xref: /openbmc/linux/mm/memory.c (revision 22b31eec63e5f2e219a3ee15f456897272bc73e8)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58 
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 			  pte_t pte, struct page *page)
380 {
381 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 	pud_t *pud = pud_offset(pgd, addr);
383 	pmd_t *pmd = pmd_offset(pud, addr);
384 	struct address_space *mapping;
385 	pgoff_t index;
386 
387 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
388 	index = linear_page_index(vma, addr);
389 
390 	printk(KERN_EMERG "Bad page map in process %s  pte:%08llx pmd:%08llx\n",
391 		current->comm,
392 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
393 	if (page) {
394 		printk(KERN_EMERG
395 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
396 		page, (void *)page->flags, page_count(page),
397 		page_mapcount(page), page->mapping, page->index);
398 	}
399 	printk(KERN_EMERG
400 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
401 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
402 	/*
403 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
404 	 */
405 	if (vma->vm_ops)
406 		print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n",
407 				(unsigned long)vma->vm_ops->fault);
408 	if (vma->vm_file && vma->vm_file->f_op)
409 		print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n",
410 				(unsigned long)vma->vm_file->f_op->mmap);
411 	dump_stack();
412 	add_taint(TAINT_BAD_PAGE);
413 }
414 
415 static inline int is_cow_mapping(unsigned int flags)
416 {
417 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
418 }
419 
420 /*
421  * vm_normal_page -- This function gets the "struct page" associated with a pte.
422  *
423  * "Special" mappings do not wish to be associated with a "struct page" (either
424  * it doesn't exist, or it exists but they don't want to touch it). In this
425  * case, NULL is returned here. "Normal" mappings do have a struct page.
426  *
427  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
428  * pte bit, in which case this function is trivial. Secondly, an architecture
429  * may not have a spare pte bit, which requires a more complicated scheme,
430  * described below.
431  *
432  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
433  * special mapping (even if there are underlying and valid "struct pages").
434  * COWed pages of a VM_PFNMAP are always normal.
435  *
436  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
437  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
438  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
439  * mapping will always honor the rule
440  *
441  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
442  *
443  * And for normal mappings this is false.
444  *
445  * This restricts such mappings to be a linear translation from virtual address
446  * to pfn. To get around this restriction, we allow arbitrary mappings so long
447  * as the vma is not a COW mapping; in that case, we know that all ptes are
448  * special (because none can have been COWed).
449  *
450  *
451  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
452  *
453  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
454  * page" backing, however the difference is that _all_ pages with a struct
455  * page (that is, those where pfn_valid is true) are refcounted and considered
456  * normal pages by the VM. The disadvantage is that pages are refcounted
457  * (which can be slower and simply not an option for some PFNMAP users). The
458  * advantage is that we don't have to follow the strict linearity rule of
459  * PFNMAP mappings in order to support COWable mappings.
460  *
461  */
462 #ifdef __HAVE_ARCH_PTE_SPECIAL
463 # define HAVE_PTE_SPECIAL 1
464 #else
465 # define HAVE_PTE_SPECIAL 0
466 #endif
467 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
468 				pte_t pte)
469 {
470 	unsigned long pfn = pte_pfn(pte);
471 
472 	if (HAVE_PTE_SPECIAL) {
473 		if (likely(!pte_special(pte)))
474 			goto check_pfn;
475 		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
476 			print_bad_pte(vma, addr, pte, NULL);
477 		return NULL;
478 	}
479 
480 	/* !HAVE_PTE_SPECIAL case follows: */
481 
482 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
483 		if (vma->vm_flags & VM_MIXEDMAP) {
484 			if (!pfn_valid(pfn))
485 				return NULL;
486 			goto out;
487 		} else {
488 			unsigned long off;
489 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
490 			if (pfn == vma->vm_pgoff + off)
491 				return NULL;
492 			if (!is_cow_mapping(vma->vm_flags))
493 				return NULL;
494 		}
495 	}
496 
497 check_pfn:
498 	if (unlikely(pfn > highest_memmap_pfn)) {
499 		print_bad_pte(vma, addr, pte, NULL);
500 		return NULL;
501 	}
502 
503 	/*
504 	 * NOTE! We still have PageReserved() pages in the page tables.
505 	 * eg. VDSO mappings can cause them to exist.
506 	 */
507 out:
508 	return pfn_to_page(pfn);
509 }
510 
511 /*
512  * copy one vm_area from one task to the other. Assumes the page tables
513  * already present in the new task to be cleared in the whole range
514  * covered by this vma.
515  */
516 
517 static inline void
518 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
519 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
520 		unsigned long addr, int *rss)
521 {
522 	unsigned long vm_flags = vma->vm_flags;
523 	pte_t pte = *src_pte;
524 	struct page *page;
525 
526 	/* pte contains position in swap or file, so copy. */
527 	if (unlikely(!pte_present(pte))) {
528 		if (!pte_file(pte)) {
529 			swp_entry_t entry = pte_to_swp_entry(pte);
530 
531 			swap_duplicate(entry);
532 			/* make sure dst_mm is on swapoff's mmlist. */
533 			if (unlikely(list_empty(&dst_mm->mmlist))) {
534 				spin_lock(&mmlist_lock);
535 				if (list_empty(&dst_mm->mmlist))
536 					list_add(&dst_mm->mmlist,
537 						 &src_mm->mmlist);
538 				spin_unlock(&mmlist_lock);
539 			}
540 			if (is_write_migration_entry(entry) &&
541 					is_cow_mapping(vm_flags)) {
542 				/*
543 				 * COW mappings require pages in both parent
544 				 * and child to be set to read.
545 				 */
546 				make_migration_entry_read(&entry);
547 				pte = swp_entry_to_pte(entry);
548 				set_pte_at(src_mm, addr, src_pte, pte);
549 			}
550 		}
551 		goto out_set_pte;
552 	}
553 
554 	/*
555 	 * If it's a COW mapping, write protect it both
556 	 * in the parent and the child
557 	 */
558 	if (is_cow_mapping(vm_flags)) {
559 		ptep_set_wrprotect(src_mm, addr, src_pte);
560 		pte = pte_wrprotect(pte);
561 	}
562 
563 	/*
564 	 * If it's a shared mapping, mark it clean in
565 	 * the child
566 	 */
567 	if (vm_flags & VM_SHARED)
568 		pte = pte_mkclean(pte);
569 	pte = pte_mkold(pte);
570 
571 	page = vm_normal_page(vma, addr, pte);
572 	if (page) {
573 		get_page(page);
574 		page_dup_rmap(page, vma, addr);
575 		rss[!!PageAnon(page)]++;
576 	}
577 
578 out_set_pte:
579 	set_pte_at(dst_mm, addr, dst_pte, pte);
580 }
581 
582 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
584 		unsigned long addr, unsigned long end)
585 {
586 	pte_t *src_pte, *dst_pte;
587 	spinlock_t *src_ptl, *dst_ptl;
588 	int progress = 0;
589 	int rss[2];
590 
591 again:
592 	rss[1] = rss[0] = 0;
593 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
594 	if (!dst_pte)
595 		return -ENOMEM;
596 	src_pte = pte_offset_map_nested(src_pmd, addr);
597 	src_ptl = pte_lockptr(src_mm, src_pmd);
598 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
599 	arch_enter_lazy_mmu_mode();
600 
601 	do {
602 		/*
603 		 * We are holding two locks at this point - either of them
604 		 * could generate latencies in another task on another CPU.
605 		 */
606 		if (progress >= 32) {
607 			progress = 0;
608 			if (need_resched() ||
609 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
610 				break;
611 		}
612 		if (pte_none(*src_pte)) {
613 			progress++;
614 			continue;
615 		}
616 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
617 		progress += 8;
618 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
619 
620 	arch_leave_lazy_mmu_mode();
621 	spin_unlock(src_ptl);
622 	pte_unmap_nested(src_pte - 1);
623 	add_mm_rss(dst_mm, rss[0], rss[1]);
624 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
625 	cond_resched();
626 	if (addr != end)
627 		goto again;
628 	return 0;
629 }
630 
631 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
632 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
633 		unsigned long addr, unsigned long end)
634 {
635 	pmd_t *src_pmd, *dst_pmd;
636 	unsigned long next;
637 
638 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
639 	if (!dst_pmd)
640 		return -ENOMEM;
641 	src_pmd = pmd_offset(src_pud, addr);
642 	do {
643 		next = pmd_addr_end(addr, end);
644 		if (pmd_none_or_clear_bad(src_pmd))
645 			continue;
646 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
647 						vma, addr, next))
648 			return -ENOMEM;
649 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
650 	return 0;
651 }
652 
653 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
654 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
655 		unsigned long addr, unsigned long end)
656 {
657 	pud_t *src_pud, *dst_pud;
658 	unsigned long next;
659 
660 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
661 	if (!dst_pud)
662 		return -ENOMEM;
663 	src_pud = pud_offset(src_pgd, addr);
664 	do {
665 		next = pud_addr_end(addr, end);
666 		if (pud_none_or_clear_bad(src_pud))
667 			continue;
668 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
669 						vma, addr, next))
670 			return -ENOMEM;
671 	} while (dst_pud++, src_pud++, addr = next, addr != end);
672 	return 0;
673 }
674 
675 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
676 		struct vm_area_struct *vma)
677 {
678 	pgd_t *src_pgd, *dst_pgd;
679 	unsigned long next;
680 	unsigned long addr = vma->vm_start;
681 	unsigned long end = vma->vm_end;
682 	int ret;
683 
684 	/*
685 	 * Don't copy ptes where a page fault will fill them correctly.
686 	 * Fork becomes much lighter when there are big shared or private
687 	 * readonly mappings. The tradeoff is that copy_page_range is more
688 	 * efficient than faulting.
689 	 */
690 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
691 		if (!vma->anon_vma)
692 			return 0;
693 	}
694 
695 	if (is_vm_hugetlb_page(vma))
696 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
697 
698 	if (unlikely(is_pfn_mapping(vma))) {
699 		/*
700 		 * We do not free on error cases below as remove_vma
701 		 * gets called on error from higher level routine
702 		 */
703 		ret = track_pfn_vma_copy(vma);
704 		if (ret)
705 			return ret;
706 	}
707 
708 	/*
709 	 * We need to invalidate the secondary MMU mappings only when
710 	 * there could be a permission downgrade on the ptes of the
711 	 * parent mm. And a permission downgrade will only happen if
712 	 * is_cow_mapping() returns true.
713 	 */
714 	if (is_cow_mapping(vma->vm_flags))
715 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
716 
717 	ret = 0;
718 	dst_pgd = pgd_offset(dst_mm, addr);
719 	src_pgd = pgd_offset(src_mm, addr);
720 	do {
721 		next = pgd_addr_end(addr, end);
722 		if (pgd_none_or_clear_bad(src_pgd))
723 			continue;
724 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
725 					    vma, addr, next))) {
726 			ret = -ENOMEM;
727 			break;
728 		}
729 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
730 
731 	if (is_cow_mapping(vma->vm_flags))
732 		mmu_notifier_invalidate_range_end(src_mm,
733 						  vma->vm_start, end);
734 	return ret;
735 }
736 
737 static unsigned long zap_pte_range(struct mmu_gather *tlb,
738 				struct vm_area_struct *vma, pmd_t *pmd,
739 				unsigned long addr, unsigned long end,
740 				long *zap_work, struct zap_details *details)
741 {
742 	struct mm_struct *mm = tlb->mm;
743 	pte_t *pte;
744 	spinlock_t *ptl;
745 	int file_rss = 0;
746 	int anon_rss = 0;
747 
748 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
749 	arch_enter_lazy_mmu_mode();
750 	do {
751 		pte_t ptent = *pte;
752 		if (pte_none(ptent)) {
753 			(*zap_work)--;
754 			continue;
755 		}
756 
757 		(*zap_work) -= PAGE_SIZE;
758 
759 		if (pte_present(ptent)) {
760 			struct page *page;
761 
762 			page = vm_normal_page(vma, addr, ptent);
763 			if (unlikely(details) && page) {
764 				/*
765 				 * unmap_shared_mapping_pages() wants to
766 				 * invalidate cache without truncating:
767 				 * unmap shared but keep private pages.
768 				 */
769 				if (details->check_mapping &&
770 				    details->check_mapping != page->mapping)
771 					continue;
772 				/*
773 				 * Each page->index must be checked when
774 				 * invalidating or truncating nonlinear.
775 				 */
776 				if (details->nonlinear_vma &&
777 				    (page->index < details->first_index ||
778 				     page->index > details->last_index))
779 					continue;
780 			}
781 			ptent = ptep_get_and_clear_full(mm, addr, pte,
782 							tlb->fullmm);
783 			tlb_remove_tlb_entry(tlb, pte, addr);
784 			if (unlikely(!page))
785 				continue;
786 			if (unlikely(details) && details->nonlinear_vma
787 			    && linear_page_index(details->nonlinear_vma,
788 						addr) != page->index)
789 				set_pte_at(mm, addr, pte,
790 					   pgoff_to_pte(page->index));
791 			if (PageAnon(page))
792 				anon_rss--;
793 			else {
794 				if (pte_dirty(ptent))
795 					set_page_dirty(page);
796 				if (pte_young(ptent) &&
797 				    likely(!VM_SequentialReadHint(vma)))
798 					mark_page_accessed(page);
799 				file_rss--;
800 			}
801 			page_remove_rmap(page, vma);
802 			if (unlikely(page_mapcount(page) < 0))
803 				print_bad_pte(vma, addr, ptent, page);
804 			tlb_remove_page(tlb, page);
805 			continue;
806 		}
807 		/*
808 		 * If details->check_mapping, we leave swap entries;
809 		 * if details->nonlinear_vma, we leave file entries.
810 		 */
811 		if (unlikely(details))
812 			continue;
813 		if (!pte_file(ptent))
814 			free_swap_and_cache(pte_to_swp_entry(ptent));
815 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
816 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
817 
818 	add_mm_rss(mm, file_rss, anon_rss);
819 	arch_leave_lazy_mmu_mode();
820 	pte_unmap_unlock(pte - 1, ptl);
821 
822 	return addr;
823 }
824 
825 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
826 				struct vm_area_struct *vma, pud_t *pud,
827 				unsigned long addr, unsigned long end,
828 				long *zap_work, struct zap_details *details)
829 {
830 	pmd_t *pmd;
831 	unsigned long next;
832 
833 	pmd = pmd_offset(pud, addr);
834 	do {
835 		next = pmd_addr_end(addr, end);
836 		if (pmd_none_or_clear_bad(pmd)) {
837 			(*zap_work)--;
838 			continue;
839 		}
840 		next = zap_pte_range(tlb, vma, pmd, addr, next,
841 						zap_work, details);
842 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
843 
844 	return addr;
845 }
846 
847 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
848 				struct vm_area_struct *vma, pgd_t *pgd,
849 				unsigned long addr, unsigned long end,
850 				long *zap_work, struct zap_details *details)
851 {
852 	pud_t *pud;
853 	unsigned long next;
854 
855 	pud = pud_offset(pgd, addr);
856 	do {
857 		next = pud_addr_end(addr, end);
858 		if (pud_none_or_clear_bad(pud)) {
859 			(*zap_work)--;
860 			continue;
861 		}
862 		next = zap_pmd_range(tlb, vma, pud, addr, next,
863 						zap_work, details);
864 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
865 
866 	return addr;
867 }
868 
869 static unsigned long unmap_page_range(struct mmu_gather *tlb,
870 				struct vm_area_struct *vma,
871 				unsigned long addr, unsigned long end,
872 				long *zap_work, struct zap_details *details)
873 {
874 	pgd_t *pgd;
875 	unsigned long next;
876 
877 	if (details && !details->check_mapping && !details->nonlinear_vma)
878 		details = NULL;
879 
880 	BUG_ON(addr >= end);
881 	tlb_start_vma(tlb, vma);
882 	pgd = pgd_offset(vma->vm_mm, addr);
883 	do {
884 		next = pgd_addr_end(addr, end);
885 		if (pgd_none_or_clear_bad(pgd)) {
886 			(*zap_work)--;
887 			continue;
888 		}
889 		next = zap_pud_range(tlb, vma, pgd, addr, next,
890 						zap_work, details);
891 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
892 	tlb_end_vma(tlb, vma);
893 
894 	return addr;
895 }
896 
897 #ifdef CONFIG_PREEMPT
898 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
899 #else
900 /* No preempt: go for improved straight-line efficiency */
901 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
902 #endif
903 
904 /**
905  * unmap_vmas - unmap a range of memory covered by a list of vma's
906  * @tlbp: address of the caller's struct mmu_gather
907  * @vma: the starting vma
908  * @start_addr: virtual address at which to start unmapping
909  * @end_addr: virtual address at which to end unmapping
910  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
911  * @details: details of nonlinear truncation or shared cache invalidation
912  *
913  * Returns the end address of the unmapping (restart addr if interrupted).
914  *
915  * Unmap all pages in the vma list.
916  *
917  * We aim to not hold locks for too long (for scheduling latency reasons).
918  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
919  * return the ending mmu_gather to the caller.
920  *
921  * Only addresses between `start' and `end' will be unmapped.
922  *
923  * The VMA list must be sorted in ascending virtual address order.
924  *
925  * unmap_vmas() assumes that the caller will flush the whole unmapped address
926  * range after unmap_vmas() returns.  So the only responsibility here is to
927  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
928  * drops the lock and schedules.
929  */
930 unsigned long unmap_vmas(struct mmu_gather **tlbp,
931 		struct vm_area_struct *vma, unsigned long start_addr,
932 		unsigned long end_addr, unsigned long *nr_accounted,
933 		struct zap_details *details)
934 {
935 	long zap_work = ZAP_BLOCK_SIZE;
936 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
937 	int tlb_start_valid = 0;
938 	unsigned long start = start_addr;
939 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
940 	int fullmm = (*tlbp)->fullmm;
941 	struct mm_struct *mm = vma->vm_mm;
942 
943 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
944 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
945 		unsigned long end;
946 
947 		start = max(vma->vm_start, start_addr);
948 		if (start >= vma->vm_end)
949 			continue;
950 		end = min(vma->vm_end, end_addr);
951 		if (end <= vma->vm_start)
952 			continue;
953 
954 		if (vma->vm_flags & VM_ACCOUNT)
955 			*nr_accounted += (end - start) >> PAGE_SHIFT;
956 
957 		if (unlikely(is_pfn_mapping(vma)))
958 			untrack_pfn_vma(vma, 0, 0);
959 
960 		while (start != end) {
961 			if (!tlb_start_valid) {
962 				tlb_start = start;
963 				tlb_start_valid = 1;
964 			}
965 
966 			if (unlikely(is_vm_hugetlb_page(vma))) {
967 				/*
968 				 * It is undesirable to test vma->vm_file as it
969 				 * should be non-null for valid hugetlb area.
970 				 * However, vm_file will be NULL in the error
971 				 * cleanup path of do_mmap_pgoff. When
972 				 * hugetlbfs ->mmap method fails,
973 				 * do_mmap_pgoff() nullifies vma->vm_file
974 				 * before calling this function to clean up.
975 				 * Since no pte has actually been setup, it is
976 				 * safe to do nothing in this case.
977 				 */
978 				if (vma->vm_file) {
979 					unmap_hugepage_range(vma, start, end, NULL);
980 					zap_work -= (end - start) /
981 					pages_per_huge_page(hstate_vma(vma));
982 				}
983 
984 				start = end;
985 			} else
986 				start = unmap_page_range(*tlbp, vma,
987 						start, end, &zap_work, details);
988 
989 			if (zap_work > 0) {
990 				BUG_ON(start != end);
991 				break;
992 			}
993 
994 			tlb_finish_mmu(*tlbp, tlb_start, start);
995 
996 			if (need_resched() ||
997 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
998 				if (i_mmap_lock) {
999 					*tlbp = NULL;
1000 					goto out;
1001 				}
1002 				cond_resched();
1003 			}
1004 
1005 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1006 			tlb_start_valid = 0;
1007 			zap_work = ZAP_BLOCK_SIZE;
1008 		}
1009 	}
1010 out:
1011 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1012 	return start;	/* which is now the end (or restart) address */
1013 }
1014 
1015 /**
1016  * zap_page_range - remove user pages in a given range
1017  * @vma: vm_area_struct holding the applicable pages
1018  * @address: starting address of pages to zap
1019  * @size: number of bytes to zap
1020  * @details: details of nonlinear truncation or shared cache invalidation
1021  */
1022 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1023 		unsigned long size, struct zap_details *details)
1024 {
1025 	struct mm_struct *mm = vma->vm_mm;
1026 	struct mmu_gather *tlb;
1027 	unsigned long end = address + size;
1028 	unsigned long nr_accounted = 0;
1029 
1030 	lru_add_drain();
1031 	tlb = tlb_gather_mmu(mm, 0);
1032 	update_hiwater_rss(mm);
1033 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1034 	if (tlb)
1035 		tlb_finish_mmu(tlb, address, end);
1036 	return end;
1037 }
1038 
1039 /**
1040  * zap_vma_ptes - remove ptes mapping the vma
1041  * @vma: vm_area_struct holding ptes to be zapped
1042  * @address: starting address of pages to zap
1043  * @size: number of bytes to zap
1044  *
1045  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1046  *
1047  * The entire address range must be fully contained within the vma.
1048  *
1049  * Returns 0 if successful.
1050  */
1051 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1052 		unsigned long size)
1053 {
1054 	if (address < vma->vm_start || address + size > vma->vm_end ||
1055 	    		!(vma->vm_flags & VM_PFNMAP))
1056 		return -1;
1057 	zap_page_range(vma, address, size, NULL);
1058 	return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1061 
1062 /*
1063  * Do a quick page-table lookup for a single page.
1064  */
1065 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1066 			unsigned int flags)
1067 {
1068 	pgd_t *pgd;
1069 	pud_t *pud;
1070 	pmd_t *pmd;
1071 	pte_t *ptep, pte;
1072 	spinlock_t *ptl;
1073 	struct page *page;
1074 	struct mm_struct *mm = vma->vm_mm;
1075 
1076 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1077 	if (!IS_ERR(page)) {
1078 		BUG_ON(flags & FOLL_GET);
1079 		goto out;
1080 	}
1081 
1082 	page = NULL;
1083 	pgd = pgd_offset(mm, address);
1084 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1085 		goto no_page_table;
1086 
1087 	pud = pud_offset(pgd, address);
1088 	if (pud_none(*pud))
1089 		goto no_page_table;
1090 	if (pud_huge(*pud)) {
1091 		BUG_ON(flags & FOLL_GET);
1092 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1093 		goto out;
1094 	}
1095 	if (unlikely(pud_bad(*pud)))
1096 		goto no_page_table;
1097 
1098 	pmd = pmd_offset(pud, address);
1099 	if (pmd_none(*pmd))
1100 		goto no_page_table;
1101 	if (pmd_huge(*pmd)) {
1102 		BUG_ON(flags & FOLL_GET);
1103 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1104 		goto out;
1105 	}
1106 	if (unlikely(pmd_bad(*pmd)))
1107 		goto no_page_table;
1108 
1109 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1110 
1111 	pte = *ptep;
1112 	if (!pte_present(pte))
1113 		goto no_page;
1114 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1115 		goto unlock;
1116 	page = vm_normal_page(vma, address, pte);
1117 	if (unlikely(!page))
1118 		goto bad_page;
1119 
1120 	if (flags & FOLL_GET)
1121 		get_page(page);
1122 	if (flags & FOLL_TOUCH) {
1123 		if ((flags & FOLL_WRITE) &&
1124 		    !pte_dirty(pte) && !PageDirty(page))
1125 			set_page_dirty(page);
1126 		mark_page_accessed(page);
1127 	}
1128 unlock:
1129 	pte_unmap_unlock(ptep, ptl);
1130 out:
1131 	return page;
1132 
1133 bad_page:
1134 	pte_unmap_unlock(ptep, ptl);
1135 	return ERR_PTR(-EFAULT);
1136 
1137 no_page:
1138 	pte_unmap_unlock(ptep, ptl);
1139 	if (!pte_none(pte))
1140 		return page;
1141 	/* Fall through to ZERO_PAGE handling */
1142 no_page_table:
1143 	/*
1144 	 * When core dumping an enormous anonymous area that nobody
1145 	 * has touched so far, we don't want to allocate page tables.
1146 	 */
1147 	if (flags & FOLL_ANON) {
1148 		page = ZERO_PAGE(0);
1149 		if (flags & FOLL_GET)
1150 			get_page(page);
1151 		BUG_ON(flags & FOLL_WRITE);
1152 	}
1153 	return page;
1154 }
1155 
1156 /* Can we do the FOLL_ANON optimization? */
1157 static inline int use_zero_page(struct vm_area_struct *vma)
1158 {
1159 	/*
1160 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1161 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1162 	 * we want to get the page from the page tables to make sure
1163 	 * that we serialize and update with any other user of that
1164 	 * mapping.
1165 	 */
1166 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1167 		return 0;
1168 	/*
1169 	 * And if we have a fault routine, it's not an anonymous region.
1170 	 */
1171 	return !vma->vm_ops || !vma->vm_ops->fault;
1172 }
1173 
1174 
1175 
1176 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1177 		     unsigned long start, int len, int flags,
1178 		struct page **pages, struct vm_area_struct **vmas)
1179 {
1180 	int i;
1181 	unsigned int vm_flags = 0;
1182 	int write = !!(flags & GUP_FLAGS_WRITE);
1183 	int force = !!(flags & GUP_FLAGS_FORCE);
1184 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1185 
1186 	if (len <= 0)
1187 		return 0;
1188 	/*
1189 	 * Require read or write permissions.
1190 	 * If 'force' is set, we only require the "MAY" flags.
1191 	 */
1192 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1193 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1194 	i = 0;
1195 
1196 	do {
1197 		struct vm_area_struct *vma;
1198 		unsigned int foll_flags;
1199 
1200 		vma = find_extend_vma(mm, start);
1201 		if (!vma && in_gate_area(tsk, start)) {
1202 			unsigned long pg = start & PAGE_MASK;
1203 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1204 			pgd_t *pgd;
1205 			pud_t *pud;
1206 			pmd_t *pmd;
1207 			pte_t *pte;
1208 
1209 			/* user gate pages are read-only */
1210 			if (!ignore && write)
1211 				return i ? : -EFAULT;
1212 			if (pg > TASK_SIZE)
1213 				pgd = pgd_offset_k(pg);
1214 			else
1215 				pgd = pgd_offset_gate(mm, pg);
1216 			BUG_ON(pgd_none(*pgd));
1217 			pud = pud_offset(pgd, pg);
1218 			BUG_ON(pud_none(*pud));
1219 			pmd = pmd_offset(pud, pg);
1220 			if (pmd_none(*pmd))
1221 				return i ? : -EFAULT;
1222 			pte = pte_offset_map(pmd, pg);
1223 			if (pte_none(*pte)) {
1224 				pte_unmap(pte);
1225 				return i ? : -EFAULT;
1226 			}
1227 			if (pages) {
1228 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1229 				pages[i] = page;
1230 				if (page)
1231 					get_page(page);
1232 			}
1233 			pte_unmap(pte);
1234 			if (vmas)
1235 				vmas[i] = gate_vma;
1236 			i++;
1237 			start += PAGE_SIZE;
1238 			len--;
1239 			continue;
1240 		}
1241 
1242 		if (!vma ||
1243 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1244 		    (!ignore && !(vm_flags & vma->vm_flags)))
1245 			return i ? : -EFAULT;
1246 
1247 		if (is_vm_hugetlb_page(vma)) {
1248 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1249 						&start, &len, i, write);
1250 			continue;
1251 		}
1252 
1253 		foll_flags = FOLL_TOUCH;
1254 		if (pages)
1255 			foll_flags |= FOLL_GET;
1256 		if (!write && use_zero_page(vma))
1257 			foll_flags |= FOLL_ANON;
1258 
1259 		do {
1260 			struct page *page;
1261 
1262 			/*
1263 			 * If tsk is ooming, cut off its access to large memory
1264 			 * allocations. It has a pending SIGKILL, but it can't
1265 			 * be processed until returning to user space.
1266 			 */
1267 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1268 				return i ? i : -ENOMEM;
1269 
1270 			if (write)
1271 				foll_flags |= FOLL_WRITE;
1272 
1273 			cond_resched();
1274 			while (!(page = follow_page(vma, start, foll_flags))) {
1275 				int ret;
1276 				ret = handle_mm_fault(mm, vma, start,
1277 						foll_flags & FOLL_WRITE);
1278 				if (ret & VM_FAULT_ERROR) {
1279 					if (ret & VM_FAULT_OOM)
1280 						return i ? i : -ENOMEM;
1281 					else if (ret & VM_FAULT_SIGBUS)
1282 						return i ? i : -EFAULT;
1283 					BUG();
1284 				}
1285 				if (ret & VM_FAULT_MAJOR)
1286 					tsk->maj_flt++;
1287 				else
1288 					tsk->min_flt++;
1289 
1290 				/*
1291 				 * The VM_FAULT_WRITE bit tells us that
1292 				 * do_wp_page has broken COW when necessary,
1293 				 * even if maybe_mkwrite decided not to set
1294 				 * pte_write. We can thus safely do subsequent
1295 				 * page lookups as if they were reads. But only
1296 				 * do so when looping for pte_write is futile:
1297 				 * in some cases userspace may also be wanting
1298 				 * to write to the gotten user page, which a
1299 				 * read fault here might prevent (a readonly
1300 				 * page might get reCOWed by userspace write).
1301 				 */
1302 				if ((ret & VM_FAULT_WRITE) &&
1303 				    !(vma->vm_flags & VM_WRITE))
1304 					foll_flags &= ~FOLL_WRITE;
1305 
1306 				cond_resched();
1307 			}
1308 			if (IS_ERR(page))
1309 				return i ? i : PTR_ERR(page);
1310 			if (pages) {
1311 				pages[i] = page;
1312 
1313 				flush_anon_page(vma, page, start);
1314 				flush_dcache_page(page);
1315 			}
1316 			if (vmas)
1317 				vmas[i] = vma;
1318 			i++;
1319 			start += PAGE_SIZE;
1320 			len--;
1321 		} while (len && start < vma->vm_end);
1322 	} while (len);
1323 	return i;
1324 }
1325 
1326 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1327 		unsigned long start, int len, int write, int force,
1328 		struct page **pages, struct vm_area_struct **vmas)
1329 {
1330 	int flags = 0;
1331 
1332 	if (write)
1333 		flags |= GUP_FLAGS_WRITE;
1334 	if (force)
1335 		flags |= GUP_FLAGS_FORCE;
1336 
1337 	return __get_user_pages(tsk, mm,
1338 				start, len, flags,
1339 				pages, vmas);
1340 }
1341 
1342 EXPORT_SYMBOL(get_user_pages);
1343 
1344 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1345 			spinlock_t **ptl)
1346 {
1347 	pgd_t * pgd = pgd_offset(mm, addr);
1348 	pud_t * pud = pud_alloc(mm, pgd, addr);
1349 	if (pud) {
1350 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1351 		if (pmd)
1352 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1353 	}
1354 	return NULL;
1355 }
1356 
1357 /*
1358  * This is the old fallback for page remapping.
1359  *
1360  * For historical reasons, it only allows reserved pages. Only
1361  * old drivers should use this, and they needed to mark their
1362  * pages reserved for the old functions anyway.
1363  */
1364 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1365 			struct page *page, pgprot_t prot)
1366 {
1367 	struct mm_struct *mm = vma->vm_mm;
1368 	int retval;
1369 	pte_t *pte;
1370 	spinlock_t *ptl;
1371 
1372 	retval = -EINVAL;
1373 	if (PageAnon(page))
1374 		goto out;
1375 	retval = -ENOMEM;
1376 	flush_dcache_page(page);
1377 	pte = get_locked_pte(mm, addr, &ptl);
1378 	if (!pte)
1379 		goto out;
1380 	retval = -EBUSY;
1381 	if (!pte_none(*pte))
1382 		goto out_unlock;
1383 
1384 	/* Ok, finally just insert the thing.. */
1385 	get_page(page);
1386 	inc_mm_counter(mm, file_rss);
1387 	page_add_file_rmap(page);
1388 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1389 
1390 	retval = 0;
1391 	pte_unmap_unlock(pte, ptl);
1392 	return retval;
1393 out_unlock:
1394 	pte_unmap_unlock(pte, ptl);
1395 out:
1396 	return retval;
1397 }
1398 
1399 /**
1400  * vm_insert_page - insert single page into user vma
1401  * @vma: user vma to map to
1402  * @addr: target user address of this page
1403  * @page: source kernel page
1404  *
1405  * This allows drivers to insert individual pages they've allocated
1406  * into a user vma.
1407  *
1408  * The page has to be a nice clean _individual_ kernel allocation.
1409  * If you allocate a compound page, you need to have marked it as
1410  * such (__GFP_COMP), or manually just split the page up yourself
1411  * (see split_page()).
1412  *
1413  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1414  * took an arbitrary page protection parameter. This doesn't allow
1415  * that. Your vma protection will have to be set up correctly, which
1416  * means that if you want a shared writable mapping, you'd better
1417  * ask for a shared writable mapping!
1418  *
1419  * The page does not need to be reserved.
1420  */
1421 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1422 			struct page *page)
1423 {
1424 	if (addr < vma->vm_start || addr >= vma->vm_end)
1425 		return -EFAULT;
1426 	if (!page_count(page))
1427 		return -EINVAL;
1428 	vma->vm_flags |= VM_INSERTPAGE;
1429 	return insert_page(vma, addr, page, vma->vm_page_prot);
1430 }
1431 EXPORT_SYMBOL(vm_insert_page);
1432 
1433 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1434 			unsigned long pfn, pgprot_t prot)
1435 {
1436 	struct mm_struct *mm = vma->vm_mm;
1437 	int retval;
1438 	pte_t *pte, entry;
1439 	spinlock_t *ptl;
1440 
1441 	retval = -ENOMEM;
1442 	pte = get_locked_pte(mm, addr, &ptl);
1443 	if (!pte)
1444 		goto out;
1445 	retval = -EBUSY;
1446 	if (!pte_none(*pte))
1447 		goto out_unlock;
1448 
1449 	/* Ok, finally just insert the thing.. */
1450 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1451 	set_pte_at(mm, addr, pte, entry);
1452 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1453 
1454 	retval = 0;
1455 out_unlock:
1456 	pte_unmap_unlock(pte, ptl);
1457 out:
1458 	return retval;
1459 }
1460 
1461 /**
1462  * vm_insert_pfn - insert single pfn into user vma
1463  * @vma: user vma to map to
1464  * @addr: target user address of this page
1465  * @pfn: source kernel pfn
1466  *
1467  * Similar to vm_inert_page, this allows drivers to insert individual pages
1468  * they've allocated into a user vma. Same comments apply.
1469  *
1470  * This function should only be called from a vm_ops->fault handler, and
1471  * in that case the handler should return NULL.
1472  *
1473  * vma cannot be a COW mapping.
1474  *
1475  * As this is called only for pages that do not currently exist, we
1476  * do not need to flush old virtual caches or the TLB.
1477  */
1478 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1479 			unsigned long pfn)
1480 {
1481 	int ret;
1482 	/*
1483 	 * Technically, architectures with pte_special can avoid all these
1484 	 * restrictions (same for remap_pfn_range).  However we would like
1485 	 * consistency in testing and feature parity among all, so we should
1486 	 * try to keep these invariants in place for everybody.
1487 	 */
1488 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1489 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1490 						(VM_PFNMAP|VM_MIXEDMAP));
1491 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1492 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1493 
1494 	if (addr < vma->vm_start || addr >= vma->vm_end)
1495 		return -EFAULT;
1496 	if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1497 		return -EINVAL;
1498 
1499 	ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1500 
1501 	if (ret)
1502 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1503 
1504 	return ret;
1505 }
1506 EXPORT_SYMBOL(vm_insert_pfn);
1507 
1508 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1509 			unsigned long pfn)
1510 {
1511 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1512 
1513 	if (addr < vma->vm_start || addr >= vma->vm_end)
1514 		return -EFAULT;
1515 
1516 	/*
1517 	 * If we don't have pte special, then we have to use the pfn_valid()
1518 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1519 	 * refcount the page if pfn_valid is true (hence insert_page rather
1520 	 * than insert_pfn).
1521 	 */
1522 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1523 		struct page *page;
1524 
1525 		page = pfn_to_page(pfn);
1526 		return insert_page(vma, addr, page, vma->vm_page_prot);
1527 	}
1528 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1529 }
1530 EXPORT_SYMBOL(vm_insert_mixed);
1531 
1532 /*
1533  * maps a range of physical memory into the requested pages. the old
1534  * mappings are removed. any references to nonexistent pages results
1535  * in null mappings (currently treated as "copy-on-access")
1536  */
1537 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1538 			unsigned long addr, unsigned long end,
1539 			unsigned long pfn, pgprot_t prot)
1540 {
1541 	pte_t *pte;
1542 	spinlock_t *ptl;
1543 
1544 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1545 	if (!pte)
1546 		return -ENOMEM;
1547 	arch_enter_lazy_mmu_mode();
1548 	do {
1549 		BUG_ON(!pte_none(*pte));
1550 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1551 		pfn++;
1552 	} while (pte++, addr += PAGE_SIZE, addr != end);
1553 	arch_leave_lazy_mmu_mode();
1554 	pte_unmap_unlock(pte - 1, ptl);
1555 	return 0;
1556 }
1557 
1558 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1559 			unsigned long addr, unsigned long end,
1560 			unsigned long pfn, pgprot_t prot)
1561 {
1562 	pmd_t *pmd;
1563 	unsigned long next;
1564 
1565 	pfn -= addr >> PAGE_SHIFT;
1566 	pmd = pmd_alloc(mm, pud, addr);
1567 	if (!pmd)
1568 		return -ENOMEM;
1569 	do {
1570 		next = pmd_addr_end(addr, end);
1571 		if (remap_pte_range(mm, pmd, addr, next,
1572 				pfn + (addr >> PAGE_SHIFT), prot))
1573 			return -ENOMEM;
1574 	} while (pmd++, addr = next, addr != end);
1575 	return 0;
1576 }
1577 
1578 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1579 			unsigned long addr, unsigned long end,
1580 			unsigned long pfn, pgprot_t prot)
1581 {
1582 	pud_t *pud;
1583 	unsigned long next;
1584 
1585 	pfn -= addr >> PAGE_SHIFT;
1586 	pud = pud_alloc(mm, pgd, addr);
1587 	if (!pud)
1588 		return -ENOMEM;
1589 	do {
1590 		next = pud_addr_end(addr, end);
1591 		if (remap_pmd_range(mm, pud, addr, next,
1592 				pfn + (addr >> PAGE_SHIFT), prot))
1593 			return -ENOMEM;
1594 	} while (pud++, addr = next, addr != end);
1595 	return 0;
1596 }
1597 
1598 /**
1599  * remap_pfn_range - remap kernel memory to userspace
1600  * @vma: user vma to map to
1601  * @addr: target user address to start at
1602  * @pfn: physical address of kernel memory
1603  * @size: size of map area
1604  * @prot: page protection flags for this mapping
1605  *
1606  *  Note: this is only safe if the mm semaphore is held when called.
1607  */
1608 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1609 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1610 {
1611 	pgd_t *pgd;
1612 	unsigned long next;
1613 	unsigned long end = addr + PAGE_ALIGN(size);
1614 	struct mm_struct *mm = vma->vm_mm;
1615 	int err;
1616 
1617 	/*
1618 	 * Physically remapped pages are special. Tell the
1619 	 * rest of the world about it:
1620 	 *   VM_IO tells people not to look at these pages
1621 	 *	(accesses can have side effects).
1622 	 *   VM_RESERVED is specified all over the place, because
1623 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1624 	 *	in 2.6 the LRU scan won't even find its pages, so this
1625 	 *	flag means no more than count its pages in reserved_vm,
1626 	 * 	and omit it from core dump, even when VM_IO turned off.
1627 	 *   VM_PFNMAP tells the core MM that the base pages are just
1628 	 *	raw PFN mappings, and do not have a "struct page" associated
1629 	 *	with them.
1630 	 *
1631 	 * There's a horrible special case to handle copy-on-write
1632 	 * behaviour that some programs depend on. We mark the "original"
1633 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1634 	 */
1635 	if (addr == vma->vm_start && end == vma->vm_end)
1636 		vma->vm_pgoff = pfn;
1637 	else if (is_cow_mapping(vma->vm_flags))
1638 		return -EINVAL;
1639 
1640 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1641 
1642 	err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1643 	if (err)
1644 		return -EINVAL;
1645 
1646 	BUG_ON(addr >= end);
1647 	pfn -= addr >> PAGE_SHIFT;
1648 	pgd = pgd_offset(mm, addr);
1649 	flush_cache_range(vma, addr, end);
1650 	do {
1651 		next = pgd_addr_end(addr, end);
1652 		err = remap_pud_range(mm, pgd, addr, next,
1653 				pfn + (addr >> PAGE_SHIFT), prot);
1654 		if (err)
1655 			break;
1656 	} while (pgd++, addr = next, addr != end);
1657 
1658 	if (err)
1659 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1660 
1661 	return err;
1662 }
1663 EXPORT_SYMBOL(remap_pfn_range);
1664 
1665 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1666 				     unsigned long addr, unsigned long end,
1667 				     pte_fn_t fn, void *data)
1668 {
1669 	pte_t *pte;
1670 	int err;
1671 	pgtable_t token;
1672 	spinlock_t *uninitialized_var(ptl);
1673 
1674 	pte = (mm == &init_mm) ?
1675 		pte_alloc_kernel(pmd, addr) :
1676 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1677 	if (!pte)
1678 		return -ENOMEM;
1679 
1680 	BUG_ON(pmd_huge(*pmd));
1681 
1682 	arch_enter_lazy_mmu_mode();
1683 
1684 	token = pmd_pgtable(*pmd);
1685 
1686 	do {
1687 		err = fn(pte, token, addr, data);
1688 		if (err)
1689 			break;
1690 	} while (pte++, addr += PAGE_SIZE, addr != end);
1691 
1692 	arch_leave_lazy_mmu_mode();
1693 
1694 	if (mm != &init_mm)
1695 		pte_unmap_unlock(pte-1, ptl);
1696 	return err;
1697 }
1698 
1699 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1700 				     unsigned long addr, unsigned long end,
1701 				     pte_fn_t fn, void *data)
1702 {
1703 	pmd_t *pmd;
1704 	unsigned long next;
1705 	int err;
1706 
1707 	BUG_ON(pud_huge(*pud));
1708 
1709 	pmd = pmd_alloc(mm, pud, addr);
1710 	if (!pmd)
1711 		return -ENOMEM;
1712 	do {
1713 		next = pmd_addr_end(addr, end);
1714 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1715 		if (err)
1716 			break;
1717 	} while (pmd++, addr = next, addr != end);
1718 	return err;
1719 }
1720 
1721 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1722 				     unsigned long addr, unsigned long end,
1723 				     pte_fn_t fn, void *data)
1724 {
1725 	pud_t *pud;
1726 	unsigned long next;
1727 	int err;
1728 
1729 	pud = pud_alloc(mm, pgd, addr);
1730 	if (!pud)
1731 		return -ENOMEM;
1732 	do {
1733 		next = pud_addr_end(addr, end);
1734 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1735 		if (err)
1736 			break;
1737 	} while (pud++, addr = next, addr != end);
1738 	return err;
1739 }
1740 
1741 /*
1742  * Scan a region of virtual memory, filling in page tables as necessary
1743  * and calling a provided function on each leaf page table.
1744  */
1745 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1746 			unsigned long size, pte_fn_t fn, void *data)
1747 {
1748 	pgd_t *pgd;
1749 	unsigned long next;
1750 	unsigned long start = addr, end = addr + size;
1751 	int err;
1752 
1753 	BUG_ON(addr >= end);
1754 	mmu_notifier_invalidate_range_start(mm, start, end);
1755 	pgd = pgd_offset(mm, addr);
1756 	do {
1757 		next = pgd_addr_end(addr, end);
1758 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1759 		if (err)
1760 			break;
1761 	} while (pgd++, addr = next, addr != end);
1762 	mmu_notifier_invalidate_range_end(mm, start, end);
1763 	return err;
1764 }
1765 EXPORT_SYMBOL_GPL(apply_to_page_range);
1766 
1767 /*
1768  * handle_pte_fault chooses page fault handler according to an entry
1769  * which was read non-atomically.  Before making any commitment, on
1770  * those architectures or configurations (e.g. i386 with PAE) which
1771  * might give a mix of unmatched parts, do_swap_page and do_file_page
1772  * must check under lock before unmapping the pte and proceeding
1773  * (but do_wp_page is only called after already making such a check;
1774  * and do_anonymous_page and do_no_page can safely check later on).
1775  */
1776 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1777 				pte_t *page_table, pte_t orig_pte)
1778 {
1779 	int same = 1;
1780 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1781 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1782 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1783 		spin_lock(ptl);
1784 		same = pte_same(*page_table, orig_pte);
1785 		spin_unlock(ptl);
1786 	}
1787 #endif
1788 	pte_unmap(page_table);
1789 	return same;
1790 }
1791 
1792 /*
1793  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1794  * servicing faults for write access.  In the normal case, do always want
1795  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1796  * that do not have writing enabled, when used by access_process_vm.
1797  */
1798 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1799 {
1800 	if (likely(vma->vm_flags & VM_WRITE))
1801 		pte = pte_mkwrite(pte);
1802 	return pte;
1803 }
1804 
1805 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1806 {
1807 	/*
1808 	 * If the source page was a PFN mapping, we don't have
1809 	 * a "struct page" for it. We do a best-effort copy by
1810 	 * just copying from the original user address. If that
1811 	 * fails, we just zero-fill it. Live with it.
1812 	 */
1813 	if (unlikely(!src)) {
1814 		void *kaddr = kmap_atomic(dst, KM_USER0);
1815 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1816 
1817 		/*
1818 		 * This really shouldn't fail, because the page is there
1819 		 * in the page tables. But it might just be unreadable,
1820 		 * in which case we just give up and fill the result with
1821 		 * zeroes.
1822 		 */
1823 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1824 			memset(kaddr, 0, PAGE_SIZE);
1825 		kunmap_atomic(kaddr, KM_USER0);
1826 		flush_dcache_page(dst);
1827 	} else
1828 		copy_user_highpage(dst, src, va, vma);
1829 }
1830 
1831 /*
1832  * This routine handles present pages, when users try to write
1833  * to a shared page. It is done by copying the page to a new address
1834  * and decrementing the shared-page counter for the old page.
1835  *
1836  * Note that this routine assumes that the protection checks have been
1837  * done by the caller (the low-level page fault routine in most cases).
1838  * Thus we can safely just mark it writable once we've done any necessary
1839  * COW.
1840  *
1841  * We also mark the page dirty at this point even though the page will
1842  * change only once the write actually happens. This avoids a few races,
1843  * and potentially makes it more efficient.
1844  *
1845  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1846  * but allow concurrent faults), with pte both mapped and locked.
1847  * We return with mmap_sem still held, but pte unmapped and unlocked.
1848  */
1849 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1850 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1851 		spinlock_t *ptl, pte_t orig_pte)
1852 {
1853 	struct page *old_page, *new_page;
1854 	pte_t entry;
1855 	int reuse = 0, ret = 0;
1856 	int page_mkwrite = 0;
1857 	struct page *dirty_page = NULL;
1858 
1859 	old_page = vm_normal_page(vma, address, orig_pte);
1860 	if (!old_page) {
1861 		/*
1862 		 * VM_MIXEDMAP !pfn_valid() case
1863 		 *
1864 		 * We should not cow pages in a shared writeable mapping.
1865 		 * Just mark the pages writable as we can't do any dirty
1866 		 * accounting on raw pfn maps.
1867 		 */
1868 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1869 				     (VM_WRITE|VM_SHARED))
1870 			goto reuse;
1871 		goto gotten;
1872 	}
1873 
1874 	/*
1875 	 * Take out anonymous pages first, anonymous shared vmas are
1876 	 * not dirty accountable.
1877 	 */
1878 	if (PageAnon(old_page)) {
1879 		if (!trylock_page(old_page)) {
1880 			page_cache_get(old_page);
1881 			pte_unmap_unlock(page_table, ptl);
1882 			lock_page(old_page);
1883 			page_table = pte_offset_map_lock(mm, pmd, address,
1884 							 &ptl);
1885 			if (!pte_same(*page_table, orig_pte)) {
1886 				unlock_page(old_page);
1887 				page_cache_release(old_page);
1888 				goto unlock;
1889 			}
1890 			page_cache_release(old_page);
1891 		}
1892 		reuse = reuse_swap_page(old_page);
1893 		unlock_page(old_page);
1894 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1895 					(VM_WRITE|VM_SHARED))) {
1896 		/*
1897 		 * Only catch write-faults on shared writable pages,
1898 		 * read-only shared pages can get COWed by
1899 		 * get_user_pages(.write=1, .force=1).
1900 		 */
1901 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1902 			/*
1903 			 * Notify the address space that the page is about to
1904 			 * become writable so that it can prohibit this or wait
1905 			 * for the page to get into an appropriate state.
1906 			 *
1907 			 * We do this without the lock held, so that it can
1908 			 * sleep if it needs to.
1909 			 */
1910 			page_cache_get(old_page);
1911 			pte_unmap_unlock(page_table, ptl);
1912 
1913 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1914 				goto unwritable_page;
1915 
1916 			/*
1917 			 * Since we dropped the lock we need to revalidate
1918 			 * the PTE as someone else may have changed it.  If
1919 			 * they did, we just return, as we can count on the
1920 			 * MMU to tell us if they didn't also make it writable.
1921 			 */
1922 			page_table = pte_offset_map_lock(mm, pmd, address,
1923 							 &ptl);
1924 			page_cache_release(old_page);
1925 			if (!pte_same(*page_table, orig_pte))
1926 				goto unlock;
1927 
1928 			page_mkwrite = 1;
1929 		}
1930 		dirty_page = old_page;
1931 		get_page(dirty_page);
1932 		reuse = 1;
1933 	}
1934 
1935 	if (reuse) {
1936 reuse:
1937 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1938 		entry = pte_mkyoung(orig_pte);
1939 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1940 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1941 			update_mmu_cache(vma, address, entry);
1942 		ret |= VM_FAULT_WRITE;
1943 		goto unlock;
1944 	}
1945 
1946 	/*
1947 	 * Ok, we need to copy. Oh, well..
1948 	 */
1949 	page_cache_get(old_page);
1950 gotten:
1951 	pte_unmap_unlock(page_table, ptl);
1952 
1953 	if (unlikely(anon_vma_prepare(vma)))
1954 		goto oom;
1955 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1956 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1957 	if (!new_page)
1958 		goto oom;
1959 	/*
1960 	 * Don't let another task, with possibly unlocked vma,
1961 	 * keep the mlocked page.
1962 	 */
1963 	if (vma->vm_flags & VM_LOCKED) {
1964 		lock_page(old_page);	/* for LRU manipulation */
1965 		clear_page_mlock(old_page);
1966 		unlock_page(old_page);
1967 	}
1968 	cow_user_page(new_page, old_page, address, vma);
1969 	__SetPageUptodate(new_page);
1970 
1971 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1972 		goto oom_free_new;
1973 
1974 	/*
1975 	 * Re-check the pte - we dropped the lock
1976 	 */
1977 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1978 	if (likely(pte_same(*page_table, orig_pte))) {
1979 		if (old_page) {
1980 			if (!PageAnon(old_page)) {
1981 				dec_mm_counter(mm, file_rss);
1982 				inc_mm_counter(mm, anon_rss);
1983 			}
1984 		} else
1985 			inc_mm_counter(mm, anon_rss);
1986 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1987 		entry = mk_pte(new_page, vma->vm_page_prot);
1988 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1989 		/*
1990 		 * Clear the pte entry and flush it first, before updating the
1991 		 * pte with the new entry. This will avoid a race condition
1992 		 * seen in the presence of one thread doing SMC and another
1993 		 * thread doing COW.
1994 		 */
1995 		ptep_clear_flush_notify(vma, address, page_table);
1996 		page_add_new_anon_rmap(new_page, vma, address);
1997 		set_pte_at(mm, address, page_table, entry);
1998 		update_mmu_cache(vma, address, entry);
1999 		if (old_page) {
2000 			/*
2001 			 * Only after switching the pte to the new page may
2002 			 * we remove the mapcount here. Otherwise another
2003 			 * process may come and find the rmap count decremented
2004 			 * before the pte is switched to the new page, and
2005 			 * "reuse" the old page writing into it while our pte
2006 			 * here still points into it and can be read by other
2007 			 * threads.
2008 			 *
2009 			 * The critical issue is to order this
2010 			 * page_remove_rmap with the ptp_clear_flush above.
2011 			 * Those stores are ordered by (if nothing else,)
2012 			 * the barrier present in the atomic_add_negative
2013 			 * in page_remove_rmap.
2014 			 *
2015 			 * Then the TLB flush in ptep_clear_flush ensures that
2016 			 * no process can access the old page before the
2017 			 * decremented mapcount is visible. And the old page
2018 			 * cannot be reused until after the decremented
2019 			 * mapcount is visible. So transitively, TLBs to
2020 			 * old page will be flushed before it can be reused.
2021 			 */
2022 			page_remove_rmap(old_page, vma);
2023 		}
2024 
2025 		/* Free the old page.. */
2026 		new_page = old_page;
2027 		ret |= VM_FAULT_WRITE;
2028 	} else
2029 		mem_cgroup_uncharge_page(new_page);
2030 
2031 	if (new_page)
2032 		page_cache_release(new_page);
2033 	if (old_page)
2034 		page_cache_release(old_page);
2035 unlock:
2036 	pte_unmap_unlock(page_table, ptl);
2037 	if (dirty_page) {
2038 		if (vma->vm_file)
2039 			file_update_time(vma->vm_file);
2040 
2041 		/*
2042 		 * Yes, Virginia, this is actually required to prevent a race
2043 		 * with clear_page_dirty_for_io() from clearing the page dirty
2044 		 * bit after it clear all dirty ptes, but before a racing
2045 		 * do_wp_page installs a dirty pte.
2046 		 *
2047 		 * do_no_page is protected similarly.
2048 		 */
2049 		wait_on_page_locked(dirty_page);
2050 		set_page_dirty_balance(dirty_page, page_mkwrite);
2051 		put_page(dirty_page);
2052 	}
2053 	return ret;
2054 oom_free_new:
2055 	page_cache_release(new_page);
2056 oom:
2057 	if (old_page)
2058 		page_cache_release(old_page);
2059 	return VM_FAULT_OOM;
2060 
2061 unwritable_page:
2062 	page_cache_release(old_page);
2063 	return VM_FAULT_SIGBUS;
2064 }
2065 
2066 /*
2067  * Helper functions for unmap_mapping_range().
2068  *
2069  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2070  *
2071  * We have to restart searching the prio_tree whenever we drop the lock,
2072  * since the iterator is only valid while the lock is held, and anyway
2073  * a later vma might be split and reinserted earlier while lock dropped.
2074  *
2075  * The list of nonlinear vmas could be handled more efficiently, using
2076  * a placeholder, but handle it in the same way until a need is shown.
2077  * It is important to search the prio_tree before nonlinear list: a vma
2078  * may become nonlinear and be shifted from prio_tree to nonlinear list
2079  * while the lock is dropped; but never shifted from list to prio_tree.
2080  *
2081  * In order to make forward progress despite restarting the search,
2082  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2083  * quickly skip it next time around.  Since the prio_tree search only
2084  * shows us those vmas affected by unmapping the range in question, we
2085  * can't efficiently keep all vmas in step with mapping->truncate_count:
2086  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2087  * mapping->truncate_count and vma->vm_truncate_count are protected by
2088  * i_mmap_lock.
2089  *
2090  * In order to make forward progress despite repeatedly restarting some
2091  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2092  * and restart from that address when we reach that vma again.  It might
2093  * have been split or merged, shrunk or extended, but never shifted: so
2094  * restart_addr remains valid so long as it remains in the vma's range.
2095  * unmap_mapping_range forces truncate_count to leap over page-aligned
2096  * values so we can save vma's restart_addr in its truncate_count field.
2097  */
2098 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2099 
2100 static void reset_vma_truncate_counts(struct address_space *mapping)
2101 {
2102 	struct vm_area_struct *vma;
2103 	struct prio_tree_iter iter;
2104 
2105 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2106 		vma->vm_truncate_count = 0;
2107 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2108 		vma->vm_truncate_count = 0;
2109 }
2110 
2111 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2112 		unsigned long start_addr, unsigned long end_addr,
2113 		struct zap_details *details)
2114 {
2115 	unsigned long restart_addr;
2116 	int need_break;
2117 
2118 	/*
2119 	 * files that support invalidating or truncating portions of the
2120 	 * file from under mmaped areas must have their ->fault function
2121 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2122 	 * This provides synchronisation against concurrent unmapping here.
2123 	 */
2124 
2125 again:
2126 	restart_addr = vma->vm_truncate_count;
2127 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2128 		start_addr = restart_addr;
2129 		if (start_addr >= end_addr) {
2130 			/* Top of vma has been split off since last time */
2131 			vma->vm_truncate_count = details->truncate_count;
2132 			return 0;
2133 		}
2134 	}
2135 
2136 	restart_addr = zap_page_range(vma, start_addr,
2137 					end_addr - start_addr, details);
2138 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2139 
2140 	if (restart_addr >= end_addr) {
2141 		/* We have now completed this vma: mark it so */
2142 		vma->vm_truncate_count = details->truncate_count;
2143 		if (!need_break)
2144 			return 0;
2145 	} else {
2146 		/* Note restart_addr in vma's truncate_count field */
2147 		vma->vm_truncate_count = restart_addr;
2148 		if (!need_break)
2149 			goto again;
2150 	}
2151 
2152 	spin_unlock(details->i_mmap_lock);
2153 	cond_resched();
2154 	spin_lock(details->i_mmap_lock);
2155 	return -EINTR;
2156 }
2157 
2158 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2159 					    struct zap_details *details)
2160 {
2161 	struct vm_area_struct *vma;
2162 	struct prio_tree_iter iter;
2163 	pgoff_t vba, vea, zba, zea;
2164 
2165 restart:
2166 	vma_prio_tree_foreach(vma, &iter, root,
2167 			details->first_index, details->last_index) {
2168 		/* Skip quickly over those we have already dealt with */
2169 		if (vma->vm_truncate_count == details->truncate_count)
2170 			continue;
2171 
2172 		vba = vma->vm_pgoff;
2173 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2174 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2175 		zba = details->first_index;
2176 		if (zba < vba)
2177 			zba = vba;
2178 		zea = details->last_index;
2179 		if (zea > vea)
2180 			zea = vea;
2181 
2182 		if (unmap_mapping_range_vma(vma,
2183 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2184 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2185 				details) < 0)
2186 			goto restart;
2187 	}
2188 }
2189 
2190 static inline void unmap_mapping_range_list(struct list_head *head,
2191 					    struct zap_details *details)
2192 {
2193 	struct vm_area_struct *vma;
2194 
2195 	/*
2196 	 * In nonlinear VMAs there is no correspondence between virtual address
2197 	 * offset and file offset.  So we must perform an exhaustive search
2198 	 * across *all* the pages in each nonlinear VMA, not just the pages
2199 	 * whose virtual address lies outside the file truncation point.
2200 	 */
2201 restart:
2202 	list_for_each_entry(vma, head, shared.vm_set.list) {
2203 		/* Skip quickly over those we have already dealt with */
2204 		if (vma->vm_truncate_count == details->truncate_count)
2205 			continue;
2206 		details->nonlinear_vma = vma;
2207 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2208 					vma->vm_end, details) < 0)
2209 			goto restart;
2210 	}
2211 }
2212 
2213 /**
2214  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2215  * @mapping: the address space containing mmaps to be unmapped.
2216  * @holebegin: byte in first page to unmap, relative to the start of
2217  * the underlying file.  This will be rounded down to a PAGE_SIZE
2218  * boundary.  Note that this is different from vmtruncate(), which
2219  * must keep the partial page.  In contrast, we must get rid of
2220  * partial pages.
2221  * @holelen: size of prospective hole in bytes.  This will be rounded
2222  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2223  * end of the file.
2224  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2225  * but 0 when invalidating pagecache, don't throw away private data.
2226  */
2227 void unmap_mapping_range(struct address_space *mapping,
2228 		loff_t const holebegin, loff_t const holelen, int even_cows)
2229 {
2230 	struct zap_details details;
2231 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2232 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2233 
2234 	/* Check for overflow. */
2235 	if (sizeof(holelen) > sizeof(hlen)) {
2236 		long long holeend =
2237 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2238 		if (holeend & ~(long long)ULONG_MAX)
2239 			hlen = ULONG_MAX - hba + 1;
2240 	}
2241 
2242 	details.check_mapping = even_cows? NULL: mapping;
2243 	details.nonlinear_vma = NULL;
2244 	details.first_index = hba;
2245 	details.last_index = hba + hlen - 1;
2246 	if (details.last_index < details.first_index)
2247 		details.last_index = ULONG_MAX;
2248 	details.i_mmap_lock = &mapping->i_mmap_lock;
2249 
2250 	spin_lock(&mapping->i_mmap_lock);
2251 
2252 	/* Protect against endless unmapping loops */
2253 	mapping->truncate_count++;
2254 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2255 		if (mapping->truncate_count == 0)
2256 			reset_vma_truncate_counts(mapping);
2257 		mapping->truncate_count++;
2258 	}
2259 	details.truncate_count = mapping->truncate_count;
2260 
2261 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2262 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2263 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2264 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2265 	spin_unlock(&mapping->i_mmap_lock);
2266 }
2267 EXPORT_SYMBOL(unmap_mapping_range);
2268 
2269 /**
2270  * vmtruncate - unmap mappings "freed" by truncate() syscall
2271  * @inode: inode of the file used
2272  * @offset: file offset to start truncating
2273  *
2274  * NOTE! We have to be ready to update the memory sharing
2275  * between the file and the memory map for a potential last
2276  * incomplete page.  Ugly, but necessary.
2277  */
2278 int vmtruncate(struct inode * inode, loff_t offset)
2279 {
2280 	if (inode->i_size < offset) {
2281 		unsigned long limit;
2282 
2283 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2284 		if (limit != RLIM_INFINITY && offset > limit)
2285 			goto out_sig;
2286 		if (offset > inode->i_sb->s_maxbytes)
2287 			goto out_big;
2288 		i_size_write(inode, offset);
2289 	} else {
2290 		struct address_space *mapping = inode->i_mapping;
2291 
2292 		/*
2293 		 * truncation of in-use swapfiles is disallowed - it would
2294 		 * cause subsequent swapout to scribble on the now-freed
2295 		 * blocks.
2296 		 */
2297 		if (IS_SWAPFILE(inode))
2298 			return -ETXTBSY;
2299 		i_size_write(inode, offset);
2300 
2301 		/*
2302 		 * unmap_mapping_range is called twice, first simply for
2303 		 * efficiency so that truncate_inode_pages does fewer
2304 		 * single-page unmaps.  However after this first call, and
2305 		 * before truncate_inode_pages finishes, it is possible for
2306 		 * private pages to be COWed, which remain after
2307 		 * truncate_inode_pages finishes, hence the second
2308 		 * unmap_mapping_range call must be made for correctness.
2309 		 */
2310 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2311 		truncate_inode_pages(mapping, offset);
2312 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2313 	}
2314 
2315 	if (inode->i_op->truncate)
2316 		inode->i_op->truncate(inode);
2317 	return 0;
2318 
2319 out_sig:
2320 	send_sig(SIGXFSZ, current, 0);
2321 out_big:
2322 	return -EFBIG;
2323 }
2324 EXPORT_SYMBOL(vmtruncate);
2325 
2326 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2327 {
2328 	struct address_space *mapping = inode->i_mapping;
2329 
2330 	/*
2331 	 * If the underlying filesystem is not going to provide
2332 	 * a way to truncate a range of blocks (punch a hole) -
2333 	 * we should return failure right now.
2334 	 */
2335 	if (!inode->i_op->truncate_range)
2336 		return -ENOSYS;
2337 
2338 	mutex_lock(&inode->i_mutex);
2339 	down_write(&inode->i_alloc_sem);
2340 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2341 	truncate_inode_pages_range(mapping, offset, end);
2342 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2343 	inode->i_op->truncate_range(inode, offset, end);
2344 	up_write(&inode->i_alloc_sem);
2345 	mutex_unlock(&inode->i_mutex);
2346 
2347 	return 0;
2348 }
2349 
2350 /*
2351  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2352  * but allow concurrent faults), and pte mapped but not yet locked.
2353  * We return with mmap_sem still held, but pte unmapped and unlocked.
2354  */
2355 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2356 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2357 		int write_access, pte_t orig_pte)
2358 {
2359 	spinlock_t *ptl;
2360 	struct page *page;
2361 	swp_entry_t entry;
2362 	pte_t pte;
2363 	int ret = 0;
2364 
2365 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2366 		goto out;
2367 
2368 	entry = pte_to_swp_entry(orig_pte);
2369 	if (is_migration_entry(entry)) {
2370 		migration_entry_wait(mm, pmd, address);
2371 		goto out;
2372 	}
2373 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2374 	page = lookup_swap_cache(entry);
2375 	if (!page) {
2376 		grab_swap_token(); /* Contend for token _before_ read-in */
2377 		page = swapin_readahead(entry,
2378 					GFP_HIGHUSER_MOVABLE, vma, address);
2379 		if (!page) {
2380 			/*
2381 			 * Back out if somebody else faulted in this pte
2382 			 * while we released the pte lock.
2383 			 */
2384 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2385 			if (likely(pte_same(*page_table, orig_pte)))
2386 				ret = VM_FAULT_OOM;
2387 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2388 			goto unlock;
2389 		}
2390 
2391 		/* Had to read the page from swap area: Major fault */
2392 		ret = VM_FAULT_MAJOR;
2393 		count_vm_event(PGMAJFAULT);
2394 	}
2395 
2396 	mark_page_accessed(page);
2397 
2398 	lock_page(page);
2399 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2400 
2401 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2402 		ret = VM_FAULT_OOM;
2403 		unlock_page(page);
2404 		goto out;
2405 	}
2406 
2407 	/*
2408 	 * Back out if somebody else already faulted in this pte.
2409 	 */
2410 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2411 	if (unlikely(!pte_same(*page_table, orig_pte)))
2412 		goto out_nomap;
2413 
2414 	if (unlikely(!PageUptodate(page))) {
2415 		ret = VM_FAULT_SIGBUS;
2416 		goto out_nomap;
2417 	}
2418 
2419 	/* The page isn't present yet, go ahead with the fault. */
2420 
2421 	inc_mm_counter(mm, anon_rss);
2422 	pte = mk_pte(page, vma->vm_page_prot);
2423 	if (write_access && reuse_swap_page(page)) {
2424 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2425 		write_access = 0;
2426 	}
2427 
2428 	flush_icache_page(vma, page);
2429 	set_pte_at(mm, address, page_table, pte);
2430 	page_add_anon_rmap(page, vma, address);
2431 
2432 	swap_free(entry);
2433 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2434 		try_to_free_swap(page);
2435 	unlock_page(page);
2436 
2437 	if (write_access) {
2438 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2439 		if (ret & VM_FAULT_ERROR)
2440 			ret &= VM_FAULT_ERROR;
2441 		goto out;
2442 	}
2443 
2444 	/* No need to invalidate - it was non-present before */
2445 	update_mmu_cache(vma, address, pte);
2446 unlock:
2447 	pte_unmap_unlock(page_table, ptl);
2448 out:
2449 	return ret;
2450 out_nomap:
2451 	mem_cgroup_uncharge_page(page);
2452 	pte_unmap_unlock(page_table, ptl);
2453 	unlock_page(page);
2454 	page_cache_release(page);
2455 	return ret;
2456 }
2457 
2458 /*
2459  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2460  * but allow concurrent faults), and pte mapped but not yet locked.
2461  * We return with mmap_sem still held, but pte unmapped and unlocked.
2462  */
2463 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2464 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2465 		int write_access)
2466 {
2467 	struct page *page;
2468 	spinlock_t *ptl;
2469 	pte_t entry;
2470 
2471 	/* Allocate our own private page. */
2472 	pte_unmap(page_table);
2473 
2474 	if (unlikely(anon_vma_prepare(vma)))
2475 		goto oom;
2476 	page = alloc_zeroed_user_highpage_movable(vma, address);
2477 	if (!page)
2478 		goto oom;
2479 	__SetPageUptodate(page);
2480 
2481 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2482 		goto oom_free_page;
2483 
2484 	entry = mk_pte(page, vma->vm_page_prot);
2485 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2486 
2487 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2488 	if (!pte_none(*page_table))
2489 		goto release;
2490 	inc_mm_counter(mm, anon_rss);
2491 	page_add_new_anon_rmap(page, vma, address);
2492 	set_pte_at(mm, address, page_table, entry);
2493 
2494 	/* No need to invalidate - it was non-present before */
2495 	update_mmu_cache(vma, address, entry);
2496 unlock:
2497 	pte_unmap_unlock(page_table, ptl);
2498 	return 0;
2499 release:
2500 	mem_cgroup_uncharge_page(page);
2501 	page_cache_release(page);
2502 	goto unlock;
2503 oom_free_page:
2504 	page_cache_release(page);
2505 oom:
2506 	return VM_FAULT_OOM;
2507 }
2508 
2509 /*
2510  * __do_fault() tries to create a new page mapping. It aggressively
2511  * tries to share with existing pages, but makes a separate copy if
2512  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2513  * the next page fault.
2514  *
2515  * As this is called only for pages that do not currently exist, we
2516  * do not need to flush old virtual caches or the TLB.
2517  *
2518  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2519  * but allow concurrent faults), and pte neither mapped nor locked.
2520  * We return with mmap_sem still held, but pte unmapped and unlocked.
2521  */
2522 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2523 		unsigned long address, pmd_t *pmd,
2524 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2525 {
2526 	pte_t *page_table;
2527 	spinlock_t *ptl;
2528 	struct page *page;
2529 	pte_t entry;
2530 	int anon = 0;
2531 	int charged = 0;
2532 	struct page *dirty_page = NULL;
2533 	struct vm_fault vmf;
2534 	int ret;
2535 	int page_mkwrite = 0;
2536 
2537 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2538 	vmf.pgoff = pgoff;
2539 	vmf.flags = flags;
2540 	vmf.page = NULL;
2541 
2542 	ret = vma->vm_ops->fault(vma, &vmf);
2543 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2544 		return ret;
2545 
2546 	/*
2547 	 * For consistency in subsequent calls, make the faulted page always
2548 	 * locked.
2549 	 */
2550 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2551 		lock_page(vmf.page);
2552 	else
2553 		VM_BUG_ON(!PageLocked(vmf.page));
2554 
2555 	/*
2556 	 * Should we do an early C-O-W break?
2557 	 */
2558 	page = vmf.page;
2559 	if (flags & FAULT_FLAG_WRITE) {
2560 		if (!(vma->vm_flags & VM_SHARED)) {
2561 			anon = 1;
2562 			if (unlikely(anon_vma_prepare(vma))) {
2563 				ret = VM_FAULT_OOM;
2564 				goto out;
2565 			}
2566 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2567 						vma, address);
2568 			if (!page) {
2569 				ret = VM_FAULT_OOM;
2570 				goto out;
2571 			}
2572 			if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2573 				ret = VM_FAULT_OOM;
2574 				page_cache_release(page);
2575 				goto out;
2576 			}
2577 			charged = 1;
2578 			/*
2579 			 * Don't let another task, with possibly unlocked vma,
2580 			 * keep the mlocked page.
2581 			 */
2582 			if (vma->vm_flags & VM_LOCKED)
2583 				clear_page_mlock(vmf.page);
2584 			copy_user_highpage(page, vmf.page, address, vma);
2585 			__SetPageUptodate(page);
2586 		} else {
2587 			/*
2588 			 * If the page will be shareable, see if the backing
2589 			 * address space wants to know that the page is about
2590 			 * to become writable
2591 			 */
2592 			if (vma->vm_ops->page_mkwrite) {
2593 				unlock_page(page);
2594 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2595 					ret = VM_FAULT_SIGBUS;
2596 					anon = 1; /* no anon but release vmf.page */
2597 					goto out_unlocked;
2598 				}
2599 				lock_page(page);
2600 				/*
2601 				 * XXX: this is not quite right (racy vs
2602 				 * invalidate) to unlock and relock the page
2603 				 * like this, however a better fix requires
2604 				 * reworking page_mkwrite locking API, which
2605 				 * is better done later.
2606 				 */
2607 				if (!page->mapping) {
2608 					ret = 0;
2609 					anon = 1; /* no anon but release vmf.page */
2610 					goto out;
2611 				}
2612 				page_mkwrite = 1;
2613 			}
2614 		}
2615 
2616 	}
2617 
2618 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2619 
2620 	/*
2621 	 * This silly early PAGE_DIRTY setting removes a race
2622 	 * due to the bad i386 page protection. But it's valid
2623 	 * for other architectures too.
2624 	 *
2625 	 * Note that if write_access is true, we either now have
2626 	 * an exclusive copy of the page, or this is a shared mapping,
2627 	 * so we can make it writable and dirty to avoid having to
2628 	 * handle that later.
2629 	 */
2630 	/* Only go through if we didn't race with anybody else... */
2631 	if (likely(pte_same(*page_table, orig_pte))) {
2632 		flush_icache_page(vma, page);
2633 		entry = mk_pte(page, vma->vm_page_prot);
2634 		if (flags & FAULT_FLAG_WRITE)
2635 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2636 		if (anon) {
2637 			inc_mm_counter(mm, anon_rss);
2638 			page_add_new_anon_rmap(page, vma, address);
2639 		} else {
2640 			inc_mm_counter(mm, file_rss);
2641 			page_add_file_rmap(page);
2642 			if (flags & FAULT_FLAG_WRITE) {
2643 				dirty_page = page;
2644 				get_page(dirty_page);
2645 			}
2646 		}
2647 		set_pte_at(mm, address, page_table, entry);
2648 
2649 		/* no need to invalidate: a not-present page won't be cached */
2650 		update_mmu_cache(vma, address, entry);
2651 	} else {
2652 		if (charged)
2653 			mem_cgroup_uncharge_page(page);
2654 		if (anon)
2655 			page_cache_release(page);
2656 		else
2657 			anon = 1; /* no anon but release faulted_page */
2658 	}
2659 
2660 	pte_unmap_unlock(page_table, ptl);
2661 
2662 out:
2663 	unlock_page(vmf.page);
2664 out_unlocked:
2665 	if (anon)
2666 		page_cache_release(vmf.page);
2667 	else if (dirty_page) {
2668 		if (vma->vm_file)
2669 			file_update_time(vma->vm_file);
2670 
2671 		set_page_dirty_balance(dirty_page, page_mkwrite);
2672 		put_page(dirty_page);
2673 	}
2674 
2675 	return ret;
2676 }
2677 
2678 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2679 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2680 		int write_access, pte_t orig_pte)
2681 {
2682 	pgoff_t pgoff = (((address & PAGE_MASK)
2683 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2684 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2685 
2686 	pte_unmap(page_table);
2687 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2688 }
2689 
2690 /*
2691  * Fault of a previously existing named mapping. Repopulate the pte
2692  * from the encoded file_pte if possible. This enables swappable
2693  * nonlinear vmas.
2694  *
2695  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2696  * but allow concurrent faults), and pte mapped but not yet locked.
2697  * We return with mmap_sem still held, but pte unmapped and unlocked.
2698  */
2699 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2700 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2701 		int write_access, pte_t orig_pte)
2702 {
2703 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2704 				(write_access ? FAULT_FLAG_WRITE : 0);
2705 	pgoff_t pgoff;
2706 
2707 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2708 		return 0;
2709 
2710 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2711 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2712 		/*
2713 		 * Page table corrupted: show pte and kill process.
2714 		 */
2715 		print_bad_pte(vma, address, orig_pte, NULL);
2716 		return VM_FAULT_OOM;
2717 	}
2718 
2719 	pgoff = pte_to_pgoff(orig_pte);
2720 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2721 }
2722 
2723 /*
2724  * These routines also need to handle stuff like marking pages dirty
2725  * and/or accessed for architectures that don't do it in hardware (most
2726  * RISC architectures).  The early dirtying is also good on the i386.
2727  *
2728  * There is also a hook called "update_mmu_cache()" that architectures
2729  * with external mmu caches can use to update those (ie the Sparc or
2730  * PowerPC hashed page tables that act as extended TLBs).
2731  *
2732  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2733  * but allow concurrent faults), and pte mapped but not yet locked.
2734  * We return with mmap_sem still held, but pte unmapped and unlocked.
2735  */
2736 static inline int handle_pte_fault(struct mm_struct *mm,
2737 		struct vm_area_struct *vma, unsigned long address,
2738 		pte_t *pte, pmd_t *pmd, int write_access)
2739 {
2740 	pte_t entry;
2741 	spinlock_t *ptl;
2742 
2743 	entry = *pte;
2744 	if (!pte_present(entry)) {
2745 		if (pte_none(entry)) {
2746 			if (vma->vm_ops) {
2747 				if (likely(vma->vm_ops->fault))
2748 					return do_linear_fault(mm, vma, address,
2749 						pte, pmd, write_access, entry);
2750 			}
2751 			return do_anonymous_page(mm, vma, address,
2752 						 pte, pmd, write_access);
2753 		}
2754 		if (pte_file(entry))
2755 			return do_nonlinear_fault(mm, vma, address,
2756 					pte, pmd, write_access, entry);
2757 		return do_swap_page(mm, vma, address,
2758 					pte, pmd, write_access, entry);
2759 	}
2760 
2761 	ptl = pte_lockptr(mm, pmd);
2762 	spin_lock(ptl);
2763 	if (unlikely(!pte_same(*pte, entry)))
2764 		goto unlock;
2765 	if (write_access) {
2766 		if (!pte_write(entry))
2767 			return do_wp_page(mm, vma, address,
2768 					pte, pmd, ptl, entry);
2769 		entry = pte_mkdirty(entry);
2770 	}
2771 	entry = pte_mkyoung(entry);
2772 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2773 		update_mmu_cache(vma, address, entry);
2774 	} else {
2775 		/*
2776 		 * This is needed only for protection faults but the arch code
2777 		 * is not yet telling us if this is a protection fault or not.
2778 		 * This still avoids useless tlb flushes for .text page faults
2779 		 * with threads.
2780 		 */
2781 		if (write_access)
2782 			flush_tlb_page(vma, address);
2783 	}
2784 unlock:
2785 	pte_unmap_unlock(pte, ptl);
2786 	return 0;
2787 }
2788 
2789 /*
2790  * By the time we get here, we already hold the mm semaphore
2791  */
2792 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2793 		unsigned long address, int write_access)
2794 {
2795 	pgd_t *pgd;
2796 	pud_t *pud;
2797 	pmd_t *pmd;
2798 	pte_t *pte;
2799 
2800 	__set_current_state(TASK_RUNNING);
2801 
2802 	count_vm_event(PGFAULT);
2803 
2804 	if (unlikely(is_vm_hugetlb_page(vma)))
2805 		return hugetlb_fault(mm, vma, address, write_access);
2806 
2807 	pgd = pgd_offset(mm, address);
2808 	pud = pud_alloc(mm, pgd, address);
2809 	if (!pud)
2810 		return VM_FAULT_OOM;
2811 	pmd = pmd_alloc(mm, pud, address);
2812 	if (!pmd)
2813 		return VM_FAULT_OOM;
2814 	pte = pte_alloc_map(mm, pmd, address);
2815 	if (!pte)
2816 		return VM_FAULT_OOM;
2817 
2818 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2819 }
2820 
2821 #ifndef __PAGETABLE_PUD_FOLDED
2822 /*
2823  * Allocate page upper directory.
2824  * We've already handled the fast-path in-line.
2825  */
2826 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2827 {
2828 	pud_t *new = pud_alloc_one(mm, address);
2829 	if (!new)
2830 		return -ENOMEM;
2831 
2832 	smp_wmb(); /* See comment in __pte_alloc */
2833 
2834 	spin_lock(&mm->page_table_lock);
2835 	if (pgd_present(*pgd))		/* Another has populated it */
2836 		pud_free(mm, new);
2837 	else
2838 		pgd_populate(mm, pgd, new);
2839 	spin_unlock(&mm->page_table_lock);
2840 	return 0;
2841 }
2842 #endif /* __PAGETABLE_PUD_FOLDED */
2843 
2844 #ifndef __PAGETABLE_PMD_FOLDED
2845 /*
2846  * Allocate page middle directory.
2847  * We've already handled the fast-path in-line.
2848  */
2849 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2850 {
2851 	pmd_t *new = pmd_alloc_one(mm, address);
2852 	if (!new)
2853 		return -ENOMEM;
2854 
2855 	smp_wmb(); /* See comment in __pte_alloc */
2856 
2857 	spin_lock(&mm->page_table_lock);
2858 #ifndef __ARCH_HAS_4LEVEL_HACK
2859 	if (pud_present(*pud))		/* Another has populated it */
2860 		pmd_free(mm, new);
2861 	else
2862 		pud_populate(mm, pud, new);
2863 #else
2864 	if (pgd_present(*pud))		/* Another has populated it */
2865 		pmd_free(mm, new);
2866 	else
2867 		pgd_populate(mm, pud, new);
2868 #endif /* __ARCH_HAS_4LEVEL_HACK */
2869 	spin_unlock(&mm->page_table_lock);
2870 	return 0;
2871 }
2872 #endif /* __PAGETABLE_PMD_FOLDED */
2873 
2874 int make_pages_present(unsigned long addr, unsigned long end)
2875 {
2876 	int ret, len, write;
2877 	struct vm_area_struct * vma;
2878 
2879 	vma = find_vma(current->mm, addr);
2880 	if (!vma)
2881 		return -ENOMEM;
2882 	write = (vma->vm_flags & VM_WRITE) != 0;
2883 	BUG_ON(addr >= end);
2884 	BUG_ON(end > vma->vm_end);
2885 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2886 	ret = get_user_pages(current, current->mm, addr,
2887 			len, write, 0, NULL, NULL);
2888 	if (ret < 0)
2889 		return ret;
2890 	return ret == len ? 0 : -EFAULT;
2891 }
2892 
2893 #if !defined(__HAVE_ARCH_GATE_AREA)
2894 
2895 #if defined(AT_SYSINFO_EHDR)
2896 static struct vm_area_struct gate_vma;
2897 
2898 static int __init gate_vma_init(void)
2899 {
2900 	gate_vma.vm_mm = NULL;
2901 	gate_vma.vm_start = FIXADDR_USER_START;
2902 	gate_vma.vm_end = FIXADDR_USER_END;
2903 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2904 	gate_vma.vm_page_prot = __P101;
2905 	/*
2906 	 * Make sure the vDSO gets into every core dump.
2907 	 * Dumping its contents makes post-mortem fully interpretable later
2908 	 * without matching up the same kernel and hardware config to see
2909 	 * what PC values meant.
2910 	 */
2911 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2912 	return 0;
2913 }
2914 __initcall(gate_vma_init);
2915 #endif
2916 
2917 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2918 {
2919 #ifdef AT_SYSINFO_EHDR
2920 	return &gate_vma;
2921 #else
2922 	return NULL;
2923 #endif
2924 }
2925 
2926 int in_gate_area_no_task(unsigned long addr)
2927 {
2928 #ifdef AT_SYSINFO_EHDR
2929 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2930 		return 1;
2931 #endif
2932 	return 0;
2933 }
2934 
2935 #endif	/* __HAVE_ARCH_GATE_AREA */
2936 
2937 #ifdef CONFIG_HAVE_IOREMAP_PROT
2938 int follow_phys(struct vm_area_struct *vma,
2939 		unsigned long address, unsigned int flags,
2940 		unsigned long *prot, resource_size_t *phys)
2941 {
2942 	pgd_t *pgd;
2943 	pud_t *pud;
2944 	pmd_t *pmd;
2945 	pte_t *ptep, pte;
2946 	spinlock_t *ptl;
2947 	resource_size_t phys_addr = 0;
2948 	struct mm_struct *mm = vma->vm_mm;
2949 	int ret = -EINVAL;
2950 
2951 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2952 		goto out;
2953 
2954 	pgd = pgd_offset(mm, address);
2955 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2956 		goto out;
2957 
2958 	pud = pud_offset(pgd, address);
2959 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2960 		goto out;
2961 
2962 	pmd = pmd_offset(pud, address);
2963 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2964 		goto out;
2965 
2966 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2967 	if (pmd_huge(*pmd))
2968 		goto out;
2969 
2970 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2971 	if (!ptep)
2972 		goto out;
2973 
2974 	pte = *ptep;
2975 	if (!pte_present(pte))
2976 		goto unlock;
2977 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2978 		goto unlock;
2979 	phys_addr = pte_pfn(pte);
2980 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2981 
2982 	*prot = pgprot_val(pte_pgprot(pte));
2983 	*phys = phys_addr;
2984 	ret = 0;
2985 
2986 unlock:
2987 	pte_unmap_unlock(ptep, ptl);
2988 out:
2989 	return ret;
2990 }
2991 
2992 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2993 			void *buf, int len, int write)
2994 {
2995 	resource_size_t phys_addr;
2996 	unsigned long prot = 0;
2997 	void __iomem *maddr;
2998 	int offset = addr & (PAGE_SIZE-1);
2999 
3000 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3001 		return -EINVAL;
3002 
3003 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3004 	if (write)
3005 		memcpy_toio(maddr + offset, buf, len);
3006 	else
3007 		memcpy_fromio(buf, maddr + offset, len);
3008 	iounmap(maddr);
3009 
3010 	return len;
3011 }
3012 #endif
3013 
3014 /*
3015  * Access another process' address space.
3016  * Source/target buffer must be kernel space,
3017  * Do not walk the page table directly, use get_user_pages
3018  */
3019 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3020 {
3021 	struct mm_struct *mm;
3022 	struct vm_area_struct *vma;
3023 	void *old_buf = buf;
3024 
3025 	mm = get_task_mm(tsk);
3026 	if (!mm)
3027 		return 0;
3028 
3029 	down_read(&mm->mmap_sem);
3030 	/* ignore errors, just check how much was successfully transferred */
3031 	while (len) {
3032 		int bytes, ret, offset;
3033 		void *maddr;
3034 		struct page *page = NULL;
3035 
3036 		ret = get_user_pages(tsk, mm, addr, 1,
3037 				write, 1, &page, &vma);
3038 		if (ret <= 0) {
3039 			/*
3040 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3041 			 * we can access using slightly different code.
3042 			 */
3043 #ifdef CONFIG_HAVE_IOREMAP_PROT
3044 			vma = find_vma(mm, addr);
3045 			if (!vma)
3046 				break;
3047 			if (vma->vm_ops && vma->vm_ops->access)
3048 				ret = vma->vm_ops->access(vma, addr, buf,
3049 							  len, write);
3050 			if (ret <= 0)
3051 #endif
3052 				break;
3053 			bytes = ret;
3054 		} else {
3055 			bytes = len;
3056 			offset = addr & (PAGE_SIZE-1);
3057 			if (bytes > PAGE_SIZE-offset)
3058 				bytes = PAGE_SIZE-offset;
3059 
3060 			maddr = kmap(page);
3061 			if (write) {
3062 				copy_to_user_page(vma, page, addr,
3063 						  maddr + offset, buf, bytes);
3064 				set_page_dirty_lock(page);
3065 			} else {
3066 				copy_from_user_page(vma, page, addr,
3067 						    buf, maddr + offset, bytes);
3068 			}
3069 			kunmap(page);
3070 			page_cache_release(page);
3071 		}
3072 		len -= bytes;
3073 		buf += bytes;
3074 		addr += bytes;
3075 	}
3076 	up_read(&mm->mmap_sem);
3077 	mmput(mm);
3078 
3079 	return buf - old_buf;
3080 }
3081 
3082 /*
3083  * Print the name of a VMA.
3084  */
3085 void print_vma_addr(char *prefix, unsigned long ip)
3086 {
3087 	struct mm_struct *mm = current->mm;
3088 	struct vm_area_struct *vma;
3089 
3090 	/*
3091 	 * Do not print if we are in atomic
3092 	 * contexts (in exception stacks, etc.):
3093 	 */
3094 	if (preempt_count())
3095 		return;
3096 
3097 	down_read(&mm->mmap_sem);
3098 	vma = find_vma(mm, ip);
3099 	if (vma && vma->vm_file) {
3100 		struct file *f = vma->vm_file;
3101 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3102 		if (buf) {
3103 			char *p, *s;
3104 
3105 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3106 			if (IS_ERR(p))
3107 				p = "?";
3108 			s = strrchr(p, '/');
3109 			if (s)
3110 				p = s+1;
3111 			printk("%s%s[%lx+%lx]", prefix, p,
3112 					vma->vm_start,
3113 					vma->vm_end - vma->vm_start);
3114 			free_page((unsigned long)buf);
3115 		}
3116 	}
3117 	up_read(&current->mm->mmap_sem);
3118 }
3119 
3120 #ifdef CONFIG_PROVE_LOCKING
3121 void might_fault(void)
3122 {
3123 	might_sleep();
3124 	/*
3125 	 * it would be nicer only to annotate paths which are not under
3126 	 * pagefault_disable, however that requires a larger audit and
3127 	 * providing helpers like get_user_atomic.
3128 	 */
3129 	if (!in_atomic() && current->mm)
3130 		might_lock_read(&current->mm->mmap_sem);
3131 }
3132 EXPORT_SYMBOL(might_fault);
3133 #endif
3134