_map(). 4732 */ 4733 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4734 vmf->orig_pte = *vmf->pte; 4735 4736 /* 4737 * some architectures can have larger ptes than wordsize, 4738 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4739 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4740 * accesses. The code below just needs a consistent view 4741 * for the ifs and we later double check anyway with the 4742 * ptl lock held. So here a barrier will do. 4743 */ 4744 barrier(); 4745 if (pte_none(vmf->orig_pte)) { 4746 pte_unmap(vmf->pte); 4747 vmf->pte = NULL; 4748 } 4749 } 4750 4751 if (!vmf->pte) { 4752 if (vma_is_anonymous(vmf->vma)) 4753 return do_anonymous_page(vmf); 4754 else 4755 return do_fault(vmf); 4756 } 4757 4758 if (!pte_present(vmf->orig_pte)) 4759 return do_swap_page(vmf); 4760 4761 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4762 return do_numa_page(vmf); 4763 4764 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4765 spin_lock(vmf->ptl); 4766 entry = vmf->orig_pte; 4767 if (unlikely(!pte_same(*vmf->pte, entry))) { 4768 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4769 goto unlock; 4770 } 4771 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4772 if (!pte_write(entry)) 4773 return do_wp_page(vmf); 4774 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4775 entry = pte_mkdirty(entry); 4776 } 4777 entry = pte_mkyoung(entry); 4778 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4779 vmf->flags & FAULT_FLAG_WRITE)) { 4780 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4781 } else { 4782 /* Skip spurious TLB flush for retried page fault */ 4783 if (vmf->flags & FAULT_FLAG_TRIED) 4784 goto unlock; 4785 /* 4786 * This is needed only for protection faults but the arch code 4787 * is not yet telling us if this is a protection fault or not. 4788 * This still avoids useless tlb flushes for .text page faults 4789 * with threads. 4790 */ 4791 if (vmf->flags & FAULT_FLAG_WRITE) 4792 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4793 } 4794 unlock: 4795 pte_unmap_unlock(vmf->pte, vmf->ptl); 4796 return 0; 4797 } 4798 4799 /* 4800 * By the time we get here, we already hold the mm semaphore 4801 * 4802 * The mmap_lock may have been released depending on flags and our 4803 * return value. See filemap_fault() and __folio_lock_or_retry(). 4804 */ 4805 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4806 unsigned long address, unsigned int flags) 4807 { 4808 struct vm_fault vmf = { 4809 .vma = vma, 4810 .address = address & PAGE_MASK, 4811 .real_address = address, 4812 .flags = flags, 4813 .pgoff = linear_page_index(vma, address), 4814 .gfp_mask = __get_fault_gfp_mask(vma), 4815 }; 4816 struct mm_struct *mm = vma->vm_mm; 4817 pgd_t *pgd; 4818 p4d_t *p4d; 4819 vm_fault_t ret; 4820 4821 pgd = pgd_offset(mm, address); 4822 p4d = p4d_alloc(mm, pgd, address); 4823 if (!p4d) 4824 return VM_FAULT_OOM; 4825 4826 vmf.pud = pud_alloc(mm, p4d, address); 4827 if (!vmf.pud) 4828 return VM_FAULT_OOM; 4829 retry_pud: 4830 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4831 ret = create_huge_pud(&vmf); 4832 if (!(ret & VM_FAULT_FALLBACK)) 4833 return ret; 4834 } else { 4835 pud_t orig_pud = *vmf.pud; 4836 4837 barrier(); 4838 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4839 4840 /* 4841 * TODO once we support anonymous PUDs: NUMA case and 4842 * FAULT_FLAG_UNSHARE handling. 4843 */ 4844 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 4845 ret = wp_huge_pud(&vmf, orig_pud); 4846 if (!(ret & VM_FAULT_FALLBACK)) 4847 return ret; 4848 } else { 4849 huge_pud_set_accessed(&vmf, orig_pud); 4850 return 0; 4851 } 4852 } 4853 } 4854 4855 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4856 if (!vmf.pmd) 4857 return VM_FAULT_OOM; 4858 4859 /* Huge pud page fault raced with pmd_alloc? */ 4860 if (pud_trans_unstable(vmf.pud)) 4861 goto retry_pud; 4862 4863 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4864 ret = create_huge_pmd(&vmf); 4865 if (!(ret & VM_FAULT_FALLBACK)) 4866 return ret; 4867 } else { 4868 vmf.orig_pmd = *vmf.pmd; 4869 4870 barrier(); 4871 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 4872 VM_BUG_ON(thp_migration_supported() && 4873 !is_pmd_migration_entry(vmf.orig_pmd)); 4874 if (is_pmd_migration_entry(vmf.orig_pmd)) 4875 pmd_migration_entry_wait(mm, vmf.pmd); 4876 return 0; 4877 } 4878 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 4879 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 4880 return do_huge_pmd_numa_page(&vmf); 4881 4882 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 4883 !pmd_write(vmf.orig_pmd)) { 4884 ret = wp_huge_pmd(&vmf); 4885 if (!(ret & VM_FAULT_FALLBACK)) 4886 return ret; 4887 } else { 4888 huge_pmd_set_accessed(&vmf); 4889 return 0; 4890 } 4891 } 4892 } 4893 4894 return handle_pte_fault(&vmf); 4895 } 4896 4897 /** 4898 * mm_account_fault - Do page fault accounting 4899 * 4900 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4901 * of perf event counters, but we'll still do the per-task accounting to 4902 * the task who triggered this page fault. 4903 * @address: the faulted address. 4904 * @flags: the fault flags. 4905 * @ret: the fault retcode. 4906 * 4907 * This will take care of most of the page fault accounting. Meanwhile, it 4908 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4909 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4910 * still be in per-arch page fault handlers at the entry of page fault. 4911 */ 4912 static inline void mm_account_fault(struct pt_regs *regs, 4913 unsigned long address, unsigned int flags, 4914 vm_fault_t ret) 4915 { 4916 bool major; 4917 4918 /* 4919 * We don't do accounting for some specific faults: 4920 * 4921 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4922 * includes arch_vma_access_permitted() failing before reaching here. 4923 * So this is not a "this many hardware page faults" counter. We 4924 * should use the hw profiling for that. 4925 * 4926 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4927 * once they're completed. 4928 */ 4929 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4930 return; 4931 4932 /* 4933 * We define the fault as a major fault when the final successful fault 4934 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4935 * handle it immediately previously). 4936 */ 4937 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4938 4939 if (major) 4940 current->maj_flt++; 4941 else 4942 current->min_flt++; 4943 4944 /* 4945 * If the fault is done for GUP, regs will be NULL. We only do the 4946 * accounting for the per thread fault counters who triggered the 4947 * fault, and we skip the perf event updates. 4948 */ 4949 if (!regs) 4950 return; 4951 4952 if (major) 4953 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4954 else 4955 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4956 } 4957 4958 /* 4959 * By the time we get here, we already hold the mm semaphore 4960 * 4961 * The mmap_lock may have been released depending on flags and our 4962 * return value. See filemap_fault() and __folio_lock_or_retry(). 4963 */ 4964 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4965 unsigned int flags, struct pt_regs *regs) 4966 { 4967 vm_fault_t ret; 4968 4969 __set_current_state(TASK_RUNNING); 4970 4971 count_vm_event(PGFAULT); 4972 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4973 4974 /* do counter updates before entering really critical section. */ 4975 check_sync_rss_stat(current); 4976 4977 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4978 flags & FAULT_FLAG_INSTRUCTION, 4979 flags & FAULT_FLAG_REMOTE)) 4980 return VM_FAULT_SIGSEGV; 4981 4982 /* 4983 * Enable the memcg OOM handling for faults triggered in user 4984 * space. Kernel faults are handled more gracefully. 4985 */ 4986 if (flags & FAULT_FLAG_USER) 4987 mem_cgroup_enter_user_fault(); 4988 4989 if (unlikely(is_vm_hugetlb_page(vma))) 4990 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4991 else 4992 ret = __handle_mm_fault(vma, address, flags); 4993 4994 if (flags & FAULT_FLAG_USER) { 4995 mem_cgroup_exit_user_fault(); 4996 /* 4997 * The task may have entered a memcg OOM situation but 4998 * if the allocation error was handled gracefully (no 4999 * VM_FAULT_OOM), there is no need to kill anything. 5000 * Just clean up the OOM state peacefully. 5001 */ 5002 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5003 mem_cgroup_oom_synchronize(false); 5004 } 5005 5006 mm_account_fault(regs, address, flags, ret); 5007 5008 return ret; 5009 } 5010 EXPORT_SYMBOL_GPL(handle_mm_fault); 5011 5012 #ifndef __PAGETABLE_P4D_FOLDED 5013 /* 5014 * Allocate p4d page table. 5015 * We've already handled the fast-path in-line. 5016 */ 5017 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5018 { 5019 p4d_t *new = p4d_alloc_one(mm, address); 5020 if (!new) 5021 return -ENOMEM; 5022 5023 spin_lock(&mm->page_table_lock); 5024 if (pgd_present(*pgd)) { /* Another has populated it */ 5025 p4d_free(mm, new); 5026 } else { 5027 smp_wmb(); /* See comment in pmd_install() */ 5028 pgd_populate(mm, pgd, new); 5029 } 5030 spin_unlock(&mm->page_table_lock); 5031 return 0; 5032 } 5033 #endif /* __PAGETABLE_P4D_FOLDED */ 5034 5035 #ifndef __PAGETABLE_PUD_FOLDED 5036 /* 5037 * Allocate page upper directory. 5038 * We've already handled the fast-path in-line. 5039 */ 5040 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5041 { 5042 pud_t *new = pud_alloc_one(mm, address); 5043 if (!new) 5044 return -ENOMEM; 5045 5046 spin_lock(&mm->page_table_lock); 5047 if (!p4d_present(*p4d)) { 5048 mm_inc_nr_puds(mm); 5049 smp_wmb(); /* See comment in pmd_install() */ 5050 p4d_populate(mm, p4d, new); 5051 } else /* Another has populated it */ 5052 pud_free(mm, new); 5053 spin_unlock(&mm->page_table_lock); 5054 return 0; 5055 } 5056 #endif /* __PAGETABLE_PUD_FOLDED */ 5057 5058 #ifndef __PAGETABLE_PMD_FOLDED 5059 /* 5060 * Allocate page middle directory. 5061 * We've already handled the fast-path in-line. 5062 */ 5063 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5064 { 5065 spinlock_t *ptl; 5066 pmd_t *new = pmd_alloc_one(mm, address); 5067 if (!new) 5068 return -ENOMEM; 5069 5070 ptl = pud_lock(mm, pud); 5071 if (!pud_present(*pud)) { 5072 mm_inc_nr_pmds(mm); 5073 smp_wmb(); /* See comment in pmd_install() */ 5074 pud_populate(mm, pud, new); 5075 } else { /* Another has populated it */ 5076 pmd_free(mm, new); 5077 } 5078 spin_unlock(ptl); 5079 return 0; 5080 } 5081 #endif /* __PAGETABLE_PMD_FOLDED */ 5082 5083 /** 5084 * follow_pte - look up PTE at a user virtual address 5085 * @mm: the mm_struct of the target address space 5086 * @address: user virtual address 5087 * @ptepp: location to store found PTE 5088 * @ptlp: location to store the lock for the PTE 5089 * 5090 * On a successful return, the pointer to the PTE is stored in @ptepp; 5091 * the corresponding lock is taken and its location is stored in @ptlp. 5092 * The contents of the PTE are only stable until @ptlp is released; 5093 * any further use, if any, must be protected against invalidation 5094 * with MMU notifiers. 5095 * 5096 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5097 * should be taken for read. 5098 * 5099 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5100 * it is not a good general-purpose API. 5101 * 5102 * Return: zero on success, -ve otherwise. 5103 */ 5104 int follow_pte(struct mm_struct *mm, unsigned long address, 5105 pte_t **ptepp, spinlock_t **ptlp) 5106 { 5107 pgd_t *pgd; 5108 p4d_t *p4d; 5109 pud_t *pud; 5110 pmd_t *pmd; 5111 pte_t *ptep; 5112 5113 pgd = pgd_offset(mm, address); 5114 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5115 goto out; 5116 5117 p4d = p4d_offset(pgd, address); 5118 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5119 goto out; 5120 5121 pud = pud_offset(p4d, address); 5122 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5123 goto out; 5124 5125 pmd = pmd_offset(pud, address); 5126 VM_BUG_ON(pmd_trans_huge(*pmd)); 5127 5128 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5129 goto out; 5130 5131 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5132 if (!pte_present(*ptep)) 5133 goto unlock; 5134 *ptepp = ptep; 5135 return 0; 5136 unlock: 5137 pte_unmap_unlock(ptep, *ptlp); 5138 out: 5139 return -EINVAL; 5140 } 5141 EXPORT_SYMBOL_GPL(follow_pte); 5142 5143 /** 5144 * follow_pfn - look up PFN at a user virtual address 5145 * @vma: memory mapping 5146 * @address: user virtual address 5147 * @pfn: location to store found PFN 5148 * 5149 * Only IO mappings and raw PFN mappings are allowed. 5150 * 5151 * This function does not allow the caller to read the permissions 5152 * of the PTE. Do not use it. 5153 * 5154 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5155 */ 5156 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5157 unsigned long *pfn) 5158 { 5159 int ret = -EINVAL; 5160 spinlock_t *ptl; 5161 pte_t *ptep; 5162 5163 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5164 return ret; 5165 5166 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5167 if (ret) 5168 return ret; 5169 *pfn = pte_pfn(*ptep); 5170 pte_unmap_unlock(ptep, ptl); 5171 return 0; 5172 } 5173 EXPORT_SYMBOL(follow_pfn); 5174 5175 #ifdef CONFIG_HAVE_IOREMAP_PROT 5176 int follow_phys(struct vm_area_struct *vma, 5177 unsigned long address, unsigned int flags, 5178 unsigned long *prot, resource_size_t *phys) 5179 { 5180 int ret = -EINVAL; 5181 pte_t *ptep, pte; 5182 spinlock_t *ptl; 5183 5184 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5185 goto out; 5186 5187 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5188 goto out; 5189 pte = *ptep; 5190 5191 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5192 goto unlock; 5193 5194 *prot = pgprot_val(pte_pgprot(pte)); 5195 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5196 5197 ret = 0; 5198 unlock: 5199 pte_unmap_unlock(ptep, ptl); 5200 out: 5201 return ret; 5202 } 5203 5204 /** 5205 * generic_access_phys - generic implementation for iomem mmap access 5206 * @vma: the vma to access 5207 * @addr: userspace address, not relative offset within @vma 5208 * @buf: buffer to read/write 5209 * @len: length of transfer 5210 * @write: set to FOLL_WRITE when writing, otherwise reading 5211 * 5212 * This is a generic implementation for &vm_operations_struct.access for an 5213 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5214 * not page based. 5215 */ 5216 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5217 void *buf, int len, int write) 5218 { 5219 resource_size_t phys_addr; 5220 unsigned long prot = 0; 5221 void __iomem *maddr; 5222 pte_t *ptep, pte; 5223 spinlock_t *ptl; 5224 int offset = offset_in_page(addr); 5225 int ret = -EINVAL; 5226 5227 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5228 return -EINVAL; 5229 5230 retry: 5231 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5232 return -EINVAL; 5233 pte = *ptep; 5234 pte_unmap_unlock(ptep, ptl); 5235 5236 prot = pgprot_val(pte_pgprot(pte)); 5237 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5238 5239 if ((write & FOLL_WRITE) && !pte_write(pte)) 5240 return -EINVAL; 5241 5242 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5243 if (!maddr) 5244 return -ENOMEM; 5245 5246 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5247 goto out_unmap; 5248 5249 if (!pte_same(pte, *ptep)) { 5250 pte_unmap_unlock(ptep, ptl); 5251 iounmap(maddr); 5252 5253 goto retry; 5254 } 5255 5256 if (write) 5257 memcpy_toio(maddr + offset, buf, len); 5258 else 5259 memcpy_fromio(buf, maddr + offset, len); 5260 ret = len; 5261 pte_unmap_unlock(ptep, ptl); 5262 out_unmap: 5263 iounmap(maddr); 5264 5265 return ret; 5266 } 5267 EXPORT_SYMBOL_GPL(generic_access_phys); 5268 #endif 5269 5270 /* 5271 * Access another process' address space as given in mm. 5272 */ 5273 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5274 int len, unsigned int gup_flags) 5275 { 5276 struct vm_area_struct *vma; 5277 void *old_buf = buf; 5278 int write = gup_flags & FOLL_WRITE; 5279 5280 if (mmap_read_lock_killable(mm)) 5281 return 0; 5282 5283 /* ignore errors, just check how much was successfully transferred */ 5284 while (len) { 5285 int bytes, ret, offset; 5286 void *maddr; 5287 struct page *page = NULL; 5288 5289 ret = get_user_pages_remote(mm, addr, 1, 5290 gup_flags, &page, &vma, NULL); 5291 if (ret <= 0) { 5292 #ifndef CONFIG_HAVE_IOREMAP_PROT 5293 break; 5294 #else 5295 /* 5296 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5297 * we can access using slightly different code. 5298 */ 5299 vma = vma_lookup(mm, addr); 5300 if (!vma) 5301 break; 5302 if (vma->vm_ops && vma->vm_ops->access) 5303 ret = vma->vm_ops->access(vma, addr, buf, 5304 len, write); 5305 if (ret <= 0) 5306 break; 5307 bytes = ret; 5308 #endif 5309 } else { 5310 bytes = len; 5311 offset = addr & (PAGE_SIZE-1); 5312 if (bytes > PAGE_SIZE-offset) 5313 bytes = PAGE_SIZE-offset; 5314 5315 maddr = kmap(page); 5316 if (write) { 5317 copy_to_user_page(vma, page, addr, 5318 maddr + offset, buf, bytes); 5319 set_page_dirty_lock(page); 5320 } else { 5321 copy_from_user_page(vma, page, addr, 5322 buf, maddr + offset, bytes); 5323 } 5324 kunmap(page); 5325 put_page(page); 5326 } 5327 len -= bytes; 5328 buf += bytes; 5329 addr += bytes; 5330 } 5331 mmap_read_unlock(mm); 5332 5333 return buf - old_buf; 5334 } 5335 5336 /** 5337 * access_remote_vm - access another process' address space 5338 * @mm: the mm_struct of the target address space 5339 * @addr: start address to access 5340 * @buf: source or destination buffer 5341 * @len: number of bytes to transfer 5342 * @gup_flags: flags modifying lookup behaviour 5343 * 5344 * The caller must hold a reference on @mm. 5345 * 5346 * Return: number of bytes copied from source to destination. 5347 */ 5348 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5349 void *buf, int len, unsigned int gup_flags) 5350 { 5351 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5352 } 5353 5354 /* 5355 * Access another process' address space. 5356 * Source/target buffer must be kernel space, 5357 * Do not walk the page table directly, use get_user_pages 5358 */ 5359 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5360 void *buf, int len, unsigned int gup_flags) 5361 { 5362 struct mm_struct *mm; 5363 int ret; 5364 5365 mm = get_task_mm(tsk); 5366 if (!mm) 5367 return 0; 5368 5369 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5370 5371 mmput(mm); 5372 5373 return ret; 5374 } 5375 EXPORT_SYMBOL_GPL(access_process_vm); 5376 5377 /* 5378 * Print the name of a VMA. 5379 */ 5380 void print_vma_addr(char *prefix, unsigned long ip) 5381 { 5382 struct mm_struct *mm = current->mm; 5383 struct vm_area_struct *vma; 5384 5385 /* 5386 * we might be running from an atomic context so we cannot sleep 5387 */ 5388 if (!mmap_read_trylock(mm)) 5389 return; 5390 5391 vma = find_vma(mm, ip); 5392 if (vma && vma->vm_file) { 5393 struct file *f = vma->vm_file; 5394 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5395 if (buf) { 5396 char *p; 5397 5398 p = file_path(f, buf, PAGE_SIZE); 5399 if (IS_ERR(p)) 5400 p = "?"; 5401 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5402 vma->vm_start, 5403 vma->vm_end - vma->vm_start); 5404 free_page((unsigned long)buf); 5405 } 5406 } 5407 mmap_read_unlock(mm); 5408 } 5409 5410 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5411 void __might_fault(const char *file, int line) 5412 { 5413 if (pagefault_disabled()) 5414 return; 5415 __might_sleep(file, line); 5416 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5417 if (current->mm) 5418 might_lock_read(¤t->mm->mmap_lock); 5419 #endif 5420 } 5421 EXPORT_SYMBOL(__might_fault); 5422 #endif 5423 5424 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5425 /* 5426 * Process all subpages of the specified huge page with the specified 5427 * operation. The target subpage will be processed last to keep its 5428 * cache lines hot. 5429 */ 5430 static inline void process_huge_page( 5431 unsigned long addr_hint, unsigned int pages_per_huge_page, 5432 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5433 void *arg) 5434 { 5435 int i, n, base, l; 5436 unsigned long addr = addr_hint & 5437 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5438 5439 /* Process target subpage last to keep its cache lines hot */ 5440 might_sleep(); 5441 n = (addr_hint - addr) / PAGE_SIZE; 5442 if (2 * n <= pages_per_huge_page) { 5443 /* If target subpage in first half of huge page */ 5444 base = 0; 5445 l = n; 5446 /* Process subpages at the end of huge page */ 5447 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5448 cond_resched(); 5449 process_subpage(addr + i * PAGE_SIZE, i, arg); 5450 } 5451 } else { 5452 /* If target subpage in second half of huge page */ 5453 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5454 l = pages_per_huge_page - n; 5455 /* Process subpages at the begin of huge page */ 5456 for (i = 0; i < base; i++) { 5457 cond_resched(); 5458 process_subpage(addr + i * PAGE_SIZE, i, arg); 5459 } 5460 } 5461 /* 5462 * Process remaining subpages in left-right-left-right pattern 5463 * towards the target subpage 5464 */ 5465 for (i = 0; i < l; i++) { 5466 int left_idx = base + i; 5467 int right_idx = base + 2 * l - 1 - i; 5468 5469 cond_resched(); 5470 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5471 cond_resched(); 5472 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5473 } 5474 } 5475 5476 static void clear_gigantic_page(struct page *page, 5477 unsigned long addr, 5478 unsigned int pages_per_huge_page) 5479 { 5480 int i; 5481 struct page *p = page; 5482 5483 might_sleep(); 5484 for (i = 0; i < pages_per_huge_page; 5485 i++, p = mem_map_next(p, page, i)) { 5486 cond_resched(); 5487 clear_user_highpage(p, addr + i * PAGE_SIZE); 5488 } 5489 } 5490 5491 static void clear_subpage(unsigned long addr, int idx, void *arg) 5492 { 5493 struct page *page = arg; 5494 5495 clear_user_highpage(page + idx, addr); 5496 } 5497 5498 void clear_huge_page(struct page *page, 5499 unsigned long addr_hint, unsigned int pages_per_huge_page) 5500 { 5501 unsigned long addr = addr_hint & 5502 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5503 5504 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5505 clear_gigantic_page(page, addr, pages_per_huge_page); 5506 return; 5507 } 5508 5509 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5510 } 5511 5512 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5513 unsigned long addr, 5514 struct vm_area_struct *vma, 5515 unsigned int pages_per_huge_page) 5516 { 5517 int i; 5518 struct page *dst_base = dst; 5519 struct page *src_base = src; 5520 5521 for (i = 0; i < pages_per_huge_page; ) { 5522 cond_resched(); 5523 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5524 5525 i++; 5526 dst = mem_map_next(dst, dst_base, i); 5527 src = mem_map_next(src, src_base, i); 5528 } 5529 } 5530 5531 struct copy_subpage_arg { 5532 struct page *dst; 5533 struct page *src; 5534 struct vm_area_struct *vma; 5535 }; 5536 5537 static void copy_subpage(unsigned long addr, int idx, void *arg) 5538 { 5539 struct copy_subpage_arg *copy_arg = arg; 5540 5541 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5542 addr, copy_arg->vma); 5543 } 5544 5545 void copy_user_huge_page(struct page *dst, struct page *src, 5546 unsigned long addr_hint, struct vm_area_struct *vma, 5547 unsigned int pages_per_huge_page) 5548 { 5549 unsigned long addr = addr_hint & 5550 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5551 struct copy_subpage_arg arg = { 5552 .dst = dst, 5553 .src = src, 5554 .vma = vma, 5555 }; 5556 5557 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5558 copy_user_gigantic_page(dst, src, addr, vma, 5559 pages_per_huge_page); 5560 return; 5561 } 5562 5563 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5564 } 5565 5566 long copy_huge_page_from_user(struct page *dst_page, 5567 const void __user *usr_src, 5568 unsigned int pages_per_huge_page, 5569 bool allow_pagefault) 5570 { 5571 void *page_kaddr; 5572 unsigned long i, rc = 0; 5573 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5574 struct page *subpage = dst_page; 5575 5576 for (i = 0; i < pages_per_huge_page; 5577 i++, subpage = mem_map_next(subpage, dst_page, i)) { 5578 if (allow_pagefault) 5579 page_kaddr = kmap(subpage); 5580 else 5581 page_kaddr = kmap_atomic(subpage); 5582 rc = copy_from_user(page_kaddr, 5583 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5584 if (allow_pagefault) 5585 kunmap(subpage); 5586 else 5587 kunmap_atomic(page_kaddr); 5588 5589 ret_val -= (PAGE_SIZE - rc); 5590 if (rc) 5591 break; 5592 5593 flush_dcache_page(subpage); 5594 5595 cond_resched(); 5596 } 5597 return ret_val; 5598 } 5599 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5600 5601 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5602 5603 static struct kmem_cache *page_ptl_cachep; 5604 5605 void __init ptlock_cache_init(void) 5606 { 5607 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5608 SLAB_PANIC, NULL); 5609 } 5610 5611 bool ptlock_alloc(struct page *page) 5612 { 5613 spinlock_t *ptl; 5614 5615 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5616 if (!ptl) 5617 return false; 5618 page->ptl = ptl; 5619 return true; 5620 } 5621 5622 void ptlock_free(struct page *page) 5623 { 5624 kmem_cache_free(page_ptl_cachep, page->ptl); 5625 } 5626 #endif 5627