xref: /openbmc/linux/mm/memory.c (revision 3ed3a4f0ddffece942bb2661924d87be4ce63cb7)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73 
74 #include "internal.h"
75 
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79 
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84 
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88 
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97 
98 EXPORT_SYMBOL(high_memory);
99 
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108 					1;
109 #else
110 					2;
111 #endif
112 
113 static int __init disable_randmaps(char *s)
114 {
115 	randomize_va_space = 0;
116 	return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119 
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122 
123 EXPORT_SYMBOL(zero_pfn);
124 
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
131 	return 0;
132 }
133 core_initcall(init_zero_pfn);
134 
135 
136 #if defined(SPLIT_RSS_COUNTING)
137 
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140 	int i;
141 
142 	for (i = 0; i < NR_MM_COUNTERS; i++) {
143 		if (current->rss_stat.count[i]) {
144 			add_mm_counter(mm, i, current->rss_stat.count[i]);
145 			current->rss_stat.count[i] = 0;
146 		}
147 	}
148 	current->rss_stat.events = 0;
149 }
150 
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153 	struct task_struct *task = current;
154 
155 	if (likely(task->mm == mm))
156 		task->rss_stat.count[member] += val;
157 	else
158 		add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162 
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH	(64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167 	if (unlikely(task != current))
168 		return;
169 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170 		sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173 
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176 
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180 
181 #endif /* SPLIT_RSS_COUNTING */
182 
183 #ifdef HAVE_GENERIC_MMU_GATHER
184 
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187 	struct mmu_gather_batch *batch;
188 
189 	batch = tlb->active;
190 	if (batch->next) {
191 		tlb->active = batch->next;
192 		return true;
193 	}
194 
195 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196 		return false;
197 
198 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 	if (!batch)
200 		return false;
201 
202 	tlb->batch_count++;
203 	batch->next = NULL;
204 	batch->nr   = 0;
205 	batch->max  = MAX_GATHER_BATCH;
206 
207 	tlb->active->next = batch;
208 	tlb->active = batch;
209 
210 	return true;
211 }
212 
213 /* tlb_gather_mmu
214  *	Called to initialize an (on-stack) mmu_gather structure for page-table
215  *	tear-down from @mm. The @fullmm argument is used when @mm is without
216  *	users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220 	tlb->mm = mm;
221 
222 	/* Is it from 0 to ~0? */
223 	tlb->fullmm     = !(start | (end+1));
224 	tlb->need_flush_all = 0;
225 	tlb->local.next = NULL;
226 	tlb->local.nr   = 0;
227 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228 	tlb->active     = &tlb->local;
229 	tlb->batch_count = 0;
230 
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 	tlb->batch = NULL;
233 #endif
234 
235 	__tlb_reset_range(tlb);
236 }
237 
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240 	if (!tlb->end)
241 		return;
242 
243 	tlb_flush(tlb);
244 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 	tlb_table_flush(tlb);
247 #endif
248 	__tlb_reset_range(tlb);
249 }
250 
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253 	struct mmu_gather_batch *batch;
254 
255 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256 		free_pages_and_swap_cache(batch->pages, batch->nr);
257 		batch->nr = 0;
258 	}
259 	tlb->active = &tlb->local;
260 }
261 
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264 	tlb_flush_mmu_tlbonly(tlb);
265 	tlb_flush_mmu_free(tlb);
266 }
267 
268 /* tlb_finish_mmu
269  *	Called at the end of the shootdown operation to free up any resources
270  *	that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274 	struct mmu_gather_batch *batch, *next;
275 
276 	tlb_flush_mmu(tlb);
277 
278 	/* keep the page table cache within bounds */
279 	check_pgt_cache();
280 
281 	for (batch = tlb->local.next; batch; batch = next) {
282 		next = batch->next;
283 		free_pages((unsigned long)batch, 0);
284 	}
285 	tlb->local.next = NULL;
286 }
287 
288 /* __tlb_remove_page
289  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *	handling the additional races in SMP caused by other CPUs caching valid
291  *	mappings in their TLBs. Returns the number of free page slots left.
292  *	When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296 	struct mmu_gather_batch *batch;
297 
298 	VM_BUG_ON(!tlb->end);
299 
300 	batch = tlb->active;
301 	batch->pages[batch->nr++] = page;
302 	if (batch->nr == batch->max) {
303 		if (!tlb_next_batch(tlb))
304 			return 0;
305 		batch = tlb->active;
306 	}
307 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308 
309 	return batch->max - batch->nr;
310 }
311 
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313 
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319 
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322 	/* Simply deliver the interrupt */
323 }
324 
325 static void tlb_remove_table_one(void *table)
326 {
327 	/*
328 	 * This isn't an RCU grace period and hence the page-tables cannot be
329 	 * assumed to be actually RCU-freed.
330 	 *
331 	 * It is however sufficient for software page-table walkers that rely on
332 	 * IRQ disabling. See the comment near struct mmu_table_batch.
333 	 */
334 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335 	__tlb_remove_table(table);
336 }
337 
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340 	struct mmu_table_batch *batch;
341 	int i;
342 
343 	batch = container_of(head, struct mmu_table_batch, rcu);
344 
345 	for (i = 0; i < batch->nr; i++)
346 		__tlb_remove_table(batch->tables[i]);
347 
348 	free_page((unsigned long)batch);
349 }
350 
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353 	struct mmu_table_batch **batch = &tlb->batch;
354 
355 	if (*batch) {
356 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357 		*batch = NULL;
358 	}
359 }
360 
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363 	struct mmu_table_batch **batch = &tlb->batch;
364 
365 	/*
366 	 * When there's less then two users of this mm there cannot be a
367 	 * concurrent page-table walk.
368 	 */
369 	if (atomic_read(&tlb->mm->mm_users) < 2) {
370 		__tlb_remove_table(table);
371 		return;
372 	}
373 
374 	if (*batch == NULL) {
375 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376 		if (*batch == NULL) {
377 			tlb_remove_table_one(table);
378 			return;
379 		}
380 		(*batch)->nr = 0;
381 	}
382 	(*batch)->tables[(*batch)->nr++] = table;
383 	if ((*batch)->nr == MAX_TABLE_BATCH)
384 		tlb_table_flush(tlb);
385 }
386 
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394 			   unsigned long addr)
395 {
396 	pgtable_t token = pmd_pgtable(*pmd);
397 	pmd_clear(pmd);
398 	pte_free_tlb(tlb, token, addr);
399 	atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401 
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403 				unsigned long addr, unsigned long end,
404 				unsigned long floor, unsigned long ceiling)
405 {
406 	pmd_t *pmd;
407 	unsigned long next;
408 	unsigned long start;
409 
410 	start = addr;
411 	pmd = pmd_offset(pud, addr);
412 	do {
413 		next = pmd_addr_end(addr, end);
414 		if (pmd_none_or_clear_bad(pmd))
415 			continue;
416 		free_pte_range(tlb, pmd, addr);
417 	} while (pmd++, addr = next, addr != end);
418 
419 	start &= PUD_MASK;
420 	if (start < floor)
421 		return;
422 	if (ceiling) {
423 		ceiling &= PUD_MASK;
424 		if (!ceiling)
425 			return;
426 	}
427 	if (end - 1 > ceiling - 1)
428 		return;
429 
430 	pmd = pmd_offset(pud, start);
431 	pud_clear(pud);
432 	pmd_free_tlb(tlb, pmd, start);
433 	mm_dec_nr_pmds(tlb->mm);
434 }
435 
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437 				unsigned long addr, unsigned long end,
438 				unsigned long floor, unsigned long ceiling)
439 {
440 	pud_t *pud;
441 	unsigned long next;
442 	unsigned long start;
443 
444 	start = addr;
445 	pud = pud_offset(pgd, addr);
446 	do {
447 		next = pud_addr_end(addr, end);
448 		if (pud_none_or_clear_bad(pud))
449 			continue;
450 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451 	} while (pud++, addr = next, addr != end);
452 
453 	start &= PGDIR_MASK;
454 	if (start < floor)
455 		return;
456 	if (ceiling) {
457 		ceiling &= PGDIR_MASK;
458 		if (!ceiling)
459 			return;
460 	}
461 	if (end - 1 > ceiling - 1)
462 		return;
463 
464 	pud = pud_offset(pgd, start);
465 	pgd_clear(pgd);
466 	pud_free_tlb(tlb, pud, start);
467 }
468 
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473 			unsigned long addr, unsigned long end,
474 			unsigned long floor, unsigned long ceiling)
475 {
476 	pgd_t *pgd;
477 	unsigned long next;
478 
479 	/*
480 	 * The next few lines have given us lots of grief...
481 	 *
482 	 * Why are we testing PMD* at this top level?  Because often
483 	 * there will be no work to do at all, and we'd prefer not to
484 	 * go all the way down to the bottom just to discover that.
485 	 *
486 	 * Why all these "- 1"s?  Because 0 represents both the bottom
487 	 * of the address space and the top of it (using -1 for the
488 	 * top wouldn't help much: the masks would do the wrong thing).
489 	 * The rule is that addr 0 and floor 0 refer to the bottom of
490 	 * the address space, but end 0 and ceiling 0 refer to the top
491 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
492 	 * that end 0 case should be mythical).
493 	 *
494 	 * Wherever addr is brought up or ceiling brought down, we must
495 	 * be careful to reject "the opposite 0" before it confuses the
496 	 * subsequent tests.  But what about where end is brought down
497 	 * by PMD_SIZE below? no, end can't go down to 0 there.
498 	 *
499 	 * Whereas we round start (addr) and ceiling down, by different
500 	 * masks at different levels, in order to test whether a table
501 	 * now has no other vmas using it, so can be freed, we don't
502 	 * bother to round floor or end up - the tests don't need that.
503 	 */
504 
505 	addr &= PMD_MASK;
506 	if (addr < floor) {
507 		addr += PMD_SIZE;
508 		if (!addr)
509 			return;
510 	}
511 	if (ceiling) {
512 		ceiling &= PMD_MASK;
513 		if (!ceiling)
514 			return;
515 	}
516 	if (end - 1 > ceiling - 1)
517 		end -= PMD_SIZE;
518 	if (addr > end - 1)
519 		return;
520 
521 	pgd = pgd_offset(tlb->mm, addr);
522 	do {
523 		next = pgd_addr_end(addr, end);
524 		if (pgd_none_or_clear_bad(pgd))
525 			continue;
526 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527 	} while (pgd++, addr = next, addr != end);
528 }
529 
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531 		unsigned long floor, unsigned long ceiling)
532 {
533 	while (vma) {
534 		struct vm_area_struct *next = vma->vm_next;
535 		unsigned long addr = vma->vm_start;
536 
537 		/*
538 		 * Hide vma from rmap and truncate_pagecache before freeing
539 		 * pgtables
540 		 */
541 		unlink_anon_vmas(vma);
542 		unlink_file_vma(vma);
543 
544 		if (is_vm_hugetlb_page(vma)) {
545 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546 				floor, next? next->vm_start: ceiling);
547 		} else {
548 			/*
549 			 * Optimization: gather nearby vmas into one call down
550 			 */
551 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552 			       && !is_vm_hugetlb_page(next)) {
553 				vma = next;
554 				next = vma->vm_next;
555 				unlink_anon_vmas(vma);
556 				unlink_file_vma(vma);
557 			}
558 			free_pgd_range(tlb, addr, vma->vm_end,
559 				floor, next? next->vm_start: ceiling);
560 		}
561 		vma = next;
562 	}
563 }
564 
565 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
566 {
567 	spinlock_t *ptl;
568 	pgtable_t new = pte_alloc_one(mm, address);
569 	if (!new)
570 		return -ENOMEM;
571 
572 	/*
573 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 	 * visible before the pte is made visible to other CPUs by being
575 	 * put into page tables.
576 	 *
577 	 * The other side of the story is the pointer chasing in the page
578 	 * table walking code (when walking the page table without locking;
579 	 * ie. most of the time). Fortunately, these data accesses consist
580 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 	 * being the notable exception) will already guarantee loads are
582 	 * seen in-order. See the alpha page table accessors for the
583 	 * smp_read_barrier_depends() barriers in page table walking code.
584 	 */
585 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 
587 	ptl = pmd_lock(mm, pmd);
588 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
589 		atomic_long_inc(&mm->nr_ptes);
590 		pmd_populate(mm, pmd, new);
591 		new = NULL;
592 	}
593 	spin_unlock(ptl);
594 	if (new)
595 		pte_free(mm, new);
596 	return 0;
597 }
598 
599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
600 {
601 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602 	if (!new)
603 		return -ENOMEM;
604 
605 	smp_wmb(); /* See comment in __pte_alloc */
606 
607 	spin_lock(&init_mm.page_table_lock);
608 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
609 		pmd_populate_kernel(&init_mm, pmd, new);
610 		new = NULL;
611 	}
612 	spin_unlock(&init_mm.page_table_lock);
613 	if (new)
614 		pte_free_kernel(&init_mm, new);
615 	return 0;
616 }
617 
618 static inline void init_rss_vec(int *rss)
619 {
620 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621 }
622 
623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624 {
625 	int i;
626 
627 	if (current->mm == mm)
628 		sync_mm_rss(mm);
629 	for (i = 0; i < NR_MM_COUNTERS; i++)
630 		if (rss[i])
631 			add_mm_counter(mm, i, rss[i]);
632 }
633 
634 /*
635  * This function is called to print an error when a bad pte
636  * is found. For example, we might have a PFN-mapped pte in
637  * a region that doesn't allow it.
638  *
639  * The calling function must still handle the error.
640  */
641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642 			  pte_t pte, struct page *page)
643 {
644 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645 	pud_t *pud = pud_offset(pgd, addr);
646 	pmd_t *pmd = pmd_offset(pud, addr);
647 	struct address_space *mapping;
648 	pgoff_t index;
649 	static unsigned long resume;
650 	static unsigned long nr_shown;
651 	static unsigned long nr_unshown;
652 
653 	/*
654 	 * Allow a burst of 60 reports, then keep quiet for that minute;
655 	 * or allow a steady drip of one report per second.
656 	 */
657 	if (nr_shown == 60) {
658 		if (time_before(jiffies, resume)) {
659 			nr_unshown++;
660 			return;
661 		}
662 		if (nr_unshown) {
663 			printk(KERN_ALERT
664 				"BUG: Bad page map: %lu messages suppressed\n",
665 				nr_unshown);
666 			nr_unshown = 0;
667 		}
668 		nr_shown = 0;
669 	}
670 	if (nr_shown++ == 0)
671 		resume = jiffies + 60 * HZ;
672 
673 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 	index = linear_page_index(vma, addr);
675 
676 	printk(KERN_ALERT
677 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
678 		current->comm,
679 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
680 	if (page)
681 		dump_page(page, "bad pte");
682 	printk(KERN_ALERT
683 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
684 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
685 	/*
686 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687 	 */
688 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
689 		 vma->vm_file,
690 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
691 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
692 		 mapping ? mapping->a_ops->readpage : NULL);
693 	dump_stack();
694 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
695 }
696 
697 /*
698  * vm_normal_page -- This function gets the "struct page" associated with a pte.
699  *
700  * "Special" mappings do not wish to be associated with a "struct page" (either
701  * it doesn't exist, or it exists but they don't want to touch it). In this
702  * case, NULL is returned here. "Normal" mappings do have a struct page.
703  *
704  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705  * pte bit, in which case this function is trivial. Secondly, an architecture
706  * may not have a spare pte bit, which requires a more complicated scheme,
707  * described below.
708  *
709  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710  * special mapping (even if there are underlying and valid "struct pages").
711  * COWed pages of a VM_PFNMAP are always normal.
712  *
713  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716  * mapping will always honor the rule
717  *
718  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719  *
720  * And for normal mappings this is false.
721  *
722  * This restricts such mappings to be a linear translation from virtual address
723  * to pfn. To get around this restriction, we allow arbitrary mappings so long
724  * as the vma is not a COW mapping; in that case, we know that all ptes are
725  * special (because none can have been COWed).
726  *
727  *
728  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729  *
730  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731  * page" backing, however the difference is that _all_ pages with a struct
732  * page (that is, those where pfn_valid is true) are refcounted and considered
733  * normal pages by the VM. The disadvantage is that pages are refcounted
734  * (which can be slower and simply not an option for some PFNMAP users). The
735  * advantage is that we don't have to follow the strict linearity rule of
736  * PFNMAP mappings in order to support COWable mappings.
737  *
738  */
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 				pte_t pte)
746 {
747 	unsigned long pfn = pte_pfn(pte);
748 
749 	if (HAVE_PTE_SPECIAL) {
750 		if (likely(!pte_special(pte)))
751 			goto check_pfn;
752 		if (vma->vm_ops && vma->vm_ops->find_special_page)
753 			return vma->vm_ops->find_special_page(vma, addr);
754 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
755 			return NULL;
756 		if (!is_zero_pfn(pfn))
757 			print_bad_pte(vma, addr, pte, NULL);
758 		return NULL;
759 	}
760 
761 	/* !HAVE_PTE_SPECIAL case follows: */
762 
763 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
764 		if (vma->vm_flags & VM_MIXEDMAP) {
765 			if (!pfn_valid(pfn))
766 				return NULL;
767 			goto out;
768 		} else {
769 			unsigned long off;
770 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
771 			if (pfn == vma->vm_pgoff + off)
772 				return NULL;
773 			if (!is_cow_mapping(vma->vm_flags))
774 				return NULL;
775 		}
776 	}
777 
778 	if (is_zero_pfn(pfn))
779 		return NULL;
780 check_pfn:
781 	if (unlikely(pfn > highest_memmap_pfn)) {
782 		print_bad_pte(vma, addr, pte, NULL);
783 		return NULL;
784 	}
785 
786 	/*
787 	 * NOTE! We still have PageReserved() pages in the page tables.
788 	 * eg. VDSO mappings can cause them to exist.
789 	 */
790 out:
791 	return pfn_to_page(pfn);
792 }
793 
794 /*
795  * copy one vm_area from one task to the other. Assumes the page tables
796  * already present in the new task to be cleared in the whole range
797  * covered by this vma.
798  */
799 
800 static inline unsigned long
801 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
802 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
803 		unsigned long addr, int *rss)
804 {
805 	unsigned long vm_flags = vma->vm_flags;
806 	pte_t pte = *src_pte;
807 	struct page *page;
808 
809 	/* pte contains position in swap or file, so copy. */
810 	if (unlikely(!pte_present(pte))) {
811 		swp_entry_t entry = pte_to_swp_entry(pte);
812 
813 		if (likely(!non_swap_entry(entry))) {
814 			if (swap_duplicate(entry) < 0)
815 				return entry.val;
816 
817 			/* make sure dst_mm is on swapoff's mmlist. */
818 			if (unlikely(list_empty(&dst_mm->mmlist))) {
819 				spin_lock(&mmlist_lock);
820 				if (list_empty(&dst_mm->mmlist))
821 					list_add(&dst_mm->mmlist,
822 							&src_mm->mmlist);
823 				spin_unlock(&mmlist_lock);
824 			}
825 			rss[MM_SWAPENTS]++;
826 		} else if (is_migration_entry(entry)) {
827 			page = migration_entry_to_page(entry);
828 
829 			rss[mm_counter(page)]++;
830 
831 			if (is_write_migration_entry(entry) &&
832 					is_cow_mapping(vm_flags)) {
833 				/*
834 				 * COW mappings require pages in both
835 				 * parent and child to be set to read.
836 				 */
837 				make_migration_entry_read(&entry);
838 				pte = swp_entry_to_pte(entry);
839 				if (pte_swp_soft_dirty(*src_pte))
840 					pte = pte_swp_mksoft_dirty(pte);
841 				set_pte_at(src_mm, addr, src_pte, pte);
842 			}
843 		}
844 		goto out_set_pte;
845 	}
846 
847 	/*
848 	 * If it's a COW mapping, write protect it both
849 	 * in the parent and the child
850 	 */
851 	if (is_cow_mapping(vm_flags)) {
852 		ptep_set_wrprotect(src_mm, addr, src_pte);
853 		pte = pte_wrprotect(pte);
854 	}
855 
856 	/*
857 	 * If it's a shared mapping, mark it clean in
858 	 * the child
859 	 */
860 	if (vm_flags & VM_SHARED)
861 		pte = pte_mkclean(pte);
862 	pte = pte_mkold(pte);
863 
864 	page = vm_normal_page(vma, addr, pte);
865 	if (page) {
866 		get_page(page);
867 		page_dup_rmap(page, false);
868 		rss[mm_counter(page)]++;
869 	}
870 
871 out_set_pte:
872 	set_pte_at(dst_mm, addr, dst_pte, pte);
873 	return 0;
874 }
875 
876 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
878 		   unsigned long addr, unsigned long end)
879 {
880 	pte_t *orig_src_pte, *orig_dst_pte;
881 	pte_t *src_pte, *dst_pte;
882 	spinlock_t *src_ptl, *dst_ptl;
883 	int progress = 0;
884 	int rss[NR_MM_COUNTERS];
885 	swp_entry_t entry = (swp_entry_t){0};
886 
887 again:
888 	init_rss_vec(rss);
889 
890 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
891 	if (!dst_pte)
892 		return -ENOMEM;
893 	src_pte = pte_offset_map(src_pmd, addr);
894 	src_ptl = pte_lockptr(src_mm, src_pmd);
895 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
896 	orig_src_pte = src_pte;
897 	orig_dst_pte = dst_pte;
898 	arch_enter_lazy_mmu_mode();
899 
900 	do {
901 		/*
902 		 * We are holding two locks at this point - either of them
903 		 * could generate latencies in another task on another CPU.
904 		 */
905 		if (progress >= 32) {
906 			progress = 0;
907 			if (need_resched() ||
908 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
909 				break;
910 		}
911 		if (pte_none(*src_pte)) {
912 			progress++;
913 			continue;
914 		}
915 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
916 							vma, addr, rss);
917 		if (entry.val)
918 			break;
919 		progress += 8;
920 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
921 
922 	arch_leave_lazy_mmu_mode();
923 	spin_unlock(src_ptl);
924 	pte_unmap(orig_src_pte);
925 	add_mm_rss_vec(dst_mm, rss);
926 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
927 	cond_resched();
928 
929 	if (entry.val) {
930 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
931 			return -ENOMEM;
932 		progress = 0;
933 	}
934 	if (addr != end)
935 		goto again;
936 	return 0;
937 }
938 
939 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
940 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
941 		unsigned long addr, unsigned long end)
942 {
943 	pmd_t *src_pmd, *dst_pmd;
944 	unsigned long next;
945 
946 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
947 	if (!dst_pmd)
948 		return -ENOMEM;
949 	src_pmd = pmd_offset(src_pud, addr);
950 	do {
951 		next = pmd_addr_end(addr, end);
952 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
953 			int err;
954 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
955 			err = copy_huge_pmd(dst_mm, src_mm,
956 					    dst_pmd, src_pmd, addr, vma);
957 			if (err == -ENOMEM)
958 				return -ENOMEM;
959 			if (!err)
960 				continue;
961 			/* fall through */
962 		}
963 		if (pmd_none_or_clear_bad(src_pmd))
964 			continue;
965 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
966 						vma, addr, next))
967 			return -ENOMEM;
968 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
969 	return 0;
970 }
971 
972 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
973 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
974 		unsigned long addr, unsigned long end)
975 {
976 	pud_t *src_pud, *dst_pud;
977 	unsigned long next;
978 
979 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
980 	if (!dst_pud)
981 		return -ENOMEM;
982 	src_pud = pud_offset(src_pgd, addr);
983 	do {
984 		next = pud_addr_end(addr, end);
985 		if (pud_none_or_clear_bad(src_pud))
986 			continue;
987 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
988 						vma, addr, next))
989 			return -ENOMEM;
990 	} while (dst_pud++, src_pud++, addr = next, addr != end);
991 	return 0;
992 }
993 
994 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
995 		struct vm_area_struct *vma)
996 {
997 	pgd_t *src_pgd, *dst_pgd;
998 	unsigned long next;
999 	unsigned long addr = vma->vm_start;
1000 	unsigned long end = vma->vm_end;
1001 	unsigned long mmun_start;	/* For mmu_notifiers */
1002 	unsigned long mmun_end;		/* For mmu_notifiers */
1003 	bool is_cow;
1004 	int ret;
1005 
1006 	/*
1007 	 * Don't copy ptes where a page fault will fill them correctly.
1008 	 * Fork becomes much lighter when there are big shared or private
1009 	 * readonly mappings. The tradeoff is that copy_page_range is more
1010 	 * efficient than faulting.
1011 	 */
1012 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1013 			!vma->anon_vma)
1014 		return 0;
1015 
1016 	if (is_vm_hugetlb_page(vma))
1017 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1018 
1019 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1020 		/*
1021 		 * We do not free on error cases below as remove_vma
1022 		 * gets called on error from higher level routine
1023 		 */
1024 		ret = track_pfn_copy(vma);
1025 		if (ret)
1026 			return ret;
1027 	}
1028 
1029 	/*
1030 	 * We need to invalidate the secondary MMU mappings only when
1031 	 * there could be a permission downgrade on the ptes of the
1032 	 * parent mm. And a permission downgrade will only happen if
1033 	 * is_cow_mapping() returns true.
1034 	 */
1035 	is_cow = is_cow_mapping(vma->vm_flags);
1036 	mmun_start = addr;
1037 	mmun_end   = end;
1038 	if (is_cow)
1039 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1040 						    mmun_end);
1041 
1042 	ret = 0;
1043 	dst_pgd = pgd_offset(dst_mm, addr);
1044 	src_pgd = pgd_offset(src_mm, addr);
1045 	do {
1046 		next = pgd_addr_end(addr, end);
1047 		if (pgd_none_or_clear_bad(src_pgd))
1048 			continue;
1049 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1050 					    vma, addr, next))) {
1051 			ret = -ENOMEM;
1052 			break;
1053 		}
1054 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1055 
1056 	if (is_cow)
1057 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1058 	return ret;
1059 }
1060 
1061 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1062 				struct vm_area_struct *vma, pmd_t *pmd,
1063 				unsigned long addr, unsigned long end,
1064 				struct zap_details *details)
1065 {
1066 	struct mm_struct *mm = tlb->mm;
1067 	int force_flush = 0;
1068 	int rss[NR_MM_COUNTERS];
1069 	spinlock_t *ptl;
1070 	pte_t *start_pte;
1071 	pte_t *pte;
1072 	swp_entry_t entry;
1073 
1074 again:
1075 	init_rss_vec(rss);
1076 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1077 	pte = start_pte;
1078 	arch_enter_lazy_mmu_mode();
1079 	do {
1080 		pte_t ptent = *pte;
1081 		if (pte_none(ptent)) {
1082 			continue;
1083 		}
1084 
1085 		if (pte_present(ptent)) {
1086 			struct page *page;
1087 
1088 			page = vm_normal_page(vma, addr, ptent);
1089 			if (unlikely(details) && page) {
1090 				/*
1091 				 * unmap_shared_mapping_pages() wants to
1092 				 * invalidate cache without truncating:
1093 				 * unmap shared but keep private pages.
1094 				 */
1095 				if (details->check_mapping &&
1096 				    details->check_mapping != page->mapping)
1097 					continue;
1098 			}
1099 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1100 							tlb->fullmm);
1101 			tlb_remove_tlb_entry(tlb, pte, addr);
1102 			if (unlikely(!page))
1103 				continue;
1104 
1105 			if (!PageAnon(page)) {
1106 				if (pte_dirty(ptent)) {
1107 					force_flush = 1;
1108 					set_page_dirty(page);
1109 				}
1110 				if (pte_young(ptent) &&
1111 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1112 					mark_page_accessed(page);
1113 			}
1114 			rss[mm_counter(page)]--;
1115 			page_remove_rmap(page, false);
1116 			if (unlikely(page_mapcount(page) < 0))
1117 				print_bad_pte(vma, addr, ptent, page);
1118 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1119 				force_flush = 1;
1120 				addr += PAGE_SIZE;
1121 				break;
1122 			}
1123 			continue;
1124 		}
1125 		/* If details->check_mapping, we leave swap entries. */
1126 		if (unlikely(details))
1127 			continue;
1128 
1129 		entry = pte_to_swp_entry(ptent);
1130 		if (!non_swap_entry(entry))
1131 			rss[MM_SWAPENTS]--;
1132 		else if (is_migration_entry(entry)) {
1133 			struct page *page;
1134 
1135 			page = migration_entry_to_page(entry);
1136 			rss[mm_counter(page)]--;
1137 		}
1138 		if (unlikely(!free_swap_and_cache(entry)))
1139 			print_bad_pte(vma, addr, ptent, NULL);
1140 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141 	} while (pte++, addr += PAGE_SIZE, addr != end);
1142 
1143 	add_mm_rss_vec(mm, rss);
1144 	arch_leave_lazy_mmu_mode();
1145 
1146 	/* Do the actual TLB flush before dropping ptl */
1147 	if (force_flush)
1148 		tlb_flush_mmu_tlbonly(tlb);
1149 	pte_unmap_unlock(start_pte, ptl);
1150 
1151 	/*
1152 	 * If we forced a TLB flush (either due to running out of
1153 	 * batch buffers or because we needed to flush dirty TLB
1154 	 * entries before releasing the ptl), free the batched
1155 	 * memory too. Restart if we didn't do everything.
1156 	 */
1157 	if (force_flush) {
1158 		force_flush = 0;
1159 		tlb_flush_mmu_free(tlb);
1160 
1161 		if (addr != end)
1162 			goto again;
1163 	}
1164 
1165 	return addr;
1166 }
1167 
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 				struct vm_area_struct *vma, pud_t *pud,
1170 				unsigned long addr, unsigned long end,
1171 				struct zap_details *details)
1172 {
1173 	pmd_t *pmd;
1174 	unsigned long next;
1175 
1176 	pmd = pmd_offset(pud, addr);
1177 	do {
1178 		next = pmd_addr_end(addr, end);
1179 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 			if (next - addr != HPAGE_PMD_SIZE) {
1181 #ifdef CONFIG_DEBUG_VM
1182 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1183 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1184 						__func__, addr, end,
1185 						vma->vm_start,
1186 						vma->vm_end);
1187 					BUG();
1188 				}
1189 #endif
1190 				split_huge_pmd(vma, pmd, addr);
1191 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1192 				goto next;
1193 			/* fall through */
1194 		}
1195 		/*
1196 		 * Here there can be other concurrent MADV_DONTNEED or
1197 		 * trans huge page faults running, and if the pmd is
1198 		 * none or trans huge it can change under us. This is
1199 		 * because MADV_DONTNEED holds the mmap_sem in read
1200 		 * mode.
1201 		 */
1202 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1203 			goto next;
1204 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1205 next:
1206 		cond_resched();
1207 	} while (pmd++, addr = next, addr != end);
1208 
1209 	return addr;
1210 }
1211 
1212 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1213 				struct vm_area_struct *vma, pgd_t *pgd,
1214 				unsigned long addr, unsigned long end,
1215 				struct zap_details *details)
1216 {
1217 	pud_t *pud;
1218 	unsigned long next;
1219 
1220 	pud = pud_offset(pgd, addr);
1221 	do {
1222 		next = pud_addr_end(addr, end);
1223 		if (pud_none_or_clear_bad(pud))
1224 			continue;
1225 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 	} while (pud++, addr = next, addr != end);
1227 
1228 	return addr;
1229 }
1230 
1231 static void unmap_page_range(struct mmu_gather *tlb,
1232 			     struct vm_area_struct *vma,
1233 			     unsigned long addr, unsigned long end,
1234 			     struct zap_details *details)
1235 {
1236 	pgd_t *pgd;
1237 	unsigned long next;
1238 
1239 	if (details && !details->check_mapping)
1240 		details = NULL;
1241 
1242 	BUG_ON(addr >= end);
1243 	tlb_start_vma(tlb, vma);
1244 	pgd = pgd_offset(vma->vm_mm, addr);
1245 	do {
1246 		next = pgd_addr_end(addr, end);
1247 		if (pgd_none_or_clear_bad(pgd))
1248 			continue;
1249 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1250 	} while (pgd++, addr = next, addr != end);
1251 	tlb_end_vma(tlb, vma);
1252 }
1253 
1254 
1255 static void unmap_single_vma(struct mmu_gather *tlb,
1256 		struct vm_area_struct *vma, unsigned long start_addr,
1257 		unsigned long end_addr,
1258 		struct zap_details *details)
1259 {
1260 	unsigned long start = max(vma->vm_start, start_addr);
1261 	unsigned long end;
1262 
1263 	if (start >= vma->vm_end)
1264 		return;
1265 	end = min(vma->vm_end, end_addr);
1266 	if (end <= vma->vm_start)
1267 		return;
1268 
1269 	if (vma->vm_file)
1270 		uprobe_munmap(vma, start, end);
1271 
1272 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1273 		untrack_pfn(vma, 0, 0);
1274 
1275 	if (start != end) {
1276 		if (unlikely(is_vm_hugetlb_page(vma))) {
1277 			/*
1278 			 * It is undesirable to test vma->vm_file as it
1279 			 * should be non-null for valid hugetlb area.
1280 			 * However, vm_file will be NULL in the error
1281 			 * cleanup path of mmap_region. When
1282 			 * hugetlbfs ->mmap method fails,
1283 			 * mmap_region() nullifies vma->vm_file
1284 			 * before calling this function to clean up.
1285 			 * Since no pte has actually been setup, it is
1286 			 * safe to do nothing in this case.
1287 			 */
1288 			if (vma->vm_file) {
1289 				i_mmap_lock_write(vma->vm_file->f_mapping);
1290 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1291 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1292 			}
1293 		} else
1294 			unmap_page_range(tlb, vma, start, end, details);
1295 	}
1296 }
1297 
1298 /**
1299  * unmap_vmas - unmap a range of memory covered by a list of vma's
1300  * @tlb: address of the caller's struct mmu_gather
1301  * @vma: the starting vma
1302  * @start_addr: virtual address at which to start unmapping
1303  * @end_addr: virtual address at which to end unmapping
1304  *
1305  * Unmap all pages in the vma list.
1306  *
1307  * Only addresses between `start' and `end' will be unmapped.
1308  *
1309  * The VMA list must be sorted in ascending virtual address order.
1310  *
1311  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312  * range after unmap_vmas() returns.  So the only responsibility here is to
1313  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314  * drops the lock and schedules.
1315  */
1316 void unmap_vmas(struct mmu_gather *tlb,
1317 		struct vm_area_struct *vma, unsigned long start_addr,
1318 		unsigned long end_addr)
1319 {
1320 	struct mm_struct *mm = vma->vm_mm;
1321 
1322 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1323 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1324 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1325 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1326 }
1327 
1328 /**
1329  * zap_page_range - remove user pages in a given range
1330  * @vma: vm_area_struct holding the applicable pages
1331  * @start: starting address of pages to zap
1332  * @size: number of bytes to zap
1333  * @details: details of shared cache invalidation
1334  *
1335  * Caller must protect the VMA list
1336  */
1337 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1338 		unsigned long size, struct zap_details *details)
1339 {
1340 	struct mm_struct *mm = vma->vm_mm;
1341 	struct mmu_gather tlb;
1342 	unsigned long end = start + size;
1343 
1344 	lru_add_drain();
1345 	tlb_gather_mmu(&tlb, mm, start, end);
1346 	update_hiwater_rss(mm);
1347 	mmu_notifier_invalidate_range_start(mm, start, end);
1348 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1349 		unmap_single_vma(&tlb, vma, start, end, details);
1350 	mmu_notifier_invalidate_range_end(mm, start, end);
1351 	tlb_finish_mmu(&tlb, start, end);
1352 }
1353 
1354 /**
1355  * zap_page_range_single - remove user pages in a given range
1356  * @vma: vm_area_struct holding the applicable pages
1357  * @address: starting address of pages to zap
1358  * @size: number of bytes to zap
1359  * @details: details of shared cache invalidation
1360  *
1361  * The range must fit into one VMA.
1362  */
1363 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1364 		unsigned long size, struct zap_details *details)
1365 {
1366 	struct mm_struct *mm = vma->vm_mm;
1367 	struct mmu_gather tlb;
1368 	unsigned long end = address + size;
1369 
1370 	lru_add_drain();
1371 	tlb_gather_mmu(&tlb, mm, address, end);
1372 	update_hiwater_rss(mm);
1373 	mmu_notifier_invalidate_range_start(mm, address, end);
1374 	unmap_single_vma(&tlb, vma, address, end, details);
1375 	mmu_notifier_invalidate_range_end(mm, address, end);
1376 	tlb_finish_mmu(&tlb, address, end);
1377 }
1378 
1379 /**
1380  * zap_vma_ptes - remove ptes mapping the vma
1381  * @vma: vm_area_struct holding ptes to be zapped
1382  * @address: starting address of pages to zap
1383  * @size: number of bytes to zap
1384  *
1385  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1386  *
1387  * The entire address range must be fully contained within the vma.
1388  *
1389  * Returns 0 if successful.
1390  */
1391 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1392 		unsigned long size)
1393 {
1394 	if (address < vma->vm_start || address + size > vma->vm_end ||
1395 	    		!(vma->vm_flags & VM_PFNMAP))
1396 		return -1;
1397 	zap_page_range_single(vma, address, size, NULL);
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1401 
1402 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1403 			spinlock_t **ptl)
1404 {
1405 	pgd_t * pgd = pgd_offset(mm, addr);
1406 	pud_t * pud = pud_alloc(mm, pgd, addr);
1407 	if (pud) {
1408 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1409 		if (pmd) {
1410 			VM_BUG_ON(pmd_trans_huge(*pmd));
1411 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1412 		}
1413 	}
1414 	return NULL;
1415 }
1416 
1417 /*
1418  * This is the old fallback for page remapping.
1419  *
1420  * For historical reasons, it only allows reserved pages. Only
1421  * old drivers should use this, and they needed to mark their
1422  * pages reserved for the old functions anyway.
1423  */
1424 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1425 			struct page *page, pgprot_t prot)
1426 {
1427 	struct mm_struct *mm = vma->vm_mm;
1428 	int retval;
1429 	pte_t *pte;
1430 	spinlock_t *ptl;
1431 
1432 	retval = -EINVAL;
1433 	if (PageAnon(page))
1434 		goto out;
1435 	retval = -ENOMEM;
1436 	flush_dcache_page(page);
1437 	pte = get_locked_pte(mm, addr, &ptl);
1438 	if (!pte)
1439 		goto out;
1440 	retval = -EBUSY;
1441 	if (!pte_none(*pte))
1442 		goto out_unlock;
1443 
1444 	/* Ok, finally just insert the thing.. */
1445 	get_page(page);
1446 	inc_mm_counter_fast(mm, mm_counter_file(page));
1447 	page_add_file_rmap(page);
1448 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1449 
1450 	retval = 0;
1451 	pte_unmap_unlock(pte, ptl);
1452 	return retval;
1453 out_unlock:
1454 	pte_unmap_unlock(pte, ptl);
1455 out:
1456 	return retval;
1457 }
1458 
1459 /**
1460  * vm_insert_page - insert single page into user vma
1461  * @vma: user vma to map to
1462  * @addr: target user address of this page
1463  * @page: source kernel page
1464  *
1465  * This allows drivers to insert individual pages they've allocated
1466  * into a user vma.
1467  *
1468  * The page has to be a nice clean _individual_ kernel allocation.
1469  * If you allocate a compound page, you need to have marked it as
1470  * such (__GFP_COMP), or manually just split the page up yourself
1471  * (see split_page()).
1472  *
1473  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1474  * took an arbitrary page protection parameter. This doesn't allow
1475  * that. Your vma protection will have to be set up correctly, which
1476  * means that if you want a shared writable mapping, you'd better
1477  * ask for a shared writable mapping!
1478  *
1479  * The page does not need to be reserved.
1480  *
1481  * Usually this function is called from f_op->mmap() handler
1482  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1483  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1484  * function from other places, for example from page-fault handler.
1485  */
1486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1487 			struct page *page)
1488 {
1489 	if (addr < vma->vm_start || addr >= vma->vm_end)
1490 		return -EFAULT;
1491 	if (!page_count(page))
1492 		return -EINVAL;
1493 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1494 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1495 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1496 		vma->vm_flags |= VM_MIXEDMAP;
1497 	}
1498 	return insert_page(vma, addr, page, vma->vm_page_prot);
1499 }
1500 EXPORT_SYMBOL(vm_insert_page);
1501 
1502 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1503 			pfn_t pfn, pgprot_t prot)
1504 {
1505 	struct mm_struct *mm = vma->vm_mm;
1506 	int retval;
1507 	pte_t *pte, entry;
1508 	spinlock_t *ptl;
1509 
1510 	retval = -ENOMEM;
1511 	pte = get_locked_pte(mm, addr, &ptl);
1512 	if (!pte)
1513 		goto out;
1514 	retval = -EBUSY;
1515 	if (!pte_none(*pte))
1516 		goto out_unlock;
1517 
1518 	/* Ok, finally just insert the thing.. */
1519 	if (pfn_t_devmap(pfn))
1520 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1521 	else
1522 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1523 	set_pte_at(mm, addr, pte, entry);
1524 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1525 
1526 	retval = 0;
1527 out_unlock:
1528 	pte_unmap_unlock(pte, ptl);
1529 out:
1530 	return retval;
1531 }
1532 
1533 /**
1534  * vm_insert_pfn - insert single pfn into user vma
1535  * @vma: user vma to map to
1536  * @addr: target user address of this page
1537  * @pfn: source kernel pfn
1538  *
1539  * Similar to vm_insert_page, this allows drivers to insert individual pages
1540  * they've allocated into a user vma. Same comments apply.
1541  *
1542  * This function should only be called from a vm_ops->fault handler, and
1543  * in that case the handler should return NULL.
1544  *
1545  * vma cannot be a COW mapping.
1546  *
1547  * As this is called only for pages that do not currently exist, we
1548  * do not need to flush old virtual caches or the TLB.
1549  */
1550 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1551 			unsigned long pfn)
1552 {
1553 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1554 }
1555 EXPORT_SYMBOL(vm_insert_pfn);
1556 
1557 /**
1558  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1559  * @vma: user vma to map to
1560  * @addr: target user address of this page
1561  * @pfn: source kernel pfn
1562  * @pgprot: pgprot flags for the inserted page
1563  *
1564  * This is exactly like vm_insert_pfn, except that it allows drivers to
1565  * to override pgprot on a per-page basis.
1566  *
1567  * This only makes sense for IO mappings, and it makes no sense for
1568  * cow mappings.  In general, using multiple vmas is preferable;
1569  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1570  * impractical.
1571  */
1572 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1573 			unsigned long pfn, pgprot_t pgprot)
1574 {
1575 	int ret;
1576 	/*
1577 	 * Technically, architectures with pte_special can avoid all these
1578 	 * restrictions (same for remap_pfn_range).  However we would like
1579 	 * consistency in testing and feature parity among all, so we should
1580 	 * try to keep these invariants in place for everybody.
1581 	 */
1582 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1583 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1584 						(VM_PFNMAP|VM_MIXEDMAP));
1585 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1586 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1587 
1588 	if (addr < vma->vm_start || addr >= vma->vm_end)
1589 		return -EFAULT;
1590 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1591 		return -EINVAL;
1592 
1593 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1594 
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL(vm_insert_pfn_prot);
1598 
1599 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1600 			pfn_t pfn)
1601 {
1602 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1603 
1604 	if (addr < vma->vm_start || addr >= vma->vm_end)
1605 		return -EFAULT;
1606 
1607 	/*
1608 	 * If we don't have pte special, then we have to use the pfn_valid()
1609 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1610 	 * refcount the page if pfn_valid is true (hence insert_page rather
1611 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1612 	 * without pte special, it would there be refcounted as a normal page.
1613 	 */
1614 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1615 		struct page *page;
1616 
1617 		/*
1618 		 * At this point we are committed to insert_page()
1619 		 * regardless of whether the caller specified flags that
1620 		 * result in pfn_t_has_page() == false.
1621 		 */
1622 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1623 		return insert_page(vma, addr, page, vma->vm_page_prot);
1624 	}
1625 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1626 }
1627 EXPORT_SYMBOL(vm_insert_mixed);
1628 
1629 /*
1630  * maps a range of physical memory into the requested pages. the old
1631  * mappings are removed. any references to nonexistent pages results
1632  * in null mappings (currently treated as "copy-on-access")
1633  */
1634 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1635 			unsigned long addr, unsigned long end,
1636 			unsigned long pfn, pgprot_t prot)
1637 {
1638 	pte_t *pte;
1639 	spinlock_t *ptl;
1640 
1641 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1642 	if (!pte)
1643 		return -ENOMEM;
1644 	arch_enter_lazy_mmu_mode();
1645 	do {
1646 		BUG_ON(!pte_none(*pte));
1647 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1648 		pfn++;
1649 	} while (pte++, addr += PAGE_SIZE, addr != end);
1650 	arch_leave_lazy_mmu_mode();
1651 	pte_unmap_unlock(pte - 1, ptl);
1652 	return 0;
1653 }
1654 
1655 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1656 			unsigned long addr, unsigned long end,
1657 			unsigned long pfn, pgprot_t prot)
1658 {
1659 	pmd_t *pmd;
1660 	unsigned long next;
1661 
1662 	pfn -= addr >> PAGE_SHIFT;
1663 	pmd = pmd_alloc(mm, pud, addr);
1664 	if (!pmd)
1665 		return -ENOMEM;
1666 	VM_BUG_ON(pmd_trans_huge(*pmd));
1667 	do {
1668 		next = pmd_addr_end(addr, end);
1669 		if (remap_pte_range(mm, pmd, addr, next,
1670 				pfn + (addr >> PAGE_SHIFT), prot))
1671 			return -ENOMEM;
1672 	} while (pmd++, addr = next, addr != end);
1673 	return 0;
1674 }
1675 
1676 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1677 			unsigned long addr, unsigned long end,
1678 			unsigned long pfn, pgprot_t prot)
1679 {
1680 	pud_t *pud;
1681 	unsigned long next;
1682 
1683 	pfn -= addr >> PAGE_SHIFT;
1684 	pud = pud_alloc(mm, pgd, addr);
1685 	if (!pud)
1686 		return -ENOMEM;
1687 	do {
1688 		next = pud_addr_end(addr, end);
1689 		if (remap_pmd_range(mm, pud, addr, next,
1690 				pfn + (addr >> PAGE_SHIFT), prot))
1691 			return -ENOMEM;
1692 	} while (pud++, addr = next, addr != end);
1693 	return 0;
1694 }
1695 
1696 /**
1697  * remap_pfn_range - remap kernel memory to userspace
1698  * @vma: user vma to map to
1699  * @addr: target user address to start at
1700  * @pfn: physical address of kernel memory
1701  * @size: size of map area
1702  * @prot: page protection flags for this mapping
1703  *
1704  *  Note: this is only safe if the mm semaphore is held when called.
1705  */
1706 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1707 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1708 {
1709 	pgd_t *pgd;
1710 	unsigned long next;
1711 	unsigned long end = addr + PAGE_ALIGN(size);
1712 	struct mm_struct *mm = vma->vm_mm;
1713 	int err;
1714 
1715 	/*
1716 	 * Physically remapped pages are special. Tell the
1717 	 * rest of the world about it:
1718 	 *   VM_IO tells people not to look at these pages
1719 	 *	(accesses can have side effects).
1720 	 *   VM_PFNMAP tells the core MM that the base pages are just
1721 	 *	raw PFN mappings, and do not have a "struct page" associated
1722 	 *	with them.
1723 	 *   VM_DONTEXPAND
1724 	 *      Disable vma merging and expanding with mremap().
1725 	 *   VM_DONTDUMP
1726 	 *      Omit vma from core dump, even when VM_IO turned off.
1727 	 *
1728 	 * There's a horrible special case to handle copy-on-write
1729 	 * behaviour that some programs depend on. We mark the "original"
1730 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1731 	 * See vm_normal_page() for details.
1732 	 */
1733 	if (is_cow_mapping(vma->vm_flags)) {
1734 		if (addr != vma->vm_start || end != vma->vm_end)
1735 			return -EINVAL;
1736 		vma->vm_pgoff = pfn;
1737 	}
1738 
1739 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1740 	if (err)
1741 		return -EINVAL;
1742 
1743 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1744 
1745 	BUG_ON(addr >= end);
1746 	pfn -= addr >> PAGE_SHIFT;
1747 	pgd = pgd_offset(mm, addr);
1748 	flush_cache_range(vma, addr, end);
1749 	do {
1750 		next = pgd_addr_end(addr, end);
1751 		err = remap_pud_range(mm, pgd, addr, next,
1752 				pfn + (addr >> PAGE_SHIFT), prot);
1753 		if (err)
1754 			break;
1755 	} while (pgd++, addr = next, addr != end);
1756 
1757 	if (err)
1758 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1759 
1760 	return err;
1761 }
1762 EXPORT_SYMBOL(remap_pfn_range);
1763 
1764 /**
1765  * vm_iomap_memory - remap memory to userspace
1766  * @vma: user vma to map to
1767  * @start: start of area
1768  * @len: size of area
1769  *
1770  * This is a simplified io_remap_pfn_range() for common driver use. The
1771  * driver just needs to give us the physical memory range to be mapped,
1772  * we'll figure out the rest from the vma information.
1773  *
1774  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1775  * whatever write-combining details or similar.
1776  */
1777 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1778 {
1779 	unsigned long vm_len, pfn, pages;
1780 
1781 	/* Check that the physical memory area passed in looks valid */
1782 	if (start + len < start)
1783 		return -EINVAL;
1784 	/*
1785 	 * You *really* shouldn't map things that aren't page-aligned,
1786 	 * but we've historically allowed it because IO memory might
1787 	 * just have smaller alignment.
1788 	 */
1789 	len += start & ~PAGE_MASK;
1790 	pfn = start >> PAGE_SHIFT;
1791 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1792 	if (pfn + pages < pfn)
1793 		return -EINVAL;
1794 
1795 	/* We start the mapping 'vm_pgoff' pages into the area */
1796 	if (vma->vm_pgoff > pages)
1797 		return -EINVAL;
1798 	pfn += vma->vm_pgoff;
1799 	pages -= vma->vm_pgoff;
1800 
1801 	/* Can we fit all of the mapping? */
1802 	vm_len = vma->vm_end - vma->vm_start;
1803 	if (vm_len >> PAGE_SHIFT > pages)
1804 		return -EINVAL;
1805 
1806 	/* Ok, let it rip */
1807 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1808 }
1809 EXPORT_SYMBOL(vm_iomap_memory);
1810 
1811 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1812 				     unsigned long addr, unsigned long end,
1813 				     pte_fn_t fn, void *data)
1814 {
1815 	pte_t *pte;
1816 	int err;
1817 	pgtable_t token;
1818 	spinlock_t *uninitialized_var(ptl);
1819 
1820 	pte = (mm == &init_mm) ?
1821 		pte_alloc_kernel(pmd, addr) :
1822 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1823 	if (!pte)
1824 		return -ENOMEM;
1825 
1826 	BUG_ON(pmd_huge(*pmd));
1827 
1828 	arch_enter_lazy_mmu_mode();
1829 
1830 	token = pmd_pgtable(*pmd);
1831 
1832 	do {
1833 		err = fn(pte++, token, addr, data);
1834 		if (err)
1835 			break;
1836 	} while (addr += PAGE_SIZE, addr != end);
1837 
1838 	arch_leave_lazy_mmu_mode();
1839 
1840 	if (mm != &init_mm)
1841 		pte_unmap_unlock(pte-1, ptl);
1842 	return err;
1843 }
1844 
1845 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1846 				     unsigned long addr, unsigned long end,
1847 				     pte_fn_t fn, void *data)
1848 {
1849 	pmd_t *pmd;
1850 	unsigned long next;
1851 	int err;
1852 
1853 	BUG_ON(pud_huge(*pud));
1854 
1855 	pmd = pmd_alloc(mm, pud, addr);
1856 	if (!pmd)
1857 		return -ENOMEM;
1858 	do {
1859 		next = pmd_addr_end(addr, end);
1860 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1861 		if (err)
1862 			break;
1863 	} while (pmd++, addr = next, addr != end);
1864 	return err;
1865 }
1866 
1867 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1868 				     unsigned long addr, unsigned long end,
1869 				     pte_fn_t fn, void *data)
1870 {
1871 	pud_t *pud;
1872 	unsigned long next;
1873 	int err;
1874 
1875 	pud = pud_alloc(mm, pgd, addr);
1876 	if (!pud)
1877 		return -ENOMEM;
1878 	do {
1879 		next = pud_addr_end(addr, end);
1880 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1881 		if (err)
1882 			break;
1883 	} while (pud++, addr = next, addr != end);
1884 	return err;
1885 }
1886 
1887 /*
1888  * Scan a region of virtual memory, filling in page tables as necessary
1889  * and calling a provided function on each leaf page table.
1890  */
1891 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1892 			unsigned long size, pte_fn_t fn, void *data)
1893 {
1894 	pgd_t *pgd;
1895 	unsigned long next;
1896 	unsigned long end = addr + size;
1897 	int err;
1898 
1899 	if (WARN_ON(addr >= end))
1900 		return -EINVAL;
1901 
1902 	pgd = pgd_offset(mm, addr);
1903 	do {
1904 		next = pgd_addr_end(addr, end);
1905 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1906 		if (err)
1907 			break;
1908 	} while (pgd++, addr = next, addr != end);
1909 
1910 	return err;
1911 }
1912 EXPORT_SYMBOL_GPL(apply_to_page_range);
1913 
1914 /*
1915  * handle_pte_fault chooses page fault handler according to an entry which was
1916  * read non-atomically.  Before making any commitment, on those architectures
1917  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1918  * parts, do_swap_page must check under lock before unmapping the pte and
1919  * proceeding (but do_wp_page is only called after already making such a check;
1920  * and do_anonymous_page can safely check later on).
1921  */
1922 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1923 				pte_t *page_table, pte_t orig_pte)
1924 {
1925 	int same = 1;
1926 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1927 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1928 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1929 		spin_lock(ptl);
1930 		same = pte_same(*page_table, orig_pte);
1931 		spin_unlock(ptl);
1932 	}
1933 #endif
1934 	pte_unmap(page_table);
1935 	return same;
1936 }
1937 
1938 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1939 {
1940 	debug_dma_assert_idle(src);
1941 
1942 	/*
1943 	 * If the source page was a PFN mapping, we don't have
1944 	 * a "struct page" for it. We do a best-effort copy by
1945 	 * just copying from the original user address. If that
1946 	 * fails, we just zero-fill it. Live with it.
1947 	 */
1948 	if (unlikely(!src)) {
1949 		void *kaddr = kmap_atomic(dst);
1950 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1951 
1952 		/*
1953 		 * This really shouldn't fail, because the page is there
1954 		 * in the page tables. But it might just be unreadable,
1955 		 * in which case we just give up and fill the result with
1956 		 * zeroes.
1957 		 */
1958 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1959 			clear_page(kaddr);
1960 		kunmap_atomic(kaddr);
1961 		flush_dcache_page(dst);
1962 	} else
1963 		copy_user_highpage(dst, src, va, vma);
1964 }
1965 
1966 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1967 {
1968 	struct file *vm_file = vma->vm_file;
1969 
1970 	if (vm_file)
1971 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1972 
1973 	/*
1974 	 * Special mappings (e.g. VDSO) do not have any file so fake
1975 	 * a default GFP_KERNEL for them.
1976 	 */
1977 	return GFP_KERNEL;
1978 }
1979 
1980 /*
1981  * Notify the address space that the page is about to become writable so that
1982  * it can prohibit this or wait for the page to get into an appropriate state.
1983  *
1984  * We do this without the lock held, so that it can sleep if it needs to.
1985  */
1986 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1987 	       unsigned long address)
1988 {
1989 	struct vm_fault vmf;
1990 	int ret;
1991 
1992 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1993 	vmf.pgoff = page->index;
1994 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1995 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1996 	vmf.page = page;
1997 	vmf.cow_page = NULL;
1998 
1999 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2000 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2001 		return ret;
2002 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2003 		lock_page(page);
2004 		if (!page->mapping) {
2005 			unlock_page(page);
2006 			return 0; /* retry */
2007 		}
2008 		ret |= VM_FAULT_LOCKED;
2009 	} else
2010 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2011 	return ret;
2012 }
2013 
2014 /*
2015  * Handle write page faults for pages that can be reused in the current vma
2016  *
2017  * This can happen either due to the mapping being with the VM_SHARED flag,
2018  * or due to us being the last reference standing to the page. In either
2019  * case, all we need to do here is to mark the page as writable and update
2020  * any related book-keeping.
2021  */
2022 static inline int wp_page_reuse(struct mm_struct *mm,
2023 			struct vm_area_struct *vma, unsigned long address,
2024 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2025 			struct page *page, int page_mkwrite,
2026 			int dirty_shared)
2027 	__releases(ptl)
2028 {
2029 	pte_t entry;
2030 	/*
2031 	 * Clear the pages cpupid information as the existing
2032 	 * information potentially belongs to a now completely
2033 	 * unrelated process.
2034 	 */
2035 	if (page)
2036 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2037 
2038 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2039 	entry = pte_mkyoung(orig_pte);
2040 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2041 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2042 		update_mmu_cache(vma, address, page_table);
2043 	pte_unmap_unlock(page_table, ptl);
2044 
2045 	if (dirty_shared) {
2046 		struct address_space *mapping;
2047 		int dirtied;
2048 
2049 		if (!page_mkwrite)
2050 			lock_page(page);
2051 
2052 		dirtied = set_page_dirty(page);
2053 		VM_BUG_ON_PAGE(PageAnon(page), page);
2054 		mapping = page->mapping;
2055 		unlock_page(page);
2056 		page_cache_release(page);
2057 
2058 		if ((dirtied || page_mkwrite) && mapping) {
2059 			/*
2060 			 * Some device drivers do not set page.mapping
2061 			 * but still dirty their pages
2062 			 */
2063 			balance_dirty_pages_ratelimited(mapping);
2064 		}
2065 
2066 		if (!page_mkwrite)
2067 			file_update_time(vma->vm_file);
2068 	}
2069 
2070 	return VM_FAULT_WRITE;
2071 }
2072 
2073 /*
2074  * Handle the case of a page which we actually need to copy to a new page.
2075  *
2076  * Called with mmap_sem locked and the old page referenced, but
2077  * without the ptl held.
2078  *
2079  * High level logic flow:
2080  *
2081  * - Allocate a page, copy the content of the old page to the new one.
2082  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2083  * - Take the PTL. If the pte changed, bail out and release the allocated page
2084  * - If the pte is still the way we remember it, update the page table and all
2085  *   relevant references. This includes dropping the reference the page-table
2086  *   held to the old page, as well as updating the rmap.
2087  * - In any case, unlock the PTL and drop the reference we took to the old page.
2088  */
2089 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2090 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2091 			pte_t orig_pte, struct page *old_page)
2092 {
2093 	struct page *new_page = NULL;
2094 	spinlock_t *ptl = NULL;
2095 	pte_t entry;
2096 	int page_copied = 0;
2097 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2098 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2099 	struct mem_cgroup *memcg;
2100 
2101 	if (unlikely(anon_vma_prepare(vma)))
2102 		goto oom;
2103 
2104 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2105 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2106 		if (!new_page)
2107 			goto oom;
2108 	} else {
2109 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2110 		if (!new_page)
2111 			goto oom;
2112 		cow_user_page(new_page, old_page, address, vma);
2113 	}
2114 
2115 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2116 		goto oom_free_new;
2117 
2118 	__SetPageUptodate(new_page);
2119 
2120 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2121 
2122 	/*
2123 	 * Re-check the pte - we dropped the lock
2124 	 */
2125 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2126 	if (likely(pte_same(*page_table, orig_pte))) {
2127 		if (old_page) {
2128 			if (!PageAnon(old_page)) {
2129 				dec_mm_counter_fast(mm,
2130 						mm_counter_file(old_page));
2131 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2132 			}
2133 		} else {
2134 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2135 		}
2136 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2137 		entry = mk_pte(new_page, vma->vm_page_prot);
2138 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2139 		/*
2140 		 * Clear the pte entry and flush it first, before updating the
2141 		 * pte with the new entry. This will avoid a race condition
2142 		 * seen in the presence of one thread doing SMC and another
2143 		 * thread doing COW.
2144 		 */
2145 		ptep_clear_flush_notify(vma, address, page_table);
2146 		page_add_new_anon_rmap(new_page, vma, address, false);
2147 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2148 		lru_cache_add_active_or_unevictable(new_page, vma);
2149 		/*
2150 		 * We call the notify macro here because, when using secondary
2151 		 * mmu page tables (such as kvm shadow page tables), we want the
2152 		 * new page to be mapped directly into the secondary page table.
2153 		 */
2154 		set_pte_at_notify(mm, address, page_table, entry);
2155 		update_mmu_cache(vma, address, page_table);
2156 		if (old_page) {
2157 			/*
2158 			 * Only after switching the pte to the new page may
2159 			 * we remove the mapcount here. Otherwise another
2160 			 * process may come and find the rmap count decremented
2161 			 * before the pte is switched to the new page, and
2162 			 * "reuse" the old page writing into it while our pte
2163 			 * here still points into it and can be read by other
2164 			 * threads.
2165 			 *
2166 			 * The critical issue is to order this
2167 			 * page_remove_rmap with the ptp_clear_flush above.
2168 			 * Those stores are ordered by (if nothing else,)
2169 			 * the barrier present in the atomic_add_negative
2170 			 * in page_remove_rmap.
2171 			 *
2172 			 * Then the TLB flush in ptep_clear_flush ensures that
2173 			 * no process can access the old page before the
2174 			 * decremented mapcount is visible. And the old page
2175 			 * cannot be reused until after the decremented
2176 			 * mapcount is visible. So transitively, TLBs to
2177 			 * old page will be flushed before it can be reused.
2178 			 */
2179 			page_remove_rmap(old_page, false);
2180 		}
2181 
2182 		/* Free the old page.. */
2183 		new_page = old_page;
2184 		page_copied = 1;
2185 	} else {
2186 		mem_cgroup_cancel_charge(new_page, memcg, false);
2187 	}
2188 
2189 	if (new_page)
2190 		page_cache_release(new_page);
2191 
2192 	pte_unmap_unlock(page_table, ptl);
2193 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2194 	if (old_page) {
2195 		/*
2196 		 * Don't let another task, with possibly unlocked vma,
2197 		 * keep the mlocked page.
2198 		 */
2199 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2200 			lock_page(old_page);	/* LRU manipulation */
2201 			if (PageMlocked(old_page))
2202 				munlock_vma_page(old_page);
2203 			unlock_page(old_page);
2204 		}
2205 		page_cache_release(old_page);
2206 	}
2207 	return page_copied ? VM_FAULT_WRITE : 0;
2208 oom_free_new:
2209 	page_cache_release(new_page);
2210 oom:
2211 	if (old_page)
2212 		page_cache_release(old_page);
2213 	return VM_FAULT_OOM;
2214 }
2215 
2216 /*
2217  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2218  * mapping
2219  */
2220 static int wp_pfn_shared(struct mm_struct *mm,
2221 			struct vm_area_struct *vma, unsigned long address,
2222 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2223 			pmd_t *pmd)
2224 {
2225 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2226 		struct vm_fault vmf = {
2227 			.page = NULL,
2228 			.pgoff = linear_page_index(vma, address),
2229 			.virtual_address = (void __user *)(address & PAGE_MASK),
2230 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2231 		};
2232 		int ret;
2233 
2234 		pte_unmap_unlock(page_table, ptl);
2235 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2236 		if (ret & VM_FAULT_ERROR)
2237 			return ret;
2238 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2239 		/*
2240 		 * We might have raced with another page fault while we
2241 		 * released the pte_offset_map_lock.
2242 		 */
2243 		if (!pte_same(*page_table, orig_pte)) {
2244 			pte_unmap_unlock(page_table, ptl);
2245 			return 0;
2246 		}
2247 	}
2248 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2249 			     NULL, 0, 0);
2250 }
2251 
2252 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2253 			  unsigned long address, pte_t *page_table,
2254 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2255 			  struct page *old_page)
2256 	__releases(ptl)
2257 {
2258 	int page_mkwrite = 0;
2259 
2260 	page_cache_get(old_page);
2261 
2262 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2263 		int tmp;
2264 
2265 		pte_unmap_unlock(page_table, ptl);
2266 		tmp = do_page_mkwrite(vma, old_page, address);
2267 		if (unlikely(!tmp || (tmp &
2268 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2269 			page_cache_release(old_page);
2270 			return tmp;
2271 		}
2272 		/*
2273 		 * Since we dropped the lock we need to revalidate
2274 		 * the PTE as someone else may have changed it.  If
2275 		 * they did, we just return, as we can count on the
2276 		 * MMU to tell us if they didn't also make it writable.
2277 		 */
2278 		page_table = pte_offset_map_lock(mm, pmd, address,
2279 						 &ptl);
2280 		if (!pte_same(*page_table, orig_pte)) {
2281 			unlock_page(old_page);
2282 			pte_unmap_unlock(page_table, ptl);
2283 			page_cache_release(old_page);
2284 			return 0;
2285 		}
2286 		page_mkwrite = 1;
2287 	}
2288 
2289 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2290 			     orig_pte, old_page, page_mkwrite, 1);
2291 }
2292 
2293 /*
2294  * This routine handles present pages, when users try to write
2295  * to a shared page. It is done by copying the page to a new address
2296  * and decrementing the shared-page counter for the old page.
2297  *
2298  * Note that this routine assumes that the protection checks have been
2299  * done by the caller (the low-level page fault routine in most cases).
2300  * Thus we can safely just mark it writable once we've done any necessary
2301  * COW.
2302  *
2303  * We also mark the page dirty at this point even though the page will
2304  * change only once the write actually happens. This avoids a few races,
2305  * and potentially makes it more efficient.
2306  *
2307  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2308  * but allow concurrent faults), with pte both mapped and locked.
2309  * We return with mmap_sem still held, but pte unmapped and unlocked.
2310  */
2311 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2312 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2313 		spinlock_t *ptl, pte_t orig_pte)
2314 	__releases(ptl)
2315 {
2316 	struct page *old_page;
2317 
2318 	old_page = vm_normal_page(vma, address, orig_pte);
2319 	if (!old_page) {
2320 		/*
2321 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2322 		 * VM_PFNMAP VMA.
2323 		 *
2324 		 * We should not cow pages in a shared writeable mapping.
2325 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2326 		 */
2327 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2328 				     (VM_WRITE|VM_SHARED))
2329 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2330 					     orig_pte, pmd);
2331 
2332 		pte_unmap_unlock(page_table, ptl);
2333 		return wp_page_copy(mm, vma, address, page_table, pmd,
2334 				    orig_pte, old_page);
2335 	}
2336 
2337 	/*
2338 	 * Take out anonymous pages first, anonymous shared vmas are
2339 	 * not dirty accountable.
2340 	 */
2341 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2342 		if (!trylock_page(old_page)) {
2343 			page_cache_get(old_page);
2344 			pte_unmap_unlock(page_table, ptl);
2345 			lock_page(old_page);
2346 			page_table = pte_offset_map_lock(mm, pmd, address,
2347 							 &ptl);
2348 			if (!pte_same(*page_table, orig_pte)) {
2349 				unlock_page(old_page);
2350 				pte_unmap_unlock(page_table, ptl);
2351 				page_cache_release(old_page);
2352 				return 0;
2353 			}
2354 			page_cache_release(old_page);
2355 		}
2356 		if (reuse_swap_page(old_page)) {
2357 			/*
2358 			 * The page is all ours.  Move it to our anon_vma so
2359 			 * the rmap code will not search our parent or siblings.
2360 			 * Protected against the rmap code by the page lock.
2361 			 */
2362 			page_move_anon_rmap(old_page, vma, address);
2363 			unlock_page(old_page);
2364 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2365 					     orig_pte, old_page, 0, 0);
2366 		}
2367 		unlock_page(old_page);
2368 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2369 					(VM_WRITE|VM_SHARED))) {
2370 		return wp_page_shared(mm, vma, address, page_table, pmd,
2371 				      ptl, orig_pte, old_page);
2372 	}
2373 
2374 	/*
2375 	 * Ok, we need to copy. Oh, well..
2376 	 */
2377 	page_cache_get(old_page);
2378 
2379 	pte_unmap_unlock(page_table, ptl);
2380 	return wp_page_copy(mm, vma, address, page_table, pmd,
2381 			    orig_pte, old_page);
2382 }
2383 
2384 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2385 		unsigned long start_addr, unsigned long end_addr,
2386 		struct zap_details *details)
2387 {
2388 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2389 }
2390 
2391 static inline void unmap_mapping_range_tree(struct rb_root *root,
2392 					    struct zap_details *details)
2393 {
2394 	struct vm_area_struct *vma;
2395 	pgoff_t vba, vea, zba, zea;
2396 
2397 	vma_interval_tree_foreach(vma, root,
2398 			details->first_index, details->last_index) {
2399 
2400 		vba = vma->vm_pgoff;
2401 		vea = vba + vma_pages(vma) - 1;
2402 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2403 		zba = details->first_index;
2404 		if (zba < vba)
2405 			zba = vba;
2406 		zea = details->last_index;
2407 		if (zea > vea)
2408 			zea = vea;
2409 
2410 		unmap_mapping_range_vma(vma,
2411 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2412 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2413 				details);
2414 	}
2415 }
2416 
2417 /**
2418  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2419  * address_space corresponding to the specified page range in the underlying
2420  * file.
2421  *
2422  * @mapping: the address space containing mmaps to be unmapped.
2423  * @holebegin: byte in first page to unmap, relative to the start of
2424  * the underlying file.  This will be rounded down to a PAGE_SIZE
2425  * boundary.  Note that this is different from truncate_pagecache(), which
2426  * must keep the partial page.  In contrast, we must get rid of
2427  * partial pages.
2428  * @holelen: size of prospective hole in bytes.  This will be rounded
2429  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2430  * end of the file.
2431  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2432  * but 0 when invalidating pagecache, don't throw away private data.
2433  */
2434 void unmap_mapping_range(struct address_space *mapping,
2435 		loff_t const holebegin, loff_t const holelen, int even_cows)
2436 {
2437 	struct zap_details details;
2438 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2439 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2440 
2441 	/* Check for overflow. */
2442 	if (sizeof(holelen) > sizeof(hlen)) {
2443 		long long holeend =
2444 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2445 		if (holeend & ~(long long)ULONG_MAX)
2446 			hlen = ULONG_MAX - hba + 1;
2447 	}
2448 
2449 	details.check_mapping = even_cows? NULL: mapping;
2450 	details.first_index = hba;
2451 	details.last_index = hba + hlen - 1;
2452 	if (details.last_index < details.first_index)
2453 		details.last_index = ULONG_MAX;
2454 
2455 
2456 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2457 	i_mmap_lock_write(mapping);
2458 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2459 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2460 	i_mmap_unlock_write(mapping);
2461 }
2462 EXPORT_SYMBOL(unmap_mapping_range);
2463 
2464 /*
2465  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2466  * but allow concurrent faults), and pte mapped but not yet locked.
2467  * We return with pte unmapped and unlocked.
2468  *
2469  * We return with the mmap_sem locked or unlocked in the same cases
2470  * as does filemap_fault().
2471  */
2472 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2473 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2474 		unsigned int flags, pte_t orig_pte)
2475 {
2476 	spinlock_t *ptl;
2477 	struct page *page, *swapcache;
2478 	struct mem_cgroup *memcg;
2479 	swp_entry_t entry;
2480 	pte_t pte;
2481 	int locked;
2482 	int exclusive = 0;
2483 	int ret = 0;
2484 
2485 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2486 		goto out;
2487 
2488 	entry = pte_to_swp_entry(orig_pte);
2489 	if (unlikely(non_swap_entry(entry))) {
2490 		if (is_migration_entry(entry)) {
2491 			migration_entry_wait(mm, pmd, address);
2492 		} else if (is_hwpoison_entry(entry)) {
2493 			ret = VM_FAULT_HWPOISON;
2494 		} else {
2495 			print_bad_pte(vma, address, orig_pte, NULL);
2496 			ret = VM_FAULT_SIGBUS;
2497 		}
2498 		goto out;
2499 	}
2500 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2501 	page = lookup_swap_cache(entry);
2502 	if (!page) {
2503 		page = swapin_readahead(entry,
2504 					GFP_HIGHUSER_MOVABLE, vma, address);
2505 		if (!page) {
2506 			/*
2507 			 * Back out if somebody else faulted in this pte
2508 			 * while we released the pte lock.
2509 			 */
2510 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2511 			if (likely(pte_same(*page_table, orig_pte)))
2512 				ret = VM_FAULT_OOM;
2513 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2514 			goto unlock;
2515 		}
2516 
2517 		/* Had to read the page from swap area: Major fault */
2518 		ret = VM_FAULT_MAJOR;
2519 		count_vm_event(PGMAJFAULT);
2520 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2521 	} else if (PageHWPoison(page)) {
2522 		/*
2523 		 * hwpoisoned dirty swapcache pages are kept for killing
2524 		 * owner processes (which may be unknown at hwpoison time)
2525 		 */
2526 		ret = VM_FAULT_HWPOISON;
2527 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2528 		swapcache = page;
2529 		goto out_release;
2530 	}
2531 
2532 	swapcache = page;
2533 	locked = lock_page_or_retry(page, mm, flags);
2534 
2535 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2536 	if (!locked) {
2537 		ret |= VM_FAULT_RETRY;
2538 		goto out_release;
2539 	}
2540 
2541 	/*
2542 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2543 	 * release the swapcache from under us.  The page pin, and pte_same
2544 	 * test below, are not enough to exclude that.  Even if it is still
2545 	 * swapcache, we need to check that the page's swap has not changed.
2546 	 */
2547 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2548 		goto out_page;
2549 
2550 	page = ksm_might_need_to_copy(page, vma, address);
2551 	if (unlikely(!page)) {
2552 		ret = VM_FAULT_OOM;
2553 		page = swapcache;
2554 		goto out_page;
2555 	}
2556 
2557 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2558 		ret = VM_FAULT_OOM;
2559 		goto out_page;
2560 	}
2561 
2562 	/*
2563 	 * Back out if somebody else already faulted in this pte.
2564 	 */
2565 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2566 	if (unlikely(!pte_same(*page_table, orig_pte)))
2567 		goto out_nomap;
2568 
2569 	if (unlikely(!PageUptodate(page))) {
2570 		ret = VM_FAULT_SIGBUS;
2571 		goto out_nomap;
2572 	}
2573 
2574 	/*
2575 	 * The page isn't present yet, go ahead with the fault.
2576 	 *
2577 	 * Be careful about the sequence of operations here.
2578 	 * To get its accounting right, reuse_swap_page() must be called
2579 	 * while the page is counted on swap but not yet in mapcount i.e.
2580 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2581 	 * must be called after the swap_free(), or it will never succeed.
2582 	 */
2583 
2584 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2585 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2586 	pte = mk_pte(page, vma->vm_page_prot);
2587 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2588 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2589 		flags &= ~FAULT_FLAG_WRITE;
2590 		ret |= VM_FAULT_WRITE;
2591 		exclusive = RMAP_EXCLUSIVE;
2592 	}
2593 	flush_icache_page(vma, page);
2594 	if (pte_swp_soft_dirty(orig_pte))
2595 		pte = pte_mksoft_dirty(pte);
2596 	set_pte_at(mm, address, page_table, pte);
2597 	if (page == swapcache) {
2598 		do_page_add_anon_rmap(page, vma, address, exclusive);
2599 		mem_cgroup_commit_charge(page, memcg, true, false);
2600 	} else { /* ksm created a completely new copy */
2601 		page_add_new_anon_rmap(page, vma, address, false);
2602 		mem_cgroup_commit_charge(page, memcg, false, false);
2603 		lru_cache_add_active_or_unevictable(page, vma);
2604 	}
2605 
2606 	swap_free(entry);
2607 	if (mem_cgroup_swap_full(page) ||
2608 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2609 		try_to_free_swap(page);
2610 	unlock_page(page);
2611 	if (page != swapcache) {
2612 		/*
2613 		 * Hold the lock to avoid the swap entry to be reused
2614 		 * until we take the PT lock for the pte_same() check
2615 		 * (to avoid false positives from pte_same). For
2616 		 * further safety release the lock after the swap_free
2617 		 * so that the swap count won't change under a
2618 		 * parallel locked swapcache.
2619 		 */
2620 		unlock_page(swapcache);
2621 		page_cache_release(swapcache);
2622 	}
2623 
2624 	if (flags & FAULT_FLAG_WRITE) {
2625 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2626 		if (ret & VM_FAULT_ERROR)
2627 			ret &= VM_FAULT_ERROR;
2628 		goto out;
2629 	}
2630 
2631 	/* No need to invalidate - it was non-present before */
2632 	update_mmu_cache(vma, address, page_table);
2633 unlock:
2634 	pte_unmap_unlock(page_table, ptl);
2635 out:
2636 	return ret;
2637 out_nomap:
2638 	mem_cgroup_cancel_charge(page, memcg, false);
2639 	pte_unmap_unlock(page_table, ptl);
2640 out_page:
2641 	unlock_page(page);
2642 out_release:
2643 	page_cache_release(page);
2644 	if (page != swapcache) {
2645 		unlock_page(swapcache);
2646 		page_cache_release(swapcache);
2647 	}
2648 	return ret;
2649 }
2650 
2651 /*
2652  * This is like a special single-page "expand_{down|up}wards()",
2653  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2654  * doesn't hit another vma.
2655  */
2656 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2657 {
2658 	address &= PAGE_MASK;
2659 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2660 		struct vm_area_struct *prev = vma->vm_prev;
2661 
2662 		/*
2663 		 * Is there a mapping abutting this one below?
2664 		 *
2665 		 * That's only ok if it's the same stack mapping
2666 		 * that has gotten split..
2667 		 */
2668 		if (prev && prev->vm_end == address)
2669 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2670 
2671 		return expand_downwards(vma, address - PAGE_SIZE);
2672 	}
2673 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2674 		struct vm_area_struct *next = vma->vm_next;
2675 
2676 		/* As VM_GROWSDOWN but s/below/above/ */
2677 		if (next && next->vm_start == address + PAGE_SIZE)
2678 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2679 
2680 		return expand_upwards(vma, address + PAGE_SIZE);
2681 	}
2682 	return 0;
2683 }
2684 
2685 /*
2686  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687  * but allow concurrent faults), and pte mapped but not yet locked.
2688  * We return with mmap_sem still held, but pte unmapped and unlocked.
2689  */
2690 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2691 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2692 		unsigned int flags)
2693 {
2694 	struct mem_cgroup *memcg;
2695 	struct page *page;
2696 	spinlock_t *ptl;
2697 	pte_t entry;
2698 
2699 	pte_unmap(page_table);
2700 
2701 	/* File mapping without ->vm_ops ? */
2702 	if (vma->vm_flags & VM_SHARED)
2703 		return VM_FAULT_SIGBUS;
2704 
2705 	/* Check if we need to add a guard page to the stack */
2706 	if (check_stack_guard_page(vma, address) < 0)
2707 		return VM_FAULT_SIGSEGV;
2708 
2709 	/* Use the zero-page for reads */
2710 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2711 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2712 						vma->vm_page_prot));
2713 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2714 		if (!pte_none(*page_table))
2715 			goto unlock;
2716 		/* Deliver the page fault to userland, check inside PT lock */
2717 		if (userfaultfd_missing(vma)) {
2718 			pte_unmap_unlock(page_table, ptl);
2719 			return handle_userfault(vma, address, flags,
2720 						VM_UFFD_MISSING);
2721 		}
2722 		goto setpte;
2723 	}
2724 
2725 	/* Allocate our own private page. */
2726 	if (unlikely(anon_vma_prepare(vma)))
2727 		goto oom;
2728 	page = alloc_zeroed_user_highpage_movable(vma, address);
2729 	if (!page)
2730 		goto oom;
2731 
2732 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2733 		goto oom_free_page;
2734 
2735 	/*
2736 	 * The memory barrier inside __SetPageUptodate makes sure that
2737 	 * preceeding stores to the page contents become visible before
2738 	 * the set_pte_at() write.
2739 	 */
2740 	__SetPageUptodate(page);
2741 
2742 	entry = mk_pte(page, vma->vm_page_prot);
2743 	if (vma->vm_flags & VM_WRITE)
2744 		entry = pte_mkwrite(pte_mkdirty(entry));
2745 
2746 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2747 	if (!pte_none(*page_table))
2748 		goto release;
2749 
2750 	/* Deliver the page fault to userland, check inside PT lock */
2751 	if (userfaultfd_missing(vma)) {
2752 		pte_unmap_unlock(page_table, ptl);
2753 		mem_cgroup_cancel_charge(page, memcg, false);
2754 		page_cache_release(page);
2755 		return handle_userfault(vma, address, flags,
2756 					VM_UFFD_MISSING);
2757 	}
2758 
2759 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2760 	page_add_new_anon_rmap(page, vma, address, false);
2761 	mem_cgroup_commit_charge(page, memcg, false, false);
2762 	lru_cache_add_active_or_unevictable(page, vma);
2763 setpte:
2764 	set_pte_at(mm, address, page_table, entry);
2765 
2766 	/* No need to invalidate - it was non-present before */
2767 	update_mmu_cache(vma, address, page_table);
2768 unlock:
2769 	pte_unmap_unlock(page_table, ptl);
2770 	return 0;
2771 release:
2772 	mem_cgroup_cancel_charge(page, memcg, false);
2773 	page_cache_release(page);
2774 	goto unlock;
2775 oom_free_page:
2776 	page_cache_release(page);
2777 oom:
2778 	return VM_FAULT_OOM;
2779 }
2780 
2781 /*
2782  * The mmap_sem must have been held on entry, and may have been
2783  * released depending on flags and vma->vm_ops->fault() return value.
2784  * See filemap_fault() and __lock_page_retry().
2785  */
2786 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2787 			pgoff_t pgoff, unsigned int flags,
2788 			struct page *cow_page, struct page **page)
2789 {
2790 	struct vm_fault vmf;
2791 	int ret;
2792 
2793 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2794 	vmf.pgoff = pgoff;
2795 	vmf.flags = flags;
2796 	vmf.page = NULL;
2797 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2798 	vmf.cow_page = cow_page;
2799 
2800 	ret = vma->vm_ops->fault(vma, &vmf);
2801 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2802 		return ret;
2803 	if (!vmf.page)
2804 		goto out;
2805 
2806 	if (unlikely(PageHWPoison(vmf.page))) {
2807 		if (ret & VM_FAULT_LOCKED)
2808 			unlock_page(vmf.page);
2809 		page_cache_release(vmf.page);
2810 		return VM_FAULT_HWPOISON;
2811 	}
2812 
2813 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2814 		lock_page(vmf.page);
2815 	else
2816 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2817 
2818  out:
2819 	*page = vmf.page;
2820 	return ret;
2821 }
2822 
2823 /**
2824  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2825  *
2826  * @vma: virtual memory area
2827  * @address: user virtual address
2828  * @page: page to map
2829  * @pte: pointer to target page table entry
2830  * @write: true, if new entry is writable
2831  * @anon: true, if it's anonymous page
2832  *
2833  * Caller must hold page table lock relevant for @pte.
2834  *
2835  * Target users are page handler itself and implementations of
2836  * vm_ops->map_pages.
2837  */
2838 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2839 		struct page *page, pte_t *pte, bool write, bool anon)
2840 {
2841 	pte_t entry;
2842 
2843 	flush_icache_page(vma, page);
2844 	entry = mk_pte(page, vma->vm_page_prot);
2845 	if (write)
2846 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2847 	if (anon) {
2848 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2849 		page_add_new_anon_rmap(page, vma, address, false);
2850 	} else {
2851 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2852 		page_add_file_rmap(page);
2853 	}
2854 	set_pte_at(vma->vm_mm, address, pte, entry);
2855 
2856 	/* no need to invalidate: a not-present page won't be cached */
2857 	update_mmu_cache(vma, address, pte);
2858 }
2859 
2860 static unsigned long fault_around_bytes __read_mostly =
2861 	rounddown_pow_of_two(65536);
2862 
2863 #ifdef CONFIG_DEBUG_FS
2864 static int fault_around_bytes_get(void *data, u64 *val)
2865 {
2866 	*val = fault_around_bytes;
2867 	return 0;
2868 }
2869 
2870 /*
2871  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2872  * rounded down to nearest page order. It's what do_fault_around() expects to
2873  * see.
2874  */
2875 static int fault_around_bytes_set(void *data, u64 val)
2876 {
2877 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2878 		return -EINVAL;
2879 	if (val > PAGE_SIZE)
2880 		fault_around_bytes = rounddown_pow_of_two(val);
2881 	else
2882 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2883 	return 0;
2884 }
2885 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2886 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2887 
2888 static int __init fault_around_debugfs(void)
2889 {
2890 	void *ret;
2891 
2892 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2893 			&fault_around_bytes_fops);
2894 	if (!ret)
2895 		pr_warn("Failed to create fault_around_bytes in debugfs");
2896 	return 0;
2897 }
2898 late_initcall(fault_around_debugfs);
2899 #endif
2900 
2901 /*
2902  * do_fault_around() tries to map few pages around the fault address. The hope
2903  * is that the pages will be needed soon and this will lower the number of
2904  * faults to handle.
2905  *
2906  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2907  * not ready to be mapped: not up-to-date, locked, etc.
2908  *
2909  * This function is called with the page table lock taken. In the split ptlock
2910  * case the page table lock only protects only those entries which belong to
2911  * the page table corresponding to the fault address.
2912  *
2913  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2914  * only once.
2915  *
2916  * fault_around_pages() defines how many pages we'll try to map.
2917  * do_fault_around() expects it to return a power of two less than or equal to
2918  * PTRS_PER_PTE.
2919  *
2920  * The virtual address of the area that we map is naturally aligned to the
2921  * fault_around_pages() value (and therefore to page order).  This way it's
2922  * easier to guarantee that we don't cross page table boundaries.
2923  */
2924 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2925 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2926 {
2927 	unsigned long start_addr, nr_pages, mask;
2928 	pgoff_t max_pgoff;
2929 	struct vm_fault vmf;
2930 	int off;
2931 
2932 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2933 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2934 
2935 	start_addr = max(address & mask, vma->vm_start);
2936 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2937 	pte -= off;
2938 	pgoff -= off;
2939 
2940 	/*
2941 	 *  max_pgoff is either end of page table or end of vma
2942 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2943 	 */
2944 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2945 		PTRS_PER_PTE - 1;
2946 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2947 			pgoff + nr_pages - 1);
2948 
2949 	/* Check if it makes any sense to call ->map_pages */
2950 	while (!pte_none(*pte)) {
2951 		if (++pgoff > max_pgoff)
2952 			return;
2953 		start_addr += PAGE_SIZE;
2954 		if (start_addr >= vma->vm_end)
2955 			return;
2956 		pte++;
2957 	}
2958 
2959 	vmf.virtual_address = (void __user *) start_addr;
2960 	vmf.pte = pte;
2961 	vmf.pgoff = pgoff;
2962 	vmf.max_pgoff = max_pgoff;
2963 	vmf.flags = flags;
2964 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2965 	vma->vm_ops->map_pages(vma, &vmf);
2966 }
2967 
2968 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2969 		unsigned long address, pmd_t *pmd,
2970 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2971 {
2972 	struct page *fault_page;
2973 	spinlock_t *ptl;
2974 	pte_t *pte;
2975 	int ret = 0;
2976 
2977 	/*
2978 	 * Let's call ->map_pages() first and use ->fault() as fallback
2979 	 * if page by the offset is not ready to be mapped (cold cache or
2980 	 * something).
2981 	 */
2982 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2983 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2984 		do_fault_around(vma, address, pte, pgoff, flags);
2985 		if (!pte_same(*pte, orig_pte))
2986 			goto unlock_out;
2987 		pte_unmap_unlock(pte, ptl);
2988 	}
2989 
2990 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2991 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2992 		return ret;
2993 
2994 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995 	if (unlikely(!pte_same(*pte, orig_pte))) {
2996 		pte_unmap_unlock(pte, ptl);
2997 		unlock_page(fault_page);
2998 		page_cache_release(fault_page);
2999 		return ret;
3000 	}
3001 	do_set_pte(vma, address, fault_page, pte, false, false);
3002 	unlock_page(fault_page);
3003 unlock_out:
3004 	pte_unmap_unlock(pte, ptl);
3005 	return ret;
3006 }
3007 
3008 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 		unsigned long address, pmd_t *pmd,
3010 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011 {
3012 	struct page *fault_page, *new_page;
3013 	struct mem_cgroup *memcg;
3014 	spinlock_t *ptl;
3015 	pte_t *pte;
3016 	int ret;
3017 
3018 	if (unlikely(anon_vma_prepare(vma)))
3019 		return VM_FAULT_OOM;
3020 
3021 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3022 	if (!new_page)
3023 		return VM_FAULT_OOM;
3024 
3025 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3026 		page_cache_release(new_page);
3027 		return VM_FAULT_OOM;
3028 	}
3029 
3030 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3031 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032 		goto uncharge_out;
3033 
3034 	if (fault_page)
3035 		copy_user_highpage(new_page, fault_page, address, vma);
3036 	__SetPageUptodate(new_page);
3037 
3038 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3039 	if (unlikely(!pte_same(*pte, orig_pte))) {
3040 		pte_unmap_unlock(pte, ptl);
3041 		if (fault_page) {
3042 			unlock_page(fault_page);
3043 			page_cache_release(fault_page);
3044 		} else {
3045 			/*
3046 			 * The fault handler has no page to lock, so it holds
3047 			 * i_mmap_lock for read to protect against truncate.
3048 			 */
3049 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3050 		}
3051 		goto uncharge_out;
3052 	}
3053 	do_set_pte(vma, address, new_page, pte, true, true);
3054 	mem_cgroup_commit_charge(new_page, memcg, false, false);
3055 	lru_cache_add_active_or_unevictable(new_page, vma);
3056 	pte_unmap_unlock(pte, ptl);
3057 	if (fault_page) {
3058 		unlock_page(fault_page);
3059 		page_cache_release(fault_page);
3060 	} else {
3061 		/*
3062 		 * The fault handler has no page to lock, so it holds
3063 		 * i_mmap_lock for read to protect against truncate.
3064 		 */
3065 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3066 	}
3067 	return ret;
3068 uncharge_out:
3069 	mem_cgroup_cancel_charge(new_page, memcg, false);
3070 	page_cache_release(new_page);
3071 	return ret;
3072 }
3073 
3074 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3075 		unsigned long address, pmd_t *pmd,
3076 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3077 {
3078 	struct page *fault_page;
3079 	struct address_space *mapping;
3080 	spinlock_t *ptl;
3081 	pte_t *pte;
3082 	int dirtied = 0;
3083 	int ret, tmp;
3084 
3085 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3086 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3087 		return ret;
3088 
3089 	/*
3090 	 * Check if the backing address space wants to know that the page is
3091 	 * about to become writable
3092 	 */
3093 	if (vma->vm_ops->page_mkwrite) {
3094 		unlock_page(fault_page);
3095 		tmp = do_page_mkwrite(vma, fault_page, address);
3096 		if (unlikely(!tmp ||
3097 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3098 			page_cache_release(fault_page);
3099 			return tmp;
3100 		}
3101 	}
3102 
3103 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3104 	if (unlikely(!pte_same(*pte, orig_pte))) {
3105 		pte_unmap_unlock(pte, ptl);
3106 		unlock_page(fault_page);
3107 		page_cache_release(fault_page);
3108 		return ret;
3109 	}
3110 	do_set_pte(vma, address, fault_page, pte, true, false);
3111 	pte_unmap_unlock(pte, ptl);
3112 
3113 	if (set_page_dirty(fault_page))
3114 		dirtied = 1;
3115 	/*
3116 	 * Take a local copy of the address_space - page.mapping may be zeroed
3117 	 * by truncate after unlock_page().   The address_space itself remains
3118 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3119 	 * release semantics to prevent the compiler from undoing this copying.
3120 	 */
3121 	mapping = page_rmapping(fault_page);
3122 	unlock_page(fault_page);
3123 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3124 		/*
3125 		 * Some device drivers do not set page.mapping but still
3126 		 * dirty their pages
3127 		 */
3128 		balance_dirty_pages_ratelimited(mapping);
3129 	}
3130 
3131 	if (!vma->vm_ops->page_mkwrite)
3132 		file_update_time(vma->vm_file);
3133 
3134 	return ret;
3135 }
3136 
3137 /*
3138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3139  * but allow concurrent faults).
3140  * The mmap_sem may have been released depending on flags and our
3141  * return value.  See filemap_fault() and __lock_page_or_retry().
3142  */
3143 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3144 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3145 		unsigned int flags, pte_t orig_pte)
3146 {
3147 	pgoff_t pgoff = linear_page_index(vma, address);
3148 
3149 	pte_unmap(page_table);
3150 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3151 	if (!vma->vm_ops->fault)
3152 		return VM_FAULT_SIGBUS;
3153 	if (!(flags & FAULT_FLAG_WRITE))
3154 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3155 				orig_pte);
3156 	if (!(vma->vm_flags & VM_SHARED))
3157 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3158 				orig_pte);
3159 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3160 }
3161 
3162 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3163 				unsigned long addr, int page_nid,
3164 				int *flags)
3165 {
3166 	get_page(page);
3167 
3168 	count_vm_numa_event(NUMA_HINT_FAULTS);
3169 	if (page_nid == numa_node_id()) {
3170 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3171 		*flags |= TNF_FAULT_LOCAL;
3172 	}
3173 
3174 	return mpol_misplaced(page, vma, addr);
3175 }
3176 
3177 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3178 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3179 {
3180 	struct page *page = NULL;
3181 	spinlock_t *ptl;
3182 	int page_nid = -1;
3183 	int last_cpupid;
3184 	int target_nid;
3185 	bool migrated = false;
3186 	bool was_writable = pte_write(pte);
3187 	int flags = 0;
3188 
3189 	/* A PROT_NONE fault should not end up here */
3190 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3191 
3192 	/*
3193 	* The "pte" at this point cannot be used safely without
3194 	* validation through pte_unmap_same(). It's of NUMA type but
3195 	* the pfn may be screwed if the read is non atomic.
3196 	*
3197 	* We can safely just do a "set_pte_at()", because the old
3198 	* page table entry is not accessible, so there would be no
3199 	* concurrent hardware modifications to the PTE.
3200 	*/
3201 	ptl = pte_lockptr(mm, pmd);
3202 	spin_lock(ptl);
3203 	if (unlikely(!pte_same(*ptep, pte))) {
3204 		pte_unmap_unlock(ptep, ptl);
3205 		goto out;
3206 	}
3207 
3208 	/* Make it present again */
3209 	pte = pte_modify(pte, vma->vm_page_prot);
3210 	pte = pte_mkyoung(pte);
3211 	if (was_writable)
3212 		pte = pte_mkwrite(pte);
3213 	set_pte_at(mm, addr, ptep, pte);
3214 	update_mmu_cache(vma, addr, ptep);
3215 
3216 	page = vm_normal_page(vma, addr, pte);
3217 	if (!page) {
3218 		pte_unmap_unlock(ptep, ptl);
3219 		return 0;
3220 	}
3221 
3222 	/* TODO: handle PTE-mapped THP */
3223 	if (PageCompound(page)) {
3224 		pte_unmap_unlock(ptep, ptl);
3225 		return 0;
3226 	}
3227 
3228 	/*
3229 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3230 	 * much anyway since they can be in shared cache state. This misses
3231 	 * the case where a mapping is writable but the process never writes
3232 	 * to it but pte_write gets cleared during protection updates and
3233 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3234 	 * background writeback, dirty balancing and application behaviour.
3235 	 */
3236 	if (!(vma->vm_flags & VM_WRITE))
3237 		flags |= TNF_NO_GROUP;
3238 
3239 	/*
3240 	 * Flag if the page is shared between multiple address spaces. This
3241 	 * is later used when determining whether to group tasks together
3242 	 */
3243 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3244 		flags |= TNF_SHARED;
3245 
3246 	last_cpupid = page_cpupid_last(page);
3247 	page_nid = page_to_nid(page);
3248 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3249 	pte_unmap_unlock(ptep, ptl);
3250 	if (target_nid == -1) {
3251 		put_page(page);
3252 		goto out;
3253 	}
3254 
3255 	/* Migrate to the requested node */
3256 	migrated = migrate_misplaced_page(page, vma, target_nid);
3257 	if (migrated) {
3258 		page_nid = target_nid;
3259 		flags |= TNF_MIGRATED;
3260 	} else
3261 		flags |= TNF_MIGRATE_FAIL;
3262 
3263 out:
3264 	if (page_nid != -1)
3265 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3266 	return 0;
3267 }
3268 
3269 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3270 			unsigned long address, pmd_t *pmd, unsigned int flags)
3271 {
3272 	if (vma_is_anonymous(vma))
3273 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3274 	if (vma->vm_ops->pmd_fault)
3275 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3276 	return VM_FAULT_FALLBACK;
3277 }
3278 
3279 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3280 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3281 			unsigned int flags)
3282 {
3283 	if (vma_is_anonymous(vma))
3284 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3285 	if (vma->vm_ops->pmd_fault)
3286 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3287 	return VM_FAULT_FALLBACK;
3288 }
3289 
3290 /*
3291  * These routines also need to handle stuff like marking pages dirty
3292  * and/or accessed for architectures that don't do it in hardware (most
3293  * RISC architectures).  The early dirtying is also good on the i386.
3294  *
3295  * There is also a hook called "update_mmu_cache()" that architectures
3296  * with external mmu caches can use to update those (ie the Sparc or
3297  * PowerPC hashed page tables that act as extended TLBs).
3298  *
3299  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3300  * but allow concurrent faults), and pte mapped but not yet locked.
3301  * We return with pte unmapped and unlocked.
3302  *
3303  * The mmap_sem may have been released depending on flags and our
3304  * return value.  See filemap_fault() and __lock_page_or_retry().
3305  */
3306 static int handle_pte_fault(struct mm_struct *mm,
3307 		     struct vm_area_struct *vma, unsigned long address,
3308 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3309 {
3310 	pte_t entry;
3311 	spinlock_t *ptl;
3312 
3313 	/*
3314 	 * some architectures can have larger ptes than wordsize,
3315 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3316 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3317 	 * The code below just needs a consistent view for the ifs and
3318 	 * we later double check anyway with the ptl lock held. So here
3319 	 * a barrier will do.
3320 	 */
3321 	entry = *pte;
3322 	barrier();
3323 	if (!pte_present(entry)) {
3324 		if (pte_none(entry)) {
3325 			if (vma_is_anonymous(vma))
3326 				return do_anonymous_page(mm, vma, address,
3327 							 pte, pmd, flags);
3328 			else
3329 				return do_fault(mm, vma, address, pte, pmd,
3330 						flags, entry);
3331 		}
3332 		return do_swap_page(mm, vma, address,
3333 					pte, pmd, flags, entry);
3334 	}
3335 
3336 	if (pte_protnone(entry))
3337 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3338 
3339 	ptl = pte_lockptr(mm, pmd);
3340 	spin_lock(ptl);
3341 	if (unlikely(!pte_same(*pte, entry)))
3342 		goto unlock;
3343 	if (flags & FAULT_FLAG_WRITE) {
3344 		if (!pte_write(entry))
3345 			return do_wp_page(mm, vma, address,
3346 					pte, pmd, ptl, entry);
3347 		entry = pte_mkdirty(entry);
3348 	}
3349 	entry = pte_mkyoung(entry);
3350 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3351 		update_mmu_cache(vma, address, pte);
3352 	} else {
3353 		/*
3354 		 * This is needed only for protection faults but the arch code
3355 		 * is not yet telling us if this is a protection fault or not.
3356 		 * This still avoids useless tlb flushes for .text page faults
3357 		 * with threads.
3358 		 */
3359 		if (flags & FAULT_FLAG_WRITE)
3360 			flush_tlb_fix_spurious_fault(vma, address);
3361 	}
3362 unlock:
3363 	pte_unmap_unlock(pte, ptl);
3364 	return 0;
3365 }
3366 
3367 /*
3368  * By the time we get here, we already hold the mm semaphore
3369  *
3370  * The mmap_sem may have been released depending on flags and our
3371  * return value.  See filemap_fault() and __lock_page_or_retry().
3372  */
3373 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3374 			     unsigned long address, unsigned int flags)
3375 {
3376 	pgd_t *pgd;
3377 	pud_t *pud;
3378 	pmd_t *pmd;
3379 	pte_t *pte;
3380 
3381 	if (unlikely(is_vm_hugetlb_page(vma)))
3382 		return hugetlb_fault(mm, vma, address, flags);
3383 
3384 	pgd = pgd_offset(mm, address);
3385 	pud = pud_alloc(mm, pgd, address);
3386 	if (!pud)
3387 		return VM_FAULT_OOM;
3388 	pmd = pmd_alloc(mm, pud, address);
3389 	if (!pmd)
3390 		return VM_FAULT_OOM;
3391 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3392 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3393 		if (!(ret & VM_FAULT_FALLBACK))
3394 			return ret;
3395 	} else {
3396 		pmd_t orig_pmd = *pmd;
3397 		int ret;
3398 
3399 		barrier();
3400 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3401 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3402 
3403 			if (pmd_protnone(orig_pmd))
3404 				return do_huge_pmd_numa_page(mm, vma, address,
3405 							     orig_pmd, pmd);
3406 
3407 			if (dirty && !pmd_write(orig_pmd)) {
3408 				ret = wp_huge_pmd(mm, vma, address, pmd,
3409 							orig_pmd, flags);
3410 				if (!(ret & VM_FAULT_FALLBACK))
3411 					return ret;
3412 			} else {
3413 				huge_pmd_set_accessed(mm, vma, address, pmd,
3414 						      orig_pmd, dirty);
3415 				return 0;
3416 			}
3417 		}
3418 	}
3419 
3420 	/*
3421 	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3422 	 * run pte_offset_map on the pmd, if an huge pmd could
3423 	 * materialize from under us from a different thread.
3424 	 */
3425 	if (unlikely(pte_alloc(mm, pmd, address)))
3426 		return VM_FAULT_OOM;
3427 	/*
3428 	 * If a huge pmd materialized under us just retry later.  Use
3429 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3430 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3431 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3432 	 * in a different thread of this mm, in turn leading to a misleading
3433 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3434 	 * regular pmd that we can walk with pte_offset_map() and we can do that
3435 	 * through an atomic read in C, which is what pmd_trans_unstable()
3436 	 * provides.
3437 	 */
3438 	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3439 		return 0;
3440 	/*
3441 	 * A regular pmd is established and it can't morph into a huge pmd
3442 	 * from under us anymore at this point because we hold the mmap_sem
3443 	 * read mode and khugepaged takes it in write mode. So now it's
3444 	 * safe to run pte_offset_map().
3445 	 */
3446 	pte = pte_offset_map(pmd, address);
3447 
3448 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3449 }
3450 
3451 /*
3452  * By the time we get here, we already hold the mm semaphore
3453  *
3454  * The mmap_sem may have been released depending on flags and our
3455  * return value.  See filemap_fault() and __lock_page_or_retry().
3456  */
3457 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3458 		    unsigned long address, unsigned int flags)
3459 {
3460 	int ret;
3461 
3462 	__set_current_state(TASK_RUNNING);
3463 
3464 	count_vm_event(PGFAULT);
3465 	mem_cgroup_count_vm_event(mm, PGFAULT);
3466 
3467 	/* do counter updates before entering really critical section. */
3468 	check_sync_rss_stat(current);
3469 
3470 	/*
3471 	 * Enable the memcg OOM handling for faults triggered in user
3472 	 * space.  Kernel faults are handled more gracefully.
3473 	 */
3474 	if (flags & FAULT_FLAG_USER)
3475 		mem_cgroup_oom_enable();
3476 
3477 	ret = __handle_mm_fault(mm, vma, address, flags);
3478 
3479 	if (flags & FAULT_FLAG_USER) {
3480 		mem_cgroup_oom_disable();
3481                 /*
3482                  * The task may have entered a memcg OOM situation but
3483                  * if the allocation error was handled gracefully (no
3484                  * VM_FAULT_OOM), there is no need to kill anything.
3485                  * Just clean up the OOM state peacefully.
3486                  */
3487                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3488                         mem_cgroup_oom_synchronize(false);
3489 	}
3490 
3491 	return ret;
3492 }
3493 EXPORT_SYMBOL_GPL(handle_mm_fault);
3494 
3495 #ifndef __PAGETABLE_PUD_FOLDED
3496 /*
3497  * Allocate page upper directory.
3498  * We've already handled the fast-path in-line.
3499  */
3500 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3501 {
3502 	pud_t *new = pud_alloc_one(mm, address);
3503 	if (!new)
3504 		return -ENOMEM;
3505 
3506 	smp_wmb(); /* See comment in __pte_alloc */
3507 
3508 	spin_lock(&mm->page_table_lock);
3509 	if (pgd_present(*pgd))		/* Another has populated it */
3510 		pud_free(mm, new);
3511 	else
3512 		pgd_populate(mm, pgd, new);
3513 	spin_unlock(&mm->page_table_lock);
3514 	return 0;
3515 }
3516 #endif /* __PAGETABLE_PUD_FOLDED */
3517 
3518 #ifndef __PAGETABLE_PMD_FOLDED
3519 /*
3520  * Allocate page middle directory.
3521  * We've already handled the fast-path in-line.
3522  */
3523 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3524 {
3525 	pmd_t *new = pmd_alloc_one(mm, address);
3526 	if (!new)
3527 		return -ENOMEM;
3528 
3529 	smp_wmb(); /* See comment in __pte_alloc */
3530 
3531 	spin_lock(&mm->page_table_lock);
3532 #ifndef __ARCH_HAS_4LEVEL_HACK
3533 	if (!pud_present(*pud)) {
3534 		mm_inc_nr_pmds(mm);
3535 		pud_populate(mm, pud, new);
3536 	} else	/* Another has populated it */
3537 		pmd_free(mm, new);
3538 #else
3539 	if (!pgd_present(*pud)) {
3540 		mm_inc_nr_pmds(mm);
3541 		pgd_populate(mm, pud, new);
3542 	} else /* Another has populated it */
3543 		pmd_free(mm, new);
3544 #endif /* __ARCH_HAS_4LEVEL_HACK */
3545 	spin_unlock(&mm->page_table_lock);
3546 	return 0;
3547 }
3548 #endif /* __PAGETABLE_PMD_FOLDED */
3549 
3550 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3551 		pte_t **ptepp, spinlock_t **ptlp)
3552 {
3553 	pgd_t *pgd;
3554 	pud_t *pud;
3555 	pmd_t *pmd;
3556 	pte_t *ptep;
3557 
3558 	pgd = pgd_offset(mm, address);
3559 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3560 		goto out;
3561 
3562 	pud = pud_offset(pgd, address);
3563 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3564 		goto out;
3565 
3566 	pmd = pmd_offset(pud, address);
3567 	VM_BUG_ON(pmd_trans_huge(*pmd));
3568 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3569 		goto out;
3570 
3571 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3572 	if (pmd_huge(*pmd))
3573 		goto out;
3574 
3575 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3576 	if (!ptep)
3577 		goto out;
3578 	if (!pte_present(*ptep))
3579 		goto unlock;
3580 	*ptepp = ptep;
3581 	return 0;
3582 unlock:
3583 	pte_unmap_unlock(ptep, *ptlp);
3584 out:
3585 	return -EINVAL;
3586 }
3587 
3588 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3589 			     pte_t **ptepp, spinlock_t **ptlp)
3590 {
3591 	int res;
3592 
3593 	/* (void) is needed to make gcc happy */
3594 	(void) __cond_lock(*ptlp,
3595 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3596 	return res;
3597 }
3598 
3599 /**
3600  * follow_pfn - look up PFN at a user virtual address
3601  * @vma: memory mapping
3602  * @address: user virtual address
3603  * @pfn: location to store found PFN
3604  *
3605  * Only IO mappings and raw PFN mappings are allowed.
3606  *
3607  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3608  */
3609 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3610 	unsigned long *pfn)
3611 {
3612 	int ret = -EINVAL;
3613 	spinlock_t *ptl;
3614 	pte_t *ptep;
3615 
3616 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3617 		return ret;
3618 
3619 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3620 	if (ret)
3621 		return ret;
3622 	*pfn = pte_pfn(*ptep);
3623 	pte_unmap_unlock(ptep, ptl);
3624 	return 0;
3625 }
3626 EXPORT_SYMBOL(follow_pfn);
3627 
3628 #ifdef CONFIG_HAVE_IOREMAP_PROT
3629 int follow_phys(struct vm_area_struct *vma,
3630 		unsigned long address, unsigned int flags,
3631 		unsigned long *prot, resource_size_t *phys)
3632 {
3633 	int ret = -EINVAL;
3634 	pte_t *ptep, pte;
3635 	spinlock_t *ptl;
3636 
3637 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3638 		goto out;
3639 
3640 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3641 		goto out;
3642 	pte = *ptep;
3643 
3644 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3645 		goto unlock;
3646 
3647 	*prot = pgprot_val(pte_pgprot(pte));
3648 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3649 
3650 	ret = 0;
3651 unlock:
3652 	pte_unmap_unlock(ptep, ptl);
3653 out:
3654 	return ret;
3655 }
3656 
3657 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3658 			void *buf, int len, int write)
3659 {
3660 	resource_size_t phys_addr;
3661 	unsigned long prot = 0;
3662 	void __iomem *maddr;
3663 	int offset = addr & (PAGE_SIZE-1);
3664 
3665 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3666 		return -EINVAL;
3667 
3668 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3669 	if (write)
3670 		memcpy_toio(maddr + offset, buf, len);
3671 	else
3672 		memcpy_fromio(buf, maddr + offset, len);
3673 	iounmap(maddr);
3674 
3675 	return len;
3676 }
3677 EXPORT_SYMBOL_GPL(generic_access_phys);
3678 #endif
3679 
3680 /*
3681  * Access another process' address space as given in mm.  If non-NULL, use the
3682  * given task for page fault accounting.
3683  */
3684 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3685 		unsigned long addr, void *buf, int len, int write)
3686 {
3687 	struct vm_area_struct *vma;
3688 	void *old_buf = buf;
3689 
3690 	down_read(&mm->mmap_sem);
3691 	/* ignore errors, just check how much was successfully transferred */
3692 	while (len) {
3693 		int bytes, ret, offset;
3694 		void *maddr;
3695 		struct page *page = NULL;
3696 
3697 		ret = get_user_pages(tsk, mm, addr, 1,
3698 				write, 1, &page, &vma);
3699 		if (ret <= 0) {
3700 #ifndef CONFIG_HAVE_IOREMAP_PROT
3701 			break;
3702 #else
3703 			/*
3704 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3705 			 * we can access using slightly different code.
3706 			 */
3707 			vma = find_vma(mm, addr);
3708 			if (!vma || vma->vm_start > addr)
3709 				break;
3710 			if (vma->vm_ops && vma->vm_ops->access)
3711 				ret = vma->vm_ops->access(vma, addr, buf,
3712 							  len, write);
3713 			if (ret <= 0)
3714 				break;
3715 			bytes = ret;
3716 #endif
3717 		} else {
3718 			bytes = len;
3719 			offset = addr & (PAGE_SIZE-1);
3720 			if (bytes > PAGE_SIZE-offset)
3721 				bytes = PAGE_SIZE-offset;
3722 
3723 			maddr = kmap(page);
3724 			if (write) {
3725 				copy_to_user_page(vma, page, addr,
3726 						  maddr + offset, buf, bytes);
3727 				set_page_dirty_lock(page);
3728 			} else {
3729 				copy_from_user_page(vma, page, addr,
3730 						    buf, maddr + offset, bytes);
3731 			}
3732 			kunmap(page);
3733 			page_cache_release(page);
3734 		}
3735 		len -= bytes;
3736 		buf += bytes;
3737 		addr += bytes;
3738 	}
3739 	up_read(&mm->mmap_sem);
3740 
3741 	return buf - old_buf;
3742 }
3743 
3744 /**
3745  * access_remote_vm - access another process' address space
3746  * @mm:		the mm_struct of the target address space
3747  * @addr:	start address to access
3748  * @buf:	source or destination buffer
3749  * @len:	number of bytes to transfer
3750  * @write:	whether the access is a write
3751  *
3752  * The caller must hold a reference on @mm.
3753  */
3754 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3755 		void *buf, int len, int write)
3756 {
3757 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3758 }
3759 
3760 /*
3761  * Access another process' address space.
3762  * Source/target buffer must be kernel space,
3763  * Do not walk the page table directly, use get_user_pages
3764  */
3765 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3766 		void *buf, int len, int write)
3767 {
3768 	struct mm_struct *mm;
3769 	int ret;
3770 
3771 	mm = get_task_mm(tsk);
3772 	if (!mm)
3773 		return 0;
3774 
3775 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3776 	mmput(mm);
3777 
3778 	return ret;
3779 }
3780 
3781 /*
3782  * Print the name of a VMA.
3783  */
3784 void print_vma_addr(char *prefix, unsigned long ip)
3785 {
3786 	struct mm_struct *mm = current->mm;
3787 	struct vm_area_struct *vma;
3788 
3789 	/*
3790 	 * Do not print if we are in atomic
3791 	 * contexts (in exception stacks, etc.):
3792 	 */
3793 	if (preempt_count())
3794 		return;
3795 
3796 	down_read(&mm->mmap_sem);
3797 	vma = find_vma(mm, ip);
3798 	if (vma && vma->vm_file) {
3799 		struct file *f = vma->vm_file;
3800 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3801 		if (buf) {
3802 			char *p;
3803 
3804 			p = file_path(f, buf, PAGE_SIZE);
3805 			if (IS_ERR(p))
3806 				p = "?";
3807 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3808 					vma->vm_start,
3809 					vma->vm_end - vma->vm_start);
3810 			free_page((unsigned long)buf);
3811 		}
3812 	}
3813 	up_read(&mm->mmap_sem);
3814 }
3815 
3816 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3817 void __might_fault(const char *file, int line)
3818 {
3819 	/*
3820 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3821 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3822 	 * get paged out, therefore we'll never actually fault, and the
3823 	 * below annotations will generate false positives.
3824 	 */
3825 	if (segment_eq(get_fs(), KERNEL_DS))
3826 		return;
3827 	if (pagefault_disabled())
3828 		return;
3829 	__might_sleep(file, line, 0);
3830 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3831 	if (current->mm)
3832 		might_lock_read(&current->mm->mmap_sem);
3833 #endif
3834 }
3835 EXPORT_SYMBOL(__might_fault);
3836 #endif
3837 
3838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3839 static void clear_gigantic_page(struct page *page,
3840 				unsigned long addr,
3841 				unsigned int pages_per_huge_page)
3842 {
3843 	int i;
3844 	struct page *p = page;
3845 
3846 	might_sleep();
3847 	for (i = 0; i < pages_per_huge_page;
3848 	     i++, p = mem_map_next(p, page, i)) {
3849 		cond_resched();
3850 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3851 	}
3852 }
3853 void clear_huge_page(struct page *page,
3854 		     unsigned long addr, unsigned int pages_per_huge_page)
3855 {
3856 	int i;
3857 
3858 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3859 		clear_gigantic_page(page, addr, pages_per_huge_page);
3860 		return;
3861 	}
3862 
3863 	might_sleep();
3864 	for (i = 0; i < pages_per_huge_page; i++) {
3865 		cond_resched();
3866 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3867 	}
3868 }
3869 
3870 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3871 				    unsigned long addr,
3872 				    struct vm_area_struct *vma,
3873 				    unsigned int pages_per_huge_page)
3874 {
3875 	int i;
3876 	struct page *dst_base = dst;
3877 	struct page *src_base = src;
3878 
3879 	for (i = 0; i < pages_per_huge_page; ) {
3880 		cond_resched();
3881 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3882 
3883 		i++;
3884 		dst = mem_map_next(dst, dst_base, i);
3885 		src = mem_map_next(src, src_base, i);
3886 	}
3887 }
3888 
3889 void copy_user_huge_page(struct page *dst, struct page *src,
3890 			 unsigned long addr, struct vm_area_struct *vma,
3891 			 unsigned int pages_per_huge_page)
3892 {
3893 	int i;
3894 
3895 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3896 		copy_user_gigantic_page(dst, src, addr, vma,
3897 					pages_per_huge_page);
3898 		return;
3899 	}
3900 
3901 	might_sleep();
3902 	for (i = 0; i < pages_per_huge_page; i++) {
3903 		cond_resched();
3904 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3905 	}
3906 }
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3908 
3909 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3910 
3911 static struct kmem_cache *page_ptl_cachep;
3912 
3913 void __init ptlock_cache_init(void)
3914 {
3915 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3916 			SLAB_PANIC, NULL);
3917 }
3918 
3919 bool ptlock_alloc(struct page *page)
3920 {
3921 	spinlock_t *ptl;
3922 
3923 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3924 	if (!ptl)
3925 		return false;
3926 	page->ptl = ptl;
3927 	return true;
3928 }
3929 
3930 void ptlock_free(struct page *page)
3931 {
3932 	kmem_cache_free(page_ptl_cachep, page->ptl);
3933 }
3934 #endif
3935