1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/pfn_t.h> 54 #include <linux/writeback.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/kallsyms.h> 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 #include <linux/gfp.h> 61 #include <linux/migrate.h> 62 #include <linux/string.h> 63 #include <linux/dma-debug.h> 64 #include <linux/debugfs.h> 65 #include <linux/userfaultfd_k.h> 66 67 #include <asm/io.h> 68 #include <asm/pgalloc.h> 69 #include <asm/uaccess.h> 70 #include <asm/tlb.h> 71 #include <asm/tlbflush.h> 72 #include <asm/pgtable.h> 73 74 #include "internal.h" 75 76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 78 #endif 79 80 #ifndef CONFIG_NEED_MULTIPLE_NODES 81 /* use the per-pgdat data instead for discontigmem - mbligh */ 82 unsigned long max_mapnr; 83 struct page *mem_map; 84 85 EXPORT_SYMBOL(max_mapnr); 86 EXPORT_SYMBOL(mem_map); 87 #endif 88 89 /* 90 * A number of key systems in x86 including ioremap() rely on the assumption 91 * that high_memory defines the upper bound on direct map memory, then end 92 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 93 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 94 * and ZONE_HIGHMEM. 95 */ 96 void * high_memory; 97 98 EXPORT_SYMBOL(high_memory); 99 100 /* 101 * Randomize the address space (stacks, mmaps, brk, etc.). 102 * 103 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 104 * as ancient (libc5 based) binaries can segfault. ) 105 */ 106 int randomize_va_space __read_mostly = 107 #ifdef CONFIG_COMPAT_BRK 108 1; 109 #else 110 2; 111 #endif 112 113 static int __init disable_randmaps(char *s) 114 { 115 randomize_va_space = 0; 116 return 1; 117 } 118 __setup("norandmaps", disable_randmaps); 119 120 unsigned long zero_pfn __read_mostly; 121 unsigned long highest_memmap_pfn __read_mostly; 122 123 EXPORT_SYMBOL(zero_pfn); 124 125 /* 126 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 127 */ 128 static int __init init_zero_pfn(void) 129 { 130 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 131 return 0; 132 } 133 core_initcall(init_zero_pfn); 134 135 136 #if defined(SPLIT_RSS_COUNTING) 137 138 void sync_mm_rss(struct mm_struct *mm) 139 { 140 int i; 141 142 for (i = 0; i < NR_MM_COUNTERS; i++) { 143 if (current->rss_stat.count[i]) { 144 add_mm_counter(mm, i, current->rss_stat.count[i]); 145 current->rss_stat.count[i] = 0; 146 } 147 } 148 current->rss_stat.events = 0; 149 } 150 151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 152 { 153 struct task_struct *task = current; 154 155 if (likely(task->mm == mm)) 156 task->rss_stat.count[member] += val; 157 else 158 add_mm_counter(mm, member, val); 159 } 160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 162 163 /* sync counter once per 64 page faults */ 164 #define TASK_RSS_EVENTS_THRESH (64) 165 static void check_sync_rss_stat(struct task_struct *task) 166 { 167 if (unlikely(task != current)) 168 return; 169 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 170 sync_mm_rss(task->mm); 171 } 172 #else /* SPLIT_RSS_COUNTING */ 173 174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 176 177 static void check_sync_rss_stat(struct task_struct *task) 178 { 179 } 180 181 #endif /* SPLIT_RSS_COUNTING */ 182 183 #ifdef HAVE_GENERIC_MMU_GATHER 184 185 static bool tlb_next_batch(struct mmu_gather *tlb) 186 { 187 struct mmu_gather_batch *batch; 188 189 batch = tlb->active; 190 if (batch->next) { 191 tlb->active = batch->next; 192 return true; 193 } 194 195 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 196 return false; 197 198 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 199 if (!batch) 200 return false; 201 202 tlb->batch_count++; 203 batch->next = NULL; 204 batch->nr = 0; 205 batch->max = MAX_GATHER_BATCH; 206 207 tlb->active->next = batch; 208 tlb->active = batch; 209 210 return true; 211 } 212 213 /* tlb_gather_mmu 214 * Called to initialize an (on-stack) mmu_gather structure for page-table 215 * tear-down from @mm. The @fullmm argument is used when @mm is without 216 * users and we're going to destroy the full address space (exit/execve). 217 */ 218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 219 { 220 tlb->mm = mm; 221 222 /* Is it from 0 to ~0? */ 223 tlb->fullmm = !(start | (end+1)); 224 tlb->need_flush_all = 0; 225 tlb->local.next = NULL; 226 tlb->local.nr = 0; 227 tlb->local.max = ARRAY_SIZE(tlb->__pages); 228 tlb->active = &tlb->local; 229 tlb->batch_count = 0; 230 231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 232 tlb->batch = NULL; 233 #endif 234 235 __tlb_reset_range(tlb); 236 } 237 238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 239 { 240 if (!tlb->end) 241 return; 242 243 tlb_flush(tlb); 244 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 246 tlb_table_flush(tlb); 247 #endif 248 __tlb_reset_range(tlb); 249 } 250 251 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 252 { 253 struct mmu_gather_batch *batch; 254 255 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 256 free_pages_and_swap_cache(batch->pages, batch->nr); 257 batch->nr = 0; 258 } 259 tlb->active = &tlb->local; 260 } 261 262 void tlb_flush_mmu(struct mmu_gather *tlb) 263 { 264 tlb_flush_mmu_tlbonly(tlb); 265 tlb_flush_mmu_free(tlb); 266 } 267 268 /* tlb_finish_mmu 269 * Called at the end of the shootdown operation to free up any resources 270 * that were required. 271 */ 272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 273 { 274 struct mmu_gather_batch *batch, *next; 275 276 tlb_flush_mmu(tlb); 277 278 /* keep the page table cache within bounds */ 279 check_pgt_cache(); 280 281 for (batch = tlb->local.next; batch; batch = next) { 282 next = batch->next; 283 free_pages((unsigned long)batch, 0); 284 } 285 tlb->local.next = NULL; 286 } 287 288 /* __tlb_remove_page 289 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 290 * handling the additional races in SMP caused by other CPUs caching valid 291 * mappings in their TLBs. Returns the number of free page slots left. 292 * When out of page slots we must call tlb_flush_mmu(). 293 */ 294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 295 { 296 struct mmu_gather_batch *batch; 297 298 VM_BUG_ON(!tlb->end); 299 300 batch = tlb->active; 301 batch->pages[batch->nr++] = page; 302 if (batch->nr == batch->max) { 303 if (!tlb_next_batch(tlb)) 304 return 0; 305 batch = tlb->active; 306 } 307 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 308 309 return batch->max - batch->nr; 310 } 311 312 #endif /* HAVE_GENERIC_MMU_GATHER */ 313 314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 315 316 /* 317 * See the comment near struct mmu_table_batch. 318 */ 319 320 static void tlb_remove_table_smp_sync(void *arg) 321 { 322 /* Simply deliver the interrupt */ 323 } 324 325 static void tlb_remove_table_one(void *table) 326 { 327 /* 328 * This isn't an RCU grace period and hence the page-tables cannot be 329 * assumed to be actually RCU-freed. 330 * 331 * It is however sufficient for software page-table walkers that rely on 332 * IRQ disabling. See the comment near struct mmu_table_batch. 333 */ 334 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 335 __tlb_remove_table(table); 336 } 337 338 static void tlb_remove_table_rcu(struct rcu_head *head) 339 { 340 struct mmu_table_batch *batch; 341 int i; 342 343 batch = container_of(head, struct mmu_table_batch, rcu); 344 345 for (i = 0; i < batch->nr; i++) 346 __tlb_remove_table(batch->tables[i]); 347 348 free_page((unsigned long)batch); 349 } 350 351 void tlb_table_flush(struct mmu_gather *tlb) 352 { 353 struct mmu_table_batch **batch = &tlb->batch; 354 355 if (*batch) { 356 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 357 *batch = NULL; 358 } 359 } 360 361 void tlb_remove_table(struct mmu_gather *tlb, void *table) 362 { 363 struct mmu_table_batch **batch = &tlb->batch; 364 365 /* 366 * When there's less then two users of this mm there cannot be a 367 * concurrent page-table walk. 368 */ 369 if (atomic_read(&tlb->mm->mm_users) < 2) { 370 __tlb_remove_table(table); 371 return; 372 } 373 374 if (*batch == NULL) { 375 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 376 if (*batch == NULL) { 377 tlb_remove_table_one(table); 378 return; 379 } 380 (*batch)->nr = 0; 381 } 382 (*batch)->tables[(*batch)->nr++] = table; 383 if ((*batch)->nr == MAX_TABLE_BATCH) 384 tlb_table_flush(tlb); 385 } 386 387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 388 389 /* 390 * Note: this doesn't free the actual pages themselves. That 391 * has been handled earlier when unmapping all the memory regions. 392 */ 393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 394 unsigned long addr) 395 { 396 pgtable_t token = pmd_pgtable(*pmd); 397 pmd_clear(pmd); 398 pte_free_tlb(tlb, token, addr); 399 atomic_long_dec(&tlb->mm->nr_ptes); 400 } 401 402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 403 unsigned long addr, unsigned long end, 404 unsigned long floor, unsigned long ceiling) 405 { 406 pmd_t *pmd; 407 unsigned long next; 408 unsigned long start; 409 410 start = addr; 411 pmd = pmd_offset(pud, addr); 412 do { 413 next = pmd_addr_end(addr, end); 414 if (pmd_none_or_clear_bad(pmd)) 415 continue; 416 free_pte_range(tlb, pmd, addr); 417 } while (pmd++, addr = next, addr != end); 418 419 start &= PUD_MASK; 420 if (start < floor) 421 return; 422 if (ceiling) { 423 ceiling &= PUD_MASK; 424 if (!ceiling) 425 return; 426 } 427 if (end - 1 > ceiling - 1) 428 return; 429 430 pmd = pmd_offset(pud, start); 431 pud_clear(pud); 432 pmd_free_tlb(tlb, pmd, start); 433 mm_dec_nr_pmds(tlb->mm); 434 } 435 436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 437 unsigned long addr, unsigned long end, 438 unsigned long floor, unsigned long ceiling) 439 { 440 pud_t *pud; 441 unsigned long next; 442 unsigned long start; 443 444 start = addr; 445 pud = pud_offset(pgd, addr); 446 do { 447 next = pud_addr_end(addr, end); 448 if (pud_none_or_clear_bad(pud)) 449 continue; 450 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 451 } while (pud++, addr = next, addr != end); 452 453 start &= PGDIR_MASK; 454 if (start < floor) 455 return; 456 if (ceiling) { 457 ceiling &= PGDIR_MASK; 458 if (!ceiling) 459 return; 460 } 461 if (end - 1 > ceiling - 1) 462 return; 463 464 pud = pud_offset(pgd, start); 465 pgd_clear(pgd); 466 pud_free_tlb(tlb, pud, start); 467 } 468 469 /* 470 * This function frees user-level page tables of a process. 471 */ 472 void free_pgd_range(struct mmu_gather *tlb, 473 unsigned long addr, unsigned long end, 474 unsigned long floor, unsigned long ceiling) 475 { 476 pgd_t *pgd; 477 unsigned long next; 478 479 /* 480 * The next few lines have given us lots of grief... 481 * 482 * Why are we testing PMD* at this top level? Because often 483 * there will be no work to do at all, and we'd prefer not to 484 * go all the way down to the bottom just to discover that. 485 * 486 * Why all these "- 1"s? Because 0 represents both the bottom 487 * of the address space and the top of it (using -1 for the 488 * top wouldn't help much: the masks would do the wrong thing). 489 * The rule is that addr 0 and floor 0 refer to the bottom of 490 * the address space, but end 0 and ceiling 0 refer to the top 491 * Comparisons need to use "end - 1" and "ceiling - 1" (though 492 * that end 0 case should be mythical). 493 * 494 * Wherever addr is brought up or ceiling brought down, we must 495 * be careful to reject "the opposite 0" before it confuses the 496 * subsequent tests. But what about where end is brought down 497 * by PMD_SIZE below? no, end can't go down to 0 there. 498 * 499 * Whereas we round start (addr) and ceiling down, by different 500 * masks at different levels, in order to test whether a table 501 * now has no other vmas using it, so can be freed, we don't 502 * bother to round floor or end up - the tests don't need that. 503 */ 504 505 addr &= PMD_MASK; 506 if (addr < floor) { 507 addr += PMD_SIZE; 508 if (!addr) 509 return; 510 } 511 if (ceiling) { 512 ceiling &= PMD_MASK; 513 if (!ceiling) 514 return; 515 } 516 if (end - 1 > ceiling - 1) 517 end -= PMD_SIZE; 518 if (addr > end - 1) 519 return; 520 521 pgd = pgd_offset(tlb->mm, addr); 522 do { 523 next = pgd_addr_end(addr, end); 524 if (pgd_none_or_clear_bad(pgd)) 525 continue; 526 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 527 } while (pgd++, addr = next, addr != end); 528 } 529 530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 531 unsigned long floor, unsigned long ceiling) 532 { 533 while (vma) { 534 struct vm_area_struct *next = vma->vm_next; 535 unsigned long addr = vma->vm_start; 536 537 /* 538 * Hide vma from rmap and truncate_pagecache before freeing 539 * pgtables 540 */ 541 unlink_anon_vmas(vma); 542 unlink_file_vma(vma); 543 544 if (is_vm_hugetlb_page(vma)) { 545 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 546 floor, next? next->vm_start: ceiling); 547 } else { 548 /* 549 * Optimization: gather nearby vmas into one call down 550 */ 551 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 552 && !is_vm_hugetlb_page(next)) { 553 vma = next; 554 next = vma->vm_next; 555 unlink_anon_vmas(vma); 556 unlink_file_vma(vma); 557 } 558 free_pgd_range(tlb, addr, vma->vm_end, 559 floor, next? next->vm_start: ceiling); 560 } 561 vma = next; 562 } 563 } 564 565 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 566 { 567 spinlock_t *ptl; 568 pgtable_t new = pte_alloc_one(mm, address); 569 if (!new) 570 return -ENOMEM; 571 572 /* 573 * Ensure all pte setup (eg. pte page lock and page clearing) are 574 * visible before the pte is made visible to other CPUs by being 575 * put into page tables. 576 * 577 * The other side of the story is the pointer chasing in the page 578 * table walking code (when walking the page table without locking; 579 * ie. most of the time). Fortunately, these data accesses consist 580 * of a chain of data-dependent loads, meaning most CPUs (alpha 581 * being the notable exception) will already guarantee loads are 582 * seen in-order. See the alpha page table accessors for the 583 * smp_read_barrier_depends() barriers in page table walking code. 584 */ 585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 586 587 ptl = pmd_lock(mm, pmd); 588 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 589 atomic_long_inc(&mm->nr_ptes); 590 pmd_populate(mm, pmd, new); 591 new = NULL; 592 } 593 spin_unlock(ptl); 594 if (new) 595 pte_free(mm, new); 596 return 0; 597 } 598 599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 600 { 601 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 602 if (!new) 603 return -ENOMEM; 604 605 smp_wmb(); /* See comment in __pte_alloc */ 606 607 spin_lock(&init_mm.page_table_lock); 608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 609 pmd_populate_kernel(&init_mm, pmd, new); 610 new = NULL; 611 } 612 spin_unlock(&init_mm.page_table_lock); 613 if (new) 614 pte_free_kernel(&init_mm, new); 615 return 0; 616 } 617 618 static inline void init_rss_vec(int *rss) 619 { 620 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 621 } 622 623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 624 { 625 int i; 626 627 if (current->mm == mm) 628 sync_mm_rss(mm); 629 for (i = 0; i < NR_MM_COUNTERS; i++) 630 if (rss[i]) 631 add_mm_counter(mm, i, rss[i]); 632 } 633 634 /* 635 * This function is called to print an error when a bad pte 636 * is found. For example, we might have a PFN-mapped pte in 637 * a region that doesn't allow it. 638 * 639 * The calling function must still handle the error. 640 */ 641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 642 pte_t pte, struct page *page) 643 { 644 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 645 pud_t *pud = pud_offset(pgd, addr); 646 pmd_t *pmd = pmd_offset(pud, addr); 647 struct address_space *mapping; 648 pgoff_t index; 649 static unsigned long resume; 650 static unsigned long nr_shown; 651 static unsigned long nr_unshown; 652 653 /* 654 * Allow a burst of 60 reports, then keep quiet for that minute; 655 * or allow a steady drip of one report per second. 656 */ 657 if (nr_shown == 60) { 658 if (time_before(jiffies, resume)) { 659 nr_unshown++; 660 return; 661 } 662 if (nr_unshown) { 663 printk(KERN_ALERT 664 "BUG: Bad page map: %lu messages suppressed\n", 665 nr_unshown); 666 nr_unshown = 0; 667 } 668 nr_shown = 0; 669 } 670 if (nr_shown++ == 0) 671 resume = jiffies + 60 * HZ; 672 673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 674 index = linear_page_index(vma, addr); 675 676 printk(KERN_ALERT 677 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 678 current->comm, 679 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 680 if (page) 681 dump_page(page, "bad pte"); 682 printk(KERN_ALERT 683 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 684 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 685 /* 686 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 687 */ 688 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 689 vma->vm_file, 690 vma->vm_ops ? vma->vm_ops->fault : NULL, 691 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 692 mapping ? mapping->a_ops->readpage : NULL); 693 dump_stack(); 694 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 695 } 696 697 /* 698 * vm_normal_page -- This function gets the "struct page" associated with a pte. 699 * 700 * "Special" mappings do not wish to be associated with a "struct page" (either 701 * it doesn't exist, or it exists but they don't want to touch it). In this 702 * case, NULL is returned here. "Normal" mappings do have a struct page. 703 * 704 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 705 * pte bit, in which case this function is trivial. Secondly, an architecture 706 * may not have a spare pte bit, which requires a more complicated scheme, 707 * described below. 708 * 709 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 710 * special mapping (even if there are underlying and valid "struct pages"). 711 * COWed pages of a VM_PFNMAP are always normal. 712 * 713 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 714 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 715 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 716 * mapping will always honor the rule 717 * 718 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 719 * 720 * And for normal mappings this is false. 721 * 722 * This restricts such mappings to be a linear translation from virtual address 723 * to pfn. To get around this restriction, we allow arbitrary mappings so long 724 * as the vma is not a COW mapping; in that case, we know that all ptes are 725 * special (because none can have been COWed). 726 * 727 * 728 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 729 * 730 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 731 * page" backing, however the difference is that _all_ pages with a struct 732 * page (that is, those where pfn_valid is true) are refcounted and considered 733 * normal pages by the VM. The disadvantage is that pages are refcounted 734 * (which can be slower and simply not an option for some PFNMAP users). The 735 * advantage is that we don't have to follow the strict linearity rule of 736 * PFNMAP mappings in order to support COWable mappings. 737 * 738 */ 739 #ifdef __HAVE_ARCH_PTE_SPECIAL 740 # define HAVE_PTE_SPECIAL 1 741 #else 742 # define HAVE_PTE_SPECIAL 0 743 #endif 744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 745 pte_t pte) 746 { 747 unsigned long pfn = pte_pfn(pte); 748 749 if (HAVE_PTE_SPECIAL) { 750 if (likely(!pte_special(pte))) 751 goto check_pfn; 752 if (vma->vm_ops && vma->vm_ops->find_special_page) 753 return vma->vm_ops->find_special_page(vma, addr); 754 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 755 return NULL; 756 if (!is_zero_pfn(pfn)) 757 print_bad_pte(vma, addr, pte, NULL); 758 return NULL; 759 } 760 761 /* !HAVE_PTE_SPECIAL case follows: */ 762 763 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 764 if (vma->vm_flags & VM_MIXEDMAP) { 765 if (!pfn_valid(pfn)) 766 return NULL; 767 goto out; 768 } else { 769 unsigned long off; 770 off = (addr - vma->vm_start) >> PAGE_SHIFT; 771 if (pfn == vma->vm_pgoff + off) 772 return NULL; 773 if (!is_cow_mapping(vma->vm_flags)) 774 return NULL; 775 } 776 } 777 778 if (is_zero_pfn(pfn)) 779 return NULL; 780 check_pfn: 781 if (unlikely(pfn > highest_memmap_pfn)) { 782 print_bad_pte(vma, addr, pte, NULL); 783 return NULL; 784 } 785 786 /* 787 * NOTE! We still have PageReserved() pages in the page tables. 788 * eg. VDSO mappings can cause them to exist. 789 */ 790 out: 791 return pfn_to_page(pfn); 792 } 793 794 /* 795 * copy one vm_area from one task to the other. Assumes the page tables 796 * already present in the new task to be cleared in the whole range 797 * covered by this vma. 798 */ 799 800 static inline unsigned long 801 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 802 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 803 unsigned long addr, int *rss) 804 { 805 unsigned long vm_flags = vma->vm_flags; 806 pte_t pte = *src_pte; 807 struct page *page; 808 809 /* pte contains position in swap or file, so copy. */ 810 if (unlikely(!pte_present(pte))) { 811 swp_entry_t entry = pte_to_swp_entry(pte); 812 813 if (likely(!non_swap_entry(entry))) { 814 if (swap_duplicate(entry) < 0) 815 return entry.val; 816 817 /* make sure dst_mm is on swapoff's mmlist. */ 818 if (unlikely(list_empty(&dst_mm->mmlist))) { 819 spin_lock(&mmlist_lock); 820 if (list_empty(&dst_mm->mmlist)) 821 list_add(&dst_mm->mmlist, 822 &src_mm->mmlist); 823 spin_unlock(&mmlist_lock); 824 } 825 rss[MM_SWAPENTS]++; 826 } else if (is_migration_entry(entry)) { 827 page = migration_entry_to_page(entry); 828 829 rss[mm_counter(page)]++; 830 831 if (is_write_migration_entry(entry) && 832 is_cow_mapping(vm_flags)) { 833 /* 834 * COW mappings require pages in both 835 * parent and child to be set to read. 836 */ 837 make_migration_entry_read(&entry); 838 pte = swp_entry_to_pte(entry); 839 if (pte_swp_soft_dirty(*src_pte)) 840 pte = pte_swp_mksoft_dirty(pte); 841 set_pte_at(src_mm, addr, src_pte, pte); 842 } 843 } 844 goto out_set_pte; 845 } 846 847 /* 848 * If it's a COW mapping, write protect it both 849 * in the parent and the child 850 */ 851 if (is_cow_mapping(vm_flags)) { 852 ptep_set_wrprotect(src_mm, addr, src_pte); 853 pte = pte_wrprotect(pte); 854 } 855 856 /* 857 * If it's a shared mapping, mark it clean in 858 * the child 859 */ 860 if (vm_flags & VM_SHARED) 861 pte = pte_mkclean(pte); 862 pte = pte_mkold(pte); 863 864 page = vm_normal_page(vma, addr, pte); 865 if (page) { 866 get_page(page); 867 page_dup_rmap(page, false); 868 rss[mm_counter(page)]++; 869 } 870 871 out_set_pte: 872 set_pte_at(dst_mm, addr, dst_pte, pte); 873 return 0; 874 } 875 876 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 877 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 878 unsigned long addr, unsigned long end) 879 { 880 pte_t *orig_src_pte, *orig_dst_pte; 881 pte_t *src_pte, *dst_pte; 882 spinlock_t *src_ptl, *dst_ptl; 883 int progress = 0; 884 int rss[NR_MM_COUNTERS]; 885 swp_entry_t entry = (swp_entry_t){0}; 886 887 again: 888 init_rss_vec(rss); 889 890 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 891 if (!dst_pte) 892 return -ENOMEM; 893 src_pte = pte_offset_map(src_pmd, addr); 894 src_ptl = pte_lockptr(src_mm, src_pmd); 895 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 896 orig_src_pte = src_pte; 897 orig_dst_pte = dst_pte; 898 arch_enter_lazy_mmu_mode(); 899 900 do { 901 /* 902 * We are holding two locks at this point - either of them 903 * could generate latencies in another task on another CPU. 904 */ 905 if (progress >= 32) { 906 progress = 0; 907 if (need_resched() || 908 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 909 break; 910 } 911 if (pte_none(*src_pte)) { 912 progress++; 913 continue; 914 } 915 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 916 vma, addr, rss); 917 if (entry.val) 918 break; 919 progress += 8; 920 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 921 922 arch_leave_lazy_mmu_mode(); 923 spin_unlock(src_ptl); 924 pte_unmap(orig_src_pte); 925 add_mm_rss_vec(dst_mm, rss); 926 pte_unmap_unlock(orig_dst_pte, dst_ptl); 927 cond_resched(); 928 929 if (entry.val) { 930 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 931 return -ENOMEM; 932 progress = 0; 933 } 934 if (addr != end) 935 goto again; 936 return 0; 937 } 938 939 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 940 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 941 unsigned long addr, unsigned long end) 942 { 943 pmd_t *src_pmd, *dst_pmd; 944 unsigned long next; 945 946 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 947 if (!dst_pmd) 948 return -ENOMEM; 949 src_pmd = pmd_offset(src_pud, addr); 950 do { 951 next = pmd_addr_end(addr, end); 952 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 953 int err; 954 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 955 err = copy_huge_pmd(dst_mm, src_mm, 956 dst_pmd, src_pmd, addr, vma); 957 if (err == -ENOMEM) 958 return -ENOMEM; 959 if (!err) 960 continue; 961 /* fall through */ 962 } 963 if (pmd_none_or_clear_bad(src_pmd)) 964 continue; 965 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 966 vma, addr, next)) 967 return -ENOMEM; 968 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 969 return 0; 970 } 971 972 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 973 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 974 unsigned long addr, unsigned long end) 975 { 976 pud_t *src_pud, *dst_pud; 977 unsigned long next; 978 979 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 980 if (!dst_pud) 981 return -ENOMEM; 982 src_pud = pud_offset(src_pgd, addr); 983 do { 984 next = pud_addr_end(addr, end); 985 if (pud_none_or_clear_bad(src_pud)) 986 continue; 987 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 988 vma, addr, next)) 989 return -ENOMEM; 990 } while (dst_pud++, src_pud++, addr = next, addr != end); 991 return 0; 992 } 993 994 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 995 struct vm_area_struct *vma) 996 { 997 pgd_t *src_pgd, *dst_pgd; 998 unsigned long next; 999 unsigned long addr = vma->vm_start; 1000 unsigned long end = vma->vm_end; 1001 unsigned long mmun_start; /* For mmu_notifiers */ 1002 unsigned long mmun_end; /* For mmu_notifiers */ 1003 bool is_cow; 1004 int ret; 1005 1006 /* 1007 * Don't copy ptes where a page fault will fill them correctly. 1008 * Fork becomes much lighter when there are big shared or private 1009 * readonly mappings. The tradeoff is that copy_page_range is more 1010 * efficient than faulting. 1011 */ 1012 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1013 !vma->anon_vma) 1014 return 0; 1015 1016 if (is_vm_hugetlb_page(vma)) 1017 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1018 1019 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1020 /* 1021 * We do not free on error cases below as remove_vma 1022 * gets called on error from higher level routine 1023 */ 1024 ret = track_pfn_copy(vma); 1025 if (ret) 1026 return ret; 1027 } 1028 1029 /* 1030 * We need to invalidate the secondary MMU mappings only when 1031 * there could be a permission downgrade on the ptes of the 1032 * parent mm. And a permission downgrade will only happen if 1033 * is_cow_mapping() returns true. 1034 */ 1035 is_cow = is_cow_mapping(vma->vm_flags); 1036 mmun_start = addr; 1037 mmun_end = end; 1038 if (is_cow) 1039 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1040 mmun_end); 1041 1042 ret = 0; 1043 dst_pgd = pgd_offset(dst_mm, addr); 1044 src_pgd = pgd_offset(src_mm, addr); 1045 do { 1046 next = pgd_addr_end(addr, end); 1047 if (pgd_none_or_clear_bad(src_pgd)) 1048 continue; 1049 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1050 vma, addr, next))) { 1051 ret = -ENOMEM; 1052 break; 1053 } 1054 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1055 1056 if (is_cow) 1057 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1058 return ret; 1059 } 1060 1061 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1062 struct vm_area_struct *vma, pmd_t *pmd, 1063 unsigned long addr, unsigned long end, 1064 struct zap_details *details) 1065 { 1066 struct mm_struct *mm = tlb->mm; 1067 int force_flush = 0; 1068 int rss[NR_MM_COUNTERS]; 1069 spinlock_t *ptl; 1070 pte_t *start_pte; 1071 pte_t *pte; 1072 swp_entry_t entry; 1073 1074 again: 1075 init_rss_vec(rss); 1076 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1077 pte = start_pte; 1078 arch_enter_lazy_mmu_mode(); 1079 do { 1080 pte_t ptent = *pte; 1081 if (pte_none(ptent)) { 1082 continue; 1083 } 1084 1085 if (pte_present(ptent)) { 1086 struct page *page; 1087 1088 page = vm_normal_page(vma, addr, ptent); 1089 if (unlikely(details) && page) { 1090 /* 1091 * unmap_shared_mapping_pages() wants to 1092 * invalidate cache without truncating: 1093 * unmap shared but keep private pages. 1094 */ 1095 if (details->check_mapping && 1096 details->check_mapping != page->mapping) 1097 continue; 1098 } 1099 ptent = ptep_get_and_clear_full(mm, addr, pte, 1100 tlb->fullmm); 1101 tlb_remove_tlb_entry(tlb, pte, addr); 1102 if (unlikely(!page)) 1103 continue; 1104 1105 if (!PageAnon(page)) { 1106 if (pte_dirty(ptent)) { 1107 force_flush = 1; 1108 set_page_dirty(page); 1109 } 1110 if (pte_young(ptent) && 1111 likely(!(vma->vm_flags & VM_SEQ_READ))) 1112 mark_page_accessed(page); 1113 } 1114 rss[mm_counter(page)]--; 1115 page_remove_rmap(page, false); 1116 if (unlikely(page_mapcount(page) < 0)) 1117 print_bad_pte(vma, addr, ptent, page); 1118 if (unlikely(!__tlb_remove_page(tlb, page))) { 1119 force_flush = 1; 1120 addr += PAGE_SIZE; 1121 break; 1122 } 1123 continue; 1124 } 1125 /* If details->check_mapping, we leave swap entries. */ 1126 if (unlikely(details)) 1127 continue; 1128 1129 entry = pte_to_swp_entry(ptent); 1130 if (!non_swap_entry(entry)) 1131 rss[MM_SWAPENTS]--; 1132 else if (is_migration_entry(entry)) { 1133 struct page *page; 1134 1135 page = migration_entry_to_page(entry); 1136 rss[mm_counter(page)]--; 1137 } 1138 if (unlikely(!free_swap_and_cache(entry))) 1139 print_bad_pte(vma, addr, ptent, NULL); 1140 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1141 } while (pte++, addr += PAGE_SIZE, addr != end); 1142 1143 add_mm_rss_vec(mm, rss); 1144 arch_leave_lazy_mmu_mode(); 1145 1146 /* Do the actual TLB flush before dropping ptl */ 1147 if (force_flush) 1148 tlb_flush_mmu_tlbonly(tlb); 1149 pte_unmap_unlock(start_pte, ptl); 1150 1151 /* 1152 * If we forced a TLB flush (either due to running out of 1153 * batch buffers or because we needed to flush dirty TLB 1154 * entries before releasing the ptl), free the batched 1155 * memory too. Restart if we didn't do everything. 1156 */ 1157 if (force_flush) { 1158 force_flush = 0; 1159 tlb_flush_mmu_free(tlb); 1160 1161 if (addr != end) 1162 goto again; 1163 } 1164 1165 return addr; 1166 } 1167 1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1169 struct vm_area_struct *vma, pud_t *pud, 1170 unsigned long addr, unsigned long end, 1171 struct zap_details *details) 1172 { 1173 pmd_t *pmd; 1174 unsigned long next; 1175 1176 pmd = pmd_offset(pud, addr); 1177 do { 1178 next = pmd_addr_end(addr, end); 1179 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1180 if (next - addr != HPAGE_PMD_SIZE) { 1181 #ifdef CONFIG_DEBUG_VM 1182 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1183 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1184 __func__, addr, end, 1185 vma->vm_start, 1186 vma->vm_end); 1187 BUG(); 1188 } 1189 #endif 1190 split_huge_pmd(vma, pmd, addr); 1191 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1192 goto next; 1193 /* fall through */ 1194 } 1195 /* 1196 * Here there can be other concurrent MADV_DONTNEED or 1197 * trans huge page faults running, and if the pmd is 1198 * none or trans huge it can change under us. This is 1199 * because MADV_DONTNEED holds the mmap_sem in read 1200 * mode. 1201 */ 1202 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1203 goto next; 1204 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1205 next: 1206 cond_resched(); 1207 } while (pmd++, addr = next, addr != end); 1208 1209 return addr; 1210 } 1211 1212 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1213 struct vm_area_struct *vma, pgd_t *pgd, 1214 unsigned long addr, unsigned long end, 1215 struct zap_details *details) 1216 { 1217 pud_t *pud; 1218 unsigned long next; 1219 1220 pud = pud_offset(pgd, addr); 1221 do { 1222 next = pud_addr_end(addr, end); 1223 if (pud_none_or_clear_bad(pud)) 1224 continue; 1225 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1226 } while (pud++, addr = next, addr != end); 1227 1228 return addr; 1229 } 1230 1231 static void unmap_page_range(struct mmu_gather *tlb, 1232 struct vm_area_struct *vma, 1233 unsigned long addr, unsigned long end, 1234 struct zap_details *details) 1235 { 1236 pgd_t *pgd; 1237 unsigned long next; 1238 1239 if (details && !details->check_mapping) 1240 details = NULL; 1241 1242 BUG_ON(addr >= end); 1243 tlb_start_vma(tlb, vma); 1244 pgd = pgd_offset(vma->vm_mm, addr); 1245 do { 1246 next = pgd_addr_end(addr, end); 1247 if (pgd_none_or_clear_bad(pgd)) 1248 continue; 1249 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1250 } while (pgd++, addr = next, addr != end); 1251 tlb_end_vma(tlb, vma); 1252 } 1253 1254 1255 static void unmap_single_vma(struct mmu_gather *tlb, 1256 struct vm_area_struct *vma, unsigned long start_addr, 1257 unsigned long end_addr, 1258 struct zap_details *details) 1259 { 1260 unsigned long start = max(vma->vm_start, start_addr); 1261 unsigned long end; 1262 1263 if (start >= vma->vm_end) 1264 return; 1265 end = min(vma->vm_end, end_addr); 1266 if (end <= vma->vm_start) 1267 return; 1268 1269 if (vma->vm_file) 1270 uprobe_munmap(vma, start, end); 1271 1272 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1273 untrack_pfn(vma, 0, 0); 1274 1275 if (start != end) { 1276 if (unlikely(is_vm_hugetlb_page(vma))) { 1277 /* 1278 * It is undesirable to test vma->vm_file as it 1279 * should be non-null for valid hugetlb area. 1280 * However, vm_file will be NULL in the error 1281 * cleanup path of mmap_region. When 1282 * hugetlbfs ->mmap method fails, 1283 * mmap_region() nullifies vma->vm_file 1284 * before calling this function to clean up. 1285 * Since no pte has actually been setup, it is 1286 * safe to do nothing in this case. 1287 */ 1288 if (vma->vm_file) { 1289 i_mmap_lock_write(vma->vm_file->f_mapping); 1290 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1291 i_mmap_unlock_write(vma->vm_file->f_mapping); 1292 } 1293 } else 1294 unmap_page_range(tlb, vma, start, end, details); 1295 } 1296 } 1297 1298 /** 1299 * unmap_vmas - unmap a range of memory covered by a list of vma's 1300 * @tlb: address of the caller's struct mmu_gather 1301 * @vma: the starting vma 1302 * @start_addr: virtual address at which to start unmapping 1303 * @end_addr: virtual address at which to end unmapping 1304 * 1305 * Unmap all pages in the vma list. 1306 * 1307 * Only addresses between `start' and `end' will be unmapped. 1308 * 1309 * The VMA list must be sorted in ascending virtual address order. 1310 * 1311 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1312 * range after unmap_vmas() returns. So the only responsibility here is to 1313 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1314 * drops the lock and schedules. 1315 */ 1316 void unmap_vmas(struct mmu_gather *tlb, 1317 struct vm_area_struct *vma, unsigned long start_addr, 1318 unsigned long end_addr) 1319 { 1320 struct mm_struct *mm = vma->vm_mm; 1321 1322 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1323 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1324 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1325 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1326 } 1327 1328 /** 1329 * zap_page_range - remove user pages in a given range 1330 * @vma: vm_area_struct holding the applicable pages 1331 * @start: starting address of pages to zap 1332 * @size: number of bytes to zap 1333 * @details: details of shared cache invalidation 1334 * 1335 * Caller must protect the VMA list 1336 */ 1337 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1338 unsigned long size, struct zap_details *details) 1339 { 1340 struct mm_struct *mm = vma->vm_mm; 1341 struct mmu_gather tlb; 1342 unsigned long end = start + size; 1343 1344 lru_add_drain(); 1345 tlb_gather_mmu(&tlb, mm, start, end); 1346 update_hiwater_rss(mm); 1347 mmu_notifier_invalidate_range_start(mm, start, end); 1348 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1349 unmap_single_vma(&tlb, vma, start, end, details); 1350 mmu_notifier_invalidate_range_end(mm, start, end); 1351 tlb_finish_mmu(&tlb, start, end); 1352 } 1353 1354 /** 1355 * zap_page_range_single - remove user pages in a given range 1356 * @vma: vm_area_struct holding the applicable pages 1357 * @address: starting address of pages to zap 1358 * @size: number of bytes to zap 1359 * @details: details of shared cache invalidation 1360 * 1361 * The range must fit into one VMA. 1362 */ 1363 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1364 unsigned long size, struct zap_details *details) 1365 { 1366 struct mm_struct *mm = vma->vm_mm; 1367 struct mmu_gather tlb; 1368 unsigned long end = address + size; 1369 1370 lru_add_drain(); 1371 tlb_gather_mmu(&tlb, mm, address, end); 1372 update_hiwater_rss(mm); 1373 mmu_notifier_invalidate_range_start(mm, address, end); 1374 unmap_single_vma(&tlb, vma, address, end, details); 1375 mmu_notifier_invalidate_range_end(mm, address, end); 1376 tlb_finish_mmu(&tlb, address, end); 1377 } 1378 1379 /** 1380 * zap_vma_ptes - remove ptes mapping the vma 1381 * @vma: vm_area_struct holding ptes to be zapped 1382 * @address: starting address of pages to zap 1383 * @size: number of bytes to zap 1384 * 1385 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1386 * 1387 * The entire address range must be fully contained within the vma. 1388 * 1389 * Returns 0 if successful. 1390 */ 1391 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1392 unsigned long size) 1393 { 1394 if (address < vma->vm_start || address + size > vma->vm_end || 1395 !(vma->vm_flags & VM_PFNMAP)) 1396 return -1; 1397 zap_page_range_single(vma, address, size, NULL); 1398 return 0; 1399 } 1400 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1401 1402 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1403 spinlock_t **ptl) 1404 { 1405 pgd_t * pgd = pgd_offset(mm, addr); 1406 pud_t * pud = pud_alloc(mm, pgd, addr); 1407 if (pud) { 1408 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1409 if (pmd) { 1410 VM_BUG_ON(pmd_trans_huge(*pmd)); 1411 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1412 } 1413 } 1414 return NULL; 1415 } 1416 1417 /* 1418 * This is the old fallback for page remapping. 1419 * 1420 * For historical reasons, it only allows reserved pages. Only 1421 * old drivers should use this, and they needed to mark their 1422 * pages reserved for the old functions anyway. 1423 */ 1424 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1425 struct page *page, pgprot_t prot) 1426 { 1427 struct mm_struct *mm = vma->vm_mm; 1428 int retval; 1429 pte_t *pte; 1430 spinlock_t *ptl; 1431 1432 retval = -EINVAL; 1433 if (PageAnon(page)) 1434 goto out; 1435 retval = -ENOMEM; 1436 flush_dcache_page(page); 1437 pte = get_locked_pte(mm, addr, &ptl); 1438 if (!pte) 1439 goto out; 1440 retval = -EBUSY; 1441 if (!pte_none(*pte)) 1442 goto out_unlock; 1443 1444 /* Ok, finally just insert the thing.. */ 1445 get_page(page); 1446 inc_mm_counter_fast(mm, mm_counter_file(page)); 1447 page_add_file_rmap(page); 1448 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1449 1450 retval = 0; 1451 pte_unmap_unlock(pte, ptl); 1452 return retval; 1453 out_unlock: 1454 pte_unmap_unlock(pte, ptl); 1455 out: 1456 return retval; 1457 } 1458 1459 /** 1460 * vm_insert_page - insert single page into user vma 1461 * @vma: user vma to map to 1462 * @addr: target user address of this page 1463 * @page: source kernel page 1464 * 1465 * This allows drivers to insert individual pages they've allocated 1466 * into a user vma. 1467 * 1468 * The page has to be a nice clean _individual_ kernel allocation. 1469 * If you allocate a compound page, you need to have marked it as 1470 * such (__GFP_COMP), or manually just split the page up yourself 1471 * (see split_page()). 1472 * 1473 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1474 * took an arbitrary page protection parameter. This doesn't allow 1475 * that. Your vma protection will have to be set up correctly, which 1476 * means that if you want a shared writable mapping, you'd better 1477 * ask for a shared writable mapping! 1478 * 1479 * The page does not need to be reserved. 1480 * 1481 * Usually this function is called from f_op->mmap() handler 1482 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1483 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1484 * function from other places, for example from page-fault handler. 1485 */ 1486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1487 struct page *page) 1488 { 1489 if (addr < vma->vm_start || addr >= vma->vm_end) 1490 return -EFAULT; 1491 if (!page_count(page)) 1492 return -EINVAL; 1493 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1494 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1495 BUG_ON(vma->vm_flags & VM_PFNMAP); 1496 vma->vm_flags |= VM_MIXEDMAP; 1497 } 1498 return insert_page(vma, addr, page, vma->vm_page_prot); 1499 } 1500 EXPORT_SYMBOL(vm_insert_page); 1501 1502 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1503 pfn_t pfn, pgprot_t prot) 1504 { 1505 struct mm_struct *mm = vma->vm_mm; 1506 int retval; 1507 pte_t *pte, entry; 1508 spinlock_t *ptl; 1509 1510 retval = -ENOMEM; 1511 pte = get_locked_pte(mm, addr, &ptl); 1512 if (!pte) 1513 goto out; 1514 retval = -EBUSY; 1515 if (!pte_none(*pte)) 1516 goto out_unlock; 1517 1518 /* Ok, finally just insert the thing.. */ 1519 if (pfn_t_devmap(pfn)) 1520 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1521 else 1522 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1523 set_pte_at(mm, addr, pte, entry); 1524 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1525 1526 retval = 0; 1527 out_unlock: 1528 pte_unmap_unlock(pte, ptl); 1529 out: 1530 return retval; 1531 } 1532 1533 /** 1534 * vm_insert_pfn - insert single pfn into user vma 1535 * @vma: user vma to map to 1536 * @addr: target user address of this page 1537 * @pfn: source kernel pfn 1538 * 1539 * Similar to vm_insert_page, this allows drivers to insert individual pages 1540 * they've allocated into a user vma. Same comments apply. 1541 * 1542 * This function should only be called from a vm_ops->fault handler, and 1543 * in that case the handler should return NULL. 1544 * 1545 * vma cannot be a COW mapping. 1546 * 1547 * As this is called only for pages that do not currently exist, we 1548 * do not need to flush old virtual caches or the TLB. 1549 */ 1550 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1551 unsigned long pfn) 1552 { 1553 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1554 } 1555 EXPORT_SYMBOL(vm_insert_pfn); 1556 1557 /** 1558 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1559 * @vma: user vma to map to 1560 * @addr: target user address of this page 1561 * @pfn: source kernel pfn 1562 * @pgprot: pgprot flags for the inserted page 1563 * 1564 * This is exactly like vm_insert_pfn, except that it allows drivers to 1565 * to override pgprot on a per-page basis. 1566 * 1567 * This only makes sense for IO mappings, and it makes no sense for 1568 * cow mappings. In general, using multiple vmas is preferable; 1569 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1570 * impractical. 1571 */ 1572 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1573 unsigned long pfn, pgprot_t pgprot) 1574 { 1575 int ret; 1576 /* 1577 * Technically, architectures with pte_special can avoid all these 1578 * restrictions (same for remap_pfn_range). However we would like 1579 * consistency in testing and feature parity among all, so we should 1580 * try to keep these invariants in place for everybody. 1581 */ 1582 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1583 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1584 (VM_PFNMAP|VM_MIXEDMAP)); 1585 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1586 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1587 1588 if (addr < vma->vm_start || addr >= vma->vm_end) 1589 return -EFAULT; 1590 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) 1591 return -EINVAL; 1592 1593 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1594 1595 return ret; 1596 } 1597 EXPORT_SYMBOL(vm_insert_pfn_prot); 1598 1599 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1600 pfn_t pfn) 1601 { 1602 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1603 1604 if (addr < vma->vm_start || addr >= vma->vm_end) 1605 return -EFAULT; 1606 1607 /* 1608 * If we don't have pte special, then we have to use the pfn_valid() 1609 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1610 * refcount the page if pfn_valid is true (hence insert_page rather 1611 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1612 * without pte special, it would there be refcounted as a normal page. 1613 */ 1614 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1615 struct page *page; 1616 1617 /* 1618 * At this point we are committed to insert_page() 1619 * regardless of whether the caller specified flags that 1620 * result in pfn_t_has_page() == false. 1621 */ 1622 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1623 return insert_page(vma, addr, page, vma->vm_page_prot); 1624 } 1625 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1626 } 1627 EXPORT_SYMBOL(vm_insert_mixed); 1628 1629 /* 1630 * maps a range of physical memory into the requested pages. the old 1631 * mappings are removed. any references to nonexistent pages results 1632 * in null mappings (currently treated as "copy-on-access") 1633 */ 1634 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1635 unsigned long addr, unsigned long end, 1636 unsigned long pfn, pgprot_t prot) 1637 { 1638 pte_t *pte; 1639 spinlock_t *ptl; 1640 1641 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1642 if (!pte) 1643 return -ENOMEM; 1644 arch_enter_lazy_mmu_mode(); 1645 do { 1646 BUG_ON(!pte_none(*pte)); 1647 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1648 pfn++; 1649 } while (pte++, addr += PAGE_SIZE, addr != end); 1650 arch_leave_lazy_mmu_mode(); 1651 pte_unmap_unlock(pte - 1, ptl); 1652 return 0; 1653 } 1654 1655 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1656 unsigned long addr, unsigned long end, 1657 unsigned long pfn, pgprot_t prot) 1658 { 1659 pmd_t *pmd; 1660 unsigned long next; 1661 1662 pfn -= addr >> PAGE_SHIFT; 1663 pmd = pmd_alloc(mm, pud, addr); 1664 if (!pmd) 1665 return -ENOMEM; 1666 VM_BUG_ON(pmd_trans_huge(*pmd)); 1667 do { 1668 next = pmd_addr_end(addr, end); 1669 if (remap_pte_range(mm, pmd, addr, next, 1670 pfn + (addr >> PAGE_SHIFT), prot)) 1671 return -ENOMEM; 1672 } while (pmd++, addr = next, addr != end); 1673 return 0; 1674 } 1675 1676 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1677 unsigned long addr, unsigned long end, 1678 unsigned long pfn, pgprot_t prot) 1679 { 1680 pud_t *pud; 1681 unsigned long next; 1682 1683 pfn -= addr >> PAGE_SHIFT; 1684 pud = pud_alloc(mm, pgd, addr); 1685 if (!pud) 1686 return -ENOMEM; 1687 do { 1688 next = pud_addr_end(addr, end); 1689 if (remap_pmd_range(mm, pud, addr, next, 1690 pfn + (addr >> PAGE_SHIFT), prot)) 1691 return -ENOMEM; 1692 } while (pud++, addr = next, addr != end); 1693 return 0; 1694 } 1695 1696 /** 1697 * remap_pfn_range - remap kernel memory to userspace 1698 * @vma: user vma to map to 1699 * @addr: target user address to start at 1700 * @pfn: physical address of kernel memory 1701 * @size: size of map area 1702 * @prot: page protection flags for this mapping 1703 * 1704 * Note: this is only safe if the mm semaphore is held when called. 1705 */ 1706 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1707 unsigned long pfn, unsigned long size, pgprot_t prot) 1708 { 1709 pgd_t *pgd; 1710 unsigned long next; 1711 unsigned long end = addr + PAGE_ALIGN(size); 1712 struct mm_struct *mm = vma->vm_mm; 1713 int err; 1714 1715 /* 1716 * Physically remapped pages are special. Tell the 1717 * rest of the world about it: 1718 * VM_IO tells people not to look at these pages 1719 * (accesses can have side effects). 1720 * VM_PFNMAP tells the core MM that the base pages are just 1721 * raw PFN mappings, and do not have a "struct page" associated 1722 * with them. 1723 * VM_DONTEXPAND 1724 * Disable vma merging and expanding with mremap(). 1725 * VM_DONTDUMP 1726 * Omit vma from core dump, even when VM_IO turned off. 1727 * 1728 * There's a horrible special case to handle copy-on-write 1729 * behaviour that some programs depend on. We mark the "original" 1730 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1731 * See vm_normal_page() for details. 1732 */ 1733 if (is_cow_mapping(vma->vm_flags)) { 1734 if (addr != vma->vm_start || end != vma->vm_end) 1735 return -EINVAL; 1736 vma->vm_pgoff = pfn; 1737 } 1738 1739 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1740 if (err) 1741 return -EINVAL; 1742 1743 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1744 1745 BUG_ON(addr >= end); 1746 pfn -= addr >> PAGE_SHIFT; 1747 pgd = pgd_offset(mm, addr); 1748 flush_cache_range(vma, addr, end); 1749 do { 1750 next = pgd_addr_end(addr, end); 1751 err = remap_pud_range(mm, pgd, addr, next, 1752 pfn + (addr >> PAGE_SHIFT), prot); 1753 if (err) 1754 break; 1755 } while (pgd++, addr = next, addr != end); 1756 1757 if (err) 1758 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1759 1760 return err; 1761 } 1762 EXPORT_SYMBOL(remap_pfn_range); 1763 1764 /** 1765 * vm_iomap_memory - remap memory to userspace 1766 * @vma: user vma to map to 1767 * @start: start of area 1768 * @len: size of area 1769 * 1770 * This is a simplified io_remap_pfn_range() for common driver use. The 1771 * driver just needs to give us the physical memory range to be mapped, 1772 * we'll figure out the rest from the vma information. 1773 * 1774 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1775 * whatever write-combining details or similar. 1776 */ 1777 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1778 { 1779 unsigned long vm_len, pfn, pages; 1780 1781 /* Check that the physical memory area passed in looks valid */ 1782 if (start + len < start) 1783 return -EINVAL; 1784 /* 1785 * You *really* shouldn't map things that aren't page-aligned, 1786 * but we've historically allowed it because IO memory might 1787 * just have smaller alignment. 1788 */ 1789 len += start & ~PAGE_MASK; 1790 pfn = start >> PAGE_SHIFT; 1791 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1792 if (pfn + pages < pfn) 1793 return -EINVAL; 1794 1795 /* We start the mapping 'vm_pgoff' pages into the area */ 1796 if (vma->vm_pgoff > pages) 1797 return -EINVAL; 1798 pfn += vma->vm_pgoff; 1799 pages -= vma->vm_pgoff; 1800 1801 /* Can we fit all of the mapping? */ 1802 vm_len = vma->vm_end - vma->vm_start; 1803 if (vm_len >> PAGE_SHIFT > pages) 1804 return -EINVAL; 1805 1806 /* Ok, let it rip */ 1807 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1808 } 1809 EXPORT_SYMBOL(vm_iomap_memory); 1810 1811 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1812 unsigned long addr, unsigned long end, 1813 pte_fn_t fn, void *data) 1814 { 1815 pte_t *pte; 1816 int err; 1817 pgtable_t token; 1818 spinlock_t *uninitialized_var(ptl); 1819 1820 pte = (mm == &init_mm) ? 1821 pte_alloc_kernel(pmd, addr) : 1822 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1823 if (!pte) 1824 return -ENOMEM; 1825 1826 BUG_ON(pmd_huge(*pmd)); 1827 1828 arch_enter_lazy_mmu_mode(); 1829 1830 token = pmd_pgtable(*pmd); 1831 1832 do { 1833 err = fn(pte++, token, addr, data); 1834 if (err) 1835 break; 1836 } while (addr += PAGE_SIZE, addr != end); 1837 1838 arch_leave_lazy_mmu_mode(); 1839 1840 if (mm != &init_mm) 1841 pte_unmap_unlock(pte-1, ptl); 1842 return err; 1843 } 1844 1845 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1846 unsigned long addr, unsigned long end, 1847 pte_fn_t fn, void *data) 1848 { 1849 pmd_t *pmd; 1850 unsigned long next; 1851 int err; 1852 1853 BUG_ON(pud_huge(*pud)); 1854 1855 pmd = pmd_alloc(mm, pud, addr); 1856 if (!pmd) 1857 return -ENOMEM; 1858 do { 1859 next = pmd_addr_end(addr, end); 1860 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1861 if (err) 1862 break; 1863 } while (pmd++, addr = next, addr != end); 1864 return err; 1865 } 1866 1867 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1868 unsigned long addr, unsigned long end, 1869 pte_fn_t fn, void *data) 1870 { 1871 pud_t *pud; 1872 unsigned long next; 1873 int err; 1874 1875 pud = pud_alloc(mm, pgd, addr); 1876 if (!pud) 1877 return -ENOMEM; 1878 do { 1879 next = pud_addr_end(addr, end); 1880 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1881 if (err) 1882 break; 1883 } while (pud++, addr = next, addr != end); 1884 return err; 1885 } 1886 1887 /* 1888 * Scan a region of virtual memory, filling in page tables as necessary 1889 * and calling a provided function on each leaf page table. 1890 */ 1891 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1892 unsigned long size, pte_fn_t fn, void *data) 1893 { 1894 pgd_t *pgd; 1895 unsigned long next; 1896 unsigned long end = addr + size; 1897 int err; 1898 1899 if (WARN_ON(addr >= end)) 1900 return -EINVAL; 1901 1902 pgd = pgd_offset(mm, addr); 1903 do { 1904 next = pgd_addr_end(addr, end); 1905 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1906 if (err) 1907 break; 1908 } while (pgd++, addr = next, addr != end); 1909 1910 return err; 1911 } 1912 EXPORT_SYMBOL_GPL(apply_to_page_range); 1913 1914 /* 1915 * handle_pte_fault chooses page fault handler according to an entry which was 1916 * read non-atomically. Before making any commitment, on those architectures 1917 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1918 * parts, do_swap_page must check under lock before unmapping the pte and 1919 * proceeding (but do_wp_page is only called after already making such a check; 1920 * and do_anonymous_page can safely check later on). 1921 */ 1922 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1923 pte_t *page_table, pte_t orig_pte) 1924 { 1925 int same = 1; 1926 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1927 if (sizeof(pte_t) > sizeof(unsigned long)) { 1928 spinlock_t *ptl = pte_lockptr(mm, pmd); 1929 spin_lock(ptl); 1930 same = pte_same(*page_table, orig_pte); 1931 spin_unlock(ptl); 1932 } 1933 #endif 1934 pte_unmap(page_table); 1935 return same; 1936 } 1937 1938 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1939 { 1940 debug_dma_assert_idle(src); 1941 1942 /* 1943 * If the source page was a PFN mapping, we don't have 1944 * a "struct page" for it. We do a best-effort copy by 1945 * just copying from the original user address. If that 1946 * fails, we just zero-fill it. Live with it. 1947 */ 1948 if (unlikely(!src)) { 1949 void *kaddr = kmap_atomic(dst); 1950 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1951 1952 /* 1953 * This really shouldn't fail, because the page is there 1954 * in the page tables. But it might just be unreadable, 1955 * in which case we just give up and fill the result with 1956 * zeroes. 1957 */ 1958 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1959 clear_page(kaddr); 1960 kunmap_atomic(kaddr); 1961 flush_dcache_page(dst); 1962 } else 1963 copy_user_highpage(dst, src, va, vma); 1964 } 1965 1966 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 1967 { 1968 struct file *vm_file = vma->vm_file; 1969 1970 if (vm_file) 1971 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 1972 1973 /* 1974 * Special mappings (e.g. VDSO) do not have any file so fake 1975 * a default GFP_KERNEL for them. 1976 */ 1977 return GFP_KERNEL; 1978 } 1979 1980 /* 1981 * Notify the address space that the page is about to become writable so that 1982 * it can prohibit this or wait for the page to get into an appropriate state. 1983 * 1984 * We do this without the lock held, so that it can sleep if it needs to. 1985 */ 1986 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1987 unsigned long address) 1988 { 1989 struct vm_fault vmf; 1990 int ret; 1991 1992 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 1993 vmf.pgoff = page->index; 1994 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1995 vmf.gfp_mask = __get_fault_gfp_mask(vma); 1996 vmf.page = page; 1997 vmf.cow_page = NULL; 1998 1999 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2000 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2001 return ret; 2002 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2003 lock_page(page); 2004 if (!page->mapping) { 2005 unlock_page(page); 2006 return 0; /* retry */ 2007 } 2008 ret |= VM_FAULT_LOCKED; 2009 } else 2010 VM_BUG_ON_PAGE(!PageLocked(page), page); 2011 return ret; 2012 } 2013 2014 /* 2015 * Handle write page faults for pages that can be reused in the current vma 2016 * 2017 * This can happen either due to the mapping being with the VM_SHARED flag, 2018 * or due to us being the last reference standing to the page. In either 2019 * case, all we need to do here is to mark the page as writable and update 2020 * any related book-keeping. 2021 */ 2022 static inline int wp_page_reuse(struct mm_struct *mm, 2023 struct vm_area_struct *vma, unsigned long address, 2024 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2025 struct page *page, int page_mkwrite, 2026 int dirty_shared) 2027 __releases(ptl) 2028 { 2029 pte_t entry; 2030 /* 2031 * Clear the pages cpupid information as the existing 2032 * information potentially belongs to a now completely 2033 * unrelated process. 2034 */ 2035 if (page) 2036 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2037 2038 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2039 entry = pte_mkyoung(orig_pte); 2040 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2041 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2042 update_mmu_cache(vma, address, page_table); 2043 pte_unmap_unlock(page_table, ptl); 2044 2045 if (dirty_shared) { 2046 struct address_space *mapping; 2047 int dirtied; 2048 2049 if (!page_mkwrite) 2050 lock_page(page); 2051 2052 dirtied = set_page_dirty(page); 2053 VM_BUG_ON_PAGE(PageAnon(page), page); 2054 mapping = page->mapping; 2055 unlock_page(page); 2056 page_cache_release(page); 2057 2058 if ((dirtied || page_mkwrite) && mapping) { 2059 /* 2060 * Some device drivers do not set page.mapping 2061 * but still dirty their pages 2062 */ 2063 balance_dirty_pages_ratelimited(mapping); 2064 } 2065 2066 if (!page_mkwrite) 2067 file_update_time(vma->vm_file); 2068 } 2069 2070 return VM_FAULT_WRITE; 2071 } 2072 2073 /* 2074 * Handle the case of a page which we actually need to copy to a new page. 2075 * 2076 * Called with mmap_sem locked and the old page referenced, but 2077 * without the ptl held. 2078 * 2079 * High level logic flow: 2080 * 2081 * - Allocate a page, copy the content of the old page to the new one. 2082 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2083 * - Take the PTL. If the pte changed, bail out and release the allocated page 2084 * - If the pte is still the way we remember it, update the page table and all 2085 * relevant references. This includes dropping the reference the page-table 2086 * held to the old page, as well as updating the rmap. 2087 * - In any case, unlock the PTL and drop the reference we took to the old page. 2088 */ 2089 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2090 unsigned long address, pte_t *page_table, pmd_t *pmd, 2091 pte_t orig_pte, struct page *old_page) 2092 { 2093 struct page *new_page = NULL; 2094 spinlock_t *ptl = NULL; 2095 pte_t entry; 2096 int page_copied = 0; 2097 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2098 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2099 struct mem_cgroup *memcg; 2100 2101 if (unlikely(anon_vma_prepare(vma))) 2102 goto oom; 2103 2104 if (is_zero_pfn(pte_pfn(orig_pte))) { 2105 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2106 if (!new_page) 2107 goto oom; 2108 } else { 2109 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2110 if (!new_page) 2111 goto oom; 2112 cow_user_page(new_page, old_page, address, vma); 2113 } 2114 2115 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2116 goto oom_free_new; 2117 2118 __SetPageUptodate(new_page); 2119 2120 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2121 2122 /* 2123 * Re-check the pte - we dropped the lock 2124 */ 2125 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2126 if (likely(pte_same(*page_table, orig_pte))) { 2127 if (old_page) { 2128 if (!PageAnon(old_page)) { 2129 dec_mm_counter_fast(mm, 2130 mm_counter_file(old_page)); 2131 inc_mm_counter_fast(mm, MM_ANONPAGES); 2132 } 2133 } else { 2134 inc_mm_counter_fast(mm, MM_ANONPAGES); 2135 } 2136 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2137 entry = mk_pte(new_page, vma->vm_page_prot); 2138 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2139 /* 2140 * Clear the pte entry and flush it first, before updating the 2141 * pte with the new entry. This will avoid a race condition 2142 * seen in the presence of one thread doing SMC and another 2143 * thread doing COW. 2144 */ 2145 ptep_clear_flush_notify(vma, address, page_table); 2146 page_add_new_anon_rmap(new_page, vma, address, false); 2147 mem_cgroup_commit_charge(new_page, memcg, false, false); 2148 lru_cache_add_active_or_unevictable(new_page, vma); 2149 /* 2150 * We call the notify macro here because, when using secondary 2151 * mmu page tables (such as kvm shadow page tables), we want the 2152 * new page to be mapped directly into the secondary page table. 2153 */ 2154 set_pte_at_notify(mm, address, page_table, entry); 2155 update_mmu_cache(vma, address, page_table); 2156 if (old_page) { 2157 /* 2158 * Only after switching the pte to the new page may 2159 * we remove the mapcount here. Otherwise another 2160 * process may come and find the rmap count decremented 2161 * before the pte is switched to the new page, and 2162 * "reuse" the old page writing into it while our pte 2163 * here still points into it and can be read by other 2164 * threads. 2165 * 2166 * The critical issue is to order this 2167 * page_remove_rmap with the ptp_clear_flush above. 2168 * Those stores are ordered by (if nothing else,) 2169 * the barrier present in the atomic_add_negative 2170 * in page_remove_rmap. 2171 * 2172 * Then the TLB flush in ptep_clear_flush ensures that 2173 * no process can access the old page before the 2174 * decremented mapcount is visible. And the old page 2175 * cannot be reused until after the decremented 2176 * mapcount is visible. So transitively, TLBs to 2177 * old page will be flushed before it can be reused. 2178 */ 2179 page_remove_rmap(old_page, false); 2180 } 2181 2182 /* Free the old page.. */ 2183 new_page = old_page; 2184 page_copied = 1; 2185 } else { 2186 mem_cgroup_cancel_charge(new_page, memcg, false); 2187 } 2188 2189 if (new_page) 2190 page_cache_release(new_page); 2191 2192 pte_unmap_unlock(page_table, ptl); 2193 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2194 if (old_page) { 2195 /* 2196 * Don't let another task, with possibly unlocked vma, 2197 * keep the mlocked page. 2198 */ 2199 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2200 lock_page(old_page); /* LRU manipulation */ 2201 if (PageMlocked(old_page)) 2202 munlock_vma_page(old_page); 2203 unlock_page(old_page); 2204 } 2205 page_cache_release(old_page); 2206 } 2207 return page_copied ? VM_FAULT_WRITE : 0; 2208 oom_free_new: 2209 page_cache_release(new_page); 2210 oom: 2211 if (old_page) 2212 page_cache_release(old_page); 2213 return VM_FAULT_OOM; 2214 } 2215 2216 /* 2217 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2218 * mapping 2219 */ 2220 static int wp_pfn_shared(struct mm_struct *mm, 2221 struct vm_area_struct *vma, unsigned long address, 2222 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2223 pmd_t *pmd) 2224 { 2225 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2226 struct vm_fault vmf = { 2227 .page = NULL, 2228 .pgoff = linear_page_index(vma, address), 2229 .virtual_address = (void __user *)(address & PAGE_MASK), 2230 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2231 }; 2232 int ret; 2233 2234 pte_unmap_unlock(page_table, ptl); 2235 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2236 if (ret & VM_FAULT_ERROR) 2237 return ret; 2238 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2239 /* 2240 * We might have raced with another page fault while we 2241 * released the pte_offset_map_lock. 2242 */ 2243 if (!pte_same(*page_table, orig_pte)) { 2244 pte_unmap_unlock(page_table, ptl); 2245 return 0; 2246 } 2247 } 2248 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2249 NULL, 0, 0); 2250 } 2251 2252 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2253 unsigned long address, pte_t *page_table, 2254 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2255 struct page *old_page) 2256 __releases(ptl) 2257 { 2258 int page_mkwrite = 0; 2259 2260 page_cache_get(old_page); 2261 2262 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2263 int tmp; 2264 2265 pte_unmap_unlock(page_table, ptl); 2266 tmp = do_page_mkwrite(vma, old_page, address); 2267 if (unlikely(!tmp || (tmp & 2268 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2269 page_cache_release(old_page); 2270 return tmp; 2271 } 2272 /* 2273 * Since we dropped the lock we need to revalidate 2274 * the PTE as someone else may have changed it. If 2275 * they did, we just return, as we can count on the 2276 * MMU to tell us if they didn't also make it writable. 2277 */ 2278 page_table = pte_offset_map_lock(mm, pmd, address, 2279 &ptl); 2280 if (!pte_same(*page_table, orig_pte)) { 2281 unlock_page(old_page); 2282 pte_unmap_unlock(page_table, ptl); 2283 page_cache_release(old_page); 2284 return 0; 2285 } 2286 page_mkwrite = 1; 2287 } 2288 2289 return wp_page_reuse(mm, vma, address, page_table, ptl, 2290 orig_pte, old_page, page_mkwrite, 1); 2291 } 2292 2293 /* 2294 * This routine handles present pages, when users try to write 2295 * to a shared page. It is done by copying the page to a new address 2296 * and decrementing the shared-page counter for the old page. 2297 * 2298 * Note that this routine assumes that the protection checks have been 2299 * done by the caller (the low-level page fault routine in most cases). 2300 * Thus we can safely just mark it writable once we've done any necessary 2301 * COW. 2302 * 2303 * We also mark the page dirty at this point even though the page will 2304 * change only once the write actually happens. This avoids a few races, 2305 * and potentially makes it more efficient. 2306 * 2307 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2308 * but allow concurrent faults), with pte both mapped and locked. 2309 * We return with mmap_sem still held, but pte unmapped and unlocked. 2310 */ 2311 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2312 unsigned long address, pte_t *page_table, pmd_t *pmd, 2313 spinlock_t *ptl, pte_t orig_pte) 2314 __releases(ptl) 2315 { 2316 struct page *old_page; 2317 2318 old_page = vm_normal_page(vma, address, orig_pte); 2319 if (!old_page) { 2320 /* 2321 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2322 * VM_PFNMAP VMA. 2323 * 2324 * We should not cow pages in a shared writeable mapping. 2325 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2326 */ 2327 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2328 (VM_WRITE|VM_SHARED)) 2329 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2330 orig_pte, pmd); 2331 2332 pte_unmap_unlock(page_table, ptl); 2333 return wp_page_copy(mm, vma, address, page_table, pmd, 2334 orig_pte, old_page); 2335 } 2336 2337 /* 2338 * Take out anonymous pages first, anonymous shared vmas are 2339 * not dirty accountable. 2340 */ 2341 if (PageAnon(old_page) && !PageKsm(old_page)) { 2342 if (!trylock_page(old_page)) { 2343 page_cache_get(old_page); 2344 pte_unmap_unlock(page_table, ptl); 2345 lock_page(old_page); 2346 page_table = pte_offset_map_lock(mm, pmd, address, 2347 &ptl); 2348 if (!pte_same(*page_table, orig_pte)) { 2349 unlock_page(old_page); 2350 pte_unmap_unlock(page_table, ptl); 2351 page_cache_release(old_page); 2352 return 0; 2353 } 2354 page_cache_release(old_page); 2355 } 2356 if (reuse_swap_page(old_page)) { 2357 /* 2358 * The page is all ours. Move it to our anon_vma so 2359 * the rmap code will not search our parent or siblings. 2360 * Protected against the rmap code by the page lock. 2361 */ 2362 page_move_anon_rmap(old_page, vma, address); 2363 unlock_page(old_page); 2364 return wp_page_reuse(mm, vma, address, page_table, ptl, 2365 orig_pte, old_page, 0, 0); 2366 } 2367 unlock_page(old_page); 2368 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2369 (VM_WRITE|VM_SHARED))) { 2370 return wp_page_shared(mm, vma, address, page_table, pmd, 2371 ptl, orig_pte, old_page); 2372 } 2373 2374 /* 2375 * Ok, we need to copy. Oh, well.. 2376 */ 2377 page_cache_get(old_page); 2378 2379 pte_unmap_unlock(page_table, ptl); 2380 return wp_page_copy(mm, vma, address, page_table, pmd, 2381 orig_pte, old_page); 2382 } 2383 2384 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2385 unsigned long start_addr, unsigned long end_addr, 2386 struct zap_details *details) 2387 { 2388 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2389 } 2390 2391 static inline void unmap_mapping_range_tree(struct rb_root *root, 2392 struct zap_details *details) 2393 { 2394 struct vm_area_struct *vma; 2395 pgoff_t vba, vea, zba, zea; 2396 2397 vma_interval_tree_foreach(vma, root, 2398 details->first_index, details->last_index) { 2399 2400 vba = vma->vm_pgoff; 2401 vea = vba + vma_pages(vma) - 1; 2402 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2403 zba = details->first_index; 2404 if (zba < vba) 2405 zba = vba; 2406 zea = details->last_index; 2407 if (zea > vea) 2408 zea = vea; 2409 2410 unmap_mapping_range_vma(vma, 2411 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2412 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2413 details); 2414 } 2415 } 2416 2417 /** 2418 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2419 * address_space corresponding to the specified page range in the underlying 2420 * file. 2421 * 2422 * @mapping: the address space containing mmaps to be unmapped. 2423 * @holebegin: byte in first page to unmap, relative to the start of 2424 * the underlying file. This will be rounded down to a PAGE_SIZE 2425 * boundary. Note that this is different from truncate_pagecache(), which 2426 * must keep the partial page. In contrast, we must get rid of 2427 * partial pages. 2428 * @holelen: size of prospective hole in bytes. This will be rounded 2429 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2430 * end of the file. 2431 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2432 * but 0 when invalidating pagecache, don't throw away private data. 2433 */ 2434 void unmap_mapping_range(struct address_space *mapping, 2435 loff_t const holebegin, loff_t const holelen, int even_cows) 2436 { 2437 struct zap_details details; 2438 pgoff_t hba = holebegin >> PAGE_SHIFT; 2439 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2440 2441 /* Check for overflow. */ 2442 if (sizeof(holelen) > sizeof(hlen)) { 2443 long long holeend = 2444 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2445 if (holeend & ~(long long)ULONG_MAX) 2446 hlen = ULONG_MAX - hba + 1; 2447 } 2448 2449 details.check_mapping = even_cows? NULL: mapping; 2450 details.first_index = hba; 2451 details.last_index = hba + hlen - 1; 2452 if (details.last_index < details.first_index) 2453 details.last_index = ULONG_MAX; 2454 2455 2456 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */ 2457 i_mmap_lock_write(mapping); 2458 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2459 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2460 i_mmap_unlock_write(mapping); 2461 } 2462 EXPORT_SYMBOL(unmap_mapping_range); 2463 2464 /* 2465 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2466 * but allow concurrent faults), and pte mapped but not yet locked. 2467 * We return with pte unmapped and unlocked. 2468 * 2469 * We return with the mmap_sem locked or unlocked in the same cases 2470 * as does filemap_fault(). 2471 */ 2472 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2473 unsigned long address, pte_t *page_table, pmd_t *pmd, 2474 unsigned int flags, pte_t orig_pte) 2475 { 2476 spinlock_t *ptl; 2477 struct page *page, *swapcache; 2478 struct mem_cgroup *memcg; 2479 swp_entry_t entry; 2480 pte_t pte; 2481 int locked; 2482 int exclusive = 0; 2483 int ret = 0; 2484 2485 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2486 goto out; 2487 2488 entry = pte_to_swp_entry(orig_pte); 2489 if (unlikely(non_swap_entry(entry))) { 2490 if (is_migration_entry(entry)) { 2491 migration_entry_wait(mm, pmd, address); 2492 } else if (is_hwpoison_entry(entry)) { 2493 ret = VM_FAULT_HWPOISON; 2494 } else { 2495 print_bad_pte(vma, address, orig_pte, NULL); 2496 ret = VM_FAULT_SIGBUS; 2497 } 2498 goto out; 2499 } 2500 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2501 page = lookup_swap_cache(entry); 2502 if (!page) { 2503 page = swapin_readahead(entry, 2504 GFP_HIGHUSER_MOVABLE, vma, address); 2505 if (!page) { 2506 /* 2507 * Back out if somebody else faulted in this pte 2508 * while we released the pte lock. 2509 */ 2510 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2511 if (likely(pte_same(*page_table, orig_pte))) 2512 ret = VM_FAULT_OOM; 2513 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2514 goto unlock; 2515 } 2516 2517 /* Had to read the page from swap area: Major fault */ 2518 ret = VM_FAULT_MAJOR; 2519 count_vm_event(PGMAJFAULT); 2520 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2521 } else if (PageHWPoison(page)) { 2522 /* 2523 * hwpoisoned dirty swapcache pages are kept for killing 2524 * owner processes (which may be unknown at hwpoison time) 2525 */ 2526 ret = VM_FAULT_HWPOISON; 2527 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2528 swapcache = page; 2529 goto out_release; 2530 } 2531 2532 swapcache = page; 2533 locked = lock_page_or_retry(page, mm, flags); 2534 2535 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2536 if (!locked) { 2537 ret |= VM_FAULT_RETRY; 2538 goto out_release; 2539 } 2540 2541 /* 2542 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2543 * release the swapcache from under us. The page pin, and pte_same 2544 * test below, are not enough to exclude that. Even if it is still 2545 * swapcache, we need to check that the page's swap has not changed. 2546 */ 2547 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2548 goto out_page; 2549 2550 page = ksm_might_need_to_copy(page, vma, address); 2551 if (unlikely(!page)) { 2552 ret = VM_FAULT_OOM; 2553 page = swapcache; 2554 goto out_page; 2555 } 2556 2557 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) { 2558 ret = VM_FAULT_OOM; 2559 goto out_page; 2560 } 2561 2562 /* 2563 * Back out if somebody else already faulted in this pte. 2564 */ 2565 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2566 if (unlikely(!pte_same(*page_table, orig_pte))) 2567 goto out_nomap; 2568 2569 if (unlikely(!PageUptodate(page))) { 2570 ret = VM_FAULT_SIGBUS; 2571 goto out_nomap; 2572 } 2573 2574 /* 2575 * The page isn't present yet, go ahead with the fault. 2576 * 2577 * Be careful about the sequence of operations here. 2578 * To get its accounting right, reuse_swap_page() must be called 2579 * while the page is counted on swap but not yet in mapcount i.e. 2580 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2581 * must be called after the swap_free(), or it will never succeed. 2582 */ 2583 2584 inc_mm_counter_fast(mm, MM_ANONPAGES); 2585 dec_mm_counter_fast(mm, MM_SWAPENTS); 2586 pte = mk_pte(page, vma->vm_page_prot); 2587 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2588 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2589 flags &= ~FAULT_FLAG_WRITE; 2590 ret |= VM_FAULT_WRITE; 2591 exclusive = RMAP_EXCLUSIVE; 2592 } 2593 flush_icache_page(vma, page); 2594 if (pte_swp_soft_dirty(orig_pte)) 2595 pte = pte_mksoft_dirty(pte); 2596 set_pte_at(mm, address, page_table, pte); 2597 if (page == swapcache) { 2598 do_page_add_anon_rmap(page, vma, address, exclusive); 2599 mem_cgroup_commit_charge(page, memcg, true, false); 2600 } else { /* ksm created a completely new copy */ 2601 page_add_new_anon_rmap(page, vma, address, false); 2602 mem_cgroup_commit_charge(page, memcg, false, false); 2603 lru_cache_add_active_or_unevictable(page, vma); 2604 } 2605 2606 swap_free(entry); 2607 if (mem_cgroup_swap_full(page) || 2608 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2609 try_to_free_swap(page); 2610 unlock_page(page); 2611 if (page != swapcache) { 2612 /* 2613 * Hold the lock to avoid the swap entry to be reused 2614 * until we take the PT lock for the pte_same() check 2615 * (to avoid false positives from pte_same). For 2616 * further safety release the lock after the swap_free 2617 * so that the swap count won't change under a 2618 * parallel locked swapcache. 2619 */ 2620 unlock_page(swapcache); 2621 page_cache_release(swapcache); 2622 } 2623 2624 if (flags & FAULT_FLAG_WRITE) { 2625 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2626 if (ret & VM_FAULT_ERROR) 2627 ret &= VM_FAULT_ERROR; 2628 goto out; 2629 } 2630 2631 /* No need to invalidate - it was non-present before */ 2632 update_mmu_cache(vma, address, page_table); 2633 unlock: 2634 pte_unmap_unlock(page_table, ptl); 2635 out: 2636 return ret; 2637 out_nomap: 2638 mem_cgroup_cancel_charge(page, memcg, false); 2639 pte_unmap_unlock(page_table, ptl); 2640 out_page: 2641 unlock_page(page); 2642 out_release: 2643 page_cache_release(page); 2644 if (page != swapcache) { 2645 unlock_page(swapcache); 2646 page_cache_release(swapcache); 2647 } 2648 return ret; 2649 } 2650 2651 /* 2652 * This is like a special single-page "expand_{down|up}wards()", 2653 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2654 * doesn't hit another vma. 2655 */ 2656 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2657 { 2658 address &= PAGE_MASK; 2659 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2660 struct vm_area_struct *prev = vma->vm_prev; 2661 2662 /* 2663 * Is there a mapping abutting this one below? 2664 * 2665 * That's only ok if it's the same stack mapping 2666 * that has gotten split.. 2667 */ 2668 if (prev && prev->vm_end == address) 2669 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2670 2671 return expand_downwards(vma, address - PAGE_SIZE); 2672 } 2673 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2674 struct vm_area_struct *next = vma->vm_next; 2675 2676 /* As VM_GROWSDOWN but s/below/above/ */ 2677 if (next && next->vm_start == address + PAGE_SIZE) 2678 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2679 2680 return expand_upwards(vma, address + PAGE_SIZE); 2681 } 2682 return 0; 2683 } 2684 2685 /* 2686 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2687 * but allow concurrent faults), and pte mapped but not yet locked. 2688 * We return with mmap_sem still held, but pte unmapped and unlocked. 2689 */ 2690 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2691 unsigned long address, pte_t *page_table, pmd_t *pmd, 2692 unsigned int flags) 2693 { 2694 struct mem_cgroup *memcg; 2695 struct page *page; 2696 spinlock_t *ptl; 2697 pte_t entry; 2698 2699 pte_unmap(page_table); 2700 2701 /* File mapping without ->vm_ops ? */ 2702 if (vma->vm_flags & VM_SHARED) 2703 return VM_FAULT_SIGBUS; 2704 2705 /* Check if we need to add a guard page to the stack */ 2706 if (check_stack_guard_page(vma, address) < 0) 2707 return VM_FAULT_SIGSEGV; 2708 2709 /* Use the zero-page for reads */ 2710 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2711 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2712 vma->vm_page_prot)); 2713 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2714 if (!pte_none(*page_table)) 2715 goto unlock; 2716 /* Deliver the page fault to userland, check inside PT lock */ 2717 if (userfaultfd_missing(vma)) { 2718 pte_unmap_unlock(page_table, ptl); 2719 return handle_userfault(vma, address, flags, 2720 VM_UFFD_MISSING); 2721 } 2722 goto setpte; 2723 } 2724 2725 /* Allocate our own private page. */ 2726 if (unlikely(anon_vma_prepare(vma))) 2727 goto oom; 2728 page = alloc_zeroed_user_highpage_movable(vma, address); 2729 if (!page) 2730 goto oom; 2731 2732 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) 2733 goto oom_free_page; 2734 2735 /* 2736 * The memory barrier inside __SetPageUptodate makes sure that 2737 * preceeding stores to the page contents become visible before 2738 * the set_pte_at() write. 2739 */ 2740 __SetPageUptodate(page); 2741 2742 entry = mk_pte(page, vma->vm_page_prot); 2743 if (vma->vm_flags & VM_WRITE) 2744 entry = pte_mkwrite(pte_mkdirty(entry)); 2745 2746 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2747 if (!pte_none(*page_table)) 2748 goto release; 2749 2750 /* Deliver the page fault to userland, check inside PT lock */ 2751 if (userfaultfd_missing(vma)) { 2752 pte_unmap_unlock(page_table, ptl); 2753 mem_cgroup_cancel_charge(page, memcg, false); 2754 page_cache_release(page); 2755 return handle_userfault(vma, address, flags, 2756 VM_UFFD_MISSING); 2757 } 2758 2759 inc_mm_counter_fast(mm, MM_ANONPAGES); 2760 page_add_new_anon_rmap(page, vma, address, false); 2761 mem_cgroup_commit_charge(page, memcg, false, false); 2762 lru_cache_add_active_or_unevictable(page, vma); 2763 setpte: 2764 set_pte_at(mm, address, page_table, entry); 2765 2766 /* No need to invalidate - it was non-present before */ 2767 update_mmu_cache(vma, address, page_table); 2768 unlock: 2769 pte_unmap_unlock(page_table, ptl); 2770 return 0; 2771 release: 2772 mem_cgroup_cancel_charge(page, memcg, false); 2773 page_cache_release(page); 2774 goto unlock; 2775 oom_free_page: 2776 page_cache_release(page); 2777 oom: 2778 return VM_FAULT_OOM; 2779 } 2780 2781 /* 2782 * The mmap_sem must have been held on entry, and may have been 2783 * released depending on flags and vma->vm_ops->fault() return value. 2784 * See filemap_fault() and __lock_page_retry(). 2785 */ 2786 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2787 pgoff_t pgoff, unsigned int flags, 2788 struct page *cow_page, struct page **page) 2789 { 2790 struct vm_fault vmf; 2791 int ret; 2792 2793 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2794 vmf.pgoff = pgoff; 2795 vmf.flags = flags; 2796 vmf.page = NULL; 2797 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2798 vmf.cow_page = cow_page; 2799 2800 ret = vma->vm_ops->fault(vma, &vmf); 2801 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2802 return ret; 2803 if (!vmf.page) 2804 goto out; 2805 2806 if (unlikely(PageHWPoison(vmf.page))) { 2807 if (ret & VM_FAULT_LOCKED) 2808 unlock_page(vmf.page); 2809 page_cache_release(vmf.page); 2810 return VM_FAULT_HWPOISON; 2811 } 2812 2813 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2814 lock_page(vmf.page); 2815 else 2816 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2817 2818 out: 2819 *page = vmf.page; 2820 return ret; 2821 } 2822 2823 /** 2824 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2825 * 2826 * @vma: virtual memory area 2827 * @address: user virtual address 2828 * @page: page to map 2829 * @pte: pointer to target page table entry 2830 * @write: true, if new entry is writable 2831 * @anon: true, if it's anonymous page 2832 * 2833 * Caller must hold page table lock relevant for @pte. 2834 * 2835 * Target users are page handler itself and implementations of 2836 * vm_ops->map_pages. 2837 */ 2838 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2839 struct page *page, pte_t *pte, bool write, bool anon) 2840 { 2841 pte_t entry; 2842 2843 flush_icache_page(vma, page); 2844 entry = mk_pte(page, vma->vm_page_prot); 2845 if (write) 2846 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2847 if (anon) { 2848 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2849 page_add_new_anon_rmap(page, vma, address, false); 2850 } else { 2851 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 2852 page_add_file_rmap(page); 2853 } 2854 set_pte_at(vma->vm_mm, address, pte, entry); 2855 2856 /* no need to invalidate: a not-present page won't be cached */ 2857 update_mmu_cache(vma, address, pte); 2858 } 2859 2860 static unsigned long fault_around_bytes __read_mostly = 2861 rounddown_pow_of_two(65536); 2862 2863 #ifdef CONFIG_DEBUG_FS 2864 static int fault_around_bytes_get(void *data, u64 *val) 2865 { 2866 *val = fault_around_bytes; 2867 return 0; 2868 } 2869 2870 /* 2871 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2872 * rounded down to nearest page order. It's what do_fault_around() expects to 2873 * see. 2874 */ 2875 static int fault_around_bytes_set(void *data, u64 val) 2876 { 2877 if (val / PAGE_SIZE > PTRS_PER_PTE) 2878 return -EINVAL; 2879 if (val > PAGE_SIZE) 2880 fault_around_bytes = rounddown_pow_of_two(val); 2881 else 2882 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2883 return 0; 2884 } 2885 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2886 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2887 2888 static int __init fault_around_debugfs(void) 2889 { 2890 void *ret; 2891 2892 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2893 &fault_around_bytes_fops); 2894 if (!ret) 2895 pr_warn("Failed to create fault_around_bytes in debugfs"); 2896 return 0; 2897 } 2898 late_initcall(fault_around_debugfs); 2899 #endif 2900 2901 /* 2902 * do_fault_around() tries to map few pages around the fault address. The hope 2903 * is that the pages will be needed soon and this will lower the number of 2904 * faults to handle. 2905 * 2906 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2907 * not ready to be mapped: not up-to-date, locked, etc. 2908 * 2909 * This function is called with the page table lock taken. In the split ptlock 2910 * case the page table lock only protects only those entries which belong to 2911 * the page table corresponding to the fault address. 2912 * 2913 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2914 * only once. 2915 * 2916 * fault_around_pages() defines how many pages we'll try to map. 2917 * do_fault_around() expects it to return a power of two less than or equal to 2918 * PTRS_PER_PTE. 2919 * 2920 * The virtual address of the area that we map is naturally aligned to the 2921 * fault_around_pages() value (and therefore to page order). This way it's 2922 * easier to guarantee that we don't cross page table boundaries. 2923 */ 2924 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2925 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2926 { 2927 unsigned long start_addr, nr_pages, mask; 2928 pgoff_t max_pgoff; 2929 struct vm_fault vmf; 2930 int off; 2931 2932 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2933 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2934 2935 start_addr = max(address & mask, vma->vm_start); 2936 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2937 pte -= off; 2938 pgoff -= off; 2939 2940 /* 2941 * max_pgoff is either end of page table or end of vma 2942 * or fault_around_pages() from pgoff, depending what is nearest. 2943 */ 2944 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2945 PTRS_PER_PTE - 1; 2946 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2947 pgoff + nr_pages - 1); 2948 2949 /* Check if it makes any sense to call ->map_pages */ 2950 while (!pte_none(*pte)) { 2951 if (++pgoff > max_pgoff) 2952 return; 2953 start_addr += PAGE_SIZE; 2954 if (start_addr >= vma->vm_end) 2955 return; 2956 pte++; 2957 } 2958 2959 vmf.virtual_address = (void __user *) start_addr; 2960 vmf.pte = pte; 2961 vmf.pgoff = pgoff; 2962 vmf.max_pgoff = max_pgoff; 2963 vmf.flags = flags; 2964 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2965 vma->vm_ops->map_pages(vma, &vmf); 2966 } 2967 2968 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2969 unsigned long address, pmd_t *pmd, 2970 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2971 { 2972 struct page *fault_page; 2973 spinlock_t *ptl; 2974 pte_t *pte; 2975 int ret = 0; 2976 2977 /* 2978 * Let's call ->map_pages() first and use ->fault() as fallback 2979 * if page by the offset is not ready to be mapped (cold cache or 2980 * something). 2981 */ 2982 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 2983 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2984 do_fault_around(vma, address, pte, pgoff, flags); 2985 if (!pte_same(*pte, orig_pte)) 2986 goto unlock_out; 2987 pte_unmap_unlock(pte, ptl); 2988 } 2989 2990 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 2991 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2992 return ret; 2993 2994 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2995 if (unlikely(!pte_same(*pte, orig_pte))) { 2996 pte_unmap_unlock(pte, ptl); 2997 unlock_page(fault_page); 2998 page_cache_release(fault_page); 2999 return ret; 3000 } 3001 do_set_pte(vma, address, fault_page, pte, false, false); 3002 unlock_page(fault_page); 3003 unlock_out: 3004 pte_unmap_unlock(pte, ptl); 3005 return ret; 3006 } 3007 3008 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3009 unsigned long address, pmd_t *pmd, 3010 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3011 { 3012 struct page *fault_page, *new_page; 3013 struct mem_cgroup *memcg; 3014 spinlock_t *ptl; 3015 pte_t *pte; 3016 int ret; 3017 3018 if (unlikely(anon_vma_prepare(vma))) 3019 return VM_FAULT_OOM; 3020 3021 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3022 if (!new_page) 3023 return VM_FAULT_OOM; 3024 3025 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) { 3026 page_cache_release(new_page); 3027 return VM_FAULT_OOM; 3028 } 3029 3030 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page); 3031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3032 goto uncharge_out; 3033 3034 if (fault_page) 3035 copy_user_highpage(new_page, fault_page, address, vma); 3036 __SetPageUptodate(new_page); 3037 3038 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3039 if (unlikely(!pte_same(*pte, orig_pte))) { 3040 pte_unmap_unlock(pte, ptl); 3041 if (fault_page) { 3042 unlock_page(fault_page); 3043 page_cache_release(fault_page); 3044 } else { 3045 /* 3046 * The fault handler has no page to lock, so it holds 3047 * i_mmap_lock for read to protect against truncate. 3048 */ 3049 i_mmap_unlock_read(vma->vm_file->f_mapping); 3050 } 3051 goto uncharge_out; 3052 } 3053 do_set_pte(vma, address, new_page, pte, true, true); 3054 mem_cgroup_commit_charge(new_page, memcg, false, false); 3055 lru_cache_add_active_or_unevictable(new_page, vma); 3056 pte_unmap_unlock(pte, ptl); 3057 if (fault_page) { 3058 unlock_page(fault_page); 3059 page_cache_release(fault_page); 3060 } else { 3061 /* 3062 * The fault handler has no page to lock, so it holds 3063 * i_mmap_lock for read to protect against truncate. 3064 */ 3065 i_mmap_unlock_read(vma->vm_file->f_mapping); 3066 } 3067 return ret; 3068 uncharge_out: 3069 mem_cgroup_cancel_charge(new_page, memcg, false); 3070 page_cache_release(new_page); 3071 return ret; 3072 } 3073 3074 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3075 unsigned long address, pmd_t *pmd, 3076 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3077 { 3078 struct page *fault_page; 3079 struct address_space *mapping; 3080 spinlock_t *ptl; 3081 pte_t *pte; 3082 int dirtied = 0; 3083 int ret, tmp; 3084 3085 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3086 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3087 return ret; 3088 3089 /* 3090 * Check if the backing address space wants to know that the page is 3091 * about to become writable 3092 */ 3093 if (vma->vm_ops->page_mkwrite) { 3094 unlock_page(fault_page); 3095 tmp = do_page_mkwrite(vma, fault_page, address); 3096 if (unlikely(!tmp || 3097 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3098 page_cache_release(fault_page); 3099 return tmp; 3100 } 3101 } 3102 3103 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3104 if (unlikely(!pte_same(*pte, orig_pte))) { 3105 pte_unmap_unlock(pte, ptl); 3106 unlock_page(fault_page); 3107 page_cache_release(fault_page); 3108 return ret; 3109 } 3110 do_set_pte(vma, address, fault_page, pte, true, false); 3111 pte_unmap_unlock(pte, ptl); 3112 3113 if (set_page_dirty(fault_page)) 3114 dirtied = 1; 3115 /* 3116 * Take a local copy of the address_space - page.mapping may be zeroed 3117 * by truncate after unlock_page(). The address_space itself remains 3118 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3119 * release semantics to prevent the compiler from undoing this copying. 3120 */ 3121 mapping = page_rmapping(fault_page); 3122 unlock_page(fault_page); 3123 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3124 /* 3125 * Some device drivers do not set page.mapping but still 3126 * dirty their pages 3127 */ 3128 balance_dirty_pages_ratelimited(mapping); 3129 } 3130 3131 if (!vma->vm_ops->page_mkwrite) 3132 file_update_time(vma->vm_file); 3133 3134 return ret; 3135 } 3136 3137 /* 3138 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3139 * but allow concurrent faults). 3140 * The mmap_sem may have been released depending on flags and our 3141 * return value. See filemap_fault() and __lock_page_or_retry(). 3142 */ 3143 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3144 unsigned long address, pte_t *page_table, pmd_t *pmd, 3145 unsigned int flags, pte_t orig_pte) 3146 { 3147 pgoff_t pgoff = linear_page_index(vma, address); 3148 3149 pte_unmap(page_table); 3150 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3151 if (!vma->vm_ops->fault) 3152 return VM_FAULT_SIGBUS; 3153 if (!(flags & FAULT_FLAG_WRITE)) 3154 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3155 orig_pte); 3156 if (!(vma->vm_flags & VM_SHARED)) 3157 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3158 orig_pte); 3159 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3160 } 3161 3162 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3163 unsigned long addr, int page_nid, 3164 int *flags) 3165 { 3166 get_page(page); 3167 3168 count_vm_numa_event(NUMA_HINT_FAULTS); 3169 if (page_nid == numa_node_id()) { 3170 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3171 *flags |= TNF_FAULT_LOCAL; 3172 } 3173 3174 return mpol_misplaced(page, vma, addr); 3175 } 3176 3177 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3178 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3179 { 3180 struct page *page = NULL; 3181 spinlock_t *ptl; 3182 int page_nid = -1; 3183 int last_cpupid; 3184 int target_nid; 3185 bool migrated = false; 3186 bool was_writable = pte_write(pte); 3187 int flags = 0; 3188 3189 /* A PROT_NONE fault should not end up here */ 3190 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3191 3192 /* 3193 * The "pte" at this point cannot be used safely without 3194 * validation through pte_unmap_same(). It's of NUMA type but 3195 * the pfn may be screwed if the read is non atomic. 3196 * 3197 * We can safely just do a "set_pte_at()", because the old 3198 * page table entry is not accessible, so there would be no 3199 * concurrent hardware modifications to the PTE. 3200 */ 3201 ptl = pte_lockptr(mm, pmd); 3202 spin_lock(ptl); 3203 if (unlikely(!pte_same(*ptep, pte))) { 3204 pte_unmap_unlock(ptep, ptl); 3205 goto out; 3206 } 3207 3208 /* Make it present again */ 3209 pte = pte_modify(pte, vma->vm_page_prot); 3210 pte = pte_mkyoung(pte); 3211 if (was_writable) 3212 pte = pte_mkwrite(pte); 3213 set_pte_at(mm, addr, ptep, pte); 3214 update_mmu_cache(vma, addr, ptep); 3215 3216 page = vm_normal_page(vma, addr, pte); 3217 if (!page) { 3218 pte_unmap_unlock(ptep, ptl); 3219 return 0; 3220 } 3221 3222 /* TODO: handle PTE-mapped THP */ 3223 if (PageCompound(page)) { 3224 pte_unmap_unlock(ptep, ptl); 3225 return 0; 3226 } 3227 3228 /* 3229 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3230 * much anyway since they can be in shared cache state. This misses 3231 * the case where a mapping is writable but the process never writes 3232 * to it but pte_write gets cleared during protection updates and 3233 * pte_dirty has unpredictable behaviour between PTE scan updates, 3234 * background writeback, dirty balancing and application behaviour. 3235 */ 3236 if (!(vma->vm_flags & VM_WRITE)) 3237 flags |= TNF_NO_GROUP; 3238 3239 /* 3240 * Flag if the page is shared between multiple address spaces. This 3241 * is later used when determining whether to group tasks together 3242 */ 3243 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3244 flags |= TNF_SHARED; 3245 3246 last_cpupid = page_cpupid_last(page); 3247 page_nid = page_to_nid(page); 3248 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3249 pte_unmap_unlock(ptep, ptl); 3250 if (target_nid == -1) { 3251 put_page(page); 3252 goto out; 3253 } 3254 3255 /* Migrate to the requested node */ 3256 migrated = migrate_misplaced_page(page, vma, target_nid); 3257 if (migrated) { 3258 page_nid = target_nid; 3259 flags |= TNF_MIGRATED; 3260 } else 3261 flags |= TNF_MIGRATE_FAIL; 3262 3263 out: 3264 if (page_nid != -1) 3265 task_numa_fault(last_cpupid, page_nid, 1, flags); 3266 return 0; 3267 } 3268 3269 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3270 unsigned long address, pmd_t *pmd, unsigned int flags) 3271 { 3272 if (vma_is_anonymous(vma)) 3273 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); 3274 if (vma->vm_ops->pmd_fault) 3275 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3276 return VM_FAULT_FALLBACK; 3277 } 3278 3279 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3280 unsigned long address, pmd_t *pmd, pmd_t orig_pmd, 3281 unsigned int flags) 3282 { 3283 if (vma_is_anonymous(vma)) 3284 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); 3285 if (vma->vm_ops->pmd_fault) 3286 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3287 return VM_FAULT_FALLBACK; 3288 } 3289 3290 /* 3291 * These routines also need to handle stuff like marking pages dirty 3292 * and/or accessed for architectures that don't do it in hardware (most 3293 * RISC architectures). The early dirtying is also good on the i386. 3294 * 3295 * There is also a hook called "update_mmu_cache()" that architectures 3296 * with external mmu caches can use to update those (ie the Sparc or 3297 * PowerPC hashed page tables that act as extended TLBs). 3298 * 3299 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3300 * but allow concurrent faults), and pte mapped but not yet locked. 3301 * We return with pte unmapped and unlocked. 3302 * 3303 * The mmap_sem may have been released depending on flags and our 3304 * return value. See filemap_fault() and __lock_page_or_retry(). 3305 */ 3306 static int handle_pte_fault(struct mm_struct *mm, 3307 struct vm_area_struct *vma, unsigned long address, 3308 pte_t *pte, pmd_t *pmd, unsigned int flags) 3309 { 3310 pte_t entry; 3311 spinlock_t *ptl; 3312 3313 /* 3314 * some architectures can have larger ptes than wordsize, 3315 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3316 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3317 * The code below just needs a consistent view for the ifs and 3318 * we later double check anyway with the ptl lock held. So here 3319 * a barrier will do. 3320 */ 3321 entry = *pte; 3322 barrier(); 3323 if (!pte_present(entry)) { 3324 if (pte_none(entry)) { 3325 if (vma_is_anonymous(vma)) 3326 return do_anonymous_page(mm, vma, address, 3327 pte, pmd, flags); 3328 else 3329 return do_fault(mm, vma, address, pte, pmd, 3330 flags, entry); 3331 } 3332 return do_swap_page(mm, vma, address, 3333 pte, pmd, flags, entry); 3334 } 3335 3336 if (pte_protnone(entry)) 3337 return do_numa_page(mm, vma, address, entry, pte, pmd); 3338 3339 ptl = pte_lockptr(mm, pmd); 3340 spin_lock(ptl); 3341 if (unlikely(!pte_same(*pte, entry))) 3342 goto unlock; 3343 if (flags & FAULT_FLAG_WRITE) { 3344 if (!pte_write(entry)) 3345 return do_wp_page(mm, vma, address, 3346 pte, pmd, ptl, entry); 3347 entry = pte_mkdirty(entry); 3348 } 3349 entry = pte_mkyoung(entry); 3350 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3351 update_mmu_cache(vma, address, pte); 3352 } else { 3353 /* 3354 * This is needed only for protection faults but the arch code 3355 * is not yet telling us if this is a protection fault or not. 3356 * This still avoids useless tlb flushes for .text page faults 3357 * with threads. 3358 */ 3359 if (flags & FAULT_FLAG_WRITE) 3360 flush_tlb_fix_spurious_fault(vma, address); 3361 } 3362 unlock: 3363 pte_unmap_unlock(pte, ptl); 3364 return 0; 3365 } 3366 3367 /* 3368 * By the time we get here, we already hold the mm semaphore 3369 * 3370 * The mmap_sem may have been released depending on flags and our 3371 * return value. See filemap_fault() and __lock_page_or_retry(). 3372 */ 3373 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3374 unsigned long address, unsigned int flags) 3375 { 3376 pgd_t *pgd; 3377 pud_t *pud; 3378 pmd_t *pmd; 3379 pte_t *pte; 3380 3381 if (unlikely(is_vm_hugetlb_page(vma))) 3382 return hugetlb_fault(mm, vma, address, flags); 3383 3384 pgd = pgd_offset(mm, address); 3385 pud = pud_alloc(mm, pgd, address); 3386 if (!pud) 3387 return VM_FAULT_OOM; 3388 pmd = pmd_alloc(mm, pud, address); 3389 if (!pmd) 3390 return VM_FAULT_OOM; 3391 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3392 int ret = create_huge_pmd(mm, vma, address, pmd, flags); 3393 if (!(ret & VM_FAULT_FALLBACK)) 3394 return ret; 3395 } else { 3396 pmd_t orig_pmd = *pmd; 3397 int ret; 3398 3399 barrier(); 3400 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3401 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3402 3403 if (pmd_protnone(orig_pmd)) 3404 return do_huge_pmd_numa_page(mm, vma, address, 3405 orig_pmd, pmd); 3406 3407 if (dirty && !pmd_write(orig_pmd)) { 3408 ret = wp_huge_pmd(mm, vma, address, pmd, 3409 orig_pmd, flags); 3410 if (!(ret & VM_FAULT_FALLBACK)) 3411 return ret; 3412 } else { 3413 huge_pmd_set_accessed(mm, vma, address, pmd, 3414 orig_pmd, dirty); 3415 return 0; 3416 } 3417 } 3418 } 3419 3420 /* 3421 * Use pte_alloc() instead of pte_alloc_map, because we can't 3422 * run pte_offset_map on the pmd, if an huge pmd could 3423 * materialize from under us from a different thread. 3424 */ 3425 if (unlikely(pte_alloc(mm, pmd, address))) 3426 return VM_FAULT_OOM; 3427 /* 3428 * If a huge pmd materialized under us just retry later. Use 3429 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 3430 * didn't become pmd_trans_huge under us and then back to pmd_none, as 3431 * a result of MADV_DONTNEED running immediately after a huge pmd fault 3432 * in a different thread of this mm, in turn leading to a misleading 3433 * pmd_trans_huge() retval. All we have to ensure is that it is a 3434 * regular pmd that we can walk with pte_offset_map() and we can do that 3435 * through an atomic read in C, which is what pmd_trans_unstable() 3436 * provides. 3437 */ 3438 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd))) 3439 return 0; 3440 /* 3441 * A regular pmd is established and it can't morph into a huge pmd 3442 * from under us anymore at this point because we hold the mmap_sem 3443 * read mode and khugepaged takes it in write mode. So now it's 3444 * safe to run pte_offset_map(). 3445 */ 3446 pte = pte_offset_map(pmd, address); 3447 3448 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3449 } 3450 3451 /* 3452 * By the time we get here, we already hold the mm semaphore 3453 * 3454 * The mmap_sem may have been released depending on flags and our 3455 * return value. See filemap_fault() and __lock_page_or_retry(). 3456 */ 3457 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3458 unsigned long address, unsigned int flags) 3459 { 3460 int ret; 3461 3462 __set_current_state(TASK_RUNNING); 3463 3464 count_vm_event(PGFAULT); 3465 mem_cgroup_count_vm_event(mm, PGFAULT); 3466 3467 /* do counter updates before entering really critical section. */ 3468 check_sync_rss_stat(current); 3469 3470 /* 3471 * Enable the memcg OOM handling for faults triggered in user 3472 * space. Kernel faults are handled more gracefully. 3473 */ 3474 if (flags & FAULT_FLAG_USER) 3475 mem_cgroup_oom_enable(); 3476 3477 ret = __handle_mm_fault(mm, vma, address, flags); 3478 3479 if (flags & FAULT_FLAG_USER) { 3480 mem_cgroup_oom_disable(); 3481 /* 3482 * The task may have entered a memcg OOM situation but 3483 * if the allocation error was handled gracefully (no 3484 * VM_FAULT_OOM), there is no need to kill anything. 3485 * Just clean up the OOM state peacefully. 3486 */ 3487 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3488 mem_cgroup_oom_synchronize(false); 3489 } 3490 3491 return ret; 3492 } 3493 EXPORT_SYMBOL_GPL(handle_mm_fault); 3494 3495 #ifndef __PAGETABLE_PUD_FOLDED 3496 /* 3497 * Allocate page upper directory. 3498 * We've already handled the fast-path in-line. 3499 */ 3500 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3501 { 3502 pud_t *new = pud_alloc_one(mm, address); 3503 if (!new) 3504 return -ENOMEM; 3505 3506 smp_wmb(); /* See comment in __pte_alloc */ 3507 3508 spin_lock(&mm->page_table_lock); 3509 if (pgd_present(*pgd)) /* Another has populated it */ 3510 pud_free(mm, new); 3511 else 3512 pgd_populate(mm, pgd, new); 3513 spin_unlock(&mm->page_table_lock); 3514 return 0; 3515 } 3516 #endif /* __PAGETABLE_PUD_FOLDED */ 3517 3518 #ifndef __PAGETABLE_PMD_FOLDED 3519 /* 3520 * Allocate page middle directory. 3521 * We've already handled the fast-path in-line. 3522 */ 3523 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3524 { 3525 pmd_t *new = pmd_alloc_one(mm, address); 3526 if (!new) 3527 return -ENOMEM; 3528 3529 smp_wmb(); /* See comment in __pte_alloc */ 3530 3531 spin_lock(&mm->page_table_lock); 3532 #ifndef __ARCH_HAS_4LEVEL_HACK 3533 if (!pud_present(*pud)) { 3534 mm_inc_nr_pmds(mm); 3535 pud_populate(mm, pud, new); 3536 } else /* Another has populated it */ 3537 pmd_free(mm, new); 3538 #else 3539 if (!pgd_present(*pud)) { 3540 mm_inc_nr_pmds(mm); 3541 pgd_populate(mm, pud, new); 3542 } else /* Another has populated it */ 3543 pmd_free(mm, new); 3544 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3545 spin_unlock(&mm->page_table_lock); 3546 return 0; 3547 } 3548 #endif /* __PAGETABLE_PMD_FOLDED */ 3549 3550 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3551 pte_t **ptepp, spinlock_t **ptlp) 3552 { 3553 pgd_t *pgd; 3554 pud_t *pud; 3555 pmd_t *pmd; 3556 pte_t *ptep; 3557 3558 pgd = pgd_offset(mm, address); 3559 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3560 goto out; 3561 3562 pud = pud_offset(pgd, address); 3563 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3564 goto out; 3565 3566 pmd = pmd_offset(pud, address); 3567 VM_BUG_ON(pmd_trans_huge(*pmd)); 3568 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3569 goto out; 3570 3571 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3572 if (pmd_huge(*pmd)) 3573 goto out; 3574 3575 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3576 if (!ptep) 3577 goto out; 3578 if (!pte_present(*ptep)) 3579 goto unlock; 3580 *ptepp = ptep; 3581 return 0; 3582 unlock: 3583 pte_unmap_unlock(ptep, *ptlp); 3584 out: 3585 return -EINVAL; 3586 } 3587 3588 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3589 pte_t **ptepp, spinlock_t **ptlp) 3590 { 3591 int res; 3592 3593 /* (void) is needed to make gcc happy */ 3594 (void) __cond_lock(*ptlp, 3595 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3596 return res; 3597 } 3598 3599 /** 3600 * follow_pfn - look up PFN at a user virtual address 3601 * @vma: memory mapping 3602 * @address: user virtual address 3603 * @pfn: location to store found PFN 3604 * 3605 * Only IO mappings and raw PFN mappings are allowed. 3606 * 3607 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3608 */ 3609 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3610 unsigned long *pfn) 3611 { 3612 int ret = -EINVAL; 3613 spinlock_t *ptl; 3614 pte_t *ptep; 3615 3616 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3617 return ret; 3618 3619 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3620 if (ret) 3621 return ret; 3622 *pfn = pte_pfn(*ptep); 3623 pte_unmap_unlock(ptep, ptl); 3624 return 0; 3625 } 3626 EXPORT_SYMBOL(follow_pfn); 3627 3628 #ifdef CONFIG_HAVE_IOREMAP_PROT 3629 int follow_phys(struct vm_area_struct *vma, 3630 unsigned long address, unsigned int flags, 3631 unsigned long *prot, resource_size_t *phys) 3632 { 3633 int ret = -EINVAL; 3634 pte_t *ptep, pte; 3635 spinlock_t *ptl; 3636 3637 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3638 goto out; 3639 3640 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3641 goto out; 3642 pte = *ptep; 3643 3644 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3645 goto unlock; 3646 3647 *prot = pgprot_val(pte_pgprot(pte)); 3648 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3649 3650 ret = 0; 3651 unlock: 3652 pte_unmap_unlock(ptep, ptl); 3653 out: 3654 return ret; 3655 } 3656 3657 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3658 void *buf, int len, int write) 3659 { 3660 resource_size_t phys_addr; 3661 unsigned long prot = 0; 3662 void __iomem *maddr; 3663 int offset = addr & (PAGE_SIZE-1); 3664 3665 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3666 return -EINVAL; 3667 3668 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3669 if (write) 3670 memcpy_toio(maddr + offset, buf, len); 3671 else 3672 memcpy_fromio(buf, maddr + offset, len); 3673 iounmap(maddr); 3674 3675 return len; 3676 } 3677 EXPORT_SYMBOL_GPL(generic_access_phys); 3678 #endif 3679 3680 /* 3681 * Access another process' address space as given in mm. If non-NULL, use the 3682 * given task for page fault accounting. 3683 */ 3684 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3685 unsigned long addr, void *buf, int len, int write) 3686 { 3687 struct vm_area_struct *vma; 3688 void *old_buf = buf; 3689 3690 down_read(&mm->mmap_sem); 3691 /* ignore errors, just check how much was successfully transferred */ 3692 while (len) { 3693 int bytes, ret, offset; 3694 void *maddr; 3695 struct page *page = NULL; 3696 3697 ret = get_user_pages(tsk, mm, addr, 1, 3698 write, 1, &page, &vma); 3699 if (ret <= 0) { 3700 #ifndef CONFIG_HAVE_IOREMAP_PROT 3701 break; 3702 #else 3703 /* 3704 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3705 * we can access using slightly different code. 3706 */ 3707 vma = find_vma(mm, addr); 3708 if (!vma || vma->vm_start > addr) 3709 break; 3710 if (vma->vm_ops && vma->vm_ops->access) 3711 ret = vma->vm_ops->access(vma, addr, buf, 3712 len, write); 3713 if (ret <= 0) 3714 break; 3715 bytes = ret; 3716 #endif 3717 } else { 3718 bytes = len; 3719 offset = addr & (PAGE_SIZE-1); 3720 if (bytes > PAGE_SIZE-offset) 3721 bytes = PAGE_SIZE-offset; 3722 3723 maddr = kmap(page); 3724 if (write) { 3725 copy_to_user_page(vma, page, addr, 3726 maddr + offset, buf, bytes); 3727 set_page_dirty_lock(page); 3728 } else { 3729 copy_from_user_page(vma, page, addr, 3730 buf, maddr + offset, bytes); 3731 } 3732 kunmap(page); 3733 page_cache_release(page); 3734 } 3735 len -= bytes; 3736 buf += bytes; 3737 addr += bytes; 3738 } 3739 up_read(&mm->mmap_sem); 3740 3741 return buf - old_buf; 3742 } 3743 3744 /** 3745 * access_remote_vm - access another process' address space 3746 * @mm: the mm_struct of the target address space 3747 * @addr: start address to access 3748 * @buf: source or destination buffer 3749 * @len: number of bytes to transfer 3750 * @write: whether the access is a write 3751 * 3752 * The caller must hold a reference on @mm. 3753 */ 3754 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3755 void *buf, int len, int write) 3756 { 3757 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3758 } 3759 3760 /* 3761 * Access another process' address space. 3762 * Source/target buffer must be kernel space, 3763 * Do not walk the page table directly, use get_user_pages 3764 */ 3765 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3766 void *buf, int len, int write) 3767 { 3768 struct mm_struct *mm; 3769 int ret; 3770 3771 mm = get_task_mm(tsk); 3772 if (!mm) 3773 return 0; 3774 3775 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3776 mmput(mm); 3777 3778 return ret; 3779 } 3780 3781 /* 3782 * Print the name of a VMA. 3783 */ 3784 void print_vma_addr(char *prefix, unsigned long ip) 3785 { 3786 struct mm_struct *mm = current->mm; 3787 struct vm_area_struct *vma; 3788 3789 /* 3790 * Do not print if we are in atomic 3791 * contexts (in exception stacks, etc.): 3792 */ 3793 if (preempt_count()) 3794 return; 3795 3796 down_read(&mm->mmap_sem); 3797 vma = find_vma(mm, ip); 3798 if (vma && vma->vm_file) { 3799 struct file *f = vma->vm_file; 3800 char *buf = (char *)__get_free_page(GFP_KERNEL); 3801 if (buf) { 3802 char *p; 3803 3804 p = file_path(f, buf, PAGE_SIZE); 3805 if (IS_ERR(p)) 3806 p = "?"; 3807 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3808 vma->vm_start, 3809 vma->vm_end - vma->vm_start); 3810 free_page((unsigned long)buf); 3811 } 3812 } 3813 up_read(&mm->mmap_sem); 3814 } 3815 3816 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3817 void __might_fault(const char *file, int line) 3818 { 3819 /* 3820 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3821 * holding the mmap_sem, this is safe because kernel memory doesn't 3822 * get paged out, therefore we'll never actually fault, and the 3823 * below annotations will generate false positives. 3824 */ 3825 if (segment_eq(get_fs(), KERNEL_DS)) 3826 return; 3827 if (pagefault_disabled()) 3828 return; 3829 __might_sleep(file, line, 0); 3830 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3831 if (current->mm) 3832 might_lock_read(¤t->mm->mmap_sem); 3833 #endif 3834 } 3835 EXPORT_SYMBOL(__might_fault); 3836 #endif 3837 3838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3839 static void clear_gigantic_page(struct page *page, 3840 unsigned long addr, 3841 unsigned int pages_per_huge_page) 3842 { 3843 int i; 3844 struct page *p = page; 3845 3846 might_sleep(); 3847 for (i = 0; i < pages_per_huge_page; 3848 i++, p = mem_map_next(p, page, i)) { 3849 cond_resched(); 3850 clear_user_highpage(p, addr + i * PAGE_SIZE); 3851 } 3852 } 3853 void clear_huge_page(struct page *page, 3854 unsigned long addr, unsigned int pages_per_huge_page) 3855 { 3856 int i; 3857 3858 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3859 clear_gigantic_page(page, addr, pages_per_huge_page); 3860 return; 3861 } 3862 3863 might_sleep(); 3864 for (i = 0; i < pages_per_huge_page; i++) { 3865 cond_resched(); 3866 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3867 } 3868 } 3869 3870 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3871 unsigned long addr, 3872 struct vm_area_struct *vma, 3873 unsigned int pages_per_huge_page) 3874 { 3875 int i; 3876 struct page *dst_base = dst; 3877 struct page *src_base = src; 3878 3879 for (i = 0; i < pages_per_huge_page; ) { 3880 cond_resched(); 3881 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3882 3883 i++; 3884 dst = mem_map_next(dst, dst_base, i); 3885 src = mem_map_next(src, src_base, i); 3886 } 3887 } 3888 3889 void copy_user_huge_page(struct page *dst, struct page *src, 3890 unsigned long addr, struct vm_area_struct *vma, 3891 unsigned int pages_per_huge_page) 3892 { 3893 int i; 3894 3895 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3896 copy_user_gigantic_page(dst, src, addr, vma, 3897 pages_per_huge_page); 3898 return; 3899 } 3900 3901 might_sleep(); 3902 for (i = 0; i < pages_per_huge_page; i++) { 3903 cond_resched(); 3904 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3905 } 3906 } 3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3908 3909 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3910 3911 static struct kmem_cache *page_ptl_cachep; 3912 3913 void __init ptlock_cache_init(void) 3914 { 3915 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3916 SLAB_PANIC, NULL); 3917 } 3918 3919 bool ptlock_alloc(struct page *page) 3920 { 3921 spinlock_t *ptl; 3922 3923 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3924 if (!ptl) 3925 return false; 3926 page->ptl = ptl; 3927 return true; 3928 } 3929 3930 void ptlock_free(struct page *page) 3931 { 3932 kmem_cache_free(page_ptl_cachep, page->ptl); 3933 } 3934 #endif 3935