1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 #ifdef HAVE_GENERIC_MMU_GATHER 190 191 static bool tlb_next_batch(struct mmu_gather *tlb) 192 { 193 struct mmu_gather_batch *batch; 194 195 batch = tlb->active; 196 if (batch->next) { 197 tlb->active = batch->next; 198 return true; 199 } 200 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 202 return false; 203 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 205 if (!batch) 206 return false; 207 208 tlb->batch_count++; 209 batch->next = NULL; 210 batch->nr = 0; 211 batch->max = MAX_GATHER_BATCH; 212 213 tlb->active->next = batch; 214 tlb->active = batch; 215 216 return true; 217 } 218 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 220 unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 276 unsigned long start, unsigned long end, bool force) 277 { 278 struct mmu_gather_batch *batch, *next; 279 280 if (force) 281 __tlb_adjust_range(tlb, start, end - start); 282 283 tlb_flush_mmu(tlb); 284 285 /* keep the page table cache within bounds */ 286 check_pgt_cache(); 287 288 for (batch = tlb->local.next; batch; batch = next) { 289 next = batch->next; 290 free_pages((unsigned long)batch, 0); 291 } 292 tlb->local.next = NULL; 293 } 294 295 /* __tlb_remove_page 296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 297 * handling the additional races in SMP caused by other CPUs caching valid 298 * mappings in their TLBs. Returns the number of free page slots left. 299 * When out of page slots we must call tlb_flush_mmu(). 300 *returns true if the caller should flush. 301 */ 302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 303 { 304 struct mmu_gather_batch *batch; 305 306 VM_BUG_ON(!tlb->end); 307 VM_WARN_ON(tlb->page_size != page_size); 308 309 batch = tlb->active; 310 /* 311 * Add the page and check if we are full. If so 312 * force a flush. 313 */ 314 batch->pages[batch->nr++] = page; 315 if (batch->nr == batch->max) { 316 if (!tlb_next_batch(tlb)) 317 return true; 318 batch = tlb->active; 319 } 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 321 322 return false; 323 } 324 325 #endif /* HAVE_GENERIC_MMU_GATHER */ 326 327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 328 329 /* 330 * See the comment near struct mmu_table_batch. 331 */ 332 333 static void tlb_remove_table_smp_sync(void *arg) 334 { 335 /* Simply deliver the interrupt */ 336 } 337 338 static void tlb_remove_table_one(void *table) 339 { 340 /* 341 * This isn't an RCU grace period and hence the page-tables cannot be 342 * assumed to be actually RCU-freed. 343 * 344 * It is however sufficient for software page-table walkers that rely on 345 * IRQ disabling. See the comment near struct mmu_table_batch. 346 */ 347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 348 __tlb_remove_table(table); 349 } 350 351 static void tlb_remove_table_rcu(struct rcu_head *head) 352 { 353 struct mmu_table_batch *batch; 354 int i; 355 356 batch = container_of(head, struct mmu_table_batch, rcu); 357 358 for (i = 0; i < batch->nr; i++) 359 __tlb_remove_table(batch->tables[i]); 360 361 free_page((unsigned long)batch); 362 } 363 364 void tlb_table_flush(struct mmu_gather *tlb) 365 { 366 struct mmu_table_batch **batch = &tlb->batch; 367 368 if (*batch) { 369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 370 *batch = NULL; 371 } 372 } 373 374 void tlb_remove_table(struct mmu_gather *tlb, void *table) 375 { 376 struct mmu_table_batch **batch = &tlb->batch; 377 378 /* 379 * When there's less then two users of this mm there cannot be a 380 * concurrent page-table walk. 381 */ 382 if (atomic_read(&tlb->mm->mm_users) < 2) { 383 __tlb_remove_table(table); 384 return; 385 } 386 387 if (*batch == NULL) { 388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 389 if (*batch == NULL) { 390 tlb_remove_table_one(table); 391 return; 392 } 393 (*batch)->nr = 0; 394 } 395 (*batch)->tables[(*batch)->nr++] = table; 396 if ((*batch)->nr == MAX_TABLE_BATCH) 397 tlb_table_flush(tlb); 398 } 399 400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 401 402 /** 403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 404 * @tlb: the mmu_gather structure to initialize 405 * @mm: the mm_struct of the target address space 406 * @start: start of the region that will be removed from the page-table 407 * @end: end of the region that will be removed from the page-table 408 * 409 * Called to initialize an (on-stack) mmu_gather structure for page-table 410 * tear-down from @mm. The @start and @end are set to 0 and -1 411 * respectively when @mm is without users and we're going to destroy 412 * the full address space (exit/execve). 413 */ 414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 415 unsigned long start, unsigned long end) 416 { 417 arch_tlb_gather_mmu(tlb, mm, start, end); 418 inc_tlb_flush_pending(tlb->mm); 419 } 420 421 void tlb_finish_mmu(struct mmu_gather *tlb, 422 unsigned long start, unsigned long end) 423 { 424 /* 425 * If there are parallel threads are doing PTE changes on same range 426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 427 * flush by batching, a thread has stable TLB entry can fail to flush 428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 429 * forcefully if we detect parallel PTE batching threads. 430 */ 431 bool force = mm_tlb_flush_nested(tlb->mm); 432 433 arch_tlb_finish_mmu(tlb, start, end, force); 434 dec_tlb_flush_pending(tlb->mm); 435 } 436 437 /* 438 * Note: this doesn't free the actual pages themselves. That 439 * has been handled earlier when unmapping all the memory regions. 440 */ 441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 442 unsigned long addr) 443 { 444 pgtable_t token = pmd_pgtable(*pmd); 445 pmd_clear(pmd); 446 pte_free_tlb(tlb, token, addr); 447 mm_dec_nr_ptes(tlb->mm); 448 } 449 450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 451 unsigned long addr, unsigned long end, 452 unsigned long floor, unsigned long ceiling) 453 { 454 pmd_t *pmd; 455 unsigned long next; 456 unsigned long start; 457 458 start = addr; 459 pmd = pmd_offset(pud, addr); 460 do { 461 next = pmd_addr_end(addr, end); 462 if (pmd_none_or_clear_bad(pmd)) 463 continue; 464 free_pte_range(tlb, pmd, addr); 465 } while (pmd++, addr = next, addr != end); 466 467 start &= PUD_MASK; 468 if (start < floor) 469 return; 470 if (ceiling) { 471 ceiling &= PUD_MASK; 472 if (!ceiling) 473 return; 474 } 475 if (end - 1 > ceiling - 1) 476 return; 477 478 pmd = pmd_offset(pud, start); 479 pud_clear(pud); 480 pmd_free_tlb(tlb, pmd, start); 481 mm_dec_nr_pmds(tlb->mm); 482 } 483 484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 485 unsigned long addr, unsigned long end, 486 unsigned long floor, unsigned long ceiling) 487 { 488 pud_t *pud; 489 unsigned long next; 490 unsigned long start; 491 492 start = addr; 493 pud = pud_offset(p4d, addr); 494 do { 495 next = pud_addr_end(addr, end); 496 if (pud_none_or_clear_bad(pud)) 497 continue; 498 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 499 } while (pud++, addr = next, addr != end); 500 501 start &= P4D_MASK; 502 if (start < floor) 503 return; 504 if (ceiling) { 505 ceiling &= P4D_MASK; 506 if (!ceiling) 507 return; 508 } 509 if (end - 1 > ceiling - 1) 510 return; 511 512 pud = pud_offset(p4d, start); 513 p4d_clear(p4d); 514 pud_free_tlb(tlb, pud, start); 515 mm_dec_nr_puds(tlb->mm); 516 } 517 518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 519 unsigned long addr, unsigned long end, 520 unsigned long floor, unsigned long ceiling) 521 { 522 p4d_t *p4d; 523 unsigned long next; 524 unsigned long start; 525 526 start = addr; 527 p4d = p4d_offset(pgd, addr); 528 do { 529 next = p4d_addr_end(addr, end); 530 if (p4d_none_or_clear_bad(p4d)) 531 continue; 532 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 533 } while (p4d++, addr = next, addr != end); 534 535 start &= PGDIR_MASK; 536 if (start < floor) 537 return; 538 if (ceiling) { 539 ceiling &= PGDIR_MASK; 540 if (!ceiling) 541 return; 542 } 543 if (end - 1 > ceiling - 1) 544 return; 545 546 p4d = p4d_offset(pgd, start); 547 pgd_clear(pgd); 548 p4d_free_tlb(tlb, p4d, start); 549 } 550 551 /* 552 * This function frees user-level page tables of a process. 553 */ 554 void free_pgd_range(struct mmu_gather *tlb, 555 unsigned long addr, unsigned long end, 556 unsigned long floor, unsigned long ceiling) 557 { 558 pgd_t *pgd; 559 unsigned long next; 560 561 /* 562 * The next few lines have given us lots of grief... 563 * 564 * Why are we testing PMD* at this top level? Because often 565 * there will be no work to do at all, and we'd prefer not to 566 * go all the way down to the bottom just to discover that. 567 * 568 * Why all these "- 1"s? Because 0 represents both the bottom 569 * of the address space and the top of it (using -1 for the 570 * top wouldn't help much: the masks would do the wrong thing). 571 * The rule is that addr 0 and floor 0 refer to the bottom of 572 * the address space, but end 0 and ceiling 0 refer to the top 573 * Comparisons need to use "end - 1" and "ceiling - 1" (though 574 * that end 0 case should be mythical). 575 * 576 * Wherever addr is brought up or ceiling brought down, we must 577 * be careful to reject "the opposite 0" before it confuses the 578 * subsequent tests. But what about where end is brought down 579 * by PMD_SIZE below? no, end can't go down to 0 there. 580 * 581 * Whereas we round start (addr) and ceiling down, by different 582 * masks at different levels, in order to test whether a table 583 * now has no other vmas using it, so can be freed, we don't 584 * bother to round floor or end up - the tests don't need that. 585 */ 586 587 addr &= PMD_MASK; 588 if (addr < floor) { 589 addr += PMD_SIZE; 590 if (!addr) 591 return; 592 } 593 if (ceiling) { 594 ceiling &= PMD_MASK; 595 if (!ceiling) 596 return; 597 } 598 if (end - 1 > ceiling - 1) 599 end -= PMD_SIZE; 600 if (addr > end - 1) 601 return; 602 /* 603 * We add page table cache pages with PAGE_SIZE, 604 * (see pte_free_tlb()), flush the tlb if we need 605 */ 606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 607 pgd = pgd_offset(tlb->mm, addr); 608 do { 609 next = pgd_addr_end(addr, end); 610 if (pgd_none_or_clear_bad(pgd)) 611 continue; 612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 613 } while (pgd++, addr = next, addr != end); 614 } 615 616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 617 unsigned long floor, unsigned long ceiling) 618 { 619 while (vma) { 620 struct vm_area_struct *next = vma->vm_next; 621 unsigned long addr = vma->vm_start; 622 623 /* 624 * Hide vma from rmap and truncate_pagecache before freeing 625 * pgtables 626 */ 627 unlink_anon_vmas(vma); 628 unlink_file_vma(vma); 629 630 if (is_vm_hugetlb_page(vma)) { 631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 632 floor, next ? next->vm_start : ceiling); 633 } else { 634 /* 635 * Optimization: gather nearby vmas into one call down 636 */ 637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 638 && !is_vm_hugetlb_page(next)) { 639 vma = next; 640 next = vma->vm_next; 641 unlink_anon_vmas(vma); 642 unlink_file_vma(vma); 643 } 644 free_pgd_range(tlb, addr, vma->vm_end, 645 floor, next ? next->vm_start : ceiling); 646 } 647 vma = next; 648 } 649 } 650 651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 652 { 653 spinlock_t *ptl; 654 pgtable_t new = pte_alloc_one(mm, address); 655 if (!new) 656 return -ENOMEM; 657 658 /* 659 * Ensure all pte setup (eg. pte page lock and page clearing) are 660 * visible before the pte is made visible to other CPUs by being 661 * put into page tables. 662 * 663 * The other side of the story is the pointer chasing in the page 664 * table walking code (when walking the page table without locking; 665 * ie. most of the time). Fortunately, these data accesses consist 666 * of a chain of data-dependent loads, meaning most CPUs (alpha 667 * being the notable exception) will already guarantee loads are 668 * seen in-order. See the alpha page table accessors for the 669 * smp_read_barrier_depends() barriers in page table walking code. 670 */ 671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 672 673 ptl = pmd_lock(mm, pmd); 674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 675 mm_inc_nr_ptes(mm); 676 pmd_populate(mm, pmd, new); 677 new = NULL; 678 } 679 spin_unlock(ptl); 680 if (new) 681 pte_free(mm, new); 682 return 0; 683 } 684 685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 686 { 687 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 688 if (!new) 689 return -ENOMEM; 690 691 smp_wmb(); /* See comment in __pte_alloc */ 692 693 spin_lock(&init_mm.page_table_lock); 694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 695 pmd_populate_kernel(&init_mm, pmd, new); 696 new = NULL; 697 } 698 spin_unlock(&init_mm.page_table_lock); 699 if (new) 700 pte_free_kernel(&init_mm, new); 701 return 0; 702 } 703 704 static inline void init_rss_vec(int *rss) 705 { 706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 707 } 708 709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 710 { 711 int i; 712 713 if (current->mm == mm) 714 sync_mm_rss(mm); 715 for (i = 0; i < NR_MM_COUNTERS; i++) 716 if (rss[i]) 717 add_mm_counter(mm, i, rss[i]); 718 } 719 720 /* 721 * This function is called to print an error when a bad pte 722 * is found. For example, we might have a PFN-mapped pte in 723 * a region that doesn't allow it. 724 * 725 * The calling function must still handle the error. 726 */ 727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 728 pte_t pte, struct page *page) 729 { 730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 731 p4d_t *p4d = p4d_offset(pgd, addr); 732 pud_t *pud = pud_offset(p4d, addr); 733 pmd_t *pmd = pmd_offset(pud, addr); 734 struct address_space *mapping; 735 pgoff_t index; 736 static unsigned long resume; 737 static unsigned long nr_shown; 738 static unsigned long nr_unshown; 739 740 /* 741 * Allow a burst of 60 reports, then keep quiet for that minute; 742 * or allow a steady drip of one report per second. 743 */ 744 if (nr_shown == 60) { 745 if (time_before(jiffies, resume)) { 746 nr_unshown++; 747 return; 748 } 749 if (nr_unshown) { 750 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 751 nr_unshown); 752 nr_unshown = 0; 753 } 754 nr_shown = 0; 755 } 756 if (nr_shown++ == 0) 757 resume = jiffies + 60 * HZ; 758 759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 760 index = linear_page_index(vma, addr); 761 762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 763 current->comm, 764 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 765 if (page) 766 dump_page(page, "bad pte"); 767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 770 vma->vm_file, 771 vma->vm_ops ? vma->vm_ops->fault : NULL, 772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 773 mapping ? mapping->a_ops->readpage : NULL); 774 dump_stack(); 775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 776 } 777 778 /* 779 * vm_normal_page -- This function gets the "struct page" associated with a pte. 780 * 781 * "Special" mappings do not wish to be associated with a "struct page" (either 782 * it doesn't exist, or it exists but they don't want to touch it). In this 783 * case, NULL is returned here. "Normal" mappings do have a struct page. 784 * 785 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 786 * pte bit, in which case this function is trivial. Secondly, an architecture 787 * may not have a spare pte bit, which requires a more complicated scheme, 788 * described below. 789 * 790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 791 * special mapping (even if there are underlying and valid "struct pages"). 792 * COWed pages of a VM_PFNMAP are always normal. 793 * 794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 797 * mapping will always honor the rule 798 * 799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 800 * 801 * And for normal mappings this is false. 802 * 803 * This restricts such mappings to be a linear translation from virtual address 804 * to pfn. To get around this restriction, we allow arbitrary mappings so long 805 * as the vma is not a COW mapping; in that case, we know that all ptes are 806 * special (because none can have been COWed). 807 * 808 * 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 810 * 811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 812 * page" backing, however the difference is that _all_ pages with a struct 813 * page (that is, those where pfn_valid is true) are refcounted and considered 814 * normal pages by the VM. The disadvantage is that pages are refcounted 815 * (which can be slower and simply not an option for some PFNMAP users). The 816 * advantage is that we don't have to follow the strict linearity rule of 817 * PFNMAP mappings in order to support COWable mappings. 818 * 819 */ 820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 821 pte_t pte, bool with_public_device) 822 { 823 unsigned long pfn = pte_pfn(pte); 824 825 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 826 if (likely(!pte_special(pte))) 827 goto check_pfn; 828 if (vma->vm_ops && vma->vm_ops->find_special_page) 829 return vma->vm_ops->find_special_page(vma, addr); 830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 831 return NULL; 832 if (is_zero_pfn(pfn)) 833 return NULL; 834 835 /* 836 * Device public pages are special pages (they are ZONE_DEVICE 837 * pages but different from persistent memory). They behave 838 * allmost like normal pages. The difference is that they are 839 * not on the lru and thus should never be involve with any- 840 * thing that involve lru manipulation (mlock, numa balancing, 841 * ...). 842 * 843 * This is why we still want to return NULL for such page from 844 * vm_normal_page() so that we do not have to special case all 845 * call site of vm_normal_page(). 846 */ 847 if (likely(pfn <= highest_memmap_pfn)) { 848 struct page *page = pfn_to_page(pfn); 849 850 if (is_device_public_page(page)) { 851 if (with_public_device) 852 return page; 853 return NULL; 854 } 855 } 856 print_bad_pte(vma, addr, pte, NULL); 857 return NULL; 858 } 859 860 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 861 862 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 863 if (vma->vm_flags & VM_MIXEDMAP) { 864 if (!pfn_valid(pfn)) 865 return NULL; 866 goto out; 867 } else { 868 unsigned long off; 869 off = (addr - vma->vm_start) >> PAGE_SHIFT; 870 if (pfn == vma->vm_pgoff + off) 871 return NULL; 872 if (!is_cow_mapping(vma->vm_flags)) 873 return NULL; 874 } 875 } 876 877 if (is_zero_pfn(pfn)) 878 return NULL; 879 880 check_pfn: 881 if (unlikely(pfn > highest_memmap_pfn)) { 882 print_bad_pte(vma, addr, pte, NULL); 883 return NULL; 884 } 885 886 /* 887 * NOTE! We still have PageReserved() pages in the page tables. 888 * eg. VDSO mappings can cause them to exist. 889 */ 890 out: 891 return pfn_to_page(pfn); 892 } 893 894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 896 pmd_t pmd) 897 { 898 unsigned long pfn = pmd_pfn(pmd); 899 900 /* 901 * There is no pmd_special() but there may be special pmds, e.g. 902 * in a direct-access (dax) mapping, so let's just replicate the 903 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 904 */ 905 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 906 if (vma->vm_flags & VM_MIXEDMAP) { 907 if (!pfn_valid(pfn)) 908 return NULL; 909 goto out; 910 } else { 911 unsigned long off; 912 off = (addr - vma->vm_start) >> PAGE_SHIFT; 913 if (pfn == vma->vm_pgoff + off) 914 return NULL; 915 if (!is_cow_mapping(vma->vm_flags)) 916 return NULL; 917 } 918 } 919 920 if (is_zero_pfn(pfn)) 921 return NULL; 922 if (unlikely(pfn > highest_memmap_pfn)) 923 return NULL; 924 925 /* 926 * NOTE! We still have PageReserved() pages in the page tables. 927 * eg. VDSO mappings can cause them to exist. 928 */ 929 out: 930 return pfn_to_page(pfn); 931 } 932 #endif 933 934 /* 935 * copy one vm_area from one task to the other. Assumes the page tables 936 * already present in the new task to be cleared in the whole range 937 * covered by this vma. 938 */ 939 940 static inline unsigned long 941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 942 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 943 unsigned long addr, int *rss) 944 { 945 unsigned long vm_flags = vma->vm_flags; 946 pte_t pte = *src_pte; 947 struct page *page; 948 949 /* pte contains position in swap or file, so copy. */ 950 if (unlikely(!pte_present(pte))) { 951 swp_entry_t entry = pte_to_swp_entry(pte); 952 953 if (likely(!non_swap_entry(entry))) { 954 if (swap_duplicate(entry) < 0) 955 return entry.val; 956 957 /* make sure dst_mm is on swapoff's mmlist. */ 958 if (unlikely(list_empty(&dst_mm->mmlist))) { 959 spin_lock(&mmlist_lock); 960 if (list_empty(&dst_mm->mmlist)) 961 list_add(&dst_mm->mmlist, 962 &src_mm->mmlist); 963 spin_unlock(&mmlist_lock); 964 } 965 rss[MM_SWAPENTS]++; 966 } else if (is_migration_entry(entry)) { 967 page = migration_entry_to_page(entry); 968 969 rss[mm_counter(page)]++; 970 971 if (is_write_migration_entry(entry) && 972 is_cow_mapping(vm_flags)) { 973 /* 974 * COW mappings require pages in both 975 * parent and child to be set to read. 976 */ 977 make_migration_entry_read(&entry); 978 pte = swp_entry_to_pte(entry); 979 if (pte_swp_soft_dirty(*src_pte)) 980 pte = pte_swp_mksoft_dirty(pte); 981 set_pte_at(src_mm, addr, src_pte, pte); 982 } 983 } else if (is_device_private_entry(entry)) { 984 page = device_private_entry_to_page(entry); 985 986 /* 987 * Update rss count even for unaddressable pages, as 988 * they should treated just like normal pages in this 989 * respect. 990 * 991 * We will likely want to have some new rss counters 992 * for unaddressable pages, at some point. But for now 993 * keep things as they are. 994 */ 995 get_page(page); 996 rss[mm_counter(page)]++; 997 page_dup_rmap(page, false); 998 999 /* 1000 * We do not preserve soft-dirty information, because so 1001 * far, checkpoint/restore is the only feature that 1002 * requires that. And checkpoint/restore does not work 1003 * when a device driver is involved (you cannot easily 1004 * save and restore device driver state). 1005 */ 1006 if (is_write_device_private_entry(entry) && 1007 is_cow_mapping(vm_flags)) { 1008 make_device_private_entry_read(&entry); 1009 pte = swp_entry_to_pte(entry); 1010 set_pte_at(src_mm, addr, src_pte, pte); 1011 } 1012 } 1013 goto out_set_pte; 1014 } 1015 1016 /* 1017 * If it's a COW mapping, write protect it both 1018 * in the parent and the child 1019 */ 1020 if (is_cow_mapping(vm_flags)) { 1021 ptep_set_wrprotect(src_mm, addr, src_pte); 1022 pte = pte_wrprotect(pte); 1023 } 1024 1025 /* 1026 * If it's a shared mapping, mark it clean in 1027 * the child 1028 */ 1029 if (vm_flags & VM_SHARED) 1030 pte = pte_mkclean(pte); 1031 pte = pte_mkold(pte); 1032 1033 page = vm_normal_page(vma, addr, pte); 1034 if (page) { 1035 get_page(page); 1036 page_dup_rmap(page, false); 1037 rss[mm_counter(page)]++; 1038 } else if (pte_devmap(pte)) { 1039 page = pte_page(pte); 1040 1041 /* 1042 * Cache coherent device memory behave like regular page and 1043 * not like persistent memory page. For more informations see 1044 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1045 */ 1046 if (is_device_public_page(page)) { 1047 get_page(page); 1048 page_dup_rmap(page, false); 1049 rss[mm_counter(page)]++; 1050 } 1051 } 1052 1053 out_set_pte: 1054 set_pte_at(dst_mm, addr, dst_pte, pte); 1055 return 0; 1056 } 1057 1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1059 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1060 unsigned long addr, unsigned long end) 1061 { 1062 pte_t *orig_src_pte, *orig_dst_pte; 1063 pte_t *src_pte, *dst_pte; 1064 spinlock_t *src_ptl, *dst_ptl; 1065 int progress = 0; 1066 int rss[NR_MM_COUNTERS]; 1067 swp_entry_t entry = (swp_entry_t){0}; 1068 1069 again: 1070 init_rss_vec(rss); 1071 1072 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1073 if (!dst_pte) 1074 return -ENOMEM; 1075 src_pte = pte_offset_map(src_pmd, addr); 1076 src_ptl = pte_lockptr(src_mm, src_pmd); 1077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1078 orig_src_pte = src_pte; 1079 orig_dst_pte = dst_pte; 1080 arch_enter_lazy_mmu_mode(); 1081 1082 do { 1083 /* 1084 * We are holding two locks at this point - either of them 1085 * could generate latencies in another task on another CPU. 1086 */ 1087 if (progress >= 32) { 1088 progress = 0; 1089 if (need_resched() || 1090 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1091 break; 1092 } 1093 if (pte_none(*src_pte)) { 1094 progress++; 1095 continue; 1096 } 1097 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1098 vma, addr, rss); 1099 if (entry.val) 1100 break; 1101 progress += 8; 1102 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1103 1104 arch_leave_lazy_mmu_mode(); 1105 spin_unlock(src_ptl); 1106 pte_unmap(orig_src_pte); 1107 add_mm_rss_vec(dst_mm, rss); 1108 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1109 cond_resched(); 1110 1111 if (entry.val) { 1112 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1113 return -ENOMEM; 1114 progress = 0; 1115 } 1116 if (addr != end) 1117 goto again; 1118 return 0; 1119 } 1120 1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1122 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1123 unsigned long addr, unsigned long end) 1124 { 1125 pmd_t *src_pmd, *dst_pmd; 1126 unsigned long next; 1127 1128 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1129 if (!dst_pmd) 1130 return -ENOMEM; 1131 src_pmd = pmd_offset(src_pud, addr); 1132 do { 1133 next = pmd_addr_end(addr, end); 1134 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1135 || pmd_devmap(*src_pmd)) { 1136 int err; 1137 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1138 err = copy_huge_pmd(dst_mm, src_mm, 1139 dst_pmd, src_pmd, addr, vma); 1140 if (err == -ENOMEM) 1141 return -ENOMEM; 1142 if (!err) 1143 continue; 1144 /* fall through */ 1145 } 1146 if (pmd_none_or_clear_bad(src_pmd)) 1147 continue; 1148 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1149 vma, addr, next)) 1150 return -ENOMEM; 1151 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1152 return 0; 1153 } 1154 1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1156 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1157 unsigned long addr, unsigned long end) 1158 { 1159 pud_t *src_pud, *dst_pud; 1160 unsigned long next; 1161 1162 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1163 if (!dst_pud) 1164 return -ENOMEM; 1165 src_pud = pud_offset(src_p4d, addr); 1166 do { 1167 next = pud_addr_end(addr, end); 1168 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1169 int err; 1170 1171 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1172 err = copy_huge_pud(dst_mm, src_mm, 1173 dst_pud, src_pud, addr, vma); 1174 if (err == -ENOMEM) 1175 return -ENOMEM; 1176 if (!err) 1177 continue; 1178 /* fall through */ 1179 } 1180 if (pud_none_or_clear_bad(src_pud)) 1181 continue; 1182 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1183 vma, addr, next)) 1184 return -ENOMEM; 1185 } while (dst_pud++, src_pud++, addr = next, addr != end); 1186 return 0; 1187 } 1188 1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1190 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1191 unsigned long addr, unsigned long end) 1192 { 1193 p4d_t *src_p4d, *dst_p4d; 1194 unsigned long next; 1195 1196 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1197 if (!dst_p4d) 1198 return -ENOMEM; 1199 src_p4d = p4d_offset(src_pgd, addr); 1200 do { 1201 next = p4d_addr_end(addr, end); 1202 if (p4d_none_or_clear_bad(src_p4d)) 1203 continue; 1204 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1205 vma, addr, next)) 1206 return -ENOMEM; 1207 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1212 struct vm_area_struct *vma) 1213 { 1214 pgd_t *src_pgd, *dst_pgd; 1215 unsigned long next; 1216 unsigned long addr = vma->vm_start; 1217 unsigned long end = vma->vm_end; 1218 unsigned long mmun_start; /* For mmu_notifiers */ 1219 unsigned long mmun_end; /* For mmu_notifiers */ 1220 bool is_cow; 1221 int ret; 1222 1223 /* 1224 * Don't copy ptes where a page fault will fill them correctly. 1225 * Fork becomes much lighter when there are big shared or private 1226 * readonly mappings. The tradeoff is that copy_page_range is more 1227 * efficient than faulting. 1228 */ 1229 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1230 !vma->anon_vma) 1231 return 0; 1232 1233 if (is_vm_hugetlb_page(vma)) 1234 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1235 1236 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1237 /* 1238 * We do not free on error cases below as remove_vma 1239 * gets called on error from higher level routine 1240 */ 1241 ret = track_pfn_copy(vma); 1242 if (ret) 1243 return ret; 1244 } 1245 1246 /* 1247 * We need to invalidate the secondary MMU mappings only when 1248 * there could be a permission downgrade on the ptes of the 1249 * parent mm. And a permission downgrade will only happen if 1250 * is_cow_mapping() returns true. 1251 */ 1252 is_cow = is_cow_mapping(vma->vm_flags); 1253 mmun_start = addr; 1254 mmun_end = end; 1255 if (is_cow) 1256 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1257 mmun_end); 1258 1259 ret = 0; 1260 dst_pgd = pgd_offset(dst_mm, addr); 1261 src_pgd = pgd_offset(src_mm, addr); 1262 do { 1263 next = pgd_addr_end(addr, end); 1264 if (pgd_none_or_clear_bad(src_pgd)) 1265 continue; 1266 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1267 vma, addr, next))) { 1268 ret = -ENOMEM; 1269 break; 1270 } 1271 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1272 1273 if (is_cow) 1274 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1275 return ret; 1276 } 1277 1278 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1279 struct vm_area_struct *vma, pmd_t *pmd, 1280 unsigned long addr, unsigned long end, 1281 struct zap_details *details) 1282 { 1283 struct mm_struct *mm = tlb->mm; 1284 int force_flush = 0; 1285 int rss[NR_MM_COUNTERS]; 1286 spinlock_t *ptl; 1287 pte_t *start_pte; 1288 pte_t *pte; 1289 swp_entry_t entry; 1290 1291 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1292 again: 1293 init_rss_vec(rss); 1294 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1295 pte = start_pte; 1296 flush_tlb_batched_pending(mm); 1297 arch_enter_lazy_mmu_mode(); 1298 do { 1299 pte_t ptent = *pte; 1300 if (pte_none(ptent)) 1301 continue; 1302 1303 if (pte_present(ptent)) { 1304 struct page *page; 1305 1306 page = _vm_normal_page(vma, addr, ptent, true); 1307 if (unlikely(details) && page) { 1308 /* 1309 * unmap_shared_mapping_pages() wants to 1310 * invalidate cache without truncating: 1311 * unmap shared but keep private pages. 1312 */ 1313 if (details->check_mapping && 1314 details->check_mapping != page_rmapping(page)) 1315 continue; 1316 } 1317 ptent = ptep_get_and_clear_full(mm, addr, pte, 1318 tlb->fullmm); 1319 tlb_remove_tlb_entry(tlb, pte, addr); 1320 if (unlikely(!page)) 1321 continue; 1322 1323 if (!PageAnon(page)) { 1324 if (pte_dirty(ptent)) { 1325 force_flush = 1; 1326 set_page_dirty(page); 1327 } 1328 if (pte_young(ptent) && 1329 likely(!(vma->vm_flags & VM_SEQ_READ))) 1330 mark_page_accessed(page); 1331 } 1332 rss[mm_counter(page)]--; 1333 page_remove_rmap(page, false); 1334 if (unlikely(page_mapcount(page) < 0)) 1335 print_bad_pte(vma, addr, ptent, page); 1336 if (unlikely(__tlb_remove_page(tlb, page))) { 1337 force_flush = 1; 1338 addr += PAGE_SIZE; 1339 break; 1340 } 1341 continue; 1342 } 1343 1344 entry = pte_to_swp_entry(ptent); 1345 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1346 struct page *page = device_private_entry_to_page(entry); 1347 1348 if (unlikely(details && details->check_mapping)) { 1349 /* 1350 * unmap_shared_mapping_pages() wants to 1351 * invalidate cache without truncating: 1352 * unmap shared but keep private pages. 1353 */ 1354 if (details->check_mapping != 1355 page_rmapping(page)) 1356 continue; 1357 } 1358 1359 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1360 rss[mm_counter(page)]--; 1361 page_remove_rmap(page, false); 1362 put_page(page); 1363 continue; 1364 } 1365 1366 /* If details->check_mapping, we leave swap entries. */ 1367 if (unlikely(details)) 1368 continue; 1369 1370 entry = pte_to_swp_entry(ptent); 1371 if (!non_swap_entry(entry)) 1372 rss[MM_SWAPENTS]--; 1373 else if (is_migration_entry(entry)) { 1374 struct page *page; 1375 1376 page = migration_entry_to_page(entry); 1377 rss[mm_counter(page)]--; 1378 } 1379 if (unlikely(!free_swap_and_cache(entry))) 1380 print_bad_pte(vma, addr, ptent, NULL); 1381 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1382 } while (pte++, addr += PAGE_SIZE, addr != end); 1383 1384 add_mm_rss_vec(mm, rss); 1385 arch_leave_lazy_mmu_mode(); 1386 1387 /* Do the actual TLB flush before dropping ptl */ 1388 if (force_flush) 1389 tlb_flush_mmu_tlbonly(tlb); 1390 pte_unmap_unlock(start_pte, ptl); 1391 1392 /* 1393 * If we forced a TLB flush (either due to running out of 1394 * batch buffers or because we needed to flush dirty TLB 1395 * entries before releasing the ptl), free the batched 1396 * memory too. Restart if we didn't do everything. 1397 */ 1398 if (force_flush) { 1399 force_flush = 0; 1400 tlb_flush_mmu_free(tlb); 1401 if (addr != end) 1402 goto again; 1403 } 1404 1405 return addr; 1406 } 1407 1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1409 struct vm_area_struct *vma, pud_t *pud, 1410 unsigned long addr, unsigned long end, 1411 struct zap_details *details) 1412 { 1413 pmd_t *pmd; 1414 unsigned long next; 1415 1416 pmd = pmd_offset(pud, addr); 1417 do { 1418 next = pmd_addr_end(addr, end); 1419 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1420 if (next - addr != HPAGE_PMD_SIZE) { 1421 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1422 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1423 __split_huge_pmd(vma, pmd, addr, false, NULL); 1424 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1425 goto next; 1426 /* fall through */ 1427 } 1428 /* 1429 * Here there can be other concurrent MADV_DONTNEED or 1430 * trans huge page faults running, and if the pmd is 1431 * none or trans huge it can change under us. This is 1432 * because MADV_DONTNEED holds the mmap_sem in read 1433 * mode. 1434 */ 1435 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1436 goto next; 1437 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1438 next: 1439 cond_resched(); 1440 } while (pmd++, addr = next, addr != end); 1441 1442 return addr; 1443 } 1444 1445 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1446 struct vm_area_struct *vma, p4d_t *p4d, 1447 unsigned long addr, unsigned long end, 1448 struct zap_details *details) 1449 { 1450 pud_t *pud; 1451 unsigned long next; 1452 1453 pud = pud_offset(p4d, addr); 1454 do { 1455 next = pud_addr_end(addr, end); 1456 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1457 if (next - addr != HPAGE_PUD_SIZE) { 1458 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1459 split_huge_pud(vma, pud, addr); 1460 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1461 goto next; 1462 /* fall through */ 1463 } 1464 if (pud_none_or_clear_bad(pud)) 1465 continue; 1466 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1467 next: 1468 cond_resched(); 1469 } while (pud++, addr = next, addr != end); 1470 1471 return addr; 1472 } 1473 1474 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1475 struct vm_area_struct *vma, pgd_t *pgd, 1476 unsigned long addr, unsigned long end, 1477 struct zap_details *details) 1478 { 1479 p4d_t *p4d; 1480 unsigned long next; 1481 1482 p4d = p4d_offset(pgd, addr); 1483 do { 1484 next = p4d_addr_end(addr, end); 1485 if (p4d_none_or_clear_bad(p4d)) 1486 continue; 1487 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1488 } while (p4d++, addr = next, addr != end); 1489 1490 return addr; 1491 } 1492 1493 void unmap_page_range(struct mmu_gather *tlb, 1494 struct vm_area_struct *vma, 1495 unsigned long addr, unsigned long end, 1496 struct zap_details *details) 1497 { 1498 pgd_t *pgd; 1499 unsigned long next; 1500 1501 BUG_ON(addr >= end); 1502 tlb_start_vma(tlb, vma); 1503 pgd = pgd_offset(vma->vm_mm, addr); 1504 do { 1505 next = pgd_addr_end(addr, end); 1506 if (pgd_none_or_clear_bad(pgd)) 1507 continue; 1508 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1509 } while (pgd++, addr = next, addr != end); 1510 tlb_end_vma(tlb, vma); 1511 } 1512 1513 1514 static void unmap_single_vma(struct mmu_gather *tlb, 1515 struct vm_area_struct *vma, unsigned long start_addr, 1516 unsigned long end_addr, 1517 struct zap_details *details) 1518 { 1519 unsigned long start = max(vma->vm_start, start_addr); 1520 unsigned long end; 1521 1522 if (start >= vma->vm_end) 1523 return; 1524 end = min(vma->vm_end, end_addr); 1525 if (end <= vma->vm_start) 1526 return; 1527 1528 if (vma->vm_file) 1529 uprobe_munmap(vma, start, end); 1530 1531 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1532 untrack_pfn(vma, 0, 0); 1533 1534 if (start != end) { 1535 if (unlikely(is_vm_hugetlb_page(vma))) { 1536 /* 1537 * It is undesirable to test vma->vm_file as it 1538 * should be non-null for valid hugetlb area. 1539 * However, vm_file will be NULL in the error 1540 * cleanup path of mmap_region. When 1541 * hugetlbfs ->mmap method fails, 1542 * mmap_region() nullifies vma->vm_file 1543 * before calling this function to clean up. 1544 * Since no pte has actually been setup, it is 1545 * safe to do nothing in this case. 1546 */ 1547 if (vma->vm_file) { 1548 i_mmap_lock_write(vma->vm_file->f_mapping); 1549 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1550 i_mmap_unlock_write(vma->vm_file->f_mapping); 1551 } 1552 } else 1553 unmap_page_range(tlb, vma, start, end, details); 1554 } 1555 } 1556 1557 /** 1558 * unmap_vmas - unmap a range of memory covered by a list of vma's 1559 * @tlb: address of the caller's struct mmu_gather 1560 * @vma: the starting vma 1561 * @start_addr: virtual address at which to start unmapping 1562 * @end_addr: virtual address at which to end unmapping 1563 * 1564 * Unmap all pages in the vma list. 1565 * 1566 * Only addresses between `start' and `end' will be unmapped. 1567 * 1568 * The VMA list must be sorted in ascending virtual address order. 1569 * 1570 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1571 * range after unmap_vmas() returns. So the only responsibility here is to 1572 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1573 * drops the lock and schedules. 1574 */ 1575 void unmap_vmas(struct mmu_gather *tlb, 1576 struct vm_area_struct *vma, unsigned long start_addr, 1577 unsigned long end_addr) 1578 { 1579 struct mm_struct *mm = vma->vm_mm; 1580 1581 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1582 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1583 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1584 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1585 } 1586 1587 /** 1588 * zap_page_range - remove user pages in a given range 1589 * @vma: vm_area_struct holding the applicable pages 1590 * @start: starting address of pages to zap 1591 * @size: number of bytes to zap 1592 * 1593 * Caller must protect the VMA list 1594 */ 1595 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1596 unsigned long size) 1597 { 1598 struct mm_struct *mm = vma->vm_mm; 1599 struct mmu_gather tlb; 1600 unsigned long end = start + size; 1601 1602 lru_add_drain(); 1603 tlb_gather_mmu(&tlb, mm, start, end); 1604 update_hiwater_rss(mm); 1605 mmu_notifier_invalidate_range_start(mm, start, end); 1606 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 1607 unmap_single_vma(&tlb, vma, start, end, NULL); 1608 1609 /* 1610 * zap_page_range does not specify whether mmap_sem should be 1611 * held for read or write. That allows parallel zap_page_range 1612 * operations to unmap a PTE and defer a flush meaning that 1613 * this call observes pte_none and fails to flush the TLB. 1614 * Rather than adding a complex API, ensure that no stale 1615 * TLB entries exist when this call returns. 1616 */ 1617 flush_tlb_range(vma, start, end); 1618 } 1619 1620 mmu_notifier_invalidate_range_end(mm, start, end); 1621 tlb_finish_mmu(&tlb, start, end); 1622 } 1623 1624 /** 1625 * zap_page_range_single - remove user pages in a given range 1626 * @vma: vm_area_struct holding the applicable pages 1627 * @address: starting address of pages to zap 1628 * @size: number of bytes to zap 1629 * @details: details of shared cache invalidation 1630 * 1631 * The range must fit into one VMA. 1632 */ 1633 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1634 unsigned long size, struct zap_details *details) 1635 { 1636 struct mm_struct *mm = vma->vm_mm; 1637 struct mmu_gather tlb; 1638 unsigned long end = address + size; 1639 1640 lru_add_drain(); 1641 tlb_gather_mmu(&tlb, mm, address, end); 1642 update_hiwater_rss(mm); 1643 mmu_notifier_invalidate_range_start(mm, address, end); 1644 unmap_single_vma(&tlb, vma, address, end, details); 1645 mmu_notifier_invalidate_range_end(mm, address, end); 1646 tlb_finish_mmu(&tlb, address, end); 1647 } 1648 1649 /** 1650 * zap_vma_ptes - remove ptes mapping the vma 1651 * @vma: vm_area_struct holding ptes to be zapped 1652 * @address: starting address of pages to zap 1653 * @size: number of bytes to zap 1654 * 1655 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1656 * 1657 * The entire address range must be fully contained within the vma. 1658 * 1659 */ 1660 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1661 unsigned long size) 1662 { 1663 if (address < vma->vm_start || address + size > vma->vm_end || 1664 !(vma->vm_flags & VM_PFNMAP)) 1665 return; 1666 1667 zap_page_range_single(vma, address, size, NULL); 1668 } 1669 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1670 1671 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1672 spinlock_t **ptl) 1673 { 1674 pgd_t *pgd; 1675 p4d_t *p4d; 1676 pud_t *pud; 1677 pmd_t *pmd; 1678 1679 pgd = pgd_offset(mm, addr); 1680 p4d = p4d_alloc(mm, pgd, addr); 1681 if (!p4d) 1682 return NULL; 1683 pud = pud_alloc(mm, p4d, addr); 1684 if (!pud) 1685 return NULL; 1686 pmd = pmd_alloc(mm, pud, addr); 1687 if (!pmd) 1688 return NULL; 1689 1690 VM_BUG_ON(pmd_trans_huge(*pmd)); 1691 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1692 } 1693 1694 /* 1695 * This is the old fallback for page remapping. 1696 * 1697 * For historical reasons, it only allows reserved pages. Only 1698 * old drivers should use this, and they needed to mark their 1699 * pages reserved for the old functions anyway. 1700 */ 1701 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1702 struct page *page, pgprot_t prot) 1703 { 1704 struct mm_struct *mm = vma->vm_mm; 1705 int retval; 1706 pte_t *pte; 1707 spinlock_t *ptl; 1708 1709 retval = -EINVAL; 1710 if (PageAnon(page)) 1711 goto out; 1712 retval = -ENOMEM; 1713 flush_dcache_page(page); 1714 pte = get_locked_pte(mm, addr, &ptl); 1715 if (!pte) 1716 goto out; 1717 retval = -EBUSY; 1718 if (!pte_none(*pte)) 1719 goto out_unlock; 1720 1721 /* Ok, finally just insert the thing.. */ 1722 get_page(page); 1723 inc_mm_counter_fast(mm, mm_counter_file(page)); 1724 page_add_file_rmap(page, false); 1725 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1726 1727 retval = 0; 1728 pte_unmap_unlock(pte, ptl); 1729 return retval; 1730 out_unlock: 1731 pte_unmap_unlock(pte, ptl); 1732 out: 1733 return retval; 1734 } 1735 1736 /** 1737 * vm_insert_page - insert single page into user vma 1738 * @vma: user vma to map to 1739 * @addr: target user address of this page 1740 * @page: source kernel page 1741 * 1742 * This allows drivers to insert individual pages they've allocated 1743 * into a user vma. 1744 * 1745 * The page has to be a nice clean _individual_ kernel allocation. 1746 * If you allocate a compound page, you need to have marked it as 1747 * such (__GFP_COMP), or manually just split the page up yourself 1748 * (see split_page()). 1749 * 1750 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1751 * took an arbitrary page protection parameter. This doesn't allow 1752 * that. Your vma protection will have to be set up correctly, which 1753 * means that if you want a shared writable mapping, you'd better 1754 * ask for a shared writable mapping! 1755 * 1756 * The page does not need to be reserved. 1757 * 1758 * Usually this function is called from f_op->mmap() handler 1759 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1760 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1761 * function from other places, for example from page-fault handler. 1762 */ 1763 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1764 struct page *page) 1765 { 1766 if (addr < vma->vm_start || addr >= vma->vm_end) 1767 return -EFAULT; 1768 if (!page_count(page)) 1769 return -EINVAL; 1770 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1771 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1772 BUG_ON(vma->vm_flags & VM_PFNMAP); 1773 vma->vm_flags |= VM_MIXEDMAP; 1774 } 1775 return insert_page(vma, addr, page, vma->vm_page_prot); 1776 } 1777 EXPORT_SYMBOL(vm_insert_page); 1778 1779 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1780 pfn_t pfn, pgprot_t prot, bool mkwrite) 1781 { 1782 struct mm_struct *mm = vma->vm_mm; 1783 int retval; 1784 pte_t *pte, entry; 1785 spinlock_t *ptl; 1786 1787 retval = -ENOMEM; 1788 pte = get_locked_pte(mm, addr, &ptl); 1789 if (!pte) 1790 goto out; 1791 retval = -EBUSY; 1792 if (!pte_none(*pte)) { 1793 if (mkwrite) { 1794 /* 1795 * For read faults on private mappings the PFN passed 1796 * in may not match the PFN we have mapped if the 1797 * mapped PFN is a writeable COW page. In the mkwrite 1798 * case we are creating a writable PTE for a shared 1799 * mapping and we expect the PFNs to match. 1800 */ 1801 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1802 goto out_unlock; 1803 entry = *pte; 1804 goto out_mkwrite; 1805 } else 1806 goto out_unlock; 1807 } 1808 1809 /* Ok, finally just insert the thing.. */ 1810 if (pfn_t_devmap(pfn)) 1811 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1812 else 1813 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1814 1815 out_mkwrite: 1816 if (mkwrite) { 1817 entry = pte_mkyoung(entry); 1818 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1819 } 1820 1821 set_pte_at(mm, addr, pte, entry); 1822 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1823 1824 retval = 0; 1825 out_unlock: 1826 pte_unmap_unlock(pte, ptl); 1827 out: 1828 return retval; 1829 } 1830 1831 /** 1832 * vm_insert_pfn - insert single pfn into user vma 1833 * @vma: user vma to map to 1834 * @addr: target user address of this page 1835 * @pfn: source kernel pfn 1836 * 1837 * Similar to vm_insert_page, this allows drivers to insert individual pages 1838 * they've allocated into a user vma. Same comments apply. 1839 * 1840 * This function should only be called from a vm_ops->fault handler, and 1841 * in that case the handler should return NULL. 1842 * 1843 * vma cannot be a COW mapping. 1844 * 1845 * As this is called only for pages that do not currently exist, we 1846 * do not need to flush old virtual caches or the TLB. 1847 */ 1848 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1849 unsigned long pfn) 1850 { 1851 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1852 } 1853 EXPORT_SYMBOL(vm_insert_pfn); 1854 1855 /** 1856 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1857 * @vma: user vma to map to 1858 * @addr: target user address of this page 1859 * @pfn: source kernel pfn 1860 * @pgprot: pgprot flags for the inserted page 1861 * 1862 * This is exactly like vm_insert_pfn, except that it allows drivers to 1863 * to override pgprot on a per-page basis. 1864 * 1865 * This only makes sense for IO mappings, and it makes no sense for 1866 * cow mappings. In general, using multiple vmas is preferable; 1867 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1868 * impractical. 1869 */ 1870 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1871 unsigned long pfn, pgprot_t pgprot) 1872 { 1873 int ret; 1874 /* 1875 * Technically, architectures with pte_special can avoid all these 1876 * restrictions (same for remap_pfn_range). However we would like 1877 * consistency in testing and feature parity among all, so we should 1878 * try to keep these invariants in place for everybody. 1879 */ 1880 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1881 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1882 (VM_PFNMAP|VM_MIXEDMAP)); 1883 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1884 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1885 1886 if (addr < vma->vm_start || addr >= vma->vm_end) 1887 return -EFAULT; 1888 1889 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1890 1891 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1892 false); 1893 1894 return ret; 1895 } 1896 EXPORT_SYMBOL(vm_insert_pfn_prot); 1897 1898 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1899 { 1900 /* these checks mirror the abort conditions in vm_normal_page */ 1901 if (vma->vm_flags & VM_MIXEDMAP) 1902 return true; 1903 if (pfn_t_devmap(pfn)) 1904 return true; 1905 if (pfn_t_special(pfn)) 1906 return true; 1907 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1908 return true; 1909 return false; 1910 } 1911 1912 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1913 pfn_t pfn, bool mkwrite) 1914 { 1915 pgprot_t pgprot = vma->vm_page_prot; 1916 1917 BUG_ON(!vm_mixed_ok(vma, pfn)); 1918 1919 if (addr < vma->vm_start || addr >= vma->vm_end) 1920 return -EFAULT; 1921 1922 track_pfn_insert(vma, &pgprot, pfn); 1923 1924 /* 1925 * If we don't have pte special, then we have to use the pfn_valid() 1926 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1927 * refcount the page if pfn_valid is true (hence insert_page rather 1928 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1929 * without pte special, it would there be refcounted as a normal page. 1930 */ 1931 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1932 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1933 struct page *page; 1934 1935 /* 1936 * At this point we are committed to insert_page() 1937 * regardless of whether the caller specified flags that 1938 * result in pfn_t_has_page() == false. 1939 */ 1940 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1941 return insert_page(vma, addr, page, pgprot); 1942 } 1943 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1944 } 1945 1946 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1947 pfn_t pfn) 1948 { 1949 return __vm_insert_mixed(vma, addr, pfn, false); 1950 1951 } 1952 EXPORT_SYMBOL(vm_insert_mixed); 1953 1954 /* 1955 * If the insertion of PTE failed because someone else already added a 1956 * different entry in the mean time, we treat that as success as we assume 1957 * the same entry was actually inserted. 1958 */ 1959 1960 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1961 unsigned long addr, pfn_t pfn) 1962 { 1963 int err; 1964 1965 err = __vm_insert_mixed(vma, addr, pfn, true); 1966 if (err == -ENOMEM) 1967 return VM_FAULT_OOM; 1968 if (err < 0 && err != -EBUSY) 1969 return VM_FAULT_SIGBUS; 1970 return VM_FAULT_NOPAGE; 1971 } 1972 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1973 1974 /* 1975 * maps a range of physical memory into the requested pages. the old 1976 * mappings are removed. any references to nonexistent pages results 1977 * in null mappings (currently treated as "copy-on-access") 1978 */ 1979 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1980 unsigned long addr, unsigned long end, 1981 unsigned long pfn, pgprot_t prot) 1982 { 1983 pte_t *pte; 1984 spinlock_t *ptl; 1985 1986 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1987 if (!pte) 1988 return -ENOMEM; 1989 arch_enter_lazy_mmu_mode(); 1990 do { 1991 BUG_ON(!pte_none(*pte)); 1992 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1993 pfn++; 1994 } while (pte++, addr += PAGE_SIZE, addr != end); 1995 arch_leave_lazy_mmu_mode(); 1996 pte_unmap_unlock(pte - 1, ptl); 1997 return 0; 1998 } 1999 2000 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2001 unsigned long addr, unsigned long end, 2002 unsigned long pfn, pgprot_t prot) 2003 { 2004 pmd_t *pmd; 2005 unsigned long next; 2006 2007 pfn -= addr >> PAGE_SHIFT; 2008 pmd = pmd_alloc(mm, pud, addr); 2009 if (!pmd) 2010 return -ENOMEM; 2011 VM_BUG_ON(pmd_trans_huge(*pmd)); 2012 do { 2013 next = pmd_addr_end(addr, end); 2014 if (remap_pte_range(mm, pmd, addr, next, 2015 pfn + (addr >> PAGE_SHIFT), prot)) 2016 return -ENOMEM; 2017 } while (pmd++, addr = next, addr != end); 2018 return 0; 2019 } 2020 2021 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2022 unsigned long addr, unsigned long end, 2023 unsigned long pfn, pgprot_t prot) 2024 { 2025 pud_t *pud; 2026 unsigned long next; 2027 2028 pfn -= addr >> PAGE_SHIFT; 2029 pud = pud_alloc(mm, p4d, addr); 2030 if (!pud) 2031 return -ENOMEM; 2032 do { 2033 next = pud_addr_end(addr, end); 2034 if (remap_pmd_range(mm, pud, addr, next, 2035 pfn + (addr >> PAGE_SHIFT), prot)) 2036 return -ENOMEM; 2037 } while (pud++, addr = next, addr != end); 2038 return 0; 2039 } 2040 2041 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2042 unsigned long addr, unsigned long end, 2043 unsigned long pfn, pgprot_t prot) 2044 { 2045 p4d_t *p4d; 2046 unsigned long next; 2047 2048 pfn -= addr >> PAGE_SHIFT; 2049 p4d = p4d_alloc(mm, pgd, addr); 2050 if (!p4d) 2051 return -ENOMEM; 2052 do { 2053 next = p4d_addr_end(addr, end); 2054 if (remap_pud_range(mm, p4d, addr, next, 2055 pfn + (addr >> PAGE_SHIFT), prot)) 2056 return -ENOMEM; 2057 } while (p4d++, addr = next, addr != end); 2058 return 0; 2059 } 2060 2061 /** 2062 * remap_pfn_range - remap kernel memory to userspace 2063 * @vma: user vma to map to 2064 * @addr: target user address to start at 2065 * @pfn: physical address of kernel memory 2066 * @size: size of map area 2067 * @prot: page protection flags for this mapping 2068 * 2069 * Note: this is only safe if the mm semaphore is held when called. 2070 */ 2071 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2072 unsigned long pfn, unsigned long size, pgprot_t prot) 2073 { 2074 pgd_t *pgd; 2075 unsigned long next; 2076 unsigned long end = addr + PAGE_ALIGN(size); 2077 struct mm_struct *mm = vma->vm_mm; 2078 unsigned long remap_pfn = pfn; 2079 int err; 2080 2081 /* 2082 * Physically remapped pages are special. Tell the 2083 * rest of the world about it: 2084 * VM_IO tells people not to look at these pages 2085 * (accesses can have side effects). 2086 * VM_PFNMAP tells the core MM that the base pages are just 2087 * raw PFN mappings, and do not have a "struct page" associated 2088 * with them. 2089 * VM_DONTEXPAND 2090 * Disable vma merging and expanding with mremap(). 2091 * VM_DONTDUMP 2092 * Omit vma from core dump, even when VM_IO turned off. 2093 * 2094 * There's a horrible special case to handle copy-on-write 2095 * behaviour that some programs depend on. We mark the "original" 2096 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2097 * See vm_normal_page() for details. 2098 */ 2099 if (is_cow_mapping(vma->vm_flags)) { 2100 if (addr != vma->vm_start || end != vma->vm_end) 2101 return -EINVAL; 2102 vma->vm_pgoff = pfn; 2103 } 2104 2105 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2106 if (err) 2107 return -EINVAL; 2108 2109 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2110 2111 BUG_ON(addr >= end); 2112 pfn -= addr >> PAGE_SHIFT; 2113 pgd = pgd_offset(mm, addr); 2114 flush_cache_range(vma, addr, end); 2115 do { 2116 next = pgd_addr_end(addr, end); 2117 err = remap_p4d_range(mm, pgd, addr, next, 2118 pfn + (addr >> PAGE_SHIFT), prot); 2119 if (err) 2120 break; 2121 } while (pgd++, addr = next, addr != end); 2122 2123 if (err) 2124 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2125 2126 return err; 2127 } 2128 EXPORT_SYMBOL(remap_pfn_range); 2129 2130 /** 2131 * vm_iomap_memory - remap memory to userspace 2132 * @vma: user vma to map to 2133 * @start: start of area 2134 * @len: size of area 2135 * 2136 * This is a simplified io_remap_pfn_range() for common driver use. The 2137 * driver just needs to give us the physical memory range to be mapped, 2138 * we'll figure out the rest from the vma information. 2139 * 2140 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2141 * whatever write-combining details or similar. 2142 */ 2143 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2144 { 2145 unsigned long vm_len, pfn, pages; 2146 2147 /* Check that the physical memory area passed in looks valid */ 2148 if (start + len < start) 2149 return -EINVAL; 2150 /* 2151 * You *really* shouldn't map things that aren't page-aligned, 2152 * but we've historically allowed it because IO memory might 2153 * just have smaller alignment. 2154 */ 2155 len += start & ~PAGE_MASK; 2156 pfn = start >> PAGE_SHIFT; 2157 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2158 if (pfn + pages < pfn) 2159 return -EINVAL; 2160 2161 /* We start the mapping 'vm_pgoff' pages into the area */ 2162 if (vma->vm_pgoff > pages) 2163 return -EINVAL; 2164 pfn += vma->vm_pgoff; 2165 pages -= vma->vm_pgoff; 2166 2167 /* Can we fit all of the mapping? */ 2168 vm_len = vma->vm_end - vma->vm_start; 2169 if (vm_len >> PAGE_SHIFT > pages) 2170 return -EINVAL; 2171 2172 /* Ok, let it rip */ 2173 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2174 } 2175 EXPORT_SYMBOL(vm_iomap_memory); 2176 2177 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2178 unsigned long addr, unsigned long end, 2179 pte_fn_t fn, void *data) 2180 { 2181 pte_t *pte; 2182 int err; 2183 pgtable_t token; 2184 spinlock_t *uninitialized_var(ptl); 2185 2186 pte = (mm == &init_mm) ? 2187 pte_alloc_kernel(pmd, addr) : 2188 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2189 if (!pte) 2190 return -ENOMEM; 2191 2192 BUG_ON(pmd_huge(*pmd)); 2193 2194 arch_enter_lazy_mmu_mode(); 2195 2196 token = pmd_pgtable(*pmd); 2197 2198 do { 2199 err = fn(pte++, token, addr, data); 2200 if (err) 2201 break; 2202 } while (addr += PAGE_SIZE, addr != end); 2203 2204 arch_leave_lazy_mmu_mode(); 2205 2206 if (mm != &init_mm) 2207 pte_unmap_unlock(pte-1, ptl); 2208 return err; 2209 } 2210 2211 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2212 unsigned long addr, unsigned long end, 2213 pte_fn_t fn, void *data) 2214 { 2215 pmd_t *pmd; 2216 unsigned long next; 2217 int err; 2218 2219 BUG_ON(pud_huge(*pud)); 2220 2221 pmd = pmd_alloc(mm, pud, addr); 2222 if (!pmd) 2223 return -ENOMEM; 2224 do { 2225 next = pmd_addr_end(addr, end); 2226 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2227 if (err) 2228 break; 2229 } while (pmd++, addr = next, addr != end); 2230 return err; 2231 } 2232 2233 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2234 unsigned long addr, unsigned long end, 2235 pte_fn_t fn, void *data) 2236 { 2237 pud_t *pud; 2238 unsigned long next; 2239 int err; 2240 2241 pud = pud_alloc(mm, p4d, addr); 2242 if (!pud) 2243 return -ENOMEM; 2244 do { 2245 next = pud_addr_end(addr, end); 2246 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2247 if (err) 2248 break; 2249 } while (pud++, addr = next, addr != end); 2250 return err; 2251 } 2252 2253 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2254 unsigned long addr, unsigned long end, 2255 pte_fn_t fn, void *data) 2256 { 2257 p4d_t *p4d; 2258 unsigned long next; 2259 int err; 2260 2261 p4d = p4d_alloc(mm, pgd, addr); 2262 if (!p4d) 2263 return -ENOMEM; 2264 do { 2265 next = p4d_addr_end(addr, end); 2266 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2267 if (err) 2268 break; 2269 } while (p4d++, addr = next, addr != end); 2270 return err; 2271 } 2272 2273 /* 2274 * Scan a region of virtual memory, filling in page tables as necessary 2275 * and calling a provided function on each leaf page table. 2276 */ 2277 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2278 unsigned long size, pte_fn_t fn, void *data) 2279 { 2280 pgd_t *pgd; 2281 unsigned long next; 2282 unsigned long end = addr + size; 2283 int err; 2284 2285 if (WARN_ON(addr >= end)) 2286 return -EINVAL; 2287 2288 pgd = pgd_offset(mm, addr); 2289 do { 2290 next = pgd_addr_end(addr, end); 2291 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2292 if (err) 2293 break; 2294 } while (pgd++, addr = next, addr != end); 2295 2296 return err; 2297 } 2298 EXPORT_SYMBOL_GPL(apply_to_page_range); 2299 2300 /* 2301 * handle_pte_fault chooses page fault handler according to an entry which was 2302 * read non-atomically. Before making any commitment, on those architectures 2303 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2304 * parts, do_swap_page must check under lock before unmapping the pte and 2305 * proceeding (but do_wp_page is only called after already making such a check; 2306 * and do_anonymous_page can safely check later on). 2307 */ 2308 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2309 pte_t *page_table, pte_t orig_pte) 2310 { 2311 int same = 1; 2312 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2313 if (sizeof(pte_t) > sizeof(unsigned long)) { 2314 spinlock_t *ptl = pte_lockptr(mm, pmd); 2315 spin_lock(ptl); 2316 same = pte_same(*page_table, orig_pte); 2317 spin_unlock(ptl); 2318 } 2319 #endif 2320 pte_unmap(page_table); 2321 return same; 2322 } 2323 2324 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2325 { 2326 debug_dma_assert_idle(src); 2327 2328 /* 2329 * If the source page was a PFN mapping, we don't have 2330 * a "struct page" for it. We do a best-effort copy by 2331 * just copying from the original user address. If that 2332 * fails, we just zero-fill it. Live with it. 2333 */ 2334 if (unlikely(!src)) { 2335 void *kaddr = kmap_atomic(dst); 2336 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2337 2338 /* 2339 * This really shouldn't fail, because the page is there 2340 * in the page tables. But it might just be unreadable, 2341 * in which case we just give up and fill the result with 2342 * zeroes. 2343 */ 2344 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2345 clear_page(kaddr); 2346 kunmap_atomic(kaddr); 2347 flush_dcache_page(dst); 2348 } else 2349 copy_user_highpage(dst, src, va, vma); 2350 } 2351 2352 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2353 { 2354 struct file *vm_file = vma->vm_file; 2355 2356 if (vm_file) 2357 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2358 2359 /* 2360 * Special mappings (e.g. VDSO) do not have any file so fake 2361 * a default GFP_KERNEL for them. 2362 */ 2363 return GFP_KERNEL; 2364 } 2365 2366 /* 2367 * Notify the address space that the page is about to become writable so that 2368 * it can prohibit this or wait for the page to get into an appropriate state. 2369 * 2370 * We do this without the lock held, so that it can sleep if it needs to. 2371 */ 2372 static int do_page_mkwrite(struct vm_fault *vmf) 2373 { 2374 int ret; 2375 struct page *page = vmf->page; 2376 unsigned int old_flags = vmf->flags; 2377 2378 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2379 2380 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2381 /* Restore original flags so that caller is not surprised */ 2382 vmf->flags = old_flags; 2383 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2384 return ret; 2385 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2386 lock_page(page); 2387 if (!page->mapping) { 2388 unlock_page(page); 2389 return 0; /* retry */ 2390 } 2391 ret |= VM_FAULT_LOCKED; 2392 } else 2393 VM_BUG_ON_PAGE(!PageLocked(page), page); 2394 return ret; 2395 } 2396 2397 /* 2398 * Handle dirtying of a page in shared file mapping on a write fault. 2399 * 2400 * The function expects the page to be locked and unlocks it. 2401 */ 2402 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2403 struct page *page) 2404 { 2405 struct address_space *mapping; 2406 bool dirtied; 2407 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2408 2409 dirtied = set_page_dirty(page); 2410 VM_BUG_ON_PAGE(PageAnon(page), page); 2411 /* 2412 * Take a local copy of the address_space - page.mapping may be zeroed 2413 * by truncate after unlock_page(). The address_space itself remains 2414 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2415 * release semantics to prevent the compiler from undoing this copying. 2416 */ 2417 mapping = page_rmapping(page); 2418 unlock_page(page); 2419 2420 if ((dirtied || page_mkwrite) && mapping) { 2421 /* 2422 * Some device drivers do not set page.mapping 2423 * but still dirty their pages 2424 */ 2425 balance_dirty_pages_ratelimited(mapping); 2426 } 2427 2428 if (!page_mkwrite) 2429 file_update_time(vma->vm_file); 2430 } 2431 2432 /* 2433 * Handle write page faults for pages that can be reused in the current vma 2434 * 2435 * This can happen either due to the mapping being with the VM_SHARED flag, 2436 * or due to us being the last reference standing to the page. In either 2437 * case, all we need to do here is to mark the page as writable and update 2438 * any related book-keeping. 2439 */ 2440 static inline void wp_page_reuse(struct vm_fault *vmf) 2441 __releases(vmf->ptl) 2442 { 2443 struct vm_area_struct *vma = vmf->vma; 2444 struct page *page = vmf->page; 2445 pte_t entry; 2446 /* 2447 * Clear the pages cpupid information as the existing 2448 * information potentially belongs to a now completely 2449 * unrelated process. 2450 */ 2451 if (page) 2452 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2453 2454 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2455 entry = pte_mkyoung(vmf->orig_pte); 2456 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2457 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2458 update_mmu_cache(vma, vmf->address, vmf->pte); 2459 pte_unmap_unlock(vmf->pte, vmf->ptl); 2460 } 2461 2462 /* 2463 * Handle the case of a page which we actually need to copy to a new page. 2464 * 2465 * Called with mmap_sem locked and the old page referenced, but 2466 * without the ptl held. 2467 * 2468 * High level logic flow: 2469 * 2470 * - Allocate a page, copy the content of the old page to the new one. 2471 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2472 * - Take the PTL. If the pte changed, bail out and release the allocated page 2473 * - If the pte is still the way we remember it, update the page table and all 2474 * relevant references. This includes dropping the reference the page-table 2475 * held to the old page, as well as updating the rmap. 2476 * - In any case, unlock the PTL and drop the reference we took to the old page. 2477 */ 2478 static int wp_page_copy(struct vm_fault *vmf) 2479 { 2480 struct vm_area_struct *vma = vmf->vma; 2481 struct mm_struct *mm = vma->vm_mm; 2482 struct page *old_page = vmf->page; 2483 struct page *new_page = NULL; 2484 pte_t entry; 2485 int page_copied = 0; 2486 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2487 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2488 struct mem_cgroup *memcg; 2489 2490 if (unlikely(anon_vma_prepare(vma))) 2491 goto oom; 2492 2493 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2494 new_page = alloc_zeroed_user_highpage_movable(vma, 2495 vmf->address); 2496 if (!new_page) 2497 goto oom; 2498 } else { 2499 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2500 vmf->address); 2501 if (!new_page) 2502 goto oom; 2503 cow_user_page(new_page, old_page, vmf->address, vma); 2504 } 2505 2506 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2507 goto oom_free_new; 2508 2509 __SetPageUptodate(new_page); 2510 2511 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2512 2513 /* 2514 * Re-check the pte - we dropped the lock 2515 */ 2516 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2517 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2518 if (old_page) { 2519 if (!PageAnon(old_page)) { 2520 dec_mm_counter_fast(mm, 2521 mm_counter_file(old_page)); 2522 inc_mm_counter_fast(mm, MM_ANONPAGES); 2523 } 2524 } else { 2525 inc_mm_counter_fast(mm, MM_ANONPAGES); 2526 } 2527 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2528 entry = mk_pte(new_page, vma->vm_page_prot); 2529 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2530 /* 2531 * Clear the pte entry and flush it first, before updating the 2532 * pte with the new entry. This will avoid a race condition 2533 * seen in the presence of one thread doing SMC and another 2534 * thread doing COW. 2535 */ 2536 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2537 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2538 mem_cgroup_commit_charge(new_page, memcg, false, false); 2539 lru_cache_add_active_or_unevictable(new_page, vma); 2540 /* 2541 * We call the notify macro here because, when using secondary 2542 * mmu page tables (such as kvm shadow page tables), we want the 2543 * new page to be mapped directly into the secondary page table. 2544 */ 2545 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2546 update_mmu_cache(vma, vmf->address, vmf->pte); 2547 if (old_page) { 2548 /* 2549 * Only after switching the pte to the new page may 2550 * we remove the mapcount here. Otherwise another 2551 * process may come and find the rmap count decremented 2552 * before the pte is switched to the new page, and 2553 * "reuse" the old page writing into it while our pte 2554 * here still points into it and can be read by other 2555 * threads. 2556 * 2557 * The critical issue is to order this 2558 * page_remove_rmap with the ptp_clear_flush above. 2559 * Those stores are ordered by (if nothing else,) 2560 * the barrier present in the atomic_add_negative 2561 * in page_remove_rmap. 2562 * 2563 * Then the TLB flush in ptep_clear_flush ensures that 2564 * no process can access the old page before the 2565 * decremented mapcount is visible. And the old page 2566 * cannot be reused until after the decremented 2567 * mapcount is visible. So transitively, TLBs to 2568 * old page will be flushed before it can be reused. 2569 */ 2570 page_remove_rmap(old_page, false); 2571 } 2572 2573 /* Free the old page.. */ 2574 new_page = old_page; 2575 page_copied = 1; 2576 } else { 2577 mem_cgroup_cancel_charge(new_page, memcg, false); 2578 } 2579 2580 if (new_page) 2581 put_page(new_page); 2582 2583 pte_unmap_unlock(vmf->pte, vmf->ptl); 2584 /* 2585 * No need to double call mmu_notifier->invalidate_range() callback as 2586 * the above ptep_clear_flush_notify() did already call it. 2587 */ 2588 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2589 if (old_page) { 2590 /* 2591 * Don't let another task, with possibly unlocked vma, 2592 * keep the mlocked page. 2593 */ 2594 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2595 lock_page(old_page); /* LRU manipulation */ 2596 if (PageMlocked(old_page)) 2597 munlock_vma_page(old_page); 2598 unlock_page(old_page); 2599 } 2600 put_page(old_page); 2601 } 2602 return page_copied ? VM_FAULT_WRITE : 0; 2603 oom_free_new: 2604 put_page(new_page); 2605 oom: 2606 if (old_page) 2607 put_page(old_page); 2608 return VM_FAULT_OOM; 2609 } 2610 2611 /** 2612 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2613 * writeable once the page is prepared 2614 * 2615 * @vmf: structure describing the fault 2616 * 2617 * This function handles all that is needed to finish a write page fault in a 2618 * shared mapping due to PTE being read-only once the mapped page is prepared. 2619 * It handles locking of PTE and modifying it. The function returns 2620 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2621 * lock. 2622 * 2623 * The function expects the page to be locked or other protection against 2624 * concurrent faults / writeback (such as DAX radix tree locks). 2625 */ 2626 int finish_mkwrite_fault(struct vm_fault *vmf) 2627 { 2628 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2629 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2630 &vmf->ptl); 2631 /* 2632 * We might have raced with another page fault while we released the 2633 * pte_offset_map_lock. 2634 */ 2635 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2636 pte_unmap_unlock(vmf->pte, vmf->ptl); 2637 return VM_FAULT_NOPAGE; 2638 } 2639 wp_page_reuse(vmf); 2640 return 0; 2641 } 2642 2643 /* 2644 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2645 * mapping 2646 */ 2647 static int wp_pfn_shared(struct vm_fault *vmf) 2648 { 2649 struct vm_area_struct *vma = vmf->vma; 2650 2651 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2652 int ret; 2653 2654 pte_unmap_unlock(vmf->pte, vmf->ptl); 2655 vmf->flags |= FAULT_FLAG_MKWRITE; 2656 ret = vma->vm_ops->pfn_mkwrite(vmf); 2657 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2658 return ret; 2659 return finish_mkwrite_fault(vmf); 2660 } 2661 wp_page_reuse(vmf); 2662 return VM_FAULT_WRITE; 2663 } 2664 2665 static int wp_page_shared(struct vm_fault *vmf) 2666 __releases(vmf->ptl) 2667 { 2668 struct vm_area_struct *vma = vmf->vma; 2669 2670 get_page(vmf->page); 2671 2672 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2673 int tmp; 2674 2675 pte_unmap_unlock(vmf->pte, vmf->ptl); 2676 tmp = do_page_mkwrite(vmf); 2677 if (unlikely(!tmp || (tmp & 2678 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2679 put_page(vmf->page); 2680 return tmp; 2681 } 2682 tmp = finish_mkwrite_fault(vmf); 2683 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2684 unlock_page(vmf->page); 2685 put_page(vmf->page); 2686 return tmp; 2687 } 2688 } else { 2689 wp_page_reuse(vmf); 2690 lock_page(vmf->page); 2691 } 2692 fault_dirty_shared_page(vma, vmf->page); 2693 put_page(vmf->page); 2694 2695 return VM_FAULT_WRITE; 2696 } 2697 2698 /* 2699 * This routine handles present pages, when users try to write 2700 * to a shared page. It is done by copying the page to a new address 2701 * and decrementing the shared-page counter for the old page. 2702 * 2703 * Note that this routine assumes that the protection checks have been 2704 * done by the caller (the low-level page fault routine in most cases). 2705 * Thus we can safely just mark it writable once we've done any necessary 2706 * COW. 2707 * 2708 * We also mark the page dirty at this point even though the page will 2709 * change only once the write actually happens. This avoids a few races, 2710 * and potentially makes it more efficient. 2711 * 2712 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2713 * but allow concurrent faults), with pte both mapped and locked. 2714 * We return with mmap_sem still held, but pte unmapped and unlocked. 2715 */ 2716 static int do_wp_page(struct vm_fault *vmf) 2717 __releases(vmf->ptl) 2718 { 2719 struct vm_area_struct *vma = vmf->vma; 2720 2721 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2722 if (!vmf->page) { 2723 /* 2724 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2725 * VM_PFNMAP VMA. 2726 * 2727 * We should not cow pages in a shared writeable mapping. 2728 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2729 */ 2730 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2731 (VM_WRITE|VM_SHARED)) 2732 return wp_pfn_shared(vmf); 2733 2734 pte_unmap_unlock(vmf->pte, vmf->ptl); 2735 return wp_page_copy(vmf); 2736 } 2737 2738 /* 2739 * Take out anonymous pages first, anonymous shared vmas are 2740 * not dirty accountable. 2741 */ 2742 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2743 int total_map_swapcount; 2744 if (!trylock_page(vmf->page)) { 2745 get_page(vmf->page); 2746 pte_unmap_unlock(vmf->pte, vmf->ptl); 2747 lock_page(vmf->page); 2748 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2749 vmf->address, &vmf->ptl); 2750 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2751 unlock_page(vmf->page); 2752 pte_unmap_unlock(vmf->pte, vmf->ptl); 2753 put_page(vmf->page); 2754 return 0; 2755 } 2756 put_page(vmf->page); 2757 } 2758 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2759 if (total_map_swapcount == 1) { 2760 /* 2761 * The page is all ours. Move it to 2762 * our anon_vma so the rmap code will 2763 * not search our parent or siblings. 2764 * Protected against the rmap code by 2765 * the page lock. 2766 */ 2767 page_move_anon_rmap(vmf->page, vma); 2768 } 2769 unlock_page(vmf->page); 2770 wp_page_reuse(vmf); 2771 return VM_FAULT_WRITE; 2772 } 2773 unlock_page(vmf->page); 2774 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2775 (VM_WRITE|VM_SHARED))) { 2776 return wp_page_shared(vmf); 2777 } 2778 2779 /* 2780 * Ok, we need to copy. Oh, well.. 2781 */ 2782 get_page(vmf->page); 2783 2784 pte_unmap_unlock(vmf->pte, vmf->ptl); 2785 return wp_page_copy(vmf); 2786 } 2787 2788 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2789 unsigned long start_addr, unsigned long end_addr, 2790 struct zap_details *details) 2791 { 2792 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2793 } 2794 2795 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2796 struct zap_details *details) 2797 { 2798 struct vm_area_struct *vma; 2799 pgoff_t vba, vea, zba, zea; 2800 2801 vma_interval_tree_foreach(vma, root, 2802 details->first_index, details->last_index) { 2803 2804 vba = vma->vm_pgoff; 2805 vea = vba + vma_pages(vma) - 1; 2806 zba = details->first_index; 2807 if (zba < vba) 2808 zba = vba; 2809 zea = details->last_index; 2810 if (zea > vea) 2811 zea = vea; 2812 2813 unmap_mapping_range_vma(vma, 2814 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2815 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2816 details); 2817 } 2818 } 2819 2820 /** 2821 * unmap_mapping_pages() - Unmap pages from processes. 2822 * @mapping: The address space containing pages to be unmapped. 2823 * @start: Index of first page to be unmapped. 2824 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2825 * @even_cows: Whether to unmap even private COWed pages. 2826 * 2827 * Unmap the pages in this address space from any userspace process which 2828 * has them mmaped. Generally, you want to remove COWed pages as well when 2829 * a file is being truncated, but not when invalidating pages from the page 2830 * cache. 2831 */ 2832 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2833 pgoff_t nr, bool even_cows) 2834 { 2835 struct zap_details details = { }; 2836 2837 details.check_mapping = even_cows ? NULL : mapping; 2838 details.first_index = start; 2839 details.last_index = start + nr - 1; 2840 if (details.last_index < details.first_index) 2841 details.last_index = ULONG_MAX; 2842 2843 i_mmap_lock_write(mapping); 2844 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2845 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2846 i_mmap_unlock_write(mapping); 2847 } 2848 2849 /** 2850 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2851 * address_space corresponding to the specified byte range in the underlying 2852 * file. 2853 * 2854 * @mapping: the address space containing mmaps to be unmapped. 2855 * @holebegin: byte in first page to unmap, relative to the start of 2856 * the underlying file. This will be rounded down to a PAGE_SIZE 2857 * boundary. Note that this is different from truncate_pagecache(), which 2858 * must keep the partial page. In contrast, we must get rid of 2859 * partial pages. 2860 * @holelen: size of prospective hole in bytes. This will be rounded 2861 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2862 * end of the file. 2863 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2864 * but 0 when invalidating pagecache, don't throw away private data. 2865 */ 2866 void unmap_mapping_range(struct address_space *mapping, 2867 loff_t const holebegin, loff_t const holelen, int even_cows) 2868 { 2869 pgoff_t hba = holebegin >> PAGE_SHIFT; 2870 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2871 2872 /* Check for overflow. */ 2873 if (sizeof(holelen) > sizeof(hlen)) { 2874 long long holeend = 2875 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2876 if (holeend & ~(long long)ULONG_MAX) 2877 hlen = ULONG_MAX - hba + 1; 2878 } 2879 2880 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2881 } 2882 EXPORT_SYMBOL(unmap_mapping_range); 2883 2884 /* 2885 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2886 * but allow concurrent faults), and pte mapped but not yet locked. 2887 * We return with pte unmapped and unlocked. 2888 * 2889 * We return with the mmap_sem locked or unlocked in the same cases 2890 * as does filemap_fault(). 2891 */ 2892 int do_swap_page(struct vm_fault *vmf) 2893 { 2894 struct vm_area_struct *vma = vmf->vma; 2895 struct page *page = NULL, *swapcache; 2896 struct mem_cgroup *memcg; 2897 swp_entry_t entry; 2898 pte_t pte; 2899 int locked; 2900 int exclusive = 0; 2901 int ret = 0; 2902 2903 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2904 goto out; 2905 2906 entry = pte_to_swp_entry(vmf->orig_pte); 2907 if (unlikely(non_swap_entry(entry))) { 2908 if (is_migration_entry(entry)) { 2909 migration_entry_wait(vma->vm_mm, vmf->pmd, 2910 vmf->address); 2911 } else if (is_device_private_entry(entry)) { 2912 /* 2913 * For un-addressable device memory we call the pgmap 2914 * fault handler callback. The callback must migrate 2915 * the page back to some CPU accessible page. 2916 */ 2917 ret = device_private_entry_fault(vma, vmf->address, entry, 2918 vmf->flags, vmf->pmd); 2919 } else if (is_hwpoison_entry(entry)) { 2920 ret = VM_FAULT_HWPOISON; 2921 } else { 2922 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2923 ret = VM_FAULT_SIGBUS; 2924 } 2925 goto out; 2926 } 2927 2928 2929 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2930 page = lookup_swap_cache(entry, vma, vmf->address); 2931 swapcache = page; 2932 2933 if (!page) { 2934 struct swap_info_struct *si = swp_swap_info(entry); 2935 2936 if (si->flags & SWP_SYNCHRONOUS_IO && 2937 __swap_count(si, entry) == 1) { 2938 /* skip swapcache */ 2939 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2940 vmf->address); 2941 if (page) { 2942 __SetPageLocked(page); 2943 __SetPageSwapBacked(page); 2944 set_page_private(page, entry.val); 2945 lru_cache_add_anon(page); 2946 swap_readpage(page, true); 2947 } 2948 } else { 2949 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2950 vmf); 2951 swapcache = page; 2952 } 2953 2954 if (!page) { 2955 /* 2956 * Back out if somebody else faulted in this pte 2957 * while we released the pte lock. 2958 */ 2959 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2960 vmf->address, &vmf->ptl); 2961 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2962 ret = VM_FAULT_OOM; 2963 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2964 goto unlock; 2965 } 2966 2967 /* Had to read the page from swap area: Major fault */ 2968 ret = VM_FAULT_MAJOR; 2969 count_vm_event(PGMAJFAULT); 2970 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2971 } else if (PageHWPoison(page)) { 2972 /* 2973 * hwpoisoned dirty swapcache pages are kept for killing 2974 * owner processes (which may be unknown at hwpoison time) 2975 */ 2976 ret = VM_FAULT_HWPOISON; 2977 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2978 goto out_release; 2979 } 2980 2981 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2982 2983 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2984 if (!locked) { 2985 ret |= VM_FAULT_RETRY; 2986 goto out_release; 2987 } 2988 2989 /* 2990 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2991 * release the swapcache from under us. The page pin, and pte_same 2992 * test below, are not enough to exclude that. Even if it is still 2993 * swapcache, we need to check that the page's swap has not changed. 2994 */ 2995 if (unlikely((!PageSwapCache(page) || 2996 page_private(page) != entry.val)) && swapcache) 2997 goto out_page; 2998 2999 page = ksm_might_need_to_copy(page, vma, vmf->address); 3000 if (unlikely(!page)) { 3001 ret = VM_FAULT_OOM; 3002 page = swapcache; 3003 goto out_page; 3004 } 3005 3006 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 3007 &memcg, false)) { 3008 ret = VM_FAULT_OOM; 3009 goto out_page; 3010 } 3011 3012 /* 3013 * Back out if somebody else already faulted in this pte. 3014 */ 3015 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3016 &vmf->ptl); 3017 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3018 goto out_nomap; 3019 3020 if (unlikely(!PageUptodate(page))) { 3021 ret = VM_FAULT_SIGBUS; 3022 goto out_nomap; 3023 } 3024 3025 /* 3026 * The page isn't present yet, go ahead with the fault. 3027 * 3028 * Be careful about the sequence of operations here. 3029 * To get its accounting right, reuse_swap_page() must be called 3030 * while the page is counted on swap but not yet in mapcount i.e. 3031 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3032 * must be called after the swap_free(), or it will never succeed. 3033 */ 3034 3035 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3036 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3037 pte = mk_pte(page, vma->vm_page_prot); 3038 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3039 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3040 vmf->flags &= ~FAULT_FLAG_WRITE; 3041 ret |= VM_FAULT_WRITE; 3042 exclusive = RMAP_EXCLUSIVE; 3043 } 3044 flush_icache_page(vma, page); 3045 if (pte_swp_soft_dirty(vmf->orig_pte)) 3046 pte = pte_mksoft_dirty(pte); 3047 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3048 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3049 vmf->orig_pte = pte; 3050 3051 /* ksm created a completely new copy */ 3052 if (unlikely(page != swapcache && swapcache)) { 3053 page_add_new_anon_rmap(page, vma, vmf->address, false); 3054 mem_cgroup_commit_charge(page, memcg, false, false); 3055 lru_cache_add_active_or_unevictable(page, vma); 3056 } else { 3057 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3058 mem_cgroup_commit_charge(page, memcg, true, false); 3059 activate_page(page); 3060 } 3061 3062 swap_free(entry); 3063 if (mem_cgroup_swap_full(page) || 3064 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3065 try_to_free_swap(page); 3066 unlock_page(page); 3067 if (page != swapcache && swapcache) { 3068 /* 3069 * Hold the lock to avoid the swap entry to be reused 3070 * until we take the PT lock for the pte_same() check 3071 * (to avoid false positives from pte_same). For 3072 * further safety release the lock after the swap_free 3073 * so that the swap count won't change under a 3074 * parallel locked swapcache. 3075 */ 3076 unlock_page(swapcache); 3077 put_page(swapcache); 3078 } 3079 3080 if (vmf->flags & FAULT_FLAG_WRITE) { 3081 ret |= do_wp_page(vmf); 3082 if (ret & VM_FAULT_ERROR) 3083 ret &= VM_FAULT_ERROR; 3084 goto out; 3085 } 3086 3087 /* No need to invalidate - it was non-present before */ 3088 update_mmu_cache(vma, vmf->address, vmf->pte); 3089 unlock: 3090 pte_unmap_unlock(vmf->pte, vmf->ptl); 3091 out: 3092 return ret; 3093 out_nomap: 3094 mem_cgroup_cancel_charge(page, memcg, false); 3095 pte_unmap_unlock(vmf->pte, vmf->ptl); 3096 out_page: 3097 unlock_page(page); 3098 out_release: 3099 put_page(page); 3100 if (page != swapcache && swapcache) { 3101 unlock_page(swapcache); 3102 put_page(swapcache); 3103 } 3104 return ret; 3105 } 3106 3107 /* 3108 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3109 * but allow concurrent faults), and pte mapped but not yet locked. 3110 * We return with mmap_sem still held, but pte unmapped and unlocked. 3111 */ 3112 static int do_anonymous_page(struct vm_fault *vmf) 3113 { 3114 struct vm_area_struct *vma = vmf->vma; 3115 struct mem_cgroup *memcg; 3116 struct page *page; 3117 int ret = 0; 3118 pte_t entry; 3119 3120 /* File mapping without ->vm_ops ? */ 3121 if (vma->vm_flags & VM_SHARED) 3122 return VM_FAULT_SIGBUS; 3123 3124 /* 3125 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3126 * pte_offset_map() on pmds where a huge pmd might be created 3127 * from a different thread. 3128 * 3129 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3130 * parallel threads are excluded by other means. 3131 * 3132 * Here we only have down_read(mmap_sem). 3133 */ 3134 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 3135 return VM_FAULT_OOM; 3136 3137 /* See the comment in pte_alloc_one_map() */ 3138 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3139 return 0; 3140 3141 /* Use the zero-page for reads */ 3142 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3143 !mm_forbids_zeropage(vma->vm_mm)) { 3144 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3145 vma->vm_page_prot)); 3146 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3147 vmf->address, &vmf->ptl); 3148 if (!pte_none(*vmf->pte)) 3149 goto unlock; 3150 ret = check_stable_address_space(vma->vm_mm); 3151 if (ret) 3152 goto unlock; 3153 /* Deliver the page fault to userland, check inside PT lock */ 3154 if (userfaultfd_missing(vma)) { 3155 pte_unmap_unlock(vmf->pte, vmf->ptl); 3156 return handle_userfault(vmf, VM_UFFD_MISSING); 3157 } 3158 goto setpte; 3159 } 3160 3161 /* Allocate our own private page. */ 3162 if (unlikely(anon_vma_prepare(vma))) 3163 goto oom; 3164 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3165 if (!page) 3166 goto oom; 3167 3168 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3169 false)) 3170 goto oom_free_page; 3171 3172 /* 3173 * The memory barrier inside __SetPageUptodate makes sure that 3174 * preceeding stores to the page contents become visible before 3175 * the set_pte_at() write. 3176 */ 3177 __SetPageUptodate(page); 3178 3179 entry = mk_pte(page, vma->vm_page_prot); 3180 if (vma->vm_flags & VM_WRITE) 3181 entry = pte_mkwrite(pte_mkdirty(entry)); 3182 3183 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3184 &vmf->ptl); 3185 if (!pte_none(*vmf->pte)) 3186 goto release; 3187 3188 ret = check_stable_address_space(vma->vm_mm); 3189 if (ret) 3190 goto release; 3191 3192 /* Deliver the page fault to userland, check inside PT lock */ 3193 if (userfaultfd_missing(vma)) { 3194 pte_unmap_unlock(vmf->pte, vmf->ptl); 3195 mem_cgroup_cancel_charge(page, memcg, false); 3196 put_page(page); 3197 return handle_userfault(vmf, VM_UFFD_MISSING); 3198 } 3199 3200 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3201 page_add_new_anon_rmap(page, vma, vmf->address, false); 3202 mem_cgroup_commit_charge(page, memcg, false, false); 3203 lru_cache_add_active_or_unevictable(page, vma); 3204 setpte: 3205 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3206 3207 /* No need to invalidate - it was non-present before */ 3208 update_mmu_cache(vma, vmf->address, vmf->pte); 3209 unlock: 3210 pte_unmap_unlock(vmf->pte, vmf->ptl); 3211 return ret; 3212 release: 3213 mem_cgroup_cancel_charge(page, memcg, false); 3214 put_page(page); 3215 goto unlock; 3216 oom_free_page: 3217 put_page(page); 3218 oom: 3219 return VM_FAULT_OOM; 3220 } 3221 3222 /* 3223 * The mmap_sem must have been held on entry, and may have been 3224 * released depending on flags and vma->vm_ops->fault() return value. 3225 * See filemap_fault() and __lock_page_retry(). 3226 */ 3227 static int __do_fault(struct vm_fault *vmf) 3228 { 3229 struct vm_area_struct *vma = vmf->vma; 3230 int ret; 3231 3232 ret = vma->vm_ops->fault(vmf); 3233 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3234 VM_FAULT_DONE_COW))) 3235 return ret; 3236 3237 if (unlikely(PageHWPoison(vmf->page))) { 3238 if (ret & VM_FAULT_LOCKED) 3239 unlock_page(vmf->page); 3240 put_page(vmf->page); 3241 vmf->page = NULL; 3242 return VM_FAULT_HWPOISON; 3243 } 3244 3245 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3246 lock_page(vmf->page); 3247 else 3248 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3249 3250 return ret; 3251 } 3252 3253 /* 3254 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3255 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3256 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3257 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3258 */ 3259 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3260 { 3261 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3262 } 3263 3264 static int pte_alloc_one_map(struct vm_fault *vmf) 3265 { 3266 struct vm_area_struct *vma = vmf->vma; 3267 3268 if (!pmd_none(*vmf->pmd)) 3269 goto map_pte; 3270 if (vmf->prealloc_pte) { 3271 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3272 if (unlikely(!pmd_none(*vmf->pmd))) { 3273 spin_unlock(vmf->ptl); 3274 goto map_pte; 3275 } 3276 3277 mm_inc_nr_ptes(vma->vm_mm); 3278 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3279 spin_unlock(vmf->ptl); 3280 vmf->prealloc_pte = NULL; 3281 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3282 return VM_FAULT_OOM; 3283 } 3284 map_pte: 3285 /* 3286 * If a huge pmd materialized under us just retry later. Use 3287 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3288 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3289 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3290 * running immediately after a huge pmd fault in a different thread of 3291 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3292 * All we have to ensure is that it is a regular pmd that we can walk 3293 * with pte_offset_map() and we can do that through an atomic read in 3294 * C, which is what pmd_trans_unstable() provides. 3295 */ 3296 if (pmd_devmap_trans_unstable(vmf->pmd)) 3297 return VM_FAULT_NOPAGE; 3298 3299 /* 3300 * At this point we know that our vmf->pmd points to a page of ptes 3301 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3302 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3303 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3304 * be valid and we will re-check to make sure the vmf->pte isn't 3305 * pte_none() under vmf->ptl protection when we return to 3306 * alloc_set_pte(). 3307 */ 3308 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3309 &vmf->ptl); 3310 return 0; 3311 } 3312 3313 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3314 3315 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3316 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3317 unsigned long haddr) 3318 { 3319 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3320 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3321 return false; 3322 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3323 return false; 3324 return true; 3325 } 3326 3327 static void deposit_prealloc_pte(struct vm_fault *vmf) 3328 { 3329 struct vm_area_struct *vma = vmf->vma; 3330 3331 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3332 /* 3333 * We are going to consume the prealloc table, 3334 * count that as nr_ptes. 3335 */ 3336 mm_inc_nr_ptes(vma->vm_mm); 3337 vmf->prealloc_pte = NULL; 3338 } 3339 3340 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3341 { 3342 struct vm_area_struct *vma = vmf->vma; 3343 bool write = vmf->flags & FAULT_FLAG_WRITE; 3344 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3345 pmd_t entry; 3346 int i, ret; 3347 3348 if (!transhuge_vma_suitable(vma, haddr)) 3349 return VM_FAULT_FALLBACK; 3350 3351 ret = VM_FAULT_FALLBACK; 3352 page = compound_head(page); 3353 3354 /* 3355 * Archs like ppc64 need additonal space to store information 3356 * related to pte entry. Use the preallocated table for that. 3357 */ 3358 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3359 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3360 if (!vmf->prealloc_pte) 3361 return VM_FAULT_OOM; 3362 smp_wmb(); /* See comment in __pte_alloc() */ 3363 } 3364 3365 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3366 if (unlikely(!pmd_none(*vmf->pmd))) 3367 goto out; 3368 3369 for (i = 0; i < HPAGE_PMD_NR; i++) 3370 flush_icache_page(vma, page + i); 3371 3372 entry = mk_huge_pmd(page, vma->vm_page_prot); 3373 if (write) 3374 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3375 3376 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3377 page_add_file_rmap(page, true); 3378 /* 3379 * deposit and withdraw with pmd lock held 3380 */ 3381 if (arch_needs_pgtable_deposit()) 3382 deposit_prealloc_pte(vmf); 3383 3384 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3385 3386 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3387 3388 /* fault is handled */ 3389 ret = 0; 3390 count_vm_event(THP_FILE_MAPPED); 3391 out: 3392 spin_unlock(vmf->ptl); 3393 return ret; 3394 } 3395 #else 3396 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3397 { 3398 BUILD_BUG(); 3399 return 0; 3400 } 3401 #endif 3402 3403 /** 3404 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3405 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3406 * 3407 * @vmf: fault environment 3408 * @memcg: memcg to charge page (only for private mappings) 3409 * @page: page to map 3410 * 3411 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3412 * return. 3413 * 3414 * Target users are page handler itself and implementations of 3415 * vm_ops->map_pages. 3416 */ 3417 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3418 struct page *page) 3419 { 3420 struct vm_area_struct *vma = vmf->vma; 3421 bool write = vmf->flags & FAULT_FLAG_WRITE; 3422 pte_t entry; 3423 int ret; 3424 3425 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3426 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3427 /* THP on COW? */ 3428 VM_BUG_ON_PAGE(memcg, page); 3429 3430 ret = do_set_pmd(vmf, page); 3431 if (ret != VM_FAULT_FALLBACK) 3432 return ret; 3433 } 3434 3435 if (!vmf->pte) { 3436 ret = pte_alloc_one_map(vmf); 3437 if (ret) 3438 return ret; 3439 } 3440 3441 /* Re-check under ptl */ 3442 if (unlikely(!pte_none(*vmf->pte))) 3443 return VM_FAULT_NOPAGE; 3444 3445 flush_icache_page(vma, page); 3446 entry = mk_pte(page, vma->vm_page_prot); 3447 if (write) 3448 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3449 /* copy-on-write page */ 3450 if (write && !(vma->vm_flags & VM_SHARED)) { 3451 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3452 page_add_new_anon_rmap(page, vma, vmf->address, false); 3453 mem_cgroup_commit_charge(page, memcg, false, false); 3454 lru_cache_add_active_or_unevictable(page, vma); 3455 } else { 3456 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3457 page_add_file_rmap(page, false); 3458 } 3459 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3460 3461 /* no need to invalidate: a not-present page won't be cached */ 3462 update_mmu_cache(vma, vmf->address, vmf->pte); 3463 3464 return 0; 3465 } 3466 3467 3468 /** 3469 * finish_fault - finish page fault once we have prepared the page to fault 3470 * 3471 * @vmf: structure describing the fault 3472 * 3473 * This function handles all that is needed to finish a page fault once the 3474 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3475 * given page, adds reverse page mapping, handles memcg charges and LRU 3476 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3477 * error. 3478 * 3479 * The function expects the page to be locked and on success it consumes a 3480 * reference of a page being mapped (for the PTE which maps it). 3481 */ 3482 int finish_fault(struct vm_fault *vmf) 3483 { 3484 struct page *page; 3485 int ret = 0; 3486 3487 /* Did we COW the page? */ 3488 if ((vmf->flags & FAULT_FLAG_WRITE) && 3489 !(vmf->vma->vm_flags & VM_SHARED)) 3490 page = vmf->cow_page; 3491 else 3492 page = vmf->page; 3493 3494 /* 3495 * check even for read faults because we might have lost our CoWed 3496 * page 3497 */ 3498 if (!(vmf->vma->vm_flags & VM_SHARED)) 3499 ret = check_stable_address_space(vmf->vma->vm_mm); 3500 if (!ret) 3501 ret = alloc_set_pte(vmf, vmf->memcg, page); 3502 if (vmf->pte) 3503 pte_unmap_unlock(vmf->pte, vmf->ptl); 3504 return ret; 3505 } 3506 3507 static unsigned long fault_around_bytes __read_mostly = 3508 rounddown_pow_of_two(65536); 3509 3510 #ifdef CONFIG_DEBUG_FS 3511 static int fault_around_bytes_get(void *data, u64 *val) 3512 { 3513 *val = fault_around_bytes; 3514 return 0; 3515 } 3516 3517 /* 3518 * fault_around_bytes must be rounded down to the nearest page order as it's 3519 * what do_fault_around() expects to see. 3520 */ 3521 static int fault_around_bytes_set(void *data, u64 val) 3522 { 3523 if (val / PAGE_SIZE > PTRS_PER_PTE) 3524 return -EINVAL; 3525 if (val > PAGE_SIZE) 3526 fault_around_bytes = rounddown_pow_of_two(val); 3527 else 3528 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3529 return 0; 3530 } 3531 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3532 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3533 3534 static int __init fault_around_debugfs(void) 3535 { 3536 void *ret; 3537 3538 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3539 &fault_around_bytes_fops); 3540 if (!ret) 3541 pr_warn("Failed to create fault_around_bytes in debugfs"); 3542 return 0; 3543 } 3544 late_initcall(fault_around_debugfs); 3545 #endif 3546 3547 /* 3548 * do_fault_around() tries to map few pages around the fault address. The hope 3549 * is that the pages will be needed soon and this will lower the number of 3550 * faults to handle. 3551 * 3552 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3553 * not ready to be mapped: not up-to-date, locked, etc. 3554 * 3555 * This function is called with the page table lock taken. In the split ptlock 3556 * case the page table lock only protects only those entries which belong to 3557 * the page table corresponding to the fault address. 3558 * 3559 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3560 * only once. 3561 * 3562 * fault_around_bytes defines how many bytes we'll try to map. 3563 * do_fault_around() expects it to be set to a power of two less than or equal 3564 * to PTRS_PER_PTE. 3565 * 3566 * The virtual address of the area that we map is naturally aligned to 3567 * fault_around_bytes rounded down to the machine page size 3568 * (and therefore to page order). This way it's easier to guarantee 3569 * that we don't cross page table boundaries. 3570 */ 3571 static int do_fault_around(struct vm_fault *vmf) 3572 { 3573 unsigned long address = vmf->address, nr_pages, mask; 3574 pgoff_t start_pgoff = vmf->pgoff; 3575 pgoff_t end_pgoff; 3576 int off, ret = 0; 3577 3578 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3579 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3580 3581 vmf->address = max(address & mask, vmf->vma->vm_start); 3582 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3583 start_pgoff -= off; 3584 3585 /* 3586 * end_pgoff is either the end of the page table, the end of 3587 * the vma or nr_pages from start_pgoff, depending what is nearest. 3588 */ 3589 end_pgoff = start_pgoff - 3590 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3591 PTRS_PER_PTE - 1; 3592 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3593 start_pgoff + nr_pages - 1); 3594 3595 if (pmd_none(*vmf->pmd)) { 3596 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3597 vmf->address); 3598 if (!vmf->prealloc_pte) 3599 goto out; 3600 smp_wmb(); /* See comment in __pte_alloc() */ 3601 } 3602 3603 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3604 3605 /* Huge page is mapped? Page fault is solved */ 3606 if (pmd_trans_huge(*vmf->pmd)) { 3607 ret = VM_FAULT_NOPAGE; 3608 goto out; 3609 } 3610 3611 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3612 if (!vmf->pte) 3613 goto out; 3614 3615 /* check if the page fault is solved */ 3616 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3617 if (!pte_none(*vmf->pte)) 3618 ret = VM_FAULT_NOPAGE; 3619 pte_unmap_unlock(vmf->pte, vmf->ptl); 3620 out: 3621 vmf->address = address; 3622 vmf->pte = NULL; 3623 return ret; 3624 } 3625 3626 static int do_read_fault(struct vm_fault *vmf) 3627 { 3628 struct vm_area_struct *vma = vmf->vma; 3629 int ret = 0; 3630 3631 /* 3632 * Let's call ->map_pages() first and use ->fault() as fallback 3633 * if page by the offset is not ready to be mapped (cold cache or 3634 * something). 3635 */ 3636 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3637 ret = do_fault_around(vmf); 3638 if (ret) 3639 return ret; 3640 } 3641 3642 ret = __do_fault(vmf); 3643 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3644 return ret; 3645 3646 ret |= finish_fault(vmf); 3647 unlock_page(vmf->page); 3648 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3649 put_page(vmf->page); 3650 return ret; 3651 } 3652 3653 static int do_cow_fault(struct vm_fault *vmf) 3654 { 3655 struct vm_area_struct *vma = vmf->vma; 3656 int ret; 3657 3658 if (unlikely(anon_vma_prepare(vma))) 3659 return VM_FAULT_OOM; 3660 3661 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3662 if (!vmf->cow_page) 3663 return VM_FAULT_OOM; 3664 3665 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3666 &vmf->memcg, false)) { 3667 put_page(vmf->cow_page); 3668 return VM_FAULT_OOM; 3669 } 3670 3671 ret = __do_fault(vmf); 3672 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3673 goto uncharge_out; 3674 if (ret & VM_FAULT_DONE_COW) 3675 return ret; 3676 3677 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3678 __SetPageUptodate(vmf->cow_page); 3679 3680 ret |= finish_fault(vmf); 3681 unlock_page(vmf->page); 3682 put_page(vmf->page); 3683 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3684 goto uncharge_out; 3685 return ret; 3686 uncharge_out: 3687 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3688 put_page(vmf->cow_page); 3689 return ret; 3690 } 3691 3692 static int do_shared_fault(struct vm_fault *vmf) 3693 { 3694 struct vm_area_struct *vma = vmf->vma; 3695 int ret, tmp; 3696 3697 ret = __do_fault(vmf); 3698 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3699 return ret; 3700 3701 /* 3702 * Check if the backing address space wants to know that the page is 3703 * about to become writable 3704 */ 3705 if (vma->vm_ops->page_mkwrite) { 3706 unlock_page(vmf->page); 3707 tmp = do_page_mkwrite(vmf); 3708 if (unlikely(!tmp || 3709 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3710 put_page(vmf->page); 3711 return tmp; 3712 } 3713 } 3714 3715 ret |= finish_fault(vmf); 3716 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3717 VM_FAULT_RETRY))) { 3718 unlock_page(vmf->page); 3719 put_page(vmf->page); 3720 return ret; 3721 } 3722 3723 fault_dirty_shared_page(vma, vmf->page); 3724 return ret; 3725 } 3726 3727 /* 3728 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3729 * but allow concurrent faults). 3730 * The mmap_sem may have been released depending on flags and our 3731 * return value. See filemap_fault() and __lock_page_or_retry(). 3732 */ 3733 static int do_fault(struct vm_fault *vmf) 3734 { 3735 struct vm_area_struct *vma = vmf->vma; 3736 int ret; 3737 3738 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3739 if (!vma->vm_ops->fault) 3740 ret = VM_FAULT_SIGBUS; 3741 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3742 ret = do_read_fault(vmf); 3743 else if (!(vma->vm_flags & VM_SHARED)) 3744 ret = do_cow_fault(vmf); 3745 else 3746 ret = do_shared_fault(vmf); 3747 3748 /* preallocated pagetable is unused: free it */ 3749 if (vmf->prealloc_pte) { 3750 pte_free(vma->vm_mm, vmf->prealloc_pte); 3751 vmf->prealloc_pte = NULL; 3752 } 3753 return ret; 3754 } 3755 3756 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3757 unsigned long addr, int page_nid, 3758 int *flags) 3759 { 3760 get_page(page); 3761 3762 count_vm_numa_event(NUMA_HINT_FAULTS); 3763 if (page_nid == numa_node_id()) { 3764 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3765 *flags |= TNF_FAULT_LOCAL; 3766 } 3767 3768 return mpol_misplaced(page, vma, addr); 3769 } 3770 3771 static int do_numa_page(struct vm_fault *vmf) 3772 { 3773 struct vm_area_struct *vma = vmf->vma; 3774 struct page *page = NULL; 3775 int page_nid = -1; 3776 int last_cpupid; 3777 int target_nid; 3778 bool migrated = false; 3779 pte_t pte; 3780 bool was_writable = pte_savedwrite(vmf->orig_pte); 3781 int flags = 0; 3782 3783 /* 3784 * The "pte" at this point cannot be used safely without 3785 * validation through pte_unmap_same(). It's of NUMA type but 3786 * the pfn may be screwed if the read is non atomic. 3787 */ 3788 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3789 spin_lock(vmf->ptl); 3790 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3791 pte_unmap_unlock(vmf->pte, vmf->ptl); 3792 goto out; 3793 } 3794 3795 /* 3796 * Make it present again, Depending on how arch implementes non 3797 * accessible ptes, some can allow access by kernel mode. 3798 */ 3799 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3800 pte = pte_modify(pte, vma->vm_page_prot); 3801 pte = pte_mkyoung(pte); 3802 if (was_writable) 3803 pte = pte_mkwrite(pte); 3804 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3805 update_mmu_cache(vma, vmf->address, vmf->pte); 3806 3807 page = vm_normal_page(vma, vmf->address, pte); 3808 if (!page) { 3809 pte_unmap_unlock(vmf->pte, vmf->ptl); 3810 return 0; 3811 } 3812 3813 /* TODO: handle PTE-mapped THP */ 3814 if (PageCompound(page)) { 3815 pte_unmap_unlock(vmf->pte, vmf->ptl); 3816 return 0; 3817 } 3818 3819 /* 3820 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3821 * much anyway since they can be in shared cache state. This misses 3822 * the case where a mapping is writable but the process never writes 3823 * to it but pte_write gets cleared during protection updates and 3824 * pte_dirty has unpredictable behaviour between PTE scan updates, 3825 * background writeback, dirty balancing and application behaviour. 3826 */ 3827 if (!pte_write(pte)) 3828 flags |= TNF_NO_GROUP; 3829 3830 /* 3831 * Flag if the page is shared between multiple address spaces. This 3832 * is later used when determining whether to group tasks together 3833 */ 3834 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3835 flags |= TNF_SHARED; 3836 3837 last_cpupid = page_cpupid_last(page); 3838 page_nid = page_to_nid(page); 3839 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3840 &flags); 3841 pte_unmap_unlock(vmf->pte, vmf->ptl); 3842 if (target_nid == -1) { 3843 put_page(page); 3844 goto out; 3845 } 3846 3847 /* Migrate to the requested node */ 3848 migrated = migrate_misplaced_page(page, vma, target_nid); 3849 if (migrated) { 3850 page_nid = target_nid; 3851 flags |= TNF_MIGRATED; 3852 } else 3853 flags |= TNF_MIGRATE_FAIL; 3854 3855 out: 3856 if (page_nid != -1) 3857 task_numa_fault(last_cpupid, page_nid, 1, flags); 3858 return 0; 3859 } 3860 3861 static inline int create_huge_pmd(struct vm_fault *vmf) 3862 { 3863 if (vma_is_anonymous(vmf->vma)) 3864 return do_huge_pmd_anonymous_page(vmf); 3865 if (vmf->vma->vm_ops->huge_fault) 3866 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3867 return VM_FAULT_FALLBACK; 3868 } 3869 3870 /* `inline' is required to avoid gcc 4.1.2 build error */ 3871 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3872 { 3873 if (vma_is_anonymous(vmf->vma)) 3874 return do_huge_pmd_wp_page(vmf, orig_pmd); 3875 if (vmf->vma->vm_ops->huge_fault) 3876 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3877 3878 /* COW handled on pte level: split pmd */ 3879 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3880 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3881 3882 return VM_FAULT_FALLBACK; 3883 } 3884 3885 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3886 { 3887 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3888 } 3889 3890 static int create_huge_pud(struct vm_fault *vmf) 3891 { 3892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3893 /* No support for anonymous transparent PUD pages yet */ 3894 if (vma_is_anonymous(vmf->vma)) 3895 return VM_FAULT_FALLBACK; 3896 if (vmf->vma->vm_ops->huge_fault) 3897 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3898 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3899 return VM_FAULT_FALLBACK; 3900 } 3901 3902 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3903 { 3904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3905 /* No support for anonymous transparent PUD pages yet */ 3906 if (vma_is_anonymous(vmf->vma)) 3907 return VM_FAULT_FALLBACK; 3908 if (vmf->vma->vm_ops->huge_fault) 3909 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3911 return VM_FAULT_FALLBACK; 3912 } 3913 3914 /* 3915 * These routines also need to handle stuff like marking pages dirty 3916 * and/or accessed for architectures that don't do it in hardware (most 3917 * RISC architectures). The early dirtying is also good on the i386. 3918 * 3919 * There is also a hook called "update_mmu_cache()" that architectures 3920 * with external mmu caches can use to update those (ie the Sparc or 3921 * PowerPC hashed page tables that act as extended TLBs). 3922 * 3923 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3924 * concurrent faults). 3925 * 3926 * The mmap_sem may have been released depending on flags and our return value. 3927 * See filemap_fault() and __lock_page_or_retry(). 3928 */ 3929 static int handle_pte_fault(struct vm_fault *vmf) 3930 { 3931 pte_t entry; 3932 3933 if (unlikely(pmd_none(*vmf->pmd))) { 3934 /* 3935 * Leave __pte_alloc() until later: because vm_ops->fault may 3936 * want to allocate huge page, and if we expose page table 3937 * for an instant, it will be difficult to retract from 3938 * concurrent faults and from rmap lookups. 3939 */ 3940 vmf->pte = NULL; 3941 } else { 3942 /* See comment in pte_alloc_one_map() */ 3943 if (pmd_devmap_trans_unstable(vmf->pmd)) 3944 return 0; 3945 /* 3946 * A regular pmd is established and it can't morph into a huge 3947 * pmd from under us anymore at this point because we hold the 3948 * mmap_sem read mode and khugepaged takes it in write mode. 3949 * So now it's safe to run pte_offset_map(). 3950 */ 3951 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3952 vmf->orig_pte = *vmf->pte; 3953 3954 /* 3955 * some architectures can have larger ptes than wordsize, 3956 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3957 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3958 * accesses. The code below just needs a consistent view 3959 * for the ifs and we later double check anyway with the 3960 * ptl lock held. So here a barrier will do. 3961 */ 3962 barrier(); 3963 if (pte_none(vmf->orig_pte)) { 3964 pte_unmap(vmf->pte); 3965 vmf->pte = NULL; 3966 } 3967 } 3968 3969 if (!vmf->pte) { 3970 if (vma_is_anonymous(vmf->vma)) 3971 return do_anonymous_page(vmf); 3972 else 3973 return do_fault(vmf); 3974 } 3975 3976 if (!pte_present(vmf->orig_pte)) 3977 return do_swap_page(vmf); 3978 3979 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3980 return do_numa_page(vmf); 3981 3982 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3983 spin_lock(vmf->ptl); 3984 entry = vmf->orig_pte; 3985 if (unlikely(!pte_same(*vmf->pte, entry))) 3986 goto unlock; 3987 if (vmf->flags & FAULT_FLAG_WRITE) { 3988 if (!pte_write(entry)) 3989 return do_wp_page(vmf); 3990 entry = pte_mkdirty(entry); 3991 } 3992 entry = pte_mkyoung(entry); 3993 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3994 vmf->flags & FAULT_FLAG_WRITE)) { 3995 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3996 } else { 3997 /* 3998 * This is needed only for protection faults but the arch code 3999 * is not yet telling us if this is a protection fault or not. 4000 * This still avoids useless tlb flushes for .text page faults 4001 * with threads. 4002 */ 4003 if (vmf->flags & FAULT_FLAG_WRITE) 4004 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4005 } 4006 unlock: 4007 pte_unmap_unlock(vmf->pte, vmf->ptl); 4008 return 0; 4009 } 4010 4011 /* 4012 * By the time we get here, we already hold the mm semaphore 4013 * 4014 * The mmap_sem may have been released depending on flags and our 4015 * return value. See filemap_fault() and __lock_page_or_retry(). 4016 */ 4017 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4018 unsigned int flags) 4019 { 4020 struct vm_fault vmf = { 4021 .vma = vma, 4022 .address = address & PAGE_MASK, 4023 .flags = flags, 4024 .pgoff = linear_page_index(vma, address), 4025 .gfp_mask = __get_fault_gfp_mask(vma), 4026 }; 4027 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4028 struct mm_struct *mm = vma->vm_mm; 4029 pgd_t *pgd; 4030 p4d_t *p4d; 4031 int ret; 4032 4033 pgd = pgd_offset(mm, address); 4034 p4d = p4d_alloc(mm, pgd, address); 4035 if (!p4d) 4036 return VM_FAULT_OOM; 4037 4038 vmf.pud = pud_alloc(mm, p4d, address); 4039 if (!vmf.pud) 4040 return VM_FAULT_OOM; 4041 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 4042 ret = create_huge_pud(&vmf); 4043 if (!(ret & VM_FAULT_FALLBACK)) 4044 return ret; 4045 } else { 4046 pud_t orig_pud = *vmf.pud; 4047 4048 barrier(); 4049 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4050 4051 /* NUMA case for anonymous PUDs would go here */ 4052 4053 if (dirty && !pud_write(orig_pud)) { 4054 ret = wp_huge_pud(&vmf, orig_pud); 4055 if (!(ret & VM_FAULT_FALLBACK)) 4056 return ret; 4057 } else { 4058 huge_pud_set_accessed(&vmf, orig_pud); 4059 return 0; 4060 } 4061 } 4062 } 4063 4064 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4065 if (!vmf.pmd) 4066 return VM_FAULT_OOM; 4067 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 4068 ret = create_huge_pmd(&vmf); 4069 if (!(ret & VM_FAULT_FALLBACK)) 4070 return ret; 4071 } else { 4072 pmd_t orig_pmd = *vmf.pmd; 4073 4074 barrier(); 4075 if (unlikely(is_swap_pmd(orig_pmd))) { 4076 VM_BUG_ON(thp_migration_supported() && 4077 !is_pmd_migration_entry(orig_pmd)); 4078 if (is_pmd_migration_entry(orig_pmd)) 4079 pmd_migration_entry_wait(mm, vmf.pmd); 4080 return 0; 4081 } 4082 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4083 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4084 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4085 4086 if (dirty && !pmd_write(orig_pmd)) { 4087 ret = wp_huge_pmd(&vmf, orig_pmd); 4088 if (!(ret & VM_FAULT_FALLBACK)) 4089 return ret; 4090 } else { 4091 huge_pmd_set_accessed(&vmf, orig_pmd); 4092 return 0; 4093 } 4094 } 4095 } 4096 4097 return handle_pte_fault(&vmf); 4098 } 4099 4100 /* 4101 * By the time we get here, we already hold the mm semaphore 4102 * 4103 * The mmap_sem may have been released depending on flags and our 4104 * return value. See filemap_fault() and __lock_page_or_retry(). 4105 */ 4106 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4107 unsigned int flags) 4108 { 4109 int ret; 4110 4111 __set_current_state(TASK_RUNNING); 4112 4113 count_vm_event(PGFAULT); 4114 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4115 4116 /* do counter updates before entering really critical section. */ 4117 check_sync_rss_stat(current); 4118 4119 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4120 flags & FAULT_FLAG_INSTRUCTION, 4121 flags & FAULT_FLAG_REMOTE)) 4122 return VM_FAULT_SIGSEGV; 4123 4124 /* 4125 * Enable the memcg OOM handling for faults triggered in user 4126 * space. Kernel faults are handled more gracefully. 4127 */ 4128 if (flags & FAULT_FLAG_USER) 4129 mem_cgroup_oom_enable(); 4130 4131 if (unlikely(is_vm_hugetlb_page(vma))) 4132 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4133 else 4134 ret = __handle_mm_fault(vma, address, flags); 4135 4136 if (flags & FAULT_FLAG_USER) { 4137 mem_cgroup_oom_disable(); 4138 /* 4139 * The task may have entered a memcg OOM situation but 4140 * if the allocation error was handled gracefully (no 4141 * VM_FAULT_OOM), there is no need to kill anything. 4142 * Just clean up the OOM state peacefully. 4143 */ 4144 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4145 mem_cgroup_oom_synchronize(false); 4146 } 4147 4148 return ret; 4149 } 4150 EXPORT_SYMBOL_GPL(handle_mm_fault); 4151 4152 #ifndef __PAGETABLE_P4D_FOLDED 4153 /* 4154 * Allocate p4d page table. 4155 * We've already handled the fast-path in-line. 4156 */ 4157 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4158 { 4159 p4d_t *new = p4d_alloc_one(mm, address); 4160 if (!new) 4161 return -ENOMEM; 4162 4163 smp_wmb(); /* See comment in __pte_alloc */ 4164 4165 spin_lock(&mm->page_table_lock); 4166 if (pgd_present(*pgd)) /* Another has populated it */ 4167 p4d_free(mm, new); 4168 else 4169 pgd_populate(mm, pgd, new); 4170 spin_unlock(&mm->page_table_lock); 4171 return 0; 4172 } 4173 #endif /* __PAGETABLE_P4D_FOLDED */ 4174 4175 #ifndef __PAGETABLE_PUD_FOLDED 4176 /* 4177 * Allocate page upper directory. 4178 * We've already handled the fast-path in-line. 4179 */ 4180 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4181 { 4182 pud_t *new = pud_alloc_one(mm, address); 4183 if (!new) 4184 return -ENOMEM; 4185 4186 smp_wmb(); /* See comment in __pte_alloc */ 4187 4188 spin_lock(&mm->page_table_lock); 4189 #ifndef __ARCH_HAS_5LEVEL_HACK 4190 if (!p4d_present(*p4d)) { 4191 mm_inc_nr_puds(mm); 4192 p4d_populate(mm, p4d, new); 4193 } else /* Another has populated it */ 4194 pud_free(mm, new); 4195 #else 4196 if (!pgd_present(*p4d)) { 4197 mm_inc_nr_puds(mm); 4198 pgd_populate(mm, p4d, new); 4199 } else /* Another has populated it */ 4200 pud_free(mm, new); 4201 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4202 spin_unlock(&mm->page_table_lock); 4203 return 0; 4204 } 4205 #endif /* __PAGETABLE_PUD_FOLDED */ 4206 4207 #ifndef __PAGETABLE_PMD_FOLDED 4208 /* 4209 * Allocate page middle directory. 4210 * We've already handled the fast-path in-line. 4211 */ 4212 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4213 { 4214 spinlock_t *ptl; 4215 pmd_t *new = pmd_alloc_one(mm, address); 4216 if (!new) 4217 return -ENOMEM; 4218 4219 smp_wmb(); /* See comment in __pte_alloc */ 4220 4221 ptl = pud_lock(mm, pud); 4222 #ifndef __ARCH_HAS_4LEVEL_HACK 4223 if (!pud_present(*pud)) { 4224 mm_inc_nr_pmds(mm); 4225 pud_populate(mm, pud, new); 4226 } else /* Another has populated it */ 4227 pmd_free(mm, new); 4228 #else 4229 if (!pgd_present(*pud)) { 4230 mm_inc_nr_pmds(mm); 4231 pgd_populate(mm, pud, new); 4232 } else /* Another has populated it */ 4233 pmd_free(mm, new); 4234 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4235 spin_unlock(ptl); 4236 return 0; 4237 } 4238 #endif /* __PAGETABLE_PMD_FOLDED */ 4239 4240 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4241 unsigned long *start, unsigned long *end, 4242 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4243 { 4244 pgd_t *pgd; 4245 p4d_t *p4d; 4246 pud_t *pud; 4247 pmd_t *pmd; 4248 pte_t *ptep; 4249 4250 pgd = pgd_offset(mm, address); 4251 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4252 goto out; 4253 4254 p4d = p4d_offset(pgd, address); 4255 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4256 goto out; 4257 4258 pud = pud_offset(p4d, address); 4259 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4260 goto out; 4261 4262 pmd = pmd_offset(pud, address); 4263 VM_BUG_ON(pmd_trans_huge(*pmd)); 4264 4265 if (pmd_huge(*pmd)) { 4266 if (!pmdpp) 4267 goto out; 4268 4269 if (start && end) { 4270 *start = address & PMD_MASK; 4271 *end = *start + PMD_SIZE; 4272 mmu_notifier_invalidate_range_start(mm, *start, *end); 4273 } 4274 *ptlp = pmd_lock(mm, pmd); 4275 if (pmd_huge(*pmd)) { 4276 *pmdpp = pmd; 4277 return 0; 4278 } 4279 spin_unlock(*ptlp); 4280 if (start && end) 4281 mmu_notifier_invalidate_range_end(mm, *start, *end); 4282 } 4283 4284 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4285 goto out; 4286 4287 if (start && end) { 4288 *start = address & PAGE_MASK; 4289 *end = *start + PAGE_SIZE; 4290 mmu_notifier_invalidate_range_start(mm, *start, *end); 4291 } 4292 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4293 if (!pte_present(*ptep)) 4294 goto unlock; 4295 *ptepp = ptep; 4296 return 0; 4297 unlock: 4298 pte_unmap_unlock(ptep, *ptlp); 4299 if (start && end) 4300 mmu_notifier_invalidate_range_end(mm, *start, *end); 4301 out: 4302 return -EINVAL; 4303 } 4304 4305 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4306 pte_t **ptepp, spinlock_t **ptlp) 4307 { 4308 int res; 4309 4310 /* (void) is needed to make gcc happy */ 4311 (void) __cond_lock(*ptlp, 4312 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4313 ptepp, NULL, ptlp))); 4314 return res; 4315 } 4316 4317 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4318 unsigned long *start, unsigned long *end, 4319 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4320 { 4321 int res; 4322 4323 /* (void) is needed to make gcc happy */ 4324 (void) __cond_lock(*ptlp, 4325 !(res = __follow_pte_pmd(mm, address, start, end, 4326 ptepp, pmdpp, ptlp))); 4327 return res; 4328 } 4329 EXPORT_SYMBOL(follow_pte_pmd); 4330 4331 /** 4332 * follow_pfn - look up PFN at a user virtual address 4333 * @vma: memory mapping 4334 * @address: user virtual address 4335 * @pfn: location to store found PFN 4336 * 4337 * Only IO mappings and raw PFN mappings are allowed. 4338 * 4339 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4340 */ 4341 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4342 unsigned long *pfn) 4343 { 4344 int ret = -EINVAL; 4345 spinlock_t *ptl; 4346 pte_t *ptep; 4347 4348 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4349 return ret; 4350 4351 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4352 if (ret) 4353 return ret; 4354 *pfn = pte_pfn(*ptep); 4355 pte_unmap_unlock(ptep, ptl); 4356 return 0; 4357 } 4358 EXPORT_SYMBOL(follow_pfn); 4359 4360 #ifdef CONFIG_HAVE_IOREMAP_PROT 4361 int follow_phys(struct vm_area_struct *vma, 4362 unsigned long address, unsigned int flags, 4363 unsigned long *prot, resource_size_t *phys) 4364 { 4365 int ret = -EINVAL; 4366 pte_t *ptep, pte; 4367 spinlock_t *ptl; 4368 4369 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4370 goto out; 4371 4372 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4373 goto out; 4374 pte = *ptep; 4375 4376 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4377 goto unlock; 4378 4379 *prot = pgprot_val(pte_pgprot(pte)); 4380 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4381 4382 ret = 0; 4383 unlock: 4384 pte_unmap_unlock(ptep, ptl); 4385 out: 4386 return ret; 4387 } 4388 4389 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4390 void *buf, int len, int write) 4391 { 4392 resource_size_t phys_addr; 4393 unsigned long prot = 0; 4394 void __iomem *maddr; 4395 int offset = addr & (PAGE_SIZE-1); 4396 4397 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4398 return -EINVAL; 4399 4400 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4401 if (write) 4402 memcpy_toio(maddr + offset, buf, len); 4403 else 4404 memcpy_fromio(buf, maddr + offset, len); 4405 iounmap(maddr); 4406 4407 return len; 4408 } 4409 EXPORT_SYMBOL_GPL(generic_access_phys); 4410 #endif 4411 4412 /* 4413 * Access another process' address space as given in mm. If non-NULL, use the 4414 * given task for page fault accounting. 4415 */ 4416 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4417 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4418 { 4419 struct vm_area_struct *vma; 4420 void *old_buf = buf; 4421 int write = gup_flags & FOLL_WRITE; 4422 4423 down_read(&mm->mmap_sem); 4424 /* ignore errors, just check how much was successfully transferred */ 4425 while (len) { 4426 int bytes, ret, offset; 4427 void *maddr; 4428 struct page *page = NULL; 4429 4430 ret = get_user_pages_remote(tsk, mm, addr, 1, 4431 gup_flags, &page, &vma, NULL); 4432 if (ret <= 0) { 4433 #ifndef CONFIG_HAVE_IOREMAP_PROT 4434 break; 4435 #else 4436 /* 4437 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4438 * we can access using slightly different code. 4439 */ 4440 vma = find_vma(mm, addr); 4441 if (!vma || vma->vm_start > addr) 4442 break; 4443 if (vma->vm_ops && vma->vm_ops->access) 4444 ret = vma->vm_ops->access(vma, addr, buf, 4445 len, write); 4446 if (ret <= 0) 4447 break; 4448 bytes = ret; 4449 #endif 4450 } else { 4451 bytes = len; 4452 offset = addr & (PAGE_SIZE-1); 4453 if (bytes > PAGE_SIZE-offset) 4454 bytes = PAGE_SIZE-offset; 4455 4456 maddr = kmap(page); 4457 if (write) { 4458 copy_to_user_page(vma, page, addr, 4459 maddr + offset, buf, bytes); 4460 set_page_dirty_lock(page); 4461 } else { 4462 copy_from_user_page(vma, page, addr, 4463 buf, maddr + offset, bytes); 4464 } 4465 kunmap(page); 4466 put_page(page); 4467 } 4468 len -= bytes; 4469 buf += bytes; 4470 addr += bytes; 4471 } 4472 up_read(&mm->mmap_sem); 4473 4474 return buf - old_buf; 4475 } 4476 4477 /** 4478 * access_remote_vm - access another process' address space 4479 * @mm: the mm_struct of the target address space 4480 * @addr: start address to access 4481 * @buf: source or destination buffer 4482 * @len: number of bytes to transfer 4483 * @gup_flags: flags modifying lookup behaviour 4484 * 4485 * The caller must hold a reference on @mm. 4486 */ 4487 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4488 void *buf, int len, unsigned int gup_flags) 4489 { 4490 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4491 } 4492 4493 /* 4494 * Access another process' address space. 4495 * Source/target buffer must be kernel space, 4496 * Do not walk the page table directly, use get_user_pages 4497 */ 4498 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4499 void *buf, int len, unsigned int gup_flags) 4500 { 4501 struct mm_struct *mm; 4502 int ret; 4503 4504 mm = get_task_mm(tsk); 4505 if (!mm) 4506 return 0; 4507 4508 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4509 4510 mmput(mm); 4511 4512 return ret; 4513 } 4514 EXPORT_SYMBOL_GPL(access_process_vm); 4515 4516 /* 4517 * Print the name of a VMA. 4518 */ 4519 void print_vma_addr(char *prefix, unsigned long ip) 4520 { 4521 struct mm_struct *mm = current->mm; 4522 struct vm_area_struct *vma; 4523 4524 /* 4525 * we might be running from an atomic context so we cannot sleep 4526 */ 4527 if (!down_read_trylock(&mm->mmap_sem)) 4528 return; 4529 4530 vma = find_vma(mm, ip); 4531 if (vma && vma->vm_file) { 4532 struct file *f = vma->vm_file; 4533 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4534 if (buf) { 4535 char *p; 4536 4537 p = file_path(f, buf, PAGE_SIZE); 4538 if (IS_ERR(p)) 4539 p = "?"; 4540 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4541 vma->vm_start, 4542 vma->vm_end - vma->vm_start); 4543 free_page((unsigned long)buf); 4544 } 4545 } 4546 up_read(&mm->mmap_sem); 4547 } 4548 4549 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4550 void __might_fault(const char *file, int line) 4551 { 4552 /* 4553 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4554 * holding the mmap_sem, this is safe because kernel memory doesn't 4555 * get paged out, therefore we'll never actually fault, and the 4556 * below annotations will generate false positives. 4557 */ 4558 if (uaccess_kernel()) 4559 return; 4560 if (pagefault_disabled()) 4561 return; 4562 __might_sleep(file, line, 0); 4563 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4564 if (current->mm) 4565 might_lock_read(¤t->mm->mmap_sem); 4566 #endif 4567 } 4568 EXPORT_SYMBOL(__might_fault); 4569 #endif 4570 4571 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4572 static void clear_gigantic_page(struct page *page, 4573 unsigned long addr, 4574 unsigned int pages_per_huge_page) 4575 { 4576 int i; 4577 struct page *p = page; 4578 4579 might_sleep(); 4580 for (i = 0; i < pages_per_huge_page; 4581 i++, p = mem_map_next(p, page, i)) { 4582 cond_resched(); 4583 clear_user_highpage(p, addr + i * PAGE_SIZE); 4584 } 4585 } 4586 void clear_huge_page(struct page *page, 4587 unsigned long addr_hint, unsigned int pages_per_huge_page) 4588 { 4589 int i, n, base, l; 4590 unsigned long addr = addr_hint & 4591 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4592 4593 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4594 clear_gigantic_page(page, addr, pages_per_huge_page); 4595 return; 4596 } 4597 4598 /* Clear sub-page to access last to keep its cache lines hot */ 4599 might_sleep(); 4600 n = (addr_hint - addr) / PAGE_SIZE; 4601 if (2 * n <= pages_per_huge_page) { 4602 /* If sub-page to access in first half of huge page */ 4603 base = 0; 4604 l = n; 4605 /* Clear sub-pages at the end of huge page */ 4606 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4607 cond_resched(); 4608 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4609 } 4610 } else { 4611 /* If sub-page to access in second half of huge page */ 4612 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4613 l = pages_per_huge_page - n; 4614 /* Clear sub-pages at the begin of huge page */ 4615 for (i = 0; i < base; i++) { 4616 cond_resched(); 4617 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4618 } 4619 } 4620 /* 4621 * Clear remaining sub-pages in left-right-left-right pattern 4622 * towards the sub-page to access 4623 */ 4624 for (i = 0; i < l; i++) { 4625 int left_idx = base + i; 4626 int right_idx = base + 2 * l - 1 - i; 4627 4628 cond_resched(); 4629 clear_user_highpage(page + left_idx, 4630 addr + left_idx * PAGE_SIZE); 4631 cond_resched(); 4632 clear_user_highpage(page + right_idx, 4633 addr + right_idx * PAGE_SIZE); 4634 } 4635 } 4636 4637 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4638 unsigned long addr, 4639 struct vm_area_struct *vma, 4640 unsigned int pages_per_huge_page) 4641 { 4642 int i; 4643 struct page *dst_base = dst; 4644 struct page *src_base = src; 4645 4646 for (i = 0; i < pages_per_huge_page; ) { 4647 cond_resched(); 4648 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4649 4650 i++; 4651 dst = mem_map_next(dst, dst_base, i); 4652 src = mem_map_next(src, src_base, i); 4653 } 4654 } 4655 4656 void copy_user_huge_page(struct page *dst, struct page *src, 4657 unsigned long addr, struct vm_area_struct *vma, 4658 unsigned int pages_per_huge_page) 4659 { 4660 int i; 4661 4662 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4663 copy_user_gigantic_page(dst, src, addr, vma, 4664 pages_per_huge_page); 4665 return; 4666 } 4667 4668 might_sleep(); 4669 for (i = 0; i < pages_per_huge_page; i++) { 4670 cond_resched(); 4671 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4672 } 4673 } 4674 4675 long copy_huge_page_from_user(struct page *dst_page, 4676 const void __user *usr_src, 4677 unsigned int pages_per_huge_page, 4678 bool allow_pagefault) 4679 { 4680 void *src = (void *)usr_src; 4681 void *page_kaddr; 4682 unsigned long i, rc = 0; 4683 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4684 4685 for (i = 0; i < pages_per_huge_page; i++) { 4686 if (allow_pagefault) 4687 page_kaddr = kmap(dst_page + i); 4688 else 4689 page_kaddr = kmap_atomic(dst_page + i); 4690 rc = copy_from_user(page_kaddr, 4691 (const void __user *)(src + i * PAGE_SIZE), 4692 PAGE_SIZE); 4693 if (allow_pagefault) 4694 kunmap(dst_page + i); 4695 else 4696 kunmap_atomic(page_kaddr); 4697 4698 ret_val -= (PAGE_SIZE - rc); 4699 if (rc) 4700 break; 4701 4702 cond_resched(); 4703 } 4704 return ret_val; 4705 } 4706 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4707 4708 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4709 4710 static struct kmem_cache *page_ptl_cachep; 4711 4712 void __init ptlock_cache_init(void) 4713 { 4714 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4715 SLAB_PANIC, NULL); 4716 } 4717 4718 bool ptlock_alloc(struct page *page) 4719 { 4720 spinlock_t *ptl; 4721 4722 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4723 if (!ptl) 4724 return false; 4725 page->ptl = ptl; 4726 return true; 4727 } 4728 4729 void ptlock_free(struct page *page) 4730 { 4731 kmem_cache_free(page_ptl_cachep, page->ptl); 4732 } 4733 #endif 4734