xref: /openbmc/linux/mm/memory.c (revision 1170532bb49f9468aedabdc1d5a560e2521a2bcc)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73 
74 #include "internal.h"
75 
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79 
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84 
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88 
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97 
98 EXPORT_SYMBOL(high_memory);
99 
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108 					1;
109 #else
110 					2;
111 #endif
112 
113 static int __init disable_randmaps(char *s)
114 {
115 	randomize_va_space = 0;
116 	return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119 
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122 
123 EXPORT_SYMBOL(zero_pfn);
124 
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
131 	return 0;
132 }
133 core_initcall(init_zero_pfn);
134 
135 
136 #if defined(SPLIT_RSS_COUNTING)
137 
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140 	int i;
141 
142 	for (i = 0; i < NR_MM_COUNTERS; i++) {
143 		if (current->rss_stat.count[i]) {
144 			add_mm_counter(mm, i, current->rss_stat.count[i]);
145 			current->rss_stat.count[i] = 0;
146 		}
147 	}
148 	current->rss_stat.events = 0;
149 }
150 
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153 	struct task_struct *task = current;
154 
155 	if (likely(task->mm == mm))
156 		task->rss_stat.count[member] += val;
157 	else
158 		add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162 
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH	(64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167 	if (unlikely(task != current))
168 		return;
169 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170 		sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173 
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176 
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180 
181 #endif /* SPLIT_RSS_COUNTING */
182 
183 #ifdef HAVE_GENERIC_MMU_GATHER
184 
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187 	struct mmu_gather_batch *batch;
188 
189 	batch = tlb->active;
190 	if (batch->next) {
191 		tlb->active = batch->next;
192 		return true;
193 	}
194 
195 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196 		return false;
197 
198 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 	if (!batch)
200 		return false;
201 
202 	tlb->batch_count++;
203 	batch->next = NULL;
204 	batch->nr   = 0;
205 	batch->max  = MAX_GATHER_BATCH;
206 
207 	tlb->active->next = batch;
208 	tlb->active = batch;
209 
210 	return true;
211 }
212 
213 /* tlb_gather_mmu
214  *	Called to initialize an (on-stack) mmu_gather structure for page-table
215  *	tear-down from @mm. The @fullmm argument is used when @mm is without
216  *	users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220 	tlb->mm = mm;
221 
222 	/* Is it from 0 to ~0? */
223 	tlb->fullmm     = !(start | (end+1));
224 	tlb->need_flush_all = 0;
225 	tlb->local.next = NULL;
226 	tlb->local.nr   = 0;
227 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228 	tlb->active     = &tlb->local;
229 	tlb->batch_count = 0;
230 
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 	tlb->batch = NULL;
233 #endif
234 
235 	__tlb_reset_range(tlb);
236 }
237 
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240 	if (!tlb->end)
241 		return;
242 
243 	tlb_flush(tlb);
244 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 	tlb_table_flush(tlb);
247 #endif
248 	__tlb_reset_range(tlb);
249 }
250 
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253 	struct mmu_gather_batch *batch;
254 
255 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256 		free_pages_and_swap_cache(batch->pages, batch->nr);
257 		batch->nr = 0;
258 	}
259 	tlb->active = &tlb->local;
260 }
261 
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264 	tlb_flush_mmu_tlbonly(tlb);
265 	tlb_flush_mmu_free(tlb);
266 }
267 
268 /* tlb_finish_mmu
269  *	Called at the end of the shootdown operation to free up any resources
270  *	that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274 	struct mmu_gather_batch *batch, *next;
275 
276 	tlb_flush_mmu(tlb);
277 
278 	/* keep the page table cache within bounds */
279 	check_pgt_cache();
280 
281 	for (batch = tlb->local.next; batch; batch = next) {
282 		next = batch->next;
283 		free_pages((unsigned long)batch, 0);
284 	}
285 	tlb->local.next = NULL;
286 }
287 
288 /* __tlb_remove_page
289  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *	handling the additional races in SMP caused by other CPUs caching valid
291  *	mappings in their TLBs. Returns the number of free page slots left.
292  *	When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296 	struct mmu_gather_batch *batch;
297 
298 	VM_BUG_ON(!tlb->end);
299 
300 	batch = tlb->active;
301 	batch->pages[batch->nr++] = page;
302 	if (batch->nr == batch->max) {
303 		if (!tlb_next_batch(tlb))
304 			return 0;
305 		batch = tlb->active;
306 	}
307 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308 
309 	return batch->max - batch->nr;
310 }
311 
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313 
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319 
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322 	/* Simply deliver the interrupt */
323 }
324 
325 static void tlb_remove_table_one(void *table)
326 {
327 	/*
328 	 * This isn't an RCU grace period and hence the page-tables cannot be
329 	 * assumed to be actually RCU-freed.
330 	 *
331 	 * It is however sufficient for software page-table walkers that rely on
332 	 * IRQ disabling. See the comment near struct mmu_table_batch.
333 	 */
334 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335 	__tlb_remove_table(table);
336 }
337 
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340 	struct mmu_table_batch *batch;
341 	int i;
342 
343 	batch = container_of(head, struct mmu_table_batch, rcu);
344 
345 	for (i = 0; i < batch->nr; i++)
346 		__tlb_remove_table(batch->tables[i]);
347 
348 	free_page((unsigned long)batch);
349 }
350 
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353 	struct mmu_table_batch **batch = &tlb->batch;
354 
355 	if (*batch) {
356 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357 		*batch = NULL;
358 	}
359 }
360 
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363 	struct mmu_table_batch **batch = &tlb->batch;
364 
365 	/*
366 	 * When there's less then two users of this mm there cannot be a
367 	 * concurrent page-table walk.
368 	 */
369 	if (atomic_read(&tlb->mm->mm_users) < 2) {
370 		__tlb_remove_table(table);
371 		return;
372 	}
373 
374 	if (*batch == NULL) {
375 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376 		if (*batch == NULL) {
377 			tlb_remove_table_one(table);
378 			return;
379 		}
380 		(*batch)->nr = 0;
381 	}
382 	(*batch)->tables[(*batch)->nr++] = table;
383 	if ((*batch)->nr == MAX_TABLE_BATCH)
384 		tlb_table_flush(tlb);
385 }
386 
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394 			   unsigned long addr)
395 {
396 	pgtable_t token = pmd_pgtable(*pmd);
397 	pmd_clear(pmd);
398 	pte_free_tlb(tlb, token, addr);
399 	atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401 
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403 				unsigned long addr, unsigned long end,
404 				unsigned long floor, unsigned long ceiling)
405 {
406 	pmd_t *pmd;
407 	unsigned long next;
408 	unsigned long start;
409 
410 	start = addr;
411 	pmd = pmd_offset(pud, addr);
412 	do {
413 		next = pmd_addr_end(addr, end);
414 		if (pmd_none_or_clear_bad(pmd))
415 			continue;
416 		free_pte_range(tlb, pmd, addr);
417 	} while (pmd++, addr = next, addr != end);
418 
419 	start &= PUD_MASK;
420 	if (start < floor)
421 		return;
422 	if (ceiling) {
423 		ceiling &= PUD_MASK;
424 		if (!ceiling)
425 			return;
426 	}
427 	if (end - 1 > ceiling - 1)
428 		return;
429 
430 	pmd = pmd_offset(pud, start);
431 	pud_clear(pud);
432 	pmd_free_tlb(tlb, pmd, start);
433 	mm_dec_nr_pmds(tlb->mm);
434 }
435 
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437 				unsigned long addr, unsigned long end,
438 				unsigned long floor, unsigned long ceiling)
439 {
440 	pud_t *pud;
441 	unsigned long next;
442 	unsigned long start;
443 
444 	start = addr;
445 	pud = pud_offset(pgd, addr);
446 	do {
447 		next = pud_addr_end(addr, end);
448 		if (pud_none_or_clear_bad(pud))
449 			continue;
450 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451 	} while (pud++, addr = next, addr != end);
452 
453 	start &= PGDIR_MASK;
454 	if (start < floor)
455 		return;
456 	if (ceiling) {
457 		ceiling &= PGDIR_MASK;
458 		if (!ceiling)
459 			return;
460 	}
461 	if (end - 1 > ceiling - 1)
462 		return;
463 
464 	pud = pud_offset(pgd, start);
465 	pgd_clear(pgd);
466 	pud_free_tlb(tlb, pud, start);
467 }
468 
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473 			unsigned long addr, unsigned long end,
474 			unsigned long floor, unsigned long ceiling)
475 {
476 	pgd_t *pgd;
477 	unsigned long next;
478 
479 	/*
480 	 * The next few lines have given us lots of grief...
481 	 *
482 	 * Why are we testing PMD* at this top level?  Because often
483 	 * there will be no work to do at all, and we'd prefer not to
484 	 * go all the way down to the bottom just to discover that.
485 	 *
486 	 * Why all these "- 1"s?  Because 0 represents both the bottom
487 	 * of the address space and the top of it (using -1 for the
488 	 * top wouldn't help much: the masks would do the wrong thing).
489 	 * The rule is that addr 0 and floor 0 refer to the bottom of
490 	 * the address space, but end 0 and ceiling 0 refer to the top
491 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
492 	 * that end 0 case should be mythical).
493 	 *
494 	 * Wherever addr is brought up or ceiling brought down, we must
495 	 * be careful to reject "the opposite 0" before it confuses the
496 	 * subsequent tests.  But what about where end is brought down
497 	 * by PMD_SIZE below? no, end can't go down to 0 there.
498 	 *
499 	 * Whereas we round start (addr) and ceiling down, by different
500 	 * masks at different levels, in order to test whether a table
501 	 * now has no other vmas using it, so can be freed, we don't
502 	 * bother to round floor or end up - the tests don't need that.
503 	 */
504 
505 	addr &= PMD_MASK;
506 	if (addr < floor) {
507 		addr += PMD_SIZE;
508 		if (!addr)
509 			return;
510 	}
511 	if (ceiling) {
512 		ceiling &= PMD_MASK;
513 		if (!ceiling)
514 			return;
515 	}
516 	if (end - 1 > ceiling - 1)
517 		end -= PMD_SIZE;
518 	if (addr > end - 1)
519 		return;
520 
521 	pgd = pgd_offset(tlb->mm, addr);
522 	do {
523 		next = pgd_addr_end(addr, end);
524 		if (pgd_none_or_clear_bad(pgd))
525 			continue;
526 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527 	} while (pgd++, addr = next, addr != end);
528 }
529 
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531 		unsigned long floor, unsigned long ceiling)
532 {
533 	while (vma) {
534 		struct vm_area_struct *next = vma->vm_next;
535 		unsigned long addr = vma->vm_start;
536 
537 		/*
538 		 * Hide vma from rmap and truncate_pagecache before freeing
539 		 * pgtables
540 		 */
541 		unlink_anon_vmas(vma);
542 		unlink_file_vma(vma);
543 
544 		if (is_vm_hugetlb_page(vma)) {
545 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546 				floor, next? next->vm_start: ceiling);
547 		} else {
548 			/*
549 			 * Optimization: gather nearby vmas into one call down
550 			 */
551 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552 			       && !is_vm_hugetlb_page(next)) {
553 				vma = next;
554 				next = vma->vm_next;
555 				unlink_anon_vmas(vma);
556 				unlink_file_vma(vma);
557 			}
558 			free_pgd_range(tlb, addr, vma->vm_end,
559 				floor, next? next->vm_start: ceiling);
560 		}
561 		vma = next;
562 	}
563 }
564 
565 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
566 {
567 	spinlock_t *ptl;
568 	pgtable_t new = pte_alloc_one(mm, address);
569 	if (!new)
570 		return -ENOMEM;
571 
572 	/*
573 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 	 * visible before the pte is made visible to other CPUs by being
575 	 * put into page tables.
576 	 *
577 	 * The other side of the story is the pointer chasing in the page
578 	 * table walking code (when walking the page table without locking;
579 	 * ie. most of the time). Fortunately, these data accesses consist
580 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 	 * being the notable exception) will already guarantee loads are
582 	 * seen in-order. See the alpha page table accessors for the
583 	 * smp_read_barrier_depends() barriers in page table walking code.
584 	 */
585 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 
587 	ptl = pmd_lock(mm, pmd);
588 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
589 		atomic_long_inc(&mm->nr_ptes);
590 		pmd_populate(mm, pmd, new);
591 		new = NULL;
592 	}
593 	spin_unlock(ptl);
594 	if (new)
595 		pte_free(mm, new);
596 	return 0;
597 }
598 
599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
600 {
601 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602 	if (!new)
603 		return -ENOMEM;
604 
605 	smp_wmb(); /* See comment in __pte_alloc */
606 
607 	spin_lock(&init_mm.page_table_lock);
608 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
609 		pmd_populate_kernel(&init_mm, pmd, new);
610 		new = NULL;
611 	}
612 	spin_unlock(&init_mm.page_table_lock);
613 	if (new)
614 		pte_free_kernel(&init_mm, new);
615 	return 0;
616 }
617 
618 static inline void init_rss_vec(int *rss)
619 {
620 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621 }
622 
623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624 {
625 	int i;
626 
627 	if (current->mm == mm)
628 		sync_mm_rss(mm);
629 	for (i = 0; i < NR_MM_COUNTERS; i++)
630 		if (rss[i])
631 			add_mm_counter(mm, i, rss[i]);
632 }
633 
634 /*
635  * This function is called to print an error when a bad pte
636  * is found. For example, we might have a PFN-mapped pte in
637  * a region that doesn't allow it.
638  *
639  * The calling function must still handle the error.
640  */
641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642 			  pte_t pte, struct page *page)
643 {
644 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645 	pud_t *pud = pud_offset(pgd, addr);
646 	pmd_t *pmd = pmd_offset(pud, addr);
647 	struct address_space *mapping;
648 	pgoff_t index;
649 	static unsigned long resume;
650 	static unsigned long nr_shown;
651 	static unsigned long nr_unshown;
652 
653 	/*
654 	 * Allow a burst of 60 reports, then keep quiet for that minute;
655 	 * or allow a steady drip of one report per second.
656 	 */
657 	if (nr_shown == 60) {
658 		if (time_before(jiffies, resume)) {
659 			nr_unshown++;
660 			return;
661 		}
662 		if (nr_unshown) {
663 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
664 				 nr_unshown);
665 			nr_unshown = 0;
666 		}
667 		nr_shown = 0;
668 	}
669 	if (nr_shown++ == 0)
670 		resume = jiffies + 60 * HZ;
671 
672 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
673 	index = linear_page_index(vma, addr);
674 
675 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
676 		 current->comm,
677 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
678 	if (page)
679 		dump_page(page, "bad pte");
680 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
681 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
682 	/*
683 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
684 	 */
685 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
686 		 vma->vm_file,
687 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
688 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
689 		 mapping ? mapping->a_ops->readpage : NULL);
690 	dump_stack();
691 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
692 }
693 
694 /*
695  * vm_normal_page -- This function gets the "struct page" associated with a pte.
696  *
697  * "Special" mappings do not wish to be associated with a "struct page" (either
698  * it doesn't exist, or it exists but they don't want to touch it). In this
699  * case, NULL is returned here. "Normal" mappings do have a struct page.
700  *
701  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702  * pte bit, in which case this function is trivial. Secondly, an architecture
703  * may not have a spare pte bit, which requires a more complicated scheme,
704  * described below.
705  *
706  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707  * special mapping (even if there are underlying and valid "struct pages").
708  * COWed pages of a VM_PFNMAP are always normal.
709  *
710  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
712  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713  * mapping will always honor the rule
714  *
715  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
716  *
717  * And for normal mappings this is false.
718  *
719  * This restricts such mappings to be a linear translation from virtual address
720  * to pfn. To get around this restriction, we allow arbitrary mappings so long
721  * as the vma is not a COW mapping; in that case, we know that all ptes are
722  * special (because none can have been COWed).
723  *
724  *
725  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
726  *
727  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728  * page" backing, however the difference is that _all_ pages with a struct
729  * page (that is, those where pfn_valid is true) are refcounted and considered
730  * normal pages by the VM. The disadvantage is that pages are refcounted
731  * (which can be slower and simply not an option for some PFNMAP users). The
732  * advantage is that we don't have to follow the strict linearity rule of
733  * PFNMAP mappings in order to support COWable mappings.
734  *
735  */
736 #ifdef __HAVE_ARCH_PTE_SPECIAL
737 # define HAVE_PTE_SPECIAL 1
738 #else
739 # define HAVE_PTE_SPECIAL 0
740 #endif
741 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742 				pte_t pte)
743 {
744 	unsigned long pfn = pte_pfn(pte);
745 
746 	if (HAVE_PTE_SPECIAL) {
747 		if (likely(!pte_special(pte)))
748 			goto check_pfn;
749 		if (vma->vm_ops && vma->vm_ops->find_special_page)
750 			return vma->vm_ops->find_special_page(vma, addr);
751 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 			return NULL;
753 		if (!is_zero_pfn(pfn))
754 			print_bad_pte(vma, addr, pte, NULL);
755 		return NULL;
756 	}
757 
758 	/* !HAVE_PTE_SPECIAL case follows: */
759 
760 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 		if (vma->vm_flags & VM_MIXEDMAP) {
762 			if (!pfn_valid(pfn))
763 				return NULL;
764 			goto out;
765 		} else {
766 			unsigned long off;
767 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 			if (pfn == vma->vm_pgoff + off)
769 				return NULL;
770 			if (!is_cow_mapping(vma->vm_flags))
771 				return NULL;
772 		}
773 	}
774 
775 	if (is_zero_pfn(pfn))
776 		return NULL;
777 check_pfn:
778 	if (unlikely(pfn > highest_memmap_pfn)) {
779 		print_bad_pte(vma, addr, pte, NULL);
780 		return NULL;
781 	}
782 
783 	/*
784 	 * NOTE! We still have PageReserved() pages in the page tables.
785 	 * eg. VDSO mappings can cause them to exist.
786 	 */
787 out:
788 	return pfn_to_page(pfn);
789 }
790 
791 /*
792  * copy one vm_area from one task to the other. Assumes the page tables
793  * already present in the new task to be cleared in the whole range
794  * covered by this vma.
795  */
796 
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800 		unsigned long addr, int *rss)
801 {
802 	unsigned long vm_flags = vma->vm_flags;
803 	pte_t pte = *src_pte;
804 	struct page *page;
805 
806 	/* pte contains position in swap or file, so copy. */
807 	if (unlikely(!pte_present(pte))) {
808 		swp_entry_t entry = pte_to_swp_entry(pte);
809 
810 		if (likely(!non_swap_entry(entry))) {
811 			if (swap_duplicate(entry) < 0)
812 				return entry.val;
813 
814 			/* make sure dst_mm is on swapoff's mmlist. */
815 			if (unlikely(list_empty(&dst_mm->mmlist))) {
816 				spin_lock(&mmlist_lock);
817 				if (list_empty(&dst_mm->mmlist))
818 					list_add(&dst_mm->mmlist,
819 							&src_mm->mmlist);
820 				spin_unlock(&mmlist_lock);
821 			}
822 			rss[MM_SWAPENTS]++;
823 		} else if (is_migration_entry(entry)) {
824 			page = migration_entry_to_page(entry);
825 
826 			rss[mm_counter(page)]++;
827 
828 			if (is_write_migration_entry(entry) &&
829 					is_cow_mapping(vm_flags)) {
830 				/*
831 				 * COW mappings require pages in both
832 				 * parent and child to be set to read.
833 				 */
834 				make_migration_entry_read(&entry);
835 				pte = swp_entry_to_pte(entry);
836 				if (pte_swp_soft_dirty(*src_pte))
837 					pte = pte_swp_mksoft_dirty(pte);
838 				set_pte_at(src_mm, addr, src_pte, pte);
839 			}
840 		}
841 		goto out_set_pte;
842 	}
843 
844 	/*
845 	 * If it's a COW mapping, write protect it both
846 	 * in the parent and the child
847 	 */
848 	if (is_cow_mapping(vm_flags)) {
849 		ptep_set_wrprotect(src_mm, addr, src_pte);
850 		pte = pte_wrprotect(pte);
851 	}
852 
853 	/*
854 	 * If it's a shared mapping, mark it clean in
855 	 * the child
856 	 */
857 	if (vm_flags & VM_SHARED)
858 		pte = pte_mkclean(pte);
859 	pte = pte_mkold(pte);
860 
861 	page = vm_normal_page(vma, addr, pte);
862 	if (page) {
863 		get_page(page);
864 		page_dup_rmap(page, false);
865 		rss[mm_counter(page)]++;
866 	}
867 
868 out_set_pte:
869 	set_pte_at(dst_mm, addr, dst_pte, pte);
870 	return 0;
871 }
872 
873 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
874 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
875 		   unsigned long addr, unsigned long end)
876 {
877 	pte_t *orig_src_pte, *orig_dst_pte;
878 	pte_t *src_pte, *dst_pte;
879 	spinlock_t *src_ptl, *dst_ptl;
880 	int progress = 0;
881 	int rss[NR_MM_COUNTERS];
882 	swp_entry_t entry = (swp_entry_t){0};
883 
884 again:
885 	init_rss_vec(rss);
886 
887 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
888 	if (!dst_pte)
889 		return -ENOMEM;
890 	src_pte = pte_offset_map(src_pmd, addr);
891 	src_ptl = pte_lockptr(src_mm, src_pmd);
892 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
893 	orig_src_pte = src_pte;
894 	orig_dst_pte = dst_pte;
895 	arch_enter_lazy_mmu_mode();
896 
897 	do {
898 		/*
899 		 * We are holding two locks at this point - either of them
900 		 * could generate latencies in another task on another CPU.
901 		 */
902 		if (progress >= 32) {
903 			progress = 0;
904 			if (need_resched() ||
905 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
906 				break;
907 		}
908 		if (pte_none(*src_pte)) {
909 			progress++;
910 			continue;
911 		}
912 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
913 							vma, addr, rss);
914 		if (entry.val)
915 			break;
916 		progress += 8;
917 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
918 
919 	arch_leave_lazy_mmu_mode();
920 	spin_unlock(src_ptl);
921 	pte_unmap(orig_src_pte);
922 	add_mm_rss_vec(dst_mm, rss);
923 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
924 	cond_resched();
925 
926 	if (entry.val) {
927 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
928 			return -ENOMEM;
929 		progress = 0;
930 	}
931 	if (addr != end)
932 		goto again;
933 	return 0;
934 }
935 
936 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
938 		unsigned long addr, unsigned long end)
939 {
940 	pmd_t *src_pmd, *dst_pmd;
941 	unsigned long next;
942 
943 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
944 	if (!dst_pmd)
945 		return -ENOMEM;
946 	src_pmd = pmd_offset(src_pud, addr);
947 	do {
948 		next = pmd_addr_end(addr, end);
949 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
950 			int err;
951 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
952 			err = copy_huge_pmd(dst_mm, src_mm,
953 					    dst_pmd, src_pmd, addr, vma);
954 			if (err == -ENOMEM)
955 				return -ENOMEM;
956 			if (!err)
957 				continue;
958 			/* fall through */
959 		}
960 		if (pmd_none_or_clear_bad(src_pmd))
961 			continue;
962 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
963 						vma, addr, next))
964 			return -ENOMEM;
965 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
966 	return 0;
967 }
968 
969 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
971 		unsigned long addr, unsigned long end)
972 {
973 	pud_t *src_pud, *dst_pud;
974 	unsigned long next;
975 
976 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
977 	if (!dst_pud)
978 		return -ENOMEM;
979 	src_pud = pud_offset(src_pgd, addr);
980 	do {
981 		next = pud_addr_end(addr, end);
982 		if (pud_none_or_clear_bad(src_pud))
983 			continue;
984 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
985 						vma, addr, next))
986 			return -ENOMEM;
987 	} while (dst_pud++, src_pud++, addr = next, addr != end);
988 	return 0;
989 }
990 
991 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 		struct vm_area_struct *vma)
993 {
994 	pgd_t *src_pgd, *dst_pgd;
995 	unsigned long next;
996 	unsigned long addr = vma->vm_start;
997 	unsigned long end = vma->vm_end;
998 	unsigned long mmun_start;	/* For mmu_notifiers */
999 	unsigned long mmun_end;		/* For mmu_notifiers */
1000 	bool is_cow;
1001 	int ret;
1002 
1003 	/*
1004 	 * Don't copy ptes where a page fault will fill them correctly.
1005 	 * Fork becomes much lighter when there are big shared or private
1006 	 * readonly mappings. The tradeoff is that copy_page_range is more
1007 	 * efficient than faulting.
1008 	 */
1009 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1010 			!vma->anon_vma)
1011 		return 0;
1012 
1013 	if (is_vm_hugetlb_page(vma))
1014 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1015 
1016 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1017 		/*
1018 		 * We do not free on error cases below as remove_vma
1019 		 * gets called on error from higher level routine
1020 		 */
1021 		ret = track_pfn_copy(vma);
1022 		if (ret)
1023 			return ret;
1024 	}
1025 
1026 	/*
1027 	 * We need to invalidate the secondary MMU mappings only when
1028 	 * there could be a permission downgrade on the ptes of the
1029 	 * parent mm. And a permission downgrade will only happen if
1030 	 * is_cow_mapping() returns true.
1031 	 */
1032 	is_cow = is_cow_mapping(vma->vm_flags);
1033 	mmun_start = addr;
1034 	mmun_end   = end;
1035 	if (is_cow)
1036 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1037 						    mmun_end);
1038 
1039 	ret = 0;
1040 	dst_pgd = pgd_offset(dst_mm, addr);
1041 	src_pgd = pgd_offset(src_mm, addr);
1042 	do {
1043 		next = pgd_addr_end(addr, end);
1044 		if (pgd_none_or_clear_bad(src_pgd))
1045 			continue;
1046 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1047 					    vma, addr, next))) {
1048 			ret = -ENOMEM;
1049 			break;
1050 		}
1051 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1052 
1053 	if (is_cow)
1054 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1055 	return ret;
1056 }
1057 
1058 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1059 				struct vm_area_struct *vma, pmd_t *pmd,
1060 				unsigned long addr, unsigned long end,
1061 				struct zap_details *details)
1062 {
1063 	struct mm_struct *mm = tlb->mm;
1064 	int force_flush = 0;
1065 	int rss[NR_MM_COUNTERS];
1066 	spinlock_t *ptl;
1067 	pte_t *start_pte;
1068 	pte_t *pte;
1069 	swp_entry_t entry;
1070 
1071 again:
1072 	init_rss_vec(rss);
1073 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1074 	pte = start_pte;
1075 	arch_enter_lazy_mmu_mode();
1076 	do {
1077 		pte_t ptent = *pte;
1078 		if (pte_none(ptent)) {
1079 			continue;
1080 		}
1081 
1082 		if (pte_present(ptent)) {
1083 			struct page *page;
1084 
1085 			page = vm_normal_page(vma, addr, ptent);
1086 			if (unlikely(details) && page) {
1087 				/*
1088 				 * unmap_shared_mapping_pages() wants to
1089 				 * invalidate cache without truncating:
1090 				 * unmap shared but keep private pages.
1091 				 */
1092 				if (details->check_mapping &&
1093 				    details->check_mapping != page->mapping)
1094 					continue;
1095 			}
1096 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1097 							tlb->fullmm);
1098 			tlb_remove_tlb_entry(tlb, pte, addr);
1099 			if (unlikely(!page))
1100 				continue;
1101 
1102 			if (!PageAnon(page)) {
1103 				if (pte_dirty(ptent)) {
1104 					force_flush = 1;
1105 					set_page_dirty(page);
1106 				}
1107 				if (pte_young(ptent) &&
1108 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1109 					mark_page_accessed(page);
1110 			}
1111 			rss[mm_counter(page)]--;
1112 			page_remove_rmap(page, false);
1113 			if (unlikely(page_mapcount(page) < 0))
1114 				print_bad_pte(vma, addr, ptent, page);
1115 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1116 				force_flush = 1;
1117 				addr += PAGE_SIZE;
1118 				break;
1119 			}
1120 			continue;
1121 		}
1122 		/* If details->check_mapping, we leave swap entries. */
1123 		if (unlikely(details))
1124 			continue;
1125 
1126 		entry = pte_to_swp_entry(ptent);
1127 		if (!non_swap_entry(entry))
1128 			rss[MM_SWAPENTS]--;
1129 		else if (is_migration_entry(entry)) {
1130 			struct page *page;
1131 
1132 			page = migration_entry_to_page(entry);
1133 			rss[mm_counter(page)]--;
1134 		}
1135 		if (unlikely(!free_swap_and_cache(entry)))
1136 			print_bad_pte(vma, addr, ptent, NULL);
1137 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1138 	} while (pte++, addr += PAGE_SIZE, addr != end);
1139 
1140 	add_mm_rss_vec(mm, rss);
1141 	arch_leave_lazy_mmu_mode();
1142 
1143 	/* Do the actual TLB flush before dropping ptl */
1144 	if (force_flush)
1145 		tlb_flush_mmu_tlbonly(tlb);
1146 	pte_unmap_unlock(start_pte, ptl);
1147 
1148 	/*
1149 	 * If we forced a TLB flush (either due to running out of
1150 	 * batch buffers or because we needed to flush dirty TLB
1151 	 * entries before releasing the ptl), free the batched
1152 	 * memory too. Restart if we didn't do everything.
1153 	 */
1154 	if (force_flush) {
1155 		force_flush = 0;
1156 		tlb_flush_mmu_free(tlb);
1157 
1158 		if (addr != end)
1159 			goto again;
1160 	}
1161 
1162 	return addr;
1163 }
1164 
1165 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1166 				struct vm_area_struct *vma, pud_t *pud,
1167 				unsigned long addr, unsigned long end,
1168 				struct zap_details *details)
1169 {
1170 	pmd_t *pmd;
1171 	unsigned long next;
1172 
1173 	pmd = pmd_offset(pud, addr);
1174 	do {
1175 		next = pmd_addr_end(addr, end);
1176 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1177 			if (next - addr != HPAGE_PMD_SIZE) {
1178 #ifdef CONFIG_DEBUG_VM
1179 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1180 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1181 						__func__, addr, end,
1182 						vma->vm_start,
1183 						vma->vm_end);
1184 					BUG();
1185 				}
1186 #endif
1187 				split_huge_pmd(vma, pmd, addr);
1188 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1189 				goto next;
1190 			/* fall through */
1191 		}
1192 		/*
1193 		 * Here there can be other concurrent MADV_DONTNEED or
1194 		 * trans huge page faults running, and if the pmd is
1195 		 * none or trans huge it can change under us. This is
1196 		 * because MADV_DONTNEED holds the mmap_sem in read
1197 		 * mode.
1198 		 */
1199 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1200 			goto next;
1201 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1202 next:
1203 		cond_resched();
1204 	} while (pmd++, addr = next, addr != end);
1205 
1206 	return addr;
1207 }
1208 
1209 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1210 				struct vm_area_struct *vma, pgd_t *pgd,
1211 				unsigned long addr, unsigned long end,
1212 				struct zap_details *details)
1213 {
1214 	pud_t *pud;
1215 	unsigned long next;
1216 
1217 	pud = pud_offset(pgd, addr);
1218 	do {
1219 		next = pud_addr_end(addr, end);
1220 		if (pud_none_or_clear_bad(pud))
1221 			continue;
1222 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 	} while (pud++, addr = next, addr != end);
1224 
1225 	return addr;
1226 }
1227 
1228 static void unmap_page_range(struct mmu_gather *tlb,
1229 			     struct vm_area_struct *vma,
1230 			     unsigned long addr, unsigned long end,
1231 			     struct zap_details *details)
1232 {
1233 	pgd_t *pgd;
1234 	unsigned long next;
1235 
1236 	if (details && !details->check_mapping)
1237 		details = NULL;
1238 
1239 	BUG_ON(addr >= end);
1240 	tlb_start_vma(tlb, vma);
1241 	pgd = pgd_offset(vma->vm_mm, addr);
1242 	do {
1243 		next = pgd_addr_end(addr, end);
1244 		if (pgd_none_or_clear_bad(pgd))
1245 			continue;
1246 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1247 	} while (pgd++, addr = next, addr != end);
1248 	tlb_end_vma(tlb, vma);
1249 }
1250 
1251 
1252 static void unmap_single_vma(struct mmu_gather *tlb,
1253 		struct vm_area_struct *vma, unsigned long start_addr,
1254 		unsigned long end_addr,
1255 		struct zap_details *details)
1256 {
1257 	unsigned long start = max(vma->vm_start, start_addr);
1258 	unsigned long end;
1259 
1260 	if (start >= vma->vm_end)
1261 		return;
1262 	end = min(vma->vm_end, end_addr);
1263 	if (end <= vma->vm_start)
1264 		return;
1265 
1266 	if (vma->vm_file)
1267 		uprobe_munmap(vma, start, end);
1268 
1269 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1270 		untrack_pfn(vma, 0, 0);
1271 
1272 	if (start != end) {
1273 		if (unlikely(is_vm_hugetlb_page(vma))) {
1274 			/*
1275 			 * It is undesirable to test vma->vm_file as it
1276 			 * should be non-null for valid hugetlb area.
1277 			 * However, vm_file will be NULL in the error
1278 			 * cleanup path of mmap_region. When
1279 			 * hugetlbfs ->mmap method fails,
1280 			 * mmap_region() nullifies vma->vm_file
1281 			 * before calling this function to clean up.
1282 			 * Since no pte has actually been setup, it is
1283 			 * safe to do nothing in this case.
1284 			 */
1285 			if (vma->vm_file) {
1286 				i_mmap_lock_write(vma->vm_file->f_mapping);
1287 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1288 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1289 			}
1290 		} else
1291 			unmap_page_range(tlb, vma, start, end, details);
1292 	}
1293 }
1294 
1295 /**
1296  * unmap_vmas - unmap a range of memory covered by a list of vma's
1297  * @tlb: address of the caller's struct mmu_gather
1298  * @vma: the starting vma
1299  * @start_addr: virtual address at which to start unmapping
1300  * @end_addr: virtual address at which to end unmapping
1301  *
1302  * Unmap all pages in the vma list.
1303  *
1304  * Only addresses between `start' and `end' will be unmapped.
1305  *
1306  * The VMA list must be sorted in ascending virtual address order.
1307  *
1308  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1309  * range after unmap_vmas() returns.  So the only responsibility here is to
1310  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1311  * drops the lock and schedules.
1312  */
1313 void unmap_vmas(struct mmu_gather *tlb,
1314 		struct vm_area_struct *vma, unsigned long start_addr,
1315 		unsigned long end_addr)
1316 {
1317 	struct mm_struct *mm = vma->vm_mm;
1318 
1319 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1320 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1321 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1322 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1323 }
1324 
1325 /**
1326  * zap_page_range - remove user pages in a given range
1327  * @vma: vm_area_struct holding the applicable pages
1328  * @start: starting address of pages to zap
1329  * @size: number of bytes to zap
1330  * @details: details of shared cache invalidation
1331  *
1332  * Caller must protect the VMA list
1333  */
1334 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1335 		unsigned long size, struct zap_details *details)
1336 {
1337 	struct mm_struct *mm = vma->vm_mm;
1338 	struct mmu_gather tlb;
1339 	unsigned long end = start + size;
1340 
1341 	lru_add_drain();
1342 	tlb_gather_mmu(&tlb, mm, start, end);
1343 	update_hiwater_rss(mm);
1344 	mmu_notifier_invalidate_range_start(mm, start, end);
1345 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1346 		unmap_single_vma(&tlb, vma, start, end, details);
1347 	mmu_notifier_invalidate_range_end(mm, start, end);
1348 	tlb_finish_mmu(&tlb, start, end);
1349 }
1350 
1351 /**
1352  * zap_page_range_single - remove user pages in a given range
1353  * @vma: vm_area_struct holding the applicable pages
1354  * @address: starting address of pages to zap
1355  * @size: number of bytes to zap
1356  * @details: details of shared cache invalidation
1357  *
1358  * The range must fit into one VMA.
1359  */
1360 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1361 		unsigned long size, struct zap_details *details)
1362 {
1363 	struct mm_struct *mm = vma->vm_mm;
1364 	struct mmu_gather tlb;
1365 	unsigned long end = address + size;
1366 
1367 	lru_add_drain();
1368 	tlb_gather_mmu(&tlb, mm, address, end);
1369 	update_hiwater_rss(mm);
1370 	mmu_notifier_invalidate_range_start(mm, address, end);
1371 	unmap_single_vma(&tlb, vma, address, end, details);
1372 	mmu_notifier_invalidate_range_end(mm, address, end);
1373 	tlb_finish_mmu(&tlb, address, end);
1374 }
1375 
1376 /**
1377  * zap_vma_ptes - remove ptes mapping the vma
1378  * @vma: vm_area_struct holding ptes to be zapped
1379  * @address: starting address of pages to zap
1380  * @size: number of bytes to zap
1381  *
1382  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1383  *
1384  * The entire address range must be fully contained within the vma.
1385  *
1386  * Returns 0 if successful.
1387  */
1388 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1389 		unsigned long size)
1390 {
1391 	if (address < vma->vm_start || address + size > vma->vm_end ||
1392 	    		!(vma->vm_flags & VM_PFNMAP))
1393 		return -1;
1394 	zap_page_range_single(vma, address, size, NULL);
1395 	return 0;
1396 }
1397 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1398 
1399 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1400 			spinlock_t **ptl)
1401 {
1402 	pgd_t * pgd = pgd_offset(mm, addr);
1403 	pud_t * pud = pud_alloc(mm, pgd, addr);
1404 	if (pud) {
1405 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1406 		if (pmd) {
1407 			VM_BUG_ON(pmd_trans_huge(*pmd));
1408 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1409 		}
1410 	}
1411 	return NULL;
1412 }
1413 
1414 /*
1415  * This is the old fallback for page remapping.
1416  *
1417  * For historical reasons, it only allows reserved pages. Only
1418  * old drivers should use this, and they needed to mark their
1419  * pages reserved for the old functions anyway.
1420  */
1421 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1422 			struct page *page, pgprot_t prot)
1423 {
1424 	struct mm_struct *mm = vma->vm_mm;
1425 	int retval;
1426 	pte_t *pte;
1427 	spinlock_t *ptl;
1428 
1429 	retval = -EINVAL;
1430 	if (PageAnon(page))
1431 		goto out;
1432 	retval = -ENOMEM;
1433 	flush_dcache_page(page);
1434 	pte = get_locked_pte(mm, addr, &ptl);
1435 	if (!pte)
1436 		goto out;
1437 	retval = -EBUSY;
1438 	if (!pte_none(*pte))
1439 		goto out_unlock;
1440 
1441 	/* Ok, finally just insert the thing.. */
1442 	get_page(page);
1443 	inc_mm_counter_fast(mm, mm_counter_file(page));
1444 	page_add_file_rmap(page);
1445 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1446 
1447 	retval = 0;
1448 	pte_unmap_unlock(pte, ptl);
1449 	return retval;
1450 out_unlock:
1451 	pte_unmap_unlock(pte, ptl);
1452 out:
1453 	return retval;
1454 }
1455 
1456 /**
1457  * vm_insert_page - insert single page into user vma
1458  * @vma: user vma to map to
1459  * @addr: target user address of this page
1460  * @page: source kernel page
1461  *
1462  * This allows drivers to insert individual pages they've allocated
1463  * into a user vma.
1464  *
1465  * The page has to be a nice clean _individual_ kernel allocation.
1466  * If you allocate a compound page, you need to have marked it as
1467  * such (__GFP_COMP), or manually just split the page up yourself
1468  * (see split_page()).
1469  *
1470  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1471  * took an arbitrary page protection parameter. This doesn't allow
1472  * that. Your vma protection will have to be set up correctly, which
1473  * means that if you want a shared writable mapping, you'd better
1474  * ask for a shared writable mapping!
1475  *
1476  * The page does not need to be reserved.
1477  *
1478  * Usually this function is called from f_op->mmap() handler
1479  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1480  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1481  * function from other places, for example from page-fault handler.
1482  */
1483 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1484 			struct page *page)
1485 {
1486 	if (addr < vma->vm_start || addr >= vma->vm_end)
1487 		return -EFAULT;
1488 	if (!page_count(page))
1489 		return -EINVAL;
1490 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1491 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1492 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1493 		vma->vm_flags |= VM_MIXEDMAP;
1494 	}
1495 	return insert_page(vma, addr, page, vma->vm_page_prot);
1496 }
1497 EXPORT_SYMBOL(vm_insert_page);
1498 
1499 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1500 			pfn_t pfn, pgprot_t prot)
1501 {
1502 	struct mm_struct *mm = vma->vm_mm;
1503 	int retval;
1504 	pte_t *pte, entry;
1505 	spinlock_t *ptl;
1506 
1507 	retval = -ENOMEM;
1508 	pte = get_locked_pte(mm, addr, &ptl);
1509 	if (!pte)
1510 		goto out;
1511 	retval = -EBUSY;
1512 	if (!pte_none(*pte))
1513 		goto out_unlock;
1514 
1515 	/* Ok, finally just insert the thing.. */
1516 	if (pfn_t_devmap(pfn))
1517 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1518 	else
1519 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1520 	set_pte_at(mm, addr, pte, entry);
1521 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1522 
1523 	retval = 0;
1524 out_unlock:
1525 	pte_unmap_unlock(pte, ptl);
1526 out:
1527 	return retval;
1528 }
1529 
1530 /**
1531  * vm_insert_pfn - insert single pfn into user vma
1532  * @vma: user vma to map to
1533  * @addr: target user address of this page
1534  * @pfn: source kernel pfn
1535  *
1536  * Similar to vm_insert_page, this allows drivers to insert individual pages
1537  * they've allocated into a user vma. Same comments apply.
1538  *
1539  * This function should only be called from a vm_ops->fault handler, and
1540  * in that case the handler should return NULL.
1541  *
1542  * vma cannot be a COW mapping.
1543  *
1544  * As this is called only for pages that do not currently exist, we
1545  * do not need to flush old virtual caches or the TLB.
1546  */
1547 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1548 			unsigned long pfn)
1549 {
1550 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1551 }
1552 EXPORT_SYMBOL(vm_insert_pfn);
1553 
1554 /**
1555  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1556  * @vma: user vma to map to
1557  * @addr: target user address of this page
1558  * @pfn: source kernel pfn
1559  * @pgprot: pgprot flags for the inserted page
1560  *
1561  * This is exactly like vm_insert_pfn, except that it allows drivers to
1562  * to override pgprot on a per-page basis.
1563  *
1564  * This only makes sense for IO mappings, and it makes no sense for
1565  * cow mappings.  In general, using multiple vmas is preferable;
1566  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1567  * impractical.
1568  */
1569 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1570 			unsigned long pfn, pgprot_t pgprot)
1571 {
1572 	int ret;
1573 	/*
1574 	 * Technically, architectures with pte_special can avoid all these
1575 	 * restrictions (same for remap_pfn_range).  However we would like
1576 	 * consistency in testing and feature parity among all, so we should
1577 	 * try to keep these invariants in place for everybody.
1578 	 */
1579 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1580 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1581 						(VM_PFNMAP|VM_MIXEDMAP));
1582 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1583 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1584 
1585 	if (addr < vma->vm_start || addr >= vma->vm_end)
1586 		return -EFAULT;
1587 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1588 		return -EINVAL;
1589 
1590 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1591 
1592 	return ret;
1593 }
1594 EXPORT_SYMBOL(vm_insert_pfn_prot);
1595 
1596 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1597 			pfn_t pfn)
1598 {
1599 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1600 
1601 	if (addr < vma->vm_start || addr >= vma->vm_end)
1602 		return -EFAULT;
1603 
1604 	/*
1605 	 * If we don't have pte special, then we have to use the pfn_valid()
1606 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1607 	 * refcount the page if pfn_valid is true (hence insert_page rather
1608 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1609 	 * without pte special, it would there be refcounted as a normal page.
1610 	 */
1611 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1612 		struct page *page;
1613 
1614 		/*
1615 		 * At this point we are committed to insert_page()
1616 		 * regardless of whether the caller specified flags that
1617 		 * result in pfn_t_has_page() == false.
1618 		 */
1619 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1620 		return insert_page(vma, addr, page, vma->vm_page_prot);
1621 	}
1622 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1623 }
1624 EXPORT_SYMBOL(vm_insert_mixed);
1625 
1626 /*
1627  * maps a range of physical memory into the requested pages. the old
1628  * mappings are removed. any references to nonexistent pages results
1629  * in null mappings (currently treated as "copy-on-access")
1630  */
1631 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1632 			unsigned long addr, unsigned long end,
1633 			unsigned long pfn, pgprot_t prot)
1634 {
1635 	pte_t *pte;
1636 	spinlock_t *ptl;
1637 
1638 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1639 	if (!pte)
1640 		return -ENOMEM;
1641 	arch_enter_lazy_mmu_mode();
1642 	do {
1643 		BUG_ON(!pte_none(*pte));
1644 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1645 		pfn++;
1646 	} while (pte++, addr += PAGE_SIZE, addr != end);
1647 	arch_leave_lazy_mmu_mode();
1648 	pte_unmap_unlock(pte - 1, ptl);
1649 	return 0;
1650 }
1651 
1652 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1653 			unsigned long addr, unsigned long end,
1654 			unsigned long pfn, pgprot_t prot)
1655 {
1656 	pmd_t *pmd;
1657 	unsigned long next;
1658 
1659 	pfn -= addr >> PAGE_SHIFT;
1660 	pmd = pmd_alloc(mm, pud, addr);
1661 	if (!pmd)
1662 		return -ENOMEM;
1663 	VM_BUG_ON(pmd_trans_huge(*pmd));
1664 	do {
1665 		next = pmd_addr_end(addr, end);
1666 		if (remap_pte_range(mm, pmd, addr, next,
1667 				pfn + (addr >> PAGE_SHIFT), prot))
1668 			return -ENOMEM;
1669 	} while (pmd++, addr = next, addr != end);
1670 	return 0;
1671 }
1672 
1673 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1674 			unsigned long addr, unsigned long end,
1675 			unsigned long pfn, pgprot_t prot)
1676 {
1677 	pud_t *pud;
1678 	unsigned long next;
1679 
1680 	pfn -= addr >> PAGE_SHIFT;
1681 	pud = pud_alloc(mm, pgd, addr);
1682 	if (!pud)
1683 		return -ENOMEM;
1684 	do {
1685 		next = pud_addr_end(addr, end);
1686 		if (remap_pmd_range(mm, pud, addr, next,
1687 				pfn + (addr >> PAGE_SHIFT), prot))
1688 			return -ENOMEM;
1689 	} while (pud++, addr = next, addr != end);
1690 	return 0;
1691 }
1692 
1693 /**
1694  * remap_pfn_range - remap kernel memory to userspace
1695  * @vma: user vma to map to
1696  * @addr: target user address to start at
1697  * @pfn: physical address of kernel memory
1698  * @size: size of map area
1699  * @prot: page protection flags for this mapping
1700  *
1701  *  Note: this is only safe if the mm semaphore is held when called.
1702  */
1703 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1704 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1705 {
1706 	pgd_t *pgd;
1707 	unsigned long next;
1708 	unsigned long end = addr + PAGE_ALIGN(size);
1709 	struct mm_struct *mm = vma->vm_mm;
1710 	int err;
1711 
1712 	/*
1713 	 * Physically remapped pages are special. Tell the
1714 	 * rest of the world about it:
1715 	 *   VM_IO tells people not to look at these pages
1716 	 *	(accesses can have side effects).
1717 	 *   VM_PFNMAP tells the core MM that the base pages are just
1718 	 *	raw PFN mappings, and do not have a "struct page" associated
1719 	 *	with them.
1720 	 *   VM_DONTEXPAND
1721 	 *      Disable vma merging and expanding with mremap().
1722 	 *   VM_DONTDUMP
1723 	 *      Omit vma from core dump, even when VM_IO turned off.
1724 	 *
1725 	 * There's a horrible special case to handle copy-on-write
1726 	 * behaviour that some programs depend on. We mark the "original"
1727 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1728 	 * See vm_normal_page() for details.
1729 	 */
1730 	if (is_cow_mapping(vma->vm_flags)) {
1731 		if (addr != vma->vm_start || end != vma->vm_end)
1732 			return -EINVAL;
1733 		vma->vm_pgoff = pfn;
1734 	}
1735 
1736 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1737 	if (err)
1738 		return -EINVAL;
1739 
1740 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1741 
1742 	BUG_ON(addr >= end);
1743 	pfn -= addr >> PAGE_SHIFT;
1744 	pgd = pgd_offset(mm, addr);
1745 	flush_cache_range(vma, addr, end);
1746 	do {
1747 		next = pgd_addr_end(addr, end);
1748 		err = remap_pud_range(mm, pgd, addr, next,
1749 				pfn + (addr >> PAGE_SHIFT), prot);
1750 		if (err)
1751 			break;
1752 	} while (pgd++, addr = next, addr != end);
1753 
1754 	if (err)
1755 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1756 
1757 	return err;
1758 }
1759 EXPORT_SYMBOL(remap_pfn_range);
1760 
1761 /**
1762  * vm_iomap_memory - remap memory to userspace
1763  * @vma: user vma to map to
1764  * @start: start of area
1765  * @len: size of area
1766  *
1767  * This is a simplified io_remap_pfn_range() for common driver use. The
1768  * driver just needs to give us the physical memory range to be mapped,
1769  * we'll figure out the rest from the vma information.
1770  *
1771  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1772  * whatever write-combining details or similar.
1773  */
1774 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1775 {
1776 	unsigned long vm_len, pfn, pages;
1777 
1778 	/* Check that the physical memory area passed in looks valid */
1779 	if (start + len < start)
1780 		return -EINVAL;
1781 	/*
1782 	 * You *really* shouldn't map things that aren't page-aligned,
1783 	 * but we've historically allowed it because IO memory might
1784 	 * just have smaller alignment.
1785 	 */
1786 	len += start & ~PAGE_MASK;
1787 	pfn = start >> PAGE_SHIFT;
1788 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1789 	if (pfn + pages < pfn)
1790 		return -EINVAL;
1791 
1792 	/* We start the mapping 'vm_pgoff' pages into the area */
1793 	if (vma->vm_pgoff > pages)
1794 		return -EINVAL;
1795 	pfn += vma->vm_pgoff;
1796 	pages -= vma->vm_pgoff;
1797 
1798 	/* Can we fit all of the mapping? */
1799 	vm_len = vma->vm_end - vma->vm_start;
1800 	if (vm_len >> PAGE_SHIFT > pages)
1801 		return -EINVAL;
1802 
1803 	/* Ok, let it rip */
1804 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1805 }
1806 EXPORT_SYMBOL(vm_iomap_memory);
1807 
1808 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1809 				     unsigned long addr, unsigned long end,
1810 				     pte_fn_t fn, void *data)
1811 {
1812 	pte_t *pte;
1813 	int err;
1814 	pgtable_t token;
1815 	spinlock_t *uninitialized_var(ptl);
1816 
1817 	pte = (mm == &init_mm) ?
1818 		pte_alloc_kernel(pmd, addr) :
1819 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1820 	if (!pte)
1821 		return -ENOMEM;
1822 
1823 	BUG_ON(pmd_huge(*pmd));
1824 
1825 	arch_enter_lazy_mmu_mode();
1826 
1827 	token = pmd_pgtable(*pmd);
1828 
1829 	do {
1830 		err = fn(pte++, token, addr, data);
1831 		if (err)
1832 			break;
1833 	} while (addr += PAGE_SIZE, addr != end);
1834 
1835 	arch_leave_lazy_mmu_mode();
1836 
1837 	if (mm != &init_mm)
1838 		pte_unmap_unlock(pte-1, ptl);
1839 	return err;
1840 }
1841 
1842 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1843 				     unsigned long addr, unsigned long end,
1844 				     pte_fn_t fn, void *data)
1845 {
1846 	pmd_t *pmd;
1847 	unsigned long next;
1848 	int err;
1849 
1850 	BUG_ON(pud_huge(*pud));
1851 
1852 	pmd = pmd_alloc(mm, pud, addr);
1853 	if (!pmd)
1854 		return -ENOMEM;
1855 	do {
1856 		next = pmd_addr_end(addr, end);
1857 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1858 		if (err)
1859 			break;
1860 	} while (pmd++, addr = next, addr != end);
1861 	return err;
1862 }
1863 
1864 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1865 				     unsigned long addr, unsigned long end,
1866 				     pte_fn_t fn, void *data)
1867 {
1868 	pud_t *pud;
1869 	unsigned long next;
1870 	int err;
1871 
1872 	pud = pud_alloc(mm, pgd, addr);
1873 	if (!pud)
1874 		return -ENOMEM;
1875 	do {
1876 		next = pud_addr_end(addr, end);
1877 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1878 		if (err)
1879 			break;
1880 	} while (pud++, addr = next, addr != end);
1881 	return err;
1882 }
1883 
1884 /*
1885  * Scan a region of virtual memory, filling in page tables as necessary
1886  * and calling a provided function on each leaf page table.
1887  */
1888 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1889 			unsigned long size, pte_fn_t fn, void *data)
1890 {
1891 	pgd_t *pgd;
1892 	unsigned long next;
1893 	unsigned long end = addr + size;
1894 	int err;
1895 
1896 	if (WARN_ON(addr >= end))
1897 		return -EINVAL;
1898 
1899 	pgd = pgd_offset(mm, addr);
1900 	do {
1901 		next = pgd_addr_end(addr, end);
1902 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1903 		if (err)
1904 			break;
1905 	} while (pgd++, addr = next, addr != end);
1906 
1907 	return err;
1908 }
1909 EXPORT_SYMBOL_GPL(apply_to_page_range);
1910 
1911 /*
1912  * handle_pte_fault chooses page fault handler according to an entry which was
1913  * read non-atomically.  Before making any commitment, on those architectures
1914  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1915  * parts, do_swap_page must check under lock before unmapping the pte and
1916  * proceeding (but do_wp_page is only called after already making such a check;
1917  * and do_anonymous_page can safely check later on).
1918  */
1919 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1920 				pte_t *page_table, pte_t orig_pte)
1921 {
1922 	int same = 1;
1923 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1924 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1925 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1926 		spin_lock(ptl);
1927 		same = pte_same(*page_table, orig_pte);
1928 		spin_unlock(ptl);
1929 	}
1930 #endif
1931 	pte_unmap(page_table);
1932 	return same;
1933 }
1934 
1935 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1936 {
1937 	debug_dma_assert_idle(src);
1938 
1939 	/*
1940 	 * If the source page was a PFN mapping, we don't have
1941 	 * a "struct page" for it. We do a best-effort copy by
1942 	 * just copying from the original user address. If that
1943 	 * fails, we just zero-fill it. Live with it.
1944 	 */
1945 	if (unlikely(!src)) {
1946 		void *kaddr = kmap_atomic(dst);
1947 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1948 
1949 		/*
1950 		 * This really shouldn't fail, because the page is there
1951 		 * in the page tables. But it might just be unreadable,
1952 		 * in which case we just give up and fill the result with
1953 		 * zeroes.
1954 		 */
1955 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1956 			clear_page(kaddr);
1957 		kunmap_atomic(kaddr);
1958 		flush_dcache_page(dst);
1959 	} else
1960 		copy_user_highpage(dst, src, va, vma);
1961 }
1962 
1963 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1964 {
1965 	struct file *vm_file = vma->vm_file;
1966 
1967 	if (vm_file)
1968 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1969 
1970 	/*
1971 	 * Special mappings (e.g. VDSO) do not have any file so fake
1972 	 * a default GFP_KERNEL for them.
1973 	 */
1974 	return GFP_KERNEL;
1975 }
1976 
1977 /*
1978  * Notify the address space that the page is about to become writable so that
1979  * it can prohibit this or wait for the page to get into an appropriate state.
1980  *
1981  * We do this without the lock held, so that it can sleep if it needs to.
1982  */
1983 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1984 	       unsigned long address)
1985 {
1986 	struct vm_fault vmf;
1987 	int ret;
1988 
1989 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1990 	vmf.pgoff = page->index;
1991 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1992 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1993 	vmf.page = page;
1994 	vmf.cow_page = NULL;
1995 
1996 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1997 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1998 		return ret;
1999 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2000 		lock_page(page);
2001 		if (!page->mapping) {
2002 			unlock_page(page);
2003 			return 0; /* retry */
2004 		}
2005 		ret |= VM_FAULT_LOCKED;
2006 	} else
2007 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2008 	return ret;
2009 }
2010 
2011 /*
2012  * Handle write page faults for pages that can be reused in the current vma
2013  *
2014  * This can happen either due to the mapping being with the VM_SHARED flag,
2015  * or due to us being the last reference standing to the page. In either
2016  * case, all we need to do here is to mark the page as writable and update
2017  * any related book-keeping.
2018  */
2019 static inline int wp_page_reuse(struct mm_struct *mm,
2020 			struct vm_area_struct *vma, unsigned long address,
2021 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2022 			struct page *page, int page_mkwrite,
2023 			int dirty_shared)
2024 	__releases(ptl)
2025 {
2026 	pte_t entry;
2027 	/*
2028 	 * Clear the pages cpupid information as the existing
2029 	 * information potentially belongs to a now completely
2030 	 * unrelated process.
2031 	 */
2032 	if (page)
2033 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2034 
2035 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2036 	entry = pte_mkyoung(orig_pte);
2037 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2038 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2039 		update_mmu_cache(vma, address, page_table);
2040 	pte_unmap_unlock(page_table, ptl);
2041 
2042 	if (dirty_shared) {
2043 		struct address_space *mapping;
2044 		int dirtied;
2045 
2046 		if (!page_mkwrite)
2047 			lock_page(page);
2048 
2049 		dirtied = set_page_dirty(page);
2050 		VM_BUG_ON_PAGE(PageAnon(page), page);
2051 		mapping = page->mapping;
2052 		unlock_page(page);
2053 		page_cache_release(page);
2054 
2055 		if ((dirtied || page_mkwrite) && mapping) {
2056 			/*
2057 			 * Some device drivers do not set page.mapping
2058 			 * but still dirty their pages
2059 			 */
2060 			balance_dirty_pages_ratelimited(mapping);
2061 		}
2062 
2063 		if (!page_mkwrite)
2064 			file_update_time(vma->vm_file);
2065 	}
2066 
2067 	return VM_FAULT_WRITE;
2068 }
2069 
2070 /*
2071  * Handle the case of a page which we actually need to copy to a new page.
2072  *
2073  * Called with mmap_sem locked and the old page referenced, but
2074  * without the ptl held.
2075  *
2076  * High level logic flow:
2077  *
2078  * - Allocate a page, copy the content of the old page to the new one.
2079  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2080  * - Take the PTL. If the pte changed, bail out and release the allocated page
2081  * - If the pte is still the way we remember it, update the page table and all
2082  *   relevant references. This includes dropping the reference the page-table
2083  *   held to the old page, as well as updating the rmap.
2084  * - In any case, unlock the PTL and drop the reference we took to the old page.
2085  */
2086 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2087 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2088 			pte_t orig_pte, struct page *old_page)
2089 {
2090 	struct page *new_page = NULL;
2091 	spinlock_t *ptl = NULL;
2092 	pte_t entry;
2093 	int page_copied = 0;
2094 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2095 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2096 	struct mem_cgroup *memcg;
2097 
2098 	if (unlikely(anon_vma_prepare(vma)))
2099 		goto oom;
2100 
2101 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2102 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2103 		if (!new_page)
2104 			goto oom;
2105 	} else {
2106 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2107 		if (!new_page)
2108 			goto oom;
2109 		cow_user_page(new_page, old_page, address, vma);
2110 	}
2111 
2112 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2113 		goto oom_free_new;
2114 
2115 	__SetPageUptodate(new_page);
2116 
2117 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2118 
2119 	/*
2120 	 * Re-check the pte - we dropped the lock
2121 	 */
2122 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2123 	if (likely(pte_same(*page_table, orig_pte))) {
2124 		if (old_page) {
2125 			if (!PageAnon(old_page)) {
2126 				dec_mm_counter_fast(mm,
2127 						mm_counter_file(old_page));
2128 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2129 			}
2130 		} else {
2131 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2132 		}
2133 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2134 		entry = mk_pte(new_page, vma->vm_page_prot);
2135 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2136 		/*
2137 		 * Clear the pte entry and flush it first, before updating the
2138 		 * pte with the new entry. This will avoid a race condition
2139 		 * seen in the presence of one thread doing SMC and another
2140 		 * thread doing COW.
2141 		 */
2142 		ptep_clear_flush_notify(vma, address, page_table);
2143 		page_add_new_anon_rmap(new_page, vma, address, false);
2144 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2145 		lru_cache_add_active_or_unevictable(new_page, vma);
2146 		/*
2147 		 * We call the notify macro here because, when using secondary
2148 		 * mmu page tables (such as kvm shadow page tables), we want the
2149 		 * new page to be mapped directly into the secondary page table.
2150 		 */
2151 		set_pte_at_notify(mm, address, page_table, entry);
2152 		update_mmu_cache(vma, address, page_table);
2153 		if (old_page) {
2154 			/*
2155 			 * Only after switching the pte to the new page may
2156 			 * we remove the mapcount here. Otherwise another
2157 			 * process may come and find the rmap count decremented
2158 			 * before the pte is switched to the new page, and
2159 			 * "reuse" the old page writing into it while our pte
2160 			 * here still points into it and can be read by other
2161 			 * threads.
2162 			 *
2163 			 * The critical issue is to order this
2164 			 * page_remove_rmap with the ptp_clear_flush above.
2165 			 * Those stores are ordered by (if nothing else,)
2166 			 * the barrier present in the atomic_add_negative
2167 			 * in page_remove_rmap.
2168 			 *
2169 			 * Then the TLB flush in ptep_clear_flush ensures that
2170 			 * no process can access the old page before the
2171 			 * decremented mapcount is visible. And the old page
2172 			 * cannot be reused until after the decremented
2173 			 * mapcount is visible. So transitively, TLBs to
2174 			 * old page will be flushed before it can be reused.
2175 			 */
2176 			page_remove_rmap(old_page, false);
2177 		}
2178 
2179 		/* Free the old page.. */
2180 		new_page = old_page;
2181 		page_copied = 1;
2182 	} else {
2183 		mem_cgroup_cancel_charge(new_page, memcg, false);
2184 	}
2185 
2186 	if (new_page)
2187 		page_cache_release(new_page);
2188 
2189 	pte_unmap_unlock(page_table, ptl);
2190 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2191 	if (old_page) {
2192 		/*
2193 		 * Don't let another task, with possibly unlocked vma,
2194 		 * keep the mlocked page.
2195 		 */
2196 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2197 			lock_page(old_page);	/* LRU manipulation */
2198 			if (PageMlocked(old_page))
2199 				munlock_vma_page(old_page);
2200 			unlock_page(old_page);
2201 		}
2202 		page_cache_release(old_page);
2203 	}
2204 	return page_copied ? VM_FAULT_WRITE : 0;
2205 oom_free_new:
2206 	page_cache_release(new_page);
2207 oom:
2208 	if (old_page)
2209 		page_cache_release(old_page);
2210 	return VM_FAULT_OOM;
2211 }
2212 
2213 /*
2214  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2215  * mapping
2216  */
2217 static int wp_pfn_shared(struct mm_struct *mm,
2218 			struct vm_area_struct *vma, unsigned long address,
2219 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2220 			pmd_t *pmd)
2221 {
2222 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2223 		struct vm_fault vmf = {
2224 			.page = NULL,
2225 			.pgoff = linear_page_index(vma, address),
2226 			.virtual_address = (void __user *)(address & PAGE_MASK),
2227 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2228 		};
2229 		int ret;
2230 
2231 		pte_unmap_unlock(page_table, ptl);
2232 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2233 		if (ret & VM_FAULT_ERROR)
2234 			return ret;
2235 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2236 		/*
2237 		 * We might have raced with another page fault while we
2238 		 * released the pte_offset_map_lock.
2239 		 */
2240 		if (!pte_same(*page_table, orig_pte)) {
2241 			pte_unmap_unlock(page_table, ptl);
2242 			return 0;
2243 		}
2244 	}
2245 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2246 			     NULL, 0, 0);
2247 }
2248 
2249 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2250 			  unsigned long address, pte_t *page_table,
2251 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2252 			  struct page *old_page)
2253 	__releases(ptl)
2254 {
2255 	int page_mkwrite = 0;
2256 
2257 	page_cache_get(old_page);
2258 
2259 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2260 		int tmp;
2261 
2262 		pte_unmap_unlock(page_table, ptl);
2263 		tmp = do_page_mkwrite(vma, old_page, address);
2264 		if (unlikely(!tmp || (tmp &
2265 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2266 			page_cache_release(old_page);
2267 			return tmp;
2268 		}
2269 		/*
2270 		 * Since we dropped the lock we need to revalidate
2271 		 * the PTE as someone else may have changed it.  If
2272 		 * they did, we just return, as we can count on the
2273 		 * MMU to tell us if they didn't also make it writable.
2274 		 */
2275 		page_table = pte_offset_map_lock(mm, pmd, address,
2276 						 &ptl);
2277 		if (!pte_same(*page_table, orig_pte)) {
2278 			unlock_page(old_page);
2279 			pte_unmap_unlock(page_table, ptl);
2280 			page_cache_release(old_page);
2281 			return 0;
2282 		}
2283 		page_mkwrite = 1;
2284 	}
2285 
2286 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2287 			     orig_pte, old_page, page_mkwrite, 1);
2288 }
2289 
2290 /*
2291  * This routine handles present pages, when users try to write
2292  * to a shared page. It is done by copying the page to a new address
2293  * and decrementing the shared-page counter for the old page.
2294  *
2295  * Note that this routine assumes that the protection checks have been
2296  * done by the caller (the low-level page fault routine in most cases).
2297  * Thus we can safely just mark it writable once we've done any necessary
2298  * COW.
2299  *
2300  * We also mark the page dirty at this point even though the page will
2301  * change only once the write actually happens. This avoids a few races,
2302  * and potentially makes it more efficient.
2303  *
2304  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2305  * but allow concurrent faults), with pte both mapped and locked.
2306  * We return with mmap_sem still held, but pte unmapped and unlocked.
2307  */
2308 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2309 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2310 		spinlock_t *ptl, pte_t orig_pte)
2311 	__releases(ptl)
2312 {
2313 	struct page *old_page;
2314 
2315 	old_page = vm_normal_page(vma, address, orig_pte);
2316 	if (!old_page) {
2317 		/*
2318 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2319 		 * VM_PFNMAP VMA.
2320 		 *
2321 		 * We should not cow pages in a shared writeable mapping.
2322 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2323 		 */
2324 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2325 				     (VM_WRITE|VM_SHARED))
2326 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2327 					     orig_pte, pmd);
2328 
2329 		pte_unmap_unlock(page_table, ptl);
2330 		return wp_page_copy(mm, vma, address, page_table, pmd,
2331 				    orig_pte, old_page);
2332 	}
2333 
2334 	/*
2335 	 * Take out anonymous pages first, anonymous shared vmas are
2336 	 * not dirty accountable.
2337 	 */
2338 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2339 		if (!trylock_page(old_page)) {
2340 			page_cache_get(old_page);
2341 			pte_unmap_unlock(page_table, ptl);
2342 			lock_page(old_page);
2343 			page_table = pte_offset_map_lock(mm, pmd, address,
2344 							 &ptl);
2345 			if (!pte_same(*page_table, orig_pte)) {
2346 				unlock_page(old_page);
2347 				pte_unmap_unlock(page_table, ptl);
2348 				page_cache_release(old_page);
2349 				return 0;
2350 			}
2351 			page_cache_release(old_page);
2352 		}
2353 		if (reuse_swap_page(old_page)) {
2354 			/*
2355 			 * The page is all ours.  Move it to our anon_vma so
2356 			 * the rmap code will not search our parent or siblings.
2357 			 * Protected against the rmap code by the page lock.
2358 			 */
2359 			page_move_anon_rmap(old_page, vma, address);
2360 			unlock_page(old_page);
2361 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2362 					     orig_pte, old_page, 0, 0);
2363 		}
2364 		unlock_page(old_page);
2365 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2366 					(VM_WRITE|VM_SHARED))) {
2367 		return wp_page_shared(mm, vma, address, page_table, pmd,
2368 				      ptl, orig_pte, old_page);
2369 	}
2370 
2371 	/*
2372 	 * Ok, we need to copy. Oh, well..
2373 	 */
2374 	page_cache_get(old_page);
2375 
2376 	pte_unmap_unlock(page_table, ptl);
2377 	return wp_page_copy(mm, vma, address, page_table, pmd,
2378 			    orig_pte, old_page);
2379 }
2380 
2381 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2382 		unsigned long start_addr, unsigned long end_addr,
2383 		struct zap_details *details)
2384 {
2385 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2386 }
2387 
2388 static inline void unmap_mapping_range_tree(struct rb_root *root,
2389 					    struct zap_details *details)
2390 {
2391 	struct vm_area_struct *vma;
2392 	pgoff_t vba, vea, zba, zea;
2393 
2394 	vma_interval_tree_foreach(vma, root,
2395 			details->first_index, details->last_index) {
2396 
2397 		vba = vma->vm_pgoff;
2398 		vea = vba + vma_pages(vma) - 1;
2399 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2400 		zba = details->first_index;
2401 		if (zba < vba)
2402 			zba = vba;
2403 		zea = details->last_index;
2404 		if (zea > vea)
2405 			zea = vea;
2406 
2407 		unmap_mapping_range_vma(vma,
2408 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2409 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2410 				details);
2411 	}
2412 }
2413 
2414 /**
2415  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2416  * address_space corresponding to the specified page range in the underlying
2417  * file.
2418  *
2419  * @mapping: the address space containing mmaps to be unmapped.
2420  * @holebegin: byte in first page to unmap, relative to the start of
2421  * the underlying file.  This will be rounded down to a PAGE_SIZE
2422  * boundary.  Note that this is different from truncate_pagecache(), which
2423  * must keep the partial page.  In contrast, we must get rid of
2424  * partial pages.
2425  * @holelen: size of prospective hole in bytes.  This will be rounded
2426  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2427  * end of the file.
2428  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2429  * but 0 when invalidating pagecache, don't throw away private data.
2430  */
2431 void unmap_mapping_range(struct address_space *mapping,
2432 		loff_t const holebegin, loff_t const holelen, int even_cows)
2433 {
2434 	struct zap_details details;
2435 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2436 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2437 
2438 	/* Check for overflow. */
2439 	if (sizeof(holelen) > sizeof(hlen)) {
2440 		long long holeend =
2441 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2442 		if (holeend & ~(long long)ULONG_MAX)
2443 			hlen = ULONG_MAX - hba + 1;
2444 	}
2445 
2446 	details.check_mapping = even_cows? NULL: mapping;
2447 	details.first_index = hba;
2448 	details.last_index = hba + hlen - 1;
2449 	if (details.last_index < details.first_index)
2450 		details.last_index = ULONG_MAX;
2451 
2452 
2453 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2454 	i_mmap_lock_write(mapping);
2455 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2456 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2457 	i_mmap_unlock_write(mapping);
2458 }
2459 EXPORT_SYMBOL(unmap_mapping_range);
2460 
2461 /*
2462  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2463  * but allow concurrent faults), and pte mapped but not yet locked.
2464  * We return with pte unmapped and unlocked.
2465  *
2466  * We return with the mmap_sem locked or unlocked in the same cases
2467  * as does filemap_fault().
2468  */
2469 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2470 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2471 		unsigned int flags, pte_t orig_pte)
2472 {
2473 	spinlock_t *ptl;
2474 	struct page *page, *swapcache;
2475 	struct mem_cgroup *memcg;
2476 	swp_entry_t entry;
2477 	pte_t pte;
2478 	int locked;
2479 	int exclusive = 0;
2480 	int ret = 0;
2481 
2482 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2483 		goto out;
2484 
2485 	entry = pte_to_swp_entry(orig_pte);
2486 	if (unlikely(non_swap_entry(entry))) {
2487 		if (is_migration_entry(entry)) {
2488 			migration_entry_wait(mm, pmd, address);
2489 		} else if (is_hwpoison_entry(entry)) {
2490 			ret = VM_FAULT_HWPOISON;
2491 		} else {
2492 			print_bad_pte(vma, address, orig_pte, NULL);
2493 			ret = VM_FAULT_SIGBUS;
2494 		}
2495 		goto out;
2496 	}
2497 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2498 	page = lookup_swap_cache(entry);
2499 	if (!page) {
2500 		page = swapin_readahead(entry,
2501 					GFP_HIGHUSER_MOVABLE, vma, address);
2502 		if (!page) {
2503 			/*
2504 			 * Back out if somebody else faulted in this pte
2505 			 * while we released the pte lock.
2506 			 */
2507 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2508 			if (likely(pte_same(*page_table, orig_pte)))
2509 				ret = VM_FAULT_OOM;
2510 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2511 			goto unlock;
2512 		}
2513 
2514 		/* Had to read the page from swap area: Major fault */
2515 		ret = VM_FAULT_MAJOR;
2516 		count_vm_event(PGMAJFAULT);
2517 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2518 	} else if (PageHWPoison(page)) {
2519 		/*
2520 		 * hwpoisoned dirty swapcache pages are kept for killing
2521 		 * owner processes (which may be unknown at hwpoison time)
2522 		 */
2523 		ret = VM_FAULT_HWPOISON;
2524 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2525 		swapcache = page;
2526 		goto out_release;
2527 	}
2528 
2529 	swapcache = page;
2530 	locked = lock_page_or_retry(page, mm, flags);
2531 
2532 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2533 	if (!locked) {
2534 		ret |= VM_FAULT_RETRY;
2535 		goto out_release;
2536 	}
2537 
2538 	/*
2539 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2540 	 * release the swapcache from under us.  The page pin, and pte_same
2541 	 * test below, are not enough to exclude that.  Even if it is still
2542 	 * swapcache, we need to check that the page's swap has not changed.
2543 	 */
2544 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2545 		goto out_page;
2546 
2547 	page = ksm_might_need_to_copy(page, vma, address);
2548 	if (unlikely(!page)) {
2549 		ret = VM_FAULT_OOM;
2550 		page = swapcache;
2551 		goto out_page;
2552 	}
2553 
2554 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2555 		ret = VM_FAULT_OOM;
2556 		goto out_page;
2557 	}
2558 
2559 	/*
2560 	 * Back out if somebody else already faulted in this pte.
2561 	 */
2562 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2563 	if (unlikely(!pte_same(*page_table, orig_pte)))
2564 		goto out_nomap;
2565 
2566 	if (unlikely(!PageUptodate(page))) {
2567 		ret = VM_FAULT_SIGBUS;
2568 		goto out_nomap;
2569 	}
2570 
2571 	/*
2572 	 * The page isn't present yet, go ahead with the fault.
2573 	 *
2574 	 * Be careful about the sequence of operations here.
2575 	 * To get its accounting right, reuse_swap_page() must be called
2576 	 * while the page is counted on swap but not yet in mapcount i.e.
2577 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2578 	 * must be called after the swap_free(), or it will never succeed.
2579 	 */
2580 
2581 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2582 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2583 	pte = mk_pte(page, vma->vm_page_prot);
2584 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2585 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2586 		flags &= ~FAULT_FLAG_WRITE;
2587 		ret |= VM_FAULT_WRITE;
2588 		exclusive = RMAP_EXCLUSIVE;
2589 	}
2590 	flush_icache_page(vma, page);
2591 	if (pte_swp_soft_dirty(orig_pte))
2592 		pte = pte_mksoft_dirty(pte);
2593 	set_pte_at(mm, address, page_table, pte);
2594 	if (page == swapcache) {
2595 		do_page_add_anon_rmap(page, vma, address, exclusive);
2596 		mem_cgroup_commit_charge(page, memcg, true, false);
2597 	} else { /* ksm created a completely new copy */
2598 		page_add_new_anon_rmap(page, vma, address, false);
2599 		mem_cgroup_commit_charge(page, memcg, false, false);
2600 		lru_cache_add_active_or_unevictable(page, vma);
2601 	}
2602 
2603 	swap_free(entry);
2604 	if (mem_cgroup_swap_full(page) ||
2605 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2606 		try_to_free_swap(page);
2607 	unlock_page(page);
2608 	if (page != swapcache) {
2609 		/*
2610 		 * Hold the lock to avoid the swap entry to be reused
2611 		 * until we take the PT lock for the pte_same() check
2612 		 * (to avoid false positives from pte_same). For
2613 		 * further safety release the lock after the swap_free
2614 		 * so that the swap count won't change under a
2615 		 * parallel locked swapcache.
2616 		 */
2617 		unlock_page(swapcache);
2618 		page_cache_release(swapcache);
2619 	}
2620 
2621 	if (flags & FAULT_FLAG_WRITE) {
2622 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2623 		if (ret & VM_FAULT_ERROR)
2624 			ret &= VM_FAULT_ERROR;
2625 		goto out;
2626 	}
2627 
2628 	/* No need to invalidate - it was non-present before */
2629 	update_mmu_cache(vma, address, page_table);
2630 unlock:
2631 	pte_unmap_unlock(page_table, ptl);
2632 out:
2633 	return ret;
2634 out_nomap:
2635 	mem_cgroup_cancel_charge(page, memcg, false);
2636 	pte_unmap_unlock(page_table, ptl);
2637 out_page:
2638 	unlock_page(page);
2639 out_release:
2640 	page_cache_release(page);
2641 	if (page != swapcache) {
2642 		unlock_page(swapcache);
2643 		page_cache_release(swapcache);
2644 	}
2645 	return ret;
2646 }
2647 
2648 /*
2649  * This is like a special single-page "expand_{down|up}wards()",
2650  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2651  * doesn't hit another vma.
2652  */
2653 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2654 {
2655 	address &= PAGE_MASK;
2656 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2657 		struct vm_area_struct *prev = vma->vm_prev;
2658 
2659 		/*
2660 		 * Is there a mapping abutting this one below?
2661 		 *
2662 		 * That's only ok if it's the same stack mapping
2663 		 * that has gotten split..
2664 		 */
2665 		if (prev && prev->vm_end == address)
2666 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2667 
2668 		return expand_downwards(vma, address - PAGE_SIZE);
2669 	}
2670 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2671 		struct vm_area_struct *next = vma->vm_next;
2672 
2673 		/* As VM_GROWSDOWN but s/below/above/ */
2674 		if (next && next->vm_start == address + PAGE_SIZE)
2675 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2676 
2677 		return expand_upwards(vma, address + PAGE_SIZE);
2678 	}
2679 	return 0;
2680 }
2681 
2682 /*
2683  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2684  * but allow concurrent faults), and pte mapped but not yet locked.
2685  * We return with mmap_sem still held, but pte unmapped and unlocked.
2686  */
2687 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2688 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2689 		unsigned int flags)
2690 {
2691 	struct mem_cgroup *memcg;
2692 	struct page *page;
2693 	spinlock_t *ptl;
2694 	pte_t entry;
2695 
2696 	pte_unmap(page_table);
2697 
2698 	/* File mapping without ->vm_ops ? */
2699 	if (vma->vm_flags & VM_SHARED)
2700 		return VM_FAULT_SIGBUS;
2701 
2702 	/* Check if we need to add a guard page to the stack */
2703 	if (check_stack_guard_page(vma, address) < 0)
2704 		return VM_FAULT_SIGSEGV;
2705 
2706 	/* Use the zero-page for reads */
2707 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2708 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2709 						vma->vm_page_prot));
2710 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2711 		if (!pte_none(*page_table))
2712 			goto unlock;
2713 		/* Deliver the page fault to userland, check inside PT lock */
2714 		if (userfaultfd_missing(vma)) {
2715 			pte_unmap_unlock(page_table, ptl);
2716 			return handle_userfault(vma, address, flags,
2717 						VM_UFFD_MISSING);
2718 		}
2719 		goto setpte;
2720 	}
2721 
2722 	/* Allocate our own private page. */
2723 	if (unlikely(anon_vma_prepare(vma)))
2724 		goto oom;
2725 	page = alloc_zeroed_user_highpage_movable(vma, address);
2726 	if (!page)
2727 		goto oom;
2728 
2729 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2730 		goto oom_free_page;
2731 
2732 	/*
2733 	 * The memory barrier inside __SetPageUptodate makes sure that
2734 	 * preceeding stores to the page contents become visible before
2735 	 * the set_pte_at() write.
2736 	 */
2737 	__SetPageUptodate(page);
2738 
2739 	entry = mk_pte(page, vma->vm_page_prot);
2740 	if (vma->vm_flags & VM_WRITE)
2741 		entry = pte_mkwrite(pte_mkdirty(entry));
2742 
2743 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2744 	if (!pte_none(*page_table))
2745 		goto release;
2746 
2747 	/* Deliver the page fault to userland, check inside PT lock */
2748 	if (userfaultfd_missing(vma)) {
2749 		pte_unmap_unlock(page_table, ptl);
2750 		mem_cgroup_cancel_charge(page, memcg, false);
2751 		page_cache_release(page);
2752 		return handle_userfault(vma, address, flags,
2753 					VM_UFFD_MISSING);
2754 	}
2755 
2756 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2757 	page_add_new_anon_rmap(page, vma, address, false);
2758 	mem_cgroup_commit_charge(page, memcg, false, false);
2759 	lru_cache_add_active_or_unevictable(page, vma);
2760 setpte:
2761 	set_pte_at(mm, address, page_table, entry);
2762 
2763 	/* No need to invalidate - it was non-present before */
2764 	update_mmu_cache(vma, address, page_table);
2765 unlock:
2766 	pte_unmap_unlock(page_table, ptl);
2767 	return 0;
2768 release:
2769 	mem_cgroup_cancel_charge(page, memcg, false);
2770 	page_cache_release(page);
2771 	goto unlock;
2772 oom_free_page:
2773 	page_cache_release(page);
2774 oom:
2775 	return VM_FAULT_OOM;
2776 }
2777 
2778 /*
2779  * The mmap_sem must have been held on entry, and may have been
2780  * released depending on flags and vma->vm_ops->fault() return value.
2781  * See filemap_fault() and __lock_page_retry().
2782  */
2783 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2784 			pgoff_t pgoff, unsigned int flags,
2785 			struct page *cow_page, struct page **page)
2786 {
2787 	struct vm_fault vmf;
2788 	int ret;
2789 
2790 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2791 	vmf.pgoff = pgoff;
2792 	vmf.flags = flags;
2793 	vmf.page = NULL;
2794 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2795 	vmf.cow_page = cow_page;
2796 
2797 	ret = vma->vm_ops->fault(vma, &vmf);
2798 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2799 		return ret;
2800 	if (!vmf.page)
2801 		goto out;
2802 
2803 	if (unlikely(PageHWPoison(vmf.page))) {
2804 		if (ret & VM_FAULT_LOCKED)
2805 			unlock_page(vmf.page);
2806 		page_cache_release(vmf.page);
2807 		return VM_FAULT_HWPOISON;
2808 	}
2809 
2810 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2811 		lock_page(vmf.page);
2812 	else
2813 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2814 
2815  out:
2816 	*page = vmf.page;
2817 	return ret;
2818 }
2819 
2820 /**
2821  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2822  *
2823  * @vma: virtual memory area
2824  * @address: user virtual address
2825  * @page: page to map
2826  * @pte: pointer to target page table entry
2827  * @write: true, if new entry is writable
2828  * @anon: true, if it's anonymous page
2829  *
2830  * Caller must hold page table lock relevant for @pte.
2831  *
2832  * Target users are page handler itself and implementations of
2833  * vm_ops->map_pages.
2834  */
2835 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2836 		struct page *page, pte_t *pte, bool write, bool anon)
2837 {
2838 	pte_t entry;
2839 
2840 	flush_icache_page(vma, page);
2841 	entry = mk_pte(page, vma->vm_page_prot);
2842 	if (write)
2843 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2844 	if (anon) {
2845 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2846 		page_add_new_anon_rmap(page, vma, address, false);
2847 	} else {
2848 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2849 		page_add_file_rmap(page);
2850 	}
2851 	set_pte_at(vma->vm_mm, address, pte, entry);
2852 
2853 	/* no need to invalidate: a not-present page won't be cached */
2854 	update_mmu_cache(vma, address, pte);
2855 }
2856 
2857 static unsigned long fault_around_bytes __read_mostly =
2858 	rounddown_pow_of_two(65536);
2859 
2860 #ifdef CONFIG_DEBUG_FS
2861 static int fault_around_bytes_get(void *data, u64 *val)
2862 {
2863 	*val = fault_around_bytes;
2864 	return 0;
2865 }
2866 
2867 /*
2868  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2869  * rounded down to nearest page order. It's what do_fault_around() expects to
2870  * see.
2871  */
2872 static int fault_around_bytes_set(void *data, u64 val)
2873 {
2874 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2875 		return -EINVAL;
2876 	if (val > PAGE_SIZE)
2877 		fault_around_bytes = rounddown_pow_of_two(val);
2878 	else
2879 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2880 	return 0;
2881 }
2882 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2883 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2884 
2885 static int __init fault_around_debugfs(void)
2886 {
2887 	void *ret;
2888 
2889 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2890 			&fault_around_bytes_fops);
2891 	if (!ret)
2892 		pr_warn("Failed to create fault_around_bytes in debugfs");
2893 	return 0;
2894 }
2895 late_initcall(fault_around_debugfs);
2896 #endif
2897 
2898 /*
2899  * do_fault_around() tries to map few pages around the fault address. The hope
2900  * is that the pages will be needed soon and this will lower the number of
2901  * faults to handle.
2902  *
2903  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2904  * not ready to be mapped: not up-to-date, locked, etc.
2905  *
2906  * This function is called with the page table lock taken. In the split ptlock
2907  * case the page table lock only protects only those entries which belong to
2908  * the page table corresponding to the fault address.
2909  *
2910  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2911  * only once.
2912  *
2913  * fault_around_pages() defines how many pages we'll try to map.
2914  * do_fault_around() expects it to return a power of two less than or equal to
2915  * PTRS_PER_PTE.
2916  *
2917  * The virtual address of the area that we map is naturally aligned to the
2918  * fault_around_pages() value (and therefore to page order).  This way it's
2919  * easier to guarantee that we don't cross page table boundaries.
2920  */
2921 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2922 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2923 {
2924 	unsigned long start_addr, nr_pages, mask;
2925 	pgoff_t max_pgoff;
2926 	struct vm_fault vmf;
2927 	int off;
2928 
2929 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2930 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2931 
2932 	start_addr = max(address & mask, vma->vm_start);
2933 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2934 	pte -= off;
2935 	pgoff -= off;
2936 
2937 	/*
2938 	 *  max_pgoff is either end of page table or end of vma
2939 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2940 	 */
2941 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2942 		PTRS_PER_PTE - 1;
2943 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2944 			pgoff + nr_pages - 1);
2945 
2946 	/* Check if it makes any sense to call ->map_pages */
2947 	while (!pte_none(*pte)) {
2948 		if (++pgoff > max_pgoff)
2949 			return;
2950 		start_addr += PAGE_SIZE;
2951 		if (start_addr >= vma->vm_end)
2952 			return;
2953 		pte++;
2954 	}
2955 
2956 	vmf.virtual_address = (void __user *) start_addr;
2957 	vmf.pte = pte;
2958 	vmf.pgoff = pgoff;
2959 	vmf.max_pgoff = max_pgoff;
2960 	vmf.flags = flags;
2961 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2962 	vma->vm_ops->map_pages(vma, &vmf);
2963 }
2964 
2965 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2966 		unsigned long address, pmd_t *pmd,
2967 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2968 {
2969 	struct page *fault_page;
2970 	spinlock_t *ptl;
2971 	pte_t *pte;
2972 	int ret = 0;
2973 
2974 	/*
2975 	 * Let's call ->map_pages() first and use ->fault() as fallback
2976 	 * if page by the offset is not ready to be mapped (cold cache or
2977 	 * something).
2978 	 */
2979 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2980 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2981 		do_fault_around(vma, address, pte, pgoff, flags);
2982 		if (!pte_same(*pte, orig_pte))
2983 			goto unlock_out;
2984 		pte_unmap_unlock(pte, ptl);
2985 	}
2986 
2987 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2988 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2989 		return ret;
2990 
2991 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2992 	if (unlikely(!pte_same(*pte, orig_pte))) {
2993 		pte_unmap_unlock(pte, ptl);
2994 		unlock_page(fault_page);
2995 		page_cache_release(fault_page);
2996 		return ret;
2997 	}
2998 	do_set_pte(vma, address, fault_page, pte, false, false);
2999 	unlock_page(fault_page);
3000 unlock_out:
3001 	pte_unmap_unlock(pte, ptl);
3002 	return ret;
3003 }
3004 
3005 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3006 		unsigned long address, pmd_t *pmd,
3007 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3008 {
3009 	struct page *fault_page, *new_page;
3010 	struct mem_cgroup *memcg;
3011 	spinlock_t *ptl;
3012 	pte_t *pte;
3013 	int ret;
3014 
3015 	if (unlikely(anon_vma_prepare(vma)))
3016 		return VM_FAULT_OOM;
3017 
3018 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3019 	if (!new_page)
3020 		return VM_FAULT_OOM;
3021 
3022 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3023 		page_cache_release(new_page);
3024 		return VM_FAULT_OOM;
3025 	}
3026 
3027 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3028 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3029 		goto uncharge_out;
3030 
3031 	if (fault_page)
3032 		copy_user_highpage(new_page, fault_page, address, vma);
3033 	__SetPageUptodate(new_page);
3034 
3035 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3036 	if (unlikely(!pte_same(*pte, orig_pte))) {
3037 		pte_unmap_unlock(pte, ptl);
3038 		if (fault_page) {
3039 			unlock_page(fault_page);
3040 			page_cache_release(fault_page);
3041 		} else {
3042 			/*
3043 			 * The fault handler has no page to lock, so it holds
3044 			 * i_mmap_lock for read to protect against truncate.
3045 			 */
3046 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3047 		}
3048 		goto uncharge_out;
3049 	}
3050 	do_set_pte(vma, address, new_page, pte, true, true);
3051 	mem_cgroup_commit_charge(new_page, memcg, false, false);
3052 	lru_cache_add_active_or_unevictable(new_page, vma);
3053 	pte_unmap_unlock(pte, ptl);
3054 	if (fault_page) {
3055 		unlock_page(fault_page);
3056 		page_cache_release(fault_page);
3057 	} else {
3058 		/*
3059 		 * The fault handler has no page to lock, so it holds
3060 		 * i_mmap_lock for read to protect against truncate.
3061 		 */
3062 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3063 	}
3064 	return ret;
3065 uncharge_out:
3066 	mem_cgroup_cancel_charge(new_page, memcg, false);
3067 	page_cache_release(new_page);
3068 	return ret;
3069 }
3070 
3071 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3072 		unsigned long address, pmd_t *pmd,
3073 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3074 {
3075 	struct page *fault_page;
3076 	struct address_space *mapping;
3077 	spinlock_t *ptl;
3078 	pte_t *pte;
3079 	int dirtied = 0;
3080 	int ret, tmp;
3081 
3082 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3083 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3084 		return ret;
3085 
3086 	/*
3087 	 * Check if the backing address space wants to know that the page is
3088 	 * about to become writable
3089 	 */
3090 	if (vma->vm_ops->page_mkwrite) {
3091 		unlock_page(fault_page);
3092 		tmp = do_page_mkwrite(vma, fault_page, address);
3093 		if (unlikely(!tmp ||
3094 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3095 			page_cache_release(fault_page);
3096 			return tmp;
3097 		}
3098 	}
3099 
3100 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3101 	if (unlikely(!pte_same(*pte, orig_pte))) {
3102 		pte_unmap_unlock(pte, ptl);
3103 		unlock_page(fault_page);
3104 		page_cache_release(fault_page);
3105 		return ret;
3106 	}
3107 	do_set_pte(vma, address, fault_page, pte, true, false);
3108 	pte_unmap_unlock(pte, ptl);
3109 
3110 	if (set_page_dirty(fault_page))
3111 		dirtied = 1;
3112 	/*
3113 	 * Take a local copy of the address_space - page.mapping may be zeroed
3114 	 * by truncate after unlock_page().   The address_space itself remains
3115 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3116 	 * release semantics to prevent the compiler from undoing this copying.
3117 	 */
3118 	mapping = page_rmapping(fault_page);
3119 	unlock_page(fault_page);
3120 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3121 		/*
3122 		 * Some device drivers do not set page.mapping but still
3123 		 * dirty their pages
3124 		 */
3125 		balance_dirty_pages_ratelimited(mapping);
3126 	}
3127 
3128 	if (!vma->vm_ops->page_mkwrite)
3129 		file_update_time(vma->vm_file);
3130 
3131 	return ret;
3132 }
3133 
3134 /*
3135  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3136  * but allow concurrent faults).
3137  * The mmap_sem may have been released depending on flags and our
3138  * return value.  See filemap_fault() and __lock_page_or_retry().
3139  */
3140 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3141 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3142 		unsigned int flags, pte_t orig_pte)
3143 {
3144 	pgoff_t pgoff = linear_page_index(vma, address);
3145 
3146 	pte_unmap(page_table);
3147 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3148 	if (!vma->vm_ops->fault)
3149 		return VM_FAULT_SIGBUS;
3150 	if (!(flags & FAULT_FLAG_WRITE))
3151 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3152 				orig_pte);
3153 	if (!(vma->vm_flags & VM_SHARED))
3154 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3155 				orig_pte);
3156 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3157 }
3158 
3159 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3160 				unsigned long addr, int page_nid,
3161 				int *flags)
3162 {
3163 	get_page(page);
3164 
3165 	count_vm_numa_event(NUMA_HINT_FAULTS);
3166 	if (page_nid == numa_node_id()) {
3167 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3168 		*flags |= TNF_FAULT_LOCAL;
3169 	}
3170 
3171 	return mpol_misplaced(page, vma, addr);
3172 }
3173 
3174 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3175 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3176 {
3177 	struct page *page = NULL;
3178 	spinlock_t *ptl;
3179 	int page_nid = -1;
3180 	int last_cpupid;
3181 	int target_nid;
3182 	bool migrated = false;
3183 	bool was_writable = pte_write(pte);
3184 	int flags = 0;
3185 
3186 	/* A PROT_NONE fault should not end up here */
3187 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3188 
3189 	/*
3190 	* The "pte" at this point cannot be used safely without
3191 	* validation through pte_unmap_same(). It's of NUMA type but
3192 	* the pfn may be screwed if the read is non atomic.
3193 	*
3194 	* We can safely just do a "set_pte_at()", because the old
3195 	* page table entry is not accessible, so there would be no
3196 	* concurrent hardware modifications to the PTE.
3197 	*/
3198 	ptl = pte_lockptr(mm, pmd);
3199 	spin_lock(ptl);
3200 	if (unlikely(!pte_same(*ptep, pte))) {
3201 		pte_unmap_unlock(ptep, ptl);
3202 		goto out;
3203 	}
3204 
3205 	/* Make it present again */
3206 	pte = pte_modify(pte, vma->vm_page_prot);
3207 	pte = pte_mkyoung(pte);
3208 	if (was_writable)
3209 		pte = pte_mkwrite(pte);
3210 	set_pte_at(mm, addr, ptep, pte);
3211 	update_mmu_cache(vma, addr, ptep);
3212 
3213 	page = vm_normal_page(vma, addr, pte);
3214 	if (!page) {
3215 		pte_unmap_unlock(ptep, ptl);
3216 		return 0;
3217 	}
3218 
3219 	/* TODO: handle PTE-mapped THP */
3220 	if (PageCompound(page)) {
3221 		pte_unmap_unlock(ptep, ptl);
3222 		return 0;
3223 	}
3224 
3225 	/*
3226 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3227 	 * much anyway since they can be in shared cache state. This misses
3228 	 * the case where a mapping is writable but the process never writes
3229 	 * to it but pte_write gets cleared during protection updates and
3230 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3231 	 * background writeback, dirty balancing and application behaviour.
3232 	 */
3233 	if (!(vma->vm_flags & VM_WRITE))
3234 		flags |= TNF_NO_GROUP;
3235 
3236 	/*
3237 	 * Flag if the page is shared between multiple address spaces. This
3238 	 * is later used when determining whether to group tasks together
3239 	 */
3240 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3241 		flags |= TNF_SHARED;
3242 
3243 	last_cpupid = page_cpupid_last(page);
3244 	page_nid = page_to_nid(page);
3245 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3246 	pte_unmap_unlock(ptep, ptl);
3247 	if (target_nid == -1) {
3248 		put_page(page);
3249 		goto out;
3250 	}
3251 
3252 	/* Migrate to the requested node */
3253 	migrated = migrate_misplaced_page(page, vma, target_nid);
3254 	if (migrated) {
3255 		page_nid = target_nid;
3256 		flags |= TNF_MIGRATED;
3257 	} else
3258 		flags |= TNF_MIGRATE_FAIL;
3259 
3260 out:
3261 	if (page_nid != -1)
3262 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3263 	return 0;
3264 }
3265 
3266 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3267 			unsigned long address, pmd_t *pmd, unsigned int flags)
3268 {
3269 	if (vma_is_anonymous(vma))
3270 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3271 	if (vma->vm_ops->pmd_fault)
3272 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3273 	return VM_FAULT_FALLBACK;
3274 }
3275 
3276 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3277 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3278 			unsigned int flags)
3279 {
3280 	if (vma_is_anonymous(vma))
3281 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3282 	if (vma->vm_ops->pmd_fault)
3283 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3284 	return VM_FAULT_FALLBACK;
3285 }
3286 
3287 /*
3288  * These routines also need to handle stuff like marking pages dirty
3289  * and/or accessed for architectures that don't do it in hardware (most
3290  * RISC architectures).  The early dirtying is also good on the i386.
3291  *
3292  * There is also a hook called "update_mmu_cache()" that architectures
3293  * with external mmu caches can use to update those (ie the Sparc or
3294  * PowerPC hashed page tables that act as extended TLBs).
3295  *
3296  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3297  * but allow concurrent faults), and pte mapped but not yet locked.
3298  * We return with pte unmapped and unlocked.
3299  *
3300  * The mmap_sem may have been released depending on flags and our
3301  * return value.  See filemap_fault() and __lock_page_or_retry().
3302  */
3303 static int handle_pte_fault(struct mm_struct *mm,
3304 		     struct vm_area_struct *vma, unsigned long address,
3305 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3306 {
3307 	pte_t entry;
3308 	spinlock_t *ptl;
3309 
3310 	/*
3311 	 * some architectures can have larger ptes than wordsize,
3312 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3313 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3314 	 * The code below just needs a consistent view for the ifs and
3315 	 * we later double check anyway with the ptl lock held. So here
3316 	 * a barrier will do.
3317 	 */
3318 	entry = *pte;
3319 	barrier();
3320 	if (!pte_present(entry)) {
3321 		if (pte_none(entry)) {
3322 			if (vma_is_anonymous(vma))
3323 				return do_anonymous_page(mm, vma, address,
3324 							 pte, pmd, flags);
3325 			else
3326 				return do_fault(mm, vma, address, pte, pmd,
3327 						flags, entry);
3328 		}
3329 		return do_swap_page(mm, vma, address,
3330 					pte, pmd, flags, entry);
3331 	}
3332 
3333 	if (pte_protnone(entry))
3334 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3335 
3336 	ptl = pte_lockptr(mm, pmd);
3337 	spin_lock(ptl);
3338 	if (unlikely(!pte_same(*pte, entry)))
3339 		goto unlock;
3340 	if (flags & FAULT_FLAG_WRITE) {
3341 		if (!pte_write(entry))
3342 			return do_wp_page(mm, vma, address,
3343 					pte, pmd, ptl, entry);
3344 		entry = pte_mkdirty(entry);
3345 	}
3346 	entry = pte_mkyoung(entry);
3347 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3348 		update_mmu_cache(vma, address, pte);
3349 	} else {
3350 		/*
3351 		 * This is needed only for protection faults but the arch code
3352 		 * is not yet telling us if this is a protection fault or not.
3353 		 * This still avoids useless tlb flushes for .text page faults
3354 		 * with threads.
3355 		 */
3356 		if (flags & FAULT_FLAG_WRITE)
3357 			flush_tlb_fix_spurious_fault(vma, address);
3358 	}
3359 unlock:
3360 	pte_unmap_unlock(pte, ptl);
3361 	return 0;
3362 }
3363 
3364 /*
3365  * By the time we get here, we already hold the mm semaphore
3366  *
3367  * The mmap_sem may have been released depending on flags and our
3368  * return value.  See filemap_fault() and __lock_page_or_retry().
3369  */
3370 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3371 			     unsigned long address, unsigned int flags)
3372 {
3373 	pgd_t *pgd;
3374 	pud_t *pud;
3375 	pmd_t *pmd;
3376 	pte_t *pte;
3377 
3378 	if (unlikely(is_vm_hugetlb_page(vma)))
3379 		return hugetlb_fault(mm, vma, address, flags);
3380 
3381 	pgd = pgd_offset(mm, address);
3382 	pud = pud_alloc(mm, pgd, address);
3383 	if (!pud)
3384 		return VM_FAULT_OOM;
3385 	pmd = pmd_alloc(mm, pud, address);
3386 	if (!pmd)
3387 		return VM_FAULT_OOM;
3388 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3389 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3390 		if (!(ret & VM_FAULT_FALLBACK))
3391 			return ret;
3392 	} else {
3393 		pmd_t orig_pmd = *pmd;
3394 		int ret;
3395 
3396 		barrier();
3397 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3398 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3399 
3400 			if (pmd_protnone(orig_pmd))
3401 				return do_huge_pmd_numa_page(mm, vma, address,
3402 							     orig_pmd, pmd);
3403 
3404 			if (dirty && !pmd_write(orig_pmd)) {
3405 				ret = wp_huge_pmd(mm, vma, address, pmd,
3406 							orig_pmd, flags);
3407 				if (!(ret & VM_FAULT_FALLBACK))
3408 					return ret;
3409 			} else {
3410 				huge_pmd_set_accessed(mm, vma, address, pmd,
3411 						      orig_pmd, dirty);
3412 				return 0;
3413 			}
3414 		}
3415 	}
3416 
3417 	/*
3418 	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3419 	 * run pte_offset_map on the pmd, if an huge pmd could
3420 	 * materialize from under us from a different thread.
3421 	 */
3422 	if (unlikely(pte_alloc(mm, pmd, address)))
3423 		return VM_FAULT_OOM;
3424 	/*
3425 	 * If a huge pmd materialized under us just retry later.  Use
3426 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3427 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3428 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3429 	 * in a different thread of this mm, in turn leading to a misleading
3430 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3431 	 * regular pmd that we can walk with pte_offset_map() and we can do that
3432 	 * through an atomic read in C, which is what pmd_trans_unstable()
3433 	 * provides.
3434 	 */
3435 	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3436 		return 0;
3437 	/*
3438 	 * A regular pmd is established and it can't morph into a huge pmd
3439 	 * from under us anymore at this point because we hold the mmap_sem
3440 	 * read mode and khugepaged takes it in write mode. So now it's
3441 	 * safe to run pte_offset_map().
3442 	 */
3443 	pte = pte_offset_map(pmd, address);
3444 
3445 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3446 }
3447 
3448 /*
3449  * By the time we get here, we already hold the mm semaphore
3450  *
3451  * The mmap_sem may have been released depending on flags and our
3452  * return value.  See filemap_fault() and __lock_page_or_retry().
3453  */
3454 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3455 		    unsigned long address, unsigned int flags)
3456 {
3457 	int ret;
3458 
3459 	__set_current_state(TASK_RUNNING);
3460 
3461 	count_vm_event(PGFAULT);
3462 	mem_cgroup_count_vm_event(mm, PGFAULT);
3463 
3464 	/* do counter updates before entering really critical section. */
3465 	check_sync_rss_stat(current);
3466 
3467 	/*
3468 	 * Enable the memcg OOM handling for faults triggered in user
3469 	 * space.  Kernel faults are handled more gracefully.
3470 	 */
3471 	if (flags & FAULT_FLAG_USER)
3472 		mem_cgroup_oom_enable();
3473 
3474 	ret = __handle_mm_fault(mm, vma, address, flags);
3475 
3476 	if (flags & FAULT_FLAG_USER) {
3477 		mem_cgroup_oom_disable();
3478                 /*
3479                  * The task may have entered a memcg OOM situation but
3480                  * if the allocation error was handled gracefully (no
3481                  * VM_FAULT_OOM), there is no need to kill anything.
3482                  * Just clean up the OOM state peacefully.
3483                  */
3484                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3485                         mem_cgroup_oom_synchronize(false);
3486 	}
3487 
3488 	return ret;
3489 }
3490 EXPORT_SYMBOL_GPL(handle_mm_fault);
3491 
3492 #ifndef __PAGETABLE_PUD_FOLDED
3493 /*
3494  * Allocate page upper directory.
3495  * We've already handled the fast-path in-line.
3496  */
3497 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3498 {
3499 	pud_t *new = pud_alloc_one(mm, address);
3500 	if (!new)
3501 		return -ENOMEM;
3502 
3503 	smp_wmb(); /* See comment in __pte_alloc */
3504 
3505 	spin_lock(&mm->page_table_lock);
3506 	if (pgd_present(*pgd))		/* Another has populated it */
3507 		pud_free(mm, new);
3508 	else
3509 		pgd_populate(mm, pgd, new);
3510 	spin_unlock(&mm->page_table_lock);
3511 	return 0;
3512 }
3513 #endif /* __PAGETABLE_PUD_FOLDED */
3514 
3515 #ifndef __PAGETABLE_PMD_FOLDED
3516 /*
3517  * Allocate page middle directory.
3518  * We've already handled the fast-path in-line.
3519  */
3520 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3521 {
3522 	pmd_t *new = pmd_alloc_one(mm, address);
3523 	if (!new)
3524 		return -ENOMEM;
3525 
3526 	smp_wmb(); /* See comment in __pte_alloc */
3527 
3528 	spin_lock(&mm->page_table_lock);
3529 #ifndef __ARCH_HAS_4LEVEL_HACK
3530 	if (!pud_present(*pud)) {
3531 		mm_inc_nr_pmds(mm);
3532 		pud_populate(mm, pud, new);
3533 	} else	/* Another has populated it */
3534 		pmd_free(mm, new);
3535 #else
3536 	if (!pgd_present(*pud)) {
3537 		mm_inc_nr_pmds(mm);
3538 		pgd_populate(mm, pud, new);
3539 	} else /* Another has populated it */
3540 		pmd_free(mm, new);
3541 #endif /* __ARCH_HAS_4LEVEL_HACK */
3542 	spin_unlock(&mm->page_table_lock);
3543 	return 0;
3544 }
3545 #endif /* __PAGETABLE_PMD_FOLDED */
3546 
3547 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3548 		pte_t **ptepp, spinlock_t **ptlp)
3549 {
3550 	pgd_t *pgd;
3551 	pud_t *pud;
3552 	pmd_t *pmd;
3553 	pte_t *ptep;
3554 
3555 	pgd = pgd_offset(mm, address);
3556 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3557 		goto out;
3558 
3559 	pud = pud_offset(pgd, address);
3560 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3561 		goto out;
3562 
3563 	pmd = pmd_offset(pud, address);
3564 	VM_BUG_ON(pmd_trans_huge(*pmd));
3565 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3566 		goto out;
3567 
3568 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3569 	if (pmd_huge(*pmd))
3570 		goto out;
3571 
3572 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3573 	if (!ptep)
3574 		goto out;
3575 	if (!pte_present(*ptep))
3576 		goto unlock;
3577 	*ptepp = ptep;
3578 	return 0;
3579 unlock:
3580 	pte_unmap_unlock(ptep, *ptlp);
3581 out:
3582 	return -EINVAL;
3583 }
3584 
3585 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3586 			     pte_t **ptepp, spinlock_t **ptlp)
3587 {
3588 	int res;
3589 
3590 	/* (void) is needed to make gcc happy */
3591 	(void) __cond_lock(*ptlp,
3592 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3593 	return res;
3594 }
3595 
3596 /**
3597  * follow_pfn - look up PFN at a user virtual address
3598  * @vma: memory mapping
3599  * @address: user virtual address
3600  * @pfn: location to store found PFN
3601  *
3602  * Only IO mappings and raw PFN mappings are allowed.
3603  *
3604  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3605  */
3606 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3607 	unsigned long *pfn)
3608 {
3609 	int ret = -EINVAL;
3610 	spinlock_t *ptl;
3611 	pte_t *ptep;
3612 
3613 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3614 		return ret;
3615 
3616 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3617 	if (ret)
3618 		return ret;
3619 	*pfn = pte_pfn(*ptep);
3620 	pte_unmap_unlock(ptep, ptl);
3621 	return 0;
3622 }
3623 EXPORT_SYMBOL(follow_pfn);
3624 
3625 #ifdef CONFIG_HAVE_IOREMAP_PROT
3626 int follow_phys(struct vm_area_struct *vma,
3627 		unsigned long address, unsigned int flags,
3628 		unsigned long *prot, resource_size_t *phys)
3629 {
3630 	int ret = -EINVAL;
3631 	pte_t *ptep, pte;
3632 	spinlock_t *ptl;
3633 
3634 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3635 		goto out;
3636 
3637 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3638 		goto out;
3639 	pte = *ptep;
3640 
3641 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3642 		goto unlock;
3643 
3644 	*prot = pgprot_val(pte_pgprot(pte));
3645 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3646 
3647 	ret = 0;
3648 unlock:
3649 	pte_unmap_unlock(ptep, ptl);
3650 out:
3651 	return ret;
3652 }
3653 
3654 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3655 			void *buf, int len, int write)
3656 {
3657 	resource_size_t phys_addr;
3658 	unsigned long prot = 0;
3659 	void __iomem *maddr;
3660 	int offset = addr & (PAGE_SIZE-1);
3661 
3662 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3663 		return -EINVAL;
3664 
3665 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3666 	if (write)
3667 		memcpy_toio(maddr + offset, buf, len);
3668 	else
3669 		memcpy_fromio(buf, maddr + offset, len);
3670 	iounmap(maddr);
3671 
3672 	return len;
3673 }
3674 EXPORT_SYMBOL_GPL(generic_access_phys);
3675 #endif
3676 
3677 /*
3678  * Access another process' address space as given in mm.  If non-NULL, use the
3679  * given task for page fault accounting.
3680  */
3681 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3682 		unsigned long addr, void *buf, int len, int write)
3683 {
3684 	struct vm_area_struct *vma;
3685 	void *old_buf = buf;
3686 
3687 	down_read(&mm->mmap_sem);
3688 	/* ignore errors, just check how much was successfully transferred */
3689 	while (len) {
3690 		int bytes, ret, offset;
3691 		void *maddr;
3692 		struct page *page = NULL;
3693 
3694 		ret = get_user_pages(tsk, mm, addr, 1,
3695 				write, 1, &page, &vma);
3696 		if (ret <= 0) {
3697 #ifndef CONFIG_HAVE_IOREMAP_PROT
3698 			break;
3699 #else
3700 			/*
3701 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3702 			 * we can access using slightly different code.
3703 			 */
3704 			vma = find_vma(mm, addr);
3705 			if (!vma || vma->vm_start > addr)
3706 				break;
3707 			if (vma->vm_ops && vma->vm_ops->access)
3708 				ret = vma->vm_ops->access(vma, addr, buf,
3709 							  len, write);
3710 			if (ret <= 0)
3711 				break;
3712 			bytes = ret;
3713 #endif
3714 		} else {
3715 			bytes = len;
3716 			offset = addr & (PAGE_SIZE-1);
3717 			if (bytes > PAGE_SIZE-offset)
3718 				bytes = PAGE_SIZE-offset;
3719 
3720 			maddr = kmap(page);
3721 			if (write) {
3722 				copy_to_user_page(vma, page, addr,
3723 						  maddr + offset, buf, bytes);
3724 				set_page_dirty_lock(page);
3725 			} else {
3726 				copy_from_user_page(vma, page, addr,
3727 						    buf, maddr + offset, bytes);
3728 			}
3729 			kunmap(page);
3730 			page_cache_release(page);
3731 		}
3732 		len -= bytes;
3733 		buf += bytes;
3734 		addr += bytes;
3735 	}
3736 	up_read(&mm->mmap_sem);
3737 
3738 	return buf - old_buf;
3739 }
3740 
3741 /**
3742  * access_remote_vm - access another process' address space
3743  * @mm:		the mm_struct of the target address space
3744  * @addr:	start address to access
3745  * @buf:	source or destination buffer
3746  * @len:	number of bytes to transfer
3747  * @write:	whether the access is a write
3748  *
3749  * The caller must hold a reference on @mm.
3750  */
3751 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3752 		void *buf, int len, int write)
3753 {
3754 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3755 }
3756 
3757 /*
3758  * Access another process' address space.
3759  * Source/target buffer must be kernel space,
3760  * Do not walk the page table directly, use get_user_pages
3761  */
3762 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3763 		void *buf, int len, int write)
3764 {
3765 	struct mm_struct *mm;
3766 	int ret;
3767 
3768 	mm = get_task_mm(tsk);
3769 	if (!mm)
3770 		return 0;
3771 
3772 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3773 	mmput(mm);
3774 
3775 	return ret;
3776 }
3777 
3778 /*
3779  * Print the name of a VMA.
3780  */
3781 void print_vma_addr(char *prefix, unsigned long ip)
3782 {
3783 	struct mm_struct *mm = current->mm;
3784 	struct vm_area_struct *vma;
3785 
3786 	/*
3787 	 * Do not print if we are in atomic
3788 	 * contexts (in exception stacks, etc.):
3789 	 */
3790 	if (preempt_count())
3791 		return;
3792 
3793 	down_read(&mm->mmap_sem);
3794 	vma = find_vma(mm, ip);
3795 	if (vma && vma->vm_file) {
3796 		struct file *f = vma->vm_file;
3797 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3798 		if (buf) {
3799 			char *p;
3800 
3801 			p = file_path(f, buf, PAGE_SIZE);
3802 			if (IS_ERR(p))
3803 				p = "?";
3804 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3805 					vma->vm_start,
3806 					vma->vm_end - vma->vm_start);
3807 			free_page((unsigned long)buf);
3808 		}
3809 	}
3810 	up_read(&mm->mmap_sem);
3811 }
3812 
3813 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3814 void __might_fault(const char *file, int line)
3815 {
3816 	/*
3817 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3818 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3819 	 * get paged out, therefore we'll never actually fault, and the
3820 	 * below annotations will generate false positives.
3821 	 */
3822 	if (segment_eq(get_fs(), KERNEL_DS))
3823 		return;
3824 	if (pagefault_disabled())
3825 		return;
3826 	__might_sleep(file, line, 0);
3827 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3828 	if (current->mm)
3829 		might_lock_read(&current->mm->mmap_sem);
3830 #endif
3831 }
3832 EXPORT_SYMBOL(__might_fault);
3833 #endif
3834 
3835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3836 static void clear_gigantic_page(struct page *page,
3837 				unsigned long addr,
3838 				unsigned int pages_per_huge_page)
3839 {
3840 	int i;
3841 	struct page *p = page;
3842 
3843 	might_sleep();
3844 	for (i = 0; i < pages_per_huge_page;
3845 	     i++, p = mem_map_next(p, page, i)) {
3846 		cond_resched();
3847 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3848 	}
3849 }
3850 void clear_huge_page(struct page *page,
3851 		     unsigned long addr, unsigned int pages_per_huge_page)
3852 {
3853 	int i;
3854 
3855 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3856 		clear_gigantic_page(page, addr, pages_per_huge_page);
3857 		return;
3858 	}
3859 
3860 	might_sleep();
3861 	for (i = 0; i < pages_per_huge_page; i++) {
3862 		cond_resched();
3863 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3864 	}
3865 }
3866 
3867 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3868 				    unsigned long addr,
3869 				    struct vm_area_struct *vma,
3870 				    unsigned int pages_per_huge_page)
3871 {
3872 	int i;
3873 	struct page *dst_base = dst;
3874 	struct page *src_base = src;
3875 
3876 	for (i = 0; i < pages_per_huge_page; ) {
3877 		cond_resched();
3878 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3879 
3880 		i++;
3881 		dst = mem_map_next(dst, dst_base, i);
3882 		src = mem_map_next(src, src_base, i);
3883 	}
3884 }
3885 
3886 void copy_user_huge_page(struct page *dst, struct page *src,
3887 			 unsigned long addr, struct vm_area_struct *vma,
3888 			 unsigned int pages_per_huge_page)
3889 {
3890 	int i;
3891 
3892 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3893 		copy_user_gigantic_page(dst, src, addr, vma,
3894 					pages_per_huge_page);
3895 		return;
3896 	}
3897 
3898 	might_sleep();
3899 	for (i = 0; i < pages_per_huge_page; i++) {
3900 		cond_resched();
3901 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3902 	}
3903 }
3904 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3905 
3906 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3907 
3908 static struct kmem_cache *page_ptl_cachep;
3909 
3910 void __init ptlock_cache_init(void)
3911 {
3912 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3913 			SLAB_PANIC, NULL);
3914 }
3915 
3916 bool ptlock_alloc(struct page *page)
3917 {
3918 	spinlock_t *ptl;
3919 
3920 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3921 	if (!ptl)
3922 		return false;
3923 	page->ptl = ptl;
3924 	return true;
3925 }
3926 
3927 void ptlock_free(struct page *page)
3928 {
3929 	kmem_cache_free(page_ptl_cachep, page->ptl);
3930 }
3931 #endif
3932