1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/slab.h> 3 #include <linux/lockdep.h> 4 #include <linux/sysfs.h> 5 #include <linux/kobject.h> 6 #include <linux/memory.h> 7 #include <linux/memory-tiers.h> 8 9 #include "internal.h" 10 11 struct memory_tier { 12 /* hierarchy of memory tiers */ 13 struct list_head list; 14 /* list of all memory types part of this tier */ 15 struct list_head memory_types; 16 /* 17 * start value of abstract distance. memory tier maps 18 * an abstract distance range, 19 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE 20 */ 21 int adistance_start; 22 /* All the nodes that are part of all the lower memory tiers. */ 23 nodemask_t lower_tier_mask; 24 }; 25 26 struct demotion_nodes { 27 nodemask_t preferred; 28 }; 29 30 struct node_memory_type_map { 31 struct memory_dev_type *memtype; 32 int map_count; 33 }; 34 35 static DEFINE_MUTEX(memory_tier_lock); 36 static LIST_HEAD(memory_tiers); 37 static struct node_memory_type_map node_memory_types[MAX_NUMNODES]; 38 static struct memory_dev_type *default_dram_type; 39 #ifdef CONFIG_MIGRATION 40 static int top_tier_adistance; 41 /* 42 * node_demotion[] examples: 43 * 44 * Example 1: 45 * 46 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes. 47 * 48 * node distances: 49 * node 0 1 2 3 50 * 0 10 20 30 40 51 * 1 20 10 40 30 52 * 2 30 40 10 40 53 * 3 40 30 40 10 54 * 55 * memory_tiers0 = 0-1 56 * memory_tiers1 = 2-3 57 * 58 * node_demotion[0].preferred = 2 59 * node_demotion[1].preferred = 3 60 * node_demotion[2].preferred = <empty> 61 * node_demotion[3].preferred = <empty> 62 * 63 * Example 2: 64 * 65 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node. 66 * 67 * node distances: 68 * node 0 1 2 69 * 0 10 20 30 70 * 1 20 10 30 71 * 2 30 30 10 72 * 73 * memory_tiers0 = 0-2 74 * 75 * node_demotion[0].preferred = <empty> 76 * node_demotion[1].preferred = <empty> 77 * node_demotion[2].preferred = <empty> 78 * 79 * Example 3: 80 * 81 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node. 82 * 83 * node distances: 84 * node 0 1 2 85 * 0 10 20 30 86 * 1 20 10 40 87 * 2 30 40 10 88 * 89 * memory_tiers0 = 1 90 * memory_tiers1 = 0 91 * memory_tiers2 = 2 92 * 93 * node_demotion[0].preferred = 2 94 * node_demotion[1].preferred = 0 95 * node_demotion[2].preferred = <empty> 96 * 97 */ 98 static struct demotion_nodes *node_demotion __read_mostly; 99 #endif /* CONFIG_MIGRATION */ 100 101 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype) 102 { 103 bool found_slot = false; 104 struct memory_tier *memtier, *new_memtier; 105 int adistance = memtype->adistance; 106 unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE; 107 108 lockdep_assert_held_once(&memory_tier_lock); 109 110 adistance = round_down(adistance, memtier_adistance_chunk_size); 111 /* 112 * If the memtype is already part of a memory tier, 113 * just return that. 114 */ 115 if (!list_empty(&memtype->tier_sibiling)) { 116 list_for_each_entry(memtier, &memory_tiers, list) { 117 if (adistance == memtier->adistance_start) 118 return memtier; 119 } 120 WARN_ON(1); 121 return ERR_PTR(-EINVAL); 122 } 123 124 list_for_each_entry(memtier, &memory_tiers, list) { 125 if (adistance == memtier->adistance_start) { 126 list_add(&memtype->tier_sibiling, &memtier->memory_types); 127 return memtier; 128 } else if (adistance < memtier->adistance_start) { 129 found_slot = true; 130 break; 131 } 132 } 133 134 new_memtier = kmalloc(sizeof(struct memory_tier), GFP_KERNEL); 135 if (!new_memtier) 136 return ERR_PTR(-ENOMEM); 137 138 new_memtier->adistance_start = adistance; 139 INIT_LIST_HEAD(&new_memtier->list); 140 INIT_LIST_HEAD(&new_memtier->memory_types); 141 if (found_slot) 142 list_add_tail(&new_memtier->list, &memtier->list); 143 else 144 list_add_tail(&new_memtier->list, &memory_tiers); 145 list_add(&memtype->tier_sibiling, &new_memtier->memory_types); 146 return new_memtier; 147 } 148 149 static struct memory_tier *__node_get_memory_tier(int node) 150 { 151 pg_data_t *pgdat; 152 153 pgdat = NODE_DATA(node); 154 if (!pgdat) 155 return NULL; 156 /* 157 * Since we hold memory_tier_lock, we can avoid 158 * RCU read locks when accessing the details. No 159 * parallel updates are possible here. 160 */ 161 return rcu_dereference_check(pgdat->memtier, 162 lockdep_is_held(&memory_tier_lock)); 163 } 164 165 #ifdef CONFIG_MIGRATION 166 bool node_is_toptier(int node) 167 { 168 bool toptier; 169 pg_data_t *pgdat; 170 struct memory_tier *memtier; 171 172 pgdat = NODE_DATA(node); 173 if (!pgdat) 174 return false; 175 176 rcu_read_lock(); 177 memtier = rcu_dereference(pgdat->memtier); 178 if (!memtier) { 179 toptier = true; 180 goto out; 181 } 182 if (memtier->adistance_start <= top_tier_adistance) 183 toptier = true; 184 else 185 toptier = false; 186 out: 187 rcu_read_unlock(); 188 return toptier; 189 } 190 191 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets) 192 { 193 struct memory_tier *memtier; 194 195 /* 196 * pg_data_t.memtier updates includes a synchronize_rcu() 197 * which ensures that we either find NULL or a valid memtier 198 * in NODE_DATA. protect the access via rcu_read_lock(); 199 */ 200 rcu_read_lock(); 201 memtier = rcu_dereference(pgdat->memtier); 202 if (memtier) 203 *targets = memtier->lower_tier_mask; 204 else 205 *targets = NODE_MASK_NONE; 206 rcu_read_unlock(); 207 } 208 209 /** 210 * next_demotion_node() - Get the next node in the demotion path 211 * @node: The starting node to lookup the next node 212 * 213 * Return: node id for next memory node in the demotion path hierarchy 214 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 215 * @node online or guarantee that it *continues* to be the next demotion 216 * target. 217 */ 218 int next_demotion_node(int node) 219 { 220 struct demotion_nodes *nd; 221 int target; 222 223 if (!node_demotion) 224 return NUMA_NO_NODE; 225 226 nd = &node_demotion[node]; 227 228 /* 229 * node_demotion[] is updated without excluding this 230 * function from running. 231 * 232 * Make sure to use RCU over entire code blocks if 233 * node_demotion[] reads need to be consistent. 234 */ 235 rcu_read_lock(); 236 /* 237 * If there are multiple target nodes, just select one 238 * target node randomly. 239 * 240 * In addition, we can also use round-robin to select 241 * target node, but we should introduce another variable 242 * for node_demotion[] to record last selected target node, 243 * that may cause cache ping-pong due to the changing of 244 * last target node. Or introducing per-cpu data to avoid 245 * caching issue, which seems more complicated. So selecting 246 * target node randomly seems better until now. 247 */ 248 target = node_random(&nd->preferred); 249 rcu_read_unlock(); 250 251 return target; 252 } 253 254 static void disable_all_demotion_targets(void) 255 { 256 struct memory_tier *memtier; 257 int node; 258 259 for_each_node_state(node, N_MEMORY) { 260 node_demotion[node].preferred = NODE_MASK_NONE; 261 /* 262 * We are holding memory_tier_lock, it is safe 263 * to access pgda->memtier. 264 */ 265 memtier = __node_get_memory_tier(node); 266 if (memtier) 267 memtier->lower_tier_mask = NODE_MASK_NONE; 268 } 269 /* 270 * Ensure that the "disable" is visible across the system. 271 * Readers will see either a combination of before+disable 272 * state or disable+after. They will never see before and 273 * after state together. 274 */ 275 synchronize_rcu(); 276 } 277 278 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier) 279 { 280 nodemask_t nodes = NODE_MASK_NONE; 281 struct memory_dev_type *memtype; 282 283 list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling) 284 nodes_or(nodes, nodes, memtype->nodes); 285 286 return nodes; 287 } 288 289 /* 290 * Find an automatic demotion target for all memory 291 * nodes. Failing here is OK. It might just indicate 292 * being at the end of a chain. 293 */ 294 static void establish_demotion_targets(void) 295 { 296 struct memory_tier *memtier; 297 struct demotion_nodes *nd; 298 int target = NUMA_NO_NODE, node; 299 int distance, best_distance; 300 nodemask_t tier_nodes, lower_tier; 301 302 lockdep_assert_held_once(&memory_tier_lock); 303 304 if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION)) 305 return; 306 307 disable_all_demotion_targets(); 308 309 for_each_node_state(node, N_MEMORY) { 310 best_distance = -1; 311 nd = &node_demotion[node]; 312 313 memtier = __node_get_memory_tier(node); 314 if (!memtier || list_is_last(&memtier->list, &memory_tiers)) 315 continue; 316 /* 317 * Get the lower memtier to find the demotion node list. 318 */ 319 memtier = list_next_entry(memtier, list); 320 tier_nodes = get_memtier_nodemask(memtier); 321 /* 322 * find_next_best_node, use 'used' nodemask as a skip list. 323 * Add all memory nodes except the selected memory tier 324 * nodelist to skip list so that we find the best node from the 325 * memtier nodelist. 326 */ 327 nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes); 328 329 /* 330 * Find all the nodes in the memory tier node list of same best distance. 331 * add them to the preferred mask. We randomly select between nodes 332 * in the preferred mask when allocating pages during demotion. 333 */ 334 do { 335 target = find_next_best_node(node, &tier_nodes); 336 if (target == NUMA_NO_NODE) 337 break; 338 339 distance = node_distance(node, target); 340 if (distance == best_distance || best_distance == -1) { 341 best_distance = distance; 342 node_set(target, nd->preferred); 343 } else { 344 break; 345 } 346 } while (1); 347 } 348 /* 349 * Promotion is allowed from a memory tier to higher 350 * memory tier only if the memory tier doesn't include 351 * compute. We want to skip promotion from a memory tier, 352 * if any node that is part of the memory tier have CPUs. 353 * Once we detect such a memory tier, we consider that tier 354 * as top tiper from which promotion is not allowed. 355 */ 356 list_for_each_entry_reverse(memtier, &memory_tiers, list) { 357 tier_nodes = get_memtier_nodemask(memtier); 358 nodes_and(tier_nodes, node_states[N_CPU], tier_nodes); 359 if (!nodes_empty(tier_nodes)) { 360 /* 361 * abstract distance below the max value of this memtier 362 * is considered toptier. 363 */ 364 top_tier_adistance = memtier->adistance_start + 365 MEMTIER_CHUNK_SIZE - 1; 366 break; 367 } 368 } 369 /* 370 * Now build the lower_tier mask for each node collecting node mask from 371 * all memory tier below it. This allows us to fallback demotion page 372 * allocation to a set of nodes that is closer the above selected 373 * perferred node. 374 */ 375 lower_tier = node_states[N_MEMORY]; 376 list_for_each_entry(memtier, &memory_tiers, list) { 377 /* 378 * Keep removing current tier from lower_tier nodes, 379 * This will remove all nodes in current and above 380 * memory tier from the lower_tier mask. 381 */ 382 tier_nodes = get_memtier_nodemask(memtier); 383 nodes_andnot(lower_tier, lower_tier, tier_nodes); 384 memtier->lower_tier_mask = lower_tier; 385 } 386 } 387 388 #else 389 static inline void disable_all_demotion_targets(void) {} 390 static inline void establish_demotion_targets(void) {} 391 #endif /* CONFIG_MIGRATION */ 392 393 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype) 394 { 395 if (!node_memory_types[node].memtype) 396 node_memory_types[node].memtype = memtype; 397 /* 398 * for each device getting added in the same NUMA node 399 * with this specific memtype, bump the map count. We 400 * Only take memtype device reference once, so that 401 * changing a node memtype can be done by droping the 402 * only reference count taken here. 403 */ 404 405 if (node_memory_types[node].memtype == memtype) { 406 if (!node_memory_types[node].map_count++) 407 kref_get(&memtype->kref); 408 } 409 } 410 411 static struct memory_tier *set_node_memory_tier(int node) 412 { 413 struct memory_tier *memtier; 414 struct memory_dev_type *memtype; 415 pg_data_t *pgdat = NODE_DATA(node); 416 417 418 lockdep_assert_held_once(&memory_tier_lock); 419 420 if (!node_state(node, N_MEMORY)) 421 return ERR_PTR(-EINVAL); 422 423 __init_node_memory_type(node, default_dram_type); 424 425 memtype = node_memory_types[node].memtype; 426 node_set(node, memtype->nodes); 427 memtier = find_create_memory_tier(memtype); 428 if (!IS_ERR(memtier)) 429 rcu_assign_pointer(pgdat->memtier, memtier); 430 return memtier; 431 } 432 433 static void destroy_memory_tier(struct memory_tier *memtier) 434 { 435 list_del(&memtier->list); 436 /* 437 * synchronize_rcu in clear_node_memory_tier makes sure 438 * we don't have rcu access to this memory tier. 439 */ 440 kfree(memtier); 441 } 442 443 static bool clear_node_memory_tier(int node) 444 { 445 bool cleared = false; 446 pg_data_t *pgdat; 447 struct memory_tier *memtier; 448 449 pgdat = NODE_DATA(node); 450 if (!pgdat) 451 return false; 452 453 /* 454 * Make sure that anybody looking at NODE_DATA who finds 455 * a valid memtier finds memory_dev_types with nodes still 456 * linked to the memtier. We achieve this by waiting for 457 * rcu read section to finish using synchronize_rcu. 458 * This also enables us to free the destroyed memory tier 459 * with kfree instead of kfree_rcu 460 */ 461 memtier = __node_get_memory_tier(node); 462 if (memtier) { 463 struct memory_dev_type *memtype; 464 465 rcu_assign_pointer(pgdat->memtier, NULL); 466 synchronize_rcu(); 467 memtype = node_memory_types[node].memtype; 468 node_clear(node, memtype->nodes); 469 if (nodes_empty(memtype->nodes)) { 470 list_del_init(&memtype->tier_sibiling); 471 if (list_empty(&memtier->memory_types)) 472 destroy_memory_tier(memtier); 473 } 474 cleared = true; 475 } 476 return cleared; 477 } 478 479 static void release_memtype(struct kref *kref) 480 { 481 struct memory_dev_type *memtype; 482 483 memtype = container_of(kref, struct memory_dev_type, kref); 484 kfree(memtype); 485 } 486 487 struct memory_dev_type *alloc_memory_type(int adistance) 488 { 489 struct memory_dev_type *memtype; 490 491 memtype = kmalloc(sizeof(*memtype), GFP_KERNEL); 492 if (!memtype) 493 return ERR_PTR(-ENOMEM); 494 495 memtype->adistance = adistance; 496 INIT_LIST_HEAD(&memtype->tier_sibiling); 497 memtype->nodes = NODE_MASK_NONE; 498 kref_init(&memtype->kref); 499 return memtype; 500 } 501 EXPORT_SYMBOL_GPL(alloc_memory_type); 502 503 void destroy_memory_type(struct memory_dev_type *memtype) 504 { 505 kref_put(&memtype->kref, release_memtype); 506 } 507 EXPORT_SYMBOL_GPL(destroy_memory_type); 508 509 void init_node_memory_type(int node, struct memory_dev_type *memtype) 510 { 511 512 mutex_lock(&memory_tier_lock); 513 __init_node_memory_type(node, memtype); 514 mutex_unlock(&memory_tier_lock); 515 } 516 EXPORT_SYMBOL_GPL(init_node_memory_type); 517 518 void clear_node_memory_type(int node, struct memory_dev_type *memtype) 519 { 520 mutex_lock(&memory_tier_lock); 521 if (node_memory_types[node].memtype == memtype) 522 node_memory_types[node].map_count--; 523 /* 524 * If we umapped all the attached devices to this node, 525 * clear the node memory type. 526 */ 527 if (!node_memory_types[node].map_count) { 528 node_memory_types[node].memtype = NULL; 529 kref_put(&memtype->kref, release_memtype); 530 } 531 mutex_unlock(&memory_tier_lock); 532 } 533 EXPORT_SYMBOL_GPL(clear_node_memory_type); 534 535 static int __meminit memtier_hotplug_callback(struct notifier_block *self, 536 unsigned long action, void *_arg) 537 { 538 struct memory_tier *memtier; 539 struct memory_notify *arg = _arg; 540 541 /* 542 * Only update the node migration order when a node is 543 * changing status, like online->offline. 544 */ 545 if (arg->status_change_nid < 0) 546 return notifier_from_errno(0); 547 548 switch (action) { 549 case MEM_OFFLINE: 550 mutex_lock(&memory_tier_lock); 551 if (clear_node_memory_tier(arg->status_change_nid)) 552 establish_demotion_targets(); 553 mutex_unlock(&memory_tier_lock); 554 break; 555 case MEM_ONLINE: 556 mutex_lock(&memory_tier_lock); 557 memtier = set_node_memory_tier(arg->status_change_nid); 558 if (!IS_ERR(memtier)) 559 establish_demotion_targets(); 560 mutex_unlock(&memory_tier_lock); 561 break; 562 } 563 564 return notifier_from_errno(0); 565 } 566 567 static int __init memory_tier_init(void) 568 { 569 int node; 570 struct memory_tier *memtier; 571 572 #ifdef CONFIG_MIGRATION 573 node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes), 574 GFP_KERNEL); 575 WARN_ON(!node_demotion); 576 #endif 577 mutex_lock(&memory_tier_lock); 578 /* 579 * For now we can have 4 faster memory tiers with smaller adistance 580 * than default DRAM tier. 581 */ 582 default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM); 583 if (!default_dram_type) 584 panic("%s() failed to allocate default DRAM tier\n", __func__); 585 586 /* 587 * Look at all the existing N_MEMORY nodes and add them to 588 * default memory tier or to a tier if we already have memory 589 * types assigned. 590 */ 591 for_each_node_state(node, N_MEMORY) { 592 memtier = set_node_memory_tier(node); 593 if (IS_ERR(memtier)) 594 /* 595 * Continue with memtiers we are able to setup 596 */ 597 break; 598 } 599 establish_demotion_targets(); 600 mutex_unlock(&memory_tier_lock); 601 602 hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRIO); 603 return 0; 604 } 605 subsys_initcall(memory_tier_init); 606 607 bool numa_demotion_enabled = false; 608 609 #ifdef CONFIG_MIGRATION 610 #ifdef CONFIG_SYSFS 611 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 612 struct kobj_attribute *attr, char *buf) 613 { 614 return sysfs_emit(buf, "%s\n", 615 numa_demotion_enabled ? "true" : "false"); 616 } 617 618 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 619 struct kobj_attribute *attr, 620 const char *buf, size_t count) 621 { 622 ssize_t ret; 623 624 ret = kstrtobool(buf, &numa_demotion_enabled); 625 if (ret) 626 return ret; 627 628 return count; 629 } 630 631 static struct kobj_attribute numa_demotion_enabled_attr = 632 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 633 numa_demotion_enabled_store); 634 635 static struct attribute *numa_attrs[] = { 636 &numa_demotion_enabled_attr.attr, 637 NULL, 638 }; 639 640 static const struct attribute_group numa_attr_group = { 641 .attrs = numa_attrs, 642 }; 643 644 static int __init numa_init_sysfs(void) 645 { 646 int err; 647 struct kobject *numa_kobj; 648 649 numa_kobj = kobject_create_and_add("numa", mm_kobj); 650 if (!numa_kobj) { 651 pr_err("failed to create numa kobject\n"); 652 return -ENOMEM; 653 } 654 err = sysfs_create_group(numa_kobj, &numa_attr_group); 655 if (err) { 656 pr_err("failed to register numa group\n"); 657 goto delete_obj; 658 } 659 return 0; 660 661 delete_obj: 662 kobject_put(numa_kobj); 663 return err; 664 } 665 subsys_initcall(numa_init_sysfs); 666 #endif /* CONFIG_SYSFS */ 667 #endif 668