xref: /openbmc/linux/mm/memory-failure.c (revision f2d8b6917f3bcfb3190eb80567fea71a9b59dbd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 static bool __page_handle_poison(struct page *page)
72 {
73 	int ret;
74 
75 	zone_pcp_disable(page_zone(page));
76 	ret = dissolve_free_huge_page(page);
77 	if (!ret)
78 		ret = take_page_off_buddy(page);
79 	zone_pcp_enable(page_zone(page));
80 
81 	return ret > 0;
82 }
83 
84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
85 {
86 	if (hugepage_or_freepage) {
87 		/*
88 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
89 		 * returns 0 for non-hugetlb pages as well.
90 		 */
91 		if (!__page_handle_poison(page))
92 			/*
93 			 * We could fail to take off the target page from buddy
94 			 * for example due to racy page allocation, but that's
95 			 * acceptable because soft-offlined page is not broken
96 			 * and if someone really want to use it, they should
97 			 * take it.
98 			 */
99 			return false;
100 	}
101 
102 	SetPageHWPoison(page);
103 	if (release)
104 		put_page(page);
105 	page_ref_inc(page);
106 	num_poisoned_pages_inc();
107 
108 	return true;
109 }
110 
111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
112 
113 u32 hwpoison_filter_enable = 0;
114 u32 hwpoison_filter_dev_major = ~0U;
115 u32 hwpoison_filter_dev_minor = ~0U;
116 u64 hwpoison_filter_flags_mask;
117 u64 hwpoison_filter_flags_value;
118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
123 
124 static int hwpoison_filter_dev(struct page *p)
125 {
126 	struct address_space *mapping;
127 	dev_t dev;
128 
129 	if (hwpoison_filter_dev_major == ~0U &&
130 	    hwpoison_filter_dev_minor == ~0U)
131 		return 0;
132 
133 	mapping = page_mapping(p);
134 	if (mapping == NULL || mapping->host == NULL)
135 		return -EINVAL;
136 
137 	dev = mapping->host->i_sb->s_dev;
138 	if (hwpoison_filter_dev_major != ~0U &&
139 	    hwpoison_filter_dev_major != MAJOR(dev))
140 		return -EINVAL;
141 	if (hwpoison_filter_dev_minor != ~0U &&
142 	    hwpoison_filter_dev_minor != MINOR(dev))
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 
148 static int hwpoison_filter_flags(struct page *p)
149 {
150 	if (!hwpoison_filter_flags_mask)
151 		return 0;
152 
153 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
154 				    hwpoison_filter_flags_value)
155 		return 0;
156 	else
157 		return -EINVAL;
158 }
159 
160 /*
161  * This allows stress tests to limit test scope to a collection of tasks
162  * by putting them under some memcg. This prevents killing unrelated/important
163  * processes such as /sbin/init. Note that the target task may share clean
164  * pages with init (eg. libc text), which is harmless. If the target task
165  * share _dirty_ pages with another task B, the test scheme must make sure B
166  * is also included in the memcg. At last, due to race conditions this filter
167  * can only guarantee that the page either belongs to the memcg tasks, or is
168  * a freed page.
169  */
170 #ifdef CONFIG_MEMCG
171 u64 hwpoison_filter_memcg;
172 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
173 static int hwpoison_filter_task(struct page *p)
174 {
175 	if (!hwpoison_filter_memcg)
176 		return 0;
177 
178 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 #else
184 static int hwpoison_filter_task(struct page *p) { return 0; }
185 #endif
186 
187 int hwpoison_filter(struct page *p)
188 {
189 	if (!hwpoison_filter_enable)
190 		return 0;
191 
192 	if (hwpoison_filter_dev(p))
193 		return -EINVAL;
194 
195 	if (hwpoison_filter_flags(p))
196 		return -EINVAL;
197 
198 	if (hwpoison_filter_task(p))
199 		return -EINVAL;
200 
201 	return 0;
202 }
203 #else
204 int hwpoison_filter(struct page *p)
205 {
206 	return 0;
207 }
208 #endif
209 
210 EXPORT_SYMBOL_GPL(hwpoison_filter);
211 
212 /*
213  * Kill all processes that have a poisoned page mapped and then isolate
214  * the page.
215  *
216  * General strategy:
217  * Find all processes having the page mapped and kill them.
218  * But we keep a page reference around so that the page is not
219  * actually freed yet.
220  * Then stash the page away
221  *
222  * There's no convenient way to get back to mapped processes
223  * from the VMAs. So do a brute-force search over all
224  * running processes.
225  *
226  * Remember that machine checks are not common (or rather
227  * if they are common you have other problems), so this shouldn't
228  * be a performance issue.
229  *
230  * Also there are some races possible while we get from the
231  * error detection to actually handle it.
232  */
233 
234 struct to_kill {
235 	struct list_head nd;
236 	struct task_struct *tsk;
237 	unsigned long addr;
238 	short size_shift;
239 };
240 
241 /*
242  * Send all the processes who have the page mapped a signal.
243  * ``action optional'' if they are not immediately affected by the error
244  * ``action required'' if error happened in current execution context
245  */
246 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
247 {
248 	struct task_struct *t = tk->tsk;
249 	short addr_lsb = tk->size_shift;
250 	int ret = 0;
251 
252 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
253 			pfn, t->comm, t->pid);
254 
255 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
256 		ret = force_sig_mceerr(BUS_MCEERR_AR,
257 				 (void __user *)tk->addr, addr_lsb);
258 	else
259 		/*
260 		 * Signal other processes sharing the page if they have
261 		 * PF_MCE_EARLY set.
262 		 * Don't use force here, it's convenient if the signal
263 		 * can be temporarily blocked.
264 		 * This could cause a loop when the user sets SIGBUS
265 		 * to SIG_IGN, but hopefully no one will do that?
266 		 */
267 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
268 				      addr_lsb, t);  /* synchronous? */
269 	if (ret < 0)
270 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
271 			t->comm, t->pid, ret);
272 	return ret;
273 }
274 
275 /*
276  * Unknown page type encountered. Try to check whether it can turn PageLRU by
277  * lru_add_drain_all.
278  */
279 void shake_page(struct page *p)
280 {
281 	if (PageHuge(p))
282 		return;
283 
284 	if (!PageSlab(p)) {
285 		lru_add_drain_all();
286 		if (PageLRU(p) || is_free_buddy_page(p))
287 			return;
288 	}
289 
290 	/*
291 	 * TODO: Could shrink slab caches here if a lightweight range-based
292 	 * shrinker will be available.
293 	 */
294 }
295 EXPORT_SYMBOL_GPL(shake_page);
296 
297 static unsigned long dev_pagemap_mapping_shift(struct page *page,
298 		struct vm_area_struct *vma)
299 {
300 	unsigned long address = vma_address(page, vma);
301 	unsigned long ret = 0;
302 	pgd_t *pgd;
303 	p4d_t *p4d;
304 	pud_t *pud;
305 	pmd_t *pmd;
306 	pte_t *pte;
307 
308 	VM_BUG_ON_VMA(address == -EFAULT, vma);
309 	pgd = pgd_offset(vma->vm_mm, address);
310 	if (!pgd_present(*pgd))
311 		return 0;
312 	p4d = p4d_offset(pgd, address);
313 	if (!p4d_present(*p4d))
314 		return 0;
315 	pud = pud_offset(p4d, address);
316 	if (!pud_present(*pud))
317 		return 0;
318 	if (pud_devmap(*pud))
319 		return PUD_SHIFT;
320 	pmd = pmd_offset(pud, address);
321 	if (!pmd_present(*pmd))
322 		return 0;
323 	if (pmd_devmap(*pmd))
324 		return PMD_SHIFT;
325 	pte = pte_offset_map(pmd, address);
326 	if (pte_present(*pte) && pte_devmap(*pte))
327 		ret = PAGE_SHIFT;
328 	pte_unmap(pte);
329 	return ret;
330 }
331 
332 /*
333  * Failure handling: if we can't find or can't kill a process there's
334  * not much we can do.	We just print a message and ignore otherwise.
335  */
336 
337 /*
338  * Schedule a process for later kill.
339  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
340  */
341 static void add_to_kill(struct task_struct *tsk, struct page *p,
342 		       struct vm_area_struct *vma,
343 		       struct list_head *to_kill)
344 {
345 	struct to_kill *tk;
346 
347 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
348 	if (!tk) {
349 		pr_err("Memory failure: Out of memory while machine check handling\n");
350 		return;
351 	}
352 
353 	tk->addr = page_address_in_vma(p, vma);
354 	if (is_zone_device_page(p))
355 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
356 	else
357 		tk->size_shift = page_shift(compound_head(p));
358 
359 	/*
360 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
361 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
362 	 * so "tk->size_shift == 0" effectively checks no mapping on
363 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
364 	 * to a process' address space, it's possible not all N VMAs
365 	 * contain mappings for the page, but at least one VMA does.
366 	 * Only deliver SIGBUS with payload derived from the VMA that
367 	 * has a mapping for the page.
368 	 */
369 	if (tk->addr == -EFAULT) {
370 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
371 			page_to_pfn(p), tsk->comm);
372 	} else if (tk->size_shift == 0) {
373 		kfree(tk);
374 		return;
375 	}
376 
377 	get_task_struct(tsk);
378 	tk->tsk = tsk;
379 	list_add_tail(&tk->nd, to_kill);
380 }
381 
382 /*
383  * Kill the processes that have been collected earlier.
384  *
385  * Only do anything when FORCEKILL is set, otherwise just free the
386  * list (this is used for clean pages which do not need killing)
387  * Also when FAIL is set do a force kill because something went
388  * wrong earlier.
389  */
390 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
391 		unsigned long pfn, int flags)
392 {
393 	struct to_kill *tk, *next;
394 
395 	list_for_each_entry_safe (tk, next, to_kill, nd) {
396 		if (forcekill) {
397 			/*
398 			 * In case something went wrong with munmapping
399 			 * make sure the process doesn't catch the
400 			 * signal and then access the memory. Just kill it.
401 			 */
402 			if (fail || tk->addr == -EFAULT) {
403 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
404 				       pfn, tk->tsk->comm, tk->tsk->pid);
405 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
406 						 tk->tsk, PIDTYPE_PID);
407 			}
408 
409 			/*
410 			 * In theory the process could have mapped
411 			 * something else on the address in-between. We could
412 			 * check for that, but we need to tell the
413 			 * process anyways.
414 			 */
415 			else if (kill_proc(tk, pfn, flags) < 0)
416 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
417 				       pfn, tk->tsk->comm, tk->tsk->pid);
418 		}
419 		put_task_struct(tk->tsk);
420 		kfree(tk);
421 	}
422 }
423 
424 /*
425  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
426  * on behalf of the thread group. Return task_struct of the (first found)
427  * dedicated thread if found, and return NULL otherwise.
428  *
429  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
430  * have to call rcu_read_lock/unlock() in this function.
431  */
432 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
433 {
434 	struct task_struct *t;
435 
436 	for_each_thread(tsk, t) {
437 		if (t->flags & PF_MCE_PROCESS) {
438 			if (t->flags & PF_MCE_EARLY)
439 				return t;
440 		} else {
441 			if (sysctl_memory_failure_early_kill)
442 				return t;
443 		}
444 	}
445 	return NULL;
446 }
447 
448 /*
449  * Determine whether a given process is "early kill" process which expects
450  * to be signaled when some page under the process is hwpoisoned.
451  * Return task_struct of the dedicated thread (main thread unless explicitly
452  * specified) if the process is "early kill" and otherwise returns NULL.
453  *
454  * Note that the above is true for Action Optional case. For Action Required
455  * case, it's only meaningful to the current thread which need to be signaled
456  * with SIGBUS, this error is Action Optional for other non current
457  * processes sharing the same error page,if the process is "early kill", the
458  * task_struct of the dedicated thread will also be returned.
459  */
460 static struct task_struct *task_early_kill(struct task_struct *tsk,
461 					   int force_early)
462 {
463 	if (!tsk->mm)
464 		return NULL;
465 	/*
466 	 * Comparing ->mm here because current task might represent
467 	 * a subthread, while tsk always points to the main thread.
468 	 */
469 	if (force_early && tsk->mm == current->mm)
470 		return current;
471 
472 	return find_early_kill_thread(tsk);
473 }
474 
475 /*
476  * Collect processes when the error hit an anonymous page.
477  */
478 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
479 				int force_early)
480 {
481 	struct folio *folio = page_folio(page);
482 	struct vm_area_struct *vma;
483 	struct task_struct *tsk;
484 	struct anon_vma *av;
485 	pgoff_t pgoff;
486 
487 	av = folio_lock_anon_vma_read(folio);
488 	if (av == NULL)	/* Not actually mapped anymore */
489 		return;
490 
491 	pgoff = page_to_pgoff(page);
492 	read_lock(&tasklist_lock);
493 	for_each_process (tsk) {
494 		struct anon_vma_chain *vmac;
495 		struct task_struct *t = task_early_kill(tsk, force_early);
496 
497 		if (!t)
498 			continue;
499 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
500 					       pgoff, pgoff) {
501 			vma = vmac->vma;
502 			if (!page_mapped_in_vma(page, vma))
503 				continue;
504 			if (vma->vm_mm == t->mm)
505 				add_to_kill(t, page, vma, to_kill);
506 		}
507 	}
508 	read_unlock(&tasklist_lock);
509 	page_unlock_anon_vma_read(av);
510 }
511 
512 /*
513  * Collect processes when the error hit a file mapped page.
514  */
515 static void collect_procs_file(struct page *page, struct list_head *to_kill,
516 				int force_early)
517 {
518 	struct vm_area_struct *vma;
519 	struct task_struct *tsk;
520 	struct address_space *mapping = page->mapping;
521 	pgoff_t pgoff;
522 
523 	i_mmap_lock_read(mapping);
524 	read_lock(&tasklist_lock);
525 	pgoff = page_to_pgoff(page);
526 	for_each_process(tsk) {
527 		struct task_struct *t = task_early_kill(tsk, force_early);
528 
529 		if (!t)
530 			continue;
531 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
532 				      pgoff) {
533 			/*
534 			 * Send early kill signal to tasks where a vma covers
535 			 * the page but the corrupted page is not necessarily
536 			 * mapped it in its pte.
537 			 * Assume applications who requested early kill want
538 			 * to be informed of all such data corruptions.
539 			 */
540 			if (vma->vm_mm == t->mm)
541 				add_to_kill(t, page, vma, to_kill);
542 		}
543 	}
544 	read_unlock(&tasklist_lock);
545 	i_mmap_unlock_read(mapping);
546 }
547 
548 /*
549  * Collect the processes who have the corrupted page mapped to kill.
550  */
551 static void collect_procs(struct page *page, struct list_head *tokill,
552 				int force_early)
553 {
554 	if (!page->mapping)
555 		return;
556 
557 	if (PageAnon(page))
558 		collect_procs_anon(page, tokill, force_early);
559 	else
560 		collect_procs_file(page, tokill, force_early);
561 }
562 
563 struct hwp_walk {
564 	struct to_kill tk;
565 	unsigned long pfn;
566 	int flags;
567 };
568 
569 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
570 {
571 	tk->addr = addr;
572 	tk->size_shift = shift;
573 }
574 
575 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
576 				unsigned long poisoned_pfn, struct to_kill *tk)
577 {
578 	unsigned long pfn = 0;
579 
580 	if (pte_present(pte)) {
581 		pfn = pte_pfn(pte);
582 	} else {
583 		swp_entry_t swp = pte_to_swp_entry(pte);
584 
585 		if (is_hwpoison_entry(swp))
586 			pfn = hwpoison_entry_to_pfn(swp);
587 	}
588 
589 	if (!pfn || pfn != poisoned_pfn)
590 		return 0;
591 
592 	set_to_kill(tk, addr, shift);
593 	return 1;
594 }
595 
596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
597 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
598 				      struct hwp_walk *hwp)
599 {
600 	pmd_t pmd = *pmdp;
601 	unsigned long pfn;
602 	unsigned long hwpoison_vaddr;
603 
604 	if (!pmd_present(pmd))
605 		return 0;
606 	pfn = pmd_pfn(pmd);
607 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
608 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
609 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
610 		return 1;
611 	}
612 	return 0;
613 }
614 #else
615 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
616 				      struct hwp_walk *hwp)
617 {
618 	return 0;
619 }
620 #endif
621 
622 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
623 			      unsigned long end, struct mm_walk *walk)
624 {
625 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
626 	int ret = 0;
627 	pte_t *ptep, *mapped_pte;
628 	spinlock_t *ptl;
629 
630 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
631 	if (ptl) {
632 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
633 		spin_unlock(ptl);
634 		goto out;
635 	}
636 
637 	if (pmd_trans_unstable(pmdp))
638 		goto out;
639 
640 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
641 						addr, &ptl);
642 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
643 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
644 					     hwp->pfn, &hwp->tk);
645 		if (ret == 1)
646 			break;
647 	}
648 	pte_unmap_unlock(mapped_pte, ptl);
649 out:
650 	cond_resched();
651 	return ret;
652 }
653 
654 #ifdef CONFIG_HUGETLB_PAGE
655 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
656 			    unsigned long addr, unsigned long end,
657 			    struct mm_walk *walk)
658 {
659 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
660 	pte_t pte = huge_ptep_get(ptep);
661 	struct hstate *h = hstate_vma(walk->vma);
662 
663 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
664 				      hwp->pfn, &hwp->tk);
665 }
666 #else
667 #define hwpoison_hugetlb_range	NULL
668 #endif
669 
670 static const struct mm_walk_ops hwp_walk_ops = {
671 	.pmd_entry = hwpoison_pte_range,
672 	.hugetlb_entry = hwpoison_hugetlb_range,
673 };
674 
675 /*
676  * Sends SIGBUS to the current process with error info.
677  *
678  * This function is intended to handle "Action Required" MCEs on already
679  * hardware poisoned pages. They could happen, for example, when
680  * memory_failure() failed to unmap the error page at the first call, or
681  * when multiple local machine checks happened on different CPUs.
682  *
683  * MCE handler currently has no easy access to the error virtual address,
684  * so this function walks page table to find it. The returned virtual address
685  * is proper in most cases, but it could be wrong when the application
686  * process has multiple entries mapping the error page.
687  */
688 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
689 				  int flags)
690 {
691 	int ret;
692 	struct hwp_walk priv = {
693 		.pfn = pfn,
694 	};
695 	priv.tk.tsk = p;
696 
697 	mmap_read_lock(p->mm);
698 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
699 			      (void *)&priv);
700 	if (ret == 1 && priv.tk.addr)
701 		kill_proc(&priv.tk, pfn, flags);
702 	else
703 		ret = 0;
704 	mmap_read_unlock(p->mm);
705 	return ret > 0 ? -EHWPOISON : -EFAULT;
706 }
707 
708 static const char *action_name[] = {
709 	[MF_IGNORED] = "Ignored",
710 	[MF_FAILED] = "Failed",
711 	[MF_DELAYED] = "Delayed",
712 	[MF_RECOVERED] = "Recovered",
713 };
714 
715 static const char * const action_page_types[] = {
716 	[MF_MSG_KERNEL]			= "reserved kernel page",
717 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
718 	[MF_MSG_SLAB]			= "kernel slab page",
719 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
720 	[MF_MSG_HUGE]			= "huge page",
721 	[MF_MSG_FREE_HUGE]		= "free huge page",
722 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
723 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
724 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
725 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
726 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
727 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
728 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
729 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
730 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
731 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
732 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
733 	[MF_MSG_BUDDY]			= "free buddy page",
734 	[MF_MSG_DAX]			= "dax page",
735 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
736 	[MF_MSG_DIFFERENT_PAGE_SIZE]	= "different page size",
737 	[MF_MSG_UNKNOWN]		= "unknown page",
738 };
739 
740 /*
741  * XXX: It is possible that a page is isolated from LRU cache,
742  * and then kept in swap cache or failed to remove from page cache.
743  * The page count will stop it from being freed by unpoison.
744  * Stress tests should be aware of this memory leak problem.
745  */
746 static int delete_from_lru_cache(struct page *p)
747 {
748 	if (!isolate_lru_page(p)) {
749 		/*
750 		 * Clear sensible page flags, so that the buddy system won't
751 		 * complain when the page is unpoison-and-freed.
752 		 */
753 		ClearPageActive(p);
754 		ClearPageUnevictable(p);
755 
756 		/*
757 		 * Poisoned page might never drop its ref count to 0 so we have
758 		 * to uncharge it manually from its memcg.
759 		 */
760 		mem_cgroup_uncharge(page_folio(p));
761 
762 		/*
763 		 * drop the page count elevated by isolate_lru_page()
764 		 */
765 		put_page(p);
766 		return 0;
767 	}
768 	return -EIO;
769 }
770 
771 static int truncate_error_page(struct page *p, unsigned long pfn,
772 				struct address_space *mapping)
773 {
774 	int ret = MF_FAILED;
775 
776 	if (mapping->a_ops->error_remove_page) {
777 		int err = mapping->a_ops->error_remove_page(mapping, p);
778 
779 		if (err != 0) {
780 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
781 				pfn, err);
782 		} else if (page_has_private(p) &&
783 			   !try_to_release_page(p, GFP_NOIO)) {
784 			pr_info("Memory failure: %#lx: failed to release buffers\n",
785 				pfn);
786 		} else {
787 			ret = MF_RECOVERED;
788 		}
789 	} else {
790 		/*
791 		 * If the file system doesn't support it just invalidate
792 		 * This fails on dirty or anything with private pages
793 		 */
794 		if (invalidate_inode_page(p))
795 			ret = MF_RECOVERED;
796 		else
797 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
798 				pfn);
799 	}
800 
801 	return ret;
802 }
803 
804 struct page_state {
805 	unsigned long mask;
806 	unsigned long res;
807 	enum mf_action_page_type type;
808 
809 	/* Callback ->action() has to unlock the relevant page inside it. */
810 	int (*action)(struct page_state *ps, struct page *p);
811 };
812 
813 /*
814  * Return true if page is still referenced by others, otherwise return
815  * false.
816  *
817  * The extra_pins is true when one extra refcount is expected.
818  */
819 static bool has_extra_refcount(struct page_state *ps, struct page *p,
820 			       bool extra_pins)
821 {
822 	int count = page_count(p) - 1;
823 
824 	if (extra_pins)
825 		count -= 1;
826 
827 	if (count > 0) {
828 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
829 		       page_to_pfn(p), action_page_types[ps->type], count);
830 		return true;
831 	}
832 
833 	return false;
834 }
835 
836 /*
837  * Error hit kernel page.
838  * Do nothing, try to be lucky and not touch this instead. For a few cases we
839  * could be more sophisticated.
840  */
841 static int me_kernel(struct page_state *ps, struct page *p)
842 {
843 	unlock_page(p);
844 	return MF_IGNORED;
845 }
846 
847 /*
848  * Page in unknown state. Do nothing.
849  */
850 static int me_unknown(struct page_state *ps, struct page *p)
851 {
852 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
853 	unlock_page(p);
854 	return MF_FAILED;
855 }
856 
857 /*
858  * Clean (or cleaned) page cache page.
859  */
860 static int me_pagecache_clean(struct page_state *ps, struct page *p)
861 {
862 	int ret;
863 	struct address_space *mapping;
864 	bool extra_pins;
865 
866 	delete_from_lru_cache(p);
867 
868 	/*
869 	 * For anonymous pages we're done the only reference left
870 	 * should be the one m_f() holds.
871 	 */
872 	if (PageAnon(p)) {
873 		ret = MF_RECOVERED;
874 		goto out;
875 	}
876 
877 	/*
878 	 * Now truncate the page in the page cache. This is really
879 	 * more like a "temporary hole punch"
880 	 * Don't do this for block devices when someone else
881 	 * has a reference, because it could be file system metadata
882 	 * and that's not safe to truncate.
883 	 */
884 	mapping = page_mapping(p);
885 	if (!mapping) {
886 		/*
887 		 * Page has been teared down in the meanwhile
888 		 */
889 		ret = MF_FAILED;
890 		goto out;
891 	}
892 
893 	/*
894 	 * The shmem page is kept in page cache instead of truncating
895 	 * so is expected to have an extra refcount after error-handling.
896 	 */
897 	extra_pins = shmem_mapping(mapping);
898 
899 	/*
900 	 * Truncation is a bit tricky. Enable it per file system for now.
901 	 *
902 	 * Open: to take i_rwsem or not for this? Right now we don't.
903 	 */
904 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
905 	if (has_extra_refcount(ps, p, extra_pins))
906 		ret = MF_FAILED;
907 
908 out:
909 	unlock_page(p);
910 
911 	return ret;
912 }
913 
914 /*
915  * Dirty pagecache page
916  * Issues: when the error hit a hole page the error is not properly
917  * propagated.
918  */
919 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
920 {
921 	struct address_space *mapping = page_mapping(p);
922 
923 	SetPageError(p);
924 	/* TBD: print more information about the file. */
925 	if (mapping) {
926 		/*
927 		 * IO error will be reported by write(), fsync(), etc.
928 		 * who check the mapping.
929 		 * This way the application knows that something went
930 		 * wrong with its dirty file data.
931 		 *
932 		 * There's one open issue:
933 		 *
934 		 * The EIO will be only reported on the next IO
935 		 * operation and then cleared through the IO map.
936 		 * Normally Linux has two mechanisms to pass IO error
937 		 * first through the AS_EIO flag in the address space
938 		 * and then through the PageError flag in the page.
939 		 * Since we drop pages on memory failure handling the
940 		 * only mechanism open to use is through AS_AIO.
941 		 *
942 		 * This has the disadvantage that it gets cleared on
943 		 * the first operation that returns an error, while
944 		 * the PageError bit is more sticky and only cleared
945 		 * when the page is reread or dropped.  If an
946 		 * application assumes it will always get error on
947 		 * fsync, but does other operations on the fd before
948 		 * and the page is dropped between then the error
949 		 * will not be properly reported.
950 		 *
951 		 * This can already happen even without hwpoisoned
952 		 * pages: first on metadata IO errors (which only
953 		 * report through AS_EIO) or when the page is dropped
954 		 * at the wrong time.
955 		 *
956 		 * So right now we assume that the application DTRT on
957 		 * the first EIO, but we're not worse than other parts
958 		 * of the kernel.
959 		 */
960 		mapping_set_error(mapping, -EIO);
961 	}
962 
963 	return me_pagecache_clean(ps, p);
964 }
965 
966 /*
967  * Clean and dirty swap cache.
968  *
969  * Dirty swap cache page is tricky to handle. The page could live both in page
970  * cache and swap cache(ie. page is freshly swapped in). So it could be
971  * referenced concurrently by 2 types of PTEs:
972  * normal PTEs and swap PTEs. We try to handle them consistently by calling
973  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
974  * and then
975  *      - clear dirty bit to prevent IO
976  *      - remove from LRU
977  *      - but keep in the swap cache, so that when we return to it on
978  *        a later page fault, we know the application is accessing
979  *        corrupted data and shall be killed (we installed simple
980  *        interception code in do_swap_page to catch it).
981  *
982  * Clean swap cache pages can be directly isolated. A later page fault will
983  * bring in the known good data from disk.
984  */
985 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
986 {
987 	int ret;
988 	bool extra_pins = false;
989 
990 	ClearPageDirty(p);
991 	/* Trigger EIO in shmem: */
992 	ClearPageUptodate(p);
993 
994 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
995 	unlock_page(p);
996 
997 	if (ret == MF_DELAYED)
998 		extra_pins = true;
999 
1000 	if (has_extra_refcount(ps, p, extra_pins))
1001 		ret = MF_FAILED;
1002 
1003 	return ret;
1004 }
1005 
1006 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1007 {
1008 	int ret;
1009 
1010 	delete_from_swap_cache(p);
1011 
1012 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1013 	unlock_page(p);
1014 
1015 	if (has_extra_refcount(ps, p, false))
1016 		ret = MF_FAILED;
1017 
1018 	return ret;
1019 }
1020 
1021 /*
1022  * Huge pages. Needs work.
1023  * Issues:
1024  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1025  *   To narrow down kill region to one page, we need to break up pmd.
1026  */
1027 static int me_huge_page(struct page_state *ps, struct page *p)
1028 {
1029 	int res;
1030 	struct page *hpage = compound_head(p);
1031 	struct address_space *mapping;
1032 
1033 	if (!PageHuge(hpage))
1034 		return MF_DELAYED;
1035 
1036 	mapping = page_mapping(hpage);
1037 	if (mapping) {
1038 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1039 		unlock_page(hpage);
1040 	} else {
1041 		res = MF_FAILED;
1042 		unlock_page(hpage);
1043 		/*
1044 		 * migration entry prevents later access on error anonymous
1045 		 * hugepage, so we can free and dissolve it into buddy to
1046 		 * save healthy subpages.
1047 		 */
1048 		if (PageAnon(hpage))
1049 			put_page(hpage);
1050 		if (__page_handle_poison(p)) {
1051 			page_ref_inc(p);
1052 			res = MF_RECOVERED;
1053 		}
1054 	}
1055 
1056 	if (has_extra_refcount(ps, p, false))
1057 		res = MF_FAILED;
1058 
1059 	return res;
1060 }
1061 
1062 /*
1063  * Various page states we can handle.
1064  *
1065  * A page state is defined by its current page->flags bits.
1066  * The table matches them in order and calls the right handler.
1067  *
1068  * This is quite tricky because we can access page at any time
1069  * in its live cycle, so all accesses have to be extremely careful.
1070  *
1071  * This is not complete. More states could be added.
1072  * For any missing state don't attempt recovery.
1073  */
1074 
1075 #define dirty		(1UL << PG_dirty)
1076 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1077 #define unevict		(1UL << PG_unevictable)
1078 #define mlock		(1UL << PG_mlocked)
1079 #define lru		(1UL << PG_lru)
1080 #define head		(1UL << PG_head)
1081 #define slab		(1UL << PG_slab)
1082 #define reserved	(1UL << PG_reserved)
1083 
1084 static struct page_state error_states[] = {
1085 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1086 	/*
1087 	 * free pages are specially detected outside this table:
1088 	 * PG_buddy pages only make a small fraction of all free pages.
1089 	 */
1090 
1091 	/*
1092 	 * Could in theory check if slab page is free or if we can drop
1093 	 * currently unused objects without touching them. But just
1094 	 * treat it as standard kernel for now.
1095 	 */
1096 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1097 
1098 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1099 
1100 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1101 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1102 
1103 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1104 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1105 
1106 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1107 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1108 
1109 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1110 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1111 
1112 	/*
1113 	 * Catchall entry: must be at end.
1114 	 */
1115 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1116 };
1117 
1118 #undef dirty
1119 #undef sc
1120 #undef unevict
1121 #undef mlock
1122 #undef lru
1123 #undef head
1124 #undef slab
1125 #undef reserved
1126 
1127 /*
1128  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1129  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1130  */
1131 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1132 			  enum mf_result result)
1133 {
1134 	trace_memory_failure_event(pfn, type, result);
1135 
1136 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1137 		pfn, action_page_types[type], action_name[result]);
1138 }
1139 
1140 static int page_action(struct page_state *ps, struct page *p,
1141 			unsigned long pfn)
1142 {
1143 	int result;
1144 
1145 	/* page p should be unlocked after returning from ps->action().  */
1146 	result = ps->action(ps, p);
1147 
1148 	action_result(pfn, ps->type, result);
1149 
1150 	/* Could do more checks here if page looks ok */
1151 	/*
1152 	 * Could adjust zone counters here to correct for the missing page.
1153 	 */
1154 
1155 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1156 }
1157 
1158 static inline bool PageHWPoisonTakenOff(struct page *page)
1159 {
1160 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1161 }
1162 
1163 void SetPageHWPoisonTakenOff(struct page *page)
1164 {
1165 	set_page_private(page, MAGIC_HWPOISON);
1166 }
1167 
1168 void ClearPageHWPoisonTakenOff(struct page *page)
1169 {
1170 	if (PageHWPoison(page))
1171 		set_page_private(page, 0);
1172 }
1173 
1174 /*
1175  * Return true if a page type of a given page is supported by hwpoison
1176  * mechanism (while handling could fail), otherwise false.  This function
1177  * does not return true for hugetlb or device memory pages, so it's assumed
1178  * to be called only in the context where we never have such pages.
1179  */
1180 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1181 {
1182 	bool movable = false;
1183 
1184 	/* Soft offline could mirgate non-LRU movable pages */
1185 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1186 		movable = true;
1187 
1188 	return movable || PageLRU(page) || is_free_buddy_page(page);
1189 }
1190 
1191 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1192 {
1193 	struct page *head = compound_head(page);
1194 	int ret = 0;
1195 	bool hugetlb = false;
1196 
1197 	ret = get_hwpoison_huge_page(head, &hugetlb);
1198 	if (hugetlb)
1199 		return ret;
1200 
1201 	/*
1202 	 * This check prevents from calling get_hwpoison_unless_zero()
1203 	 * for any unsupported type of page in order to reduce the risk of
1204 	 * unexpected races caused by taking a page refcount.
1205 	 */
1206 	if (!HWPoisonHandlable(head, flags))
1207 		return -EBUSY;
1208 
1209 	if (get_page_unless_zero(head)) {
1210 		if (head == compound_head(page))
1211 			return 1;
1212 
1213 		pr_info("Memory failure: %#lx cannot catch tail\n",
1214 			page_to_pfn(page));
1215 		put_page(head);
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static int get_any_page(struct page *p, unsigned long flags)
1222 {
1223 	int ret = 0, pass = 0;
1224 	bool count_increased = false;
1225 
1226 	if (flags & MF_COUNT_INCREASED)
1227 		count_increased = true;
1228 
1229 try_again:
1230 	if (!count_increased) {
1231 		ret = __get_hwpoison_page(p, flags);
1232 		if (!ret) {
1233 			if (page_count(p)) {
1234 				/* We raced with an allocation, retry. */
1235 				if (pass++ < 3)
1236 					goto try_again;
1237 				ret = -EBUSY;
1238 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1239 				/* We raced with put_page, retry. */
1240 				if (pass++ < 3)
1241 					goto try_again;
1242 				ret = -EIO;
1243 			}
1244 			goto out;
1245 		} else if (ret == -EBUSY) {
1246 			/*
1247 			 * We raced with (possibly temporary) unhandlable
1248 			 * page, retry.
1249 			 */
1250 			if (pass++ < 3) {
1251 				shake_page(p);
1252 				goto try_again;
1253 			}
1254 			ret = -EIO;
1255 			goto out;
1256 		}
1257 	}
1258 
1259 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1260 		ret = 1;
1261 	} else {
1262 		/*
1263 		 * A page we cannot handle. Check whether we can turn
1264 		 * it into something we can handle.
1265 		 */
1266 		if (pass++ < 3) {
1267 			put_page(p);
1268 			shake_page(p);
1269 			count_increased = false;
1270 			goto try_again;
1271 		}
1272 		put_page(p);
1273 		ret = -EIO;
1274 	}
1275 out:
1276 	if (ret == -EIO)
1277 		dump_page(p, "hwpoison: unhandlable page");
1278 
1279 	return ret;
1280 }
1281 
1282 static int __get_unpoison_page(struct page *page)
1283 {
1284 	struct page *head = compound_head(page);
1285 	int ret = 0;
1286 	bool hugetlb = false;
1287 
1288 	ret = get_hwpoison_huge_page(head, &hugetlb);
1289 	if (hugetlb)
1290 		return ret;
1291 
1292 	/*
1293 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1294 	 * but also isolated from buddy freelist, so need to identify the
1295 	 * state and have to cancel both operations to unpoison.
1296 	 */
1297 	if (PageHWPoisonTakenOff(page))
1298 		return -EHWPOISON;
1299 
1300 	return get_page_unless_zero(page) ? 1 : 0;
1301 }
1302 
1303 /**
1304  * get_hwpoison_page() - Get refcount for memory error handling
1305  * @p:		Raw error page (hit by memory error)
1306  * @flags:	Flags controlling behavior of error handling
1307  *
1308  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1309  * error on it, after checking that the error page is in a well-defined state
1310  * (defined as a page-type we can successfully handle the memory error on it,
1311  * such as LRU page and hugetlb page).
1312  *
1313  * Memory error handling could be triggered at any time on any type of page,
1314  * so it's prone to race with typical memory management lifecycle (like
1315  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1316  * extra care for the error page's state (as done in __get_hwpoison_page()),
1317  * and has some retry logic in get_any_page().
1318  *
1319  * When called from unpoison_memory(), the caller should already ensure that
1320  * the given page has PG_hwpoison. So it's never reused for other page
1321  * allocations, and __get_unpoison_page() never races with them.
1322  *
1323  * Return: 0 on failure,
1324  *         1 on success for in-use pages in a well-defined state,
1325  *         -EIO for pages on which we can not handle memory errors,
1326  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1327  *         operations like allocation and free,
1328  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1329  */
1330 static int get_hwpoison_page(struct page *p, unsigned long flags)
1331 {
1332 	int ret;
1333 
1334 	zone_pcp_disable(page_zone(p));
1335 	if (flags & MF_UNPOISON)
1336 		ret = __get_unpoison_page(p);
1337 	else
1338 		ret = get_any_page(p, flags);
1339 	zone_pcp_enable(page_zone(p));
1340 
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Do all that is necessary to remove user space mappings. Unmap
1346  * the pages and send SIGBUS to the processes if the data was dirty.
1347  */
1348 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1349 				  int flags, struct page *hpage)
1350 {
1351 	struct folio *folio = page_folio(hpage);
1352 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1353 	struct address_space *mapping;
1354 	LIST_HEAD(tokill);
1355 	bool unmap_success;
1356 	int kill = 1, forcekill;
1357 	bool mlocked = PageMlocked(hpage);
1358 
1359 	/*
1360 	 * Here we are interested only in user-mapped pages, so skip any
1361 	 * other types of pages.
1362 	 */
1363 	if (PageReserved(p) || PageSlab(p))
1364 		return true;
1365 	if (!(PageLRU(hpage) || PageHuge(p)))
1366 		return true;
1367 
1368 	/*
1369 	 * This check implies we don't kill processes if their pages
1370 	 * are in the swap cache early. Those are always late kills.
1371 	 */
1372 	if (!page_mapped(hpage))
1373 		return true;
1374 
1375 	if (PageKsm(p)) {
1376 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1377 		return false;
1378 	}
1379 
1380 	if (PageSwapCache(p)) {
1381 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1382 			pfn);
1383 		ttu |= TTU_IGNORE_HWPOISON;
1384 	}
1385 
1386 	/*
1387 	 * Propagate the dirty bit from PTEs to struct page first, because we
1388 	 * need this to decide if we should kill or just drop the page.
1389 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1390 	 * be called inside page lock (it's recommended but not enforced).
1391 	 */
1392 	mapping = page_mapping(hpage);
1393 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1394 	    mapping_can_writeback(mapping)) {
1395 		if (page_mkclean(hpage)) {
1396 			SetPageDirty(hpage);
1397 		} else {
1398 			kill = 0;
1399 			ttu |= TTU_IGNORE_HWPOISON;
1400 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1401 				pfn);
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * First collect all the processes that have the page
1407 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1408 	 * because ttu takes the rmap data structures down.
1409 	 *
1410 	 * Error handling: We ignore errors here because
1411 	 * there's nothing that can be done.
1412 	 */
1413 	if (kill)
1414 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1415 
1416 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1417 		/*
1418 		 * For hugetlb pages in shared mappings, try_to_unmap
1419 		 * could potentially call huge_pmd_unshare.  Because of
1420 		 * this, take semaphore in write mode here and set
1421 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1422 		 * at this higher level.
1423 		 */
1424 		mapping = hugetlb_page_mapping_lock_write(hpage);
1425 		if (mapping) {
1426 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1427 			i_mmap_unlock_write(mapping);
1428 		} else
1429 			pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1430 	} else {
1431 		try_to_unmap(folio, ttu);
1432 	}
1433 
1434 	unmap_success = !page_mapped(hpage);
1435 	if (!unmap_success)
1436 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1437 		       pfn, page_mapcount(hpage));
1438 
1439 	/*
1440 	 * try_to_unmap() might put mlocked page in lru cache, so call
1441 	 * shake_page() again to ensure that it's flushed.
1442 	 */
1443 	if (mlocked)
1444 		shake_page(hpage);
1445 
1446 	/*
1447 	 * Now that the dirty bit has been propagated to the
1448 	 * struct page and all unmaps done we can decide if
1449 	 * killing is needed or not.  Only kill when the page
1450 	 * was dirty or the process is not restartable,
1451 	 * otherwise the tokill list is merely
1452 	 * freed.  When there was a problem unmapping earlier
1453 	 * use a more force-full uncatchable kill to prevent
1454 	 * any accesses to the poisoned memory.
1455 	 */
1456 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1457 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1458 
1459 	return unmap_success;
1460 }
1461 
1462 static int identify_page_state(unsigned long pfn, struct page *p,
1463 				unsigned long page_flags)
1464 {
1465 	struct page_state *ps;
1466 
1467 	/*
1468 	 * The first check uses the current page flags which may not have any
1469 	 * relevant information. The second check with the saved page flags is
1470 	 * carried out only if the first check can't determine the page status.
1471 	 */
1472 	for (ps = error_states;; ps++)
1473 		if ((p->flags & ps->mask) == ps->res)
1474 			break;
1475 
1476 	page_flags |= (p->flags & (1UL << PG_dirty));
1477 
1478 	if (!ps->mask)
1479 		for (ps = error_states;; ps++)
1480 			if ((page_flags & ps->mask) == ps->res)
1481 				break;
1482 	return page_action(ps, p, pfn);
1483 }
1484 
1485 static int try_to_split_thp_page(struct page *page, const char *msg)
1486 {
1487 	lock_page(page);
1488 	if (unlikely(split_huge_page(page))) {
1489 		unsigned long pfn = page_to_pfn(page);
1490 
1491 		unlock_page(page);
1492 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1493 		put_page(page);
1494 		return -EBUSY;
1495 	}
1496 	unlock_page(page);
1497 
1498 	return 0;
1499 }
1500 
1501 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1502 {
1503 	struct page *p = pfn_to_page(pfn);
1504 	struct page *head = compound_head(p);
1505 	int res;
1506 	unsigned long page_flags;
1507 
1508 	if (TestSetPageHWPoison(head)) {
1509 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1510 		       pfn);
1511 		res = -EHWPOISON;
1512 		if (flags & MF_ACTION_REQUIRED)
1513 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1514 		return res;
1515 	}
1516 
1517 	num_poisoned_pages_inc();
1518 
1519 	if (!(flags & MF_COUNT_INCREASED)) {
1520 		res = get_hwpoison_page(p, flags);
1521 		if (!res) {
1522 			lock_page(head);
1523 			if (hwpoison_filter(p)) {
1524 				if (TestClearPageHWPoison(head))
1525 					num_poisoned_pages_dec();
1526 				unlock_page(head);
1527 				return -EOPNOTSUPP;
1528 			}
1529 			unlock_page(head);
1530 			res = MF_FAILED;
1531 			if (__page_handle_poison(p)) {
1532 				page_ref_inc(p);
1533 				res = MF_RECOVERED;
1534 			}
1535 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1536 			return res == MF_RECOVERED ? 0 : -EBUSY;
1537 		} else if (res < 0) {
1538 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1539 			return -EBUSY;
1540 		}
1541 	}
1542 
1543 	lock_page(head);
1544 
1545 	/*
1546 	 * The page could have changed compound pages due to race window.
1547 	 * If this happens just bail out.
1548 	 */
1549 	if (!PageHuge(p) || compound_head(p) != head) {
1550 		action_result(pfn, MF_MSG_DIFFERENT_PAGE_SIZE, MF_IGNORED);
1551 		res = -EBUSY;
1552 		goto out;
1553 	}
1554 
1555 	page_flags = head->flags;
1556 
1557 	if (hwpoison_filter(p)) {
1558 		if (TestClearPageHWPoison(head))
1559 			num_poisoned_pages_dec();
1560 		put_page(p);
1561 		res = -EOPNOTSUPP;
1562 		goto out;
1563 	}
1564 
1565 	/*
1566 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1567 	 * simply disable it. In order to make it work properly, we need
1568 	 * make sure that:
1569 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1570 	 *    entry properly works, and
1571 	 *  - other mm code walking over page table is aware of pud-aligned
1572 	 *    hwpoison entries.
1573 	 */
1574 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1575 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1576 		res = -EBUSY;
1577 		goto out;
1578 	}
1579 
1580 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1581 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1582 		res = -EBUSY;
1583 		goto out;
1584 	}
1585 
1586 	return identify_page_state(pfn, p, page_flags);
1587 out:
1588 	unlock_page(head);
1589 	return res;
1590 }
1591 
1592 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1593 		struct dev_pagemap *pgmap)
1594 {
1595 	struct page *page = pfn_to_page(pfn);
1596 	unsigned long size = 0;
1597 	struct to_kill *tk;
1598 	LIST_HEAD(tokill);
1599 	int rc = -EBUSY;
1600 	loff_t start;
1601 	dax_entry_t cookie;
1602 
1603 	if (flags & MF_COUNT_INCREASED)
1604 		/*
1605 		 * Drop the extra refcount in case we come from madvise().
1606 		 */
1607 		put_page(page);
1608 
1609 	/* device metadata space is not recoverable */
1610 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1611 		rc = -ENXIO;
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * Pages instantiated by device-dax (not filesystem-dax)
1617 	 * may be compound pages.
1618 	 */
1619 	page = compound_head(page);
1620 
1621 	/*
1622 	 * Prevent the inode from being freed while we are interrogating
1623 	 * the address_space, typically this would be handled by
1624 	 * lock_page(), but dax pages do not use the page lock. This
1625 	 * also prevents changes to the mapping of this pfn until
1626 	 * poison signaling is complete.
1627 	 */
1628 	cookie = dax_lock_page(page);
1629 	if (!cookie)
1630 		goto out;
1631 
1632 	if (hwpoison_filter(page)) {
1633 		rc = -EOPNOTSUPP;
1634 		goto unlock;
1635 	}
1636 
1637 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1638 		/*
1639 		 * TODO: Handle HMM pages which may need coordination
1640 		 * with device-side memory.
1641 		 */
1642 		goto unlock;
1643 	}
1644 
1645 	/*
1646 	 * Use this flag as an indication that the dax page has been
1647 	 * remapped UC to prevent speculative consumption of poison.
1648 	 */
1649 	SetPageHWPoison(page);
1650 
1651 	/*
1652 	 * Unlike System-RAM there is no possibility to swap in a
1653 	 * different physical page at a given virtual address, so all
1654 	 * userspace consumption of ZONE_DEVICE memory necessitates
1655 	 * SIGBUS (i.e. MF_MUST_KILL)
1656 	 */
1657 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1658 	collect_procs(page, &tokill, true);
1659 
1660 	list_for_each_entry(tk, &tokill, nd)
1661 		if (tk->size_shift)
1662 			size = max(size, 1UL << tk->size_shift);
1663 	if (size) {
1664 		/*
1665 		 * Unmap the largest mapping to avoid breaking up
1666 		 * device-dax mappings which are constant size. The
1667 		 * actual size of the mapping being torn down is
1668 		 * communicated in siginfo, see kill_proc()
1669 		 */
1670 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1671 		unmap_mapping_range(page->mapping, start, size, 0);
1672 	}
1673 	kill_procs(&tokill, true, false, pfn, flags);
1674 	rc = 0;
1675 unlock:
1676 	dax_unlock_page(page, cookie);
1677 out:
1678 	/* drop pgmap ref acquired in caller */
1679 	put_dev_pagemap(pgmap);
1680 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1681 	return rc;
1682 }
1683 
1684 static DEFINE_MUTEX(mf_mutex);
1685 
1686 /**
1687  * memory_failure - Handle memory failure of a page.
1688  * @pfn: Page Number of the corrupted page
1689  * @flags: fine tune action taken
1690  *
1691  * This function is called by the low level machine check code
1692  * of an architecture when it detects hardware memory corruption
1693  * of a page. It tries its best to recover, which includes
1694  * dropping pages, killing processes etc.
1695  *
1696  * The function is primarily of use for corruptions that
1697  * happen outside the current execution context (e.g. when
1698  * detected by a background scrubber)
1699  *
1700  * Must run in process context (e.g. a work queue) with interrupts
1701  * enabled and no spinlocks hold.
1702  *
1703  * Return: 0 for successfully handled the memory error,
1704  *         -EOPNOTSUPP for memory_filter() filtered the error event,
1705  *         < 0(except -EOPNOTSUPP) on failure.
1706  */
1707 int memory_failure(unsigned long pfn, int flags)
1708 {
1709 	struct page *p;
1710 	struct page *hpage;
1711 	struct dev_pagemap *pgmap;
1712 	int res = 0;
1713 	unsigned long page_flags;
1714 	bool retry = true;
1715 
1716 	if (!sysctl_memory_failure_recovery)
1717 		panic("Memory failure on page %lx", pfn);
1718 
1719 	mutex_lock(&mf_mutex);
1720 
1721 	p = pfn_to_online_page(pfn);
1722 	if (!p) {
1723 		res = arch_memory_failure(pfn, flags);
1724 		if (res == 0)
1725 			goto unlock_mutex;
1726 
1727 		if (pfn_valid(pfn)) {
1728 			pgmap = get_dev_pagemap(pfn, NULL);
1729 			if (pgmap) {
1730 				res = memory_failure_dev_pagemap(pfn, flags,
1731 								 pgmap);
1732 				goto unlock_mutex;
1733 			}
1734 		}
1735 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1736 			pfn);
1737 		res = -ENXIO;
1738 		goto unlock_mutex;
1739 	}
1740 
1741 try_again:
1742 	if (PageHuge(p)) {
1743 		res = memory_failure_hugetlb(pfn, flags);
1744 		goto unlock_mutex;
1745 	}
1746 
1747 	if (TestSetPageHWPoison(p)) {
1748 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1749 			pfn);
1750 		res = -EHWPOISON;
1751 		if (flags & MF_ACTION_REQUIRED)
1752 			res = kill_accessing_process(current, pfn, flags);
1753 		goto unlock_mutex;
1754 	}
1755 
1756 	hpage = compound_head(p);
1757 	num_poisoned_pages_inc();
1758 
1759 	/*
1760 	 * We need/can do nothing about count=0 pages.
1761 	 * 1) it's a free page, and therefore in safe hand:
1762 	 *    prep_new_page() will be the gate keeper.
1763 	 * 2) it's part of a non-compound high order page.
1764 	 *    Implies some kernel user: cannot stop them from
1765 	 *    R/W the page; let's pray that the page has been
1766 	 *    used and will be freed some time later.
1767 	 * In fact it's dangerous to directly bump up page count from 0,
1768 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1769 	 */
1770 	if (!(flags & MF_COUNT_INCREASED)) {
1771 		res = get_hwpoison_page(p, flags);
1772 		if (!res) {
1773 			if (is_free_buddy_page(p)) {
1774 				if (take_page_off_buddy(p)) {
1775 					page_ref_inc(p);
1776 					res = MF_RECOVERED;
1777 				} else {
1778 					/* We lost the race, try again */
1779 					if (retry) {
1780 						ClearPageHWPoison(p);
1781 						num_poisoned_pages_dec();
1782 						retry = false;
1783 						goto try_again;
1784 					}
1785 					res = MF_FAILED;
1786 				}
1787 				action_result(pfn, MF_MSG_BUDDY, res);
1788 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1789 			} else {
1790 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1791 				res = -EBUSY;
1792 			}
1793 			goto unlock_mutex;
1794 		} else if (res < 0) {
1795 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1796 			res = -EBUSY;
1797 			goto unlock_mutex;
1798 		}
1799 	}
1800 
1801 	if (PageTransHuge(hpage)) {
1802 		/*
1803 		 * The flag must be set after the refcount is bumped
1804 		 * otherwise it may race with THP split.
1805 		 * And the flag can't be set in get_hwpoison_page() since
1806 		 * it is called by soft offline too and it is just called
1807 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1808 		 * place.
1809 		 *
1810 		 * Don't need care about the above error handling paths for
1811 		 * get_hwpoison_page() since they handle either free page
1812 		 * or unhandlable page.  The refcount is bumped iff the
1813 		 * page is a valid handlable page.
1814 		 */
1815 		SetPageHasHWPoisoned(hpage);
1816 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1817 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1818 			res = -EBUSY;
1819 			goto unlock_mutex;
1820 		}
1821 		VM_BUG_ON_PAGE(!page_count(p), p);
1822 	}
1823 
1824 	/*
1825 	 * We ignore non-LRU pages for good reasons.
1826 	 * - PG_locked is only well defined for LRU pages and a few others
1827 	 * - to avoid races with __SetPageLocked()
1828 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1829 	 * The check (unnecessarily) ignores LRU pages being isolated and
1830 	 * walked by the page reclaim code, however that's not a big loss.
1831 	 */
1832 	shake_page(p);
1833 
1834 	lock_page(p);
1835 
1836 	/*
1837 	 * We're only intended to deal with the non-Compound page here.
1838 	 * However, the page could have changed compound pages due to
1839 	 * race window. If this happens, we could try again to hopefully
1840 	 * handle the page next round.
1841 	 */
1842 	if (PageCompound(p)) {
1843 		if (retry) {
1844 			if (TestClearPageHWPoison(p))
1845 				num_poisoned_pages_dec();
1846 			unlock_page(p);
1847 			put_page(p);
1848 			flags &= ~MF_COUNT_INCREASED;
1849 			retry = false;
1850 			goto try_again;
1851 		}
1852 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1853 		res = -EBUSY;
1854 		goto unlock_page;
1855 	}
1856 
1857 	/*
1858 	 * We use page flags to determine what action should be taken, but
1859 	 * the flags can be modified by the error containment action.  One
1860 	 * example is an mlocked page, where PG_mlocked is cleared by
1861 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1862 	 * correctly, we save a copy of the page flags at this time.
1863 	 */
1864 	page_flags = p->flags;
1865 
1866 	if (hwpoison_filter(p)) {
1867 		if (TestClearPageHWPoison(p))
1868 			num_poisoned_pages_dec();
1869 		unlock_page(p);
1870 		put_page(p);
1871 		res = -EOPNOTSUPP;
1872 		goto unlock_mutex;
1873 	}
1874 
1875 	/*
1876 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1877 	 * page_lock. We need wait writeback completion for this page or it
1878 	 * may trigger vfs BUG while evict inode.
1879 	 */
1880 	if (!PageLRU(p) && !PageWriteback(p))
1881 		goto identify_page_state;
1882 
1883 	/*
1884 	 * It's very difficult to mess with pages currently under IO
1885 	 * and in many cases impossible, so we just avoid it here.
1886 	 */
1887 	wait_on_page_writeback(p);
1888 
1889 	/*
1890 	 * Now take care of user space mappings.
1891 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1892 	 */
1893 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1894 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1895 		res = -EBUSY;
1896 		goto unlock_page;
1897 	}
1898 
1899 	/*
1900 	 * Torn down by someone else?
1901 	 */
1902 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1903 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1904 		res = -EBUSY;
1905 		goto unlock_page;
1906 	}
1907 
1908 identify_page_state:
1909 	res = identify_page_state(pfn, p, page_flags);
1910 	mutex_unlock(&mf_mutex);
1911 	return res;
1912 unlock_page:
1913 	unlock_page(p);
1914 unlock_mutex:
1915 	mutex_unlock(&mf_mutex);
1916 	return res;
1917 }
1918 EXPORT_SYMBOL_GPL(memory_failure);
1919 
1920 #define MEMORY_FAILURE_FIFO_ORDER	4
1921 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1922 
1923 struct memory_failure_entry {
1924 	unsigned long pfn;
1925 	int flags;
1926 };
1927 
1928 struct memory_failure_cpu {
1929 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1930 		      MEMORY_FAILURE_FIFO_SIZE);
1931 	spinlock_t lock;
1932 	struct work_struct work;
1933 };
1934 
1935 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1936 
1937 /**
1938  * memory_failure_queue - Schedule handling memory failure of a page.
1939  * @pfn: Page Number of the corrupted page
1940  * @flags: Flags for memory failure handling
1941  *
1942  * This function is called by the low level hardware error handler
1943  * when it detects hardware memory corruption of a page. It schedules
1944  * the recovering of error page, including dropping pages, killing
1945  * processes etc.
1946  *
1947  * The function is primarily of use for corruptions that
1948  * happen outside the current execution context (e.g. when
1949  * detected by a background scrubber)
1950  *
1951  * Can run in IRQ context.
1952  */
1953 void memory_failure_queue(unsigned long pfn, int flags)
1954 {
1955 	struct memory_failure_cpu *mf_cpu;
1956 	unsigned long proc_flags;
1957 	struct memory_failure_entry entry = {
1958 		.pfn =		pfn,
1959 		.flags =	flags,
1960 	};
1961 
1962 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1963 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1964 	if (kfifo_put(&mf_cpu->fifo, entry))
1965 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1966 	else
1967 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1968 		       pfn);
1969 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1970 	put_cpu_var(memory_failure_cpu);
1971 }
1972 EXPORT_SYMBOL_GPL(memory_failure_queue);
1973 
1974 static void memory_failure_work_func(struct work_struct *work)
1975 {
1976 	struct memory_failure_cpu *mf_cpu;
1977 	struct memory_failure_entry entry = { 0, };
1978 	unsigned long proc_flags;
1979 	int gotten;
1980 
1981 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1982 	for (;;) {
1983 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1984 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1985 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1986 		if (!gotten)
1987 			break;
1988 		if (entry.flags & MF_SOFT_OFFLINE)
1989 			soft_offline_page(entry.pfn, entry.flags);
1990 		else
1991 			memory_failure(entry.pfn, entry.flags);
1992 	}
1993 }
1994 
1995 /*
1996  * Process memory_failure work queued on the specified CPU.
1997  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1998  */
1999 void memory_failure_queue_kick(int cpu)
2000 {
2001 	struct memory_failure_cpu *mf_cpu;
2002 
2003 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2004 	cancel_work_sync(&mf_cpu->work);
2005 	memory_failure_work_func(&mf_cpu->work);
2006 }
2007 
2008 static int __init memory_failure_init(void)
2009 {
2010 	struct memory_failure_cpu *mf_cpu;
2011 	int cpu;
2012 
2013 	for_each_possible_cpu(cpu) {
2014 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2015 		spin_lock_init(&mf_cpu->lock);
2016 		INIT_KFIFO(mf_cpu->fifo);
2017 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2018 	}
2019 
2020 	return 0;
2021 }
2022 core_initcall(memory_failure_init);
2023 
2024 #define unpoison_pr_info(fmt, pfn, rs)			\
2025 ({							\
2026 	if (__ratelimit(rs))				\
2027 		pr_info(fmt, pfn);			\
2028 })
2029 
2030 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
2031 {
2032 	if (TestClearPageHWPoison(p)) {
2033 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2034 				 page_to_pfn(p), rs);
2035 		num_poisoned_pages_dec();
2036 		return 1;
2037 	}
2038 	return 0;
2039 }
2040 
2041 static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
2042 					  struct page *p)
2043 {
2044 	if (put_page_back_buddy(p)) {
2045 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2046 				 page_to_pfn(p), rs);
2047 		return 0;
2048 	}
2049 	return -EBUSY;
2050 }
2051 
2052 /**
2053  * unpoison_memory - Unpoison a previously poisoned page
2054  * @pfn: Page number of the to be unpoisoned page
2055  *
2056  * Software-unpoison a page that has been poisoned by
2057  * memory_failure() earlier.
2058  *
2059  * This is only done on the software-level, so it only works
2060  * for linux injected failures, not real hardware failures
2061  *
2062  * Returns 0 for success, otherwise -errno.
2063  */
2064 int unpoison_memory(unsigned long pfn)
2065 {
2066 	struct page *page;
2067 	struct page *p;
2068 	int ret = -EBUSY;
2069 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2070 					DEFAULT_RATELIMIT_BURST);
2071 
2072 	if (!pfn_valid(pfn))
2073 		return -ENXIO;
2074 
2075 	p = pfn_to_page(pfn);
2076 	page = compound_head(p);
2077 
2078 	mutex_lock(&mf_mutex);
2079 
2080 	if (!PageHWPoison(p)) {
2081 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2082 				 pfn, &unpoison_rs);
2083 		goto unlock_mutex;
2084 	}
2085 
2086 	if (page_count(page) > 1) {
2087 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2088 				 pfn, &unpoison_rs);
2089 		goto unlock_mutex;
2090 	}
2091 
2092 	if (page_mapped(page)) {
2093 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2094 				 pfn, &unpoison_rs);
2095 		goto unlock_mutex;
2096 	}
2097 
2098 	if (page_mapping(page)) {
2099 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2100 				 pfn, &unpoison_rs);
2101 		goto unlock_mutex;
2102 	}
2103 
2104 	if (PageSlab(page) || PageTable(page))
2105 		goto unlock_mutex;
2106 
2107 	ret = get_hwpoison_page(p, MF_UNPOISON);
2108 	if (!ret) {
2109 		if (clear_page_hwpoison(&unpoison_rs, page))
2110 			ret = 0;
2111 		else
2112 			ret = -EBUSY;
2113 	} else if (ret < 0) {
2114 		if (ret == -EHWPOISON) {
2115 			ret = unpoison_taken_off_page(&unpoison_rs, p);
2116 		} else
2117 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2118 					 pfn, &unpoison_rs);
2119 	} else {
2120 		int freeit = clear_page_hwpoison(&unpoison_rs, p);
2121 
2122 		put_page(page);
2123 		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2124 			put_page(page);
2125 			ret = 0;
2126 		}
2127 	}
2128 
2129 unlock_mutex:
2130 	mutex_unlock(&mf_mutex);
2131 	return ret;
2132 }
2133 EXPORT_SYMBOL(unpoison_memory);
2134 
2135 static bool isolate_page(struct page *page, struct list_head *pagelist)
2136 {
2137 	bool isolated = false;
2138 	bool lru = PageLRU(page);
2139 
2140 	if (PageHuge(page)) {
2141 		isolated = isolate_huge_page(page, pagelist);
2142 	} else {
2143 		if (lru)
2144 			isolated = !isolate_lru_page(page);
2145 		else
2146 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2147 
2148 		if (isolated)
2149 			list_add(&page->lru, pagelist);
2150 	}
2151 
2152 	if (isolated && lru)
2153 		inc_node_page_state(page, NR_ISOLATED_ANON +
2154 				    page_is_file_lru(page));
2155 
2156 	/*
2157 	 * If we succeed to isolate the page, we grabbed another refcount on
2158 	 * the page, so we can safely drop the one we got from get_any_pages().
2159 	 * If we failed to isolate the page, it means that we cannot go further
2160 	 * and we will return an error, so drop the reference we got from
2161 	 * get_any_pages() as well.
2162 	 */
2163 	put_page(page);
2164 	return isolated;
2165 }
2166 
2167 /*
2168  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2169  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2170  * If the page is mapped, it migrates the contents over.
2171  */
2172 static int __soft_offline_page(struct page *page)
2173 {
2174 	long ret = 0;
2175 	unsigned long pfn = page_to_pfn(page);
2176 	struct page *hpage = compound_head(page);
2177 	char const *msg_page[] = {"page", "hugepage"};
2178 	bool huge = PageHuge(page);
2179 	LIST_HEAD(pagelist);
2180 	struct migration_target_control mtc = {
2181 		.nid = NUMA_NO_NODE,
2182 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2183 	};
2184 
2185 	lock_page(page);
2186 	if (!PageHuge(page))
2187 		wait_on_page_writeback(page);
2188 	if (PageHWPoison(page)) {
2189 		unlock_page(page);
2190 		put_page(page);
2191 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2192 		return 0;
2193 	}
2194 
2195 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2196 		/*
2197 		 * Try to invalidate first. This should work for
2198 		 * non dirty unmapped page cache pages.
2199 		 */
2200 		ret = invalidate_inode_page(page);
2201 	unlock_page(page);
2202 
2203 	if (ret) {
2204 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2205 		page_handle_poison(page, false, true);
2206 		return 0;
2207 	}
2208 
2209 	if (isolate_page(hpage, &pagelist)) {
2210 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2211 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2212 		if (!ret) {
2213 			bool release = !huge;
2214 
2215 			if (!page_handle_poison(page, huge, release))
2216 				ret = -EBUSY;
2217 		} else {
2218 			if (!list_empty(&pagelist))
2219 				putback_movable_pages(&pagelist);
2220 
2221 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2222 				pfn, msg_page[huge], ret, &page->flags);
2223 			if (ret > 0)
2224 				ret = -EBUSY;
2225 		}
2226 	} else {
2227 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2228 			pfn, msg_page[huge], page_count(page), &page->flags);
2229 		ret = -EBUSY;
2230 	}
2231 	return ret;
2232 }
2233 
2234 static int soft_offline_in_use_page(struct page *page)
2235 {
2236 	struct page *hpage = compound_head(page);
2237 
2238 	if (!PageHuge(page) && PageTransHuge(hpage))
2239 		if (try_to_split_thp_page(page, "soft offline") < 0)
2240 			return -EBUSY;
2241 	return __soft_offline_page(page);
2242 }
2243 
2244 static int soft_offline_free_page(struct page *page)
2245 {
2246 	int rc = 0;
2247 
2248 	if (!page_handle_poison(page, true, false))
2249 		rc = -EBUSY;
2250 
2251 	return rc;
2252 }
2253 
2254 static void put_ref_page(struct page *page)
2255 {
2256 	if (page)
2257 		put_page(page);
2258 }
2259 
2260 /**
2261  * soft_offline_page - Soft offline a page.
2262  * @pfn: pfn to soft-offline
2263  * @flags: flags. Same as memory_failure().
2264  *
2265  * Returns 0 on success, otherwise negated errno.
2266  *
2267  * Soft offline a page, by migration or invalidation,
2268  * without killing anything. This is for the case when
2269  * a page is not corrupted yet (so it's still valid to access),
2270  * but has had a number of corrected errors and is better taken
2271  * out.
2272  *
2273  * The actual policy on when to do that is maintained by
2274  * user space.
2275  *
2276  * This should never impact any application or cause data loss,
2277  * however it might take some time.
2278  *
2279  * This is not a 100% solution for all memory, but tries to be
2280  * ``good enough'' for the majority of memory.
2281  */
2282 int soft_offline_page(unsigned long pfn, int flags)
2283 {
2284 	int ret;
2285 	bool try_again = true;
2286 	struct page *page, *ref_page = NULL;
2287 
2288 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2289 
2290 	if (!pfn_valid(pfn))
2291 		return -ENXIO;
2292 	if (flags & MF_COUNT_INCREASED)
2293 		ref_page = pfn_to_page(pfn);
2294 
2295 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2296 	page = pfn_to_online_page(pfn);
2297 	if (!page) {
2298 		put_ref_page(ref_page);
2299 		return -EIO;
2300 	}
2301 
2302 	mutex_lock(&mf_mutex);
2303 
2304 	if (PageHWPoison(page)) {
2305 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2306 		put_ref_page(ref_page);
2307 		mutex_unlock(&mf_mutex);
2308 		return 0;
2309 	}
2310 
2311 retry:
2312 	get_online_mems();
2313 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2314 	put_online_mems();
2315 
2316 	if (ret > 0) {
2317 		ret = soft_offline_in_use_page(page);
2318 	} else if (ret == 0) {
2319 		if (soft_offline_free_page(page) && try_again) {
2320 			try_again = false;
2321 			flags &= ~MF_COUNT_INCREASED;
2322 			goto retry;
2323 		}
2324 	}
2325 
2326 	mutex_unlock(&mf_mutex);
2327 
2328 	return ret;
2329 }
2330