1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 #include <linux/mmu_notifier.h> 55 #include <linux/kallsyms.h> 56 #include <linux/swapops.h> 57 #include <linux/elf.h> 58 59 #include <asm/pgalloc.h> 60 #include <asm/uaccess.h> 61 #include <asm/tlb.h> 62 #include <asm/tlbflush.h> 63 #include <asm/pgtable.h> 64 65 #include "internal.h" 66 67 #ifndef CONFIG_NEED_MULTIPLE_NODES 68 /* use the per-pgdat data instead for discontigmem - mbligh */ 69 unsigned long max_mapnr; 70 struct page *mem_map; 71 72 EXPORT_SYMBOL(max_mapnr); 73 EXPORT_SYMBOL(mem_map); 74 #endif 75 76 unsigned long num_physpages; 77 /* 78 * A number of key systems in x86 including ioremap() rely on the assumption 79 * that high_memory defines the upper bound on direct map memory, then end 80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 82 * and ZONE_HIGHMEM. 83 */ 84 void * high_memory; 85 86 EXPORT_SYMBOL(num_physpages); 87 EXPORT_SYMBOL(high_memory); 88 89 /* 90 * Randomize the address space (stacks, mmaps, brk, etc.). 91 * 92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 93 * as ancient (libc5 based) binaries can segfault. ) 94 */ 95 int randomize_va_space __read_mostly = 96 #ifdef CONFIG_COMPAT_BRK 97 1; 98 #else 99 2; 100 #endif 101 102 static int __init disable_randmaps(char *s) 103 { 104 randomize_va_space = 0; 105 return 1; 106 } 107 __setup("norandmaps", disable_randmaps); 108 109 110 /* 111 * If a p?d_bad entry is found while walking page tables, report 112 * the error, before resetting entry to p?d_none. Usually (but 113 * very seldom) called out from the p?d_none_or_clear_bad macros. 114 */ 115 116 void pgd_clear_bad(pgd_t *pgd) 117 { 118 pgd_ERROR(*pgd); 119 pgd_clear(pgd); 120 } 121 122 void pud_clear_bad(pud_t *pud) 123 { 124 pud_ERROR(*pud); 125 pud_clear(pud); 126 } 127 128 void pmd_clear_bad(pmd_t *pmd) 129 { 130 pmd_ERROR(*pmd); 131 pmd_clear(pmd); 132 } 133 134 /* 135 * Note: this doesn't free the actual pages themselves. That 136 * has been handled earlier when unmapping all the memory regions. 137 */ 138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 139 { 140 pgtable_t token = pmd_pgtable(*pmd); 141 pmd_clear(pmd); 142 pte_free_tlb(tlb, token); 143 tlb->mm->nr_ptes--; 144 } 145 146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 147 unsigned long addr, unsigned long end, 148 unsigned long floor, unsigned long ceiling) 149 { 150 pmd_t *pmd; 151 unsigned long next; 152 unsigned long start; 153 154 start = addr; 155 pmd = pmd_offset(pud, addr); 156 do { 157 next = pmd_addr_end(addr, end); 158 if (pmd_none_or_clear_bad(pmd)) 159 continue; 160 free_pte_range(tlb, pmd); 161 } while (pmd++, addr = next, addr != end); 162 163 start &= PUD_MASK; 164 if (start < floor) 165 return; 166 if (ceiling) { 167 ceiling &= PUD_MASK; 168 if (!ceiling) 169 return; 170 } 171 if (end - 1 > ceiling - 1) 172 return; 173 174 pmd = pmd_offset(pud, start); 175 pud_clear(pud); 176 pmd_free_tlb(tlb, pmd); 177 } 178 179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 180 unsigned long addr, unsigned long end, 181 unsigned long floor, unsigned long ceiling) 182 { 183 pud_t *pud; 184 unsigned long next; 185 unsigned long start; 186 187 start = addr; 188 pud = pud_offset(pgd, addr); 189 do { 190 next = pud_addr_end(addr, end); 191 if (pud_none_or_clear_bad(pud)) 192 continue; 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 194 } while (pud++, addr = next, addr != end); 195 196 start &= PGDIR_MASK; 197 if (start < floor) 198 return; 199 if (ceiling) { 200 ceiling &= PGDIR_MASK; 201 if (!ceiling) 202 return; 203 } 204 if (end - 1 > ceiling - 1) 205 return; 206 207 pud = pud_offset(pgd, start); 208 pgd_clear(pgd); 209 pud_free_tlb(tlb, pud); 210 } 211 212 /* 213 * This function frees user-level page tables of a process. 214 * 215 * Must be called with pagetable lock held. 216 */ 217 void free_pgd_range(struct mmu_gather *tlb, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long start; 224 225 /* 226 * The next few lines have given us lots of grief... 227 * 228 * Why are we testing PMD* at this top level? Because often 229 * there will be no work to do at all, and we'd prefer not to 230 * go all the way down to the bottom just to discover that. 231 * 232 * Why all these "- 1"s? Because 0 represents both the bottom 233 * of the address space and the top of it (using -1 for the 234 * top wouldn't help much: the masks would do the wrong thing). 235 * The rule is that addr 0 and floor 0 refer to the bottom of 236 * the address space, but end 0 and ceiling 0 refer to the top 237 * Comparisons need to use "end - 1" and "ceiling - 1" (though 238 * that end 0 case should be mythical). 239 * 240 * Wherever addr is brought up or ceiling brought down, we must 241 * be careful to reject "the opposite 0" before it confuses the 242 * subsequent tests. But what about where end is brought down 243 * by PMD_SIZE below? no, end can't go down to 0 there. 244 * 245 * Whereas we round start (addr) and ceiling down, by different 246 * masks at different levels, in order to test whether a table 247 * now has no other vmas using it, so can be freed, we don't 248 * bother to round floor or end up - the tests don't need that. 249 */ 250 251 addr &= PMD_MASK; 252 if (addr < floor) { 253 addr += PMD_SIZE; 254 if (!addr) 255 return; 256 } 257 if (ceiling) { 258 ceiling &= PMD_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 end -= PMD_SIZE; 264 if (addr > end - 1) 265 return; 266 267 start = addr; 268 pgd = pgd_offset(tlb->mm, addr); 269 do { 270 next = pgd_addr_end(addr, end); 271 if (pgd_none_or_clear_bad(pgd)) 272 continue; 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 274 } while (pgd++, addr = next, addr != end); 275 } 276 277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 278 unsigned long floor, unsigned long ceiling) 279 { 280 while (vma) { 281 struct vm_area_struct *next = vma->vm_next; 282 unsigned long addr = vma->vm_start; 283 284 /* 285 * Hide vma from rmap and vmtruncate before freeing pgtables 286 */ 287 anon_vma_unlink(vma); 288 unlink_file_vma(vma); 289 290 if (is_vm_hugetlb_page(vma)) { 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 292 floor, next? next->vm_start: ceiling); 293 } else { 294 /* 295 * Optimization: gather nearby vmas into one call down 296 */ 297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 298 && !is_vm_hugetlb_page(next)) { 299 vma = next; 300 next = vma->vm_next; 301 anon_vma_unlink(vma); 302 unlink_file_vma(vma); 303 } 304 free_pgd_range(tlb, addr, vma->vm_end, 305 floor, next? next->vm_start: ceiling); 306 } 307 vma = next; 308 } 309 } 310 311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 312 { 313 pgtable_t new = pte_alloc_one(mm, address); 314 if (!new) 315 return -ENOMEM; 316 317 /* 318 * Ensure all pte setup (eg. pte page lock and page clearing) are 319 * visible before the pte is made visible to other CPUs by being 320 * put into page tables. 321 * 322 * The other side of the story is the pointer chasing in the page 323 * table walking code (when walking the page table without locking; 324 * ie. most of the time). Fortunately, these data accesses consist 325 * of a chain of data-dependent loads, meaning most CPUs (alpha 326 * being the notable exception) will already guarantee loads are 327 * seen in-order. See the alpha page table accessors for the 328 * smp_read_barrier_depends() barriers in page table walking code. 329 */ 330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 331 332 spin_lock(&mm->page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 mm->nr_ptes++; 335 pmd_populate(mm, pmd, new); 336 new = NULL; 337 } 338 spin_unlock(&mm->page_table_lock); 339 if (new) 340 pte_free(mm, new); 341 return 0; 342 } 343 344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 345 { 346 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 347 if (!new) 348 return -ENOMEM; 349 350 smp_wmb(); /* See comment in __pte_alloc */ 351 352 spin_lock(&init_mm.page_table_lock); 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 354 pmd_populate_kernel(&init_mm, pmd, new); 355 new = NULL; 356 } 357 spin_unlock(&init_mm.page_table_lock); 358 if (new) 359 pte_free_kernel(&init_mm, new); 360 return 0; 361 } 362 363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 364 { 365 if (file_rss) 366 add_mm_counter(mm, file_rss, file_rss); 367 if (anon_rss) 368 add_mm_counter(mm, anon_rss, anon_rss); 369 } 370 371 /* 372 * This function is called to print an error when a bad pte 373 * is found. For example, we might have a PFN-mapped pte in 374 * a region that doesn't allow it. 375 * 376 * The calling function must still handle the error. 377 */ 378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 379 pte_t pte, struct page *page) 380 { 381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 382 pud_t *pud = pud_offset(pgd, addr); 383 pmd_t *pmd = pmd_offset(pud, addr); 384 struct address_space *mapping; 385 pgoff_t index; 386 387 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 388 index = linear_page_index(vma, addr); 389 390 printk(KERN_EMERG "Bad page map in process %s pte:%08llx pmd:%08llx\n", 391 current->comm, 392 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 393 if (page) { 394 printk(KERN_EMERG 395 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 396 page, (void *)page->flags, page_count(page), 397 page_mapcount(page), page->mapping, page->index); 398 } 399 printk(KERN_EMERG 400 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 401 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 402 /* 403 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 404 */ 405 if (vma->vm_ops) 406 print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n", 407 (unsigned long)vma->vm_ops->fault); 408 if (vma->vm_file && vma->vm_file->f_op) 409 print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n", 410 (unsigned long)vma->vm_file->f_op->mmap); 411 dump_stack(); 412 add_taint(TAINT_BAD_PAGE); 413 } 414 415 static inline int is_cow_mapping(unsigned int flags) 416 { 417 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 418 } 419 420 /* 421 * vm_normal_page -- This function gets the "struct page" associated with a pte. 422 * 423 * "Special" mappings do not wish to be associated with a "struct page" (either 424 * it doesn't exist, or it exists but they don't want to touch it). In this 425 * case, NULL is returned here. "Normal" mappings do have a struct page. 426 * 427 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 428 * pte bit, in which case this function is trivial. Secondly, an architecture 429 * may not have a spare pte bit, which requires a more complicated scheme, 430 * described below. 431 * 432 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 433 * special mapping (even if there are underlying and valid "struct pages"). 434 * COWed pages of a VM_PFNMAP are always normal. 435 * 436 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 437 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 438 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 439 * mapping will always honor the rule 440 * 441 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 442 * 443 * And for normal mappings this is false. 444 * 445 * This restricts such mappings to be a linear translation from virtual address 446 * to pfn. To get around this restriction, we allow arbitrary mappings so long 447 * as the vma is not a COW mapping; in that case, we know that all ptes are 448 * special (because none can have been COWed). 449 * 450 * 451 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 452 * 453 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 454 * page" backing, however the difference is that _all_ pages with a struct 455 * page (that is, those where pfn_valid is true) are refcounted and considered 456 * normal pages by the VM. The disadvantage is that pages are refcounted 457 * (which can be slower and simply not an option for some PFNMAP users). The 458 * advantage is that we don't have to follow the strict linearity rule of 459 * PFNMAP mappings in order to support COWable mappings. 460 * 461 */ 462 #ifdef __HAVE_ARCH_PTE_SPECIAL 463 # define HAVE_PTE_SPECIAL 1 464 #else 465 # define HAVE_PTE_SPECIAL 0 466 #endif 467 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 468 pte_t pte) 469 { 470 unsigned long pfn = pte_pfn(pte); 471 472 if (HAVE_PTE_SPECIAL) { 473 if (likely(!pte_special(pte))) 474 goto check_pfn; 475 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) 476 print_bad_pte(vma, addr, pte, NULL); 477 return NULL; 478 } 479 480 /* !HAVE_PTE_SPECIAL case follows: */ 481 482 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 483 if (vma->vm_flags & VM_MIXEDMAP) { 484 if (!pfn_valid(pfn)) 485 return NULL; 486 goto out; 487 } else { 488 unsigned long off; 489 off = (addr - vma->vm_start) >> PAGE_SHIFT; 490 if (pfn == vma->vm_pgoff + off) 491 return NULL; 492 if (!is_cow_mapping(vma->vm_flags)) 493 return NULL; 494 } 495 } 496 497 check_pfn: 498 if (unlikely(pfn > highest_memmap_pfn)) { 499 print_bad_pte(vma, addr, pte, NULL); 500 return NULL; 501 } 502 503 /* 504 * NOTE! We still have PageReserved() pages in the page tables. 505 * eg. VDSO mappings can cause them to exist. 506 */ 507 out: 508 return pfn_to_page(pfn); 509 } 510 511 /* 512 * copy one vm_area from one task to the other. Assumes the page tables 513 * already present in the new task to be cleared in the whole range 514 * covered by this vma. 515 */ 516 517 static inline void 518 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 519 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 520 unsigned long addr, int *rss) 521 { 522 unsigned long vm_flags = vma->vm_flags; 523 pte_t pte = *src_pte; 524 struct page *page; 525 526 /* pte contains position in swap or file, so copy. */ 527 if (unlikely(!pte_present(pte))) { 528 if (!pte_file(pte)) { 529 swp_entry_t entry = pte_to_swp_entry(pte); 530 531 swap_duplicate(entry); 532 /* make sure dst_mm is on swapoff's mmlist. */ 533 if (unlikely(list_empty(&dst_mm->mmlist))) { 534 spin_lock(&mmlist_lock); 535 if (list_empty(&dst_mm->mmlist)) 536 list_add(&dst_mm->mmlist, 537 &src_mm->mmlist); 538 spin_unlock(&mmlist_lock); 539 } 540 if (is_write_migration_entry(entry) && 541 is_cow_mapping(vm_flags)) { 542 /* 543 * COW mappings require pages in both parent 544 * and child to be set to read. 545 */ 546 make_migration_entry_read(&entry); 547 pte = swp_entry_to_pte(entry); 548 set_pte_at(src_mm, addr, src_pte, pte); 549 } 550 } 551 goto out_set_pte; 552 } 553 554 /* 555 * If it's a COW mapping, write protect it both 556 * in the parent and the child 557 */ 558 if (is_cow_mapping(vm_flags)) { 559 ptep_set_wrprotect(src_mm, addr, src_pte); 560 pte = pte_wrprotect(pte); 561 } 562 563 /* 564 * If it's a shared mapping, mark it clean in 565 * the child 566 */ 567 if (vm_flags & VM_SHARED) 568 pte = pte_mkclean(pte); 569 pte = pte_mkold(pte); 570 571 page = vm_normal_page(vma, addr, pte); 572 if (page) { 573 get_page(page); 574 page_dup_rmap(page, vma, addr); 575 rss[!!PageAnon(page)]++; 576 } 577 578 out_set_pte: 579 set_pte_at(dst_mm, addr, dst_pte, pte); 580 } 581 582 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 583 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 584 unsigned long addr, unsigned long end) 585 { 586 pte_t *src_pte, *dst_pte; 587 spinlock_t *src_ptl, *dst_ptl; 588 int progress = 0; 589 int rss[2]; 590 591 again: 592 rss[1] = rss[0] = 0; 593 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 594 if (!dst_pte) 595 return -ENOMEM; 596 src_pte = pte_offset_map_nested(src_pmd, addr); 597 src_ptl = pte_lockptr(src_mm, src_pmd); 598 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 599 arch_enter_lazy_mmu_mode(); 600 601 do { 602 /* 603 * We are holding two locks at this point - either of them 604 * could generate latencies in another task on another CPU. 605 */ 606 if (progress >= 32) { 607 progress = 0; 608 if (need_resched() || 609 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 610 break; 611 } 612 if (pte_none(*src_pte)) { 613 progress++; 614 continue; 615 } 616 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 617 progress += 8; 618 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 619 620 arch_leave_lazy_mmu_mode(); 621 spin_unlock(src_ptl); 622 pte_unmap_nested(src_pte - 1); 623 add_mm_rss(dst_mm, rss[0], rss[1]); 624 pte_unmap_unlock(dst_pte - 1, dst_ptl); 625 cond_resched(); 626 if (addr != end) 627 goto again; 628 return 0; 629 } 630 631 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 632 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 633 unsigned long addr, unsigned long end) 634 { 635 pmd_t *src_pmd, *dst_pmd; 636 unsigned long next; 637 638 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 639 if (!dst_pmd) 640 return -ENOMEM; 641 src_pmd = pmd_offset(src_pud, addr); 642 do { 643 next = pmd_addr_end(addr, end); 644 if (pmd_none_or_clear_bad(src_pmd)) 645 continue; 646 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 647 vma, addr, next)) 648 return -ENOMEM; 649 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 650 return 0; 651 } 652 653 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 654 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 655 unsigned long addr, unsigned long end) 656 { 657 pud_t *src_pud, *dst_pud; 658 unsigned long next; 659 660 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 661 if (!dst_pud) 662 return -ENOMEM; 663 src_pud = pud_offset(src_pgd, addr); 664 do { 665 next = pud_addr_end(addr, end); 666 if (pud_none_or_clear_bad(src_pud)) 667 continue; 668 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 669 vma, addr, next)) 670 return -ENOMEM; 671 } while (dst_pud++, src_pud++, addr = next, addr != end); 672 return 0; 673 } 674 675 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 676 struct vm_area_struct *vma) 677 { 678 pgd_t *src_pgd, *dst_pgd; 679 unsigned long next; 680 unsigned long addr = vma->vm_start; 681 unsigned long end = vma->vm_end; 682 int ret; 683 684 /* 685 * Don't copy ptes where a page fault will fill them correctly. 686 * Fork becomes much lighter when there are big shared or private 687 * readonly mappings. The tradeoff is that copy_page_range is more 688 * efficient than faulting. 689 */ 690 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 691 if (!vma->anon_vma) 692 return 0; 693 } 694 695 if (is_vm_hugetlb_page(vma)) 696 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 697 698 if (unlikely(is_pfn_mapping(vma))) { 699 /* 700 * We do not free on error cases below as remove_vma 701 * gets called on error from higher level routine 702 */ 703 ret = track_pfn_vma_copy(vma); 704 if (ret) 705 return ret; 706 } 707 708 /* 709 * We need to invalidate the secondary MMU mappings only when 710 * there could be a permission downgrade on the ptes of the 711 * parent mm. And a permission downgrade will only happen if 712 * is_cow_mapping() returns true. 713 */ 714 if (is_cow_mapping(vma->vm_flags)) 715 mmu_notifier_invalidate_range_start(src_mm, addr, end); 716 717 ret = 0; 718 dst_pgd = pgd_offset(dst_mm, addr); 719 src_pgd = pgd_offset(src_mm, addr); 720 do { 721 next = pgd_addr_end(addr, end); 722 if (pgd_none_or_clear_bad(src_pgd)) 723 continue; 724 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 725 vma, addr, next))) { 726 ret = -ENOMEM; 727 break; 728 } 729 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 730 731 if (is_cow_mapping(vma->vm_flags)) 732 mmu_notifier_invalidate_range_end(src_mm, 733 vma->vm_start, end); 734 return ret; 735 } 736 737 static unsigned long zap_pte_range(struct mmu_gather *tlb, 738 struct vm_area_struct *vma, pmd_t *pmd, 739 unsigned long addr, unsigned long end, 740 long *zap_work, struct zap_details *details) 741 { 742 struct mm_struct *mm = tlb->mm; 743 pte_t *pte; 744 spinlock_t *ptl; 745 int file_rss = 0; 746 int anon_rss = 0; 747 748 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 749 arch_enter_lazy_mmu_mode(); 750 do { 751 pte_t ptent = *pte; 752 if (pte_none(ptent)) { 753 (*zap_work)--; 754 continue; 755 } 756 757 (*zap_work) -= PAGE_SIZE; 758 759 if (pte_present(ptent)) { 760 struct page *page; 761 762 page = vm_normal_page(vma, addr, ptent); 763 if (unlikely(details) && page) { 764 /* 765 * unmap_shared_mapping_pages() wants to 766 * invalidate cache without truncating: 767 * unmap shared but keep private pages. 768 */ 769 if (details->check_mapping && 770 details->check_mapping != page->mapping) 771 continue; 772 /* 773 * Each page->index must be checked when 774 * invalidating or truncating nonlinear. 775 */ 776 if (details->nonlinear_vma && 777 (page->index < details->first_index || 778 page->index > details->last_index)) 779 continue; 780 } 781 ptent = ptep_get_and_clear_full(mm, addr, pte, 782 tlb->fullmm); 783 tlb_remove_tlb_entry(tlb, pte, addr); 784 if (unlikely(!page)) 785 continue; 786 if (unlikely(details) && details->nonlinear_vma 787 && linear_page_index(details->nonlinear_vma, 788 addr) != page->index) 789 set_pte_at(mm, addr, pte, 790 pgoff_to_pte(page->index)); 791 if (PageAnon(page)) 792 anon_rss--; 793 else { 794 if (pte_dirty(ptent)) 795 set_page_dirty(page); 796 if (pte_young(ptent) && 797 likely(!VM_SequentialReadHint(vma))) 798 mark_page_accessed(page); 799 file_rss--; 800 } 801 page_remove_rmap(page, vma); 802 if (unlikely(page_mapcount(page) < 0)) 803 print_bad_pte(vma, addr, ptent, page); 804 tlb_remove_page(tlb, page); 805 continue; 806 } 807 /* 808 * If details->check_mapping, we leave swap entries; 809 * if details->nonlinear_vma, we leave file entries. 810 */ 811 if (unlikely(details)) 812 continue; 813 if (pte_file(ptent)) { 814 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 815 print_bad_pte(vma, addr, ptent, NULL); 816 } else if 817 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) 818 print_bad_pte(vma, addr, ptent, NULL); 819 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 820 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 821 822 add_mm_rss(mm, file_rss, anon_rss); 823 arch_leave_lazy_mmu_mode(); 824 pte_unmap_unlock(pte - 1, ptl); 825 826 return addr; 827 } 828 829 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 830 struct vm_area_struct *vma, pud_t *pud, 831 unsigned long addr, unsigned long end, 832 long *zap_work, struct zap_details *details) 833 { 834 pmd_t *pmd; 835 unsigned long next; 836 837 pmd = pmd_offset(pud, addr); 838 do { 839 next = pmd_addr_end(addr, end); 840 if (pmd_none_or_clear_bad(pmd)) { 841 (*zap_work)--; 842 continue; 843 } 844 next = zap_pte_range(tlb, vma, pmd, addr, next, 845 zap_work, details); 846 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 847 848 return addr; 849 } 850 851 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 852 struct vm_area_struct *vma, pgd_t *pgd, 853 unsigned long addr, unsigned long end, 854 long *zap_work, struct zap_details *details) 855 { 856 pud_t *pud; 857 unsigned long next; 858 859 pud = pud_offset(pgd, addr); 860 do { 861 next = pud_addr_end(addr, end); 862 if (pud_none_or_clear_bad(pud)) { 863 (*zap_work)--; 864 continue; 865 } 866 next = zap_pmd_range(tlb, vma, pud, addr, next, 867 zap_work, details); 868 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 869 870 return addr; 871 } 872 873 static unsigned long unmap_page_range(struct mmu_gather *tlb, 874 struct vm_area_struct *vma, 875 unsigned long addr, unsigned long end, 876 long *zap_work, struct zap_details *details) 877 { 878 pgd_t *pgd; 879 unsigned long next; 880 881 if (details && !details->check_mapping && !details->nonlinear_vma) 882 details = NULL; 883 884 BUG_ON(addr >= end); 885 tlb_start_vma(tlb, vma); 886 pgd = pgd_offset(vma->vm_mm, addr); 887 do { 888 next = pgd_addr_end(addr, end); 889 if (pgd_none_or_clear_bad(pgd)) { 890 (*zap_work)--; 891 continue; 892 } 893 next = zap_pud_range(tlb, vma, pgd, addr, next, 894 zap_work, details); 895 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 896 tlb_end_vma(tlb, vma); 897 898 return addr; 899 } 900 901 #ifdef CONFIG_PREEMPT 902 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 903 #else 904 /* No preempt: go for improved straight-line efficiency */ 905 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 906 #endif 907 908 /** 909 * unmap_vmas - unmap a range of memory covered by a list of vma's 910 * @tlbp: address of the caller's struct mmu_gather 911 * @vma: the starting vma 912 * @start_addr: virtual address at which to start unmapping 913 * @end_addr: virtual address at which to end unmapping 914 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 915 * @details: details of nonlinear truncation or shared cache invalidation 916 * 917 * Returns the end address of the unmapping (restart addr if interrupted). 918 * 919 * Unmap all pages in the vma list. 920 * 921 * We aim to not hold locks for too long (for scheduling latency reasons). 922 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 923 * return the ending mmu_gather to the caller. 924 * 925 * Only addresses between `start' and `end' will be unmapped. 926 * 927 * The VMA list must be sorted in ascending virtual address order. 928 * 929 * unmap_vmas() assumes that the caller will flush the whole unmapped address 930 * range after unmap_vmas() returns. So the only responsibility here is to 931 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 932 * drops the lock and schedules. 933 */ 934 unsigned long unmap_vmas(struct mmu_gather **tlbp, 935 struct vm_area_struct *vma, unsigned long start_addr, 936 unsigned long end_addr, unsigned long *nr_accounted, 937 struct zap_details *details) 938 { 939 long zap_work = ZAP_BLOCK_SIZE; 940 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 941 int tlb_start_valid = 0; 942 unsigned long start = start_addr; 943 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 944 int fullmm = (*tlbp)->fullmm; 945 struct mm_struct *mm = vma->vm_mm; 946 947 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 948 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 949 unsigned long end; 950 951 start = max(vma->vm_start, start_addr); 952 if (start >= vma->vm_end) 953 continue; 954 end = min(vma->vm_end, end_addr); 955 if (end <= vma->vm_start) 956 continue; 957 958 if (vma->vm_flags & VM_ACCOUNT) 959 *nr_accounted += (end - start) >> PAGE_SHIFT; 960 961 if (unlikely(is_pfn_mapping(vma))) 962 untrack_pfn_vma(vma, 0, 0); 963 964 while (start != end) { 965 if (!tlb_start_valid) { 966 tlb_start = start; 967 tlb_start_valid = 1; 968 } 969 970 if (unlikely(is_vm_hugetlb_page(vma))) { 971 /* 972 * It is undesirable to test vma->vm_file as it 973 * should be non-null for valid hugetlb area. 974 * However, vm_file will be NULL in the error 975 * cleanup path of do_mmap_pgoff. When 976 * hugetlbfs ->mmap method fails, 977 * do_mmap_pgoff() nullifies vma->vm_file 978 * before calling this function to clean up. 979 * Since no pte has actually been setup, it is 980 * safe to do nothing in this case. 981 */ 982 if (vma->vm_file) { 983 unmap_hugepage_range(vma, start, end, NULL); 984 zap_work -= (end - start) / 985 pages_per_huge_page(hstate_vma(vma)); 986 } 987 988 start = end; 989 } else 990 start = unmap_page_range(*tlbp, vma, 991 start, end, &zap_work, details); 992 993 if (zap_work > 0) { 994 BUG_ON(start != end); 995 break; 996 } 997 998 tlb_finish_mmu(*tlbp, tlb_start, start); 999 1000 if (need_resched() || 1001 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1002 if (i_mmap_lock) { 1003 *tlbp = NULL; 1004 goto out; 1005 } 1006 cond_resched(); 1007 } 1008 1009 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1010 tlb_start_valid = 0; 1011 zap_work = ZAP_BLOCK_SIZE; 1012 } 1013 } 1014 out: 1015 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1016 return start; /* which is now the end (or restart) address */ 1017 } 1018 1019 /** 1020 * zap_page_range - remove user pages in a given range 1021 * @vma: vm_area_struct holding the applicable pages 1022 * @address: starting address of pages to zap 1023 * @size: number of bytes to zap 1024 * @details: details of nonlinear truncation or shared cache invalidation 1025 */ 1026 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1027 unsigned long size, struct zap_details *details) 1028 { 1029 struct mm_struct *mm = vma->vm_mm; 1030 struct mmu_gather *tlb; 1031 unsigned long end = address + size; 1032 unsigned long nr_accounted = 0; 1033 1034 lru_add_drain(); 1035 tlb = tlb_gather_mmu(mm, 0); 1036 update_hiwater_rss(mm); 1037 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1038 if (tlb) 1039 tlb_finish_mmu(tlb, address, end); 1040 return end; 1041 } 1042 1043 /** 1044 * zap_vma_ptes - remove ptes mapping the vma 1045 * @vma: vm_area_struct holding ptes to be zapped 1046 * @address: starting address of pages to zap 1047 * @size: number of bytes to zap 1048 * 1049 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1050 * 1051 * The entire address range must be fully contained within the vma. 1052 * 1053 * Returns 0 if successful. 1054 */ 1055 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1056 unsigned long size) 1057 { 1058 if (address < vma->vm_start || address + size > vma->vm_end || 1059 !(vma->vm_flags & VM_PFNMAP)) 1060 return -1; 1061 zap_page_range(vma, address, size, NULL); 1062 return 0; 1063 } 1064 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1065 1066 /* 1067 * Do a quick page-table lookup for a single page. 1068 */ 1069 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1070 unsigned int flags) 1071 { 1072 pgd_t *pgd; 1073 pud_t *pud; 1074 pmd_t *pmd; 1075 pte_t *ptep, pte; 1076 spinlock_t *ptl; 1077 struct page *page; 1078 struct mm_struct *mm = vma->vm_mm; 1079 1080 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1081 if (!IS_ERR(page)) { 1082 BUG_ON(flags & FOLL_GET); 1083 goto out; 1084 } 1085 1086 page = NULL; 1087 pgd = pgd_offset(mm, address); 1088 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1089 goto no_page_table; 1090 1091 pud = pud_offset(pgd, address); 1092 if (pud_none(*pud)) 1093 goto no_page_table; 1094 if (pud_huge(*pud)) { 1095 BUG_ON(flags & FOLL_GET); 1096 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1097 goto out; 1098 } 1099 if (unlikely(pud_bad(*pud))) 1100 goto no_page_table; 1101 1102 pmd = pmd_offset(pud, address); 1103 if (pmd_none(*pmd)) 1104 goto no_page_table; 1105 if (pmd_huge(*pmd)) { 1106 BUG_ON(flags & FOLL_GET); 1107 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1108 goto out; 1109 } 1110 if (unlikely(pmd_bad(*pmd))) 1111 goto no_page_table; 1112 1113 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1114 1115 pte = *ptep; 1116 if (!pte_present(pte)) 1117 goto no_page; 1118 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1119 goto unlock; 1120 page = vm_normal_page(vma, address, pte); 1121 if (unlikely(!page)) 1122 goto bad_page; 1123 1124 if (flags & FOLL_GET) 1125 get_page(page); 1126 if (flags & FOLL_TOUCH) { 1127 if ((flags & FOLL_WRITE) && 1128 !pte_dirty(pte) && !PageDirty(page)) 1129 set_page_dirty(page); 1130 mark_page_accessed(page); 1131 } 1132 unlock: 1133 pte_unmap_unlock(ptep, ptl); 1134 out: 1135 return page; 1136 1137 bad_page: 1138 pte_unmap_unlock(ptep, ptl); 1139 return ERR_PTR(-EFAULT); 1140 1141 no_page: 1142 pte_unmap_unlock(ptep, ptl); 1143 if (!pte_none(pte)) 1144 return page; 1145 /* Fall through to ZERO_PAGE handling */ 1146 no_page_table: 1147 /* 1148 * When core dumping an enormous anonymous area that nobody 1149 * has touched so far, we don't want to allocate page tables. 1150 */ 1151 if (flags & FOLL_ANON) { 1152 page = ZERO_PAGE(0); 1153 if (flags & FOLL_GET) 1154 get_page(page); 1155 BUG_ON(flags & FOLL_WRITE); 1156 } 1157 return page; 1158 } 1159 1160 /* Can we do the FOLL_ANON optimization? */ 1161 static inline int use_zero_page(struct vm_area_struct *vma) 1162 { 1163 /* 1164 * We don't want to optimize FOLL_ANON for make_pages_present() 1165 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1166 * we want to get the page from the page tables to make sure 1167 * that we serialize and update with any other user of that 1168 * mapping. 1169 */ 1170 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1171 return 0; 1172 /* 1173 * And if we have a fault routine, it's not an anonymous region. 1174 */ 1175 return !vma->vm_ops || !vma->vm_ops->fault; 1176 } 1177 1178 1179 1180 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1181 unsigned long start, int len, int flags, 1182 struct page **pages, struct vm_area_struct **vmas) 1183 { 1184 int i; 1185 unsigned int vm_flags = 0; 1186 int write = !!(flags & GUP_FLAGS_WRITE); 1187 int force = !!(flags & GUP_FLAGS_FORCE); 1188 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 1189 1190 if (len <= 0) 1191 return 0; 1192 /* 1193 * Require read or write permissions. 1194 * If 'force' is set, we only require the "MAY" flags. 1195 */ 1196 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1197 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1198 i = 0; 1199 1200 do { 1201 struct vm_area_struct *vma; 1202 unsigned int foll_flags; 1203 1204 vma = find_extend_vma(mm, start); 1205 if (!vma && in_gate_area(tsk, start)) { 1206 unsigned long pg = start & PAGE_MASK; 1207 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1208 pgd_t *pgd; 1209 pud_t *pud; 1210 pmd_t *pmd; 1211 pte_t *pte; 1212 1213 /* user gate pages are read-only */ 1214 if (!ignore && write) 1215 return i ? : -EFAULT; 1216 if (pg > TASK_SIZE) 1217 pgd = pgd_offset_k(pg); 1218 else 1219 pgd = pgd_offset_gate(mm, pg); 1220 BUG_ON(pgd_none(*pgd)); 1221 pud = pud_offset(pgd, pg); 1222 BUG_ON(pud_none(*pud)); 1223 pmd = pmd_offset(pud, pg); 1224 if (pmd_none(*pmd)) 1225 return i ? : -EFAULT; 1226 pte = pte_offset_map(pmd, pg); 1227 if (pte_none(*pte)) { 1228 pte_unmap(pte); 1229 return i ? : -EFAULT; 1230 } 1231 if (pages) { 1232 struct page *page = vm_normal_page(gate_vma, start, *pte); 1233 pages[i] = page; 1234 if (page) 1235 get_page(page); 1236 } 1237 pte_unmap(pte); 1238 if (vmas) 1239 vmas[i] = gate_vma; 1240 i++; 1241 start += PAGE_SIZE; 1242 len--; 1243 continue; 1244 } 1245 1246 if (!vma || 1247 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1248 (!ignore && !(vm_flags & vma->vm_flags))) 1249 return i ? : -EFAULT; 1250 1251 if (is_vm_hugetlb_page(vma)) { 1252 i = follow_hugetlb_page(mm, vma, pages, vmas, 1253 &start, &len, i, write); 1254 continue; 1255 } 1256 1257 foll_flags = FOLL_TOUCH; 1258 if (pages) 1259 foll_flags |= FOLL_GET; 1260 if (!write && use_zero_page(vma)) 1261 foll_flags |= FOLL_ANON; 1262 1263 do { 1264 struct page *page; 1265 1266 /* 1267 * If tsk is ooming, cut off its access to large memory 1268 * allocations. It has a pending SIGKILL, but it can't 1269 * be processed until returning to user space. 1270 */ 1271 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1272 return i ? i : -ENOMEM; 1273 1274 if (write) 1275 foll_flags |= FOLL_WRITE; 1276 1277 cond_resched(); 1278 while (!(page = follow_page(vma, start, foll_flags))) { 1279 int ret; 1280 ret = handle_mm_fault(mm, vma, start, 1281 foll_flags & FOLL_WRITE); 1282 if (ret & VM_FAULT_ERROR) { 1283 if (ret & VM_FAULT_OOM) 1284 return i ? i : -ENOMEM; 1285 else if (ret & VM_FAULT_SIGBUS) 1286 return i ? i : -EFAULT; 1287 BUG(); 1288 } 1289 if (ret & VM_FAULT_MAJOR) 1290 tsk->maj_flt++; 1291 else 1292 tsk->min_flt++; 1293 1294 /* 1295 * The VM_FAULT_WRITE bit tells us that 1296 * do_wp_page has broken COW when necessary, 1297 * even if maybe_mkwrite decided not to set 1298 * pte_write. We can thus safely do subsequent 1299 * page lookups as if they were reads. But only 1300 * do so when looping for pte_write is futile: 1301 * in some cases userspace may also be wanting 1302 * to write to the gotten user page, which a 1303 * read fault here might prevent (a readonly 1304 * page might get reCOWed by userspace write). 1305 */ 1306 if ((ret & VM_FAULT_WRITE) && 1307 !(vma->vm_flags & VM_WRITE)) 1308 foll_flags &= ~FOLL_WRITE; 1309 1310 cond_resched(); 1311 } 1312 if (IS_ERR(page)) 1313 return i ? i : PTR_ERR(page); 1314 if (pages) { 1315 pages[i] = page; 1316 1317 flush_anon_page(vma, page, start); 1318 flush_dcache_page(page); 1319 } 1320 if (vmas) 1321 vmas[i] = vma; 1322 i++; 1323 start += PAGE_SIZE; 1324 len--; 1325 } while (len && start < vma->vm_end); 1326 } while (len); 1327 return i; 1328 } 1329 1330 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1331 unsigned long start, int len, int write, int force, 1332 struct page **pages, struct vm_area_struct **vmas) 1333 { 1334 int flags = 0; 1335 1336 if (write) 1337 flags |= GUP_FLAGS_WRITE; 1338 if (force) 1339 flags |= GUP_FLAGS_FORCE; 1340 1341 return __get_user_pages(tsk, mm, 1342 start, len, flags, 1343 pages, vmas); 1344 } 1345 1346 EXPORT_SYMBOL(get_user_pages); 1347 1348 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1349 spinlock_t **ptl) 1350 { 1351 pgd_t * pgd = pgd_offset(mm, addr); 1352 pud_t * pud = pud_alloc(mm, pgd, addr); 1353 if (pud) { 1354 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1355 if (pmd) 1356 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1357 } 1358 return NULL; 1359 } 1360 1361 /* 1362 * This is the old fallback for page remapping. 1363 * 1364 * For historical reasons, it only allows reserved pages. Only 1365 * old drivers should use this, and they needed to mark their 1366 * pages reserved for the old functions anyway. 1367 */ 1368 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1369 struct page *page, pgprot_t prot) 1370 { 1371 struct mm_struct *mm = vma->vm_mm; 1372 int retval; 1373 pte_t *pte; 1374 spinlock_t *ptl; 1375 1376 retval = -EINVAL; 1377 if (PageAnon(page)) 1378 goto out; 1379 retval = -ENOMEM; 1380 flush_dcache_page(page); 1381 pte = get_locked_pte(mm, addr, &ptl); 1382 if (!pte) 1383 goto out; 1384 retval = -EBUSY; 1385 if (!pte_none(*pte)) 1386 goto out_unlock; 1387 1388 /* Ok, finally just insert the thing.. */ 1389 get_page(page); 1390 inc_mm_counter(mm, file_rss); 1391 page_add_file_rmap(page); 1392 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1393 1394 retval = 0; 1395 pte_unmap_unlock(pte, ptl); 1396 return retval; 1397 out_unlock: 1398 pte_unmap_unlock(pte, ptl); 1399 out: 1400 return retval; 1401 } 1402 1403 /** 1404 * vm_insert_page - insert single page into user vma 1405 * @vma: user vma to map to 1406 * @addr: target user address of this page 1407 * @page: source kernel page 1408 * 1409 * This allows drivers to insert individual pages they've allocated 1410 * into a user vma. 1411 * 1412 * The page has to be a nice clean _individual_ kernel allocation. 1413 * If you allocate a compound page, you need to have marked it as 1414 * such (__GFP_COMP), or manually just split the page up yourself 1415 * (see split_page()). 1416 * 1417 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1418 * took an arbitrary page protection parameter. This doesn't allow 1419 * that. Your vma protection will have to be set up correctly, which 1420 * means that if you want a shared writable mapping, you'd better 1421 * ask for a shared writable mapping! 1422 * 1423 * The page does not need to be reserved. 1424 */ 1425 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1426 struct page *page) 1427 { 1428 if (addr < vma->vm_start || addr >= vma->vm_end) 1429 return -EFAULT; 1430 if (!page_count(page)) 1431 return -EINVAL; 1432 vma->vm_flags |= VM_INSERTPAGE; 1433 return insert_page(vma, addr, page, vma->vm_page_prot); 1434 } 1435 EXPORT_SYMBOL(vm_insert_page); 1436 1437 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1438 unsigned long pfn, pgprot_t prot) 1439 { 1440 struct mm_struct *mm = vma->vm_mm; 1441 int retval; 1442 pte_t *pte, entry; 1443 spinlock_t *ptl; 1444 1445 retval = -ENOMEM; 1446 pte = get_locked_pte(mm, addr, &ptl); 1447 if (!pte) 1448 goto out; 1449 retval = -EBUSY; 1450 if (!pte_none(*pte)) 1451 goto out_unlock; 1452 1453 /* Ok, finally just insert the thing.. */ 1454 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1455 set_pte_at(mm, addr, pte, entry); 1456 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1457 1458 retval = 0; 1459 out_unlock: 1460 pte_unmap_unlock(pte, ptl); 1461 out: 1462 return retval; 1463 } 1464 1465 /** 1466 * vm_insert_pfn - insert single pfn into user vma 1467 * @vma: user vma to map to 1468 * @addr: target user address of this page 1469 * @pfn: source kernel pfn 1470 * 1471 * Similar to vm_inert_page, this allows drivers to insert individual pages 1472 * they've allocated into a user vma. Same comments apply. 1473 * 1474 * This function should only be called from a vm_ops->fault handler, and 1475 * in that case the handler should return NULL. 1476 * 1477 * vma cannot be a COW mapping. 1478 * 1479 * As this is called only for pages that do not currently exist, we 1480 * do not need to flush old virtual caches or the TLB. 1481 */ 1482 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1483 unsigned long pfn) 1484 { 1485 int ret; 1486 /* 1487 * Technically, architectures with pte_special can avoid all these 1488 * restrictions (same for remap_pfn_range). However we would like 1489 * consistency in testing and feature parity among all, so we should 1490 * try to keep these invariants in place for everybody. 1491 */ 1492 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1493 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1494 (VM_PFNMAP|VM_MIXEDMAP)); 1495 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1496 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1497 1498 if (addr < vma->vm_start || addr >= vma->vm_end) 1499 return -EFAULT; 1500 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE)) 1501 return -EINVAL; 1502 1503 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1504 1505 if (ret) 1506 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1507 1508 return ret; 1509 } 1510 EXPORT_SYMBOL(vm_insert_pfn); 1511 1512 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1513 unsigned long pfn) 1514 { 1515 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1516 1517 if (addr < vma->vm_start || addr >= vma->vm_end) 1518 return -EFAULT; 1519 1520 /* 1521 * If we don't have pte special, then we have to use the pfn_valid() 1522 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1523 * refcount the page if pfn_valid is true (hence insert_page rather 1524 * than insert_pfn). 1525 */ 1526 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1527 struct page *page; 1528 1529 page = pfn_to_page(pfn); 1530 return insert_page(vma, addr, page, vma->vm_page_prot); 1531 } 1532 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1533 } 1534 EXPORT_SYMBOL(vm_insert_mixed); 1535 1536 /* 1537 * maps a range of physical memory into the requested pages. the old 1538 * mappings are removed. any references to nonexistent pages results 1539 * in null mappings (currently treated as "copy-on-access") 1540 */ 1541 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1542 unsigned long addr, unsigned long end, 1543 unsigned long pfn, pgprot_t prot) 1544 { 1545 pte_t *pte; 1546 spinlock_t *ptl; 1547 1548 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1549 if (!pte) 1550 return -ENOMEM; 1551 arch_enter_lazy_mmu_mode(); 1552 do { 1553 BUG_ON(!pte_none(*pte)); 1554 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1555 pfn++; 1556 } while (pte++, addr += PAGE_SIZE, addr != end); 1557 arch_leave_lazy_mmu_mode(); 1558 pte_unmap_unlock(pte - 1, ptl); 1559 return 0; 1560 } 1561 1562 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1563 unsigned long addr, unsigned long end, 1564 unsigned long pfn, pgprot_t prot) 1565 { 1566 pmd_t *pmd; 1567 unsigned long next; 1568 1569 pfn -= addr >> PAGE_SHIFT; 1570 pmd = pmd_alloc(mm, pud, addr); 1571 if (!pmd) 1572 return -ENOMEM; 1573 do { 1574 next = pmd_addr_end(addr, end); 1575 if (remap_pte_range(mm, pmd, addr, next, 1576 pfn + (addr >> PAGE_SHIFT), prot)) 1577 return -ENOMEM; 1578 } while (pmd++, addr = next, addr != end); 1579 return 0; 1580 } 1581 1582 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1583 unsigned long addr, unsigned long end, 1584 unsigned long pfn, pgprot_t prot) 1585 { 1586 pud_t *pud; 1587 unsigned long next; 1588 1589 pfn -= addr >> PAGE_SHIFT; 1590 pud = pud_alloc(mm, pgd, addr); 1591 if (!pud) 1592 return -ENOMEM; 1593 do { 1594 next = pud_addr_end(addr, end); 1595 if (remap_pmd_range(mm, pud, addr, next, 1596 pfn + (addr >> PAGE_SHIFT), prot)) 1597 return -ENOMEM; 1598 } while (pud++, addr = next, addr != end); 1599 return 0; 1600 } 1601 1602 /** 1603 * remap_pfn_range - remap kernel memory to userspace 1604 * @vma: user vma to map to 1605 * @addr: target user address to start at 1606 * @pfn: physical address of kernel memory 1607 * @size: size of map area 1608 * @prot: page protection flags for this mapping 1609 * 1610 * Note: this is only safe if the mm semaphore is held when called. 1611 */ 1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1613 unsigned long pfn, unsigned long size, pgprot_t prot) 1614 { 1615 pgd_t *pgd; 1616 unsigned long next; 1617 unsigned long end = addr + PAGE_ALIGN(size); 1618 struct mm_struct *mm = vma->vm_mm; 1619 int err; 1620 1621 /* 1622 * Physically remapped pages are special. Tell the 1623 * rest of the world about it: 1624 * VM_IO tells people not to look at these pages 1625 * (accesses can have side effects). 1626 * VM_RESERVED is specified all over the place, because 1627 * in 2.4 it kept swapout's vma scan off this vma; but 1628 * in 2.6 the LRU scan won't even find its pages, so this 1629 * flag means no more than count its pages in reserved_vm, 1630 * and omit it from core dump, even when VM_IO turned off. 1631 * VM_PFNMAP tells the core MM that the base pages are just 1632 * raw PFN mappings, and do not have a "struct page" associated 1633 * with them. 1634 * 1635 * There's a horrible special case to handle copy-on-write 1636 * behaviour that some programs depend on. We mark the "original" 1637 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1638 */ 1639 if (addr == vma->vm_start && end == vma->vm_end) 1640 vma->vm_pgoff = pfn; 1641 else if (is_cow_mapping(vma->vm_flags)) 1642 return -EINVAL; 1643 1644 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1645 1646 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size)); 1647 if (err) 1648 return -EINVAL; 1649 1650 BUG_ON(addr >= end); 1651 pfn -= addr >> PAGE_SHIFT; 1652 pgd = pgd_offset(mm, addr); 1653 flush_cache_range(vma, addr, end); 1654 do { 1655 next = pgd_addr_end(addr, end); 1656 err = remap_pud_range(mm, pgd, addr, next, 1657 pfn + (addr >> PAGE_SHIFT), prot); 1658 if (err) 1659 break; 1660 } while (pgd++, addr = next, addr != end); 1661 1662 if (err) 1663 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1664 1665 return err; 1666 } 1667 EXPORT_SYMBOL(remap_pfn_range); 1668 1669 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1670 unsigned long addr, unsigned long end, 1671 pte_fn_t fn, void *data) 1672 { 1673 pte_t *pte; 1674 int err; 1675 pgtable_t token; 1676 spinlock_t *uninitialized_var(ptl); 1677 1678 pte = (mm == &init_mm) ? 1679 pte_alloc_kernel(pmd, addr) : 1680 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1681 if (!pte) 1682 return -ENOMEM; 1683 1684 BUG_ON(pmd_huge(*pmd)); 1685 1686 arch_enter_lazy_mmu_mode(); 1687 1688 token = pmd_pgtable(*pmd); 1689 1690 do { 1691 err = fn(pte, token, addr, data); 1692 if (err) 1693 break; 1694 } while (pte++, addr += PAGE_SIZE, addr != end); 1695 1696 arch_leave_lazy_mmu_mode(); 1697 1698 if (mm != &init_mm) 1699 pte_unmap_unlock(pte-1, ptl); 1700 return err; 1701 } 1702 1703 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1704 unsigned long addr, unsigned long end, 1705 pte_fn_t fn, void *data) 1706 { 1707 pmd_t *pmd; 1708 unsigned long next; 1709 int err; 1710 1711 BUG_ON(pud_huge(*pud)); 1712 1713 pmd = pmd_alloc(mm, pud, addr); 1714 if (!pmd) 1715 return -ENOMEM; 1716 do { 1717 next = pmd_addr_end(addr, end); 1718 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1719 if (err) 1720 break; 1721 } while (pmd++, addr = next, addr != end); 1722 return err; 1723 } 1724 1725 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1726 unsigned long addr, unsigned long end, 1727 pte_fn_t fn, void *data) 1728 { 1729 pud_t *pud; 1730 unsigned long next; 1731 int err; 1732 1733 pud = pud_alloc(mm, pgd, addr); 1734 if (!pud) 1735 return -ENOMEM; 1736 do { 1737 next = pud_addr_end(addr, end); 1738 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1739 if (err) 1740 break; 1741 } while (pud++, addr = next, addr != end); 1742 return err; 1743 } 1744 1745 /* 1746 * Scan a region of virtual memory, filling in page tables as necessary 1747 * and calling a provided function on each leaf page table. 1748 */ 1749 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1750 unsigned long size, pte_fn_t fn, void *data) 1751 { 1752 pgd_t *pgd; 1753 unsigned long next; 1754 unsigned long start = addr, end = addr + size; 1755 int err; 1756 1757 BUG_ON(addr >= end); 1758 mmu_notifier_invalidate_range_start(mm, start, end); 1759 pgd = pgd_offset(mm, addr); 1760 do { 1761 next = pgd_addr_end(addr, end); 1762 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1763 if (err) 1764 break; 1765 } while (pgd++, addr = next, addr != end); 1766 mmu_notifier_invalidate_range_end(mm, start, end); 1767 return err; 1768 } 1769 EXPORT_SYMBOL_GPL(apply_to_page_range); 1770 1771 /* 1772 * handle_pte_fault chooses page fault handler according to an entry 1773 * which was read non-atomically. Before making any commitment, on 1774 * those architectures or configurations (e.g. i386 with PAE) which 1775 * might give a mix of unmatched parts, do_swap_page and do_file_page 1776 * must check under lock before unmapping the pte and proceeding 1777 * (but do_wp_page is only called after already making such a check; 1778 * and do_anonymous_page and do_no_page can safely check later on). 1779 */ 1780 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1781 pte_t *page_table, pte_t orig_pte) 1782 { 1783 int same = 1; 1784 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1785 if (sizeof(pte_t) > sizeof(unsigned long)) { 1786 spinlock_t *ptl = pte_lockptr(mm, pmd); 1787 spin_lock(ptl); 1788 same = pte_same(*page_table, orig_pte); 1789 spin_unlock(ptl); 1790 } 1791 #endif 1792 pte_unmap(page_table); 1793 return same; 1794 } 1795 1796 /* 1797 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1798 * servicing faults for write access. In the normal case, do always want 1799 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1800 * that do not have writing enabled, when used by access_process_vm. 1801 */ 1802 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1803 { 1804 if (likely(vma->vm_flags & VM_WRITE)) 1805 pte = pte_mkwrite(pte); 1806 return pte; 1807 } 1808 1809 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1810 { 1811 /* 1812 * If the source page was a PFN mapping, we don't have 1813 * a "struct page" for it. We do a best-effort copy by 1814 * just copying from the original user address. If that 1815 * fails, we just zero-fill it. Live with it. 1816 */ 1817 if (unlikely(!src)) { 1818 void *kaddr = kmap_atomic(dst, KM_USER0); 1819 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1820 1821 /* 1822 * This really shouldn't fail, because the page is there 1823 * in the page tables. But it might just be unreadable, 1824 * in which case we just give up and fill the result with 1825 * zeroes. 1826 */ 1827 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1828 memset(kaddr, 0, PAGE_SIZE); 1829 kunmap_atomic(kaddr, KM_USER0); 1830 flush_dcache_page(dst); 1831 } else 1832 copy_user_highpage(dst, src, va, vma); 1833 } 1834 1835 /* 1836 * This routine handles present pages, when users try to write 1837 * to a shared page. It is done by copying the page to a new address 1838 * and decrementing the shared-page counter for the old page. 1839 * 1840 * Note that this routine assumes that the protection checks have been 1841 * done by the caller (the low-level page fault routine in most cases). 1842 * Thus we can safely just mark it writable once we've done any necessary 1843 * COW. 1844 * 1845 * We also mark the page dirty at this point even though the page will 1846 * change only once the write actually happens. This avoids a few races, 1847 * and potentially makes it more efficient. 1848 * 1849 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1850 * but allow concurrent faults), with pte both mapped and locked. 1851 * We return with mmap_sem still held, but pte unmapped and unlocked. 1852 */ 1853 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1854 unsigned long address, pte_t *page_table, pmd_t *pmd, 1855 spinlock_t *ptl, pte_t orig_pte) 1856 { 1857 struct page *old_page, *new_page; 1858 pte_t entry; 1859 int reuse = 0, ret = 0; 1860 int page_mkwrite = 0; 1861 struct page *dirty_page = NULL; 1862 1863 old_page = vm_normal_page(vma, address, orig_pte); 1864 if (!old_page) { 1865 /* 1866 * VM_MIXEDMAP !pfn_valid() case 1867 * 1868 * We should not cow pages in a shared writeable mapping. 1869 * Just mark the pages writable as we can't do any dirty 1870 * accounting on raw pfn maps. 1871 */ 1872 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1873 (VM_WRITE|VM_SHARED)) 1874 goto reuse; 1875 goto gotten; 1876 } 1877 1878 /* 1879 * Take out anonymous pages first, anonymous shared vmas are 1880 * not dirty accountable. 1881 */ 1882 if (PageAnon(old_page)) { 1883 if (!trylock_page(old_page)) { 1884 page_cache_get(old_page); 1885 pte_unmap_unlock(page_table, ptl); 1886 lock_page(old_page); 1887 page_table = pte_offset_map_lock(mm, pmd, address, 1888 &ptl); 1889 if (!pte_same(*page_table, orig_pte)) { 1890 unlock_page(old_page); 1891 page_cache_release(old_page); 1892 goto unlock; 1893 } 1894 page_cache_release(old_page); 1895 } 1896 reuse = reuse_swap_page(old_page); 1897 unlock_page(old_page); 1898 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1899 (VM_WRITE|VM_SHARED))) { 1900 /* 1901 * Only catch write-faults on shared writable pages, 1902 * read-only shared pages can get COWed by 1903 * get_user_pages(.write=1, .force=1). 1904 */ 1905 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1906 /* 1907 * Notify the address space that the page is about to 1908 * become writable so that it can prohibit this or wait 1909 * for the page to get into an appropriate state. 1910 * 1911 * We do this without the lock held, so that it can 1912 * sleep if it needs to. 1913 */ 1914 page_cache_get(old_page); 1915 pte_unmap_unlock(page_table, ptl); 1916 1917 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1918 goto unwritable_page; 1919 1920 /* 1921 * Since we dropped the lock we need to revalidate 1922 * the PTE as someone else may have changed it. If 1923 * they did, we just return, as we can count on the 1924 * MMU to tell us if they didn't also make it writable. 1925 */ 1926 page_table = pte_offset_map_lock(mm, pmd, address, 1927 &ptl); 1928 page_cache_release(old_page); 1929 if (!pte_same(*page_table, orig_pte)) 1930 goto unlock; 1931 1932 page_mkwrite = 1; 1933 } 1934 dirty_page = old_page; 1935 get_page(dirty_page); 1936 reuse = 1; 1937 } 1938 1939 if (reuse) { 1940 reuse: 1941 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1942 entry = pte_mkyoung(orig_pte); 1943 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1944 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1945 update_mmu_cache(vma, address, entry); 1946 ret |= VM_FAULT_WRITE; 1947 goto unlock; 1948 } 1949 1950 /* 1951 * Ok, we need to copy. Oh, well.. 1952 */ 1953 page_cache_get(old_page); 1954 gotten: 1955 pte_unmap_unlock(page_table, ptl); 1956 1957 if (unlikely(anon_vma_prepare(vma))) 1958 goto oom; 1959 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1960 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1961 if (!new_page) 1962 goto oom; 1963 /* 1964 * Don't let another task, with possibly unlocked vma, 1965 * keep the mlocked page. 1966 */ 1967 if (vma->vm_flags & VM_LOCKED) { 1968 lock_page(old_page); /* for LRU manipulation */ 1969 clear_page_mlock(old_page); 1970 unlock_page(old_page); 1971 } 1972 cow_user_page(new_page, old_page, address, vma); 1973 __SetPageUptodate(new_page); 1974 1975 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1976 goto oom_free_new; 1977 1978 /* 1979 * Re-check the pte - we dropped the lock 1980 */ 1981 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1982 if (likely(pte_same(*page_table, orig_pte))) { 1983 if (old_page) { 1984 if (!PageAnon(old_page)) { 1985 dec_mm_counter(mm, file_rss); 1986 inc_mm_counter(mm, anon_rss); 1987 } 1988 } else 1989 inc_mm_counter(mm, anon_rss); 1990 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1991 entry = mk_pte(new_page, vma->vm_page_prot); 1992 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1993 /* 1994 * Clear the pte entry and flush it first, before updating the 1995 * pte with the new entry. This will avoid a race condition 1996 * seen in the presence of one thread doing SMC and another 1997 * thread doing COW. 1998 */ 1999 ptep_clear_flush_notify(vma, address, page_table); 2000 page_add_new_anon_rmap(new_page, vma, address); 2001 set_pte_at(mm, address, page_table, entry); 2002 update_mmu_cache(vma, address, entry); 2003 if (old_page) { 2004 /* 2005 * Only after switching the pte to the new page may 2006 * we remove the mapcount here. Otherwise another 2007 * process may come and find the rmap count decremented 2008 * before the pte is switched to the new page, and 2009 * "reuse" the old page writing into it while our pte 2010 * here still points into it and can be read by other 2011 * threads. 2012 * 2013 * The critical issue is to order this 2014 * page_remove_rmap with the ptp_clear_flush above. 2015 * Those stores are ordered by (if nothing else,) 2016 * the barrier present in the atomic_add_negative 2017 * in page_remove_rmap. 2018 * 2019 * Then the TLB flush in ptep_clear_flush ensures that 2020 * no process can access the old page before the 2021 * decremented mapcount is visible. And the old page 2022 * cannot be reused until after the decremented 2023 * mapcount is visible. So transitively, TLBs to 2024 * old page will be flushed before it can be reused. 2025 */ 2026 page_remove_rmap(old_page, vma); 2027 } 2028 2029 /* Free the old page.. */ 2030 new_page = old_page; 2031 ret |= VM_FAULT_WRITE; 2032 } else 2033 mem_cgroup_uncharge_page(new_page); 2034 2035 if (new_page) 2036 page_cache_release(new_page); 2037 if (old_page) 2038 page_cache_release(old_page); 2039 unlock: 2040 pte_unmap_unlock(page_table, ptl); 2041 if (dirty_page) { 2042 if (vma->vm_file) 2043 file_update_time(vma->vm_file); 2044 2045 /* 2046 * Yes, Virginia, this is actually required to prevent a race 2047 * with clear_page_dirty_for_io() from clearing the page dirty 2048 * bit after it clear all dirty ptes, but before a racing 2049 * do_wp_page installs a dirty pte. 2050 * 2051 * do_no_page is protected similarly. 2052 */ 2053 wait_on_page_locked(dirty_page); 2054 set_page_dirty_balance(dirty_page, page_mkwrite); 2055 put_page(dirty_page); 2056 } 2057 return ret; 2058 oom_free_new: 2059 page_cache_release(new_page); 2060 oom: 2061 if (old_page) 2062 page_cache_release(old_page); 2063 return VM_FAULT_OOM; 2064 2065 unwritable_page: 2066 page_cache_release(old_page); 2067 return VM_FAULT_SIGBUS; 2068 } 2069 2070 /* 2071 * Helper functions for unmap_mapping_range(). 2072 * 2073 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2074 * 2075 * We have to restart searching the prio_tree whenever we drop the lock, 2076 * since the iterator is only valid while the lock is held, and anyway 2077 * a later vma might be split and reinserted earlier while lock dropped. 2078 * 2079 * The list of nonlinear vmas could be handled more efficiently, using 2080 * a placeholder, but handle it in the same way until a need is shown. 2081 * It is important to search the prio_tree before nonlinear list: a vma 2082 * may become nonlinear and be shifted from prio_tree to nonlinear list 2083 * while the lock is dropped; but never shifted from list to prio_tree. 2084 * 2085 * In order to make forward progress despite restarting the search, 2086 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2087 * quickly skip it next time around. Since the prio_tree search only 2088 * shows us those vmas affected by unmapping the range in question, we 2089 * can't efficiently keep all vmas in step with mapping->truncate_count: 2090 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2091 * mapping->truncate_count and vma->vm_truncate_count are protected by 2092 * i_mmap_lock. 2093 * 2094 * In order to make forward progress despite repeatedly restarting some 2095 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2096 * and restart from that address when we reach that vma again. It might 2097 * have been split or merged, shrunk or extended, but never shifted: so 2098 * restart_addr remains valid so long as it remains in the vma's range. 2099 * unmap_mapping_range forces truncate_count to leap over page-aligned 2100 * values so we can save vma's restart_addr in its truncate_count field. 2101 */ 2102 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2103 2104 static void reset_vma_truncate_counts(struct address_space *mapping) 2105 { 2106 struct vm_area_struct *vma; 2107 struct prio_tree_iter iter; 2108 2109 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2110 vma->vm_truncate_count = 0; 2111 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2112 vma->vm_truncate_count = 0; 2113 } 2114 2115 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2116 unsigned long start_addr, unsigned long end_addr, 2117 struct zap_details *details) 2118 { 2119 unsigned long restart_addr; 2120 int need_break; 2121 2122 /* 2123 * files that support invalidating or truncating portions of the 2124 * file from under mmaped areas must have their ->fault function 2125 * return a locked page (and set VM_FAULT_LOCKED in the return). 2126 * This provides synchronisation against concurrent unmapping here. 2127 */ 2128 2129 again: 2130 restart_addr = vma->vm_truncate_count; 2131 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2132 start_addr = restart_addr; 2133 if (start_addr >= end_addr) { 2134 /* Top of vma has been split off since last time */ 2135 vma->vm_truncate_count = details->truncate_count; 2136 return 0; 2137 } 2138 } 2139 2140 restart_addr = zap_page_range(vma, start_addr, 2141 end_addr - start_addr, details); 2142 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2143 2144 if (restart_addr >= end_addr) { 2145 /* We have now completed this vma: mark it so */ 2146 vma->vm_truncate_count = details->truncate_count; 2147 if (!need_break) 2148 return 0; 2149 } else { 2150 /* Note restart_addr in vma's truncate_count field */ 2151 vma->vm_truncate_count = restart_addr; 2152 if (!need_break) 2153 goto again; 2154 } 2155 2156 spin_unlock(details->i_mmap_lock); 2157 cond_resched(); 2158 spin_lock(details->i_mmap_lock); 2159 return -EINTR; 2160 } 2161 2162 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2163 struct zap_details *details) 2164 { 2165 struct vm_area_struct *vma; 2166 struct prio_tree_iter iter; 2167 pgoff_t vba, vea, zba, zea; 2168 2169 restart: 2170 vma_prio_tree_foreach(vma, &iter, root, 2171 details->first_index, details->last_index) { 2172 /* Skip quickly over those we have already dealt with */ 2173 if (vma->vm_truncate_count == details->truncate_count) 2174 continue; 2175 2176 vba = vma->vm_pgoff; 2177 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2178 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2179 zba = details->first_index; 2180 if (zba < vba) 2181 zba = vba; 2182 zea = details->last_index; 2183 if (zea > vea) 2184 zea = vea; 2185 2186 if (unmap_mapping_range_vma(vma, 2187 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2188 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2189 details) < 0) 2190 goto restart; 2191 } 2192 } 2193 2194 static inline void unmap_mapping_range_list(struct list_head *head, 2195 struct zap_details *details) 2196 { 2197 struct vm_area_struct *vma; 2198 2199 /* 2200 * In nonlinear VMAs there is no correspondence between virtual address 2201 * offset and file offset. So we must perform an exhaustive search 2202 * across *all* the pages in each nonlinear VMA, not just the pages 2203 * whose virtual address lies outside the file truncation point. 2204 */ 2205 restart: 2206 list_for_each_entry(vma, head, shared.vm_set.list) { 2207 /* Skip quickly over those we have already dealt with */ 2208 if (vma->vm_truncate_count == details->truncate_count) 2209 continue; 2210 details->nonlinear_vma = vma; 2211 if (unmap_mapping_range_vma(vma, vma->vm_start, 2212 vma->vm_end, details) < 0) 2213 goto restart; 2214 } 2215 } 2216 2217 /** 2218 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2219 * @mapping: the address space containing mmaps to be unmapped. 2220 * @holebegin: byte in first page to unmap, relative to the start of 2221 * the underlying file. This will be rounded down to a PAGE_SIZE 2222 * boundary. Note that this is different from vmtruncate(), which 2223 * must keep the partial page. In contrast, we must get rid of 2224 * partial pages. 2225 * @holelen: size of prospective hole in bytes. This will be rounded 2226 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2227 * end of the file. 2228 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2229 * but 0 when invalidating pagecache, don't throw away private data. 2230 */ 2231 void unmap_mapping_range(struct address_space *mapping, 2232 loff_t const holebegin, loff_t const holelen, int even_cows) 2233 { 2234 struct zap_details details; 2235 pgoff_t hba = holebegin >> PAGE_SHIFT; 2236 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2237 2238 /* Check for overflow. */ 2239 if (sizeof(holelen) > sizeof(hlen)) { 2240 long long holeend = 2241 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2242 if (holeend & ~(long long)ULONG_MAX) 2243 hlen = ULONG_MAX - hba + 1; 2244 } 2245 2246 details.check_mapping = even_cows? NULL: mapping; 2247 details.nonlinear_vma = NULL; 2248 details.first_index = hba; 2249 details.last_index = hba + hlen - 1; 2250 if (details.last_index < details.first_index) 2251 details.last_index = ULONG_MAX; 2252 details.i_mmap_lock = &mapping->i_mmap_lock; 2253 2254 spin_lock(&mapping->i_mmap_lock); 2255 2256 /* Protect against endless unmapping loops */ 2257 mapping->truncate_count++; 2258 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2259 if (mapping->truncate_count == 0) 2260 reset_vma_truncate_counts(mapping); 2261 mapping->truncate_count++; 2262 } 2263 details.truncate_count = mapping->truncate_count; 2264 2265 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2266 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2267 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2268 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2269 spin_unlock(&mapping->i_mmap_lock); 2270 } 2271 EXPORT_SYMBOL(unmap_mapping_range); 2272 2273 /** 2274 * vmtruncate - unmap mappings "freed" by truncate() syscall 2275 * @inode: inode of the file used 2276 * @offset: file offset to start truncating 2277 * 2278 * NOTE! We have to be ready to update the memory sharing 2279 * between the file and the memory map for a potential last 2280 * incomplete page. Ugly, but necessary. 2281 */ 2282 int vmtruncate(struct inode * inode, loff_t offset) 2283 { 2284 if (inode->i_size < offset) { 2285 unsigned long limit; 2286 2287 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2288 if (limit != RLIM_INFINITY && offset > limit) 2289 goto out_sig; 2290 if (offset > inode->i_sb->s_maxbytes) 2291 goto out_big; 2292 i_size_write(inode, offset); 2293 } else { 2294 struct address_space *mapping = inode->i_mapping; 2295 2296 /* 2297 * truncation of in-use swapfiles is disallowed - it would 2298 * cause subsequent swapout to scribble on the now-freed 2299 * blocks. 2300 */ 2301 if (IS_SWAPFILE(inode)) 2302 return -ETXTBSY; 2303 i_size_write(inode, offset); 2304 2305 /* 2306 * unmap_mapping_range is called twice, first simply for 2307 * efficiency so that truncate_inode_pages does fewer 2308 * single-page unmaps. However after this first call, and 2309 * before truncate_inode_pages finishes, it is possible for 2310 * private pages to be COWed, which remain after 2311 * truncate_inode_pages finishes, hence the second 2312 * unmap_mapping_range call must be made for correctness. 2313 */ 2314 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2315 truncate_inode_pages(mapping, offset); 2316 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2317 } 2318 2319 if (inode->i_op->truncate) 2320 inode->i_op->truncate(inode); 2321 return 0; 2322 2323 out_sig: 2324 send_sig(SIGXFSZ, current, 0); 2325 out_big: 2326 return -EFBIG; 2327 } 2328 EXPORT_SYMBOL(vmtruncate); 2329 2330 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2331 { 2332 struct address_space *mapping = inode->i_mapping; 2333 2334 /* 2335 * If the underlying filesystem is not going to provide 2336 * a way to truncate a range of blocks (punch a hole) - 2337 * we should return failure right now. 2338 */ 2339 if (!inode->i_op->truncate_range) 2340 return -ENOSYS; 2341 2342 mutex_lock(&inode->i_mutex); 2343 down_write(&inode->i_alloc_sem); 2344 unmap_mapping_range(mapping, offset, (end - offset), 1); 2345 truncate_inode_pages_range(mapping, offset, end); 2346 unmap_mapping_range(mapping, offset, (end - offset), 1); 2347 inode->i_op->truncate_range(inode, offset, end); 2348 up_write(&inode->i_alloc_sem); 2349 mutex_unlock(&inode->i_mutex); 2350 2351 return 0; 2352 } 2353 2354 /* 2355 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2356 * but allow concurrent faults), and pte mapped but not yet locked. 2357 * We return with mmap_sem still held, but pte unmapped and unlocked. 2358 */ 2359 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2360 unsigned long address, pte_t *page_table, pmd_t *pmd, 2361 int write_access, pte_t orig_pte) 2362 { 2363 spinlock_t *ptl; 2364 struct page *page; 2365 swp_entry_t entry; 2366 pte_t pte; 2367 int ret = 0; 2368 2369 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2370 goto out; 2371 2372 entry = pte_to_swp_entry(orig_pte); 2373 if (is_migration_entry(entry)) { 2374 migration_entry_wait(mm, pmd, address); 2375 goto out; 2376 } 2377 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2378 page = lookup_swap_cache(entry); 2379 if (!page) { 2380 grab_swap_token(); /* Contend for token _before_ read-in */ 2381 page = swapin_readahead(entry, 2382 GFP_HIGHUSER_MOVABLE, vma, address); 2383 if (!page) { 2384 /* 2385 * Back out if somebody else faulted in this pte 2386 * while we released the pte lock. 2387 */ 2388 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2389 if (likely(pte_same(*page_table, orig_pte))) 2390 ret = VM_FAULT_OOM; 2391 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2392 goto unlock; 2393 } 2394 2395 /* Had to read the page from swap area: Major fault */ 2396 ret = VM_FAULT_MAJOR; 2397 count_vm_event(PGMAJFAULT); 2398 } 2399 2400 mark_page_accessed(page); 2401 2402 lock_page(page); 2403 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2404 2405 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2406 ret = VM_FAULT_OOM; 2407 unlock_page(page); 2408 goto out; 2409 } 2410 2411 /* 2412 * Back out if somebody else already faulted in this pte. 2413 */ 2414 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2415 if (unlikely(!pte_same(*page_table, orig_pte))) 2416 goto out_nomap; 2417 2418 if (unlikely(!PageUptodate(page))) { 2419 ret = VM_FAULT_SIGBUS; 2420 goto out_nomap; 2421 } 2422 2423 /* The page isn't present yet, go ahead with the fault. */ 2424 2425 inc_mm_counter(mm, anon_rss); 2426 pte = mk_pte(page, vma->vm_page_prot); 2427 if (write_access && reuse_swap_page(page)) { 2428 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2429 write_access = 0; 2430 } 2431 2432 flush_icache_page(vma, page); 2433 set_pte_at(mm, address, page_table, pte); 2434 page_add_anon_rmap(page, vma, address); 2435 2436 swap_free(entry); 2437 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2438 try_to_free_swap(page); 2439 unlock_page(page); 2440 2441 if (write_access) { 2442 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2443 if (ret & VM_FAULT_ERROR) 2444 ret &= VM_FAULT_ERROR; 2445 goto out; 2446 } 2447 2448 /* No need to invalidate - it was non-present before */ 2449 update_mmu_cache(vma, address, pte); 2450 unlock: 2451 pte_unmap_unlock(page_table, ptl); 2452 out: 2453 return ret; 2454 out_nomap: 2455 mem_cgroup_uncharge_page(page); 2456 pte_unmap_unlock(page_table, ptl); 2457 unlock_page(page); 2458 page_cache_release(page); 2459 return ret; 2460 } 2461 2462 /* 2463 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2464 * but allow concurrent faults), and pte mapped but not yet locked. 2465 * We return with mmap_sem still held, but pte unmapped and unlocked. 2466 */ 2467 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2468 unsigned long address, pte_t *page_table, pmd_t *pmd, 2469 int write_access) 2470 { 2471 struct page *page; 2472 spinlock_t *ptl; 2473 pte_t entry; 2474 2475 /* Allocate our own private page. */ 2476 pte_unmap(page_table); 2477 2478 if (unlikely(anon_vma_prepare(vma))) 2479 goto oom; 2480 page = alloc_zeroed_user_highpage_movable(vma, address); 2481 if (!page) 2482 goto oom; 2483 __SetPageUptodate(page); 2484 2485 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2486 goto oom_free_page; 2487 2488 entry = mk_pte(page, vma->vm_page_prot); 2489 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2490 2491 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2492 if (!pte_none(*page_table)) 2493 goto release; 2494 inc_mm_counter(mm, anon_rss); 2495 page_add_new_anon_rmap(page, vma, address); 2496 set_pte_at(mm, address, page_table, entry); 2497 2498 /* No need to invalidate - it was non-present before */ 2499 update_mmu_cache(vma, address, entry); 2500 unlock: 2501 pte_unmap_unlock(page_table, ptl); 2502 return 0; 2503 release: 2504 mem_cgroup_uncharge_page(page); 2505 page_cache_release(page); 2506 goto unlock; 2507 oom_free_page: 2508 page_cache_release(page); 2509 oom: 2510 return VM_FAULT_OOM; 2511 } 2512 2513 /* 2514 * __do_fault() tries to create a new page mapping. It aggressively 2515 * tries to share with existing pages, but makes a separate copy if 2516 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2517 * the next page fault. 2518 * 2519 * As this is called only for pages that do not currently exist, we 2520 * do not need to flush old virtual caches or the TLB. 2521 * 2522 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2523 * but allow concurrent faults), and pte neither mapped nor locked. 2524 * We return with mmap_sem still held, but pte unmapped and unlocked. 2525 */ 2526 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2527 unsigned long address, pmd_t *pmd, 2528 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2529 { 2530 pte_t *page_table; 2531 spinlock_t *ptl; 2532 struct page *page; 2533 pte_t entry; 2534 int anon = 0; 2535 int charged = 0; 2536 struct page *dirty_page = NULL; 2537 struct vm_fault vmf; 2538 int ret; 2539 int page_mkwrite = 0; 2540 2541 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2542 vmf.pgoff = pgoff; 2543 vmf.flags = flags; 2544 vmf.page = NULL; 2545 2546 ret = vma->vm_ops->fault(vma, &vmf); 2547 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2548 return ret; 2549 2550 /* 2551 * For consistency in subsequent calls, make the faulted page always 2552 * locked. 2553 */ 2554 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2555 lock_page(vmf.page); 2556 else 2557 VM_BUG_ON(!PageLocked(vmf.page)); 2558 2559 /* 2560 * Should we do an early C-O-W break? 2561 */ 2562 page = vmf.page; 2563 if (flags & FAULT_FLAG_WRITE) { 2564 if (!(vma->vm_flags & VM_SHARED)) { 2565 anon = 1; 2566 if (unlikely(anon_vma_prepare(vma))) { 2567 ret = VM_FAULT_OOM; 2568 goto out; 2569 } 2570 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2571 vma, address); 2572 if (!page) { 2573 ret = VM_FAULT_OOM; 2574 goto out; 2575 } 2576 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2577 ret = VM_FAULT_OOM; 2578 page_cache_release(page); 2579 goto out; 2580 } 2581 charged = 1; 2582 /* 2583 * Don't let another task, with possibly unlocked vma, 2584 * keep the mlocked page. 2585 */ 2586 if (vma->vm_flags & VM_LOCKED) 2587 clear_page_mlock(vmf.page); 2588 copy_user_highpage(page, vmf.page, address, vma); 2589 __SetPageUptodate(page); 2590 } else { 2591 /* 2592 * If the page will be shareable, see if the backing 2593 * address space wants to know that the page is about 2594 * to become writable 2595 */ 2596 if (vma->vm_ops->page_mkwrite) { 2597 unlock_page(page); 2598 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2599 ret = VM_FAULT_SIGBUS; 2600 anon = 1; /* no anon but release vmf.page */ 2601 goto out_unlocked; 2602 } 2603 lock_page(page); 2604 /* 2605 * XXX: this is not quite right (racy vs 2606 * invalidate) to unlock and relock the page 2607 * like this, however a better fix requires 2608 * reworking page_mkwrite locking API, which 2609 * is better done later. 2610 */ 2611 if (!page->mapping) { 2612 ret = 0; 2613 anon = 1; /* no anon but release vmf.page */ 2614 goto out; 2615 } 2616 page_mkwrite = 1; 2617 } 2618 } 2619 2620 } 2621 2622 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2623 2624 /* 2625 * This silly early PAGE_DIRTY setting removes a race 2626 * due to the bad i386 page protection. But it's valid 2627 * for other architectures too. 2628 * 2629 * Note that if write_access is true, we either now have 2630 * an exclusive copy of the page, or this is a shared mapping, 2631 * so we can make it writable and dirty to avoid having to 2632 * handle that later. 2633 */ 2634 /* Only go through if we didn't race with anybody else... */ 2635 if (likely(pte_same(*page_table, orig_pte))) { 2636 flush_icache_page(vma, page); 2637 entry = mk_pte(page, vma->vm_page_prot); 2638 if (flags & FAULT_FLAG_WRITE) 2639 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2640 if (anon) { 2641 inc_mm_counter(mm, anon_rss); 2642 page_add_new_anon_rmap(page, vma, address); 2643 } else { 2644 inc_mm_counter(mm, file_rss); 2645 page_add_file_rmap(page); 2646 if (flags & FAULT_FLAG_WRITE) { 2647 dirty_page = page; 2648 get_page(dirty_page); 2649 } 2650 } 2651 set_pte_at(mm, address, page_table, entry); 2652 2653 /* no need to invalidate: a not-present page won't be cached */ 2654 update_mmu_cache(vma, address, entry); 2655 } else { 2656 if (charged) 2657 mem_cgroup_uncharge_page(page); 2658 if (anon) 2659 page_cache_release(page); 2660 else 2661 anon = 1; /* no anon but release faulted_page */ 2662 } 2663 2664 pte_unmap_unlock(page_table, ptl); 2665 2666 out: 2667 unlock_page(vmf.page); 2668 out_unlocked: 2669 if (anon) 2670 page_cache_release(vmf.page); 2671 else if (dirty_page) { 2672 if (vma->vm_file) 2673 file_update_time(vma->vm_file); 2674 2675 set_page_dirty_balance(dirty_page, page_mkwrite); 2676 put_page(dirty_page); 2677 } 2678 2679 return ret; 2680 } 2681 2682 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2683 unsigned long address, pte_t *page_table, pmd_t *pmd, 2684 int write_access, pte_t orig_pte) 2685 { 2686 pgoff_t pgoff = (((address & PAGE_MASK) 2687 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2688 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2689 2690 pte_unmap(page_table); 2691 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2692 } 2693 2694 /* 2695 * Fault of a previously existing named mapping. Repopulate the pte 2696 * from the encoded file_pte if possible. This enables swappable 2697 * nonlinear vmas. 2698 * 2699 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2700 * but allow concurrent faults), and pte mapped but not yet locked. 2701 * We return with mmap_sem still held, but pte unmapped and unlocked. 2702 */ 2703 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2704 unsigned long address, pte_t *page_table, pmd_t *pmd, 2705 int write_access, pte_t orig_pte) 2706 { 2707 unsigned int flags = FAULT_FLAG_NONLINEAR | 2708 (write_access ? FAULT_FLAG_WRITE : 0); 2709 pgoff_t pgoff; 2710 2711 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2712 return 0; 2713 2714 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2715 /* 2716 * Page table corrupted: show pte and kill process. 2717 */ 2718 print_bad_pte(vma, address, orig_pte, NULL); 2719 return VM_FAULT_OOM; 2720 } 2721 2722 pgoff = pte_to_pgoff(orig_pte); 2723 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2724 } 2725 2726 /* 2727 * These routines also need to handle stuff like marking pages dirty 2728 * and/or accessed for architectures that don't do it in hardware (most 2729 * RISC architectures). The early dirtying is also good on the i386. 2730 * 2731 * There is also a hook called "update_mmu_cache()" that architectures 2732 * with external mmu caches can use to update those (ie the Sparc or 2733 * PowerPC hashed page tables that act as extended TLBs). 2734 * 2735 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2736 * but allow concurrent faults), and pte mapped but not yet locked. 2737 * We return with mmap_sem still held, but pte unmapped and unlocked. 2738 */ 2739 static inline int handle_pte_fault(struct mm_struct *mm, 2740 struct vm_area_struct *vma, unsigned long address, 2741 pte_t *pte, pmd_t *pmd, int write_access) 2742 { 2743 pte_t entry; 2744 spinlock_t *ptl; 2745 2746 entry = *pte; 2747 if (!pte_present(entry)) { 2748 if (pte_none(entry)) { 2749 if (vma->vm_ops) { 2750 if (likely(vma->vm_ops->fault)) 2751 return do_linear_fault(mm, vma, address, 2752 pte, pmd, write_access, entry); 2753 } 2754 return do_anonymous_page(mm, vma, address, 2755 pte, pmd, write_access); 2756 } 2757 if (pte_file(entry)) 2758 return do_nonlinear_fault(mm, vma, address, 2759 pte, pmd, write_access, entry); 2760 return do_swap_page(mm, vma, address, 2761 pte, pmd, write_access, entry); 2762 } 2763 2764 ptl = pte_lockptr(mm, pmd); 2765 spin_lock(ptl); 2766 if (unlikely(!pte_same(*pte, entry))) 2767 goto unlock; 2768 if (write_access) { 2769 if (!pte_write(entry)) 2770 return do_wp_page(mm, vma, address, 2771 pte, pmd, ptl, entry); 2772 entry = pte_mkdirty(entry); 2773 } 2774 entry = pte_mkyoung(entry); 2775 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2776 update_mmu_cache(vma, address, entry); 2777 } else { 2778 /* 2779 * This is needed only for protection faults but the arch code 2780 * is not yet telling us if this is a protection fault or not. 2781 * This still avoids useless tlb flushes for .text page faults 2782 * with threads. 2783 */ 2784 if (write_access) 2785 flush_tlb_page(vma, address); 2786 } 2787 unlock: 2788 pte_unmap_unlock(pte, ptl); 2789 return 0; 2790 } 2791 2792 /* 2793 * By the time we get here, we already hold the mm semaphore 2794 */ 2795 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2796 unsigned long address, int write_access) 2797 { 2798 pgd_t *pgd; 2799 pud_t *pud; 2800 pmd_t *pmd; 2801 pte_t *pte; 2802 2803 __set_current_state(TASK_RUNNING); 2804 2805 count_vm_event(PGFAULT); 2806 2807 if (unlikely(is_vm_hugetlb_page(vma))) 2808 return hugetlb_fault(mm, vma, address, write_access); 2809 2810 pgd = pgd_offset(mm, address); 2811 pud = pud_alloc(mm, pgd, address); 2812 if (!pud) 2813 return VM_FAULT_OOM; 2814 pmd = pmd_alloc(mm, pud, address); 2815 if (!pmd) 2816 return VM_FAULT_OOM; 2817 pte = pte_alloc_map(mm, pmd, address); 2818 if (!pte) 2819 return VM_FAULT_OOM; 2820 2821 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2822 } 2823 2824 #ifndef __PAGETABLE_PUD_FOLDED 2825 /* 2826 * Allocate page upper directory. 2827 * We've already handled the fast-path in-line. 2828 */ 2829 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2830 { 2831 pud_t *new = pud_alloc_one(mm, address); 2832 if (!new) 2833 return -ENOMEM; 2834 2835 smp_wmb(); /* See comment in __pte_alloc */ 2836 2837 spin_lock(&mm->page_table_lock); 2838 if (pgd_present(*pgd)) /* Another has populated it */ 2839 pud_free(mm, new); 2840 else 2841 pgd_populate(mm, pgd, new); 2842 spin_unlock(&mm->page_table_lock); 2843 return 0; 2844 } 2845 #endif /* __PAGETABLE_PUD_FOLDED */ 2846 2847 #ifndef __PAGETABLE_PMD_FOLDED 2848 /* 2849 * Allocate page middle directory. 2850 * We've already handled the fast-path in-line. 2851 */ 2852 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2853 { 2854 pmd_t *new = pmd_alloc_one(mm, address); 2855 if (!new) 2856 return -ENOMEM; 2857 2858 smp_wmb(); /* See comment in __pte_alloc */ 2859 2860 spin_lock(&mm->page_table_lock); 2861 #ifndef __ARCH_HAS_4LEVEL_HACK 2862 if (pud_present(*pud)) /* Another has populated it */ 2863 pmd_free(mm, new); 2864 else 2865 pud_populate(mm, pud, new); 2866 #else 2867 if (pgd_present(*pud)) /* Another has populated it */ 2868 pmd_free(mm, new); 2869 else 2870 pgd_populate(mm, pud, new); 2871 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2872 spin_unlock(&mm->page_table_lock); 2873 return 0; 2874 } 2875 #endif /* __PAGETABLE_PMD_FOLDED */ 2876 2877 int make_pages_present(unsigned long addr, unsigned long end) 2878 { 2879 int ret, len, write; 2880 struct vm_area_struct * vma; 2881 2882 vma = find_vma(current->mm, addr); 2883 if (!vma) 2884 return -ENOMEM; 2885 write = (vma->vm_flags & VM_WRITE) != 0; 2886 BUG_ON(addr >= end); 2887 BUG_ON(end > vma->vm_end); 2888 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2889 ret = get_user_pages(current, current->mm, addr, 2890 len, write, 0, NULL, NULL); 2891 if (ret < 0) 2892 return ret; 2893 return ret == len ? 0 : -EFAULT; 2894 } 2895 2896 #if !defined(__HAVE_ARCH_GATE_AREA) 2897 2898 #if defined(AT_SYSINFO_EHDR) 2899 static struct vm_area_struct gate_vma; 2900 2901 static int __init gate_vma_init(void) 2902 { 2903 gate_vma.vm_mm = NULL; 2904 gate_vma.vm_start = FIXADDR_USER_START; 2905 gate_vma.vm_end = FIXADDR_USER_END; 2906 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2907 gate_vma.vm_page_prot = __P101; 2908 /* 2909 * Make sure the vDSO gets into every core dump. 2910 * Dumping its contents makes post-mortem fully interpretable later 2911 * without matching up the same kernel and hardware config to see 2912 * what PC values meant. 2913 */ 2914 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2915 return 0; 2916 } 2917 __initcall(gate_vma_init); 2918 #endif 2919 2920 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2921 { 2922 #ifdef AT_SYSINFO_EHDR 2923 return &gate_vma; 2924 #else 2925 return NULL; 2926 #endif 2927 } 2928 2929 int in_gate_area_no_task(unsigned long addr) 2930 { 2931 #ifdef AT_SYSINFO_EHDR 2932 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2933 return 1; 2934 #endif 2935 return 0; 2936 } 2937 2938 #endif /* __HAVE_ARCH_GATE_AREA */ 2939 2940 #ifdef CONFIG_HAVE_IOREMAP_PROT 2941 int follow_phys(struct vm_area_struct *vma, 2942 unsigned long address, unsigned int flags, 2943 unsigned long *prot, resource_size_t *phys) 2944 { 2945 pgd_t *pgd; 2946 pud_t *pud; 2947 pmd_t *pmd; 2948 pte_t *ptep, pte; 2949 spinlock_t *ptl; 2950 resource_size_t phys_addr = 0; 2951 struct mm_struct *mm = vma->vm_mm; 2952 int ret = -EINVAL; 2953 2954 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 2955 goto out; 2956 2957 pgd = pgd_offset(mm, address); 2958 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 2959 goto out; 2960 2961 pud = pud_offset(pgd, address); 2962 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 2963 goto out; 2964 2965 pmd = pmd_offset(pud, address); 2966 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 2967 goto out; 2968 2969 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 2970 if (pmd_huge(*pmd)) 2971 goto out; 2972 2973 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 2974 if (!ptep) 2975 goto out; 2976 2977 pte = *ptep; 2978 if (!pte_present(pte)) 2979 goto unlock; 2980 if ((flags & FOLL_WRITE) && !pte_write(pte)) 2981 goto unlock; 2982 phys_addr = pte_pfn(pte); 2983 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ 2984 2985 *prot = pgprot_val(pte_pgprot(pte)); 2986 *phys = phys_addr; 2987 ret = 0; 2988 2989 unlock: 2990 pte_unmap_unlock(ptep, ptl); 2991 out: 2992 return ret; 2993 } 2994 2995 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2996 void *buf, int len, int write) 2997 { 2998 resource_size_t phys_addr; 2999 unsigned long prot = 0; 3000 void __iomem *maddr; 3001 int offset = addr & (PAGE_SIZE-1); 3002 3003 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3004 return -EINVAL; 3005 3006 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3007 if (write) 3008 memcpy_toio(maddr + offset, buf, len); 3009 else 3010 memcpy_fromio(buf, maddr + offset, len); 3011 iounmap(maddr); 3012 3013 return len; 3014 } 3015 #endif 3016 3017 /* 3018 * Access another process' address space. 3019 * Source/target buffer must be kernel space, 3020 * Do not walk the page table directly, use get_user_pages 3021 */ 3022 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3023 { 3024 struct mm_struct *mm; 3025 struct vm_area_struct *vma; 3026 void *old_buf = buf; 3027 3028 mm = get_task_mm(tsk); 3029 if (!mm) 3030 return 0; 3031 3032 down_read(&mm->mmap_sem); 3033 /* ignore errors, just check how much was successfully transferred */ 3034 while (len) { 3035 int bytes, ret, offset; 3036 void *maddr; 3037 struct page *page = NULL; 3038 3039 ret = get_user_pages(tsk, mm, addr, 1, 3040 write, 1, &page, &vma); 3041 if (ret <= 0) { 3042 /* 3043 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3044 * we can access using slightly different code. 3045 */ 3046 #ifdef CONFIG_HAVE_IOREMAP_PROT 3047 vma = find_vma(mm, addr); 3048 if (!vma) 3049 break; 3050 if (vma->vm_ops && vma->vm_ops->access) 3051 ret = vma->vm_ops->access(vma, addr, buf, 3052 len, write); 3053 if (ret <= 0) 3054 #endif 3055 break; 3056 bytes = ret; 3057 } else { 3058 bytes = len; 3059 offset = addr & (PAGE_SIZE-1); 3060 if (bytes > PAGE_SIZE-offset) 3061 bytes = PAGE_SIZE-offset; 3062 3063 maddr = kmap(page); 3064 if (write) { 3065 copy_to_user_page(vma, page, addr, 3066 maddr + offset, buf, bytes); 3067 set_page_dirty_lock(page); 3068 } else { 3069 copy_from_user_page(vma, page, addr, 3070 buf, maddr + offset, bytes); 3071 } 3072 kunmap(page); 3073 page_cache_release(page); 3074 } 3075 len -= bytes; 3076 buf += bytes; 3077 addr += bytes; 3078 } 3079 up_read(&mm->mmap_sem); 3080 mmput(mm); 3081 3082 return buf - old_buf; 3083 } 3084 3085 /* 3086 * Print the name of a VMA. 3087 */ 3088 void print_vma_addr(char *prefix, unsigned long ip) 3089 { 3090 struct mm_struct *mm = current->mm; 3091 struct vm_area_struct *vma; 3092 3093 /* 3094 * Do not print if we are in atomic 3095 * contexts (in exception stacks, etc.): 3096 */ 3097 if (preempt_count()) 3098 return; 3099 3100 down_read(&mm->mmap_sem); 3101 vma = find_vma(mm, ip); 3102 if (vma && vma->vm_file) { 3103 struct file *f = vma->vm_file; 3104 char *buf = (char *)__get_free_page(GFP_KERNEL); 3105 if (buf) { 3106 char *p, *s; 3107 3108 p = d_path(&f->f_path, buf, PAGE_SIZE); 3109 if (IS_ERR(p)) 3110 p = "?"; 3111 s = strrchr(p, '/'); 3112 if (s) 3113 p = s+1; 3114 printk("%s%s[%lx+%lx]", prefix, p, 3115 vma->vm_start, 3116 vma->vm_end - vma->vm_start); 3117 free_page((unsigned long)buf); 3118 } 3119 } 3120 up_read(¤t->mm->mmap_sem); 3121 } 3122 3123 #ifdef CONFIG_PROVE_LOCKING 3124 void might_fault(void) 3125 { 3126 might_sleep(); 3127 /* 3128 * it would be nicer only to annotate paths which are not under 3129 * pagefault_disable, however that requires a larger audit and 3130 * providing helpers like get_user_atomic. 3131 */ 3132 if (!in_atomic() && current->mm) 3133 might_lock_read(¤t->mm->mmap_sem); 3134 } 3135 EXPORT_SYMBOL(might_fault); 3136 #endif 3137