xref: /openbmc/linux/mm/memory.c (revision 2509ef26db4699a5d9fa876e90ddfc107afcab84)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58 
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 			  pte_t pte, struct page *page)
380 {
381 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 	pud_t *pud = pud_offset(pgd, addr);
383 	pmd_t *pmd = pmd_offset(pud, addr);
384 	struct address_space *mapping;
385 	pgoff_t index;
386 
387 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
388 	index = linear_page_index(vma, addr);
389 
390 	printk(KERN_EMERG "Bad page map in process %s  pte:%08llx pmd:%08llx\n",
391 		current->comm,
392 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
393 	if (page) {
394 		printk(KERN_EMERG
395 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
396 		page, (void *)page->flags, page_count(page),
397 		page_mapcount(page), page->mapping, page->index);
398 	}
399 	printk(KERN_EMERG
400 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
401 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
402 	/*
403 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
404 	 */
405 	if (vma->vm_ops)
406 		print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n",
407 				(unsigned long)vma->vm_ops->fault);
408 	if (vma->vm_file && vma->vm_file->f_op)
409 		print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n",
410 				(unsigned long)vma->vm_file->f_op->mmap);
411 	dump_stack();
412 	add_taint(TAINT_BAD_PAGE);
413 }
414 
415 static inline int is_cow_mapping(unsigned int flags)
416 {
417 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
418 }
419 
420 /*
421  * vm_normal_page -- This function gets the "struct page" associated with a pte.
422  *
423  * "Special" mappings do not wish to be associated with a "struct page" (either
424  * it doesn't exist, or it exists but they don't want to touch it). In this
425  * case, NULL is returned here. "Normal" mappings do have a struct page.
426  *
427  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
428  * pte bit, in which case this function is trivial. Secondly, an architecture
429  * may not have a spare pte bit, which requires a more complicated scheme,
430  * described below.
431  *
432  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
433  * special mapping (even if there are underlying and valid "struct pages").
434  * COWed pages of a VM_PFNMAP are always normal.
435  *
436  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
437  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
438  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
439  * mapping will always honor the rule
440  *
441  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
442  *
443  * And for normal mappings this is false.
444  *
445  * This restricts such mappings to be a linear translation from virtual address
446  * to pfn. To get around this restriction, we allow arbitrary mappings so long
447  * as the vma is not a COW mapping; in that case, we know that all ptes are
448  * special (because none can have been COWed).
449  *
450  *
451  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
452  *
453  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
454  * page" backing, however the difference is that _all_ pages with a struct
455  * page (that is, those where pfn_valid is true) are refcounted and considered
456  * normal pages by the VM. The disadvantage is that pages are refcounted
457  * (which can be slower and simply not an option for some PFNMAP users). The
458  * advantage is that we don't have to follow the strict linearity rule of
459  * PFNMAP mappings in order to support COWable mappings.
460  *
461  */
462 #ifdef __HAVE_ARCH_PTE_SPECIAL
463 # define HAVE_PTE_SPECIAL 1
464 #else
465 # define HAVE_PTE_SPECIAL 0
466 #endif
467 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
468 				pte_t pte)
469 {
470 	unsigned long pfn = pte_pfn(pte);
471 
472 	if (HAVE_PTE_SPECIAL) {
473 		if (likely(!pte_special(pte)))
474 			goto check_pfn;
475 		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
476 			print_bad_pte(vma, addr, pte, NULL);
477 		return NULL;
478 	}
479 
480 	/* !HAVE_PTE_SPECIAL case follows: */
481 
482 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
483 		if (vma->vm_flags & VM_MIXEDMAP) {
484 			if (!pfn_valid(pfn))
485 				return NULL;
486 			goto out;
487 		} else {
488 			unsigned long off;
489 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
490 			if (pfn == vma->vm_pgoff + off)
491 				return NULL;
492 			if (!is_cow_mapping(vma->vm_flags))
493 				return NULL;
494 		}
495 	}
496 
497 check_pfn:
498 	if (unlikely(pfn > highest_memmap_pfn)) {
499 		print_bad_pte(vma, addr, pte, NULL);
500 		return NULL;
501 	}
502 
503 	/*
504 	 * NOTE! We still have PageReserved() pages in the page tables.
505 	 * eg. VDSO mappings can cause them to exist.
506 	 */
507 out:
508 	return pfn_to_page(pfn);
509 }
510 
511 /*
512  * copy one vm_area from one task to the other. Assumes the page tables
513  * already present in the new task to be cleared in the whole range
514  * covered by this vma.
515  */
516 
517 static inline void
518 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
519 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
520 		unsigned long addr, int *rss)
521 {
522 	unsigned long vm_flags = vma->vm_flags;
523 	pte_t pte = *src_pte;
524 	struct page *page;
525 
526 	/* pte contains position in swap or file, so copy. */
527 	if (unlikely(!pte_present(pte))) {
528 		if (!pte_file(pte)) {
529 			swp_entry_t entry = pte_to_swp_entry(pte);
530 
531 			swap_duplicate(entry);
532 			/* make sure dst_mm is on swapoff's mmlist. */
533 			if (unlikely(list_empty(&dst_mm->mmlist))) {
534 				spin_lock(&mmlist_lock);
535 				if (list_empty(&dst_mm->mmlist))
536 					list_add(&dst_mm->mmlist,
537 						 &src_mm->mmlist);
538 				spin_unlock(&mmlist_lock);
539 			}
540 			if (is_write_migration_entry(entry) &&
541 					is_cow_mapping(vm_flags)) {
542 				/*
543 				 * COW mappings require pages in both parent
544 				 * and child to be set to read.
545 				 */
546 				make_migration_entry_read(&entry);
547 				pte = swp_entry_to_pte(entry);
548 				set_pte_at(src_mm, addr, src_pte, pte);
549 			}
550 		}
551 		goto out_set_pte;
552 	}
553 
554 	/*
555 	 * If it's a COW mapping, write protect it both
556 	 * in the parent and the child
557 	 */
558 	if (is_cow_mapping(vm_flags)) {
559 		ptep_set_wrprotect(src_mm, addr, src_pte);
560 		pte = pte_wrprotect(pte);
561 	}
562 
563 	/*
564 	 * If it's a shared mapping, mark it clean in
565 	 * the child
566 	 */
567 	if (vm_flags & VM_SHARED)
568 		pte = pte_mkclean(pte);
569 	pte = pte_mkold(pte);
570 
571 	page = vm_normal_page(vma, addr, pte);
572 	if (page) {
573 		get_page(page);
574 		page_dup_rmap(page, vma, addr);
575 		rss[!!PageAnon(page)]++;
576 	}
577 
578 out_set_pte:
579 	set_pte_at(dst_mm, addr, dst_pte, pte);
580 }
581 
582 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
584 		unsigned long addr, unsigned long end)
585 {
586 	pte_t *src_pte, *dst_pte;
587 	spinlock_t *src_ptl, *dst_ptl;
588 	int progress = 0;
589 	int rss[2];
590 
591 again:
592 	rss[1] = rss[0] = 0;
593 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
594 	if (!dst_pte)
595 		return -ENOMEM;
596 	src_pte = pte_offset_map_nested(src_pmd, addr);
597 	src_ptl = pte_lockptr(src_mm, src_pmd);
598 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
599 	arch_enter_lazy_mmu_mode();
600 
601 	do {
602 		/*
603 		 * We are holding two locks at this point - either of them
604 		 * could generate latencies in another task on another CPU.
605 		 */
606 		if (progress >= 32) {
607 			progress = 0;
608 			if (need_resched() ||
609 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
610 				break;
611 		}
612 		if (pte_none(*src_pte)) {
613 			progress++;
614 			continue;
615 		}
616 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
617 		progress += 8;
618 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
619 
620 	arch_leave_lazy_mmu_mode();
621 	spin_unlock(src_ptl);
622 	pte_unmap_nested(src_pte - 1);
623 	add_mm_rss(dst_mm, rss[0], rss[1]);
624 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
625 	cond_resched();
626 	if (addr != end)
627 		goto again;
628 	return 0;
629 }
630 
631 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
632 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
633 		unsigned long addr, unsigned long end)
634 {
635 	pmd_t *src_pmd, *dst_pmd;
636 	unsigned long next;
637 
638 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
639 	if (!dst_pmd)
640 		return -ENOMEM;
641 	src_pmd = pmd_offset(src_pud, addr);
642 	do {
643 		next = pmd_addr_end(addr, end);
644 		if (pmd_none_or_clear_bad(src_pmd))
645 			continue;
646 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
647 						vma, addr, next))
648 			return -ENOMEM;
649 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
650 	return 0;
651 }
652 
653 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
654 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
655 		unsigned long addr, unsigned long end)
656 {
657 	pud_t *src_pud, *dst_pud;
658 	unsigned long next;
659 
660 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
661 	if (!dst_pud)
662 		return -ENOMEM;
663 	src_pud = pud_offset(src_pgd, addr);
664 	do {
665 		next = pud_addr_end(addr, end);
666 		if (pud_none_or_clear_bad(src_pud))
667 			continue;
668 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
669 						vma, addr, next))
670 			return -ENOMEM;
671 	} while (dst_pud++, src_pud++, addr = next, addr != end);
672 	return 0;
673 }
674 
675 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
676 		struct vm_area_struct *vma)
677 {
678 	pgd_t *src_pgd, *dst_pgd;
679 	unsigned long next;
680 	unsigned long addr = vma->vm_start;
681 	unsigned long end = vma->vm_end;
682 	int ret;
683 
684 	/*
685 	 * Don't copy ptes where a page fault will fill them correctly.
686 	 * Fork becomes much lighter when there are big shared or private
687 	 * readonly mappings. The tradeoff is that copy_page_range is more
688 	 * efficient than faulting.
689 	 */
690 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
691 		if (!vma->anon_vma)
692 			return 0;
693 	}
694 
695 	if (is_vm_hugetlb_page(vma))
696 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
697 
698 	if (unlikely(is_pfn_mapping(vma))) {
699 		/*
700 		 * We do not free on error cases below as remove_vma
701 		 * gets called on error from higher level routine
702 		 */
703 		ret = track_pfn_vma_copy(vma);
704 		if (ret)
705 			return ret;
706 	}
707 
708 	/*
709 	 * We need to invalidate the secondary MMU mappings only when
710 	 * there could be a permission downgrade on the ptes of the
711 	 * parent mm. And a permission downgrade will only happen if
712 	 * is_cow_mapping() returns true.
713 	 */
714 	if (is_cow_mapping(vma->vm_flags))
715 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
716 
717 	ret = 0;
718 	dst_pgd = pgd_offset(dst_mm, addr);
719 	src_pgd = pgd_offset(src_mm, addr);
720 	do {
721 		next = pgd_addr_end(addr, end);
722 		if (pgd_none_or_clear_bad(src_pgd))
723 			continue;
724 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
725 					    vma, addr, next))) {
726 			ret = -ENOMEM;
727 			break;
728 		}
729 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
730 
731 	if (is_cow_mapping(vma->vm_flags))
732 		mmu_notifier_invalidate_range_end(src_mm,
733 						  vma->vm_start, end);
734 	return ret;
735 }
736 
737 static unsigned long zap_pte_range(struct mmu_gather *tlb,
738 				struct vm_area_struct *vma, pmd_t *pmd,
739 				unsigned long addr, unsigned long end,
740 				long *zap_work, struct zap_details *details)
741 {
742 	struct mm_struct *mm = tlb->mm;
743 	pte_t *pte;
744 	spinlock_t *ptl;
745 	int file_rss = 0;
746 	int anon_rss = 0;
747 
748 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
749 	arch_enter_lazy_mmu_mode();
750 	do {
751 		pte_t ptent = *pte;
752 		if (pte_none(ptent)) {
753 			(*zap_work)--;
754 			continue;
755 		}
756 
757 		(*zap_work) -= PAGE_SIZE;
758 
759 		if (pte_present(ptent)) {
760 			struct page *page;
761 
762 			page = vm_normal_page(vma, addr, ptent);
763 			if (unlikely(details) && page) {
764 				/*
765 				 * unmap_shared_mapping_pages() wants to
766 				 * invalidate cache without truncating:
767 				 * unmap shared but keep private pages.
768 				 */
769 				if (details->check_mapping &&
770 				    details->check_mapping != page->mapping)
771 					continue;
772 				/*
773 				 * Each page->index must be checked when
774 				 * invalidating or truncating nonlinear.
775 				 */
776 				if (details->nonlinear_vma &&
777 				    (page->index < details->first_index ||
778 				     page->index > details->last_index))
779 					continue;
780 			}
781 			ptent = ptep_get_and_clear_full(mm, addr, pte,
782 							tlb->fullmm);
783 			tlb_remove_tlb_entry(tlb, pte, addr);
784 			if (unlikely(!page))
785 				continue;
786 			if (unlikely(details) && details->nonlinear_vma
787 			    && linear_page_index(details->nonlinear_vma,
788 						addr) != page->index)
789 				set_pte_at(mm, addr, pte,
790 					   pgoff_to_pte(page->index));
791 			if (PageAnon(page))
792 				anon_rss--;
793 			else {
794 				if (pte_dirty(ptent))
795 					set_page_dirty(page);
796 				if (pte_young(ptent) &&
797 				    likely(!VM_SequentialReadHint(vma)))
798 					mark_page_accessed(page);
799 				file_rss--;
800 			}
801 			page_remove_rmap(page, vma);
802 			if (unlikely(page_mapcount(page) < 0))
803 				print_bad_pte(vma, addr, ptent, page);
804 			tlb_remove_page(tlb, page);
805 			continue;
806 		}
807 		/*
808 		 * If details->check_mapping, we leave swap entries;
809 		 * if details->nonlinear_vma, we leave file entries.
810 		 */
811 		if (unlikely(details))
812 			continue;
813 		if (pte_file(ptent)) {
814 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
815 				print_bad_pte(vma, addr, ptent, NULL);
816 		} else if
817 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
818 			print_bad_pte(vma, addr, ptent, NULL);
819 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
820 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
821 
822 	add_mm_rss(mm, file_rss, anon_rss);
823 	arch_leave_lazy_mmu_mode();
824 	pte_unmap_unlock(pte - 1, ptl);
825 
826 	return addr;
827 }
828 
829 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
830 				struct vm_area_struct *vma, pud_t *pud,
831 				unsigned long addr, unsigned long end,
832 				long *zap_work, struct zap_details *details)
833 {
834 	pmd_t *pmd;
835 	unsigned long next;
836 
837 	pmd = pmd_offset(pud, addr);
838 	do {
839 		next = pmd_addr_end(addr, end);
840 		if (pmd_none_or_clear_bad(pmd)) {
841 			(*zap_work)--;
842 			continue;
843 		}
844 		next = zap_pte_range(tlb, vma, pmd, addr, next,
845 						zap_work, details);
846 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
847 
848 	return addr;
849 }
850 
851 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
852 				struct vm_area_struct *vma, pgd_t *pgd,
853 				unsigned long addr, unsigned long end,
854 				long *zap_work, struct zap_details *details)
855 {
856 	pud_t *pud;
857 	unsigned long next;
858 
859 	pud = pud_offset(pgd, addr);
860 	do {
861 		next = pud_addr_end(addr, end);
862 		if (pud_none_or_clear_bad(pud)) {
863 			(*zap_work)--;
864 			continue;
865 		}
866 		next = zap_pmd_range(tlb, vma, pud, addr, next,
867 						zap_work, details);
868 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
869 
870 	return addr;
871 }
872 
873 static unsigned long unmap_page_range(struct mmu_gather *tlb,
874 				struct vm_area_struct *vma,
875 				unsigned long addr, unsigned long end,
876 				long *zap_work, struct zap_details *details)
877 {
878 	pgd_t *pgd;
879 	unsigned long next;
880 
881 	if (details && !details->check_mapping && !details->nonlinear_vma)
882 		details = NULL;
883 
884 	BUG_ON(addr >= end);
885 	tlb_start_vma(tlb, vma);
886 	pgd = pgd_offset(vma->vm_mm, addr);
887 	do {
888 		next = pgd_addr_end(addr, end);
889 		if (pgd_none_or_clear_bad(pgd)) {
890 			(*zap_work)--;
891 			continue;
892 		}
893 		next = zap_pud_range(tlb, vma, pgd, addr, next,
894 						zap_work, details);
895 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
896 	tlb_end_vma(tlb, vma);
897 
898 	return addr;
899 }
900 
901 #ifdef CONFIG_PREEMPT
902 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
903 #else
904 /* No preempt: go for improved straight-line efficiency */
905 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
906 #endif
907 
908 /**
909  * unmap_vmas - unmap a range of memory covered by a list of vma's
910  * @tlbp: address of the caller's struct mmu_gather
911  * @vma: the starting vma
912  * @start_addr: virtual address at which to start unmapping
913  * @end_addr: virtual address at which to end unmapping
914  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
915  * @details: details of nonlinear truncation or shared cache invalidation
916  *
917  * Returns the end address of the unmapping (restart addr if interrupted).
918  *
919  * Unmap all pages in the vma list.
920  *
921  * We aim to not hold locks for too long (for scheduling latency reasons).
922  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
923  * return the ending mmu_gather to the caller.
924  *
925  * Only addresses between `start' and `end' will be unmapped.
926  *
927  * The VMA list must be sorted in ascending virtual address order.
928  *
929  * unmap_vmas() assumes that the caller will flush the whole unmapped address
930  * range after unmap_vmas() returns.  So the only responsibility here is to
931  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
932  * drops the lock and schedules.
933  */
934 unsigned long unmap_vmas(struct mmu_gather **tlbp,
935 		struct vm_area_struct *vma, unsigned long start_addr,
936 		unsigned long end_addr, unsigned long *nr_accounted,
937 		struct zap_details *details)
938 {
939 	long zap_work = ZAP_BLOCK_SIZE;
940 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
941 	int tlb_start_valid = 0;
942 	unsigned long start = start_addr;
943 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
944 	int fullmm = (*tlbp)->fullmm;
945 	struct mm_struct *mm = vma->vm_mm;
946 
947 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
948 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
949 		unsigned long end;
950 
951 		start = max(vma->vm_start, start_addr);
952 		if (start >= vma->vm_end)
953 			continue;
954 		end = min(vma->vm_end, end_addr);
955 		if (end <= vma->vm_start)
956 			continue;
957 
958 		if (vma->vm_flags & VM_ACCOUNT)
959 			*nr_accounted += (end - start) >> PAGE_SHIFT;
960 
961 		if (unlikely(is_pfn_mapping(vma)))
962 			untrack_pfn_vma(vma, 0, 0);
963 
964 		while (start != end) {
965 			if (!tlb_start_valid) {
966 				tlb_start = start;
967 				tlb_start_valid = 1;
968 			}
969 
970 			if (unlikely(is_vm_hugetlb_page(vma))) {
971 				/*
972 				 * It is undesirable to test vma->vm_file as it
973 				 * should be non-null for valid hugetlb area.
974 				 * However, vm_file will be NULL in the error
975 				 * cleanup path of do_mmap_pgoff. When
976 				 * hugetlbfs ->mmap method fails,
977 				 * do_mmap_pgoff() nullifies vma->vm_file
978 				 * before calling this function to clean up.
979 				 * Since no pte has actually been setup, it is
980 				 * safe to do nothing in this case.
981 				 */
982 				if (vma->vm_file) {
983 					unmap_hugepage_range(vma, start, end, NULL);
984 					zap_work -= (end - start) /
985 					pages_per_huge_page(hstate_vma(vma));
986 				}
987 
988 				start = end;
989 			} else
990 				start = unmap_page_range(*tlbp, vma,
991 						start, end, &zap_work, details);
992 
993 			if (zap_work > 0) {
994 				BUG_ON(start != end);
995 				break;
996 			}
997 
998 			tlb_finish_mmu(*tlbp, tlb_start, start);
999 
1000 			if (need_resched() ||
1001 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1002 				if (i_mmap_lock) {
1003 					*tlbp = NULL;
1004 					goto out;
1005 				}
1006 				cond_resched();
1007 			}
1008 
1009 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1010 			tlb_start_valid = 0;
1011 			zap_work = ZAP_BLOCK_SIZE;
1012 		}
1013 	}
1014 out:
1015 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1016 	return start;	/* which is now the end (or restart) address */
1017 }
1018 
1019 /**
1020  * zap_page_range - remove user pages in a given range
1021  * @vma: vm_area_struct holding the applicable pages
1022  * @address: starting address of pages to zap
1023  * @size: number of bytes to zap
1024  * @details: details of nonlinear truncation or shared cache invalidation
1025  */
1026 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1027 		unsigned long size, struct zap_details *details)
1028 {
1029 	struct mm_struct *mm = vma->vm_mm;
1030 	struct mmu_gather *tlb;
1031 	unsigned long end = address + size;
1032 	unsigned long nr_accounted = 0;
1033 
1034 	lru_add_drain();
1035 	tlb = tlb_gather_mmu(mm, 0);
1036 	update_hiwater_rss(mm);
1037 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1038 	if (tlb)
1039 		tlb_finish_mmu(tlb, address, end);
1040 	return end;
1041 }
1042 
1043 /**
1044  * zap_vma_ptes - remove ptes mapping the vma
1045  * @vma: vm_area_struct holding ptes to be zapped
1046  * @address: starting address of pages to zap
1047  * @size: number of bytes to zap
1048  *
1049  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1050  *
1051  * The entire address range must be fully contained within the vma.
1052  *
1053  * Returns 0 if successful.
1054  */
1055 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1056 		unsigned long size)
1057 {
1058 	if (address < vma->vm_start || address + size > vma->vm_end ||
1059 	    		!(vma->vm_flags & VM_PFNMAP))
1060 		return -1;
1061 	zap_page_range(vma, address, size, NULL);
1062 	return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1065 
1066 /*
1067  * Do a quick page-table lookup for a single page.
1068  */
1069 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1070 			unsigned int flags)
1071 {
1072 	pgd_t *pgd;
1073 	pud_t *pud;
1074 	pmd_t *pmd;
1075 	pte_t *ptep, pte;
1076 	spinlock_t *ptl;
1077 	struct page *page;
1078 	struct mm_struct *mm = vma->vm_mm;
1079 
1080 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1081 	if (!IS_ERR(page)) {
1082 		BUG_ON(flags & FOLL_GET);
1083 		goto out;
1084 	}
1085 
1086 	page = NULL;
1087 	pgd = pgd_offset(mm, address);
1088 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1089 		goto no_page_table;
1090 
1091 	pud = pud_offset(pgd, address);
1092 	if (pud_none(*pud))
1093 		goto no_page_table;
1094 	if (pud_huge(*pud)) {
1095 		BUG_ON(flags & FOLL_GET);
1096 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1097 		goto out;
1098 	}
1099 	if (unlikely(pud_bad(*pud)))
1100 		goto no_page_table;
1101 
1102 	pmd = pmd_offset(pud, address);
1103 	if (pmd_none(*pmd))
1104 		goto no_page_table;
1105 	if (pmd_huge(*pmd)) {
1106 		BUG_ON(flags & FOLL_GET);
1107 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1108 		goto out;
1109 	}
1110 	if (unlikely(pmd_bad(*pmd)))
1111 		goto no_page_table;
1112 
1113 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1114 
1115 	pte = *ptep;
1116 	if (!pte_present(pte))
1117 		goto no_page;
1118 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1119 		goto unlock;
1120 	page = vm_normal_page(vma, address, pte);
1121 	if (unlikely(!page))
1122 		goto bad_page;
1123 
1124 	if (flags & FOLL_GET)
1125 		get_page(page);
1126 	if (flags & FOLL_TOUCH) {
1127 		if ((flags & FOLL_WRITE) &&
1128 		    !pte_dirty(pte) && !PageDirty(page))
1129 			set_page_dirty(page);
1130 		mark_page_accessed(page);
1131 	}
1132 unlock:
1133 	pte_unmap_unlock(ptep, ptl);
1134 out:
1135 	return page;
1136 
1137 bad_page:
1138 	pte_unmap_unlock(ptep, ptl);
1139 	return ERR_PTR(-EFAULT);
1140 
1141 no_page:
1142 	pte_unmap_unlock(ptep, ptl);
1143 	if (!pte_none(pte))
1144 		return page;
1145 	/* Fall through to ZERO_PAGE handling */
1146 no_page_table:
1147 	/*
1148 	 * When core dumping an enormous anonymous area that nobody
1149 	 * has touched so far, we don't want to allocate page tables.
1150 	 */
1151 	if (flags & FOLL_ANON) {
1152 		page = ZERO_PAGE(0);
1153 		if (flags & FOLL_GET)
1154 			get_page(page);
1155 		BUG_ON(flags & FOLL_WRITE);
1156 	}
1157 	return page;
1158 }
1159 
1160 /* Can we do the FOLL_ANON optimization? */
1161 static inline int use_zero_page(struct vm_area_struct *vma)
1162 {
1163 	/*
1164 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1165 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1166 	 * we want to get the page from the page tables to make sure
1167 	 * that we serialize and update with any other user of that
1168 	 * mapping.
1169 	 */
1170 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1171 		return 0;
1172 	/*
1173 	 * And if we have a fault routine, it's not an anonymous region.
1174 	 */
1175 	return !vma->vm_ops || !vma->vm_ops->fault;
1176 }
1177 
1178 
1179 
1180 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 		     unsigned long start, int len, int flags,
1182 		struct page **pages, struct vm_area_struct **vmas)
1183 {
1184 	int i;
1185 	unsigned int vm_flags = 0;
1186 	int write = !!(flags & GUP_FLAGS_WRITE);
1187 	int force = !!(flags & GUP_FLAGS_FORCE);
1188 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1189 
1190 	if (len <= 0)
1191 		return 0;
1192 	/*
1193 	 * Require read or write permissions.
1194 	 * If 'force' is set, we only require the "MAY" flags.
1195 	 */
1196 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1197 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1198 	i = 0;
1199 
1200 	do {
1201 		struct vm_area_struct *vma;
1202 		unsigned int foll_flags;
1203 
1204 		vma = find_extend_vma(mm, start);
1205 		if (!vma && in_gate_area(tsk, start)) {
1206 			unsigned long pg = start & PAGE_MASK;
1207 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1208 			pgd_t *pgd;
1209 			pud_t *pud;
1210 			pmd_t *pmd;
1211 			pte_t *pte;
1212 
1213 			/* user gate pages are read-only */
1214 			if (!ignore && write)
1215 				return i ? : -EFAULT;
1216 			if (pg > TASK_SIZE)
1217 				pgd = pgd_offset_k(pg);
1218 			else
1219 				pgd = pgd_offset_gate(mm, pg);
1220 			BUG_ON(pgd_none(*pgd));
1221 			pud = pud_offset(pgd, pg);
1222 			BUG_ON(pud_none(*pud));
1223 			pmd = pmd_offset(pud, pg);
1224 			if (pmd_none(*pmd))
1225 				return i ? : -EFAULT;
1226 			pte = pte_offset_map(pmd, pg);
1227 			if (pte_none(*pte)) {
1228 				pte_unmap(pte);
1229 				return i ? : -EFAULT;
1230 			}
1231 			if (pages) {
1232 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1233 				pages[i] = page;
1234 				if (page)
1235 					get_page(page);
1236 			}
1237 			pte_unmap(pte);
1238 			if (vmas)
1239 				vmas[i] = gate_vma;
1240 			i++;
1241 			start += PAGE_SIZE;
1242 			len--;
1243 			continue;
1244 		}
1245 
1246 		if (!vma ||
1247 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1248 		    (!ignore && !(vm_flags & vma->vm_flags)))
1249 			return i ? : -EFAULT;
1250 
1251 		if (is_vm_hugetlb_page(vma)) {
1252 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1253 						&start, &len, i, write);
1254 			continue;
1255 		}
1256 
1257 		foll_flags = FOLL_TOUCH;
1258 		if (pages)
1259 			foll_flags |= FOLL_GET;
1260 		if (!write && use_zero_page(vma))
1261 			foll_flags |= FOLL_ANON;
1262 
1263 		do {
1264 			struct page *page;
1265 
1266 			/*
1267 			 * If tsk is ooming, cut off its access to large memory
1268 			 * allocations. It has a pending SIGKILL, but it can't
1269 			 * be processed until returning to user space.
1270 			 */
1271 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1272 				return i ? i : -ENOMEM;
1273 
1274 			if (write)
1275 				foll_flags |= FOLL_WRITE;
1276 
1277 			cond_resched();
1278 			while (!(page = follow_page(vma, start, foll_flags))) {
1279 				int ret;
1280 				ret = handle_mm_fault(mm, vma, start,
1281 						foll_flags & FOLL_WRITE);
1282 				if (ret & VM_FAULT_ERROR) {
1283 					if (ret & VM_FAULT_OOM)
1284 						return i ? i : -ENOMEM;
1285 					else if (ret & VM_FAULT_SIGBUS)
1286 						return i ? i : -EFAULT;
1287 					BUG();
1288 				}
1289 				if (ret & VM_FAULT_MAJOR)
1290 					tsk->maj_flt++;
1291 				else
1292 					tsk->min_flt++;
1293 
1294 				/*
1295 				 * The VM_FAULT_WRITE bit tells us that
1296 				 * do_wp_page has broken COW when necessary,
1297 				 * even if maybe_mkwrite decided not to set
1298 				 * pte_write. We can thus safely do subsequent
1299 				 * page lookups as if they were reads. But only
1300 				 * do so when looping for pte_write is futile:
1301 				 * in some cases userspace may also be wanting
1302 				 * to write to the gotten user page, which a
1303 				 * read fault here might prevent (a readonly
1304 				 * page might get reCOWed by userspace write).
1305 				 */
1306 				if ((ret & VM_FAULT_WRITE) &&
1307 				    !(vma->vm_flags & VM_WRITE))
1308 					foll_flags &= ~FOLL_WRITE;
1309 
1310 				cond_resched();
1311 			}
1312 			if (IS_ERR(page))
1313 				return i ? i : PTR_ERR(page);
1314 			if (pages) {
1315 				pages[i] = page;
1316 
1317 				flush_anon_page(vma, page, start);
1318 				flush_dcache_page(page);
1319 			}
1320 			if (vmas)
1321 				vmas[i] = vma;
1322 			i++;
1323 			start += PAGE_SIZE;
1324 			len--;
1325 		} while (len && start < vma->vm_end);
1326 	} while (len);
1327 	return i;
1328 }
1329 
1330 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1331 		unsigned long start, int len, int write, int force,
1332 		struct page **pages, struct vm_area_struct **vmas)
1333 {
1334 	int flags = 0;
1335 
1336 	if (write)
1337 		flags |= GUP_FLAGS_WRITE;
1338 	if (force)
1339 		flags |= GUP_FLAGS_FORCE;
1340 
1341 	return __get_user_pages(tsk, mm,
1342 				start, len, flags,
1343 				pages, vmas);
1344 }
1345 
1346 EXPORT_SYMBOL(get_user_pages);
1347 
1348 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1349 			spinlock_t **ptl)
1350 {
1351 	pgd_t * pgd = pgd_offset(mm, addr);
1352 	pud_t * pud = pud_alloc(mm, pgd, addr);
1353 	if (pud) {
1354 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1355 		if (pmd)
1356 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1357 	}
1358 	return NULL;
1359 }
1360 
1361 /*
1362  * This is the old fallback for page remapping.
1363  *
1364  * For historical reasons, it only allows reserved pages. Only
1365  * old drivers should use this, and they needed to mark their
1366  * pages reserved for the old functions anyway.
1367  */
1368 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1369 			struct page *page, pgprot_t prot)
1370 {
1371 	struct mm_struct *mm = vma->vm_mm;
1372 	int retval;
1373 	pte_t *pte;
1374 	spinlock_t *ptl;
1375 
1376 	retval = -EINVAL;
1377 	if (PageAnon(page))
1378 		goto out;
1379 	retval = -ENOMEM;
1380 	flush_dcache_page(page);
1381 	pte = get_locked_pte(mm, addr, &ptl);
1382 	if (!pte)
1383 		goto out;
1384 	retval = -EBUSY;
1385 	if (!pte_none(*pte))
1386 		goto out_unlock;
1387 
1388 	/* Ok, finally just insert the thing.. */
1389 	get_page(page);
1390 	inc_mm_counter(mm, file_rss);
1391 	page_add_file_rmap(page);
1392 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1393 
1394 	retval = 0;
1395 	pte_unmap_unlock(pte, ptl);
1396 	return retval;
1397 out_unlock:
1398 	pte_unmap_unlock(pte, ptl);
1399 out:
1400 	return retval;
1401 }
1402 
1403 /**
1404  * vm_insert_page - insert single page into user vma
1405  * @vma: user vma to map to
1406  * @addr: target user address of this page
1407  * @page: source kernel page
1408  *
1409  * This allows drivers to insert individual pages they've allocated
1410  * into a user vma.
1411  *
1412  * The page has to be a nice clean _individual_ kernel allocation.
1413  * If you allocate a compound page, you need to have marked it as
1414  * such (__GFP_COMP), or manually just split the page up yourself
1415  * (see split_page()).
1416  *
1417  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1418  * took an arbitrary page protection parameter. This doesn't allow
1419  * that. Your vma protection will have to be set up correctly, which
1420  * means that if you want a shared writable mapping, you'd better
1421  * ask for a shared writable mapping!
1422  *
1423  * The page does not need to be reserved.
1424  */
1425 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 			struct page *page)
1427 {
1428 	if (addr < vma->vm_start || addr >= vma->vm_end)
1429 		return -EFAULT;
1430 	if (!page_count(page))
1431 		return -EINVAL;
1432 	vma->vm_flags |= VM_INSERTPAGE;
1433 	return insert_page(vma, addr, page, vma->vm_page_prot);
1434 }
1435 EXPORT_SYMBOL(vm_insert_page);
1436 
1437 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1438 			unsigned long pfn, pgprot_t prot)
1439 {
1440 	struct mm_struct *mm = vma->vm_mm;
1441 	int retval;
1442 	pte_t *pte, entry;
1443 	spinlock_t *ptl;
1444 
1445 	retval = -ENOMEM;
1446 	pte = get_locked_pte(mm, addr, &ptl);
1447 	if (!pte)
1448 		goto out;
1449 	retval = -EBUSY;
1450 	if (!pte_none(*pte))
1451 		goto out_unlock;
1452 
1453 	/* Ok, finally just insert the thing.. */
1454 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1455 	set_pte_at(mm, addr, pte, entry);
1456 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1457 
1458 	retval = 0;
1459 out_unlock:
1460 	pte_unmap_unlock(pte, ptl);
1461 out:
1462 	return retval;
1463 }
1464 
1465 /**
1466  * vm_insert_pfn - insert single pfn into user vma
1467  * @vma: user vma to map to
1468  * @addr: target user address of this page
1469  * @pfn: source kernel pfn
1470  *
1471  * Similar to vm_inert_page, this allows drivers to insert individual pages
1472  * they've allocated into a user vma. Same comments apply.
1473  *
1474  * This function should only be called from a vm_ops->fault handler, and
1475  * in that case the handler should return NULL.
1476  *
1477  * vma cannot be a COW mapping.
1478  *
1479  * As this is called only for pages that do not currently exist, we
1480  * do not need to flush old virtual caches or the TLB.
1481  */
1482 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1483 			unsigned long pfn)
1484 {
1485 	int ret;
1486 	/*
1487 	 * Technically, architectures with pte_special can avoid all these
1488 	 * restrictions (same for remap_pfn_range).  However we would like
1489 	 * consistency in testing and feature parity among all, so we should
1490 	 * try to keep these invariants in place for everybody.
1491 	 */
1492 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1493 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1494 						(VM_PFNMAP|VM_MIXEDMAP));
1495 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1496 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1497 
1498 	if (addr < vma->vm_start || addr >= vma->vm_end)
1499 		return -EFAULT;
1500 	if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1501 		return -EINVAL;
1502 
1503 	ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1504 
1505 	if (ret)
1506 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1507 
1508 	return ret;
1509 }
1510 EXPORT_SYMBOL(vm_insert_pfn);
1511 
1512 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1513 			unsigned long pfn)
1514 {
1515 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1516 
1517 	if (addr < vma->vm_start || addr >= vma->vm_end)
1518 		return -EFAULT;
1519 
1520 	/*
1521 	 * If we don't have pte special, then we have to use the pfn_valid()
1522 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1523 	 * refcount the page if pfn_valid is true (hence insert_page rather
1524 	 * than insert_pfn).
1525 	 */
1526 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1527 		struct page *page;
1528 
1529 		page = pfn_to_page(pfn);
1530 		return insert_page(vma, addr, page, vma->vm_page_prot);
1531 	}
1532 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1533 }
1534 EXPORT_SYMBOL(vm_insert_mixed);
1535 
1536 /*
1537  * maps a range of physical memory into the requested pages. the old
1538  * mappings are removed. any references to nonexistent pages results
1539  * in null mappings (currently treated as "copy-on-access")
1540  */
1541 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1542 			unsigned long addr, unsigned long end,
1543 			unsigned long pfn, pgprot_t prot)
1544 {
1545 	pte_t *pte;
1546 	spinlock_t *ptl;
1547 
1548 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1549 	if (!pte)
1550 		return -ENOMEM;
1551 	arch_enter_lazy_mmu_mode();
1552 	do {
1553 		BUG_ON(!pte_none(*pte));
1554 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1555 		pfn++;
1556 	} while (pte++, addr += PAGE_SIZE, addr != end);
1557 	arch_leave_lazy_mmu_mode();
1558 	pte_unmap_unlock(pte - 1, ptl);
1559 	return 0;
1560 }
1561 
1562 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1563 			unsigned long addr, unsigned long end,
1564 			unsigned long pfn, pgprot_t prot)
1565 {
1566 	pmd_t *pmd;
1567 	unsigned long next;
1568 
1569 	pfn -= addr >> PAGE_SHIFT;
1570 	pmd = pmd_alloc(mm, pud, addr);
1571 	if (!pmd)
1572 		return -ENOMEM;
1573 	do {
1574 		next = pmd_addr_end(addr, end);
1575 		if (remap_pte_range(mm, pmd, addr, next,
1576 				pfn + (addr >> PAGE_SHIFT), prot))
1577 			return -ENOMEM;
1578 	} while (pmd++, addr = next, addr != end);
1579 	return 0;
1580 }
1581 
1582 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1583 			unsigned long addr, unsigned long end,
1584 			unsigned long pfn, pgprot_t prot)
1585 {
1586 	pud_t *pud;
1587 	unsigned long next;
1588 
1589 	pfn -= addr >> PAGE_SHIFT;
1590 	pud = pud_alloc(mm, pgd, addr);
1591 	if (!pud)
1592 		return -ENOMEM;
1593 	do {
1594 		next = pud_addr_end(addr, end);
1595 		if (remap_pmd_range(mm, pud, addr, next,
1596 				pfn + (addr >> PAGE_SHIFT), prot))
1597 			return -ENOMEM;
1598 	} while (pud++, addr = next, addr != end);
1599 	return 0;
1600 }
1601 
1602 /**
1603  * remap_pfn_range - remap kernel memory to userspace
1604  * @vma: user vma to map to
1605  * @addr: target user address to start at
1606  * @pfn: physical address of kernel memory
1607  * @size: size of map area
1608  * @prot: page protection flags for this mapping
1609  *
1610  *  Note: this is only safe if the mm semaphore is held when called.
1611  */
1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1613 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1614 {
1615 	pgd_t *pgd;
1616 	unsigned long next;
1617 	unsigned long end = addr + PAGE_ALIGN(size);
1618 	struct mm_struct *mm = vma->vm_mm;
1619 	int err;
1620 
1621 	/*
1622 	 * Physically remapped pages are special. Tell the
1623 	 * rest of the world about it:
1624 	 *   VM_IO tells people not to look at these pages
1625 	 *	(accesses can have side effects).
1626 	 *   VM_RESERVED is specified all over the place, because
1627 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1628 	 *	in 2.6 the LRU scan won't even find its pages, so this
1629 	 *	flag means no more than count its pages in reserved_vm,
1630 	 * 	and omit it from core dump, even when VM_IO turned off.
1631 	 *   VM_PFNMAP tells the core MM that the base pages are just
1632 	 *	raw PFN mappings, and do not have a "struct page" associated
1633 	 *	with them.
1634 	 *
1635 	 * There's a horrible special case to handle copy-on-write
1636 	 * behaviour that some programs depend on. We mark the "original"
1637 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1638 	 */
1639 	if (addr == vma->vm_start && end == vma->vm_end)
1640 		vma->vm_pgoff = pfn;
1641 	else if (is_cow_mapping(vma->vm_flags))
1642 		return -EINVAL;
1643 
1644 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1645 
1646 	err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1647 	if (err)
1648 		return -EINVAL;
1649 
1650 	BUG_ON(addr >= end);
1651 	pfn -= addr >> PAGE_SHIFT;
1652 	pgd = pgd_offset(mm, addr);
1653 	flush_cache_range(vma, addr, end);
1654 	do {
1655 		next = pgd_addr_end(addr, end);
1656 		err = remap_pud_range(mm, pgd, addr, next,
1657 				pfn + (addr >> PAGE_SHIFT), prot);
1658 		if (err)
1659 			break;
1660 	} while (pgd++, addr = next, addr != end);
1661 
1662 	if (err)
1663 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1664 
1665 	return err;
1666 }
1667 EXPORT_SYMBOL(remap_pfn_range);
1668 
1669 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1670 				     unsigned long addr, unsigned long end,
1671 				     pte_fn_t fn, void *data)
1672 {
1673 	pte_t *pte;
1674 	int err;
1675 	pgtable_t token;
1676 	spinlock_t *uninitialized_var(ptl);
1677 
1678 	pte = (mm == &init_mm) ?
1679 		pte_alloc_kernel(pmd, addr) :
1680 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1681 	if (!pte)
1682 		return -ENOMEM;
1683 
1684 	BUG_ON(pmd_huge(*pmd));
1685 
1686 	arch_enter_lazy_mmu_mode();
1687 
1688 	token = pmd_pgtable(*pmd);
1689 
1690 	do {
1691 		err = fn(pte, token, addr, data);
1692 		if (err)
1693 			break;
1694 	} while (pte++, addr += PAGE_SIZE, addr != end);
1695 
1696 	arch_leave_lazy_mmu_mode();
1697 
1698 	if (mm != &init_mm)
1699 		pte_unmap_unlock(pte-1, ptl);
1700 	return err;
1701 }
1702 
1703 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1704 				     unsigned long addr, unsigned long end,
1705 				     pte_fn_t fn, void *data)
1706 {
1707 	pmd_t *pmd;
1708 	unsigned long next;
1709 	int err;
1710 
1711 	BUG_ON(pud_huge(*pud));
1712 
1713 	pmd = pmd_alloc(mm, pud, addr);
1714 	if (!pmd)
1715 		return -ENOMEM;
1716 	do {
1717 		next = pmd_addr_end(addr, end);
1718 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1719 		if (err)
1720 			break;
1721 	} while (pmd++, addr = next, addr != end);
1722 	return err;
1723 }
1724 
1725 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1726 				     unsigned long addr, unsigned long end,
1727 				     pte_fn_t fn, void *data)
1728 {
1729 	pud_t *pud;
1730 	unsigned long next;
1731 	int err;
1732 
1733 	pud = pud_alloc(mm, pgd, addr);
1734 	if (!pud)
1735 		return -ENOMEM;
1736 	do {
1737 		next = pud_addr_end(addr, end);
1738 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1739 		if (err)
1740 			break;
1741 	} while (pud++, addr = next, addr != end);
1742 	return err;
1743 }
1744 
1745 /*
1746  * Scan a region of virtual memory, filling in page tables as necessary
1747  * and calling a provided function on each leaf page table.
1748  */
1749 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1750 			unsigned long size, pte_fn_t fn, void *data)
1751 {
1752 	pgd_t *pgd;
1753 	unsigned long next;
1754 	unsigned long start = addr, end = addr + size;
1755 	int err;
1756 
1757 	BUG_ON(addr >= end);
1758 	mmu_notifier_invalidate_range_start(mm, start, end);
1759 	pgd = pgd_offset(mm, addr);
1760 	do {
1761 		next = pgd_addr_end(addr, end);
1762 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1763 		if (err)
1764 			break;
1765 	} while (pgd++, addr = next, addr != end);
1766 	mmu_notifier_invalidate_range_end(mm, start, end);
1767 	return err;
1768 }
1769 EXPORT_SYMBOL_GPL(apply_to_page_range);
1770 
1771 /*
1772  * handle_pte_fault chooses page fault handler according to an entry
1773  * which was read non-atomically.  Before making any commitment, on
1774  * those architectures or configurations (e.g. i386 with PAE) which
1775  * might give a mix of unmatched parts, do_swap_page and do_file_page
1776  * must check under lock before unmapping the pte and proceeding
1777  * (but do_wp_page is only called after already making such a check;
1778  * and do_anonymous_page and do_no_page can safely check later on).
1779  */
1780 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1781 				pte_t *page_table, pte_t orig_pte)
1782 {
1783 	int same = 1;
1784 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1785 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1786 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1787 		spin_lock(ptl);
1788 		same = pte_same(*page_table, orig_pte);
1789 		spin_unlock(ptl);
1790 	}
1791 #endif
1792 	pte_unmap(page_table);
1793 	return same;
1794 }
1795 
1796 /*
1797  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1798  * servicing faults for write access.  In the normal case, do always want
1799  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1800  * that do not have writing enabled, when used by access_process_vm.
1801  */
1802 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1803 {
1804 	if (likely(vma->vm_flags & VM_WRITE))
1805 		pte = pte_mkwrite(pte);
1806 	return pte;
1807 }
1808 
1809 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1810 {
1811 	/*
1812 	 * If the source page was a PFN mapping, we don't have
1813 	 * a "struct page" for it. We do a best-effort copy by
1814 	 * just copying from the original user address. If that
1815 	 * fails, we just zero-fill it. Live with it.
1816 	 */
1817 	if (unlikely(!src)) {
1818 		void *kaddr = kmap_atomic(dst, KM_USER0);
1819 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1820 
1821 		/*
1822 		 * This really shouldn't fail, because the page is there
1823 		 * in the page tables. But it might just be unreadable,
1824 		 * in which case we just give up and fill the result with
1825 		 * zeroes.
1826 		 */
1827 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1828 			memset(kaddr, 0, PAGE_SIZE);
1829 		kunmap_atomic(kaddr, KM_USER0);
1830 		flush_dcache_page(dst);
1831 	} else
1832 		copy_user_highpage(dst, src, va, vma);
1833 }
1834 
1835 /*
1836  * This routine handles present pages, when users try to write
1837  * to a shared page. It is done by copying the page to a new address
1838  * and decrementing the shared-page counter for the old page.
1839  *
1840  * Note that this routine assumes that the protection checks have been
1841  * done by the caller (the low-level page fault routine in most cases).
1842  * Thus we can safely just mark it writable once we've done any necessary
1843  * COW.
1844  *
1845  * We also mark the page dirty at this point even though the page will
1846  * change only once the write actually happens. This avoids a few races,
1847  * and potentially makes it more efficient.
1848  *
1849  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1850  * but allow concurrent faults), with pte both mapped and locked.
1851  * We return with mmap_sem still held, but pte unmapped and unlocked.
1852  */
1853 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1854 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1855 		spinlock_t *ptl, pte_t orig_pte)
1856 {
1857 	struct page *old_page, *new_page;
1858 	pte_t entry;
1859 	int reuse = 0, ret = 0;
1860 	int page_mkwrite = 0;
1861 	struct page *dirty_page = NULL;
1862 
1863 	old_page = vm_normal_page(vma, address, orig_pte);
1864 	if (!old_page) {
1865 		/*
1866 		 * VM_MIXEDMAP !pfn_valid() case
1867 		 *
1868 		 * We should not cow pages in a shared writeable mapping.
1869 		 * Just mark the pages writable as we can't do any dirty
1870 		 * accounting on raw pfn maps.
1871 		 */
1872 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1873 				     (VM_WRITE|VM_SHARED))
1874 			goto reuse;
1875 		goto gotten;
1876 	}
1877 
1878 	/*
1879 	 * Take out anonymous pages first, anonymous shared vmas are
1880 	 * not dirty accountable.
1881 	 */
1882 	if (PageAnon(old_page)) {
1883 		if (!trylock_page(old_page)) {
1884 			page_cache_get(old_page);
1885 			pte_unmap_unlock(page_table, ptl);
1886 			lock_page(old_page);
1887 			page_table = pte_offset_map_lock(mm, pmd, address,
1888 							 &ptl);
1889 			if (!pte_same(*page_table, orig_pte)) {
1890 				unlock_page(old_page);
1891 				page_cache_release(old_page);
1892 				goto unlock;
1893 			}
1894 			page_cache_release(old_page);
1895 		}
1896 		reuse = reuse_swap_page(old_page);
1897 		unlock_page(old_page);
1898 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1899 					(VM_WRITE|VM_SHARED))) {
1900 		/*
1901 		 * Only catch write-faults on shared writable pages,
1902 		 * read-only shared pages can get COWed by
1903 		 * get_user_pages(.write=1, .force=1).
1904 		 */
1905 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1906 			/*
1907 			 * Notify the address space that the page is about to
1908 			 * become writable so that it can prohibit this or wait
1909 			 * for the page to get into an appropriate state.
1910 			 *
1911 			 * We do this without the lock held, so that it can
1912 			 * sleep if it needs to.
1913 			 */
1914 			page_cache_get(old_page);
1915 			pte_unmap_unlock(page_table, ptl);
1916 
1917 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1918 				goto unwritable_page;
1919 
1920 			/*
1921 			 * Since we dropped the lock we need to revalidate
1922 			 * the PTE as someone else may have changed it.  If
1923 			 * they did, we just return, as we can count on the
1924 			 * MMU to tell us if they didn't also make it writable.
1925 			 */
1926 			page_table = pte_offset_map_lock(mm, pmd, address,
1927 							 &ptl);
1928 			page_cache_release(old_page);
1929 			if (!pte_same(*page_table, orig_pte))
1930 				goto unlock;
1931 
1932 			page_mkwrite = 1;
1933 		}
1934 		dirty_page = old_page;
1935 		get_page(dirty_page);
1936 		reuse = 1;
1937 	}
1938 
1939 	if (reuse) {
1940 reuse:
1941 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1942 		entry = pte_mkyoung(orig_pte);
1943 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1944 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1945 			update_mmu_cache(vma, address, entry);
1946 		ret |= VM_FAULT_WRITE;
1947 		goto unlock;
1948 	}
1949 
1950 	/*
1951 	 * Ok, we need to copy. Oh, well..
1952 	 */
1953 	page_cache_get(old_page);
1954 gotten:
1955 	pte_unmap_unlock(page_table, ptl);
1956 
1957 	if (unlikely(anon_vma_prepare(vma)))
1958 		goto oom;
1959 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1960 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1961 	if (!new_page)
1962 		goto oom;
1963 	/*
1964 	 * Don't let another task, with possibly unlocked vma,
1965 	 * keep the mlocked page.
1966 	 */
1967 	if (vma->vm_flags & VM_LOCKED) {
1968 		lock_page(old_page);	/* for LRU manipulation */
1969 		clear_page_mlock(old_page);
1970 		unlock_page(old_page);
1971 	}
1972 	cow_user_page(new_page, old_page, address, vma);
1973 	__SetPageUptodate(new_page);
1974 
1975 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1976 		goto oom_free_new;
1977 
1978 	/*
1979 	 * Re-check the pte - we dropped the lock
1980 	 */
1981 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1982 	if (likely(pte_same(*page_table, orig_pte))) {
1983 		if (old_page) {
1984 			if (!PageAnon(old_page)) {
1985 				dec_mm_counter(mm, file_rss);
1986 				inc_mm_counter(mm, anon_rss);
1987 			}
1988 		} else
1989 			inc_mm_counter(mm, anon_rss);
1990 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1991 		entry = mk_pte(new_page, vma->vm_page_prot);
1992 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1993 		/*
1994 		 * Clear the pte entry and flush it first, before updating the
1995 		 * pte with the new entry. This will avoid a race condition
1996 		 * seen in the presence of one thread doing SMC and another
1997 		 * thread doing COW.
1998 		 */
1999 		ptep_clear_flush_notify(vma, address, page_table);
2000 		page_add_new_anon_rmap(new_page, vma, address);
2001 		set_pte_at(mm, address, page_table, entry);
2002 		update_mmu_cache(vma, address, entry);
2003 		if (old_page) {
2004 			/*
2005 			 * Only after switching the pte to the new page may
2006 			 * we remove the mapcount here. Otherwise another
2007 			 * process may come and find the rmap count decremented
2008 			 * before the pte is switched to the new page, and
2009 			 * "reuse" the old page writing into it while our pte
2010 			 * here still points into it and can be read by other
2011 			 * threads.
2012 			 *
2013 			 * The critical issue is to order this
2014 			 * page_remove_rmap with the ptp_clear_flush above.
2015 			 * Those stores are ordered by (if nothing else,)
2016 			 * the barrier present in the atomic_add_negative
2017 			 * in page_remove_rmap.
2018 			 *
2019 			 * Then the TLB flush in ptep_clear_flush ensures that
2020 			 * no process can access the old page before the
2021 			 * decremented mapcount is visible. And the old page
2022 			 * cannot be reused until after the decremented
2023 			 * mapcount is visible. So transitively, TLBs to
2024 			 * old page will be flushed before it can be reused.
2025 			 */
2026 			page_remove_rmap(old_page, vma);
2027 		}
2028 
2029 		/* Free the old page.. */
2030 		new_page = old_page;
2031 		ret |= VM_FAULT_WRITE;
2032 	} else
2033 		mem_cgroup_uncharge_page(new_page);
2034 
2035 	if (new_page)
2036 		page_cache_release(new_page);
2037 	if (old_page)
2038 		page_cache_release(old_page);
2039 unlock:
2040 	pte_unmap_unlock(page_table, ptl);
2041 	if (dirty_page) {
2042 		if (vma->vm_file)
2043 			file_update_time(vma->vm_file);
2044 
2045 		/*
2046 		 * Yes, Virginia, this is actually required to prevent a race
2047 		 * with clear_page_dirty_for_io() from clearing the page dirty
2048 		 * bit after it clear all dirty ptes, but before a racing
2049 		 * do_wp_page installs a dirty pte.
2050 		 *
2051 		 * do_no_page is protected similarly.
2052 		 */
2053 		wait_on_page_locked(dirty_page);
2054 		set_page_dirty_balance(dirty_page, page_mkwrite);
2055 		put_page(dirty_page);
2056 	}
2057 	return ret;
2058 oom_free_new:
2059 	page_cache_release(new_page);
2060 oom:
2061 	if (old_page)
2062 		page_cache_release(old_page);
2063 	return VM_FAULT_OOM;
2064 
2065 unwritable_page:
2066 	page_cache_release(old_page);
2067 	return VM_FAULT_SIGBUS;
2068 }
2069 
2070 /*
2071  * Helper functions for unmap_mapping_range().
2072  *
2073  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2074  *
2075  * We have to restart searching the prio_tree whenever we drop the lock,
2076  * since the iterator is only valid while the lock is held, and anyway
2077  * a later vma might be split and reinserted earlier while lock dropped.
2078  *
2079  * The list of nonlinear vmas could be handled more efficiently, using
2080  * a placeholder, but handle it in the same way until a need is shown.
2081  * It is important to search the prio_tree before nonlinear list: a vma
2082  * may become nonlinear and be shifted from prio_tree to nonlinear list
2083  * while the lock is dropped; but never shifted from list to prio_tree.
2084  *
2085  * In order to make forward progress despite restarting the search,
2086  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2087  * quickly skip it next time around.  Since the prio_tree search only
2088  * shows us those vmas affected by unmapping the range in question, we
2089  * can't efficiently keep all vmas in step with mapping->truncate_count:
2090  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2091  * mapping->truncate_count and vma->vm_truncate_count are protected by
2092  * i_mmap_lock.
2093  *
2094  * In order to make forward progress despite repeatedly restarting some
2095  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2096  * and restart from that address when we reach that vma again.  It might
2097  * have been split or merged, shrunk or extended, but never shifted: so
2098  * restart_addr remains valid so long as it remains in the vma's range.
2099  * unmap_mapping_range forces truncate_count to leap over page-aligned
2100  * values so we can save vma's restart_addr in its truncate_count field.
2101  */
2102 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2103 
2104 static void reset_vma_truncate_counts(struct address_space *mapping)
2105 {
2106 	struct vm_area_struct *vma;
2107 	struct prio_tree_iter iter;
2108 
2109 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2110 		vma->vm_truncate_count = 0;
2111 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2112 		vma->vm_truncate_count = 0;
2113 }
2114 
2115 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2116 		unsigned long start_addr, unsigned long end_addr,
2117 		struct zap_details *details)
2118 {
2119 	unsigned long restart_addr;
2120 	int need_break;
2121 
2122 	/*
2123 	 * files that support invalidating or truncating portions of the
2124 	 * file from under mmaped areas must have their ->fault function
2125 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2126 	 * This provides synchronisation against concurrent unmapping here.
2127 	 */
2128 
2129 again:
2130 	restart_addr = vma->vm_truncate_count;
2131 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2132 		start_addr = restart_addr;
2133 		if (start_addr >= end_addr) {
2134 			/* Top of vma has been split off since last time */
2135 			vma->vm_truncate_count = details->truncate_count;
2136 			return 0;
2137 		}
2138 	}
2139 
2140 	restart_addr = zap_page_range(vma, start_addr,
2141 					end_addr - start_addr, details);
2142 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2143 
2144 	if (restart_addr >= end_addr) {
2145 		/* We have now completed this vma: mark it so */
2146 		vma->vm_truncate_count = details->truncate_count;
2147 		if (!need_break)
2148 			return 0;
2149 	} else {
2150 		/* Note restart_addr in vma's truncate_count field */
2151 		vma->vm_truncate_count = restart_addr;
2152 		if (!need_break)
2153 			goto again;
2154 	}
2155 
2156 	spin_unlock(details->i_mmap_lock);
2157 	cond_resched();
2158 	spin_lock(details->i_mmap_lock);
2159 	return -EINTR;
2160 }
2161 
2162 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2163 					    struct zap_details *details)
2164 {
2165 	struct vm_area_struct *vma;
2166 	struct prio_tree_iter iter;
2167 	pgoff_t vba, vea, zba, zea;
2168 
2169 restart:
2170 	vma_prio_tree_foreach(vma, &iter, root,
2171 			details->first_index, details->last_index) {
2172 		/* Skip quickly over those we have already dealt with */
2173 		if (vma->vm_truncate_count == details->truncate_count)
2174 			continue;
2175 
2176 		vba = vma->vm_pgoff;
2177 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2178 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2179 		zba = details->first_index;
2180 		if (zba < vba)
2181 			zba = vba;
2182 		zea = details->last_index;
2183 		if (zea > vea)
2184 			zea = vea;
2185 
2186 		if (unmap_mapping_range_vma(vma,
2187 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2188 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2189 				details) < 0)
2190 			goto restart;
2191 	}
2192 }
2193 
2194 static inline void unmap_mapping_range_list(struct list_head *head,
2195 					    struct zap_details *details)
2196 {
2197 	struct vm_area_struct *vma;
2198 
2199 	/*
2200 	 * In nonlinear VMAs there is no correspondence between virtual address
2201 	 * offset and file offset.  So we must perform an exhaustive search
2202 	 * across *all* the pages in each nonlinear VMA, not just the pages
2203 	 * whose virtual address lies outside the file truncation point.
2204 	 */
2205 restart:
2206 	list_for_each_entry(vma, head, shared.vm_set.list) {
2207 		/* Skip quickly over those we have already dealt with */
2208 		if (vma->vm_truncate_count == details->truncate_count)
2209 			continue;
2210 		details->nonlinear_vma = vma;
2211 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2212 					vma->vm_end, details) < 0)
2213 			goto restart;
2214 	}
2215 }
2216 
2217 /**
2218  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2219  * @mapping: the address space containing mmaps to be unmapped.
2220  * @holebegin: byte in first page to unmap, relative to the start of
2221  * the underlying file.  This will be rounded down to a PAGE_SIZE
2222  * boundary.  Note that this is different from vmtruncate(), which
2223  * must keep the partial page.  In contrast, we must get rid of
2224  * partial pages.
2225  * @holelen: size of prospective hole in bytes.  This will be rounded
2226  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2227  * end of the file.
2228  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2229  * but 0 when invalidating pagecache, don't throw away private data.
2230  */
2231 void unmap_mapping_range(struct address_space *mapping,
2232 		loff_t const holebegin, loff_t const holelen, int even_cows)
2233 {
2234 	struct zap_details details;
2235 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2236 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2237 
2238 	/* Check for overflow. */
2239 	if (sizeof(holelen) > sizeof(hlen)) {
2240 		long long holeend =
2241 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2242 		if (holeend & ~(long long)ULONG_MAX)
2243 			hlen = ULONG_MAX - hba + 1;
2244 	}
2245 
2246 	details.check_mapping = even_cows? NULL: mapping;
2247 	details.nonlinear_vma = NULL;
2248 	details.first_index = hba;
2249 	details.last_index = hba + hlen - 1;
2250 	if (details.last_index < details.first_index)
2251 		details.last_index = ULONG_MAX;
2252 	details.i_mmap_lock = &mapping->i_mmap_lock;
2253 
2254 	spin_lock(&mapping->i_mmap_lock);
2255 
2256 	/* Protect against endless unmapping loops */
2257 	mapping->truncate_count++;
2258 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2259 		if (mapping->truncate_count == 0)
2260 			reset_vma_truncate_counts(mapping);
2261 		mapping->truncate_count++;
2262 	}
2263 	details.truncate_count = mapping->truncate_count;
2264 
2265 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2266 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2267 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2268 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2269 	spin_unlock(&mapping->i_mmap_lock);
2270 }
2271 EXPORT_SYMBOL(unmap_mapping_range);
2272 
2273 /**
2274  * vmtruncate - unmap mappings "freed" by truncate() syscall
2275  * @inode: inode of the file used
2276  * @offset: file offset to start truncating
2277  *
2278  * NOTE! We have to be ready to update the memory sharing
2279  * between the file and the memory map for a potential last
2280  * incomplete page.  Ugly, but necessary.
2281  */
2282 int vmtruncate(struct inode * inode, loff_t offset)
2283 {
2284 	if (inode->i_size < offset) {
2285 		unsigned long limit;
2286 
2287 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2288 		if (limit != RLIM_INFINITY && offset > limit)
2289 			goto out_sig;
2290 		if (offset > inode->i_sb->s_maxbytes)
2291 			goto out_big;
2292 		i_size_write(inode, offset);
2293 	} else {
2294 		struct address_space *mapping = inode->i_mapping;
2295 
2296 		/*
2297 		 * truncation of in-use swapfiles is disallowed - it would
2298 		 * cause subsequent swapout to scribble on the now-freed
2299 		 * blocks.
2300 		 */
2301 		if (IS_SWAPFILE(inode))
2302 			return -ETXTBSY;
2303 		i_size_write(inode, offset);
2304 
2305 		/*
2306 		 * unmap_mapping_range is called twice, first simply for
2307 		 * efficiency so that truncate_inode_pages does fewer
2308 		 * single-page unmaps.  However after this first call, and
2309 		 * before truncate_inode_pages finishes, it is possible for
2310 		 * private pages to be COWed, which remain after
2311 		 * truncate_inode_pages finishes, hence the second
2312 		 * unmap_mapping_range call must be made for correctness.
2313 		 */
2314 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2315 		truncate_inode_pages(mapping, offset);
2316 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2317 	}
2318 
2319 	if (inode->i_op->truncate)
2320 		inode->i_op->truncate(inode);
2321 	return 0;
2322 
2323 out_sig:
2324 	send_sig(SIGXFSZ, current, 0);
2325 out_big:
2326 	return -EFBIG;
2327 }
2328 EXPORT_SYMBOL(vmtruncate);
2329 
2330 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2331 {
2332 	struct address_space *mapping = inode->i_mapping;
2333 
2334 	/*
2335 	 * If the underlying filesystem is not going to provide
2336 	 * a way to truncate a range of blocks (punch a hole) -
2337 	 * we should return failure right now.
2338 	 */
2339 	if (!inode->i_op->truncate_range)
2340 		return -ENOSYS;
2341 
2342 	mutex_lock(&inode->i_mutex);
2343 	down_write(&inode->i_alloc_sem);
2344 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2345 	truncate_inode_pages_range(mapping, offset, end);
2346 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2347 	inode->i_op->truncate_range(inode, offset, end);
2348 	up_write(&inode->i_alloc_sem);
2349 	mutex_unlock(&inode->i_mutex);
2350 
2351 	return 0;
2352 }
2353 
2354 /*
2355  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2356  * but allow concurrent faults), and pte mapped but not yet locked.
2357  * We return with mmap_sem still held, but pte unmapped and unlocked.
2358  */
2359 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2360 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2361 		int write_access, pte_t orig_pte)
2362 {
2363 	spinlock_t *ptl;
2364 	struct page *page;
2365 	swp_entry_t entry;
2366 	pte_t pte;
2367 	int ret = 0;
2368 
2369 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2370 		goto out;
2371 
2372 	entry = pte_to_swp_entry(orig_pte);
2373 	if (is_migration_entry(entry)) {
2374 		migration_entry_wait(mm, pmd, address);
2375 		goto out;
2376 	}
2377 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2378 	page = lookup_swap_cache(entry);
2379 	if (!page) {
2380 		grab_swap_token(); /* Contend for token _before_ read-in */
2381 		page = swapin_readahead(entry,
2382 					GFP_HIGHUSER_MOVABLE, vma, address);
2383 		if (!page) {
2384 			/*
2385 			 * Back out if somebody else faulted in this pte
2386 			 * while we released the pte lock.
2387 			 */
2388 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2389 			if (likely(pte_same(*page_table, orig_pte)))
2390 				ret = VM_FAULT_OOM;
2391 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2392 			goto unlock;
2393 		}
2394 
2395 		/* Had to read the page from swap area: Major fault */
2396 		ret = VM_FAULT_MAJOR;
2397 		count_vm_event(PGMAJFAULT);
2398 	}
2399 
2400 	mark_page_accessed(page);
2401 
2402 	lock_page(page);
2403 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2404 
2405 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2406 		ret = VM_FAULT_OOM;
2407 		unlock_page(page);
2408 		goto out;
2409 	}
2410 
2411 	/*
2412 	 * Back out if somebody else already faulted in this pte.
2413 	 */
2414 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2415 	if (unlikely(!pte_same(*page_table, orig_pte)))
2416 		goto out_nomap;
2417 
2418 	if (unlikely(!PageUptodate(page))) {
2419 		ret = VM_FAULT_SIGBUS;
2420 		goto out_nomap;
2421 	}
2422 
2423 	/* The page isn't present yet, go ahead with the fault. */
2424 
2425 	inc_mm_counter(mm, anon_rss);
2426 	pte = mk_pte(page, vma->vm_page_prot);
2427 	if (write_access && reuse_swap_page(page)) {
2428 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2429 		write_access = 0;
2430 	}
2431 
2432 	flush_icache_page(vma, page);
2433 	set_pte_at(mm, address, page_table, pte);
2434 	page_add_anon_rmap(page, vma, address);
2435 
2436 	swap_free(entry);
2437 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2438 		try_to_free_swap(page);
2439 	unlock_page(page);
2440 
2441 	if (write_access) {
2442 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2443 		if (ret & VM_FAULT_ERROR)
2444 			ret &= VM_FAULT_ERROR;
2445 		goto out;
2446 	}
2447 
2448 	/* No need to invalidate - it was non-present before */
2449 	update_mmu_cache(vma, address, pte);
2450 unlock:
2451 	pte_unmap_unlock(page_table, ptl);
2452 out:
2453 	return ret;
2454 out_nomap:
2455 	mem_cgroup_uncharge_page(page);
2456 	pte_unmap_unlock(page_table, ptl);
2457 	unlock_page(page);
2458 	page_cache_release(page);
2459 	return ret;
2460 }
2461 
2462 /*
2463  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464  * but allow concurrent faults), and pte mapped but not yet locked.
2465  * We return with mmap_sem still held, but pte unmapped and unlocked.
2466  */
2467 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2468 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2469 		int write_access)
2470 {
2471 	struct page *page;
2472 	spinlock_t *ptl;
2473 	pte_t entry;
2474 
2475 	/* Allocate our own private page. */
2476 	pte_unmap(page_table);
2477 
2478 	if (unlikely(anon_vma_prepare(vma)))
2479 		goto oom;
2480 	page = alloc_zeroed_user_highpage_movable(vma, address);
2481 	if (!page)
2482 		goto oom;
2483 	__SetPageUptodate(page);
2484 
2485 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2486 		goto oom_free_page;
2487 
2488 	entry = mk_pte(page, vma->vm_page_prot);
2489 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2490 
2491 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2492 	if (!pte_none(*page_table))
2493 		goto release;
2494 	inc_mm_counter(mm, anon_rss);
2495 	page_add_new_anon_rmap(page, vma, address);
2496 	set_pte_at(mm, address, page_table, entry);
2497 
2498 	/* No need to invalidate - it was non-present before */
2499 	update_mmu_cache(vma, address, entry);
2500 unlock:
2501 	pte_unmap_unlock(page_table, ptl);
2502 	return 0;
2503 release:
2504 	mem_cgroup_uncharge_page(page);
2505 	page_cache_release(page);
2506 	goto unlock;
2507 oom_free_page:
2508 	page_cache_release(page);
2509 oom:
2510 	return VM_FAULT_OOM;
2511 }
2512 
2513 /*
2514  * __do_fault() tries to create a new page mapping. It aggressively
2515  * tries to share with existing pages, but makes a separate copy if
2516  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2517  * the next page fault.
2518  *
2519  * As this is called only for pages that do not currently exist, we
2520  * do not need to flush old virtual caches or the TLB.
2521  *
2522  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2523  * but allow concurrent faults), and pte neither mapped nor locked.
2524  * We return with mmap_sem still held, but pte unmapped and unlocked.
2525  */
2526 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2527 		unsigned long address, pmd_t *pmd,
2528 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2529 {
2530 	pte_t *page_table;
2531 	spinlock_t *ptl;
2532 	struct page *page;
2533 	pte_t entry;
2534 	int anon = 0;
2535 	int charged = 0;
2536 	struct page *dirty_page = NULL;
2537 	struct vm_fault vmf;
2538 	int ret;
2539 	int page_mkwrite = 0;
2540 
2541 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2542 	vmf.pgoff = pgoff;
2543 	vmf.flags = flags;
2544 	vmf.page = NULL;
2545 
2546 	ret = vma->vm_ops->fault(vma, &vmf);
2547 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2548 		return ret;
2549 
2550 	/*
2551 	 * For consistency in subsequent calls, make the faulted page always
2552 	 * locked.
2553 	 */
2554 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2555 		lock_page(vmf.page);
2556 	else
2557 		VM_BUG_ON(!PageLocked(vmf.page));
2558 
2559 	/*
2560 	 * Should we do an early C-O-W break?
2561 	 */
2562 	page = vmf.page;
2563 	if (flags & FAULT_FLAG_WRITE) {
2564 		if (!(vma->vm_flags & VM_SHARED)) {
2565 			anon = 1;
2566 			if (unlikely(anon_vma_prepare(vma))) {
2567 				ret = VM_FAULT_OOM;
2568 				goto out;
2569 			}
2570 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2571 						vma, address);
2572 			if (!page) {
2573 				ret = VM_FAULT_OOM;
2574 				goto out;
2575 			}
2576 			if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2577 				ret = VM_FAULT_OOM;
2578 				page_cache_release(page);
2579 				goto out;
2580 			}
2581 			charged = 1;
2582 			/*
2583 			 * Don't let another task, with possibly unlocked vma,
2584 			 * keep the mlocked page.
2585 			 */
2586 			if (vma->vm_flags & VM_LOCKED)
2587 				clear_page_mlock(vmf.page);
2588 			copy_user_highpage(page, vmf.page, address, vma);
2589 			__SetPageUptodate(page);
2590 		} else {
2591 			/*
2592 			 * If the page will be shareable, see if the backing
2593 			 * address space wants to know that the page is about
2594 			 * to become writable
2595 			 */
2596 			if (vma->vm_ops->page_mkwrite) {
2597 				unlock_page(page);
2598 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2599 					ret = VM_FAULT_SIGBUS;
2600 					anon = 1; /* no anon but release vmf.page */
2601 					goto out_unlocked;
2602 				}
2603 				lock_page(page);
2604 				/*
2605 				 * XXX: this is not quite right (racy vs
2606 				 * invalidate) to unlock and relock the page
2607 				 * like this, however a better fix requires
2608 				 * reworking page_mkwrite locking API, which
2609 				 * is better done later.
2610 				 */
2611 				if (!page->mapping) {
2612 					ret = 0;
2613 					anon = 1; /* no anon but release vmf.page */
2614 					goto out;
2615 				}
2616 				page_mkwrite = 1;
2617 			}
2618 		}
2619 
2620 	}
2621 
2622 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2623 
2624 	/*
2625 	 * This silly early PAGE_DIRTY setting removes a race
2626 	 * due to the bad i386 page protection. But it's valid
2627 	 * for other architectures too.
2628 	 *
2629 	 * Note that if write_access is true, we either now have
2630 	 * an exclusive copy of the page, or this is a shared mapping,
2631 	 * so we can make it writable and dirty to avoid having to
2632 	 * handle that later.
2633 	 */
2634 	/* Only go through if we didn't race with anybody else... */
2635 	if (likely(pte_same(*page_table, orig_pte))) {
2636 		flush_icache_page(vma, page);
2637 		entry = mk_pte(page, vma->vm_page_prot);
2638 		if (flags & FAULT_FLAG_WRITE)
2639 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2640 		if (anon) {
2641 			inc_mm_counter(mm, anon_rss);
2642 			page_add_new_anon_rmap(page, vma, address);
2643 		} else {
2644 			inc_mm_counter(mm, file_rss);
2645 			page_add_file_rmap(page);
2646 			if (flags & FAULT_FLAG_WRITE) {
2647 				dirty_page = page;
2648 				get_page(dirty_page);
2649 			}
2650 		}
2651 		set_pte_at(mm, address, page_table, entry);
2652 
2653 		/* no need to invalidate: a not-present page won't be cached */
2654 		update_mmu_cache(vma, address, entry);
2655 	} else {
2656 		if (charged)
2657 			mem_cgroup_uncharge_page(page);
2658 		if (anon)
2659 			page_cache_release(page);
2660 		else
2661 			anon = 1; /* no anon but release faulted_page */
2662 	}
2663 
2664 	pte_unmap_unlock(page_table, ptl);
2665 
2666 out:
2667 	unlock_page(vmf.page);
2668 out_unlocked:
2669 	if (anon)
2670 		page_cache_release(vmf.page);
2671 	else if (dirty_page) {
2672 		if (vma->vm_file)
2673 			file_update_time(vma->vm_file);
2674 
2675 		set_page_dirty_balance(dirty_page, page_mkwrite);
2676 		put_page(dirty_page);
2677 	}
2678 
2679 	return ret;
2680 }
2681 
2682 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2683 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2684 		int write_access, pte_t orig_pte)
2685 {
2686 	pgoff_t pgoff = (((address & PAGE_MASK)
2687 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2688 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2689 
2690 	pte_unmap(page_table);
2691 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2692 }
2693 
2694 /*
2695  * Fault of a previously existing named mapping. Repopulate the pte
2696  * from the encoded file_pte if possible. This enables swappable
2697  * nonlinear vmas.
2698  *
2699  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2700  * but allow concurrent faults), and pte mapped but not yet locked.
2701  * We return with mmap_sem still held, but pte unmapped and unlocked.
2702  */
2703 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2704 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2705 		int write_access, pte_t orig_pte)
2706 {
2707 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2708 				(write_access ? FAULT_FLAG_WRITE : 0);
2709 	pgoff_t pgoff;
2710 
2711 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2712 		return 0;
2713 
2714 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2715 		/*
2716 		 * Page table corrupted: show pte and kill process.
2717 		 */
2718 		print_bad_pte(vma, address, orig_pte, NULL);
2719 		return VM_FAULT_OOM;
2720 	}
2721 
2722 	pgoff = pte_to_pgoff(orig_pte);
2723 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2724 }
2725 
2726 /*
2727  * These routines also need to handle stuff like marking pages dirty
2728  * and/or accessed for architectures that don't do it in hardware (most
2729  * RISC architectures).  The early dirtying is also good on the i386.
2730  *
2731  * There is also a hook called "update_mmu_cache()" that architectures
2732  * with external mmu caches can use to update those (ie the Sparc or
2733  * PowerPC hashed page tables that act as extended TLBs).
2734  *
2735  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736  * but allow concurrent faults), and pte mapped but not yet locked.
2737  * We return with mmap_sem still held, but pte unmapped and unlocked.
2738  */
2739 static inline int handle_pte_fault(struct mm_struct *mm,
2740 		struct vm_area_struct *vma, unsigned long address,
2741 		pte_t *pte, pmd_t *pmd, int write_access)
2742 {
2743 	pte_t entry;
2744 	spinlock_t *ptl;
2745 
2746 	entry = *pte;
2747 	if (!pte_present(entry)) {
2748 		if (pte_none(entry)) {
2749 			if (vma->vm_ops) {
2750 				if (likely(vma->vm_ops->fault))
2751 					return do_linear_fault(mm, vma, address,
2752 						pte, pmd, write_access, entry);
2753 			}
2754 			return do_anonymous_page(mm, vma, address,
2755 						 pte, pmd, write_access);
2756 		}
2757 		if (pte_file(entry))
2758 			return do_nonlinear_fault(mm, vma, address,
2759 					pte, pmd, write_access, entry);
2760 		return do_swap_page(mm, vma, address,
2761 					pte, pmd, write_access, entry);
2762 	}
2763 
2764 	ptl = pte_lockptr(mm, pmd);
2765 	spin_lock(ptl);
2766 	if (unlikely(!pte_same(*pte, entry)))
2767 		goto unlock;
2768 	if (write_access) {
2769 		if (!pte_write(entry))
2770 			return do_wp_page(mm, vma, address,
2771 					pte, pmd, ptl, entry);
2772 		entry = pte_mkdirty(entry);
2773 	}
2774 	entry = pte_mkyoung(entry);
2775 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2776 		update_mmu_cache(vma, address, entry);
2777 	} else {
2778 		/*
2779 		 * This is needed only for protection faults but the arch code
2780 		 * is not yet telling us if this is a protection fault or not.
2781 		 * This still avoids useless tlb flushes for .text page faults
2782 		 * with threads.
2783 		 */
2784 		if (write_access)
2785 			flush_tlb_page(vma, address);
2786 	}
2787 unlock:
2788 	pte_unmap_unlock(pte, ptl);
2789 	return 0;
2790 }
2791 
2792 /*
2793  * By the time we get here, we already hold the mm semaphore
2794  */
2795 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2796 		unsigned long address, int write_access)
2797 {
2798 	pgd_t *pgd;
2799 	pud_t *pud;
2800 	pmd_t *pmd;
2801 	pte_t *pte;
2802 
2803 	__set_current_state(TASK_RUNNING);
2804 
2805 	count_vm_event(PGFAULT);
2806 
2807 	if (unlikely(is_vm_hugetlb_page(vma)))
2808 		return hugetlb_fault(mm, vma, address, write_access);
2809 
2810 	pgd = pgd_offset(mm, address);
2811 	pud = pud_alloc(mm, pgd, address);
2812 	if (!pud)
2813 		return VM_FAULT_OOM;
2814 	pmd = pmd_alloc(mm, pud, address);
2815 	if (!pmd)
2816 		return VM_FAULT_OOM;
2817 	pte = pte_alloc_map(mm, pmd, address);
2818 	if (!pte)
2819 		return VM_FAULT_OOM;
2820 
2821 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2822 }
2823 
2824 #ifndef __PAGETABLE_PUD_FOLDED
2825 /*
2826  * Allocate page upper directory.
2827  * We've already handled the fast-path in-line.
2828  */
2829 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2830 {
2831 	pud_t *new = pud_alloc_one(mm, address);
2832 	if (!new)
2833 		return -ENOMEM;
2834 
2835 	smp_wmb(); /* See comment in __pte_alloc */
2836 
2837 	spin_lock(&mm->page_table_lock);
2838 	if (pgd_present(*pgd))		/* Another has populated it */
2839 		pud_free(mm, new);
2840 	else
2841 		pgd_populate(mm, pgd, new);
2842 	spin_unlock(&mm->page_table_lock);
2843 	return 0;
2844 }
2845 #endif /* __PAGETABLE_PUD_FOLDED */
2846 
2847 #ifndef __PAGETABLE_PMD_FOLDED
2848 /*
2849  * Allocate page middle directory.
2850  * We've already handled the fast-path in-line.
2851  */
2852 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2853 {
2854 	pmd_t *new = pmd_alloc_one(mm, address);
2855 	if (!new)
2856 		return -ENOMEM;
2857 
2858 	smp_wmb(); /* See comment in __pte_alloc */
2859 
2860 	spin_lock(&mm->page_table_lock);
2861 #ifndef __ARCH_HAS_4LEVEL_HACK
2862 	if (pud_present(*pud))		/* Another has populated it */
2863 		pmd_free(mm, new);
2864 	else
2865 		pud_populate(mm, pud, new);
2866 #else
2867 	if (pgd_present(*pud))		/* Another has populated it */
2868 		pmd_free(mm, new);
2869 	else
2870 		pgd_populate(mm, pud, new);
2871 #endif /* __ARCH_HAS_4LEVEL_HACK */
2872 	spin_unlock(&mm->page_table_lock);
2873 	return 0;
2874 }
2875 #endif /* __PAGETABLE_PMD_FOLDED */
2876 
2877 int make_pages_present(unsigned long addr, unsigned long end)
2878 {
2879 	int ret, len, write;
2880 	struct vm_area_struct * vma;
2881 
2882 	vma = find_vma(current->mm, addr);
2883 	if (!vma)
2884 		return -ENOMEM;
2885 	write = (vma->vm_flags & VM_WRITE) != 0;
2886 	BUG_ON(addr >= end);
2887 	BUG_ON(end > vma->vm_end);
2888 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2889 	ret = get_user_pages(current, current->mm, addr,
2890 			len, write, 0, NULL, NULL);
2891 	if (ret < 0)
2892 		return ret;
2893 	return ret == len ? 0 : -EFAULT;
2894 }
2895 
2896 #if !defined(__HAVE_ARCH_GATE_AREA)
2897 
2898 #if defined(AT_SYSINFO_EHDR)
2899 static struct vm_area_struct gate_vma;
2900 
2901 static int __init gate_vma_init(void)
2902 {
2903 	gate_vma.vm_mm = NULL;
2904 	gate_vma.vm_start = FIXADDR_USER_START;
2905 	gate_vma.vm_end = FIXADDR_USER_END;
2906 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2907 	gate_vma.vm_page_prot = __P101;
2908 	/*
2909 	 * Make sure the vDSO gets into every core dump.
2910 	 * Dumping its contents makes post-mortem fully interpretable later
2911 	 * without matching up the same kernel and hardware config to see
2912 	 * what PC values meant.
2913 	 */
2914 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2915 	return 0;
2916 }
2917 __initcall(gate_vma_init);
2918 #endif
2919 
2920 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2921 {
2922 #ifdef AT_SYSINFO_EHDR
2923 	return &gate_vma;
2924 #else
2925 	return NULL;
2926 #endif
2927 }
2928 
2929 int in_gate_area_no_task(unsigned long addr)
2930 {
2931 #ifdef AT_SYSINFO_EHDR
2932 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2933 		return 1;
2934 #endif
2935 	return 0;
2936 }
2937 
2938 #endif	/* __HAVE_ARCH_GATE_AREA */
2939 
2940 #ifdef CONFIG_HAVE_IOREMAP_PROT
2941 int follow_phys(struct vm_area_struct *vma,
2942 		unsigned long address, unsigned int flags,
2943 		unsigned long *prot, resource_size_t *phys)
2944 {
2945 	pgd_t *pgd;
2946 	pud_t *pud;
2947 	pmd_t *pmd;
2948 	pte_t *ptep, pte;
2949 	spinlock_t *ptl;
2950 	resource_size_t phys_addr = 0;
2951 	struct mm_struct *mm = vma->vm_mm;
2952 	int ret = -EINVAL;
2953 
2954 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2955 		goto out;
2956 
2957 	pgd = pgd_offset(mm, address);
2958 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2959 		goto out;
2960 
2961 	pud = pud_offset(pgd, address);
2962 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2963 		goto out;
2964 
2965 	pmd = pmd_offset(pud, address);
2966 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2967 		goto out;
2968 
2969 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2970 	if (pmd_huge(*pmd))
2971 		goto out;
2972 
2973 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2974 	if (!ptep)
2975 		goto out;
2976 
2977 	pte = *ptep;
2978 	if (!pte_present(pte))
2979 		goto unlock;
2980 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2981 		goto unlock;
2982 	phys_addr = pte_pfn(pte);
2983 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2984 
2985 	*prot = pgprot_val(pte_pgprot(pte));
2986 	*phys = phys_addr;
2987 	ret = 0;
2988 
2989 unlock:
2990 	pte_unmap_unlock(ptep, ptl);
2991 out:
2992 	return ret;
2993 }
2994 
2995 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2996 			void *buf, int len, int write)
2997 {
2998 	resource_size_t phys_addr;
2999 	unsigned long prot = 0;
3000 	void __iomem *maddr;
3001 	int offset = addr & (PAGE_SIZE-1);
3002 
3003 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3004 		return -EINVAL;
3005 
3006 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3007 	if (write)
3008 		memcpy_toio(maddr + offset, buf, len);
3009 	else
3010 		memcpy_fromio(buf, maddr + offset, len);
3011 	iounmap(maddr);
3012 
3013 	return len;
3014 }
3015 #endif
3016 
3017 /*
3018  * Access another process' address space.
3019  * Source/target buffer must be kernel space,
3020  * Do not walk the page table directly, use get_user_pages
3021  */
3022 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3023 {
3024 	struct mm_struct *mm;
3025 	struct vm_area_struct *vma;
3026 	void *old_buf = buf;
3027 
3028 	mm = get_task_mm(tsk);
3029 	if (!mm)
3030 		return 0;
3031 
3032 	down_read(&mm->mmap_sem);
3033 	/* ignore errors, just check how much was successfully transferred */
3034 	while (len) {
3035 		int bytes, ret, offset;
3036 		void *maddr;
3037 		struct page *page = NULL;
3038 
3039 		ret = get_user_pages(tsk, mm, addr, 1,
3040 				write, 1, &page, &vma);
3041 		if (ret <= 0) {
3042 			/*
3043 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3044 			 * we can access using slightly different code.
3045 			 */
3046 #ifdef CONFIG_HAVE_IOREMAP_PROT
3047 			vma = find_vma(mm, addr);
3048 			if (!vma)
3049 				break;
3050 			if (vma->vm_ops && vma->vm_ops->access)
3051 				ret = vma->vm_ops->access(vma, addr, buf,
3052 							  len, write);
3053 			if (ret <= 0)
3054 #endif
3055 				break;
3056 			bytes = ret;
3057 		} else {
3058 			bytes = len;
3059 			offset = addr & (PAGE_SIZE-1);
3060 			if (bytes > PAGE_SIZE-offset)
3061 				bytes = PAGE_SIZE-offset;
3062 
3063 			maddr = kmap(page);
3064 			if (write) {
3065 				copy_to_user_page(vma, page, addr,
3066 						  maddr + offset, buf, bytes);
3067 				set_page_dirty_lock(page);
3068 			} else {
3069 				copy_from_user_page(vma, page, addr,
3070 						    buf, maddr + offset, bytes);
3071 			}
3072 			kunmap(page);
3073 			page_cache_release(page);
3074 		}
3075 		len -= bytes;
3076 		buf += bytes;
3077 		addr += bytes;
3078 	}
3079 	up_read(&mm->mmap_sem);
3080 	mmput(mm);
3081 
3082 	return buf - old_buf;
3083 }
3084 
3085 /*
3086  * Print the name of a VMA.
3087  */
3088 void print_vma_addr(char *prefix, unsigned long ip)
3089 {
3090 	struct mm_struct *mm = current->mm;
3091 	struct vm_area_struct *vma;
3092 
3093 	/*
3094 	 * Do not print if we are in atomic
3095 	 * contexts (in exception stacks, etc.):
3096 	 */
3097 	if (preempt_count())
3098 		return;
3099 
3100 	down_read(&mm->mmap_sem);
3101 	vma = find_vma(mm, ip);
3102 	if (vma && vma->vm_file) {
3103 		struct file *f = vma->vm_file;
3104 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3105 		if (buf) {
3106 			char *p, *s;
3107 
3108 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3109 			if (IS_ERR(p))
3110 				p = "?";
3111 			s = strrchr(p, '/');
3112 			if (s)
3113 				p = s+1;
3114 			printk("%s%s[%lx+%lx]", prefix, p,
3115 					vma->vm_start,
3116 					vma->vm_end - vma->vm_start);
3117 			free_page((unsigned long)buf);
3118 		}
3119 	}
3120 	up_read(&current->mm->mmap_sem);
3121 }
3122 
3123 #ifdef CONFIG_PROVE_LOCKING
3124 void might_fault(void)
3125 {
3126 	might_sleep();
3127 	/*
3128 	 * it would be nicer only to annotate paths which are not under
3129 	 * pagefault_disable, however that requires a larger audit and
3130 	 * providing helpers like get_user_atomic.
3131 	 */
3132 	if (!in_atomic() && current->mm)
3133 		might_lock_read(&current->mm->mmap_sem);
3134 }
3135 EXPORT_SYMBOL(might_fault);
3136 #endif
3137