1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 #include <linux/mmu_notifier.h> 55 #include <linux/kallsyms.h> 56 #include <linux/swapops.h> 57 #include <linux/elf.h> 58 59 #include <asm/pgalloc.h> 60 #include <asm/uaccess.h> 61 #include <asm/tlb.h> 62 #include <asm/tlbflush.h> 63 #include <asm/pgtable.h> 64 65 #include "internal.h" 66 67 #ifndef CONFIG_NEED_MULTIPLE_NODES 68 /* use the per-pgdat data instead for discontigmem - mbligh */ 69 unsigned long max_mapnr; 70 struct page *mem_map; 71 72 EXPORT_SYMBOL(max_mapnr); 73 EXPORT_SYMBOL(mem_map); 74 #endif 75 76 unsigned long num_physpages; 77 /* 78 * A number of key systems in x86 including ioremap() rely on the assumption 79 * that high_memory defines the upper bound on direct map memory, then end 80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 82 * and ZONE_HIGHMEM. 83 */ 84 void * high_memory; 85 86 EXPORT_SYMBOL(num_physpages); 87 EXPORT_SYMBOL(high_memory); 88 89 /* 90 * Randomize the address space (stacks, mmaps, brk, etc.). 91 * 92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 93 * as ancient (libc5 based) binaries can segfault. ) 94 */ 95 int randomize_va_space __read_mostly = 96 #ifdef CONFIG_COMPAT_BRK 97 1; 98 #else 99 2; 100 #endif 101 102 static int __init disable_randmaps(char *s) 103 { 104 randomize_va_space = 0; 105 return 1; 106 } 107 __setup("norandmaps", disable_randmaps); 108 109 110 /* 111 * If a p?d_bad entry is found while walking page tables, report 112 * the error, before resetting entry to p?d_none. Usually (but 113 * very seldom) called out from the p?d_none_or_clear_bad macros. 114 */ 115 116 void pgd_clear_bad(pgd_t *pgd) 117 { 118 pgd_ERROR(*pgd); 119 pgd_clear(pgd); 120 } 121 122 void pud_clear_bad(pud_t *pud) 123 { 124 pud_ERROR(*pud); 125 pud_clear(pud); 126 } 127 128 void pmd_clear_bad(pmd_t *pmd) 129 { 130 pmd_ERROR(*pmd); 131 pmd_clear(pmd); 132 } 133 134 /* 135 * Note: this doesn't free the actual pages themselves. That 136 * has been handled earlier when unmapping all the memory regions. 137 */ 138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 139 { 140 pgtable_t token = pmd_pgtable(*pmd); 141 pmd_clear(pmd); 142 pte_free_tlb(tlb, token); 143 tlb->mm->nr_ptes--; 144 } 145 146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 147 unsigned long addr, unsigned long end, 148 unsigned long floor, unsigned long ceiling) 149 { 150 pmd_t *pmd; 151 unsigned long next; 152 unsigned long start; 153 154 start = addr; 155 pmd = pmd_offset(pud, addr); 156 do { 157 next = pmd_addr_end(addr, end); 158 if (pmd_none_or_clear_bad(pmd)) 159 continue; 160 free_pte_range(tlb, pmd); 161 } while (pmd++, addr = next, addr != end); 162 163 start &= PUD_MASK; 164 if (start < floor) 165 return; 166 if (ceiling) { 167 ceiling &= PUD_MASK; 168 if (!ceiling) 169 return; 170 } 171 if (end - 1 > ceiling - 1) 172 return; 173 174 pmd = pmd_offset(pud, start); 175 pud_clear(pud); 176 pmd_free_tlb(tlb, pmd); 177 } 178 179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 180 unsigned long addr, unsigned long end, 181 unsigned long floor, unsigned long ceiling) 182 { 183 pud_t *pud; 184 unsigned long next; 185 unsigned long start; 186 187 start = addr; 188 pud = pud_offset(pgd, addr); 189 do { 190 next = pud_addr_end(addr, end); 191 if (pud_none_or_clear_bad(pud)) 192 continue; 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 194 } while (pud++, addr = next, addr != end); 195 196 start &= PGDIR_MASK; 197 if (start < floor) 198 return; 199 if (ceiling) { 200 ceiling &= PGDIR_MASK; 201 if (!ceiling) 202 return; 203 } 204 if (end - 1 > ceiling - 1) 205 return; 206 207 pud = pud_offset(pgd, start); 208 pgd_clear(pgd); 209 pud_free_tlb(tlb, pud); 210 } 211 212 /* 213 * This function frees user-level page tables of a process. 214 * 215 * Must be called with pagetable lock held. 216 */ 217 void free_pgd_range(struct mmu_gather *tlb, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long start; 224 225 /* 226 * The next few lines have given us lots of grief... 227 * 228 * Why are we testing PMD* at this top level? Because often 229 * there will be no work to do at all, and we'd prefer not to 230 * go all the way down to the bottom just to discover that. 231 * 232 * Why all these "- 1"s? Because 0 represents both the bottom 233 * of the address space and the top of it (using -1 for the 234 * top wouldn't help much: the masks would do the wrong thing). 235 * The rule is that addr 0 and floor 0 refer to the bottom of 236 * the address space, but end 0 and ceiling 0 refer to the top 237 * Comparisons need to use "end - 1" and "ceiling - 1" (though 238 * that end 0 case should be mythical). 239 * 240 * Wherever addr is brought up or ceiling brought down, we must 241 * be careful to reject "the opposite 0" before it confuses the 242 * subsequent tests. But what about where end is brought down 243 * by PMD_SIZE below? no, end can't go down to 0 there. 244 * 245 * Whereas we round start (addr) and ceiling down, by different 246 * masks at different levels, in order to test whether a table 247 * now has no other vmas using it, so can be freed, we don't 248 * bother to round floor or end up - the tests don't need that. 249 */ 250 251 addr &= PMD_MASK; 252 if (addr < floor) { 253 addr += PMD_SIZE; 254 if (!addr) 255 return; 256 } 257 if (ceiling) { 258 ceiling &= PMD_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 end -= PMD_SIZE; 264 if (addr > end - 1) 265 return; 266 267 start = addr; 268 pgd = pgd_offset(tlb->mm, addr); 269 do { 270 next = pgd_addr_end(addr, end); 271 if (pgd_none_or_clear_bad(pgd)) 272 continue; 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 274 } while (pgd++, addr = next, addr != end); 275 } 276 277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 278 unsigned long floor, unsigned long ceiling) 279 { 280 while (vma) { 281 struct vm_area_struct *next = vma->vm_next; 282 unsigned long addr = vma->vm_start; 283 284 /* 285 * Hide vma from rmap and vmtruncate before freeing pgtables 286 */ 287 anon_vma_unlink(vma); 288 unlink_file_vma(vma); 289 290 if (is_vm_hugetlb_page(vma)) { 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 292 floor, next? next->vm_start: ceiling); 293 } else { 294 /* 295 * Optimization: gather nearby vmas into one call down 296 */ 297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 298 && !is_vm_hugetlb_page(next)) { 299 vma = next; 300 next = vma->vm_next; 301 anon_vma_unlink(vma); 302 unlink_file_vma(vma); 303 } 304 free_pgd_range(tlb, addr, vma->vm_end, 305 floor, next? next->vm_start: ceiling); 306 } 307 vma = next; 308 } 309 } 310 311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 312 { 313 pgtable_t new = pte_alloc_one(mm, address); 314 if (!new) 315 return -ENOMEM; 316 317 /* 318 * Ensure all pte setup (eg. pte page lock and page clearing) are 319 * visible before the pte is made visible to other CPUs by being 320 * put into page tables. 321 * 322 * The other side of the story is the pointer chasing in the page 323 * table walking code (when walking the page table without locking; 324 * ie. most of the time). Fortunately, these data accesses consist 325 * of a chain of data-dependent loads, meaning most CPUs (alpha 326 * being the notable exception) will already guarantee loads are 327 * seen in-order. See the alpha page table accessors for the 328 * smp_read_barrier_depends() barriers in page table walking code. 329 */ 330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 331 332 spin_lock(&mm->page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 mm->nr_ptes++; 335 pmd_populate(mm, pmd, new); 336 new = NULL; 337 } 338 spin_unlock(&mm->page_table_lock); 339 if (new) 340 pte_free(mm, new); 341 return 0; 342 } 343 344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 345 { 346 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 347 if (!new) 348 return -ENOMEM; 349 350 smp_wmb(); /* See comment in __pte_alloc */ 351 352 spin_lock(&init_mm.page_table_lock); 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 354 pmd_populate_kernel(&init_mm, pmd, new); 355 new = NULL; 356 } 357 spin_unlock(&init_mm.page_table_lock); 358 if (new) 359 pte_free_kernel(&init_mm, new); 360 return 0; 361 } 362 363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 364 { 365 if (file_rss) 366 add_mm_counter(mm, file_rss, file_rss); 367 if (anon_rss) 368 add_mm_counter(mm, anon_rss, anon_rss); 369 } 370 371 /* 372 * This function is called to print an error when a bad pte 373 * is found. For example, we might have a PFN-mapped pte in 374 * a region that doesn't allow it. 375 * 376 * The calling function must still handle the error. 377 */ 378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 379 pte_t pte, struct page *page) 380 { 381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 382 pud_t *pud = pud_offset(pgd, addr); 383 pmd_t *pmd = pmd_offset(pud, addr); 384 struct address_space *mapping; 385 pgoff_t index; 386 387 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 388 index = linear_page_index(vma, addr); 389 390 printk(KERN_EMERG "Bad page map in process %s pte:%08llx pmd:%08llx\n", 391 current->comm, 392 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 393 if (page) { 394 printk(KERN_EMERG 395 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 396 page, (void *)page->flags, page_count(page), 397 page_mapcount(page), page->mapping, page->index); 398 } 399 printk(KERN_EMERG 400 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 401 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 402 /* 403 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 404 */ 405 if (vma->vm_ops) 406 print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n", 407 (unsigned long)vma->vm_ops->fault); 408 if (vma->vm_file && vma->vm_file->f_op) 409 print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n", 410 (unsigned long)vma->vm_file->f_op->mmap); 411 dump_stack(); 412 add_taint(TAINT_BAD_PAGE); 413 } 414 415 static inline int is_cow_mapping(unsigned int flags) 416 { 417 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 418 } 419 420 /* 421 * vm_normal_page -- This function gets the "struct page" associated with a pte. 422 * 423 * "Special" mappings do not wish to be associated with a "struct page" (either 424 * it doesn't exist, or it exists but they don't want to touch it). In this 425 * case, NULL is returned here. "Normal" mappings do have a struct page. 426 * 427 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 428 * pte bit, in which case this function is trivial. Secondly, an architecture 429 * may not have a spare pte bit, which requires a more complicated scheme, 430 * described below. 431 * 432 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 433 * special mapping (even if there are underlying and valid "struct pages"). 434 * COWed pages of a VM_PFNMAP are always normal. 435 * 436 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 437 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 438 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 439 * mapping will always honor the rule 440 * 441 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 442 * 443 * And for normal mappings this is false. 444 * 445 * This restricts such mappings to be a linear translation from virtual address 446 * to pfn. To get around this restriction, we allow arbitrary mappings so long 447 * as the vma is not a COW mapping; in that case, we know that all ptes are 448 * special (because none can have been COWed). 449 * 450 * 451 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 452 * 453 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 454 * page" backing, however the difference is that _all_ pages with a struct 455 * page (that is, those where pfn_valid is true) are refcounted and considered 456 * normal pages by the VM. The disadvantage is that pages are refcounted 457 * (which can be slower and simply not an option for some PFNMAP users). The 458 * advantage is that we don't have to follow the strict linearity rule of 459 * PFNMAP mappings in order to support COWable mappings. 460 * 461 */ 462 #ifdef __HAVE_ARCH_PTE_SPECIAL 463 # define HAVE_PTE_SPECIAL 1 464 #else 465 # define HAVE_PTE_SPECIAL 0 466 #endif 467 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 468 pte_t pte) 469 { 470 unsigned long pfn = pte_pfn(pte); 471 472 if (HAVE_PTE_SPECIAL) { 473 if (likely(!pte_special(pte))) 474 goto check_pfn; 475 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) 476 print_bad_pte(vma, addr, pte, NULL); 477 return NULL; 478 } 479 480 /* !HAVE_PTE_SPECIAL case follows: */ 481 482 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 483 if (vma->vm_flags & VM_MIXEDMAP) { 484 if (!pfn_valid(pfn)) 485 return NULL; 486 goto out; 487 } else { 488 unsigned long off; 489 off = (addr - vma->vm_start) >> PAGE_SHIFT; 490 if (pfn == vma->vm_pgoff + off) 491 return NULL; 492 if (!is_cow_mapping(vma->vm_flags)) 493 return NULL; 494 } 495 } 496 497 check_pfn: 498 if (unlikely(pfn > highest_memmap_pfn)) { 499 print_bad_pte(vma, addr, pte, NULL); 500 return NULL; 501 } 502 503 /* 504 * NOTE! We still have PageReserved() pages in the page tables. 505 * eg. VDSO mappings can cause them to exist. 506 */ 507 out: 508 return pfn_to_page(pfn); 509 } 510 511 /* 512 * copy one vm_area from one task to the other. Assumes the page tables 513 * already present in the new task to be cleared in the whole range 514 * covered by this vma. 515 */ 516 517 static inline void 518 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 519 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 520 unsigned long addr, int *rss) 521 { 522 unsigned long vm_flags = vma->vm_flags; 523 pte_t pte = *src_pte; 524 struct page *page; 525 526 /* pte contains position in swap or file, so copy. */ 527 if (unlikely(!pte_present(pte))) { 528 if (!pte_file(pte)) { 529 swp_entry_t entry = pte_to_swp_entry(pte); 530 531 swap_duplicate(entry); 532 /* make sure dst_mm is on swapoff's mmlist. */ 533 if (unlikely(list_empty(&dst_mm->mmlist))) { 534 spin_lock(&mmlist_lock); 535 if (list_empty(&dst_mm->mmlist)) 536 list_add(&dst_mm->mmlist, 537 &src_mm->mmlist); 538 spin_unlock(&mmlist_lock); 539 } 540 if (is_write_migration_entry(entry) && 541 is_cow_mapping(vm_flags)) { 542 /* 543 * COW mappings require pages in both parent 544 * and child to be set to read. 545 */ 546 make_migration_entry_read(&entry); 547 pte = swp_entry_to_pte(entry); 548 set_pte_at(src_mm, addr, src_pte, pte); 549 } 550 } 551 goto out_set_pte; 552 } 553 554 /* 555 * If it's a COW mapping, write protect it both 556 * in the parent and the child 557 */ 558 if (is_cow_mapping(vm_flags)) { 559 ptep_set_wrprotect(src_mm, addr, src_pte); 560 pte = pte_wrprotect(pte); 561 } 562 563 /* 564 * If it's a shared mapping, mark it clean in 565 * the child 566 */ 567 if (vm_flags & VM_SHARED) 568 pte = pte_mkclean(pte); 569 pte = pte_mkold(pte); 570 571 page = vm_normal_page(vma, addr, pte); 572 if (page) { 573 get_page(page); 574 page_dup_rmap(page, vma, addr); 575 rss[!!PageAnon(page)]++; 576 } 577 578 out_set_pte: 579 set_pte_at(dst_mm, addr, dst_pte, pte); 580 } 581 582 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 583 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 584 unsigned long addr, unsigned long end) 585 { 586 pte_t *src_pte, *dst_pte; 587 spinlock_t *src_ptl, *dst_ptl; 588 int progress = 0; 589 int rss[2]; 590 591 again: 592 rss[1] = rss[0] = 0; 593 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 594 if (!dst_pte) 595 return -ENOMEM; 596 src_pte = pte_offset_map_nested(src_pmd, addr); 597 src_ptl = pte_lockptr(src_mm, src_pmd); 598 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 599 arch_enter_lazy_mmu_mode(); 600 601 do { 602 /* 603 * We are holding two locks at this point - either of them 604 * could generate latencies in another task on another CPU. 605 */ 606 if (progress >= 32) { 607 progress = 0; 608 if (need_resched() || 609 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 610 break; 611 } 612 if (pte_none(*src_pte)) { 613 progress++; 614 continue; 615 } 616 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 617 progress += 8; 618 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 619 620 arch_leave_lazy_mmu_mode(); 621 spin_unlock(src_ptl); 622 pte_unmap_nested(src_pte - 1); 623 add_mm_rss(dst_mm, rss[0], rss[1]); 624 pte_unmap_unlock(dst_pte - 1, dst_ptl); 625 cond_resched(); 626 if (addr != end) 627 goto again; 628 return 0; 629 } 630 631 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 632 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 633 unsigned long addr, unsigned long end) 634 { 635 pmd_t *src_pmd, *dst_pmd; 636 unsigned long next; 637 638 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 639 if (!dst_pmd) 640 return -ENOMEM; 641 src_pmd = pmd_offset(src_pud, addr); 642 do { 643 next = pmd_addr_end(addr, end); 644 if (pmd_none_or_clear_bad(src_pmd)) 645 continue; 646 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 647 vma, addr, next)) 648 return -ENOMEM; 649 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 650 return 0; 651 } 652 653 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 654 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 655 unsigned long addr, unsigned long end) 656 { 657 pud_t *src_pud, *dst_pud; 658 unsigned long next; 659 660 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 661 if (!dst_pud) 662 return -ENOMEM; 663 src_pud = pud_offset(src_pgd, addr); 664 do { 665 next = pud_addr_end(addr, end); 666 if (pud_none_or_clear_bad(src_pud)) 667 continue; 668 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 669 vma, addr, next)) 670 return -ENOMEM; 671 } while (dst_pud++, src_pud++, addr = next, addr != end); 672 return 0; 673 } 674 675 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 676 struct vm_area_struct *vma) 677 { 678 pgd_t *src_pgd, *dst_pgd; 679 unsigned long next; 680 unsigned long addr = vma->vm_start; 681 unsigned long end = vma->vm_end; 682 int ret; 683 684 /* 685 * Don't copy ptes where a page fault will fill them correctly. 686 * Fork becomes much lighter when there are big shared or private 687 * readonly mappings. The tradeoff is that copy_page_range is more 688 * efficient than faulting. 689 */ 690 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 691 if (!vma->anon_vma) 692 return 0; 693 } 694 695 if (is_vm_hugetlb_page(vma)) 696 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 697 698 if (unlikely(is_pfn_mapping(vma))) { 699 /* 700 * We do not free on error cases below as remove_vma 701 * gets called on error from higher level routine 702 */ 703 ret = track_pfn_vma_copy(vma); 704 if (ret) 705 return ret; 706 } 707 708 /* 709 * We need to invalidate the secondary MMU mappings only when 710 * there could be a permission downgrade on the ptes of the 711 * parent mm. And a permission downgrade will only happen if 712 * is_cow_mapping() returns true. 713 */ 714 if (is_cow_mapping(vma->vm_flags)) 715 mmu_notifier_invalidate_range_start(src_mm, addr, end); 716 717 ret = 0; 718 dst_pgd = pgd_offset(dst_mm, addr); 719 src_pgd = pgd_offset(src_mm, addr); 720 do { 721 next = pgd_addr_end(addr, end); 722 if (pgd_none_or_clear_bad(src_pgd)) 723 continue; 724 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 725 vma, addr, next))) { 726 ret = -ENOMEM; 727 break; 728 } 729 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 730 731 if (is_cow_mapping(vma->vm_flags)) 732 mmu_notifier_invalidate_range_end(src_mm, 733 vma->vm_start, end); 734 return ret; 735 } 736 737 static unsigned long zap_pte_range(struct mmu_gather *tlb, 738 struct vm_area_struct *vma, pmd_t *pmd, 739 unsigned long addr, unsigned long end, 740 long *zap_work, struct zap_details *details) 741 { 742 struct mm_struct *mm = tlb->mm; 743 pte_t *pte; 744 spinlock_t *ptl; 745 int file_rss = 0; 746 int anon_rss = 0; 747 748 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 749 arch_enter_lazy_mmu_mode(); 750 do { 751 pte_t ptent = *pte; 752 if (pte_none(ptent)) { 753 (*zap_work)--; 754 continue; 755 } 756 757 (*zap_work) -= PAGE_SIZE; 758 759 if (pte_present(ptent)) { 760 struct page *page; 761 762 page = vm_normal_page(vma, addr, ptent); 763 if (unlikely(details) && page) { 764 /* 765 * unmap_shared_mapping_pages() wants to 766 * invalidate cache without truncating: 767 * unmap shared but keep private pages. 768 */ 769 if (details->check_mapping && 770 details->check_mapping != page->mapping) 771 continue; 772 /* 773 * Each page->index must be checked when 774 * invalidating or truncating nonlinear. 775 */ 776 if (details->nonlinear_vma && 777 (page->index < details->first_index || 778 page->index > details->last_index)) 779 continue; 780 } 781 ptent = ptep_get_and_clear_full(mm, addr, pte, 782 tlb->fullmm); 783 tlb_remove_tlb_entry(tlb, pte, addr); 784 if (unlikely(!page)) 785 continue; 786 if (unlikely(details) && details->nonlinear_vma 787 && linear_page_index(details->nonlinear_vma, 788 addr) != page->index) 789 set_pte_at(mm, addr, pte, 790 pgoff_to_pte(page->index)); 791 if (PageAnon(page)) 792 anon_rss--; 793 else { 794 if (pte_dirty(ptent)) 795 set_page_dirty(page); 796 if (pte_young(ptent) && 797 likely(!VM_SequentialReadHint(vma))) 798 mark_page_accessed(page); 799 file_rss--; 800 } 801 page_remove_rmap(page, vma); 802 if (unlikely(page_mapcount(page) < 0)) 803 print_bad_pte(vma, addr, ptent, page); 804 tlb_remove_page(tlb, page); 805 continue; 806 } 807 /* 808 * If details->check_mapping, we leave swap entries; 809 * if details->nonlinear_vma, we leave file entries. 810 */ 811 if (unlikely(details)) 812 continue; 813 if (!pte_file(ptent)) 814 free_swap_and_cache(pte_to_swp_entry(ptent)); 815 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 816 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 817 818 add_mm_rss(mm, file_rss, anon_rss); 819 arch_leave_lazy_mmu_mode(); 820 pte_unmap_unlock(pte - 1, ptl); 821 822 return addr; 823 } 824 825 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 826 struct vm_area_struct *vma, pud_t *pud, 827 unsigned long addr, unsigned long end, 828 long *zap_work, struct zap_details *details) 829 { 830 pmd_t *pmd; 831 unsigned long next; 832 833 pmd = pmd_offset(pud, addr); 834 do { 835 next = pmd_addr_end(addr, end); 836 if (pmd_none_or_clear_bad(pmd)) { 837 (*zap_work)--; 838 continue; 839 } 840 next = zap_pte_range(tlb, vma, pmd, addr, next, 841 zap_work, details); 842 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 843 844 return addr; 845 } 846 847 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 848 struct vm_area_struct *vma, pgd_t *pgd, 849 unsigned long addr, unsigned long end, 850 long *zap_work, struct zap_details *details) 851 { 852 pud_t *pud; 853 unsigned long next; 854 855 pud = pud_offset(pgd, addr); 856 do { 857 next = pud_addr_end(addr, end); 858 if (pud_none_or_clear_bad(pud)) { 859 (*zap_work)--; 860 continue; 861 } 862 next = zap_pmd_range(tlb, vma, pud, addr, next, 863 zap_work, details); 864 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 865 866 return addr; 867 } 868 869 static unsigned long unmap_page_range(struct mmu_gather *tlb, 870 struct vm_area_struct *vma, 871 unsigned long addr, unsigned long end, 872 long *zap_work, struct zap_details *details) 873 { 874 pgd_t *pgd; 875 unsigned long next; 876 877 if (details && !details->check_mapping && !details->nonlinear_vma) 878 details = NULL; 879 880 BUG_ON(addr >= end); 881 tlb_start_vma(tlb, vma); 882 pgd = pgd_offset(vma->vm_mm, addr); 883 do { 884 next = pgd_addr_end(addr, end); 885 if (pgd_none_or_clear_bad(pgd)) { 886 (*zap_work)--; 887 continue; 888 } 889 next = zap_pud_range(tlb, vma, pgd, addr, next, 890 zap_work, details); 891 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 892 tlb_end_vma(tlb, vma); 893 894 return addr; 895 } 896 897 #ifdef CONFIG_PREEMPT 898 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 899 #else 900 /* No preempt: go for improved straight-line efficiency */ 901 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 902 #endif 903 904 /** 905 * unmap_vmas - unmap a range of memory covered by a list of vma's 906 * @tlbp: address of the caller's struct mmu_gather 907 * @vma: the starting vma 908 * @start_addr: virtual address at which to start unmapping 909 * @end_addr: virtual address at which to end unmapping 910 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 911 * @details: details of nonlinear truncation or shared cache invalidation 912 * 913 * Returns the end address of the unmapping (restart addr if interrupted). 914 * 915 * Unmap all pages in the vma list. 916 * 917 * We aim to not hold locks for too long (for scheduling latency reasons). 918 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 919 * return the ending mmu_gather to the caller. 920 * 921 * Only addresses between `start' and `end' will be unmapped. 922 * 923 * The VMA list must be sorted in ascending virtual address order. 924 * 925 * unmap_vmas() assumes that the caller will flush the whole unmapped address 926 * range after unmap_vmas() returns. So the only responsibility here is to 927 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 928 * drops the lock and schedules. 929 */ 930 unsigned long unmap_vmas(struct mmu_gather **tlbp, 931 struct vm_area_struct *vma, unsigned long start_addr, 932 unsigned long end_addr, unsigned long *nr_accounted, 933 struct zap_details *details) 934 { 935 long zap_work = ZAP_BLOCK_SIZE; 936 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 937 int tlb_start_valid = 0; 938 unsigned long start = start_addr; 939 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 940 int fullmm = (*tlbp)->fullmm; 941 struct mm_struct *mm = vma->vm_mm; 942 943 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 944 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 945 unsigned long end; 946 947 start = max(vma->vm_start, start_addr); 948 if (start >= vma->vm_end) 949 continue; 950 end = min(vma->vm_end, end_addr); 951 if (end <= vma->vm_start) 952 continue; 953 954 if (vma->vm_flags & VM_ACCOUNT) 955 *nr_accounted += (end - start) >> PAGE_SHIFT; 956 957 if (unlikely(is_pfn_mapping(vma))) 958 untrack_pfn_vma(vma, 0, 0); 959 960 while (start != end) { 961 if (!tlb_start_valid) { 962 tlb_start = start; 963 tlb_start_valid = 1; 964 } 965 966 if (unlikely(is_vm_hugetlb_page(vma))) { 967 /* 968 * It is undesirable to test vma->vm_file as it 969 * should be non-null for valid hugetlb area. 970 * However, vm_file will be NULL in the error 971 * cleanup path of do_mmap_pgoff. When 972 * hugetlbfs ->mmap method fails, 973 * do_mmap_pgoff() nullifies vma->vm_file 974 * before calling this function to clean up. 975 * Since no pte has actually been setup, it is 976 * safe to do nothing in this case. 977 */ 978 if (vma->vm_file) { 979 unmap_hugepage_range(vma, start, end, NULL); 980 zap_work -= (end - start) / 981 pages_per_huge_page(hstate_vma(vma)); 982 } 983 984 start = end; 985 } else 986 start = unmap_page_range(*tlbp, vma, 987 start, end, &zap_work, details); 988 989 if (zap_work > 0) { 990 BUG_ON(start != end); 991 break; 992 } 993 994 tlb_finish_mmu(*tlbp, tlb_start, start); 995 996 if (need_resched() || 997 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 998 if (i_mmap_lock) { 999 *tlbp = NULL; 1000 goto out; 1001 } 1002 cond_resched(); 1003 } 1004 1005 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1006 tlb_start_valid = 0; 1007 zap_work = ZAP_BLOCK_SIZE; 1008 } 1009 } 1010 out: 1011 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1012 return start; /* which is now the end (or restart) address */ 1013 } 1014 1015 /** 1016 * zap_page_range - remove user pages in a given range 1017 * @vma: vm_area_struct holding the applicable pages 1018 * @address: starting address of pages to zap 1019 * @size: number of bytes to zap 1020 * @details: details of nonlinear truncation or shared cache invalidation 1021 */ 1022 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1023 unsigned long size, struct zap_details *details) 1024 { 1025 struct mm_struct *mm = vma->vm_mm; 1026 struct mmu_gather *tlb; 1027 unsigned long end = address + size; 1028 unsigned long nr_accounted = 0; 1029 1030 lru_add_drain(); 1031 tlb = tlb_gather_mmu(mm, 0); 1032 update_hiwater_rss(mm); 1033 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1034 if (tlb) 1035 tlb_finish_mmu(tlb, address, end); 1036 return end; 1037 } 1038 1039 /** 1040 * zap_vma_ptes - remove ptes mapping the vma 1041 * @vma: vm_area_struct holding ptes to be zapped 1042 * @address: starting address of pages to zap 1043 * @size: number of bytes to zap 1044 * 1045 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1046 * 1047 * The entire address range must be fully contained within the vma. 1048 * 1049 * Returns 0 if successful. 1050 */ 1051 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1052 unsigned long size) 1053 { 1054 if (address < vma->vm_start || address + size > vma->vm_end || 1055 !(vma->vm_flags & VM_PFNMAP)) 1056 return -1; 1057 zap_page_range(vma, address, size, NULL); 1058 return 0; 1059 } 1060 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1061 1062 /* 1063 * Do a quick page-table lookup for a single page. 1064 */ 1065 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1066 unsigned int flags) 1067 { 1068 pgd_t *pgd; 1069 pud_t *pud; 1070 pmd_t *pmd; 1071 pte_t *ptep, pte; 1072 spinlock_t *ptl; 1073 struct page *page; 1074 struct mm_struct *mm = vma->vm_mm; 1075 1076 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1077 if (!IS_ERR(page)) { 1078 BUG_ON(flags & FOLL_GET); 1079 goto out; 1080 } 1081 1082 page = NULL; 1083 pgd = pgd_offset(mm, address); 1084 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1085 goto no_page_table; 1086 1087 pud = pud_offset(pgd, address); 1088 if (pud_none(*pud)) 1089 goto no_page_table; 1090 if (pud_huge(*pud)) { 1091 BUG_ON(flags & FOLL_GET); 1092 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1093 goto out; 1094 } 1095 if (unlikely(pud_bad(*pud))) 1096 goto no_page_table; 1097 1098 pmd = pmd_offset(pud, address); 1099 if (pmd_none(*pmd)) 1100 goto no_page_table; 1101 if (pmd_huge(*pmd)) { 1102 BUG_ON(flags & FOLL_GET); 1103 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1104 goto out; 1105 } 1106 if (unlikely(pmd_bad(*pmd))) 1107 goto no_page_table; 1108 1109 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1110 1111 pte = *ptep; 1112 if (!pte_present(pte)) 1113 goto no_page; 1114 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1115 goto unlock; 1116 page = vm_normal_page(vma, address, pte); 1117 if (unlikely(!page)) 1118 goto bad_page; 1119 1120 if (flags & FOLL_GET) 1121 get_page(page); 1122 if (flags & FOLL_TOUCH) { 1123 if ((flags & FOLL_WRITE) && 1124 !pte_dirty(pte) && !PageDirty(page)) 1125 set_page_dirty(page); 1126 mark_page_accessed(page); 1127 } 1128 unlock: 1129 pte_unmap_unlock(ptep, ptl); 1130 out: 1131 return page; 1132 1133 bad_page: 1134 pte_unmap_unlock(ptep, ptl); 1135 return ERR_PTR(-EFAULT); 1136 1137 no_page: 1138 pte_unmap_unlock(ptep, ptl); 1139 if (!pte_none(pte)) 1140 return page; 1141 /* Fall through to ZERO_PAGE handling */ 1142 no_page_table: 1143 /* 1144 * When core dumping an enormous anonymous area that nobody 1145 * has touched so far, we don't want to allocate page tables. 1146 */ 1147 if (flags & FOLL_ANON) { 1148 page = ZERO_PAGE(0); 1149 if (flags & FOLL_GET) 1150 get_page(page); 1151 BUG_ON(flags & FOLL_WRITE); 1152 } 1153 return page; 1154 } 1155 1156 /* Can we do the FOLL_ANON optimization? */ 1157 static inline int use_zero_page(struct vm_area_struct *vma) 1158 { 1159 /* 1160 * We don't want to optimize FOLL_ANON for make_pages_present() 1161 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1162 * we want to get the page from the page tables to make sure 1163 * that we serialize and update with any other user of that 1164 * mapping. 1165 */ 1166 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1167 return 0; 1168 /* 1169 * And if we have a fault routine, it's not an anonymous region. 1170 */ 1171 return !vma->vm_ops || !vma->vm_ops->fault; 1172 } 1173 1174 1175 1176 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1177 unsigned long start, int len, int flags, 1178 struct page **pages, struct vm_area_struct **vmas) 1179 { 1180 int i; 1181 unsigned int vm_flags = 0; 1182 int write = !!(flags & GUP_FLAGS_WRITE); 1183 int force = !!(flags & GUP_FLAGS_FORCE); 1184 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 1185 1186 if (len <= 0) 1187 return 0; 1188 /* 1189 * Require read or write permissions. 1190 * If 'force' is set, we only require the "MAY" flags. 1191 */ 1192 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1193 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1194 i = 0; 1195 1196 do { 1197 struct vm_area_struct *vma; 1198 unsigned int foll_flags; 1199 1200 vma = find_extend_vma(mm, start); 1201 if (!vma && in_gate_area(tsk, start)) { 1202 unsigned long pg = start & PAGE_MASK; 1203 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1204 pgd_t *pgd; 1205 pud_t *pud; 1206 pmd_t *pmd; 1207 pte_t *pte; 1208 1209 /* user gate pages are read-only */ 1210 if (!ignore && write) 1211 return i ? : -EFAULT; 1212 if (pg > TASK_SIZE) 1213 pgd = pgd_offset_k(pg); 1214 else 1215 pgd = pgd_offset_gate(mm, pg); 1216 BUG_ON(pgd_none(*pgd)); 1217 pud = pud_offset(pgd, pg); 1218 BUG_ON(pud_none(*pud)); 1219 pmd = pmd_offset(pud, pg); 1220 if (pmd_none(*pmd)) 1221 return i ? : -EFAULT; 1222 pte = pte_offset_map(pmd, pg); 1223 if (pte_none(*pte)) { 1224 pte_unmap(pte); 1225 return i ? : -EFAULT; 1226 } 1227 if (pages) { 1228 struct page *page = vm_normal_page(gate_vma, start, *pte); 1229 pages[i] = page; 1230 if (page) 1231 get_page(page); 1232 } 1233 pte_unmap(pte); 1234 if (vmas) 1235 vmas[i] = gate_vma; 1236 i++; 1237 start += PAGE_SIZE; 1238 len--; 1239 continue; 1240 } 1241 1242 if (!vma || 1243 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1244 (!ignore && !(vm_flags & vma->vm_flags))) 1245 return i ? : -EFAULT; 1246 1247 if (is_vm_hugetlb_page(vma)) { 1248 i = follow_hugetlb_page(mm, vma, pages, vmas, 1249 &start, &len, i, write); 1250 continue; 1251 } 1252 1253 foll_flags = FOLL_TOUCH; 1254 if (pages) 1255 foll_flags |= FOLL_GET; 1256 if (!write && use_zero_page(vma)) 1257 foll_flags |= FOLL_ANON; 1258 1259 do { 1260 struct page *page; 1261 1262 /* 1263 * If tsk is ooming, cut off its access to large memory 1264 * allocations. It has a pending SIGKILL, but it can't 1265 * be processed until returning to user space. 1266 */ 1267 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1268 return i ? i : -ENOMEM; 1269 1270 if (write) 1271 foll_flags |= FOLL_WRITE; 1272 1273 cond_resched(); 1274 while (!(page = follow_page(vma, start, foll_flags))) { 1275 int ret; 1276 ret = handle_mm_fault(mm, vma, start, 1277 foll_flags & FOLL_WRITE); 1278 if (ret & VM_FAULT_ERROR) { 1279 if (ret & VM_FAULT_OOM) 1280 return i ? i : -ENOMEM; 1281 else if (ret & VM_FAULT_SIGBUS) 1282 return i ? i : -EFAULT; 1283 BUG(); 1284 } 1285 if (ret & VM_FAULT_MAJOR) 1286 tsk->maj_flt++; 1287 else 1288 tsk->min_flt++; 1289 1290 /* 1291 * The VM_FAULT_WRITE bit tells us that 1292 * do_wp_page has broken COW when necessary, 1293 * even if maybe_mkwrite decided not to set 1294 * pte_write. We can thus safely do subsequent 1295 * page lookups as if they were reads. But only 1296 * do so when looping for pte_write is futile: 1297 * in some cases userspace may also be wanting 1298 * to write to the gotten user page, which a 1299 * read fault here might prevent (a readonly 1300 * page might get reCOWed by userspace write). 1301 */ 1302 if ((ret & VM_FAULT_WRITE) && 1303 !(vma->vm_flags & VM_WRITE)) 1304 foll_flags &= ~FOLL_WRITE; 1305 1306 cond_resched(); 1307 } 1308 if (IS_ERR(page)) 1309 return i ? i : PTR_ERR(page); 1310 if (pages) { 1311 pages[i] = page; 1312 1313 flush_anon_page(vma, page, start); 1314 flush_dcache_page(page); 1315 } 1316 if (vmas) 1317 vmas[i] = vma; 1318 i++; 1319 start += PAGE_SIZE; 1320 len--; 1321 } while (len && start < vma->vm_end); 1322 } while (len); 1323 return i; 1324 } 1325 1326 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1327 unsigned long start, int len, int write, int force, 1328 struct page **pages, struct vm_area_struct **vmas) 1329 { 1330 int flags = 0; 1331 1332 if (write) 1333 flags |= GUP_FLAGS_WRITE; 1334 if (force) 1335 flags |= GUP_FLAGS_FORCE; 1336 1337 return __get_user_pages(tsk, mm, 1338 start, len, flags, 1339 pages, vmas); 1340 } 1341 1342 EXPORT_SYMBOL(get_user_pages); 1343 1344 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1345 spinlock_t **ptl) 1346 { 1347 pgd_t * pgd = pgd_offset(mm, addr); 1348 pud_t * pud = pud_alloc(mm, pgd, addr); 1349 if (pud) { 1350 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1351 if (pmd) 1352 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1353 } 1354 return NULL; 1355 } 1356 1357 /* 1358 * This is the old fallback for page remapping. 1359 * 1360 * For historical reasons, it only allows reserved pages. Only 1361 * old drivers should use this, and they needed to mark their 1362 * pages reserved for the old functions anyway. 1363 */ 1364 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1365 struct page *page, pgprot_t prot) 1366 { 1367 struct mm_struct *mm = vma->vm_mm; 1368 int retval; 1369 pte_t *pte; 1370 spinlock_t *ptl; 1371 1372 retval = -EINVAL; 1373 if (PageAnon(page)) 1374 goto out; 1375 retval = -ENOMEM; 1376 flush_dcache_page(page); 1377 pte = get_locked_pte(mm, addr, &ptl); 1378 if (!pte) 1379 goto out; 1380 retval = -EBUSY; 1381 if (!pte_none(*pte)) 1382 goto out_unlock; 1383 1384 /* Ok, finally just insert the thing.. */ 1385 get_page(page); 1386 inc_mm_counter(mm, file_rss); 1387 page_add_file_rmap(page); 1388 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1389 1390 retval = 0; 1391 pte_unmap_unlock(pte, ptl); 1392 return retval; 1393 out_unlock: 1394 pte_unmap_unlock(pte, ptl); 1395 out: 1396 return retval; 1397 } 1398 1399 /** 1400 * vm_insert_page - insert single page into user vma 1401 * @vma: user vma to map to 1402 * @addr: target user address of this page 1403 * @page: source kernel page 1404 * 1405 * This allows drivers to insert individual pages they've allocated 1406 * into a user vma. 1407 * 1408 * The page has to be a nice clean _individual_ kernel allocation. 1409 * If you allocate a compound page, you need to have marked it as 1410 * such (__GFP_COMP), or manually just split the page up yourself 1411 * (see split_page()). 1412 * 1413 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1414 * took an arbitrary page protection parameter. This doesn't allow 1415 * that. Your vma protection will have to be set up correctly, which 1416 * means that if you want a shared writable mapping, you'd better 1417 * ask for a shared writable mapping! 1418 * 1419 * The page does not need to be reserved. 1420 */ 1421 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1422 struct page *page) 1423 { 1424 if (addr < vma->vm_start || addr >= vma->vm_end) 1425 return -EFAULT; 1426 if (!page_count(page)) 1427 return -EINVAL; 1428 vma->vm_flags |= VM_INSERTPAGE; 1429 return insert_page(vma, addr, page, vma->vm_page_prot); 1430 } 1431 EXPORT_SYMBOL(vm_insert_page); 1432 1433 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1434 unsigned long pfn, pgprot_t prot) 1435 { 1436 struct mm_struct *mm = vma->vm_mm; 1437 int retval; 1438 pte_t *pte, entry; 1439 spinlock_t *ptl; 1440 1441 retval = -ENOMEM; 1442 pte = get_locked_pte(mm, addr, &ptl); 1443 if (!pte) 1444 goto out; 1445 retval = -EBUSY; 1446 if (!pte_none(*pte)) 1447 goto out_unlock; 1448 1449 /* Ok, finally just insert the thing.. */ 1450 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1451 set_pte_at(mm, addr, pte, entry); 1452 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1453 1454 retval = 0; 1455 out_unlock: 1456 pte_unmap_unlock(pte, ptl); 1457 out: 1458 return retval; 1459 } 1460 1461 /** 1462 * vm_insert_pfn - insert single pfn into user vma 1463 * @vma: user vma to map to 1464 * @addr: target user address of this page 1465 * @pfn: source kernel pfn 1466 * 1467 * Similar to vm_inert_page, this allows drivers to insert individual pages 1468 * they've allocated into a user vma. Same comments apply. 1469 * 1470 * This function should only be called from a vm_ops->fault handler, and 1471 * in that case the handler should return NULL. 1472 * 1473 * vma cannot be a COW mapping. 1474 * 1475 * As this is called only for pages that do not currently exist, we 1476 * do not need to flush old virtual caches or the TLB. 1477 */ 1478 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1479 unsigned long pfn) 1480 { 1481 int ret; 1482 /* 1483 * Technically, architectures with pte_special can avoid all these 1484 * restrictions (same for remap_pfn_range). However we would like 1485 * consistency in testing and feature parity among all, so we should 1486 * try to keep these invariants in place for everybody. 1487 */ 1488 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1489 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1490 (VM_PFNMAP|VM_MIXEDMAP)); 1491 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1492 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1493 1494 if (addr < vma->vm_start || addr >= vma->vm_end) 1495 return -EFAULT; 1496 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE)) 1497 return -EINVAL; 1498 1499 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1500 1501 if (ret) 1502 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1503 1504 return ret; 1505 } 1506 EXPORT_SYMBOL(vm_insert_pfn); 1507 1508 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1509 unsigned long pfn) 1510 { 1511 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1512 1513 if (addr < vma->vm_start || addr >= vma->vm_end) 1514 return -EFAULT; 1515 1516 /* 1517 * If we don't have pte special, then we have to use the pfn_valid() 1518 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1519 * refcount the page if pfn_valid is true (hence insert_page rather 1520 * than insert_pfn). 1521 */ 1522 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1523 struct page *page; 1524 1525 page = pfn_to_page(pfn); 1526 return insert_page(vma, addr, page, vma->vm_page_prot); 1527 } 1528 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1529 } 1530 EXPORT_SYMBOL(vm_insert_mixed); 1531 1532 /* 1533 * maps a range of physical memory into the requested pages. the old 1534 * mappings are removed. any references to nonexistent pages results 1535 * in null mappings (currently treated as "copy-on-access") 1536 */ 1537 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1538 unsigned long addr, unsigned long end, 1539 unsigned long pfn, pgprot_t prot) 1540 { 1541 pte_t *pte; 1542 spinlock_t *ptl; 1543 1544 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1545 if (!pte) 1546 return -ENOMEM; 1547 arch_enter_lazy_mmu_mode(); 1548 do { 1549 BUG_ON(!pte_none(*pte)); 1550 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1551 pfn++; 1552 } while (pte++, addr += PAGE_SIZE, addr != end); 1553 arch_leave_lazy_mmu_mode(); 1554 pte_unmap_unlock(pte - 1, ptl); 1555 return 0; 1556 } 1557 1558 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1559 unsigned long addr, unsigned long end, 1560 unsigned long pfn, pgprot_t prot) 1561 { 1562 pmd_t *pmd; 1563 unsigned long next; 1564 1565 pfn -= addr >> PAGE_SHIFT; 1566 pmd = pmd_alloc(mm, pud, addr); 1567 if (!pmd) 1568 return -ENOMEM; 1569 do { 1570 next = pmd_addr_end(addr, end); 1571 if (remap_pte_range(mm, pmd, addr, next, 1572 pfn + (addr >> PAGE_SHIFT), prot)) 1573 return -ENOMEM; 1574 } while (pmd++, addr = next, addr != end); 1575 return 0; 1576 } 1577 1578 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1579 unsigned long addr, unsigned long end, 1580 unsigned long pfn, pgprot_t prot) 1581 { 1582 pud_t *pud; 1583 unsigned long next; 1584 1585 pfn -= addr >> PAGE_SHIFT; 1586 pud = pud_alloc(mm, pgd, addr); 1587 if (!pud) 1588 return -ENOMEM; 1589 do { 1590 next = pud_addr_end(addr, end); 1591 if (remap_pmd_range(mm, pud, addr, next, 1592 pfn + (addr >> PAGE_SHIFT), prot)) 1593 return -ENOMEM; 1594 } while (pud++, addr = next, addr != end); 1595 return 0; 1596 } 1597 1598 /** 1599 * remap_pfn_range - remap kernel memory to userspace 1600 * @vma: user vma to map to 1601 * @addr: target user address to start at 1602 * @pfn: physical address of kernel memory 1603 * @size: size of map area 1604 * @prot: page protection flags for this mapping 1605 * 1606 * Note: this is only safe if the mm semaphore is held when called. 1607 */ 1608 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1609 unsigned long pfn, unsigned long size, pgprot_t prot) 1610 { 1611 pgd_t *pgd; 1612 unsigned long next; 1613 unsigned long end = addr + PAGE_ALIGN(size); 1614 struct mm_struct *mm = vma->vm_mm; 1615 int err; 1616 1617 /* 1618 * Physically remapped pages are special. Tell the 1619 * rest of the world about it: 1620 * VM_IO tells people not to look at these pages 1621 * (accesses can have side effects). 1622 * VM_RESERVED is specified all over the place, because 1623 * in 2.4 it kept swapout's vma scan off this vma; but 1624 * in 2.6 the LRU scan won't even find its pages, so this 1625 * flag means no more than count its pages in reserved_vm, 1626 * and omit it from core dump, even when VM_IO turned off. 1627 * VM_PFNMAP tells the core MM that the base pages are just 1628 * raw PFN mappings, and do not have a "struct page" associated 1629 * with them. 1630 * 1631 * There's a horrible special case to handle copy-on-write 1632 * behaviour that some programs depend on. We mark the "original" 1633 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1634 */ 1635 if (addr == vma->vm_start && end == vma->vm_end) 1636 vma->vm_pgoff = pfn; 1637 else if (is_cow_mapping(vma->vm_flags)) 1638 return -EINVAL; 1639 1640 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1641 1642 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size)); 1643 if (err) 1644 return -EINVAL; 1645 1646 BUG_ON(addr >= end); 1647 pfn -= addr >> PAGE_SHIFT; 1648 pgd = pgd_offset(mm, addr); 1649 flush_cache_range(vma, addr, end); 1650 do { 1651 next = pgd_addr_end(addr, end); 1652 err = remap_pud_range(mm, pgd, addr, next, 1653 pfn + (addr >> PAGE_SHIFT), prot); 1654 if (err) 1655 break; 1656 } while (pgd++, addr = next, addr != end); 1657 1658 if (err) 1659 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1660 1661 return err; 1662 } 1663 EXPORT_SYMBOL(remap_pfn_range); 1664 1665 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1666 unsigned long addr, unsigned long end, 1667 pte_fn_t fn, void *data) 1668 { 1669 pte_t *pte; 1670 int err; 1671 pgtable_t token; 1672 spinlock_t *uninitialized_var(ptl); 1673 1674 pte = (mm == &init_mm) ? 1675 pte_alloc_kernel(pmd, addr) : 1676 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1677 if (!pte) 1678 return -ENOMEM; 1679 1680 BUG_ON(pmd_huge(*pmd)); 1681 1682 arch_enter_lazy_mmu_mode(); 1683 1684 token = pmd_pgtable(*pmd); 1685 1686 do { 1687 err = fn(pte, token, addr, data); 1688 if (err) 1689 break; 1690 } while (pte++, addr += PAGE_SIZE, addr != end); 1691 1692 arch_leave_lazy_mmu_mode(); 1693 1694 if (mm != &init_mm) 1695 pte_unmap_unlock(pte-1, ptl); 1696 return err; 1697 } 1698 1699 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1700 unsigned long addr, unsigned long end, 1701 pte_fn_t fn, void *data) 1702 { 1703 pmd_t *pmd; 1704 unsigned long next; 1705 int err; 1706 1707 BUG_ON(pud_huge(*pud)); 1708 1709 pmd = pmd_alloc(mm, pud, addr); 1710 if (!pmd) 1711 return -ENOMEM; 1712 do { 1713 next = pmd_addr_end(addr, end); 1714 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1715 if (err) 1716 break; 1717 } while (pmd++, addr = next, addr != end); 1718 return err; 1719 } 1720 1721 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1722 unsigned long addr, unsigned long end, 1723 pte_fn_t fn, void *data) 1724 { 1725 pud_t *pud; 1726 unsigned long next; 1727 int err; 1728 1729 pud = pud_alloc(mm, pgd, addr); 1730 if (!pud) 1731 return -ENOMEM; 1732 do { 1733 next = pud_addr_end(addr, end); 1734 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1735 if (err) 1736 break; 1737 } while (pud++, addr = next, addr != end); 1738 return err; 1739 } 1740 1741 /* 1742 * Scan a region of virtual memory, filling in page tables as necessary 1743 * and calling a provided function on each leaf page table. 1744 */ 1745 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1746 unsigned long size, pte_fn_t fn, void *data) 1747 { 1748 pgd_t *pgd; 1749 unsigned long next; 1750 unsigned long start = addr, end = addr + size; 1751 int err; 1752 1753 BUG_ON(addr >= end); 1754 mmu_notifier_invalidate_range_start(mm, start, end); 1755 pgd = pgd_offset(mm, addr); 1756 do { 1757 next = pgd_addr_end(addr, end); 1758 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1759 if (err) 1760 break; 1761 } while (pgd++, addr = next, addr != end); 1762 mmu_notifier_invalidate_range_end(mm, start, end); 1763 return err; 1764 } 1765 EXPORT_SYMBOL_GPL(apply_to_page_range); 1766 1767 /* 1768 * handle_pte_fault chooses page fault handler according to an entry 1769 * which was read non-atomically. Before making any commitment, on 1770 * those architectures or configurations (e.g. i386 with PAE) which 1771 * might give a mix of unmatched parts, do_swap_page and do_file_page 1772 * must check under lock before unmapping the pte and proceeding 1773 * (but do_wp_page is only called after already making such a check; 1774 * and do_anonymous_page and do_no_page can safely check later on). 1775 */ 1776 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1777 pte_t *page_table, pte_t orig_pte) 1778 { 1779 int same = 1; 1780 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1781 if (sizeof(pte_t) > sizeof(unsigned long)) { 1782 spinlock_t *ptl = pte_lockptr(mm, pmd); 1783 spin_lock(ptl); 1784 same = pte_same(*page_table, orig_pte); 1785 spin_unlock(ptl); 1786 } 1787 #endif 1788 pte_unmap(page_table); 1789 return same; 1790 } 1791 1792 /* 1793 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1794 * servicing faults for write access. In the normal case, do always want 1795 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1796 * that do not have writing enabled, when used by access_process_vm. 1797 */ 1798 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1799 { 1800 if (likely(vma->vm_flags & VM_WRITE)) 1801 pte = pte_mkwrite(pte); 1802 return pte; 1803 } 1804 1805 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1806 { 1807 /* 1808 * If the source page was a PFN mapping, we don't have 1809 * a "struct page" for it. We do a best-effort copy by 1810 * just copying from the original user address. If that 1811 * fails, we just zero-fill it. Live with it. 1812 */ 1813 if (unlikely(!src)) { 1814 void *kaddr = kmap_atomic(dst, KM_USER0); 1815 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1816 1817 /* 1818 * This really shouldn't fail, because the page is there 1819 * in the page tables. But it might just be unreadable, 1820 * in which case we just give up and fill the result with 1821 * zeroes. 1822 */ 1823 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1824 memset(kaddr, 0, PAGE_SIZE); 1825 kunmap_atomic(kaddr, KM_USER0); 1826 flush_dcache_page(dst); 1827 } else 1828 copy_user_highpage(dst, src, va, vma); 1829 } 1830 1831 /* 1832 * This routine handles present pages, when users try to write 1833 * to a shared page. It is done by copying the page to a new address 1834 * and decrementing the shared-page counter for the old page. 1835 * 1836 * Note that this routine assumes that the protection checks have been 1837 * done by the caller (the low-level page fault routine in most cases). 1838 * Thus we can safely just mark it writable once we've done any necessary 1839 * COW. 1840 * 1841 * We also mark the page dirty at this point even though the page will 1842 * change only once the write actually happens. This avoids a few races, 1843 * and potentially makes it more efficient. 1844 * 1845 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1846 * but allow concurrent faults), with pte both mapped and locked. 1847 * We return with mmap_sem still held, but pte unmapped and unlocked. 1848 */ 1849 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1850 unsigned long address, pte_t *page_table, pmd_t *pmd, 1851 spinlock_t *ptl, pte_t orig_pte) 1852 { 1853 struct page *old_page, *new_page; 1854 pte_t entry; 1855 int reuse = 0, ret = 0; 1856 int page_mkwrite = 0; 1857 struct page *dirty_page = NULL; 1858 1859 old_page = vm_normal_page(vma, address, orig_pte); 1860 if (!old_page) { 1861 /* 1862 * VM_MIXEDMAP !pfn_valid() case 1863 * 1864 * We should not cow pages in a shared writeable mapping. 1865 * Just mark the pages writable as we can't do any dirty 1866 * accounting on raw pfn maps. 1867 */ 1868 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1869 (VM_WRITE|VM_SHARED)) 1870 goto reuse; 1871 goto gotten; 1872 } 1873 1874 /* 1875 * Take out anonymous pages first, anonymous shared vmas are 1876 * not dirty accountable. 1877 */ 1878 if (PageAnon(old_page)) { 1879 if (!trylock_page(old_page)) { 1880 page_cache_get(old_page); 1881 pte_unmap_unlock(page_table, ptl); 1882 lock_page(old_page); 1883 page_table = pte_offset_map_lock(mm, pmd, address, 1884 &ptl); 1885 if (!pte_same(*page_table, orig_pte)) { 1886 unlock_page(old_page); 1887 page_cache_release(old_page); 1888 goto unlock; 1889 } 1890 page_cache_release(old_page); 1891 } 1892 reuse = reuse_swap_page(old_page); 1893 unlock_page(old_page); 1894 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1895 (VM_WRITE|VM_SHARED))) { 1896 /* 1897 * Only catch write-faults on shared writable pages, 1898 * read-only shared pages can get COWed by 1899 * get_user_pages(.write=1, .force=1). 1900 */ 1901 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1902 /* 1903 * Notify the address space that the page is about to 1904 * become writable so that it can prohibit this or wait 1905 * for the page to get into an appropriate state. 1906 * 1907 * We do this without the lock held, so that it can 1908 * sleep if it needs to. 1909 */ 1910 page_cache_get(old_page); 1911 pte_unmap_unlock(page_table, ptl); 1912 1913 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1914 goto unwritable_page; 1915 1916 /* 1917 * Since we dropped the lock we need to revalidate 1918 * the PTE as someone else may have changed it. If 1919 * they did, we just return, as we can count on the 1920 * MMU to tell us if they didn't also make it writable. 1921 */ 1922 page_table = pte_offset_map_lock(mm, pmd, address, 1923 &ptl); 1924 page_cache_release(old_page); 1925 if (!pte_same(*page_table, orig_pte)) 1926 goto unlock; 1927 1928 page_mkwrite = 1; 1929 } 1930 dirty_page = old_page; 1931 get_page(dirty_page); 1932 reuse = 1; 1933 } 1934 1935 if (reuse) { 1936 reuse: 1937 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1938 entry = pte_mkyoung(orig_pte); 1939 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1940 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1941 update_mmu_cache(vma, address, entry); 1942 ret |= VM_FAULT_WRITE; 1943 goto unlock; 1944 } 1945 1946 /* 1947 * Ok, we need to copy. Oh, well.. 1948 */ 1949 page_cache_get(old_page); 1950 gotten: 1951 pte_unmap_unlock(page_table, ptl); 1952 1953 if (unlikely(anon_vma_prepare(vma))) 1954 goto oom; 1955 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1956 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1957 if (!new_page) 1958 goto oom; 1959 /* 1960 * Don't let another task, with possibly unlocked vma, 1961 * keep the mlocked page. 1962 */ 1963 if (vma->vm_flags & VM_LOCKED) { 1964 lock_page(old_page); /* for LRU manipulation */ 1965 clear_page_mlock(old_page); 1966 unlock_page(old_page); 1967 } 1968 cow_user_page(new_page, old_page, address, vma); 1969 __SetPageUptodate(new_page); 1970 1971 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1972 goto oom_free_new; 1973 1974 /* 1975 * Re-check the pte - we dropped the lock 1976 */ 1977 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1978 if (likely(pte_same(*page_table, orig_pte))) { 1979 if (old_page) { 1980 if (!PageAnon(old_page)) { 1981 dec_mm_counter(mm, file_rss); 1982 inc_mm_counter(mm, anon_rss); 1983 } 1984 } else 1985 inc_mm_counter(mm, anon_rss); 1986 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1987 entry = mk_pte(new_page, vma->vm_page_prot); 1988 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1989 /* 1990 * Clear the pte entry and flush it first, before updating the 1991 * pte with the new entry. This will avoid a race condition 1992 * seen in the presence of one thread doing SMC and another 1993 * thread doing COW. 1994 */ 1995 ptep_clear_flush_notify(vma, address, page_table); 1996 page_add_new_anon_rmap(new_page, vma, address); 1997 set_pte_at(mm, address, page_table, entry); 1998 update_mmu_cache(vma, address, entry); 1999 if (old_page) { 2000 /* 2001 * Only after switching the pte to the new page may 2002 * we remove the mapcount here. Otherwise another 2003 * process may come and find the rmap count decremented 2004 * before the pte is switched to the new page, and 2005 * "reuse" the old page writing into it while our pte 2006 * here still points into it and can be read by other 2007 * threads. 2008 * 2009 * The critical issue is to order this 2010 * page_remove_rmap with the ptp_clear_flush above. 2011 * Those stores are ordered by (if nothing else,) 2012 * the barrier present in the atomic_add_negative 2013 * in page_remove_rmap. 2014 * 2015 * Then the TLB flush in ptep_clear_flush ensures that 2016 * no process can access the old page before the 2017 * decremented mapcount is visible. And the old page 2018 * cannot be reused until after the decremented 2019 * mapcount is visible. So transitively, TLBs to 2020 * old page will be flushed before it can be reused. 2021 */ 2022 page_remove_rmap(old_page, vma); 2023 } 2024 2025 /* Free the old page.. */ 2026 new_page = old_page; 2027 ret |= VM_FAULT_WRITE; 2028 } else 2029 mem_cgroup_uncharge_page(new_page); 2030 2031 if (new_page) 2032 page_cache_release(new_page); 2033 if (old_page) 2034 page_cache_release(old_page); 2035 unlock: 2036 pte_unmap_unlock(page_table, ptl); 2037 if (dirty_page) { 2038 if (vma->vm_file) 2039 file_update_time(vma->vm_file); 2040 2041 /* 2042 * Yes, Virginia, this is actually required to prevent a race 2043 * with clear_page_dirty_for_io() from clearing the page dirty 2044 * bit after it clear all dirty ptes, but before a racing 2045 * do_wp_page installs a dirty pte. 2046 * 2047 * do_no_page is protected similarly. 2048 */ 2049 wait_on_page_locked(dirty_page); 2050 set_page_dirty_balance(dirty_page, page_mkwrite); 2051 put_page(dirty_page); 2052 } 2053 return ret; 2054 oom_free_new: 2055 page_cache_release(new_page); 2056 oom: 2057 if (old_page) 2058 page_cache_release(old_page); 2059 return VM_FAULT_OOM; 2060 2061 unwritable_page: 2062 page_cache_release(old_page); 2063 return VM_FAULT_SIGBUS; 2064 } 2065 2066 /* 2067 * Helper functions for unmap_mapping_range(). 2068 * 2069 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2070 * 2071 * We have to restart searching the prio_tree whenever we drop the lock, 2072 * since the iterator is only valid while the lock is held, and anyway 2073 * a later vma might be split and reinserted earlier while lock dropped. 2074 * 2075 * The list of nonlinear vmas could be handled more efficiently, using 2076 * a placeholder, but handle it in the same way until a need is shown. 2077 * It is important to search the prio_tree before nonlinear list: a vma 2078 * may become nonlinear and be shifted from prio_tree to nonlinear list 2079 * while the lock is dropped; but never shifted from list to prio_tree. 2080 * 2081 * In order to make forward progress despite restarting the search, 2082 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2083 * quickly skip it next time around. Since the prio_tree search only 2084 * shows us those vmas affected by unmapping the range in question, we 2085 * can't efficiently keep all vmas in step with mapping->truncate_count: 2086 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2087 * mapping->truncate_count and vma->vm_truncate_count are protected by 2088 * i_mmap_lock. 2089 * 2090 * In order to make forward progress despite repeatedly restarting some 2091 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2092 * and restart from that address when we reach that vma again. It might 2093 * have been split or merged, shrunk or extended, but never shifted: so 2094 * restart_addr remains valid so long as it remains in the vma's range. 2095 * unmap_mapping_range forces truncate_count to leap over page-aligned 2096 * values so we can save vma's restart_addr in its truncate_count field. 2097 */ 2098 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2099 2100 static void reset_vma_truncate_counts(struct address_space *mapping) 2101 { 2102 struct vm_area_struct *vma; 2103 struct prio_tree_iter iter; 2104 2105 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2106 vma->vm_truncate_count = 0; 2107 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2108 vma->vm_truncate_count = 0; 2109 } 2110 2111 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2112 unsigned long start_addr, unsigned long end_addr, 2113 struct zap_details *details) 2114 { 2115 unsigned long restart_addr; 2116 int need_break; 2117 2118 /* 2119 * files that support invalidating or truncating portions of the 2120 * file from under mmaped areas must have their ->fault function 2121 * return a locked page (and set VM_FAULT_LOCKED in the return). 2122 * This provides synchronisation against concurrent unmapping here. 2123 */ 2124 2125 again: 2126 restart_addr = vma->vm_truncate_count; 2127 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2128 start_addr = restart_addr; 2129 if (start_addr >= end_addr) { 2130 /* Top of vma has been split off since last time */ 2131 vma->vm_truncate_count = details->truncate_count; 2132 return 0; 2133 } 2134 } 2135 2136 restart_addr = zap_page_range(vma, start_addr, 2137 end_addr - start_addr, details); 2138 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2139 2140 if (restart_addr >= end_addr) { 2141 /* We have now completed this vma: mark it so */ 2142 vma->vm_truncate_count = details->truncate_count; 2143 if (!need_break) 2144 return 0; 2145 } else { 2146 /* Note restart_addr in vma's truncate_count field */ 2147 vma->vm_truncate_count = restart_addr; 2148 if (!need_break) 2149 goto again; 2150 } 2151 2152 spin_unlock(details->i_mmap_lock); 2153 cond_resched(); 2154 spin_lock(details->i_mmap_lock); 2155 return -EINTR; 2156 } 2157 2158 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2159 struct zap_details *details) 2160 { 2161 struct vm_area_struct *vma; 2162 struct prio_tree_iter iter; 2163 pgoff_t vba, vea, zba, zea; 2164 2165 restart: 2166 vma_prio_tree_foreach(vma, &iter, root, 2167 details->first_index, details->last_index) { 2168 /* Skip quickly over those we have already dealt with */ 2169 if (vma->vm_truncate_count == details->truncate_count) 2170 continue; 2171 2172 vba = vma->vm_pgoff; 2173 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2174 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2175 zba = details->first_index; 2176 if (zba < vba) 2177 zba = vba; 2178 zea = details->last_index; 2179 if (zea > vea) 2180 zea = vea; 2181 2182 if (unmap_mapping_range_vma(vma, 2183 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2184 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2185 details) < 0) 2186 goto restart; 2187 } 2188 } 2189 2190 static inline void unmap_mapping_range_list(struct list_head *head, 2191 struct zap_details *details) 2192 { 2193 struct vm_area_struct *vma; 2194 2195 /* 2196 * In nonlinear VMAs there is no correspondence between virtual address 2197 * offset and file offset. So we must perform an exhaustive search 2198 * across *all* the pages in each nonlinear VMA, not just the pages 2199 * whose virtual address lies outside the file truncation point. 2200 */ 2201 restart: 2202 list_for_each_entry(vma, head, shared.vm_set.list) { 2203 /* Skip quickly over those we have already dealt with */ 2204 if (vma->vm_truncate_count == details->truncate_count) 2205 continue; 2206 details->nonlinear_vma = vma; 2207 if (unmap_mapping_range_vma(vma, vma->vm_start, 2208 vma->vm_end, details) < 0) 2209 goto restart; 2210 } 2211 } 2212 2213 /** 2214 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2215 * @mapping: the address space containing mmaps to be unmapped. 2216 * @holebegin: byte in first page to unmap, relative to the start of 2217 * the underlying file. This will be rounded down to a PAGE_SIZE 2218 * boundary. Note that this is different from vmtruncate(), which 2219 * must keep the partial page. In contrast, we must get rid of 2220 * partial pages. 2221 * @holelen: size of prospective hole in bytes. This will be rounded 2222 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2223 * end of the file. 2224 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2225 * but 0 when invalidating pagecache, don't throw away private data. 2226 */ 2227 void unmap_mapping_range(struct address_space *mapping, 2228 loff_t const holebegin, loff_t const holelen, int even_cows) 2229 { 2230 struct zap_details details; 2231 pgoff_t hba = holebegin >> PAGE_SHIFT; 2232 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2233 2234 /* Check for overflow. */ 2235 if (sizeof(holelen) > sizeof(hlen)) { 2236 long long holeend = 2237 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2238 if (holeend & ~(long long)ULONG_MAX) 2239 hlen = ULONG_MAX - hba + 1; 2240 } 2241 2242 details.check_mapping = even_cows? NULL: mapping; 2243 details.nonlinear_vma = NULL; 2244 details.first_index = hba; 2245 details.last_index = hba + hlen - 1; 2246 if (details.last_index < details.first_index) 2247 details.last_index = ULONG_MAX; 2248 details.i_mmap_lock = &mapping->i_mmap_lock; 2249 2250 spin_lock(&mapping->i_mmap_lock); 2251 2252 /* Protect against endless unmapping loops */ 2253 mapping->truncate_count++; 2254 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2255 if (mapping->truncate_count == 0) 2256 reset_vma_truncate_counts(mapping); 2257 mapping->truncate_count++; 2258 } 2259 details.truncate_count = mapping->truncate_count; 2260 2261 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2262 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2263 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2264 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2265 spin_unlock(&mapping->i_mmap_lock); 2266 } 2267 EXPORT_SYMBOL(unmap_mapping_range); 2268 2269 /** 2270 * vmtruncate - unmap mappings "freed" by truncate() syscall 2271 * @inode: inode of the file used 2272 * @offset: file offset to start truncating 2273 * 2274 * NOTE! We have to be ready to update the memory sharing 2275 * between the file and the memory map for a potential last 2276 * incomplete page. Ugly, but necessary. 2277 */ 2278 int vmtruncate(struct inode * inode, loff_t offset) 2279 { 2280 if (inode->i_size < offset) { 2281 unsigned long limit; 2282 2283 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2284 if (limit != RLIM_INFINITY && offset > limit) 2285 goto out_sig; 2286 if (offset > inode->i_sb->s_maxbytes) 2287 goto out_big; 2288 i_size_write(inode, offset); 2289 } else { 2290 struct address_space *mapping = inode->i_mapping; 2291 2292 /* 2293 * truncation of in-use swapfiles is disallowed - it would 2294 * cause subsequent swapout to scribble on the now-freed 2295 * blocks. 2296 */ 2297 if (IS_SWAPFILE(inode)) 2298 return -ETXTBSY; 2299 i_size_write(inode, offset); 2300 2301 /* 2302 * unmap_mapping_range is called twice, first simply for 2303 * efficiency so that truncate_inode_pages does fewer 2304 * single-page unmaps. However after this first call, and 2305 * before truncate_inode_pages finishes, it is possible for 2306 * private pages to be COWed, which remain after 2307 * truncate_inode_pages finishes, hence the second 2308 * unmap_mapping_range call must be made for correctness. 2309 */ 2310 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2311 truncate_inode_pages(mapping, offset); 2312 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2313 } 2314 2315 if (inode->i_op->truncate) 2316 inode->i_op->truncate(inode); 2317 return 0; 2318 2319 out_sig: 2320 send_sig(SIGXFSZ, current, 0); 2321 out_big: 2322 return -EFBIG; 2323 } 2324 EXPORT_SYMBOL(vmtruncate); 2325 2326 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2327 { 2328 struct address_space *mapping = inode->i_mapping; 2329 2330 /* 2331 * If the underlying filesystem is not going to provide 2332 * a way to truncate a range of blocks (punch a hole) - 2333 * we should return failure right now. 2334 */ 2335 if (!inode->i_op->truncate_range) 2336 return -ENOSYS; 2337 2338 mutex_lock(&inode->i_mutex); 2339 down_write(&inode->i_alloc_sem); 2340 unmap_mapping_range(mapping, offset, (end - offset), 1); 2341 truncate_inode_pages_range(mapping, offset, end); 2342 unmap_mapping_range(mapping, offset, (end - offset), 1); 2343 inode->i_op->truncate_range(inode, offset, end); 2344 up_write(&inode->i_alloc_sem); 2345 mutex_unlock(&inode->i_mutex); 2346 2347 return 0; 2348 } 2349 2350 /* 2351 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2352 * but allow concurrent faults), and pte mapped but not yet locked. 2353 * We return with mmap_sem still held, but pte unmapped and unlocked. 2354 */ 2355 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2356 unsigned long address, pte_t *page_table, pmd_t *pmd, 2357 int write_access, pte_t orig_pte) 2358 { 2359 spinlock_t *ptl; 2360 struct page *page; 2361 swp_entry_t entry; 2362 pte_t pte; 2363 int ret = 0; 2364 2365 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2366 goto out; 2367 2368 entry = pte_to_swp_entry(orig_pte); 2369 if (is_migration_entry(entry)) { 2370 migration_entry_wait(mm, pmd, address); 2371 goto out; 2372 } 2373 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2374 page = lookup_swap_cache(entry); 2375 if (!page) { 2376 grab_swap_token(); /* Contend for token _before_ read-in */ 2377 page = swapin_readahead(entry, 2378 GFP_HIGHUSER_MOVABLE, vma, address); 2379 if (!page) { 2380 /* 2381 * Back out if somebody else faulted in this pte 2382 * while we released the pte lock. 2383 */ 2384 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2385 if (likely(pte_same(*page_table, orig_pte))) 2386 ret = VM_FAULT_OOM; 2387 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2388 goto unlock; 2389 } 2390 2391 /* Had to read the page from swap area: Major fault */ 2392 ret = VM_FAULT_MAJOR; 2393 count_vm_event(PGMAJFAULT); 2394 } 2395 2396 mark_page_accessed(page); 2397 2398 lock_page(page); 2399 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2400 2401 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2402 ret = VM_FAULT_OOM; 2403 unlock_page(page); 2404 goto out; 2405 } 2406 2407 /* 2408 * Back out if somebody else already faulted in this pte. 2409 */ 2410 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2411 if (unlikely(!pte_same(*page_table, orig_pte))) 2412 goto out_nomap; 2413 2414 if (unlikely(!PageUptodate(page))) { 2415 ret = VM_FAULT_SIGBUS; 2416 goto out_nomap; 2417 } 2418 2419 /* The page isn't present yet, go ahead with the fault. */ 2420 2421 inc_mm_counter(mm, anon_rss); 2422 pte = mk_pte(page, vma->vm_page_prot); 2423 if (write_access && reuse_swap_page(page)) { 2424 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2425 write_access = 0; 2426 } 2427 2428 flush_icache_page(vma, page); 2429 set_pte_at(mm, address, page_table, pte); 2430 page_add_anon_rmap(page, vma, address); 2431 2432 swap_free(entry); 2433 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2434 try_to_free_swap(page); 2435 unlock_page(page); 2436 2437 if (write_access) { 2438 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2439 if (ret & VM_FAULT_ERROR) 2440 ret &= VM_FAULT_ERROR; 2441 goto out; 2442 } 2443 2444 /* No need to invalidate - it was non-present before */ 2445 update_mmu_cache(vma, address, pte); 2446 unlock: 2447 pte_unmap_unlock(page_table, ptl); 2448 out: 2449 return ret; 2450 out_nomap: 2451 mem_cgroup_uncharge_page(page); 2452 pte_unmap_unlock(page_table, ptl); 2453 unlock_page(page); 2454 page_cache_release(page); 2455 return ret; 2456 } 2457 2458 /* 2459 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2460 * but allow concurrent faults), and pte mapped but not yet locked. 2461 * We return with mmap_sem still held, but pte unmapped and unlocked. 2462 */ 2463 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2464 unsigned long address, pte_t *page_table, pmd_t *pmd, 2465 int write_access) 2466 { 2467 struct page *page; 2468 spinlock_t *ptl; 2469 pte_t entry; 2470 2471 /* Allocate our own private page. */ 2472 pte_unmap(page_table); 2473 2474 if (unlikely(anon_vma_prepare(vma))) 2475 goto oom; 2476 page = alloc_zeroed_user_highpage_movable(vma, address); 2477 if (!page) 2478 goto oom; 2479 __SetPageUptodate(page); 2480 2481 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2482 goto oom_free_page; 2483 2484 entry = mk_pte(page, vma->vm_page_prot); 2485 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2486 2487 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2488 if (!pte_none(*page_table)) 2489 goto release; 2490 inc_mm_counter(mm, anon_rss); 2491 page_add_new_anon_rmap(page, vma, address); 2492 set_pte_at(mm, address, page_table, entry); 2493 2494 /* No need to invalidate - it was non-present before */ 2495 update_mmu_cache(vma, address, entry); 2496 unlock: 2497 pte_unmap_unlock(page_table, ptl); 2498 return 0; 2499 release: 2500 mem_cgroup_uncharge_page(page); 2501 page_cache_release(page); 2502 goto unlock; 2503 oom_free_page: 2504 page_cache_release(page); 2505 oom: 2506 return VM_FAULT_OOM; 2507 } 2508 2509 /* 2510 * __do_fault() tries to create a new page mapping. It aggressively 2511 * tries to share with existing pages, but makes a separate copy if 2512 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2513 * the next page fault. 2514 * 2515 * As this is called only for pages that do not currently exist, we 2516 * do not need to flush old virtual caches or the TLB. 2517 * 2518 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2519 * but allow concurrent faults), and pte neither mapped nor locked. 2520 * We return with mmap_sem still held, but pte unmapped and unlocked. 2521 */ 2522 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2523 unsigned long address, pmd_t *pmd, 2524 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2525 { 2526 pte_t *page_table; 2527 spinlock_t *ptl; 2528 struct page *page; 2529 pte_t entry; 2530 int anon = 0; 2531 int charged = 0; 2532 struct page *dirty_page = NULL; 2533 struct vm_fault vmf; 2534 int ret; 2535 int page_mkwrite = 0; 2536 2537 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2538 vmf.pgoff = pgoff; 2539 vmf.flags = flags; 2540 vmf.page = NULL; 2541 2542 ret = vma->vm_ops->fault(vma, &vmf); 2543 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2544 return ret; 2545 2546 /* 2547 * For consistency in subsequent calls, make the faulted page always 2548 * locked. 2549 */ 2550 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2551 lock_page(vmf.page); 2552 else 2553 VM_BUG_ON(!PageLocked(vmf.page)); 2554 2555 /* 2556 * Should we do an early C-O-W break? 2557 */ 2558 page = vmf.page; 2559 if (flags & FAULT_FLAG_WRITE) { 2560 if (!(vma->vm_flags & VM_SHARED)) { 2561 anon = 1; 2562 if (unlikely(anon_vma_prepare(vma))) { 2563 ret = VM_FAULT_OOM; 2564 goto out; 2565 } 2566 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2567 vma, address); 2568 if (!page) { 2569 ret = VM_FAULT_OOM; 2570 goto out; 2571 } 2572 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2573 ret = VM_FAULT_OOM; 2574 page_cache_release(page); 2575 goto out; 2576 } 2577 charged = 1; 2578 /* 2579 * Don't let another task, with possibly unlocked vma, 2580 * keep the mlocked page. 2581 */ 2582 if (vma->vm_flags & VM_LOCKED) 2583 clear_page_mlock(vmf.page); 2584 copy_user_highpage(page, vmf.page, address, vma); 2585 __SetPageUptodate(page); 2586 } else { 2587 /* 2588 * If the page will be shareable, see if the backing 2589 * address space wants to know that the page is about 2590 * to become writable 2591 */ 2592 if (vma->vm_ops->page_mkwrite) { 2593 unlock_page(page); 2594 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2595 ret = VM_FAULT_SIGBUS; 2596 anon = 1; /* no anon but release vmf.page */ 2597 goto out_unlocked; 2598 } 2599 lock_page(page); 2600 /* 2601 * XXX: this is not quite right (racy vs 2602 * invalidate) to unlock and relock the page 2603 * like this, however a better fix requires 2604 * reworking page_mkwrite locking API, which 2605 * is better done later. 2606 */ 2607 if (!page->mapping) { 2608 ret = 0; 2609 anon = 1; /* no anon but release vmf.page */ 2610 goto out; 2611 } 2612 page_mkwrite = 1; 2613 } 2614 } 2615 2616 } 2617 2618 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2619 2620 /* 2621 * This silly early PAGE_DIRTY setting removes a race 2622 * due to the bad i386 page protection. But it's valid 2623 * for other architectures too. 2624 * 2625 * Note that if write_access is true, we either now have 2626 * an exclusive copy of the page, or this is a shared mapping, 2627 * so we can make it writable and dirty to avoid having to 2628 * handle that later. 2629 */ 2630 /* Only go through if we didn't race with anybody else... */ 2631 if (likely(pte_same(*page_table, orig_pte))) { 2632 flush_icache_page(vma, page); 2633 entry = mk_pte(page, vma->vm_page_prot); 2634 if (flags & FAULT_FLAG_WRITE) 2635 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2636 if (anon) { 2637 inc_mm_counter(mm, anon_rss); 2638 page_add_new_anon_rmap(page, vma, address); 2639 } else { 2640 inc_mm_counter(mm, file_rss); 2641 page_add_file_rmap(page); 2642 if (flags & FAULT_FLAG_WRITE) { 2643 dirty_page = page; 2644 get_page(dirty_page); 2645 } 2646 } 2647 set_pte_at(mm, address, page_table, entry); 2648 2649 /* no need to invalidate: a not-present page won't be cached */ 2650 update_mmu_cache(vma, address, entry); 2651 } else { 2652 if (charged) 2653 mem_cgroup_uncharge_page(page); 2654 if (anon) 2655 page_cache_release(page); 2656 else 2657 anon = 1; /* no anon but release faulted_page */ 2658 } 2659 2660 pte_unmap_unlock(page_table, ptl); 2661 2662 out: 2663 unlock_page(vmf.page); 2664 out_unlocked: 2665 if (anon) 2666 page_cache_release(vmf.page); 2667 else if (dirty_page) { 2668 if (vma->vm_file) 2669 file_update_time(vma->vm_file); 2670 2671 set_page_dirty_balance(dirty_page, page_mkwrite); 2672 put_page(dirty_page); 2673 } 2674 2675 return ret; 2676 } 2677 2678 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2679 unsigned long address, pte_t *page_table, pmd_t *pmd, 2680 int write_access, pte_t orig_pte) 2681 { 2682 pgoff_t pgoff = (((address & PAGE_MASK) 2683 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2684 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2685 2686 pte_unmap(page_table); 2687 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2688 } 2689 2690 /* 2691 * Fault of a previously existing named mapping. Repopulate the pte 2692 * from the encoded file_pte if possible. This enables swappable 2693 * nonlinear vmas. 2694 * 2695 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2696 * but allow concurrent faults), and pte mapped but not yet locked. 2697 * We return with mmap_sem still held, but pte unmapped and unlocked. 2698 */ 2699 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2700 unsigned long address, pte_t *page_table, pmd_t *pmd, 2701 int write_access, pte_t orig_pte) 2702 { 2703 unsigned int flags = FAULT_FLAG_NONLINEAR | 2704 (write_access ? FAULT_FLAG_WRITE : 0); 2705 pgoff_t pgoff; 2706 2707 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2708 return 0; 2709 2710 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2711 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2712 /* 2713 * Page table corrupted: show pte and kill process. 2714 */ 2715 print_bad_pte(vma, address, orig_pte, NULL); 2716 return VM_FAULT_OOM; 2717 } 2718 2719 pgoff = pte_to_pgoff(orig_pte); 2720 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2721 } 2722 2723 /* 2724 * These routines also need to handle stuff like marking pages dirty 2725 * and/or accessed for architectures that don't do it in hardware (most 2726 * RISC architectures). The early dirtying is also good on the i386. 2727 * 2728 * There is also a hook called "update_mmu_cache()" that architectures 2729 * with external mmu caches can use to update those (ie the Sparc or 2730 * PowerPC hashed page tables that act as extended TLBs). 2731 * 2732 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2733 * but allow concurrent faults), and pte mapped but not yet locked. 2734 * We return with mmap_sem still held, but pte unmapped and unlocked. 2735 */ 2736 static inline int handle_pte_fault(struct mm_struct *mm, 2737 struct vm_area_struct *vma, unsigned long address, 2738 pte_t *pte, pmd_t *pmd, int write_access) 2739 { 2740 pte_t entry; 2741 spinlock_t *ptl; 2742 2743 entry = *pte; 2744 if (!pte_present(entry)) { 2745 if (pte_none(entry)) { 2746 if (vma->vm_ops) { 2747 if (likely(vma->vm_ops->fault)) 2748 return do_linear_fault(mm, vma, address, 2749 pte, pmd, write_access, entry); 2750 } 2751 return do_anonymous_page(mm, vma, address, 2752 pte, pmd, write_access); 2753 } 2754 if (pte_file(entry)) 2755 return do_nonlinear_fault(mm, vma, address, 2756 pte, pmd, write_access, entry); 2757 return do_swap_page(mm, vma, address, 2758 pte, pmd, write_access, entry); 2759 } 2760 2761 ptl = pte_lockptr(mm, pmd); 2762 spin_lock(ptl); 2763 if (unlikely(!pte_same(*pte, entry))) 2764 goto unlock; 2765 if (write_access) { 2766 if (!pte_write(entry)) 2767 return do_wp_page(mm, vma, address, 2768 pte, pmd, ptl, entry); 2769 entry = pte_mkdirty(entry); 2770 } 2771 entry = pte_mkyoung(entry); 2772 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2773 update_mmu_cache(vma, address, entry); 2774 } else { 2775 /* 2776 * This is needed only for protection faults but the arch code 2777 * is not yet telling us if this is a protection fault or not. 2778 * This still avoids useless tlb flushes for .text page faults 2779 * with threads. 2780 */ 2781 if (write_access) 2782 flush_tlb_page(vma, address); 2783 } 2784 unlock: 2785 pte_unmap_unlock(pte, ptl); 2786 return 0; 2787 } 2788 2789 /* 2790 * By the time we get here, we already hold the mm semaphore 2791 */ 2792 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2793 unsigned long address, int write_access) 2794 { 2795 pgd_t *pgd; 2796 pud_t *pud; 2797 pmd_t *pmd; 2798 pte_t *pte; 2799 2800 __set_current_state(TASK_RUNNING); 2801 2802 count_vm_event(PGFAULT); 2803 2804 if (unlikely(is_vm_hugetlb_page(vma))) 2805 return hugetlb_fault(mm, vma, address, write_access); 2806 2807 pgd = pgd_offset(mm, address); 2808 pud = pud_alloc(mm, pgd, address); 2809 if (!pud) 2810 return VM_FAULT_OOM; 2811 pmd = pmd_alloc(mm, pud, address); 2812 if (!pmd) 2813 return VM_FAULT_OOM; 2814 pte = pte_alloc_map(mm, pmd, address); 2815 if (!pte) 2816 return VM_FAULT_OOM; 2817 2818 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2819 } 2820 2821 #ifndef __PAGETABLE_PUD_FOLDED 2822 /* 2823 * Allocate page upper directory. 2824 * We've already handled the fast-path in-line. 2825 */ 2826 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2827 { 2828 pud_t *new = pud_alloc_one(mm, address); 2829 if (!new) 2830 return -ENOMEM; 2831 2832 smp_wmb(); /* See comment in __pte_alloc */ 2833 2834 spin_lock(&mm->page_table_lock); 2835 if (pgd_present(*pgd)) /* Another has populated it */ 2836 pud_free(mm, new); 2837 else 2838 pgd_populate(mm, pgd, new); 2839 spin_unlock(&mm->page_table_lock); 2840 return 0; 2841 } 2842 #endif /* __PAGETABLE_PUD_FOLDED */ 2843 2844 #ifndef __PAGETABLE_PMD_FOLDED 2845 /* 2846 * Allocate page middle directory. 2847 * We've already handled the fast-path in-line. 2848 */ 2849 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2850 { 2851 pmd_t *new = pmd_alloc_one(mm, address); 2852 if (!new) 2853 return -ENOMEM; 2854 2855 smp_wmb(); /* See comment in __pte_alloc */ 2856 2857 spin_lock(&mm->page_table_lock); 2858 #ifndef __ARCH_HAS_4LEVEL_HACK 2859 if (pud_present(*pud)) /* Another has populated it */ 2860 pmd_free(mm, new); 2861 else 2862 pud_populate(mm, pud, new); 2863 #else 2864 if (pgd_present(*pud)) /* Another has populated it */ 2865 pmd_free(mm, new); 2866 else 2867 pgd_populate(mm, pud, new); 2868 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2869 spin_unlock(&mm->page_table_lock); 2870 return 0; 2871 } 2872 #endif /* __PAGETABLE_PMD_FOLDED */ 2873 2874 int make_pages_present(unsigned long addr, unsigned long end) 2875 { 2876 int ret, len, write; 2877 struct vm_area_struct * vma; 2878 2879 vma = find_vma(current->mm, addr); 2880 if (!vma) 2881 return -ENOMEM; 2882 write = (vma->vm_flags & VM_WRITE) != 0; 2883 BUG_ON(addr >= end); 2884 BUG_ON(end > vma->vm_end); 2885 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2886 ret = get_user_pages(current, current->mm, addr, 2887 len, write, 0, NULL, NULL); 2888 if (ret < 0) 2889 return ret; 2890 return ret == len ? 0 : -EFAULT; 2891 } 2892 2893 #if !defined(__HAVE_ARCH_GATE_AREA) 2894 2895 #if defined(AT_SYSINFO_EHDR) 2896 static struct vm_area_struct gate_vma; 2897 2898 static int __init gate_vma_init(void) 2899 { 2900 gate_vma.vm_mm = NULL; 2901 gate_vma.vm_start = FIXADDR_USER_START; 2902 gate_vma.vm_end = FIXADDR_USER_END; 2903 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2904 gate_vma.vm_page_prot = __P101; 2905 /* 2906 * Make sure the vDSO gets into every core dump. 2907 * Dumping its contents makes post-mortem fully interpretable later 2908 * without matching up the same kernel and hardware config to see 2909 * what PC values meant. 2910 */ 2911 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2912 return 0; 2913 } 2914 __initcall(gate_vma_init); 2915 #endif 2916 2917 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2918 { 2919 #ifdef AT_SYSINFO_EHDR 2920 return &gate_vma; 2921 #else 2922 return NULL; 2923 #endif 2924 } 2925 2926 int in_gate_area_no_task(unsigned long addr) 2927 { 2928 #ifdef AT_SYSINFO_EHDR 2929 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2930 return 1; 2931 #endif 2932 return 0; 2933 } 2934 2935 #endif /* __HAVE_ARCH_GATE_AREA */ 2936 2937 #ifdef CONFIG_HAVE_IOREMAP_PROT 2938 int follow_phys(struct vm_area_struct *vma, 2939 unsigned long address, unsigned int flags, 2940 unsigned long *prot, resource_size_t *phys) 2941 { 2942 pgd_t *pgd; 2943 pud_t *pud; 2944 pmd_t *pmd; 2945 pte_t *ptep, pte; 2946 spinlock_t *ptl; 2947 resource_size_t phys_addr = 0; 2948 struct mm_struct *mm = vma->vm_mm; 2949 int ret = -EINVAL; 2950 2951 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 2952 goto out; 2953 2954 pgd = pgd_offset(mm, address); 2955 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 2956 goto out; 2957 2958 pud = pud_offset(pgd, address); 2959 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 2960 goto out; 2961 2962 pmd = pmd_offset(pud, address); 2963 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 2964 goto out; 2965 2966 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 2967 if (pmd_huge(*pmd)) 2968 goto out; 2969 2970 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 2971 if (!ptep) 2972 goto out; 2973 2974 pte = *ptep; 2975 if (!pte_present(pte)) 2976 goto unlock; 2977 if ((flags & FOLL_WRITE) && !pte_write(pte)) 2978 goto unlock; 2979 phys_addr = pte_pfn(pte); 2980 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ 2981 2982 *prot = pgprot_val(pte_pgprot(pte)); 2983 *phys = phys_addr; 2984 ret = 0; 2985 2986 unlock: 2987 pte_unmap_unlock(ptep, ptl); 2988 out: 2989 return ret; 2990 } 2991 2992 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2993 void *buf, int len, int write) 2994 { 2995 resource_size_t phys_addr; 2996 unsigned long prot = 0; 2997 void __iomem *maddr; 2998 int offset = addr & (PAGE_SIZE-1); 2999 3000 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3001 return -EINVAL; 3002 3003 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3004 if (write) 3005 memcpy_toio(maddr + offset, buf, len); 3006 else 3007 memcpy_fromio(buf, maddr + offset, len); 3008 iounmap(maddr); 3009 3010 return len; 3011 } 3012 #endif 3013 3014 /* 3015 * Access another process' address space. 3016 * Source/target buffer must be kernel space, 3017 * Do not walk the page table directly, use get_user_pages 3018 */ 3019 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3020 { 3021 struct mm_struct *mm; 3022 struct vm_area_struct *vma; 3023 void *old_buf = buf; 3024 3025 mm = get_task_mm(tsk); 3026 if (!mm) 3027 return 0; 3028 3029 down_read(&mm->mmap_sem); 3030 /* ignore errors, just check how much was successfully transferred */ 3031 while (len) { 3032 int bytes, ret, offset; 3033 void *maddr; 3034 struct page *page = NULL; 3035 3036 ret = get_user_pages(tsk, mm, addr, 1, 3037 write, 1, &page, &vma); 3038 if (ret <= 0) { 3039 /* 3040 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3041 * we can access using slightly different code. 3042 */ 3043 #ifdef CONFIG_HAVE_IOREMAP_PROT 3044 vma = find_vma(mm, addr); 3045 if (!vma) 3046 break; 3047 if (vma->vm_ops && vma->vm_ops->access) 3048 ret = vma->vm_ops->access(vma, addr, buf, 3049 len, write); 3050 if (ret <= 0) 3051 #endif 3052 break; 3053 bytes = ret; 3054 } else { 3055 bytes = len; 3056 offset = addr & (PAGE_SIZE-1); 3057 if (bytes > PAGE_SIZE-offset) 3058 bytes = PAGE_SIZE-offset; 3059 3060 maddr = kmap(page); 3061 if (write) { 3062 copy_to_user_page(vma, page, addr, 3063 maddr + offset, buf, bytes); 3064 set_page_dirty_lock(page); 3065 } else { 3066 copy_from_user_page(vma, page, addr, 3067 buf, maddr + offset, bytes); 3068 } 3069 kunmap(page); 3070 page_cache_release(page); 3071 } 3072 len -= bytes; 3073 buf += bytes; 3074 addr += bytes; 3075 } 3076 up_read(&mm->mmap_sem); 3077 mmput(mm); 3078 3079 return buf - old_buf; 3080 } 3081 3082 /* 3083 * Print the name of a VMA. 3084 */ 3085 void print_vma_addr(char *prefix, unsigned long ip) 3086 { 3087 struct mm_struct *mm = current->mm; 3088 struct vm_area_struct *vma; 3089 3090 /* 3091 * Do not print if we are in atomic 3092 * contexts (in exception stacks, etc.): 3093 */ 3094 if (preempt_count()) 3095 return; 3096 3097 down_read(&mm->mmap_sem); 3098 vma = find_vma(mm, ip); 3099 if (vma && vma->vm_file) { 3100 struct file *f = vma->vm_file; 3101 char *buf = (char *)__get_free_page(GFP_KERNEL); 3102 if (buf) { 3103 char *p, *s; 3104 3105 p = d_path(&f->f_path, buf, PAGE_SIZE); 3106 if (IS_ERR(p)) 3107 p = "?"; 3108 s = strrchr(p, '/'); 3109 if (s) 3110 p = s+1; 3111 printk("%s%s[%lx+%lx]", prefix, p, 3112 vma->vm_start, 3113 vma->vm_end - vma->vm_start); 3114 free_page((unsigned long)buf); 3115 } 3116 } 3117 up_read(¤t->mm->mmap_sem); 3118 } 3119 3120 #ifdef CONFIG_PROVE_LOCKING 3121 void might_fault(void) 3122 { 3123 might_sleep(); 3124 /* 3125 * it would be nicer only to annotate paths which are not under 3126 * pagefault_disable, however that requires a larger audit and 3127 * providing helpers like get_user_atomic. 3128 */ 3129 if (!in_atomic() && current->mm) 3130 might_lock_read(¤t->mm->mmap_sem); 3131 } 3132 EXPORT_SYMBOL(might_fault); 3133 #endif 3134