1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/pfn_t.h> 54 #include <linux/writeback.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/kallsyms.h> 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 #include <linux/gfp.h> 61 #include <linux/migrate.h> 62 #include <linux/string.h> 63 #include <linux/dma-debug.h> 64 #include <linux/debugfs.h> 65 #include <linux/userfaultfd_k.h> 66 67 #include <asm/io.h> 68 #include <asm/pgalloc.h> 69 #include <asm/uaccess.h> 70 #include <asm/tlb.h> 71 #include <asm/tlbflush.h> 72 #include <asm/pgtable.h> 73 74 #include "internal.h" 75 76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 78 #endif 79 80 #ifndef CONFIG_NEED_MULTIPLE_NODES 81 /* use the per-pgdat data instead for discontigmem - mbligh */ 82 unsigned long max_mapnr; 83 struct page *mem_map; 84 85 EXPORT_SYMBOL(max_mapnr); 86 EXPORT_SYMBOL(mem_map); 87 #endif 88 89 /* 90 * A number of key systems in x86 including ioremap() rely on the assumption 91 * that high_memory defines the upper bound on direct map memory, then end 92 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 93 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 94 * and ZONE_HIGHMEM. 95 */ 96 void * high_memory; 97 98 EXPORT_SYMBOL(high_memory); 99 100 /* 101 * Randomize the address space (stacks, mmaps, brk, etc.). 102 * 103 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 104 * as ancient (libc5 based) binaries can segfault. ) 105 */ 106 int randomize_va_space __read_mostly = 107 #ifdef CONFIG_COMPAT_BRK 108 1; 109 #else 110 2; 111 #endif 112 113 static int __init disable_randmaps(char *s) 114 { 115 randomize_va_space = 0; 116 return 1; 117 } 118 __setup("norandmaps", disable_randmaps); 119 120 unsigned long zero_pfn __read_mostly; 121 unsigned long highest_memmap_pfn __read_mostly; 122 123 EXPORT_SYMBOL(zero_pfn); 124 125 /* 126 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 127 */ 128 static int __init init_zero_pfn(void) 129 { 130 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 131 return 0; 132 } 133 core_initcall(init_zero_pfn); 134 135 136 #if defined(SPLIT_RSS_COUNTING) 137 138 void sync_mm_rss(struct mm_struct *mm) 139 { 140 int i; 141 142 for (i = 0; i < NR_MM_COUNTERS; i++) { 143 if (current->rss_stat.count[i]) { 144 add_mm_counter(mm, i, current->rss_stat.count[i]); 145 current->rss_stat.count[i] = 0; 146 } 147 } 148 current->rss_stat.events = 0; 149 } 150 151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 152 { 153 struct task_struct *task = current; 154 155 if (likely(task->mm == mm)) 156 task->rss_stat.count[member] += val; 157 else 158 add_mm_counter(mm, member, val); 159 } 160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 162 163 /* sync counter once per 64 page faults */ 164 #define TASK_RSS_EVENTS_THRESH (64) 165 static void check_sync_rss_stat(struct task_struct *task) 166 { 167 if (unlikely(task != current)) 168 return; 169 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 170 sync_mm_rss(task->mm); 171 } 172 #else /* SPLIT_RSS_COUNTING */ 173 174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 176 177 static void check_sync_rss_stat(struct task_struct *task) 178 { 179 } 180 181 #endif /* SPLIT_RSS_COUNTING */ 182 183 #ifdef HAVE_GENERIC_MMU_GATHER 184 185 static bool tlb_next_batch(struct mmu_gather *tlb) 186 { 187 struct mmu_gather_batch *batch; 188 189 batch = tlb->active; 190 if (batch->next) { 191 tlb->active = batch->next; 192 return true; 193 } 194 195 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 196 return false; 197 198 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 199 if (!batch) 200 return false; 201 202 tlb->batch_count++; 203 batch->next = NULL; 204 batch->nr = 0; 205 batch->max = MAX_GATHER_BATCH; 206 207 tlb->active->next = batch; 208 tlb->active = batch; 209 210 return true; 211 } 212 213 /* tlb_gather_mmu 214 * Called to initialize an (on-stack) mmu_gather structure for page-table 215 * tear-down from @mm. The @fullmm argument is used when @mm is without 216 * users and we're going to destroy the full address space (exit/execve). 217 */ 218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 219 { 220 tlb->mm = mm; 221 222 /* Is it from 0 to ~0? */ 223 tlb->fullmm = !(start | (end+1)); 224 tlb->need_flush_all = 0; 225 tlb->local.next = NULL; 226 tlb->local.nr = 0; 227 tlb->local.max = ARRAY_SIZE(tlb->__pages); 228 tlb->active = &tlb->local; 229 tlb->batch_count = 0; 230 231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 232 tlb->batch = NULL; 233 #endif 234 235 __tlb_reset_range(tlb); 236 } 237 238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 239 { 240 if (!tlb->end) 241 return; 242 243 tlb_flush(tlb); 244 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 246 tlb_table_flush(tlb); 247 #endif 248 __tlb_reset_range(tlb); 249 } 250 251 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 252 { 253 struct mmu_gather_batch *batch; 254 255 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 256 free_pages_and_swap_cache(batch->pages, batch->nr); 257 batch->nr = 0; 258 } 259 tlb->active = &tlb->local; 260 } 261 262 void tlb_flush_mmu(struct mmu_gather *tlb) 263 { 264 tlb_flush_mmu_tlbonly(tlb); 265 tlb_flush_mmu_free(tlb); 266 } 267 268 /* tlb_finish_mmu 269 * Called at the end of the shootdown operation to free up any resources 270 * that were required. 271 */ 272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 273 { 274 struct mmu_gather_batch *batch, *next; 275 276 tlb_flush_mmu(tlb); 277 278 /* keep the page table cache within bounds */ 279 check_pgt_cache(); 280 281 for (batch = tlb->local.next; batch; batch = next) { 282 next = batch->next; 283 free_pages((unsigned long)batch, 0); 284 } 285 tlb->local.next = NULL; 286 } 287 288 /* __tlb_remove_page 289 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 290 * handling the additional races in SMP caused by other CPUs caching valid 291 * mappings in their TLBs. Returns the number of free page slots left. 292 * When out of page slots we must call tlb_flush_mmu(). 293 */ 294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 295 { 296 struct mmu_gather_batch *batch; 297 298 VM_BUG_ON(!tlb->end); 299 300 batch = tlb->active; 301 batch->pages[batch->nr++] = page; 302 if (batch->nr == batch->max) { 303 if (!tlb_next_batch(tlb)) 304 return 0; 305 batch = tlb->active; 306 } 307 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 308 309 return batch->max - batch->nr; 310 } 311 312 #endif /* HAVE_GENERIC_MMU_GATHER */ 313 314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 315 316 /* 317 * See the comment near struct mmu_table_batch. 318 */ 319 320 static void tlb_remove_table_smp_sync(void *arg) 321 { 322 /* Simply deliver the interrupt */ 323 } 324 325 static void tlb_remove_table_one(void *table) 326 { 327 /* 328 * This isn't an RCU grace period and hence the page-tables cannot be 329 * assumed to be actually RCU-freed. 330 * 331 * It is however sufficient for software page-table walkers that rely on 332 * IRQ disabling. See the comment near struct mmu_table_batch. 333 */ 334 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 335 __tlb_remove_table(table); 336 } 337 338 static void tlb_remove_table_rcu(struct rcu_head *head) 339 { 340 struct mmu_table_batch *batch; 341 int i; 342 343 batch = container_of(head, struct mmu_table_batch, rcu); 344 345 for (i = 0; i < batch->nr; i++) 346 __tlb_remove_table(batch->tables[i]); 347 348 free_page((unsigned long)batch); 349 } 350 351 void tlb_table_flush(struct mmu_gather *tlb) 352 { 353 struct mmu_table_batch **batch = &tlb->batch; 354 355 if (*batch) { 356 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 357 *batch = NULL; 358 } 359 } 360 361 void tlb_remove_table(struct mmu_gather *tlb, void *table) 362 { 363 struct mmu_table_batch **batch = &tlb->batch; 364 365 /* 366 * When there's less then two users of this mm there cannot be a 367 * concurrent page-table walk. 368 */ 369 if (atomic_read(&tlb->mm->mm_users) < 2) { 370 __tlb_remove_table(table); 371 return; 372 } 373 374 if (*batch == NULL) { 375 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 376 if (*batch == NULL) { 377 tlb_remove_table_one(table); 378 return; 379 } 380 (*batch)->nr = 0; 381 } 382 (*batch)->tables[(*batch)->nr++] = table; 383 if ((*batch)->nr == MAX_TABLE_BATCH) 384 tlb_table_flush(tlb); 385 } 386 387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 388 389 /* 390 * Note: this doesn't free the actual pages themselves. That 391 * has been handled earlier when unmapping all the memory regions. 392 */ 393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 394 unsigned long addr) 395 { 396 pgtable_t token = pmd_pgtable(*pmd); 397 pmd_clear(pmd); 398 pte_free_tlb(tlb, token, addr); 399 atomic_long_dec(&tlb->mm->nr_ptes); 400 } 401 402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 403 unsigned long addr, unsigned long end, 404 unsigned long floor, unsigned long ceiling) 405 { 406 pmd_t *pmd; 407 unsigned long next; 408 unsigned long start; 409 410 start = addr; 411 pmd = pmd_offset(pud, addr); 412 do { 413 next = pmd_addr_end(addr, end); 414 if (pmd_none_or_clear_bad(pmd)) 415 continue; 416 free_pte_range(tlb, pmd, addr); 417 } while (pmd++, addr = next, addr != end); 418 419 start &= PUD_MASK; 420 if (start < floor) 421 return; 422 if (ceiling) { 423 ceiling &= PUD_MASK; 424 if (!ceiling) 425 return; 426 } 427 if (end - 1 > ceiling - 1) 428 return; 429 430 pmd = pmd_offset(pud, start); 431 pud_clear(pud); 432 pmd_free_tlb(tlb, pmd, start); 433 mm_dec_nr_pmds(tlb->mm); 434 } 435 436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 437 unsigned long addr, unsigned long end, 438 unsigned long floor, unsigned long ceiling) 439 { 440 pud_t *pud; 441 unsigned long next; 442 unsigned long start; 443 444 start = addr; 445 pud = pud_offset(pgd, addr); 446 do { 447 next = pud_addr_end(addr, end); 448 if (pud_none_or_clear_bad(pud)) 449 continue; 450 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 451 } while (pud++, addr = next, addr != end); 452 453 start &= PGDIR_MASK; 454 if (start < floor) 455 return; 456 if (ceiling) { 457 ceiling &= PGDIR_MASK; 458 if (!ceiling) 459 return; 460 } 461 if (end - 1 > ceiling - 1) 462 return; 463 464 pud = pud_offset(pgd, start); 465 pgd_clear(pgd); 466 pud_free_tlb(tlb, pud, start); 467 } 468 469 /* 470 * This function frees user-level page tables of a process. 471 */ 472 void free_pgd_range(struct mmu_gather *tlb, 473 unsigned long addr, unsigned long end, 474 unsigned long floor, unsigned long ceiling) 475 { 476 pgd_t *pgd; 477 unsigned long next; 478 479 /* 480 * The next few lines have given us lots of grief... 481 * 482 * Why are we testing PMD* at this top level? Because often 483 * there will be no work to do at all, and we'd prefer not to 484 * go all the way down to the bottom just to discover that. 485 * 486 * Why all these "- 1"s? Because 0 represents both the bottom 487 * of the address space and the top of it (using -1 for the 488 * top wouldn't help much: the masks would do the wrong thing). 489 * The rule is that addr 0 and floor 0 refer to the bottom of 490 * the address space, but end 0 and ceiling 0 refer to the top 491 * Comparisons need to use "end - 1" and "ceiling - 1" (though 492 * that end 0 case should be mythical). 493 * 494 * Wherever addr is brought up or ceiling brought down, we must 495 * be careful to reject "the opposite 0" before it confuses the 496 * subsequent tests. But what about where end is brought down 497 * by PMD_SIZE below? no, end can't go down to 0 there. 498 * 499 * Whereas we round start (addr) and ceiling down, by different 500 * masks at different levels, in order to test whether a table 501 * now has no other vmas using it, so can be freed, we don't 502 * bother to round floor or end up - the tests don't need that. 503 */ 504 505 addr &= PMD_MASK; 506 if (addr < floor) { 507 addr += PMD_SIZE; 508 if (!addr) 509 return; 510 } 511 if (ceiling) { 512 ceiling &= PMD_MASK; 513 if (!ceiling) 514 return; 515 } 516 if (end - 1 > ceiling - 1) 517 end -= PMD_SIZE; 518 if (addr > end - 1) 519 return; 520 521 pgd = pgd_offset(tlb->mm, addr); 522 do { 523 next = pgd_addr_end(addr, end); 524 if (pgd_none_or_clear_bad(pgd)) 525 continue; 526 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 527 } while (pgd++, addr = next, addr != end); 528 } 529 530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 531 unsigned long floor, unsigned long ceiling) 532 { 533 while (vma) { 534 struct vm_area_struct *next = vma->vm_next; 535 unsigned long addr = vma->vm_start; 536 537 /* 538 * Hide vma from rmap and truncate_pagecache before freeing 539 * pgtables 540 */ 541 unlink_anon_vmas(vma); 542 unlink_file_vma(vma); 543 544 if (is_vm_hugetlb_page(vma)) { 545 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 546 floor, next? next->vm_start: ceiling); 547 } else { 548 /* 549 * Optimization: gather nearby vmas into one call down 550 */ 551 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 552 && !is_vm_hugetlb_page(next)) { 553 vma = next; 554 next = vma->vm_next; 555 unlink_anon_vmas(vma); 556 unlink_file_vma(vma); 557 } 558 free_pgd_range(tlb, addr, vma->vm_end, 559 floor, next? next->vm_start: ceiling); 560 } 561 vma = next; 562 } 563 } 564 565 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 566 { 567 spinlock_t *ptl; 568 pgtable_t new = pte_alloc_one(mm, address); 569 if (!new) 570 return -ENOMEM; 571 572 /* 573 * Ensure all pte setup (eg. pte page lock and page clearing) are 574 * visible before the pte is made visible to other CPUs by being 575 * put into page tables. 576 * 577 * The other side of the story is the pointer chasing in the page 578 * table walking code (when walking the page table without locking; 579 * ie. most of the time). Fortunately, these data accesses consist 580 * of a chain of data-dependent loads, meaning most CPUs (alpha 581 * being the notable exception) will already guarantee loads are 582 * seen in-order. See the alpha page table accessors for the 583 * smp_read_barrier_depends() barriers in page table walking code. 584 */ 585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 586 587 ptl = pmd_lock(mm, pmd); 588 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 589 atomic_long_inc(&mm->nr_ptes); 590 pmd_populate(mm, pmd, new); 591 new = NULL; 592 } 593 spin_unlock(ptl); 594 if (new) 595 pte_free(mm, new); 596 return 0; 597 } 598 599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 600 { 601 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 602 if (!new) 603 return -ENOMEM; 604 605 smp_wmb(); /* See comment in __pte_alloc */ 606 607 spin_lock(&init_mm.page_table_lock); 608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 609 pmd_populate_kernel(&init_mm, pmd, new); 610 new = NULL; 611 } 612 spin_unlock(&init_mm.page_table_lock); 613 if (new) 614 pte_free_kernel(&init_mm, new); 615 return 0; 616 } 617 618 static inline void init_rss_vec(int *rss) 619 { 620 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 621 } 622 623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 624 { 625 int i; 626 627 if (current->mm == mm) 628 sync_mm_rss(mm); 629 for (i = 0; i < NR_MM_COUNTERS; i++) 630 if (rss[i]) 631 add_mm_counter(mm, i, rss[i]); 632 } 633 634 /* 635 * This function is called to print an error when a bad pte 636 * is found. For example, we might have a PFN-mapped pte in 637 * a region that doesn't allow it. 638 * 639 * The calling function must still handle the error. 640 */ 641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 642 pte_t pte, struct page *page) 643 { 644 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 645 pud_t *pud = pud_offset(pgd, addr); 646 pmd_t *pmd = pmd_offset(pud, addr); 647 struct address_space *mapping; 648 pgoff_t index; 649 static unsigned long resume; 650 static unsigned long nr_shown; 651 static unsigned long nr_unshown; 652 653 /* 654 * Allow a burst of 60 reports, then keep quiet for that minute; 655 * or allow a steady drip of one report per second. 656 */ 657 if (nr_shown == 60) { 658 if (time_before(jiffies, resume)) { 659 nr_unshown++; 660 return; 661 } 662 if (nr_unshown) { 663 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 664 nr_unshown); 665 nr_unshown = 0; 666 } 667 nr_shown = 0; 668 } 669 if (nr_shown++ == 0) 670 resume = jiffies + 60 * HZ; 671 672 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 673 index = linear_page_index(vma, addr); 674 675 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 676 current->comm, 677 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 678 if (page) 679 dump_page(page, "bad pte"); 680 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 681 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 682 /* 683 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 684 */ 685 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 686 vma->vm_file, 687 vma->vm_ops ? vma->vm_ops->fault : NULL, 688 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 689 mapping ? mapping->a_ops->readpage : NULL); 690 dump_stack(); 691 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 692 } 693 694 /* 695 * vm_normal_page -- This function gets the "struct page" associated with a pte. 696 * 697 * "Special" mappings do not wish to be associated with a "struct page" (either 698 * it doesn't exist, or it exists but they don't want to touch it). In this 699 * case, NULL is returned here. "Normal" mappings do have a struct page. 700 * 701 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 702 * pte bit, in which case this function is trivial. Secondly, an architecture 703 * may not have a spare pte bit, which requires a more complicated scheme, 704 * described below. 705 * 706 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 707 * special mapping (even if there are underlying and valid "struct pages"). 708 * COWed pages of a VM_PFNMAP are always normal. 709 * 710 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 711 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 712 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 713 * mapping will always honor the rule 714 * 715 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 716 * 717 * And for normal mappings this is false. 718 * 719 * This restricts such mappings to be a linear translation from virtual address 720 * to pfn. To get around this restriction, we allow arbitrary mappings so long 721 * as the vma is not a COW mapping; in that case, we know that all ptes are 722 * special (because none can have been COWed). 723 * 724 * 725 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 726 * 727 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 728 * page" backing, however the difference is that _all_ pages with a struct 729 * page (that is, those where pfn_valid is true) are refcounted and considered 730 * normal pages by the VM. The disadvantage is that pages are refcounted 731 * (which can be slower and simply not an option for some PFNMAP users). The 732 * advantage is that we don't have to follow the strict linearity rule of 733 * PFNMAP mappings in order to support COWable mappings. 734 * 735 */ 736 #ifdef __HAVE_ARCH_PTE_SPECIAL 737 # define HAVE_PTE_SPECIAL 1 738 #else 739 # define HAVE_PTE_SPECIAL 0 740 #endif 741 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 742 pte_t pte) 743 { 744 unsigned long pfn = pte_pfn(pte); 745 746 if (HAVE_PTE_SPECIAL) { 747 if (likely(!pte_special(pte))) 748 goto check_pfn; 749 if (vma->vm_ops && vma->vm_ops->find_special_page) 750 return vma->vm_ops->find_special_page(vma, addr); 751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 752 return NULL; 753 if (!is_zero_pfn(pfn)) 754 print_bad_pte(vma, addr, pte, NULL); 755 return NULL; 756 } 757 758 /* !HAVE_PTE_SPECIAL case follows: */ 759 760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 761 if (vma->vm_flags & VM_MIXEDMAP) { 762 if (!pfn_valid(pfn)) 763 return NULL; 764 goto out; 765 } else { 766 unsigned long off; 767 off = (addr - vma->vm_start) >> PAGE_SHIFT; 768 if (pfn == vma->vm_pgoff + off) 769 return NULL; 770 if (!is_cow_mapping(vma->vm_flags)) 771 return NULL; 772 } 773 } 774 775 if (is_zero_pfn(pfn)) 776 return NULL; 777 check_pfn: 778 if (unlikely(pfn > highest_memmap_pfn)) { 779 print_bad_pte(vma, addr, pte, NULL); 780 return NULL; 781 } 782 783 /* 784 * NOTE! We still have PageReserved() pages in the page tables. 785 * eg. VDSO mappings can cause them to exist. 786 */ 787 out: 788 return pfn_to_page(pfn); 789 } 790 791 /* 792 * copy one vm_area from one task to the other. Assumes the page tables 793 * already present in the new task to be cleared in the whole range 794 * covered by this vma. 795 */ 796 797 static inline unsigned long 798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 800 unsigned long addr, int *rss) 801 { 802 unsigned long vm_flags = vma->vm_flags; 803 pte_t pte = *src_pte; 804 struct page *page; 805 806 /* pte contains position in swap or file, so copy. */ 807 if (unlikely(!pte_present(pte))) { 808 swp_entry_t entry = pte_to_swp_entry(pte); 809 810 if (likely(!non_swap_entry(entry))) { 811 if (swap_duplicate(entry) < 0) 812 return entry.val; 813 814 /* make sure dst_mm is on swapoff's mmlist. */ 815 if (unlikely(list_empty(&dst_mm->mmlist))) { 816 spin_lock(&mmlist_lock); 817 if (list_empty(&dst_mm->mmlist)) 818 list_add(&dst_mm->mmlist, 819 &src_mm->mmlist); 820 spin_unlock(&mmlist_lock); 821 } 822 rss[MM_SWAPENTS]++; 823 } else if (is_migration_entry(entry)) { 824 page = migration_entry_to_page(entry); 825 826 rss[mm_counter(page)]++; 827 828 if (is_write_migration_entry(entry) && 829 is_cow_mapping(vm_flags)) { 830 /* 831 * COW mappings require pages in both 832 * parent and child to be set to read. 833 */ 834 make_migration_entry_read(&entry); 835 pte = swp_entry_to_pte(entry); 836 if (pte_swp_soft_dirty(*src_pte)) 837 pte = pte_swp_mksoft_dirty(pte); 838 set_pte_at(src_mm, addr, src_pte, pte); 839 } 840 } 841 goto out_set_pte; 842 } 843 844 /* 845 * If it's a COW mapping, write protect it both 846 * in the parent and the child 847 */ 848 if (is_cow_mapping(vm_flags)) { 849 ptep_set_wrprotect(src_mm, addr, src_pte); 850 pte = pte_wrprotect(pte); 851 } 852 853 /* 854 * If it's a shared mapping, mark it clean in 855 * the child 856 */ 857 if (vm_flags & VM_SHARED) 858 pte = pte_mkclean(pte); 859 pte = pte_mkold(pte); 860 861 page = vm_normal_page(vma, addr, pte); 862 if (page) { 863 get_page(page); 864 page_dup_rmap(page, false); 865 rss[mm_counter(page)]++; 866 } 867 868 out_set_pte: 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 874 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 875 unsigned long addr, unsigned long end) 876 { 877 pte_t *orig_src_pte, *orig_dst_pte; 878 pte_t *src_pte, *dst_pte; 879 spinlock_t *src_ptl, *dst_ptl; 880 int progress = 0; 881 int rss[NR_MM_COUNTERS]; 882 swp_entry_t entry = (swp_entry_t){0}; 883 884 again: 885 init_rss_vec(rss); 886 887 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 888 if (!dst_pte) 889 return -ENOMEM; 890 src_pte = pte_offset_map(src_pmd, addr); 891 src_ptl = pte_lockptr(src_mm, src_pmd); 892 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 893 orig_src_pte = src_pte; 894 orig_dst_pte = dst_pte; 895 arch_enter_lazy_mmu_mode(); 896 897 do { 898 /* 899 * We are holding two locks at this point - either of them 900 * could generate latencies in another task on another CPU. 901 */ 902 if (progress >= 32) { 903 progress = 0; 904 if (need_resched() || 905 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 906 break; 907 } 908 if (pte_none(*src_pte)) { 909 progress++; 910 continue; 911 } 912 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 913 vma, addr, rss); 914 if (entry.val) 915 break; 916 progress += 8; 917 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 918 919 arch_leave_lazy_mmu_mode(); 920 spin_unlock(src_ptl); 921 pte_unmap(orig_src_pte); 922 add_mm_rss_vec(dst_mm, rss); 923 pte_unmap_unlock(orig_dst_pte, dst_ptl); 924 cond_resched(); 925 926 if (entry.val) { 927 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 928 return -ENOMEM; 929 progress = 0; 930 } 931 if (addr != end) 932 goto again; 933 return 0; 934 } 935 936 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 937 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 938 unsigned long addr, unsigned long end) 939 { 940 pmd_t *src_pmd, *dst_pmd; 941 unsigned long next; 942 943 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 944 if (!dst_pmd) 945 return -ENOMEM; 946 src_pmd = pmd_offset(src_pud, addr); 947 do { 948 next = pmd_addr_end(addr, end); 949 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 950 int err; 951 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 952 err = copy_huge_pmd(dst_mm, src_mm, 953 dst_pmd, src_pmd, addr, vma); 954 if (err == -ENOMEM) 955 return -ENOMEM; 956 if (!err) 957 continue; 958 /* fall through */ 959 } 960 if (pmd_none_or_clear_bad(src_pmd)) 961 continue; 962 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 963 vma, addr, next)) 964 return -ENOMEM; 965 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 966 return 0; 967 } 968 969 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 970 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 971 unsigned long addr, unsigned long end) 972 { 973 pud_t *src_pud, *dst_pud; 974 unsigned long next; 975 976 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 977 if (!dst_pud) 978 return -ENOMEM; 979 src_pud = pud_offset(src_pgd, addr); 980 do { 981 next = pud_addr_end(addr, end); 982 if (pud_none_or_clear_bad(src_pud)) 983 continue; 984 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 985 vma, addr, next)) 986 return -ENOMEM; 987 } while (dst_pud++, src_pud++, addr = next, addr != end); 988 return 0; 989 } 990 991 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 992 struct vm_area_struct *vma) 993 { 994 pgd_t *src_pgd, *dst_pgd; 995 unsigned long next; 996 unsigned long addr = vma->vm_start; 997 unsigned long end = vma->vm_end; 998 unsigned long mmun_start; /* For mmu_notifiers */ 999 unsigned long mmun_end; /* For mmu_notifiers */ 1000 bool is_cow; 1001 int ret; 1002 1003 /* 1004 * Don't copy ptes where a page fault will fill them correctly. 1005 * Fork becomes much lighter when there are big shared or private 1006 * readonly mappings. The tradeoff is that copy_page_range is more 1007 * efficient than faulting. 1008 */ 1009 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1010 !vma->anon_vma) 1011 return 0; 1012 1013 if (is_vm_hugetlb_page(vma)) 1014 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1015 1016 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1017 /* 1018 * We do not free on error cases below as remove_vma 1019 * gets called on error from higher level routine 1020 */ 1021 ret = track_pfn_copy(vma); 1022 if (ret) 1023 return ret; 1024 } 1025 1026 /* 1027 * We need to invalidate the secondary MMU mappings only when 1028 * there could be a permission downgrade on the ptes of the 1029 * parent mm. And a permission downgrade will only happen if 1030 * is_cow_mapping() returns true. 1031 */ 1032 is_cow = is_cow_mapping(vma->vm_flags); 1033 mmun_start = addr; 1034 mmun_end = end; 1035 if (is_cow) 1036 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1037 mmun_end); 1038 1039 ret = 0; 1040 dst_pgd = pgd_offset(dst_mm, addr); 1041 src_pgd = pgd_offset(src_mm, addr); 1042 do { 1043 next = pgd_addr_end(addr, end); 1044 if (pgd_none_or_clear_bad(src_pgd)) 1045 continue; 1046 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1047 vma, addr, next))) { 1048 ret = -ENOMEM; 1049 break; 1050 } 1051 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1052 1053 if (is_cow) 1054 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1055 return ret; 1056 } 1057 1058 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1059 struct vm_area_struct *vma, pmd_t *pmd, 1060 unsigned long addr, unsigned long end, 1061 struct zap_details *details) 1062 { 1063 struct mm_struct *mm = tlb->mm; 1064 int force_flush = 0; 1065 int rss[NR_MM_COUNTERS]; 1066 spinlock_t *ptl; 1067 pte_t *start_pte; 1068 pte_t *pte; 1069 swp_entry_t entry; 1070 1071 again: 1072 init_rss_vec(rss); 1073 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1074 pte = start_pte; 1075 arch_enter_lazy_mmu_mode(); 1076 do { 1077 pte_t ptent = *pte; 1078 if (pte_none(ptent)) { 1079 continue; 1080 } 1081 1082 if (pte_present(ptent)) { 1083 struct page *page; 1084 1085 page = vm_normal_page(vma, addr, ptent); 1086 if (unlikely(details) && page) { 1087 /* 1088 * unmap_shared_mapping_pages() wants to 1089 * invalidate cache without truncating: 1090 * unmap shared but keep private pages. 1091 */ 1092 if (details->check_mapping && 1093 details->check_mapping != page->mapping) 1094 continue; 1095 } 1096 ptent = ptep_get_and_clear_full(mm, addr, pte, 1097 tlb->fullmm); 1098 tlb_remove_tlb_entry(tlb, pte, addr); 1099 if (unlikely(!page)) 1100 continue; 1101 1102 if (!PageAnon(page)) { 1103 if (pte_dirty(ptent)) { 1104 force_flush = 1; 1105 set_page_dirty(page); 1106 } 1107 if (pte_young(ptent) && 1108 likely(!(vma->vm_flags & VM_SEQ_READ))) 1109 mark_page_accessed(page); 1110 } 1111 rss[mm_counter(page)]--; 1112 page_remove_rmap(page, false); 1113 if (unlikely(page_mapcount(page) < 0)) 1114 print_bad_pte(vma, addr, ptent, page); 1115 if (unlikely(!__tlb_remove_page(tlb, page))) { 1116 force_flush = 1; 1117 addr += PAGE_SIZE; 1118 break; 1119 } 1120 continue; 1121 } 1122 /* If details->check_mapping, we leave swap entries. */ 1123 if (unlikely(details)) 1124 continue; 1125 1126 entry = pte_to_swp_entry(ptent); 1127 if (!non_swap_entry(entry)) 1128 rss[MM_SWAPENTS]--; 1129 else if (is_migration_entry(entry)) { 1130 struct page *page; 1131 1132 page = migration_entry_to_page(entry); 1133 rss[mm_counter(page)]--; 1134 } 1135 if (unlikely(!free_swap_and_cache(entry))) 1136 print_bad_pte(vma, addr, ptent, NULL); 1137 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1138 } while (pte++, addr += PAGE_SIZE, addr != end); 1139 1140 add_mm_rss_vec(mm, rss); 1141 arch_leave_lazy_mmu_mode(); 1142 1143 /* Do the actual TLB flush before dropping ptl */ 1144 if (force_flush) 1145 tlb_flush_mmu_tlbonly(tlb); 1146 pte_unmap_unlock(start_pte, ptl); 1147 1148 /* 1149 * If we forced a TLB flush (either due to running out of 1150 * batch buffers or because we needed to flush dirty TLB 1151 * entries before releasing the ptl), free the batched 1152 * memory too. Restart if we didn't do everything. 1153 */ 1154 if (force_flush) { 1155 force_flush = 0; 1156 tlb_flush_mmu_free(tlb); 1157 1158 if (addr != end) 1159 goto again; 1160 } 1161 1162 return addr; 1163 } 1164 1165 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1166 struct vm_area_struct *vma, pud_t *pud, 1167 unsigned long addr, unsigned long end, 1168 struct zap_details *details) 1169 { 1170 pmd_t *pmd; 1171 unsigned long next; 1172 1173 pmd = pmd_offset(pud, addr); 1174 do { 1175 next = pmd_addr_end(addr, end); 1176 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1177 if (next - addr != HPAGE_PMD_SIZE) { 1178 #ifdef CONFIG_DEBUG_VM 1179 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1180 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1181 __func__, addr, end, 1182 vma->vm_start, 1183 vma->vm_end); 1184 BUG(); 1185 } 1186 #endif 1187 split_huge_pmd(vma, pmd, addr); 1188 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1189 goto next; 1190 /* fall through */ 1191 } 1192 /* 1193 * Here there can be other concurrent MADV_DONTNEED or 1194 * trans huge page faults running, and if the pmd is 1195 * none or trans huge it can change under us. This is 1196 * because MADV_DONTNEED holds the mmap_sem in read 1197 * mode. 1198 */ 1199 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1200 goto next; 1201 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1202 next: 1203 cond_resched(); 1204 } while (pmd++, addr = next, addr != end); 1205 1206 return addr; 1207 } 1208 1209 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1210 struct vm_area_struct *vma, pgd_t *pgd, 1211 unsigned long addr, unsigned long end, 1212 struct zap_details *details) 1213 { 1214 pud_t *pud; 1215 unsigned long next; 1216 1217 pud = pud_offset(pgd, addr); 1218 do { 1219 next = pud_addr_end(addr, end); 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 } while (pud++, addr = next, addr != end); 1224 1225 return addr; 1226 } 1227 1228 static void unmap_page_range(struct mmu_gather *tlb, 1229 struct vm_area_struct *vma, 1230 unsigned long addr, unsigned long end, 1231 struct zap_details *details) 1232 { 1233 pgd_t *pgd; 1234 unsigned long next; 1235 1236 if (details && !details->check_mapping) 1237 details = NULL; 1238 1239 BUG_ON(addr >= end); 1240 tlb_start_vma(tlb, vma); 1241 pgd = pgd_offset(vma->vm_mm, addr); 1242 do { 1243 next = pgd_addr_end(addr, end); 1244 if (pgd_none_or_clear_bad(pgd)) 1245 continue; 1246 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1247 } while (pgd++, addr = next, addr != end); 1248 tlb_end_vma(tlb, vma); 1249 } 1250 1251 1252 static void unmap_single_vma(struct mmu_gather *tlb, 1253 struct vm_area_struct *vma, unsigned long start_addr, 1254 unsigned long end_addr, 1255 struct zap_details *details) 1256 { 1257 unsigned long start = max(vma->vm_start, start_addr); 1258 unsigned long end; 1259 1260 if (start >= vma->vm_end) 1261 return; 1262 end = min(vma->vm_end, end_addr); 1263 if (end <= vma->vm_start) 1264 return; 1265 1266 if (vma->vm_file) 1267 uprobe_munmap(vma, start, end); 1268 1269 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1270 untrack_pfn(vma, 0, 0); 1271 1272 if (start != end) { 1273 if (unlikely(is_vm_hugetlb_page(vma))) { 1274 /* 1275 * It is undesirable to test vma->vm_file as it 1276 * should be non-null for valid hugetlb area. 1277 * However, vm_file will be NULL in the error 1278 * cleanup path of mmap_region. When 1279 * hugetlbfs ->mmap method fails, 1280 * mmap_region() nullifies vma->vm_file 1281 * before calling this function to clean up. 1282 * Since no pte has actually been setup, it is 1283 * safe to do nothing in this case. 1284 */ 1285 if (vma->vm_file) { 1286 i_mmap_lock_write(vma->vm_file->f_mapping); 1287 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1288 i_mmap_unlock_write(vma->vm_file->f_mapping); 1289 } 1290 } else 1291 unmap_page_range(tlb, vma, start, end, details); 1292 } 1293 } 1294 1295 /** 1296 * unmap_vmas - unmap a range of memory covered by a list of vma's 1297 * @tlb: address of the caller's struct mmu_gather 1298 * @vma: the starting vma 1299 * @start_addr: virtual address at which to start unmapping 1300 * @end_addr: virtual address at which to end unmapping 1301 * 1302 * Unmap all pages in the vma list. 1303 * 1304 * Only addresses between `start' and `end' will be unmapped. 1305 * 1306 * The VMA list must be sorted in ascending virtual address order. 1307 * 1308 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1309 * range after unmap_vmas() returns. So the only responsibility here is to 1310 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1311 * drops the lock and schedules. 1312 */ 1313 void unmap_vmas(struct mmu_gather *tlb, 1314 struct vm_area_struct *vma, unsigned long start_addr, 1315 unsigned long end_addr) 1316 { 1317 struct mm_struct *mm = vma->vm_mm; 1318 1319 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1320 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1321 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1322 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1323 } 1324 1325 /** 1326 * zap_page_range - remove user pages in a given range 1327 * @vma: vm_area_struct holding the applicable pages 1328 * @start: starting address of pages to zap 1329 * @size: number of bytes to zap 1330 * @details: details of shared cache invalidation 1331 * 1332 * Caller must protect the VMA list 1333 */ 1334 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1335 unsigned long size, struct zap_details *details) 1336 { 1337 struct mm_struct *mm = vma->vm_mm; 1338 struct mmu_gather tlb; 1339 unsigned long end = start + size; 1340 1341 lru_add_drain(); 1342 tlb_gather_mmu(&tlb, mm, start, end); 1343 update_hiwater_rss(mm); 1344 mmu_notifier_invalidate_range_start(mm, start, end); 1345 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1346 unmap_single_vma(&tlb, vma, start, end, details); 1347 mmu_notifier_invalidate_range_end(mm, start, end); 1348 tlb_finish_mmu(&tlb, start, end); 1349 } 1350 1351 /** 1352 * zap_page_range_single - remove user pages in a given range 1353 * @vma: vm_area_struct holding the applicable pages 1354 * @address: starting address of pages to zap 1355 * @size: number of bytes to zap 1356 * @details: details of shared cache invalidation 1357 * 1358 * The range must fit into one VMA. 1359 */ 1360 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1361 unsigned long size, struct zap_details *details) 1362 { 1363 struct mm_struct *mm = vma->vm_mm; 1364 struct mmu_gather tlb; 1365 unsigned long end = address + size; 1366 1367 lru_add_drain(); 1368 tlb_gather_mmu(&tlb, mm, address, end); 1369 update_hiwater_rss(mm); 1370 mmu_notifier_invalidate_range_start(mm, address, end); 1371 unmap_single_vma(&tlb, vma, address, end, details); 1372 mmu_notifier_invalidate_range_end(mm, address, end); 1373 tlb_finish_mmu(&tlb, address, end); 1374 } 1375 1376 /** 1377 * zap_vma_ptes - remove ptes mapping the vma 1378 * @vma: vm_area_struct holding ptes to be zapped 1379 * @address: starting address of pages to zap 1380 * @size: number of bytes to zap 1381 * 1382 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1383 * 1384 * The entire address range must be fully contained within the vma. 1385 * 1386 * Returns 0 if successful. 1387 */ 1388 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1389 unsigned long size) 1390 { 1391 if (address < vma->vm_start || address + size > vma->vm_end || 1392 !(vma->vm_flags & VM_PFNMAP)) 1393 return -1; 1394 zap_page_range_single(vma, address, size, NULL); 1395 return 0; 1396 } 1397 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1398 1399 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1400 spinlock_t **ptl) 1401 { 1402 pgd_t * pgd = pgd_offset(mm, addr); 1403 pud_t * pud = pud_alloc(mm, pgd, addr); 1404 if (pud) { 1405 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1406 if (pmd) { 1407 VM_BUG_ON(pmd_trans_huge(*pmd)); 1408 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1409 } 1410 } 1411 return NULL; 1412 } 1413 1414 /* 1415 * This is the old fallback for page remapping. 1416 * 1417 * For historical reasons, it only allows reserved pages. Only 1418 * old drivers should use this, and they needed to mark their 1419 * pages reserved for the old functions anyway. 1420 */ 1421 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1422 struct page *page, pgprot_t prot) 1423 { 1424 struct mm_struct *mm = vma->vm_mm; 1425 int retval; 1426 pte_t *pte; 1427 spinlock_t *ptl; 1428 1429 retval = -EINVAL; 1430 if (PageAnon(page)) 1431 goto out; 1432 retval = -ENOMEM; 1433 flush_dcache_page(page); 1434 pte = get_locked_pte(mm, addr, &ptl); 1435 if (!pte) 1436 goto out; 1437 retval = -EBUSY; 1438 if (!pte_none(*pte)) 1439 goto out_unlock; 1440 1441 /* Ok, finally just insert the thing.. */ 1442 get_page(page); 1443 inc_mm_counter_fast(mm, mm_counter_file(page)); 1444 page_add_file_rmap(page); 1445 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1446 1447 retval = 0; 1448 pte_unmap_unlock(pte, ptl); 1449 return retval; 1450 out_unlock: 1451 pte_unmap_unlock(pte, ptl); 1452 out: 1453 return retval; 1454 } 1455 1456 /** 1457 * vm_insert_page - insert single page into user vma 1458 * @vma: user vma to map to 1459 * @addr: target user address of this page 1460 * @page: source kernel page 1461 * 1462 * This allows drivers to insert individual pages they've allocated 1463 * into a user vma. 1464 * 1465 * The page has to be a nice clean _individual_ kernel allocation. 1466 * If you allocate a compound page, you need to have marked it as 1467 * such (__GFP_COMP), or manually just split the page up yourself 1468 * (see split_page()). 1469 * 1470 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1471 * took an arbitrary page protection parameter. This doesn't allow 1472 * that. Your vma protection will have to be set up correctly, which 1473 * means that if you want a shared writable mapping, you'd better 1474 * ask for a shared writable mapping! 1475 * 1476 * The page does not need to be reserved. 1477 * 1478 * Usually this function is called from f_op->mmap() handler 1479 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1480 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1481 * function from other places, for example from page-fault handler. 1482 */ 1483 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1484 struct page *page) 1485 { 1486 if (addr < vma->vm_start || addr >= vma->vm_end) 1487 return -EFAULT; 1488 if (!page_count(page)) 1489 return -EINVAL; 1490 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1491 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1492 BUG_ON(vma->vm_flags & VM_PFNMAP); 1493 vma->vm_flags |= VM_MIXEDMAP; 1494 } 1495 return insert_page(vma, addr, page, vma->vm_page_prot); 1496 } 1497 EXPORT_SYMBOL(vm_insert_page); 1498 1499 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1500 pfn_t pfn, pgprot_t prot) 1501 { 1502 struct mm_struct *mm = vma->vm_mm; 1503 int retval; 1504 pte_t *pte, entry; 1505 spinlock_t *ptl; 1506 1507 retval = -ENOMEM; 1508 pte = get_locked_pte(mm, addr, &ptl); 1509 if (!pte) 1510 goto out; 1511 retval = -EBUSY; 1512 if (!pte_none(*pte)) 1513 goto out_unlock; 1514 1515 /* Ok, finally just insert the thing.. */ 1516 if (pfn_t_devmap(pfn)) 1517 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1518 else 1519 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1520 set_pte_at(mm, addr, pte, entry); 1521 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1522 1523 retval = 0; 1524 out_unlock: 1525 pte_unmap_unlock(pte, ptl); 1526 out: 1527 return retval; 1528 } 1529 1530 /** 1531 * vm_insert_pfn - insert single pfn into user vma 1532 * @vma: user vma to map to 1533 * @addr: target user address of this page 1534 * @pfn: source kernel pfn 1535 * 1536 * Similar to vm_insert_page, this allows drivers to insert individual pages 1537 * they've allocated into a user vma. Same comments apply. 1538 * 1539 * This function should only be called from a vm_ops->fault handler, and 1540 * in that case the handler should return NULL. 1541 * 1542 * vma cannot be a COW mapping. 1543 * 1544 * As this is called only for pages that do not currently exist, we 1545 * do not need to flush old virtual caches or the TLB. 1546 */ 1547 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1548 unsigned long pfn) 1549 { 1550 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1551 } 1552 EXPORT_SYMBOL(vm_insert_pfn); 1553 1554 /** 1555 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1556 * @vma: user vma to map to 1557 * @addr: target user address of this page 1558 * @pfn: source kernel pfn 1559 * @pgprot: pgprot flags for the inserted page 1560 * 1561 * This is exactly like vm_insert_pfn, except that it allows drivers to 1562 * to override pgprot on a per-page basis. 1563 * 1564 * This only makes sense for IO mappings, and it makes no sense for 1565 * cow mappings. In general, using multiple vmas is preferable; 1566 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1567 * impractical. 1568 */ 1569 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1570 unsigned long pfn, pgprot_t pgprot) 1571 { 1572 int ret; 1573 /* 1574 * Technically, architectures with pte_special can avoid all these 1575 * restrictions (same for remap_pfn_range). However we would like 1576 * consistency in testing and feature parity among all, so we should 1577 * try to keep these invariants in place for everybody. 1578 */ 1579 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1580 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1581 (VM_PFNMAP|VM_MIXEDMAP)); 1582 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1583 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1584 1585 if (addr < vma->vm_start || addr >= vma->vm_end) 1586 return -EFAULT; 1587 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) 1588 return -EINVAL; 1589 1590 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1591 1592 return ret; 1593 } 1594 EXPORT_SYMBOL(vm_insert_pfn_prot); 1595 1596 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1597 pfn_t pfn) 1598 { 1599 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1600 1601 if (addr < vma->vm_start || addr >= vma->vm_end) 1602 return -EFAULT; 1603 1604 /* 1605 * If we don't have pte special, then we have to use the pfn_valid() 1606 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1607 * refcount the page if pfn_valid is true (hence insert_page rather 1608 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1609 * without pte special, it would there be refcounted as a normal page. 1610 */ 1611 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1612 struct page *page; 1613 1614 /* 1615 * At this point we are committed to insert_page() 1616 * regardless of whether the caller specified flags that 1617 * result in pfn_t_has_page() == false. 1618 */ 1619 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1620 return insert_page(vma, addr, page, vma->vm_page_prot); 1621 } 1622 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1623 } 1624 EXPORT_SYMBOL(vm_insert_mixed); 1625 1626 /* 1627 * maps a range of physical memory into the requested pages. the old 1628 * mappings are removed. any references to nonexistent pages results 1629 * in null mappings (currently treated as "copy-on-access") 1630 */ 1631 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1632 unsigned long addr, unsigned long end, 1633 unsigned long pfn, pgprot_t prot) 1634 { 1635 pte_t *pte; 1636 spinlock_t *ptl; 1637 1638 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1639 if (!pte) 1640 return -ENOMEM; 1641 arch_enter_lazy_mmu_mode(); 1642 do { 1643 BUG_ON(!pte_none(*pte)); 1644 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1645 pfn++; 1646 } while (pte++, addr += PAGE_SIZE, addr != end); 1647 arch_leave_lazy_mmu_mode(); 1648 pte_unmap_unlock(pte - 1, ptl); 1649 return 0; 1650 } 1651 1652 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1653 unsigned long addr, unsigned long end, 1654 unsigned long pfn, pgprot_t prot) 1655 { 1656 pmd_t *pmd; 1657 unsigned long next; 1658 1659 pfn -= addr >> PAGE_SHIFT; 1660 pmd = pmd_alloc(mm, pud, addr); 1661 if (!pmd) 1662 return -ENOMEM; 1663 VM_BUG_ON(pmd_trans_huge(*pmd)); 1664 do { 1665 next = pmd_addr_end(addr, end); 1666 if (remap_pte_range(mm, pmd, addr, next, 1667 pfn + (addr >> PAGE_SHIFT), prot)) 1668 return -ENOMEM; 1669 } while (pmd++, addr = next, addr != end); 1670 return 0; 1671 } 1672 1673 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1674 unsigned long addr, unsigned long end, 1675 unsigned long pfn, pgprot_t prot) 1676 { 1677 pud_t *pud; 1678 unsigned long next; 1679 1680 pfn -= addr >> PAGE_SHIFT; 1681 pud = pud_alloc(mm, pgd, addr); 1682 if (!pud) 1683 return -ENOMEM; 1684 do { 1685 next = pud_addr_end(addr, end); 1686 if (remap_pmd_range(mm, pud, addr, next, 1687 pfn + (addr >> PAGE_SHIFT), prot)) 1688 return -ENOMEM; 1689 } while (pud++, addr = next, addr != end); 1690 return 0; 1691 } 1692 1693 /** 1694 * remap_pfn_range - remap kernel memory to userspace 1695 * @vma: user vma to map to 1696 * @addr: target user address to start at 1697 * @pfn: physical address of kernel memory 1698 * @size: size of map area 1699 * @prot: page protection flags for this mapping 1700 * 1701 * Note: this is only safe if the mm semaphore is held when called. 1702 */ 1703 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1704 unsigned long pfn, unsigned long size, pgprot_t prot) 1705 { 1706 pgd_t *pgd; 1707 unsigned long next; 1708 unsigned long end = addr + PAGE_ALIGN(size); 1709 struct mm_struct *mm = vma->vm_mm; 1710 int err; 1711 1712 /* 1713 * Physically remapped pages are special. Tell the 1714 * rest of the world about it: 1715 * VM_IO tells people not to look at these pages 1716 * (accesses can have side effects). 1717 * VM_PFNMAP tells the core MM that the base pages are just 1718 * raw PFN mappings, and do not have a "struct page" associated 1719 * with them. 1720 * VM_DONTEXPAND 1721 * Disable vma merging and expanding with mremap(). 1722 * VM_DONTDUMP 1723 * Omit vma from core dump, even when VM_IO turned off. 1724 * 1725 * There's a horrible special case to handle copy-on-write 1726 * behaviour that some programs depend on. We mark the "original" 1727 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1728 * See vm_normal_page() for details. 1729 */ 1730 if (is_cow_mapping(vma->vm_flags)) { 1731 if (addr != vma->vm_start || end != vma->vm_end) 1732 return -EINVAL; 1733 vma->vm_pgoff = pfn; 1734 } 1735 1736 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1737 if (err) 1738 return -EINVAL; 1739 1740 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1741 1742 BUG_ON(addr >= end); 1743 pfn -= addr >> PAGE_SHIFT; 1744 pgd = pgd_offset(mm, addr); 1745 flush_cache_range(vma, addr, end); 1746 do { 1747 next = pgd_addr_end(addr, end); 1748 err = remap_pud_range(mm, pgd, addr, next, 1749 pfn + (addr >> PAGE_SHIFT), prot); 1750 if (err) 1751 break; 1752 } while (pgd++, addr = next, addr != end); 1753 1754 if (err) 1755 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1756 1757 return err; 1758 } 1759 EXPORT_SYMBOL(remap_pfn_range); 1760 1761 /** 1762 * vm_iomap_memory - remap memory to userspace 1763 * @vma: user vma to map to 1764 * @start: start of area 1765 * @len: size of area 1766 * 1767 * This is a simplified io_remap_pfn_range() for common driver use. The 1768 * driver just needs to give us the physical memory range to be mapped, 1769 * we'll figure out the rest from the vma information. 1770 * 1771 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1772 * whatever write-combining details or similar. 1773 */ 1774 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1775 { 1776 unsigned long vm_len, pfn, pages; 1777 1778 /* Check that the physical memory area passed in looks valid */ 1779 if (start + len < start) 1780 return -EINVAL; 1781 /* 1782 * You *really* shouldn't map things that aren't page-aligned, 1783 * but we've historically allowed it because IO memory might 1784 * just have smaller alignment. 1785 */ 1786 len += start & ~PAGE_MASK; 1787 pfn = start >> PAGE_SHIFT; 1788 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1789 if (pfn + pages < pfn) 1790 return -EINVAL; 1791 1792 /* We start the mapping 'vm_pgoff' pages into the area */ 1793 if (vma->vm_pgoff > pages) 1794 return -EINVAL; 1795 pfn += vma->vm_pgoff; 1796 pages -= vma->vm_pgoff; 1797 1798 /* Can we fit all of the mapping? */ 1799 vm_len = vma->vm_end - vma->vm_start; 1800 if (vm_len >> PAGE_SHIFT > pages) 1801 return -EINVAL; 1802 1803 /* Ok, let it rip */ 1804 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1805 } 1806 EXPORT_SYMBOL(vm_iomap_memory); 1807 1808 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1809 unsigned long addr, unsigned long end, 1810 pte_fn_t fn, void *data) 1811 { 1812 pte_t *pte; 1813 int err; 1814 pgtable_t token; 1815 spinlock_t *uninitialized_var(ptl); 1816 1817 pte = (mm == &init_mm) ? 1818 pte_alloc_kernel(pmd, addr) : 1819 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1820 if (!pte) 1821 return -ENOMEM; 1822 1823 BUG_ON(pmd_huge(*pmd)); 1824 1825 arch_enter_lazy_mmu_mode(); 1826 1827 token = pmd_pgtable(*pmd); 1828 1829 do { 1830 err = fn(pte++, token, addr, data); 1831 if (err) 1832 break; 1833 } while (addr += PAGE_SIZE, addr != end); 1834 1835 arch_leave_lazy_mmu_mode(); 1836 1837 if (mm != &init_mm) 1838 pte_unmap_unlock(pte-1, ptl); 1839 return err; 1840 } 1841 1842 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1843 unsigned long addr, unsigned long end, 1844 pte_fn_t fn, void *data) 1845 { 1846 pmd_t *pmd; 1847 unsigned long next; 1848 int err; 1849 1850 BUG_ON(pud_huge(*pud)); 1851 1852 pmd = pmd_alloc(mm, pud, addr); 1853 if (!pmd) 1854 return -ENOMEM; 1855 do { 1856 next = pmd_addr_end(addr, end); 1857 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1858 if (err) 1859 break; 1860 } while (pmd++, addr = next, addr != end); 1861 return err; 1862 } 1863 1864 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1865 unsigned long addr, unsigned long end, 1866 pte_fn_t fn, void *data) 1867 { 1868 pud_t *pud; 1869 unsigned long next; 1870 int err; 1871 1872 pud = pud_alloc(mm, pgd, addr); 1873 if (!pud) 1874 return -ENOMEM; 1875 do { 1876 next = pud_addr_end(addr, end); 1877 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1878 if (err) 1879 break; 1880 } while (pud++, addr = next, addr != end); 1881 return err; 1882 } 1883 1884 /* 1885 * Scan a region of virtual memory, filling in page tables as necessary 1886 * and calling a provided function on each leaf page table. 1887 */ 1888 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1889 unsigned long size, pte_fn_t fn, void *data) 1890 { 1891 pgd_t *pgd; 1892 unsigned long next; 1893 unsigned long end = addr + size; 1894 int err; 1895 1896 if (WARN_ON(addr >= end)) 1897 return -EINVAL; 1898 1899 pgd = pgd_offset(mm, addr); 1900 do { 1901 next = pgd_addr_end(addr, end); 1902 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1903 if (err) 1904 break; 1905 } while (pgd++, addr = next, addr != end); 1906 1907 return err; 1908 } 1909 EXPORT_SYMBOL_GPL(apply_to_page_range); 1910 1911 /* 1912 * handle_pte_fault chooses page fault handler according to an entry which was 1913 * read non-atomically. Before making any commitment, on those architectures 1914 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1915 * parts, do_swap_page must check under lock before unmapping the pte and 1916 * proceeding (but do_wp_page is only called after already making such a check; 1917 * and do_anonymous_page can safely check later on). 1918 */ 1919 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1920 pte_t *page_table, pte_t orig_pte) 1921 { 1922 int same = 1; 1923 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1924 if (sizeof(pte_t) > sizeof(unsigned long)) { 1925 spinlock_t *ptl = pte_lockptr(mm, pmd); 1926 spin_lock(ptl); 1927 same = pte_same(*page_table, orig_pte); 1928 spin_unlock(ptl); 1929 } 1930 #endif 1931 pte_unmap(page_table); 1932 return same; 1933 } 1934 1935 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1936 { 1937 debug_dma_assert_idle(src); 1938 1939 /* 1940 * If the source page was a PFN mapping, we don't have 1941 * a "struct page" for it. We do a best-effort copy by 1942 * just copying from the original user address. If that 1943 * fails, we just zero-fill it. Live with it. 1944 */ 1945 if (unlikely(!src)) { 1946 void *kaddr = kmap_atomic(dst); 1947 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1948 1949 /* 1950 * This really shouldn't fail, because the page is there 1951 * in the page tables. But it might just be unreadable, 1952 * in which case we just give up and fill the result with 1953 * zeroes. 1954 */ 1955 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1956 clear_page(kaddr); 1957 kunmap_atomic(kaddr); 1958 flush_dcache_page(dst); 1959 } else 1960 copy_user_highpage(dst, src, va, vma); 1961 } 1962 1963 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 1964 { 1965 struct file *vm_file = vma->vm_file; 1966 1967 if (vm_file) 1968 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 1969 1970 /* 1971 * Special mappings (e.g. VDSO) do not have any file so fake 1972 * a default GFP_KERNEL for them. 1973 */ 1974 return GFP_KERNEL; 1975 } 1976 1977 /* 1978 * Notify the address space that the page is about to become writable so that 1979 * it can prohibit this or wait for the page to get into an appropriate state. 1980 * 1981 * We do this without the lock held, so that it can sleep if it needs to. 1982 */ 1983 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1984 unsigned long address) 1985 { 1986 struct vm_fault vmf; 1987 int ret; 1988 1989 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 1990 vmf.pgoff = page->index; 1991 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 1992 vmf.gfp_mask = __get_fault_gfp_mask(vma); 1993 vmf.page = page; 1994 vmf.cow_page = NULL; 1995 1996 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 1997 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 1998 return ret; 1999 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2000 lock_page(page); 2001 if (!page->mapping) { 2002 unlock_page(page); 2003 return 0; /* retry */ 2004 } 2005 ret |= VM_FAULT_LOCKED; 2006 } else 2007 VM_BUG_ON_PAGE(!PageLocked(page), page); 2008 return ret; 2009 } 2010 2011 /* 2012 * Handle write page faults for pages that can be reused in the current vma 2013 * 2014 * This can happen either due to the mapping being with the VM_SHARED flag, 2015 * or due to us being the last reference standing to the page. In either 2016 * case, all we need to do here is to mark the page as writable and update 2017 * any related book-keeping. 2018 */ 2019 static inline int wp_page_reuse(struct mm_struct *mm, 2020 struct vm_area_struct *vma, unsigned long address, 2021 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2022 struct page *page, int page_mkwrite, 2023 int dirty_shared) 2024 __releases(ptl) 2025 { 2026 pte_t entry; 2027 /* 2028 * Clear the pages cpupid information as the existing 2029 * information potentially belongs to a now completely 2030 * unrelated process. 2031 */ 2032 if (page) 2033 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2034 2035 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2036 entry = pte_mkyoung(orig_pte); 2037 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2038 if (ptep_set_access_flags(vma, address, page_table, entry, 1)) 2039 update_mmu_cache(vma, address, page_table); 2040 pte_unmap_unlock(page_table, ptl); 2041 2042 if (dirty_shared) { 2043 struct address_space *mapping; 2044 int dirtied; 2045 2046 if (!page_mkwrite) 2047 lock_page(page); 2048 2049 dirtied = set_page_dirty(page); 2050 VM_BUG_ON_PAGE(PageAnon(page), page); 2051 mapping = page->mapping; 2052 unlock_page(page); 2053 page_cache_release(page); 2054 2055 if ((dirtied || page_mkwrite) && mapping) { 2056 /* 2057 * Some device drivers do not set page.mapping 2058 * but still dirty their pages 2059 */ 2060 balance_dirty_pages_ratelimited(mapping); 2061 } 2062 2063 if (!page_mkwrite) 2064 file_update_time(vma->vm_file); 2065 } 2066 2067 return VM_FAULT_WRITE; 2068 } 2069 2070 /* 2071 * Handle the case of a page which we actually need to copy to a new page. 2072 * 2073 * Called with mmap_sem locked and the old page referenced, but 2074 * without the ptl held. 2075 * 2076 * High level logic flow: 2077 * 2078 * - Allocate a page, copy the content of the old page to the new one. 2079 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2080 * - Take the PTL. If the pte changed, bail out and release the allocated page 2081 * - If the pte is still the way we remember it, update the page table and all 2082 * relevant references. This includes dropping the reference the page-table 2083 * held to the old page, as well as updating the rmap. 2084 * - In any case, unlock the PTL and drop the reference we took to the old page. 2085 */ 2086 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, 2087 unsigned long address, pte_t *page_table, pmd_t *pmd, 2088 pte_t orig_pte, struct page *old_page) 2089 { 2090 struct page *new_page = NULL; 2091 spinlock_t *ptl = NULL; 2092 pte_t entry; 2093 int page_copied = 0; 2094 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ 2095 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ 2096 struct mem_cgroup *memcg; 2097 2098 if (unlikely(anon_vma_prepare(vma))) 2099 goto oom; 2100 2101 if (is_zero_pfn(pte_pfn(orig_pte))) { 2102 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2103 if (!new_page) 2104 goto oom; 2105 } else { 2106 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2107 if (!new_page) 2108 goto oom; 2109 cow_user_page(new_page, old_page, address, vma); 2110 } 2111 2112 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2113 goto oom_free_new; 2114 2115 __SetPageUptodate(new_page); 2116 2117 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2118 2119 /* 2120 * Re-check the pte - we dropped the lock 2121 */ 2122 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2123 if (likely(pte_same(*page_table, orig_pte))) { 2124 if (old_page) { 2125 if (!PageAnon(old_page)) { 2126 dec_mm_counter_fast(mm, 2127 mm_counter_file(old_page)); 2128 inc_mm_counter_fast(mm, MM_ANONPAGES); 2129 } 2130 } else { 2131 inc_mm_counter_fast(mm, MM_ANONPAGES); 2132 } 2133 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2134 entry = mk_pte(new_page, vma->vm_page_prot); 2135 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2136 /* 2137 * Clear the pte entry and flush it first, before updating the 2138 * pte with the new entry. This will avoid a race condition 2139 * seen in the presence of one thread doing SMC and another 2140 * thread doing COW. 2141 */ 2142 ptep_clear_flush_notify(vma, address, page_table); 2143 page_add_new_anon_rmap(new_page, vma, address, false); 2144 mem_cgroup_commit_charge(new_page, memcg, false, false); 2145 lru_cache_add_active_or_unevictable(new_page, vma); 2146 /* 2147 * We call the notify macro here because, when using secondary 2148 * mmu page tables (such as kvm shadow page tables), we want the 2149 * new page to be mapped directly into the secondary page table. 2150 */ 2151 set_pte_at_notify(mm, address, page_table, entry); 2152 update_mmu_cache(vma, address, page_table); 2153 if (old_page) { 2154 /* 2155 * Only after switching the pte to the new page may 2156 * we remove the mapcount here. Otherwise another 2157 * process may come and find the rmap count decremented 2158 * before the pte is switched to the new page, and 2159 * "reuse" the old page writing into it while our pte 2160 * here still points into it and can be read by other 2161 * threads. 2162 * 2163 * The critical issue is to order this 2164 * page_remove_rmap with the ptp_clear_flush above. 2165 * Those stores are ordered by (if nothing else,) 2166 * the barrier present in the atomic_add_negative 2167 * in page_remove_rmap. 2168 * 2169 * Then the TLB flush in ptep_clear_flush ensures that 2170 * no process can access the old page before the 2171 * decremented mapcount is visible. And the old page 2172 * cannot be reused until after the decremented 2173 * mapcount is visible. So transitively, TLBs to 2174 * old page will be flushed before it can be reused. 2175 */ 2176 page_remove_rmap(old_page, false); 2177 } 2178 2179 /* Free the old page.. */ 2180 new_page = old_page; 2181 page_copied = 1; 2182 } else { 2183 mem_cgroup_cancel_charge(new_page, memcg, false); 2184 } 2185 2186 if (new_page) 2187 page_cache_release(new_page); 2188 2189 pte_unmap_unlock(page_table, ptl); 2190 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2191 if (old_page) { 2192 /* 2193 * Don't let another task, with possibly unlocked vma, 2194 * keep the mlocked page. 2195 */ 2196 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2197 lock_page(old_page); /* LRU manipulation */ 2198 if (PageMlocked(old_page)) 2199 munlock_vma_page(old_page); 2200 unlock_page(old_page); 2201 } 2202 page_cache_release(old_page); 2203 } 2204 return page_copied ? VM_FAULT_WRITE : 0; 2205 oom_free_new: 2206 page_cache_release(new_page); 2207 oom: 2208 if (old_page) 2209 page_cache_release(old_page); 2210 return VM_FAULT_OOM; 2211 } 2212 2213 /* 2214 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2215 * mapping 2216 */ 2217 static int wp_pfn_shared(struct mm_struct *mm, 2218 struct vm_area_struct *vma, unsigned long address, 2219 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, 2220 pmd_t *pmd) 2221 { 2222 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2223 struct vm_fault vmf = { 2224 .page = NULL, 2225 .pgoff = linear_page_index(vma, address), 2226 .virtual_address = (void __user *)(address & PAGE_MASK), 2227 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2228 }; 2229 int ret; 2230 2231 pte_unmap_unlock(page_table, ptl); 2232 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2233 if (ret & VM_FAULT_ERROR) 2234 return ret; 2235 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2236 /* 2237 * We might have raced with another page fault while we 2238 * released the pte_offset_map_lock. 2239 */ 2240 if (!pte_same(*page_table, orig_pte)) { 2241 pte_unmap_unlock(page_table, ptl); 2242 return 0; 2243 } 2244 } 2245 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, 2246 NULL, 0, 0); 2247 } 2248 2249 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, 2250 unsigned long address, pte_t *page_table, 2251 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, 2252 struct page *old_page) 2253 __releases(ptl) 2254 { 2255 int page_mkwrite = 0; 2256 2257 page_cache_get(old_page); 2258 2259 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2260 int tmp; 2261 2262 pte_unmap_unlock(page_table, ptl); 2263 tmp = do_page_mkwrite(vma, old_page, address); 2264 if (unlikely(!tmp || (tmp & 2265 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2266 page_cache_release(old_page); 2267 return tmp; 2268 } 2269 /* 2270 * Since we dropped the lock we need to revalidate 2271 * the PTE as someone else may have changed it. If 2272 * they did, we just return, as we can count on the 2273 * MMU to tell us if they didn't also make it writable. 2274 */ 2275 page_table = pte_offset_map_lock(mm, pmd, address, 2276 &ptl); 2277 if (!pte_same(*page_table, orig_pte)) { 2278 unlock_page(old_page); 2279 pte_unmap_unlock(page_table, ptl); 2280 page_cache_release(old_page); 2281 return 0; 2282 } 2283 page_mkwrite = 1; 2284 } 2285 2286 return wp_page_reuse(mm, vma, address, page_table, ptl, 2287 orig_pte, old_page, page_mkwrite, 1); 2288 } 2289 2290 /* 2291 * This routine handles present pages, when users try to write 2292 * to a shared page. It is done by copying the page to a new address 2293 * and decrementing the shared-page counter for the old page. 2294 * 2295 * Note that this routine assumes that the protection checks have been 2296 * done by the caller (the low-level page fault routine in most cases). 2297 * Thus we can safely just mark it writable once we've done any necessary 2298 * COW. 2299 * 2300 * We also mark the page dirty at this point even though the page will 2301 * change only once the write actually happens. This avoids a few races, 2302 * and potentially makes it more efficient. 2303 * 2304 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2305 * but allow concurrent faults), with pte both mapped and locked. 2306 * We return with mmap_sem still held, but pte unmapped and unlocked. 2307 */ 2308 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2309 unsigned long address, pte_t *page_table, pmd_t *pmd, 2310 spinlock_t *ptl, pte_t orig_pte) 2311 __releases(ptl) 2312 { 2313 struct page *old_page; 2314 2315 old_page = vm_normal_page(vma, address, orig_pte); 2316 if (!old_page) { 2317 /* 2318 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2319 * VM_PFNMAP VMA. 2320 * 2321 * We should not cow pages in a shared writeable mapping. 2322 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2323 */ 2324 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2325 (VM_WRITE|VM_SHARED)) 2326 return wp_pfn_shared(mm, vma, address, page_table, ptl, 2327 orig_pte, pmd); 2328 2329 pte_unmap_unlock(page_table, ptl); 2330 return wp_page_copy(mm, vma, address, page_table, pmd, 2331 orig_pte, old_page); 2332 } 2333 2334 /* 2335 * Take out anonymous pages first, anonymous shared vmas are 2336 * not dirty accountable. 2337 */ 2338 if (PageAnon(old_page) && !PageKsm(old_page)) { 2339 if (!trylock_page(old_page)) { 2340 page_cache_get(old_page); 2341 pte_unmap_unlock(page_table, ptl); 2342 lock_page(old_page); 2343 page_table = pte_offset_map_lock(mm, pmd, address, 2344 &ptl); 2345 if (!pte_same(*page_table, orig_pte)) { 2346 unlock_page(old_page); 2347 pte_unmap_unlock(page_table, ptl); 2348 page_cache_release(old_page); 2349 return 0; 2350 } 2351 page_cache_release(old_page); 2352 } 2353 if (reuse_swap_page(old_page)) { 2354 /* 2355 * The page is all ours. Move it to our anon_vma so 2356 * the rmap code will not search our parent or siblings. 2357 * Protected against the rmap code by the page lock. 2358 */ 2359 page_move_anon_rmap(old_page, vma, address); 2360 unlock_page(old_page); 2361 return wp_page_reuse(mm, vma, address, page_table, ptl, 2362 orig_pte, old_page, 0, 0); 2363 } 2364 unlock_page(old_page); 2365 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2366 (VM_WRITE|VM_SHARED))) { 2367 return wp_page_shared(mm, vma, address, page_table, pmd, 2368 ptl, orig_pte, old_page); 2369 } 2370 2371 /* 2372 * Ok, we need to copy. Oh, well.. 2373 */ 2374 page_cache_get(old_page); 2375 2376 pte_unmap_unlock(page_table, ptl); 2377 return wp_page_copy(mm, vma, address, page_table, pmd, 2378 orig_pte, old_page); 2379 } 2380 2381 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2382 unsigned long start_addr, unsigned long end_addr, 2383 struct zap_details *details) 2384 { 2385 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2386 } 2387 2388 static inline void unmap_mapping_range_tree(struct rb_root *root, 2389 struct zap_details *details) 2390 { 2391 struct vm_area_struct *vma; 2392 pgoff_t vba, vea, zba, zea; 2393 2394 vma_interval_tree_foreach(vma, root, 2395 details->first_index, details->last_index) { 2396 2397 vba = vma->vm_pgoff; 2398 vea = vba + vma_pages(vma) - 1; 2399 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2400 zba = details->first_index; 2401 if (zba < vba) 2402 zba = vba; 2403 zea = details->last_index; 2404 if (zea > vea) 2405 zea = vea; 2406 2407 unmap_mapping_range_vma(vma, 2408 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2409 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2410 details); 2411 } 2412 } 2413 2414 /** 2415 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2416 * address_space corresponding to the specified page range in the underlying 2417 * file. 2418 * 2419 * @mapping: the address space containing mmaps to be unmapped. 2420 * @holebegin: byte in first page to unmap, relative to the start of 2421 * the underlying file. This will be rounded down to a PAGE_SIZE 2422 * boundary. Note that this is different from truncate_pagecache(), which 2423 * must keep the partial page. In contrast, we must get rid of 2424 * partial pages. 2425 * @holelen: size of prospective hole in bytes. This will be rounded 2426 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2427 * end of the file. 2428 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2429 * but 0 when invalidating pagecache, don't throw away private data. 2430 */ 2431 void unmap_mapping_range(struct address_space *mapping, 2432 loff_t const holebegin, loff_t const holelen, int even_cows) 2433 { 2434 struct zap_details details; 2435 pgoff_t hba = holebegin >> PAGE_SHIFT; 2436 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2437 2438 /* Check for overflow. */ 2439 if (sizeof(holelen) > sizeof(hlen)) { 2440 long long holeend = 2441 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2442 if (holeend & ~(long long)ULONG_MAX) 2443 hlen = ULONG_MAX - hba + 1; 2444 } 2445 2446 details.check_mapping = even_cows? NULL: mapping; 2447 details.first_index = hba; 2448 details.last_index = hba + hlen - 1; 2449 if (details.last_index < details.first_index) 2450 details.last_index = ULONG_MAX; 2451 2452 2453 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */ 2454 i_mmap_lock_write(mapping); 2455 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2456 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2457 i_mmap_unlock_write(mapping); 2458 } 2459 EXPORT_SYMBOL(unmap_mapping_range); 2460 2461 /* 2462 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2463 * but allow concurrent faults), and pte mapped but not yet locked. 2464 * We return with pte unmapped and unlocked. 2465 * 2466 * We return with the mmap_sem locked or unlocked in the same cases 2467 * as does filemap_fault(). 2468 */ 2469 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2470 unsigned long address, pte_t *page_table, pmd_t *pmd, 2471 unsigned int flags, pte_t orig_pte) 2472 { 2473 spinlock_t *ptl; 2474 struct page *page, *swapcache; 2475 struct mem_cgroup *memcg; 2476 swp_entry_t entry; 2477 pte_t pte; 2478 int locked; 2479 int exclusive = 0; 2480 int ret = 0; 2481 2482 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2483 goto out; 2484 2485 entry = pte_to_swp_entry(orig_pte); 2486 if (unlikely(non_swap_entry(entry))) { 2487 if (is_migration_entry(entry)) { 2488 migration_entry_wait(mm, pmd, address); 2489 } else if (is_hwpoison_entry(entry)) { 2490 ret = VM_FAULT_HWPOISON; 2491 } else { 2492 print_bad_pte(vma, address, orig_pte, NULL); 2493 ret = VM_FAULT_SIGBUS; 2494 } 2495 goto out; 2496 } 2497 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2498 page = lookup_swap_cache(entry); 2499 if (!page) { 2500 page = swapin_readahead(entry, 2501 GFP_HIGHUSER_MOVABLE, vma, address); 2502 if (!page) { 2503 /* 2504 * Back out if somebody else faulted in this pte 2505 * while we released the pte lock. 2506 */ 2507 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2508 if (likely(pte_same(*page_table, orig_pte))) 2509 ret = VM_FAULT_OOM; 2510 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2511 goto unlock; 2512 } 2513 2514 /* Had to read the page from swap area: Major fault */ 2515 ret = VM_FAULT_MAJOR; 2516 count_vm_event(PGMAJFAULT); 2517 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2518 } else if (PageHWPoison(page)) { 2519 /* 2520 * hwpoisoned dirty swapcache pages are kept for killing 2521 * owner processes (which may be unknown at hwpoison time) 2522 */ 2523 ret = VM_FAULT_HWPOISON; 2524 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2525 swapcache = page; 2526 goto out_release; 2527 } 2528 2529 swapcache = page; 2530 locked = lock_page_or_retry(page, mm, flags); 2531 2532 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2533 if (!locked) { 2534 ret |= VM_FAULT_RETRY; 2535 goto out_release; 2536 } 2537 2538 /* 2539 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2540 * release the swapcache from under us. The page pin, and pte_same 2541 * test below, are not enough to exclude that. Even if it is still 2542 * swapcache, we need to check that the page's swap has not changed. 2543 */ 2544 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2545 goto out_page; 2546 2547 page = ksm_might_need_to_copy(page, vma, address); 2548 if (unlikely(!page)) { 2549 ret = VM_FAULT_OOM; 2550 page = swapcache; 2551 goto out_page; 2552 } 2553 2554 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) { 2555 ret = VM_FAULT_OOM; 2556 goto out_page; 2557 } 2558 2559 /* 2560 * Back out if somebody else already faulted in this pte. 2561 */ 2562 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2563 if (unlikely(!pte_same(*page_table, orig_pte))) 2564 goto out_nomap; 2565 2566 if (unlikely(!PageUptodate(page))) { 2567 ret = VM_FAULT_SIGBUS; 2568 goto out_nomap; 2569 } 2570 2571 /* 2572 * The page isn't present yet, go ahead with the fault. 2573 * 2574 * Be careful about the sequence of operations here. 2575 * To get its accounting right, reuse_swap_page() must be called 2576 * while the page is counted on swap but not yet in mapcount i.e. 2577 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2578 * must be called after the swap_free(), or it will never succeed. 2579 */ 2580 2581 inc_mm_counter_fast(mm, MM_ANONPAGES); 2582 dec_mm_counter_fast(mm, MM_SWAPENTS); 2583 pte = mk_pte(page, vma->vm_page_prot); 2584 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2585 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2586 flags &= ~FAULT_FLAG_WRITE; 2587 ret |= VM_FAULT_WRITE; 2588 exclusive = RMAP_EXCLUSIVE; 2589 } 2590 flush_icache_page(vma, page); 2591 if (pte_swp_soft_dirty(orig_pte)) 2592 pte = pte_mksoft_dirty(pte); 2593 set_pte_at(mm, address, page_table, pte); 2594 if (page == swapcache) { 2595 do_page_add_anon_rmap(page, vma, address, exclusive); 2596 mem_cgroup_commit_charge(page, memcg, true, false); 2597 } else { /* ksm created a completely new copy */ 2598 page_add_new_anon_rmap(page, vma, address, false); 2599 mem_cgroup_commit_charge(page, memcg, false, false); 2600 lru_cache_add_active_or_unevictable(page, vma); 2601 } 2602 2603 swap_free(entry); 2604 if (mem_cgroup_swap_full(page) || 2605 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2606 try_to_free_swap(page); 2607 unlock_page(page); 2608 if (page != swapcache) { 2609 /* 2610 * Hold the lock to avoid the swap entry to be reused 2611 * until we take the PT lock for the pte_same() check 2612 * (to avoid false positives from pte_same). For 2613 * further safety release the lock after the swap_free 2614 * so that the swap count won't change under a 2615 * parallel locked swapcache. 2616 */ 2617 unlock_page(swapcache); 2618 page_cache_release(swapcache); 2619 } 2620 2621 if (flags & FAULT_FLAG_WRITE) { 2622 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2623 if (ret & VM_FAULT_ERROR) 2624 ret &= VM_FAULT_ERROR; 2625 goto out; 2626 } 2627 2628 /* No need to invalidate - it was non-present before */ 2629 update_mmu_cache(vma, address, page_table); 2630 unlock: 2631 pte_unmap_unlock(page_table, ptl); 2632 out: 2633 return ret; 2634 out_nomap: 2635 mem_cgroup_cancel_charge(page, memcg, false); 2636 pte_unmap_unlock(page_table, ptl); 2637 out_page: 2638 unlock_page(page); 2639 out_release: 2640 page_cache_release(page); 2641 if (page != swapcache) { 2642 unlock_page(swapcache); 2643 page_cache_release(swapcache); 2644 } 2645 return ret; 2646 } 2647 2648 /* 2649 * This is like a special single-page "expand_{down|up}wards()", 2650 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2651 * doesn't hit another vma. 2652 */ 2653 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2654 { 2655 address &= PAGE_MASK; 2656 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2657 struct vm_area_struct *prev = vma->vm_prev; 2658 2659 /* 2660 * Is there a mapping abutting this one below? 2661 * 2662 * That's only ok if it's the same stack mapping 2663 * that has gotten split.. 2664 */ 2665 if (prev && prev->vm_end == address) 2666 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2667 2668 return expand_downwards(vma, address - PAGE_SIZE); 2669 } 2670 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2671 struct vm_area_struct *next = vma->vm_next; 2672 2673 /* As VM_GROWSDOWN but s/below/above/ */ 2674 if (next && next->vm_start == address + PAGE_SIZE) 2675 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2676 2677 return expand_upwards(vma, address + PAGE_SIZE); 2678 } 2679 return 0; 2680 } 2681 2682 /* 2683 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2684 * but allow concurrent faults), and pte mapped but not yet locked. 2685 * We return with mmap_sem still held, but pte unmapped and unlocked. 2686 */ 2687 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2688 unsigned long address, pte_t *page_table, pmd_t *pmd, 2689 unsigned int flags) 2690 { 2691 struct mem_cgroup *memcg; 2692 struct page *page; 2693 spinlock_t *ptl; 2694 pte_t entry; 2695 2696 pte_unmap(page_table); 2697 2698 /* File mapping without ->vm_ops ? */ 2699 if (vma->vm_flags & VM_SHARED) 2700 return VM_FAULT_SIGBUS; 2701 2702 /* Check if we need to add a guard page to the stack */ 2703 if (check_stack_guard_page(vma, address) < 0) 2704 return VM_FAULT_SIGSEGV; 2705 2706 /* Use the zero-page for reads */ 2707 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { 2708 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2709 vma->vm_page_prot)); 2710 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2711 if (!pte_none(*page_table)) 2712 goto unlock; 2713 /* Deliver the page fault to userland, check inside PT lock */ 2714 if (userfaultfd_missing(vma)) { 2715 pte_unmap_unlock(page_table, ptl); 2716 return handle_userfault(vma, address, flags, 2717 VM_UFFD_MISSING); 2718 } 2719 goto setpte; 2720 } 2721 2722 /* Allocate our own private page. */ 2723 if (unlikely(anon_vma_prepare(vma))) 2724 goto oom; 2725 page = alloc_zeroed_user_highpage_movable(vma, address); 2726 if (!page) 2727 goto oom; 2728 2729 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) 2730 goto oom_free_page; 2731 2732 /* 2733 * The memory barrier inside __SetPageUptodate makes sure that 2734 * preceeding stores to the page contents become visible before 2735 * the set_pte_at() write. 2736 */ 2737 __SetPageUptodate(page); 2738 2739 entry = mk_pte(page, vma->vm_page_prot); 2740 if (vma->vm_flags & VM_WRITE) 2741 entry = pte_mkwrite(pte_mkdirty(entry)); 2742 2743 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2744 if (!pte_none(*page_table)) 2745 goto release; 2746 2747 /* Deliver the page fault to userland, check inside PT lock */ 2748 if (userfaultfd_missing(vma)) { 2749 pte_unmap_unlock(page_table, ptl); 2750 mem_cgroup_cancel_charge(page, memcg, false); 2751 page_cache_release(page); 2752 return handle_userfault(vma, address, flags, 2753 VM_UFFD_MISSING); 2754 } 2755 2756 inc_mm_counter_fast(mm, MM_ANONPAGES); 2757 page_add_new_anon_rmap(page, vma, address, false); 2758 mem_cgroup_commit_charge(page, memcg, false, false); 2759 lru_cache_add_active_or_unevictable(page, vma); 2760 setpte: 2761 set_pte_at(mm, address, page_table, entry); 2762 2763 /* No need to invalidate - it was non-present before */ 2764 update_mmu_cache(vma, address, page_table); 2765 unlock: 2766 pte_unmap_unlock(page_table, ptl); 2767 return 0; 2768 release: 2769 mem_cgroup_cancel_charge(page, memcg, false); 2770 page_cache_release(page); 2771 goto unlock; 2772 oom_free_page: 2773 page_cache_release(page); 2774 oom: 2775 return VM_FAULT_OOM; 2776 } 2777 2778 /* 2779 * The mmap_sem must have been held on entry, and may have been 2780 * released depending on flags and vma->vm_ops->fault() return value. 2781 * See filemap_fault() and __lock_page_retry(). 2782 */ 2783 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2784 pgoff_t pgoff, unsigned int flags, 2785 struct page *cow_page, struct page **page) 2786 { 2787 struct vm_fault vmf; 2788 int ret; 2789 2790 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2791 vmf.pgoff = pgoff; 2792 vmf.flags = flags; 2793 vmf.page = NULL; 2794 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2795 vmf.cow_page = cow_page; 2796 2797 ret = vma->vm_ops->fault(vma, &vmf); 2798 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2799 return ret; 2800 if (!vmf.page) 2801 goto out; 2802 2803 if (unlikely(PageHWPoison(vmf.page))) { 2804 if (ret & VM_FAULT_LOCKED) 2805 unlock_page(vmf.page); 2806 page_cache_release(vmf.page); 2807 return VM_FAULT_HWPOISON; 2808 } 2809 2810 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2811 lock_page(vmf.page); 2812 else 2813 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2814 2815 out: 2816 *page = vmf.page; 2817 return ret; 2818 } 2819 2820 /** 2821 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2822 * 2823 * @vma: virtual memory area 2824 * @address: user virtual address 2825 * @page: page to map 2826 * @pte: pointer to target page table entry 2827 * @write: true, if new entry is writable 2828 * @anon: true, if it's anonymous page 2829 * 2830 * Caller must hold page table lock relevant for @pte. 2831 * 2832 * Target users are page handler itself and implementations of 2833 * vm_ops->map_pages. 2834 */ 2835 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2836 struct page *page, pte_t *pte, bool write, bool anon) 2837 { 2838 pte_t entry; 2839 2840 flush_icache_page(vma, page); 2841 entry = mk_pte(page, vma->vm_page_prot); 2842 if (write) 2843 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2844 if (anon) { 2845 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2846 page_add_new_anon_rmap(page, vma, address, false); 2847 } else { 2848 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 2849 page_add_file_rmap(page); 2850 } 2851 set_pte_at(vma->vm_mm, address, pte, entry); 2852 2853 /* no need to invalidate: a not-present page won't be cached */ 2854 update_mmu_cache(vma, address, pte); 2855 } 2856 2857 static unsigned long fault_around_bytes __read_mostly = 2858 rounddown_pow_of_two(65536); 2859 2860 #ifdef CONFIG_DEBUG_FS 2861 static int fault_around_bytes_get(void *data, u64 *val) 2862 { 2863 *val = fault_around_bytes; 2864 return 0; 2865 } 2866 2867 /* 2868 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2869 * rounded down to nearest page order. It's what do_fault_around() expects to 2870 * see. 2871 */ 2872 static int fault_around_bytes_set(void *data, u64 val) 2873 { 2874 if (val / PAGE_SIZE > PTRS_PER_PTE) 2875 return -EINVAL; 2876 if (val > PAGE_SIZE) 2877 fault_around_bytes = rounddown_pow_of_two(val); 2878 else 2879 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2880 return 0; 2881 } 2882 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2883 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2884 2885 static int __init fault_around_debugfs(void) 2886 { 2887 void *ret; 2888 2889 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2890 &fault_around_bytes_fops); 2891 if (!ret) 2892 pr_warn("Failed to create fault_around_bytes in debugfs"); 2893 return 0; 2894 } 2895 late_initcall(fault_around_debugfs); 2896 #endif 2897 2898 /* 2899 * do_fault_around() tries to map few pages around the fault address. The hope 2900 * is that the pages will be needed soon and this will lower the number of 2901 * faults to handle. 2902 * 2903 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2904 * not ready to be mapped: not up-to-date, locked, etc. 2905 * 2906 * This function is called with the page table lock taken. In the split ptlock 2907 * case the page table lock only protects only those entries which belong to 2908 * the page table corresponding to the fault address. 2909 * 2910 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2911 * only once. 2912 * 2913 * fault_around_pages() defines how many pages we'll try to map. 2914 * do_fault_around() expects it to return a power of two less than or equal to 2915 * PTRS_PER_PTE. 2916 * 2917 * The virtual address of the area that we map is naturally aligned to the 2918 * fault_around_pages() value (and therefore to page order). This way it's 2919 * easier to guarantee that we don't cross page table boundaries. 2920 */ 2921 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2922 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2923 { 2924 unsigned long start_addr, nr_pages, mask; 2925 pgoff_t max_pgoff; 2926 struct vm_fault vmf; 2927 int off; 2928 2929 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2930 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2931 2932 start_addr = max(address & mask, vma->vm_start); 2933 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2934 pte -= off; 2935 pgoff -= off; 2936 2937 /* 2938 * max_pgoff is either end of page table or end of vma 2939 * or fault_around_pages() from pgoff, depending what is nearest. 2940 */ 2941 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2942 PTRS_PER_PTE - 1; 2943 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2944 pgoff + nr_pages - 1); 2945 2946 /* Check if it makes any sense to call ->map_pages */ 2947 while (!pte_none(*pte)) { 2948 if (++pgoff > max_pgoff) 2949 return; 2950 start_addr += PAGE_SIZE; 2951 if (start_addr >= vma->vm_end) 2952 return; 2953 pte++; 2954 } 2955 2956 vmf.virtual_address = (void __user *) start_addr; 2957 vmf.pte = pte; 2958 vmf.pgoff = pgoff; 2959 vmf.max_pgoff = max_pgoff; 2960 vmf.flags = flags; 2961 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2962 vma->vm_ops->map_pages(vma, &vmf); 2963 } 2964 2965 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2966 unsigned long address, pmd_t *pmd, 2967 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2968 { 2969 struct page *fault_page; 2970 spinlock_t *ptl; 2971 pte_t *pte; 2972 int ret = 0; 2973 2974 /* 2975 * Let's call ->map_pages() first and use ->fault() as fallback 2976 * if page by the offset is not ready to be mapped (cold cache or 2977 * something). 2978 */ 2979 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 2980 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2981 do_fault_around(vma, address, pte, pgoff, flags); 2982 if (!pte_same(*pte, orig_pte)) 2983 goto unlock_out; 2984 pte_unmap_unlock(pte, ptl); 2985 } 2986 2987 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 2988 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2989 return ret; 2990 2991 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2992 if (unlikely(!pte_same(*pte, orig_pte))) { 2993 pte_unmap_unlock(pte, ptl); 2994 unlock_page(fault_page); 2995 page_cache_release(fault_page); 2996 return ret; 2997 } 2998 do_set_pte(vma, address, fault_page, pte, false, false); 2999 unlock_page(fault_page); 3000 unlock_out: 3001 pte_unmap_unlock(pte, ptl); 3002 return ret; 3003 } 3004 3005 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3006 unsigned long address, pmd_t *pmd, 3007 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3008 { 3009 struct page *fault_page, *new_page; 3010 struct mem_cgroup *memcg; 3011 spinlock_t *ptl; 3012 pte_t *pte; 3013 int ret; 3014 3015 if (unlikely(anon_vma_prepare(vma))) 3016 return VM_FAULT_OOM; 3017 3018 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3019 if (!new_page) 3020 return VM_FAULT_OOM; 3021 3022 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) { 3023 page_cache_release(new_page); 3024 return VM_FAULT_OOM; 3025 } 3026 3027 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page); 3028 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3029 goto uncharge_out; 3030 3031 if (fault_page) 3032 copy_user_highpage(new_page, fault_page, address, vma); 3033 __SetPageUptodate(new_page); 3034 3035 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3036 if (unlikely(!pte_same(*pte, orig_pte))) { 3037 pte_unmap_unlock(pte, ptl); 3038 if (fault_page) { 3039 unlock_page(fault_page); 3040 page_cache_release(fault_page); 3041 } else { 3042 /* 3043 * The fault handler has no page to lock, so it holds 3044 * i_mmap_lock for read to protect against truncate. 3045 */ 3046 i_mmap_unlock_read(vma->vm_file->f_mapping); 3047 } 3048 goto uncharge_out; 3049 } 3050 do_set_pte(vma, address, new_page, pte, true, true); 3051 mem_cgroup_commit_charge(new_page, memcg, false, false); 3052 lru_cache_add_active_or_unevictable(new_page, vma); 3053 pte_unmap_unlock(pte, ptl); 3054 if (fault_page) { 3055 unlock_page(fault_page); 3056 page_cache_release(fault_page); 3057 } else { 3058 /* 3059 * The fault handler has no page to lock, so it holds 3060 * i_mmap_lock for read to protect against truncate. 3061 */ 3062 i_mmap_unlock_read(vma->vm_file->f_mapping); 3063 } 3064 return ret; 3065 uncharge_out: 3066 mem_cgroup_cancel_charge(new_page, memcg, false); 3067 page_cache_release(new_page); 3068 return ret; 3069 } 3070 3071 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3072 unsigned long address, pmd_t *pmd, 3073 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3074 { 3075 struct page *fault_page; 3076 struct address_space *mapping; 3077 spinlock_t *ptl; 3078 pte_t *pte; 3079 int dirtied = 0; 3080 int ret, tmp; 3081 3082 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page); 3083 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3084 return ret; 3085 3086 /* 3087 * Check if the backing address space wants to know that the page is 3088 * about to become writable 3089 */ 3090 if (vma->vm_ops->page_mkwrite) { 3091 unlock_page(fault_page); 3092 tmp = do_page_mkwrite(vma, fault_page, address); 3093 if (unlikely(!tmp || 3094 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3095 page_cache_release(fault_page); 3096 return tmp; 3097 } 3098 } 3099 3100 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3101 if (unlikely(!pte_same(*pte, orig_pte))) { 3102 pte_unmap_unlock(pte, ptl); 3103 unlock_page(fault_page); 3104 page_cache_release(fault_page); 3105 return ret; 3106 } 3107 do_set_pte(vma, address, fault_page, pte, true, false); 3108 pte_unmap_unlock(pte, ptl); 3109 3110 if (set_page_dirty(fault_page)) 3111 dirtied = 1; 3112 /* 3113 * Take a local copy of the address_space - page.mapping may be zeroed 3114 * by truncate after unlock_page(). The address_space itself remains 3115 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3116 * release semantics to prevent the compiler from undoing this copying. 3117 */ 3118 mapping = page_rmapping(fault_page); 3119 unlock_page(fault_page); 3120 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3121 /* 3122 * Some device drivers do not set page.mapping but still 3123 * dirty their pages 3124 */ 3125 balance_dirty_pages_ratelimited(mapping); 3126 } 3127 3128 if (!vma->vm_ops->page_mkwrite) 3129 file_update_time(vma->vm_file); 3130 3131 return ret; 3132 } 3133 3134 /* 3135 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3136 * but allow concurrent faults). 3137 * The mmap_sem may have been released depending on flags and our 3138 * return value. See filemap_fault() and __lock_page_or_retry(). 3139 */ 3140 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3141 unsigned long address, pte_t *page_table, pmd_t *pmd, 3142 unsigned int flags, pte_t orig_pte) 3143 { 3144 pgoff_t pgoff = linear_page_index(vma, address); 3145 3146 pte_unmap(page_table); 3147 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3148 if (!vma->vm_ops->fault) 3149 return VM_FAULT_SIGBUS; 3150 if (!(flags & FAULT_FLAG_WRITE)) 3151 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3152 orig_pte); 3153 if (!(vma->vm_flags & VM_SHARED)) 3154 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3155 orig_pte); 3156 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3157 } 3158 3159 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3160 unsigned long addr, int page_nid, 3161 int *flags) 3162 { 3163 get_page(page); 3164 3165 count_vm_numa_event(NUMA_HINT_FAULTS); 3166 if (page_nid == numa_node_id()) { 3167 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3168 *flags |= TNF_FAULT_LOCAL; 3169 } 3170 3171 return mpol_misplaced(page, vma, addr); 3172 } 3173 3174 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3175 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3176 { 3177 struct page *page = NULL; 3178 spinlock_t *ptl; 3179 int page_nid = -1; 3180 int last_cpupid; 3181 int target_nid; 3182 bool migrated = false; 3183 bool was_writable = pte_write(pte); 3184 int flags = 0; 3185 3186 /* A PROT_NONE fault should not end up here */ 3187 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 3188 3189 /* 3190 * The "pte" at this point cannot be used safely without 3191 * validation through pte_unmap_same(). It's of NUMA type but 3192 * the pfn may be screwed if the read is non atomic. 3193 * 3194 * We can safely just do a "set_pte_at()", because the old 3195 * page table entry is not accessible, so there would be no 3196 * concurrent hardware modifications to the PTE. 3197 */ 3198 ptl = pte_lockptr(mm, pmd); 3199 spin_lock(ptl); 3200 if (unlikely(!pte_same(*ptep, pte))) { 3201 pte_unmap_unlock(ptep, ptl); 3202 goto out; 3203 } 3204 3205 /* Make it present again */ 3206 pte = pte_modify(pte, vma->vm_page_prot); 3207 pte = pte_mkyoung(pte); 3208 if (was_writable) 3209 pte = pte_mkwrite(pte); 3210 set_pte_at(mm, addr, ptep, pte); 3211 update_mmu_cache(vma, addr, ptep); 3212 3213 page = vm_normal_page(vma, addr, pte); 3214 if (!page) { 3215 pte_unmap_unlock(ptep, ptl); 3216 return 0; 3217 } 3218 3219 /* TODO: handle PTE-mapped THP */ 3220 if (PageCompound(page)) { 3221 pte_unmap_unlock(ptep, ptl); 3222 return 0; 3223 } 3224 3225 /* 3226 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3227 * much anyway since they can be in shared cache state. This misses 3228 * the case where a mapping is writable but the process never writes 3229 * to it but pte_write gets cleared during protection updates and 3230 * pte_dirty has unpredictable behaviour between PTE scan updates, 3231 * background writeback, dirty balancing and application behaviour. 3232 */ 3233 if (!(vma->vm_flags & VM_WRITE)) 3234 flags |= TNF_NO_GROUP; 3235 3236 /* 3237 * Flag if the page is shared between multiple address spaces. This 3238 * is later used when determining whether to group tasks together 3239 */ 3240 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3241 flags |= TNF_SHARED; 3242 3243 last_cpupid = page_cpupid_last(page); 3244 page_nid = page_to_nid(page); 3245 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3246 pte_unmap_unlock(ptep, ptl); 3247 if (target_nid == -1) { 3248 put_page(page); 3249 goto out; 3250 } 3251 3252 /* Migrate to the requested node */ 3253 migrated = migrate_misplaced_page(page, vma, target_nid); 3254 if (migrated) { 3255 page_nid = target_nid; 3256 flags |= TNF_MIGRATED; 3257 } else 3258 flags |= TNF_MIGRATE_FAIL; 3259 3260 out: 3261 if (page_nid != -1) 3262 task_numa_fault(last_cpupid, page_nid, 1, flags); 3263 return 0; 3264 } 3265 3266 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3267 unsigned long address, pmd_t *pmd, unsigned int flags) 3268 { 3269 if (vma_is_anonymous(vma)) 3270 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); 3271 if (vma->vm_ops->pmd_fault) 3272 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3273 return VM_FAULT_FALLBACK; 3274 } 3275 3276 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 3277 unsigned long address, pmd_t *pmd, pmd_t orig_pmd, 3278 unsigned int flags) 3279 { 3280 if (vma_is_anonymous(vma)) 3281 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); 3282 if (vma->vm_ops->pmd_fault) 3283 return vma->vm_ops->pmd_fault(vma, address, pmd, flags); 3284 return VM_FAULT_FALLBACK; 3285 } 3286 3287 /* 3288 * These routines also need to handle stuff like marking pages dirty 3289 * and/or accessed for architectures that don't do it in hardware (most 3290 * RISC architectures). The early dirtying is also good on the i386. 3291 * 3292 * There is also a hook called "update_mmu_cache()" that architectures 3293 * with external mmu caches can use to update those (ie the Sparc or 3294 * PowerPC hashed page tables that act as extended TLBs). 3295 * 3296 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3297 * but allow concurrent faults), and pte mapped but not yet locked. 3298 * We return with pte unmapped and unlocked. 3299 * 3300 * The mmap_sem may have been released depending on flags and our 3301 * return value. See filemap_fault() and __lock_page_or_retry(). 3302 */ 3303 static int handle_pte_fault(struct mm_struct *mm, 3304 struct vm_area_struct *vma, unsigned long address, 3305 pte_t *pte, pmd_t *pmd, unsigned int flags) 3306 { 3307 pte_t entry; 3308 spinlock_t *ptl; 3309 3310 /* 3311 * some architectures can have larger ptes than wordsize, 3312 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, 3313 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. 3314 * The code below just needs a consistent view for the ifs and 3315 * we later double check anyway with the ptl lock held. So here 3316 * a barrier will do. 3317 */ 3318 entry = *pte; 3319 barrier(); 3320 if (!pte_present(entry)) { 3321 if (pte_none(entry)) { 3322 if (vma_is_anonymous(vma)) 3323 return do_anonymous_page(mm, vma, address, 3324 pte, pmd, flags); 3325 else 3326 return do_fault(mm, vma, address, pte, pmd, 3327 flags, entry); 3328 } 3329 return do_swap_page(mm, vma, address, 3330 pte, pmd, flags, entry); 3331 } 3332 3333 if (pte_protnone(entry)) 3334 return do_numa_page(mm, vma, address, entry, pte, pmd); 3335 3336 ptl = pte_lockptr(mm, pmd); 3337 spin_lock(ptl); 3338 if (unlikely(!pte_same(*pte, entry))) 3339 goto unlock; 3340 if (flags & FAULT_FLAG_WRITE) { 3341 if (!pte_write(entry)) 3342 return do_wp_page(mm, vma, address, 3343 pte, pmd, ptl, entry); 3344 entry = pte_mkdirty(entry); 3345 } 3346 entry = pte_mkyoung(entry); 3347 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3348 update_mmu_cache(vma, address, pte); 3349 } else { 3350 /* 3351 * This is needed only for protection faults but the arch code 3352 * is not yet telling us if this is a protection fault or not. 3353 * This still avoids useless tlb flushes for .text page faults 3354 * with threads. 3355 */ 3356 if (flags & FAULT_FLAG_WRITE) 3357 flush_tlb_fix_spurious_fault(vma, address); 3358 } 3359 unlock: 3360 pte_unmap_unlock(pte, ptl); 3361 return 0; 3362 } 3363 3364 /* 3365 * By the time we get here, we already hold the mm semaphore 3366 * 3367 * The mmap_sem may have been released depending on flags and our 3368 * return value. See filemap_fault() and __lock_page_or_retry(). 3369 */ 3370 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3371 unsigned long address, unsigned int flags) 3372 { 3373 pgd_t *pgd; 3374 pud_t *pud; 3375 pmd_t *pmd; 3376 pte_t *pte; 3377 3378 if (unlikely(is_vm_hugetlb_page(vma))) 3379 return hugetlb_fault(mm, vma, address, flags); 3380 3381 pgd = pgd_offset(mm, address); 3382 pud = pud_alloc(mm, pgd, address); 3383 if (!pud) 3384 return VM_FAULT_OOM; 3385 pmd = pmd_alloc(mm, pud, address); 3386 if (!pmd) 3387 return VM_FAULT_OOM; 3388 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3389 int ret = create_huge_pmd(mm, vma, address, pmd, flags); 3390 if (!(ret & VM_FAULT_FALLBACK)) 3391 return ret; 3392 } else { 3393 pmd_t orig_pmd = *pmd; 3394 int ret; 3395 3396 barrier(); 3397 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3398 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3399 3400 if (pmd_protnone(orig_pmd)) 3401 return do_huge_pmd_numa_page(mm, vma, address, 3402 orig_pmd, pmd); 3403 3404 if (dirty && !pmd_write(orig_pmd)) { 3405 ret = wp_huge_pmd(mm, vma, address, pmd, 3406 orig_pmd, flags); 3407 if (!(ret & VM_FAULT_FALLBACK)) 3408 return ret; 3409 } else { 3410 huge_pmd_set_accessed(mm, vma, address, pmd, 3411 orig_pmd, dirty); 3412 return 0; 3413 } 3414 } 3415 } 3416 3417 /* 3418 * Use pte_alloc() instead of pte_alloc_map, because we can't 3419 * run pte_offset_map on the pmd, if an huge pmd could 3420 * materialize from under us from a different thread. 3421 */ 3422 if (unlikely(pte_alloc(mm, pmd, address))) 3423 return VM_FAULT_OOM; 3424 /* 3425 * If a huge pmd materialized under us just retry later. Use 3426 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 3427 * didn't become pmd_trans_huge under us and then back to pmd_none, as 3428 * a result of MADV_DONTNEED running immediately after a huge pmd fault 3429 * in a different thread of this mm, in turn leading to a misleading 3430 * pmd_trans_huge() retval. All we have to ensure is that it is a 3431 * regular pmd that we can walk with pte_offset_map() and we can do that 3432 * through an atomic read in C, which is what pmd_trans_unstable() 3433 * provides. 3434 */ 3435 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd))) 3436 return 0; 3437 /* 3438 * A regular pmd is established and it can't morph into a huge pmd 3439 * from under us anymore at this point because we hold the mmap_sem 3440 * read mode and khugepaged takes it in write mode. So now it's 3441 * safe to run pte_offset_map(). 3442 */ 3443 pte = pte_offset_map(pmd, address); 3444 3445 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3446 } 3447 3448 /* 3449 * By the time we get here, we already hold the mm semaphore 3450 * 3451 * The mmap_sem may have been released depending on flags and our 3452 * return value. See filemap_fault() and __lock_page_or_retry(). 3453 */ 3454 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3455 unsigned long address, unsigned int flags) 3456 { 3457 int ret; 3458 3459 __set_current_state(TASK_RUNNING); 3460 3461 count_vm_event(PGFAULT); 3462 mem_cgroup_count_vm_event(mm, PGFAULT); 3463 3464 /* do counter updates before entering really critical section. */ 3465 check_sync_rss_stat(current); 3466 3467 /* 3468 * Enable the memcg OOM handling for faults triggered in user 3469 * space. Kernel faults are handled more gracefully. 3470 */ 3471 if (flags & FAULT_FLAG_USER) 3472 mem_cgroup_oom_enable(); 3473 3474 ret = __handle_mm_fault(mm, vma, address, flags); 3475 3476 if (flags & FAULT_FLAG_USER) { 3477 mem_cgroup_oom_disable(); 3478 /* 3479 * The task may have entered a memcg OOM situation but 3480 * if the allocation error was handled gracefully (no 3481 * VM_FAULT_OOM), there is no need to kill anything. 3482 * Just clean up the OOM state peacefully. 3483 */ 3484 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3485 mem_cgroup_oom_synchronize(false); 3486 } 3487 3488 return ret; 3489 } 3490 EXPORT_SYMBOL_GPL(handle_mm_fault); 3491 3492 #ifndef __PAGETABLE_PUD_FOLDED 3493 /* 3494 * Allocate page upper directory. 3495 * We've already handled the fast-path in-line. 3496 */ 3497 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3498 { 3499 pud_t *new = pud_alloc_one(mm, address); 3500 if (!new) 3501 return -ENOMEM; 3502 3503 smp_wmb(); /* See comment in __pte_alloc */ 3504 3505 spin_lock(&mm->page_table_lock); 3506 if (pgd_present(*pgd)) /* Another has populated it */ 3507 pud_free(mm, new); 3508 else 3509 pgd_populate(mm, pgd, new); 3510 spin_unlock(&mm->page_table_lock); 3511 return 0; 3512 } 3513 #endif /* __PAGETABLE_PUD_FOLDED */ 3514 3515 #ifndef __PAGETABLE_PMD_FOLDED 3516 /* 3517 * Allocate page middle directory. 3518 * We've already handled the fast-path in-line. 3519 */ 3520 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3521 { 3522 pmd_t *new = pmd_alloc_one(mm, address); 3523 if (!new) 3524 return -ENOMEM; 3525 3526 smp_wmb(); /* See comment in __pte_alloc */ 3527 3528 spin_lock(&mm->page_table_lock); 3529 #ifndef __ARCH_HAS_4LEVEL_HACK 3530 if (!pud_present(*pud)) { 3531 mm_inc_nr_pmds(mm); 3532 pud_populate(mm, pud, new); 3533 } else /* Another has populated it */ 3534 pmd_free(mm, new); 3535 #else 3536 if (!pgd_present(*pud)) { 3537 mm_inc_nr_pmds(mm); 3538 pgd_populate(mm, pud, new); 3539 } else /* Another has populated it */ 3540 pmd_free(mm, new); 3541 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3542 spin_unlock(&mm->page_table_lock); 3543 return 0; 3544 } 3545 #endif /* __PAGETABLE_PMD_FOLDED */ 3546 3547 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3548 pte_t **ptepp, spinlock_t **ptlp) 3549 { 3550 pgd_t *pgd; 3551 pud_t *pud; 3552 pmd_t *pmd; 3553 pte_t *ptep; 3554 3555 pgd = pgd_offset(mm, address); 3556 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3557 goto out; 3558 3559 pud = pud_offset(pgd, address); 3560 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3561 goto out; 3562 3563 pmd = pmd_offset(pud, address); 3564 VM_BUG_ON(pmd_trans_huge(*pmd)); 3565 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3566 goto out; 3567 3568 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3569 if (pmd_huge(*pmd)) 3570 goto out; 3571 3572 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3573 if (!ptep) 3574 goto out; 3575 if (!pte_present(*ptep)) 3576 goto unlock; 3577 *ptepp = ptep; 3578 return 0; 3579 unlock: 3580 pte_unmap_unlock(ptep, *ptlp); 3581 out: 3582 return -EINVAL; 3583 } 3584 3585 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3586 pte_t **ptepp, spinlock_t **ptlp) 3587 { 3588 int res; 3589 3590 /* (void) is needed to make gcc happy */ 3591 (void) __cond_lock(*ptlp, 3592 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3593 return res; 3594 } 3595 3596 /** 3597 * follow_pfn - look up PFN at a user virtual address 3598 * @vma: memory mapping 3599 * @address: user virtual address 3600 * @pfn: location to store found PFN 3601 * 3602 * Only IO mappings and raw PFN mappings are allowed. 3603 * 3604 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3605 */ 3606 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3607 unsigned long *pfn) 3608 { 3609 int ret = -EINVAL; 3610 spinlock_t *ptl; 3611 pte_t *ptep; 3612 3613 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3614 return ret; 3615 3616 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3617 if (ret) 3618 return ret; 3619 *pfn = pte_pfn(*ptep); 3620 pte_unmap_unlock(ptep, ptl); 3621 return 0; 3622 } 3623 EXPORT_SYMBOL(follow_pfn); 3624 3625 #ifdef CONFIG_HAVE_IOREMAP_PROT 3626 int follow_phys(struct vm_area_struct *vma, 3627 unsigned long address, unsigned int flags, 3628 unsigned long *prot, resource_size_t *phys) 3629 { 3630 int ret = -EINVAL; 3631 pte_t *ptep, pte; 3632 spinlock_t *ptl; 3633 3634 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3635 goto out; 3636 3637 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3638 goto out; 3639 pte = *ptep; 3640 3641 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3642 goto unlock; 3643 3644 *prot = pgprot_val(pte_pgprot(pte)); 3645 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3646 3647 ret = 0; 3648 unlock: 3649 pte_unmap_unlock(ptep, ptl); 3650 out: 3651 return ret; 3652 } 3653 3654 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3655 void *buf, int len, int write) 3656 { 3657 resource_size_t phys_addr; 3658 unsigned long prot = 0; 3659 void __iomem *maddr; 3660 int offset = addr & (PAGE_SIZE-1); 3661 3662 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3663 return -EINVAL; 3664 3665 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3666 if (write) 3667 memcpy_toio(maddr + offset, buf, len); 3668 else 3669 memcpy_fromio(buf, maddr + offset, len); 3670 iounmap(maddr); 3671 3672 return len; 3673 } 3674 EXPORT_SYMBOL_GPL(generic_access_phys); 3675 #endif 3676 3677 /* 3678 * Access another process' address space as given in mm. If non-NULL, use the 3679 * given task for page fault accounting. 3680 */ 3681 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3682 unsigned long addr, void *buf, int len, int write) 3683 { 3684 struct vm_area_struct *vma; 3685 void *old_buf = buf; 3686 3687 down_read(&mm->mmap_sem); 3688 /* ignore errors, just check how much was successfully transferred */ 3689 while (len) { 3690 int bytes, ret, offset; 3691 void *maddr; 3692 struct page *page = NULL; 3693 3694 ret = get_user_pages(tsk, mm, addr, 1, 3695 write, 1, &page, &vma); 3696 if (ret <= 0) { 3697 #ifndef CONFIG_HAVE_IOREMAP_PROT 3698 break; 3699 #else 3700 /* 3701 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3702 * we can access using slightly different code. 3703 */ 3704 vma = find_vma(mm, addr); 3705 if (!vma || vma->vm_start > addr) 3706 break; 3707 if (vma->vm_ops && vma->vm_ops->access) 3708 ret = vma->vm_ops->access(vma, addr, buf, 3709 len, write); 3710 if (ret <= 0) 3711 break; 3712 bytes = ret; 3713 #endif 3714 } else { 3715 bytes = len; 3716 offset = addr & (PAGE_SIZE-1); 3717 if (bytes > PAGE_SIZE-offset) 3718 bytes = PAGE_SIZE-offset; 3719 3720 maddr = kmap(page); 3721 if (write) { 3722 copy_to_user_page(vma, page, addr, 3723 maddr + offset, buf, bytes); 3724 set_page_dirty_lock(page); 3725 } else { 3726 copy_from_user_page(vma, page, addr, 3727 buf, maddr + offset, bytes); 3728 } 3729 kunmap(page); 3730 page_cache_release(page); 3731 } 3732 len -= bytes; 3733 buf += bytes; 3734 addr += bytes; 3735 } 3736 up_read(&mm->mmap_sem); 3737 3738 return buf - old_buf; 3739 } 3740 3741 /** 3742 * access_remote_vm - access another process' address space 3743 * @mm: the mm_struct of the target address space 3744 * @addr: start address to access 3745 * @buf: source or destination buffer 3746 * @len: number of bytes to transfer 3747 * @write: whether the access is a write 3748 * 3749 * The caller must hold a reference on @mm. 3750 */ 3751 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3752 void *buf, int len, int write) 3753 { 3754 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3755 } 3756 3757 /* 3758 * Access another process' address space. 3759 * Source/target buffer must be kernel space, 3760 * Do not walk the page table directly, use get_user_pages 3761 */ 3762 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3763 void *buf, int len, int write) 3764 { 3765 struct mm_struct *mm; 3766 int ret; 3767 3768 mm = get_task_mm(tsk); 3769 if (!mm) 3770 return 0; 3771 3772 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3773 mmput(mm); 3774 3775 return ret; 3776 } 3777 3778 /* 3779 * Print the name of a VMA. 3780 */ 3781 void print_vma_addr(char *prefix, unsigned long ip) 3782 { 3783 struct mm_struct *mm = current->mm; 3784 struct vm_area_struct *vma; 3785 3786 /* 3787 * Do not print if we are in atomic 3788 * contexts (in exception stacks, etc.): 3789 */ 3790 if (preempt_count()) 3791 return; 3792 3793 down_read(&mm->mmap_sem); 3794 vma = find_vma(mm, ip); 3795 if (vma && vma->vm_file) { 3796 struct file *f = vma->vm_file; 3797 char *buf = (char *)__get_free_page(GFP_KERNEL); 3798 if (buf) { 3799 char *p; 3800 3801 p = file_path(f, buf, PAGE_SIZE); 3802 if (IS_ERR(p)) 3803 p = "?"; 3804 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3805 vma->vm_start, 3806 vma->vm_end - vma->vm_start); 3807 free_page((unsigned long)buf); 3808 } 3809 } 3810 up_read(&mm->mmap_sem); 3811 } 3812 3813 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3814 void __might_fault(const char *file, int line) 3815 { 3816 /* 3817 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3818 * holding the mmap_sem, this is safe because kernel memory doesn't 3819 * get paged out, therefore we'll never actually fault, and the 3820 * below annotations will generate false positives. 3821 */ 3822 if (segment_eq(get_fs(), KERNEL_DS)) 3823 return; 3824 if (pagefault_disabled()) 3825 return; 3826 __might_sleep(file, line, 0); 3827 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3828 if (current->mm) 3829 might_lock_read(¤t->mm->mmap_sem); 3830 #endif 3831 } 3832 EXPORT_SYMBOL(__might_fault); 3833 #endif 3834 3835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3836 static void clear_gigantic_page(struct page *page, 3837 unsigned long addr, 3838 unsigned int pages_per_huge_page) 3839 { 3840 int i; 3841 struct page *p = page; 3842 3843 might_sleep(); 3844 for (i = 0; i < pages_per_huge_page; 3845 i++, p = mem_map_next(p, page, i)) { 3846 cond_resched(); 3847 clear_user_highpage(p, addr + i * PAGE_SIZE); 3848 } 3849 } 3850 void clear_huge_page(struct page *page, 3851 unsigned long addr, unsigned int pages_per_huge_page) 3852 { 3853 int i; 3854 3855 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3856 clear_gigantic_page(page, addr, pages_per_huge_page); 3857 return; 3858 } 3859 3860 might_sleep(); 3861 for (i = 0; i < pages_per_huge_page; i++) { 3862 cond_resched(); 3863 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3864 } 3865 } 3866 3867 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3868 unsigned long addr, 3869 struct vm_area_struct *vma, 3870 unsigned int pages_per_huge_page) 3871 { 3872 int i; 3873 struct page *dst_base = dst; 3874 struct page *src_base = src; 3875 3876 for (i = 0; i < pages_per_huge_page; ) { 3877 cond_resched(); 3878 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3879 3880 i++; 3881 dst = mem_map_next(dst, dst_base, i); 3882 src = mem_map_next(src, src_base, i); 3883 } 3884 } 3885 3886 void copy_user_huge_page(struct page *dst, struct page *src, 3887 unsigned long addr, struct vm_area_struct *vma, 3888 unsigned int pages_per_huge_page) 3889 { 3890 int i; 3891 3892 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3893 copy_user_gigantic_page(dst, src, addr, vma, 3894 pages_per_huge_page); 3895 return; 3896 } 3897 3898 might_sleep(); 3899 for (i = 0; i < pages_per_huge_page; i++) { 3900 cond_resched(); 3901 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3902 } 3903 } 3904 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3905 3906 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3907 3908 static struct kmem_cache *page_ptl_cachep; 3909 3910 void __init ptlock_cache_init(void) 3911 { 3912 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3913 SLAB_PANIC, NULL); 3914 } 3915 3916 bool ptlock_alloc(struct page *page) 3917 { 3918 spinlock_t *ptl; 3919 3920 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3921 if (!ptl) 3922 return false; 3923 page->ptl = ptl; 3924 return true; 3925 } 3926 3927 void ptlock_free(struct page *page) 3928 { 3929 kmem_cache_free(page_ptl_cachep, page->ptl); 3930 } 3931 #endif 3932