xref: /openbmc/linux/mm/memory-failure.c (revision a09ed5e00084448453c8bada4dcd31e5fbfc2f21)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include "internal.h"
56 
57 int sysctl_memory_failure_early_kill __read_mostly = 0;
58 
59 int sysctl_memory_failure_recovery __read_mostly = 1;
60 
61 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62 
63 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64 
65 u32 hwpoison_filter_enable = 0;
66 u32 hwpoison_filter_dev_major = ~0U;
67 u32 hwpoison_filter_dev_minor = ~0U;
68 u64 hwpoison_filter_flags_mask;
69 u64 hwpoison_filter_flags_value;
70 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75 
76 static int hwpoison_filter_dev(struct page *p)
77 {
78 	struct address_space *mapping;
79 	dev_t dev;
80 
81 	if (hwpoison_filter_dev_major == ~0U &&
82 	    hwpoison_filter_dev_minor == ~0U)
83 		return 0;
84 
85 	/*
86 	 * page_mapping() does not accept slab pages.
87 	 */
88 	if (PageSlab(p))
89 		return -EINVAL;
90 
91 	mapping = page_mapping(p);
92 	if (mapping == NULL || mapping->host == NULL)
93 		return -EINVAL;
94 
95 	dev = mapping->host->i_sb->s_dev;
96 	if (hwpoison_filter_dev_major != ~0U &&
97 	    hwpoison_filter_dev_major != MAJOR(dev))
98 		return -EINVAL;
99 	if (hwpoison_filter_dev_minor != ~0U &&
100 	    hwpoison_filter_dev_minor != MINOR(dev))
101 		return -EINVAL;
102 
103 	return 0;
104 }
105 
106 static int hwpoison_filter_flags(struct page *p)
107 {
108 	if (!hwpoison_filter_flags_mask)
109 		return 0;
110 
111 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112 				    hwpoison_filter_flags_value)
113 		return 0;
114 	else
115 		return -EINVAL;
116 }
117 
118 /*
119  * This allows stress tests to limit test scope to a collection of tasks
120  * by putting them under some memcg. This prevents killing unrelated/important
121  * processes such as /sbin/init. Note that the target task may share clean
122  * pages with init (eg. libc text), which is harmless. If the target task
123  * share _dirty_ pages with another task B, the test scheme must make sure B
124  * is also included in the memcg. At last, due to race conditions this filter
125  * can only guarantee that the page either belongs to the memcg tasks, or is
126  * a freed page.
127  */
128 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129 u64 hwpoison_filter_memcg;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131 static int hwpoison_filter_task(struct page *p)
132 {
133 	struct mem_cgroup *mem;
134 	struct cgroup_subsys_state *css;
135 	unsigned long ino;
136 
137 	if (!hwpoison_filter_memcg)
138 		return 0;
139 
140 	mem = try_get_mem_cgroup_from_page(p);
141 	if (!mem)
142 		return -EINVAL;
143 
144 	css = mem_cgroup_css(mem);
145 	/* root_mem_cgroup has NULL dentries */
146 	if (!css->cgroup->dentry)
147 		return -EINVAL;
148 
149 	ino = css->cgroup->dentry->d_inode->i_ino;
150 	css_put(css);
151 
152 	if (ino != hwpoison_filter_memcg)
153 		return -EINVAL;
154 
155 	return 0;
156 }
157 #else
158 static int hwpoison_filter_task(struct page *p) { return 0; }
159 #endif
160 
161 int hwpoison_filter(struct page *p)
162 {
163 	if (!hwpoison_filter_enable)
164 		return 0;
165 
166 	if (hwpoison_filter_dev(p))
167 		return -EINVAL;
168 
169 	if (hwpoison_filter_flags(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_task(p))
173 		return -EINVAL;
174 
175 	return 0;
176 }
177 #else
178 int hwpoison_filter(struct page *p)
179 {
180 	return 0;
181 }
182 #endif
183 
184 EXPORT_SYMBOL_GPL(hwpoison_filter);
185 
186 /*
187  * Send all the processes who have the page mapped an ``action optional''
188  * signal.
189  */
190 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_code = BUS_MCEERR_AO;
202 	si.si_addr = (void *)addr;
203 #ifdef __ARCH_SI_TRAPNO
204 	si.si_trapno = trapno;
205 #endif
206 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
207 	/*
208 	 * Don't use force here, it's convenient if the signal
209 	 * can be temporarily blocked.
210 	 * This could cause a loop when the user sets SIGBUS
211 	 * to SIG_IGN, but hopefully no one will do that?
212 	 */
213 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
214 	if (ret < 0)
215 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216 		       t->comm, t->pid, ret);
217 	return ret;
218 }
219 
220 /*
221  * When a unknown page type is encountered drain as many buffers as possible
222  * in the hope to turn the page into a LRU or free page, which we can handle.
223  */
224 void shake_page(struct page *p, int access)
225 {
226 	if (!PageSlab(p)) {
227 		lru_add_drain_all();
228 		if (PageLRU(p))
229 			return;
230 		drain_all_pages();
231 		if (PageLRU(p) || is_free_buddy_page(p))
232 			return;
233 	}
234 
235 	/*
236 	 * Only call shrink_slab here (which would also shrink other caches) if
237 	 * access is not potentially fatal.
238 	 */
239 	if (access) {
240 		int nr;
241 		do {
242 			struct shrink_control shrink = {
243 				.gfp_mask = GFP_KERNEL,
244 				.nr_scanned = 1000,
245 			};
246 
247 			nr = shrink_slab(&shrink, 1000);
248 			if (page_count(p) == 1)
249 				break;
250 		} while (nr > 10);
251 	}
252 }
253 EXPORT_SYMBOL_GPL(shake_page);
254 
255 /*
256  * Kill all processes that have a poisoned page mapped and then isolate
257  * the page.
258  *
259  * General strategy:
260  * Find all processes having the page mapped and kill them.
261  * But we keep a page reference around so that the page is not
262  * actually freed yet.
263  * Then stash the page away
264  *
265  * There's no convenient way to get back to mapped processes
266  * from the VMAs. So do a brute-force search over all
267  * running processes.
268  *
269  * Remember that machine checks are not common (or rather
270  * if they are common you have other problems), so this shouldn't
271  * be a performance issue.
272  *
273  * Also there are some races possible while we get from the
274  * error detection to actually handle it.
275  */
276 
277 struct to_kill {
278 	struct list_head nd;
279 	struct task_struct *tsk;
280 	unsigned long addr;
281 	char addr_valid;
282 };
283 
284 /*
285  * Failure handling: if we can't find or can't kill a process there's
286  * not much we can do.	We just print a message and ignore otherwise.
287  */
288 
289 /*
290  * Schedule a process for later kill.
291  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
292  * TBD would GFP_NOIO be enough?
293  */
294 static void add_to_kill(struct task_struct *tsk, struct page *p,
295 		       struct vm_area_struct *vma,
296 		       struct list_head *to_kill,
297 		       struct to_kill **tkc)
298 {
299 	struct to_kill *tk;
300 
301 	if (*tkc) {
302 		tk = *tkc;
303 		*tkc = NULL;
304 	} else {
305 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
306 		if (!tk) {
307 			printk(KERN_ERR
308 		"MCE: Out of memory while machine check handling\n");
309 			return;
310 		}
311 	}
312 	tk->addr = page_address_in_vma(p, vma);
313 	tk->addr_valid = 1;
314 
315 	/*
316 	 * In theory we don't have to kill when the page was
317 	 * munmaped. But it could be also a mremap. Since that's
318 	 * likely very rare kill anyways just out of paranoia, but use
319 	 * a SIGKILL because the error is not contained anymore.
320 	 */
321 	if (tk->addr == -EFAULT) {
322 		pr_info("MCE: Unable to find user space address %lx in %s\n",
323 			page_to_pfn(p), tsk->comm);
324 		tk->addr_valid = 0;
325 	}
326 	get_task_struct(tsk);
327 	tk->tsk = tsk;
328 	list_add_tail(&tk->nd, to_kill);
329 }
330 
331 /*
332  * Kill the processes that have been collected earlier.
333  *
334  * Only do anything when DOIT is set, otherwise just free the list
335  * (this is used for clean pages which do not need killing)
336  * Also when FAIL is set do a force kill because something went
337  * wrong earlier.
338  */
339 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
340 			  int fail, struct page *page, unsigned long pfn)
341 {
342 	struct to_kill *tk, *next;
343 
344 	list_for_each_entry_safe (tk, next, to_kill, nd) {
345 		if (doit) {
346 			/*
347 			 * In case something went wrong with munmapping
348 			 * make sure the process doesn't catch the
349 			 * signal and then access the memory. Just kill it.
350 			 */
351 			if (fail || tk->addr_valid == 0) {
352 				printk(KERN_ERR
353 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
354 					pfn, tk->tsk->comm, tk->tsk->pid);
355 				force_sig(SIGKILL, tk->tsk);
356 			}
357 
358 			/*
359 			 * In theory the process could have mapped
360 			 * something else on the address in-between. We could
361 			 * check for that, but we need to tell the
362 			 * process anyways.
363 			 */
364 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
365 					      pfn, page) < 0)
366 				printk(KERN_ERR
367 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
368 					pfn, tk->tsk->comm, tk->tsk->pid);
369 		}
370 		put_task_struct(tk->tsk);
371 		kfree(tk);
372 	}
373 }
374 
375 static int task_early_kill(struct task_struct *tsk)
376 {
377 	if (!tsk->mm)
378 		return 0;
379 	if (tsk->flags & PF_MCE_PROCESS)
380 		return !!(tsk->flags & PF_MCE_EARLY);
381 	return sysctl_memory_failure_early_kill;
382 }
383 
384 /*
385  * Collect processes when the error hit an anonymous page.
386  */
387 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
388 			      struct to_kill **tkc)
389 {
390 	struct vm_area_struct *vma;
391 	struct task_struct *tsk;
392 	struct anon_vma *av;
393 
394 	read_lock(&tasklist_lock);
395 	av = page_lock_anon_vma(page);
396 	if (av == NULL)	/* Not actually mapped anymore */
397 		goto out;
398 	for_each_process (tsk) {
399 		struct anon_vma_chain *vmac;
400 
401 		if (!task_early_kill(tsk))
402 			continue;
403 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
404 			vma = vmac->vma;
405 			if (!page_mapped_in_vma(page, vma))
406 				continue;
407 			if (vma->vm_mm == tsk->mm)
408 				add_to_kill(tsk, page, vma, to_kill, tkc);
409 		}
410 	}
411 	page_unlock_anon_vma(av);
412 out:
413 	read_unlock(&tasklist_lock);
414 }
415 
416 /*
417  * Collect processes when the error hit a file mapped page.
418  */
419 static void collect_procs_file(struct page *page, struct list_head *to_kill,
420 			      struct to_kill **tkc)
421 {
422 	struct vm_area_struct *vma;
423 	struct task_struct *tsk;
424 	struct prio_tree_iter iter;
425 	struct address_space *mapping = page->mapping;
426 
427 	/*
428 	 * A note on the locking order between the two locks.
429 	 * We don't rely on this particular order.
430 	 * If you have some other code that needs a different order
431 	 * feel free to switch them around. Or add a reverse link
432 	 * from mm_struct to task_struct, then this could be all
433 	 * done without taking tasklist_lock and looping over all tasks.
434 	 */
435 
436 	read_lock(&tasklist_lock);
437 	mutex_lock(&mapping->i_mmap_mutex);
438 	for_each_process(tsk) {
439 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
440 
441 		if (!task_early_kill(tsk))
442 			continue;
443 
444 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
445 				      pgoff) {
446 			/*
447 			 * Send early kill signal to tasks where a vma covers
448 			 * the page but the corrupted page is not necessarily
449 			 * mapped it in its pte.
450 			 * Assume applications who requested early kill want
451 			 * to be informed of all such data corruptions.
452 			 */
453 			if (vma->vm_mm == tsk->mm)
454 				add_to_kill(tsk, page, vma, to_kill, tkc);
455 		}
456 	}
457 	mutex_unlock(&mapping->i_mmap_mutex);
458 	read_unlock(&tasklist_lock);
459 }
460 
461 /*
462  * Collect the processes who have the corrupted page mapped to kill.
463  * This is done in two steps for locking reasons.
464  * First preallocate one tokill structure outside the spin locks,
465  * so that we can kill at least one process reasonably reliable.
466  */
467 static void collect_procs(struct page *page, struct list_head *tokill)
468 {
469 	struct to_kill *tk;
470 
471 	if (!page->mapping)
472 		return;
473 
474 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
475 	if (!tk)
476 		return;
477 	if (PageAnon(page))
478 		collect_procs_anon(page, tokill, &tk);
479 	else
480 		collect_procs_file(page, tokill, &tk);
481 	kfree(tk);
482 }
483 
484 /*
485  * Error handlers for various types of pages.
486  */
487 
488 enum outcome {
489 	IGNORED,	/* Error: cannot be handled */
490 	FAILED,		/* Error: handling failed */
491 	DELAYED,	/* Will be handled later */
492 	RECOVERED,	/* Successfully recovered */
493 };
494 
495 static const char *action_name[] = {
496 	[IGNORED] = "Ignored",
497 	[FAILED] = "Failed",
498 	[DELAYED] = "Delayed",
499 	[RECOVERED] = "Recovered",
500 };
501 
502 /*
503  * XXX: It is possible that a page is isolated from LRU cache,
504  * and then kept in swap cache or failed to remove from page cache.
505  * The page count will stop it from being freed by unpoison.
506  * Stress tests should be aware of this memory leak problem.
507  */
508 static int delete_from_lru_cache(struct page *p)
509 {
510 	if (!isolate_lru_page(p)) {
511 		/*
512 		 * Clear sensible page flags, so that the buddy system won't
513 		 * complain when the page is unpoison-and-freed.
514 		 */
515 		ClearPageActive(p);
516 		ClearPageUnevictable(p);
517 		/*
518 		 * drop the page count elevated by isolate_lru_page()
519 		 */
520 		page_cache_release(p);
521 		return 0;
522 	}
523 	return -EIO;
524 }
525 
526 /*
527  * Error hit kernel page.
528  * Do nothing, try to be lucky and not touch this instead. For a few cases we
529  * could be more sophisticated.
530  */
531 static int me_kernel(struct page *p, unsigned long pfn)
532 {
533 	return IGNORED;
534 }
535 
536 /*
537  * Page in unknown state. Do nothing.
538  */
539 static int me_unknown(struct page *p, unsigned long pfn)
540 {
541 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
542 	return FAILED;
543 }
544 
545 /*
546  * Clean (or cleaned) page cache page.
547  */
548 static int me_pagecache_clean(struct page *p, unsigned long pfn)
549 {
550 	int err;
551 	int ret = FAILED;
552 	struct address_space *mapping;
553 
554 	delete_from_lru_cache(p);
555 
556 	/*
557 	 * For anonymous pages we're done the only reference left
558 	 * should be the one m_f() holds.
559 	 */
560 	if (PageAnon(p))
561 		return RECOVERED;
562 
563 	/*
564 	 * Now truncate the page in the page cache. This is really
565 	 * more like a "temporary hole punch"
566 	 * Don't do this for block devices when someone else
567 	 * has a reference, because it could be file system metadata
568 	 * and that's not safe to truncate.
569 	 */
570 	mapping = page_mapping(p);
571 	if (!mapping) {
572 		/*
573 		 * Page has been teared down in the meanwhile
574 		 */
575 		return FAILED;
576 	}
577 
578 	/*
579 	 * Truncation is a bit tricky. Enable it per file system for now.
580 	 *
581 	 * Open: to take i_mutex or not for this? Right now we don't.
582 	 */
583 	if (mapping->a_ops->error_remove_page) {
584 		err = mapping->a_ops->error_remove_page(mapping, p);
585 		if (err != 0) {
586 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
587 					pfn, err);
588 		} else if (page_has_private(p) &&
589 				!try_to_release_page(p, GFP_NOIO)) {
590 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
591 		} else {
592 			ret = RECOVERED;
593 		}
594 	} else {
595 		/*
596 		 * If the file system doesn't support it just invalidate
597 		 * This fails on dirty or anything with private pages
598 		 */
599 		if (invalidate_inode_page(p))
600 			ret = RECOVERED;
601 		else
602 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
603 				pfn);
604 	}
605 	return ret;
606 }
607 
608 /*
609  * Dirty cache page page
610  * Issues: when the error hit a hole page the error is not properly
611  * propagated.
612  */
613 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
614 {
615 	struct address_space *mapping = page_mapping(p);
616 
617 	SetPageError(p);
618 	/* TBD: print more information about the file. */
619 	if (mapping) {
620 		/*
621 		 * IO error will be reported by write(), fsync(), etc.
622 		 * who check the mapping.
623 		 * This way the application knows that something went
624 		 * wrong with its dirty file data.
625 		 *
626 		 * There's one open issue:
627 		 *
628 		 * The EIO will be only reported on the next IO
629 		 * operation and then cleared through the IO map.
630 		 * Normally Linux has two mechanisms to pass IO error
631 		 * first through the AS_EIO flag in the address space
632 		 * and then through the PageError flag in the page.
633 		 * Since we drop pages on memory failure handling the
634 		 * only mechanism open to use is through AS_AIO.
635 		 *
636 		 * This has the disadvantage that it gets cleared on
637 		 * the first operation that returns an error, while
638 		 * the PageError bit is more sticky and only cleared
639 		 * when the page is reread or dropped.  If an
640 		 * application assumes it will always get error on
641 		 * fsync, but does other operations on the fd before
642 		 * and the page is dropped between then the error
643 		 * will not be properly reported.
644 		 *
645 		 * This can already happen even without hwpoisoned
646 		 * pages: first on metadata IO errors (which only
647 		 * report through AS_EIO) or when the page is dropped
648 		 * at the wrong time.
649 		 *
650 		 * So right now we assume that the application DTRT on
651 		 * the first EIO, but we're not worse than other parts
652 		 * of the kernel.
653 		 */
654 		mapping_set_error(mapping, EIO);
655 	}
656 
657 	return me_pagecache_clean(p, pfn);
658 }
659 
660 /*
661  * Clean and dirty swap cache.
662  *
663  * Dirty swap cache page is tricky to handle. The page could live both in page
664  * cache and swap cache(ie. page is freshly swapped in). So it could be
665  * referenced concurrently by 2 types of PTEs:
666  * normal PTEs and swap PTEs. We try to handle them consistently by calling
667  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
668  * and then
669  *      - clear dirty bit to prevent IO
670  *      - remove from LRU
671  *      - but keep in the swap cache, so that when we return to it on
672  *        a later page fault, we know the application is accessing
673  *        corrupted data and shall be killed (we installed simple
674  *        interception code in do_swap_page to catch it).
675  *
676  * Clean swap cache pages can be directly isolated. A later page fault will
677  * bring in the known good data from disk.
678  */
679 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
680 {
681 	ClearPageDirty(p);
682 	/* Trigger EIO in shmem: */
683 	ClearPageUptodate(p);
684 
685 	if (!delete_from_lru_cache(p))
686 		return DELAYED;
687 	else
688 		return FAILED;
689 }
690 
691 static int me_swapcache_clean(struct page *p, unsigned long pfn)
692 {
693 	delete_from_swap_cache(p);
694 
695 	if (!delete_from_lru_cache(p))
696 		return RECOVERED;
697 	else
698 		return FAILED;
699 }
700 
701 /*
702  * Huge pages. Needs work.
703  * Issues:
704  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
705  *   To narrow down kill region to one page, we need to break up pmd.
706  */
707 static int me_huge_page(struct page *p, unsigned long pfn)
708 {
709 	int res = 0;
710 	struct page *hpage = compound_head(p);
711 	/*
712 	 * We can safely recover from error on free or reserved (i.e.
713 	 * not in-use) hugepage by dequeuing it from freelist.
714 	 * To check whether a hugepage is in-use or not, we can't use
715 	 * page->lru because it can be used in other hugepage operations,
716 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
717 	 * So instead we use page_mapping() and PageAnon().
718 	 * We assume that this function is called with page lock held,
719 	 * so there is no race between isolation and mapping/unmapping.
720 	 */
721 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
722 		res = dequeue_hwpoisoned_huge_page(hpage);
723 		if (!res)
724 			return RECOVERED;
725 	}
726 	return DELAYED;
727 }
728 
729 /*
730  * Various page states we can handle.
731  *
732  * A page state is defined by its current page->flags bits.
733  * The table matches them in order and calls the right handler.
734  *
735  * This is quite tricky because we can access page at any time
736  * in its live cycle, so all accesses have to be extremely careful.
737  *
738  * This is not complete. More states could be added.
739  * For any missing state don't attempt recovery.
740  */
741 
742 #define dirty		(1UL << PG_dirty)
743 #define sc		(1UL << PG_swapcache)
744 #define unevict		(1UL << PG_unevictable)
745 #define mlock		(1UL << PG_mlocked)
746 #define writeback	(1UL << PG_writeback)
747 #define lru		(1UL << PG_lru)
748 #define swapbacked	(1UL << PG_swapbacked)
749 #define head		(1UL << PG_head)
750 #define tail		(1UL << PG_tail)
751 #define compound	(1UL << PG_compound)
752 #define slab		(1UL << PG_slab)
753 #define reserved	(1UL << PG_reserved)
754 
755 static struct page_state {
756 	unsigned long mask;
757 	unsigned long res;
758 	char *msg;
759 	int (*action)(struct page *p, unsigned long pfn);
760 } error_states[] = {
761 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
762 	/*
763 	 * free pages are specially detected outside this table:
764 	 * PG_buddy pages only make a small fraction of all free pages.
765 	 */
766 
767 	/*
768 	 * Could in theory check if slab page is free or if we can drop
769 	 * currently unused objects without touching them. But just
770 	 * treat it as standard kernel for now.
771 	 */
772 	{ slab,		slab,		"kernel slab",	me_kernel },
773 
774 #ifdef CONFIG_PAGEFLAGS_EXTENDED
775 	{ head,		head,		"huge",		me_huge_page },
776 	{ tail,		tail,		"huge",		me_huge_page },
777 #else
778 	{ compound,	compound,	"huge",		me_huge_page },
779 #endif
780 
781 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
782 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
783 
784 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
785 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
786 
787 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
788 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
789 
790 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
791 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
792 
793 	/*
794 	 * Catchall entry: must be at end.
795 	 */
796 	{ 0,		0,		"unknown page state",	me_unknown },
797 };
798 
799 #undef dirty
800 #undef sc
801 #undef unevict
802 #undef mlock
803 #undef writeback
804 #undef lru
805 #undef swapbacked
806 #undef head
807 #undef tail
808 #undef compound
809 #undef slab
810 #undef reserved
811 
812 static void action_result(unsigned long pfn, char *msg, int result)
813 {
814 	struct page *page = pfn_to_page(pfn);
815 
816 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
817 		pfn,
818 		PageDirty(page) ? "dirty " : "",
819 		msg, action_name[result]);
820 }
821 
822 static int page_action(struct page_state *ps, struct page *p,
823 			unsigned long pfn)
824 {
825 	int result;
826 	int count;
827 
828 	result = ps->action(p, pfn);
829 	action_result(pfn, ps->msg, result);
830 
831 	count = page_count(p) - 1;
832 	if (ps->action == me_swapcache_dirty && result == DELAYED)
833 		count--;
834 	if (count != 0) {
835 		printk(KERN_ERR
836 		       "MCE %#lx: %s page still referenced by %d users\n",
837 		       pfn, ps->msg, count);
838 		result = FAILED;
839 	}
840 
841 	/* Could do more checks here if page looks ok */
842 	/*
843 	 * Could adjust zone counters here to correct for the missing page.
844 	 */
845 
846 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
847 }
848 
849 /*
850  * Do all that is necessary to remove user space mappings. Unmap
851  * the pages and send SIGBUS to the processes if the data was dirty.
852  */
853 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
854 				  int trapno)
855 {
856 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
857 	struct address_space *mapping;
858 	LIST_HEAD(tokill);
859 	int ret;
860 	int kill = 1;
861 	struct page *hpage = compound_head(p);
862 	struct page *ppage;
863 
864 	if (PageReserved(p) || PageSlab(p))
865 		return SWAP_SUCCESS;
866 
867 	/*
868 	 * This check implies we don't kill processes if their pages
869 	 * are in the swap cache early. Those are always late kills.
870 	 */
871 	if (!page_mapped(hpage))
872 		return SWAP_SUCCESS;
873 
874 	if (PageKsm(p))
875 		return SWAP_FAIL;
876 
877 	if (PageSwapCache(p)) {
878 		printk(KERN_ERR
879 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
880 		ttu |= TTU_IGNORE_HWPOISON;
881 	}
882 
883 	/*
884 	 * Propagate the dirty bit from PTEs to struct page first, because we
885 	 * need this to decide if we should kill or just drop the page.
886 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
887 	 * be called inside page lock (it's recommended but not enforced).
888 	 */
889 	mapping = page_mapping(hpage);
890 	if (!PageDirty(hpage) && mapping &&
891 	    mapping_cap_writeback_dirty(mapping)) {
892 		if (page_mkclean(hpage)) {
893 			SetPageDirty(hpage);
894 		} else {
895 			kill = 0;
896 			ttu |= TTU_IGNORE_HWPOISON;
897 			printk(KERN_INFO
898 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
899 				pfn);
900 		}
901 	}
902 
903 	/*
904 	 * ppage: poisoned page
905 	 *   if p is regular page(4k page)
906 	 *        ppage == real poisoned page;
907 	 *   else p is hugetlb or THP, ppage == head page.
908 	 */
909 	ppage = hpage;
910 
911 	if (PageTransHuge(hpage)) {
912 		/*
913 		 * Verify that this isn't a hugetlbfs head page, the check for
914 		 * PageAnon is just for avoid tripping a split_huge_page
915 		 * internal debug check, as split_huge_page refuses to deal with
916 		 * anything that isn't an anon page. PageAnon can't go away fro
917 		 * under us because we hold a refcount on the hpage, without a
918 		 * refcount on the hpage. split_huge_page can't be safely called
919 		 * in the first place, having a refcount on the tail isn't
920 		 * enough * to be safe.
921 		 */
922 		if (!PageHuge(hpage) && PageAnon(hpage)) {
923 			if (unlikely(split_huge_page(hpage))) {
924 				/*
925 				 * FIXME: if splitting THP is failed, it is
926 				 * better to stop the following operation rather
927 				 * than causing panic by unmapping. System might
928 				 * survive if the page is freed later.
929 				 */
930 				printk(KERN_INFO
931 					"MCE %#lx: failed to split THP\n", pfn);
932 
933 				BUG_ON(!PageHWPoison(p));
934 				return SWAP_FAIL;
935 			}
936 			/* THP is split, so ppage should be the real poisoned page. */
937 			ppage = p;
938 		}
939 	}
940 
941 	/*
942 	 * First collect all the processes that have the page
943 	 * mapped in dirty form.  This has to be done before try_to_unmap,
944 	 * because ttu takes the rmap data structures down.
945 	 *
946 	 * Error handling: We ignore errors here because
947 	 * there's nothing that can be done.
948 	 */
949 	if (kill)
950 		collect_procs(ppage, &tokill);
951 
952 	if (hpage != ppage)
953 		lock_page(ppage);
954 
955 	ret = try_to_unmap(ppage, ttu);
956 	if (ret != SWAP_SUCCESS)
957 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
958 				pfn, page_mapcount(ppage));
959 
960 	if (hpage != ppage)
961 		unlock_page(ppage);
962 
963 	/*
964 	 * Now that the dirty bit has been propagated to the
965 	 * struct page and all unmaps done we can decide if
966 	 * killing is needed or not.  Only kill when the page
967 	 * was dirty, otherwise the tokill list is merely
968 	 * freed.  When there was a problem unmapping earlier
969 	 * use a more force-full uncatchable kill to prevent
970 	 * any accesses to the poisoned memory.
971 	 */
972 	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
973 		      ret != SWAP_SUCCESS, p, pfn);
974 
975 	return ret;
976 }
977 
978 static void set_page_hwpoison_huge_page(struct page *hpage)
979 {
980 	int i;
981 	int nr_pages = 1 << compound_trans_order(hpage);
982 	for (i = 0; i < nr_pages; i++)
983 		SetPageHWPoison(hpage + i);
984 }
985 
986 static void clear_page_hwpoison_huge_page(struct page *hpage)
987 {
988 	int i;
989 	int nr_pages = 1 << compound_trans_order(hpage);
990 	for (i = 0; i < nr_pages; i++)
991 		ClearPageHWPoison(hpage + i);
992 }
993 
994 int __memory_failure(unsigned long pfn, int trapno, int flags)
995 {
996 	struct page_state *ps;
997 	struct page *p;
998 	struct page *hpage;
999 	int res;
1000 	unsigned int nr_pages;
1001 
1002 	if (!sysctl_memory_failure_recovery)
1003 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1004 
1005 	if (!pfn_valid(pfn)) {
1006 		printk(KERN_ERR
1007 		       "MCE %#lx: memory outside kernel control\n",
1008 		       pfn);
1009 		return -ENXIO;
1010 	}
1011 
1012 	p = pfn_to_page(pfn);
1013 	hpage = compound_head(p);
1014 	if (TestSetPageHWPoison(p)) {
1015 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1016 		return 0;
1017 	}
1018 
1019 	nr_pages = 1 << compound_trans_order(hpage);
1020 	atomic_long_add(nr_pages, &mce_bad_pages);
1021 
1022 	/*
1023 	 * We need/can do nothing about count=0 pages.
1024 	 * 1) it's a free page, and therefore in safe hand:
1025 	 *    prep_new_page() will be the gate keeper.
1026 	 * 2) it's a free hugepage, which is also safe:
1027 	 *    an affected hugepage will be dequeued from hugepage freelist,
1028 	 *    so there's no concern about reusing it ever after.
1029 	 * 3) it's part of a non-compound high order page.
1030 	 *    Implies some kernel user: cannot stop them from
1031 	 *    R/W the page; let's pray that the page has been
1032 	 *    used and will be freed some time later.
1033 	 * In fact it's dangerous to directly bump up page count from 0,
1034 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1035 	 */
1036 	if (!(flags & MF_COUNT_INCREASED) &&
1037 		!get_page_unless_zero(hpage)) {
1038 		if (is_free_buddy_page(p)) {
1039 			action_result(pfn, "free buddy", DELAYED);
1040 			return 0;
1041 		} else if (PageHuge(hpage)) {
1042 			/*
1043 			 * Check "just unpoisoned", "filter hit", and
1044 			 * "race with other subpage."
1045 			 */
1046 			lock_page(hpage);
1047 			if (!PageHWPoison(hpage)
1048 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1049 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1050 				atomic_long_sub(nr_pages, &mce_bad_pages);
1051 				return 0;
1052 			}
1053 			set_page_hwpoison_huge_page(hpage);
1054 			res = dequeue_hwpoisoned_huge_page(hpage);
1055 			action_result(pfn, "free huge",
1056 				      res ? IGNORED : DELAYED);
1057 			unlock_page(hpage);
1058 			return res;
1059 		} else {
1060 			action_result(pfn, "high order kernel", IGNORED);
1061 			return -EBUSY;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * We ignore non-LRU pages for good reasons.
1067 	 * - PG_locked is only well defined for LRU pages and a few others
1068 	 * - to avoid races with __set_page_locked()
1069 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1070 	 * The check (unnecessarily) ignores LRU pages being isolated and
1071 	 * walked by the page reclaim code, however that's not a big loss.
1072 	 */
1073 	if (!PageHuge(p) && !PageTransCompound(p)) {
1074 		if (!PageLRU(p))
1075 			shake_page(p, 0);
1076 		if (!PageLRU(p)) {
1077 			/*
1078 			 * shake_page could have turned it free.
1079 			 */
1080 			if (is_free_buddy_page(p)) {
1081 				action_result(pfn, "free buddy, 2nd try",
1082 						DELAYED);
1083 				return 0;
1084 			}
1085 			action_result(pfn, "non LRU", IGNORED);
1086 			put_page(p);
1087 			return -EBUSY;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Lock the page and wait for writeback to finish.
1093 	 * It's very difficult to mess with pages currently under IO
1094 	 * and in many cases impossible, so we just avoid it here.
1095 	 */
1096 	lock_page(hpage);
1097 
1098 	/*
1099 	 * unpoison always clear PG_hwpoison inside page lock
1100 	 */
1101 	if (!PageHWPoison(p)) {
1102 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1103 		res = 0;
1104 		goto out;
1105 	}
1106 	if (hwpoison_filter(p)) {
1107 		if (TestClearPageHWPoison(p))
1108 			atomic_long_sub(nr_pages, &mce_bad_pages);
1109 		unlock_page(hpage);
1110 		put_page(hpage);
1111 		return 0;
1112 	}
1113 
1114 	/*
1115 	 * For error on the tail page, we should set PG_hwpoison
1116 	 * on the head page to show that the hugepage is hwpoisoned
1117 	 */
1118 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1119 		action_result(pfn, "hugepage already hardware poisoned",
1120 				IGNORED);
1121 		unlock_page(hpage);
1122 		put_page(hpage);
1123 		return 0;
1124 	}
1125 	/*
1126 	 * Set PG_hwpoison on all pages in an error hugepage,
1127 	 * because containment is done in hugepage unit for now.
1128 	 * Since we have done TestSetPageHWPoison() for the head page with
1129 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1130 	 */
1131 	if (PageHuge(p))
1132 		set_page_hwpoison_huge_page(hpage);
1133 
1134 	wait_on_page_writeback(p);
1135 
1136 	/*
1137 	 * Now take care of user space mappings.
1138 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1139 	 */
1140 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1141 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1142 		res = -EBUSY;
1143 		goto out;
1144 	}
1145 
1146 	/*
1147 	 * Torn down by someone else?
1148 	 */
1149 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1150 		action_result(pfn, "already truncated LRU", IGNORED);
1151 		res = -EBUSY;
1152 		goto out;
1153 	}
1154 
1155 	res = -EBUSY;
1156 	for (ps = error_states;; ps++) {
1157 		if ((p->flags & ps->mask) == ps->res) {
1158 			res = page_action(ps, p, pfn);
1159 			break;
1160 		}
1161 	}
1162 out:
1163 	unlock_page(hpage);
1164 	return res;
1165 }
1166 EXPORT_SYMBOL_GPL(__memory_failure);
1167 
1168 /**
1169  * memory_failure - Handle memory failure of a page.
1170  * @pfn: Page Number of the corrupted page
1171  * @trapno: Trap number reported in the signal to user space.
1172  *
1173  * This function is called by the low level machine check code
1174  * of an architecture when it detects hardware memory corruption
1175  * of a page. It tries its best to recover, which includes
1176  * dropping pages, killing processes etc.
1177  *
1178  * The function is primarily of use for corruptions that
1179  * happen outside the current execution context (e.g. when
1180  * detected by a background scrubber)
1181  *
1182  * Must run in process context (e.g. a work queue) with interrupts
1183  * enabled and no spinlocks hold.
1184  */
1185 void memory_failure(unsigned long pfn, int trapno)
1186 {
1187 	__memory_failure(pfn, trapno, 0);
1188 }
1189 
1190 /**
1191  * unpoison_memory - Unpoison a previously poisoned page
1192  * @pfn: Page number of the to be unpoisoned page
1193  *
1194  * Software-unpoison a page that has been poisoned by
1195  * memory_failure() earlier.
1196  *
1197  * This is only done on the software-level, so it only works
1198  * for linux injected failures, not real hardware failures
1199  *
1200  * Returns 0 for success, otherwise -errno.
1201  */
1202 int unpoison_memory(unsigned long pfn)
1203 {
1204 	struct page *page;
1205 	struct page *p;
1206 	int freeit = 0;
1207 	unsigned int nr_pages;
1208 
1209 	if (!pfn_valid(pfn))
1210 		return -ENXIO;
1211 
1212 	p = pfn_to_page(pfn);
1213 	page = compound_head(p);
1214 
1215 	if (!PageHWPoison(p)) {
1216 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1217 		return 0;
1218 	}
1219 
1220 	nr_pages = 1 << compound_trans_order(page);
1221 
1222 	if (!get_page_unless_zero(page)) {
1223 		/*
1224 		 * Since HWPoisoned hugepage should have non-zero refcount,
1225 		 * race between memory failure and unpoison seems to happen.
1226 		 * In such case unpoison fails and memory failure runs
1227 		 * to the end.
1228 		 */
1229 		if (PageHuge(page)) {
1230 			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1231 			return 0;
1232 		}
1233 		if (TestClearPageHWPoison(p))
1234 			atomic_long_sub(nr_pages, &mce_bad_pages);
1235 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1236 		return 0;
1237 	}
1238 
1239 	lock_page(page);
1240 	/*
1241 	 * This test is racy because PG_hwpoison is set outside of page lock.
1242 	 * That's acceptable because that won't trigger kernel panic. Instead,
1243 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1244 	 * the free buddy page pool.
1245 	 */
1246 	if (TestClearPageHWPoison(page)) {
1247 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1248 		atomic_long_sub(nr_pages, &mce_bad_pages);
1249 		freeit = 1;
1250 		if (PageHuge(page))
1251 			clear_page_hwpoison_huge_page(page);
1252 	}
1253 	unlock_page(page);
1254 
1255 	put_page(page);
1256 	if (freeit)
1257 		put_page(page);
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL(unpoison_memory);
1262 
1263 static struct page *new_page(struct page *p, unsigned long private, int **x)
1264 {
1265 	int nid = page_to_nid(p);
1266 	if (PageHuge(p))
1267 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1268 						   nid);
1269 	else
1270 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1271 }
1272 
1273 /*
1274  * Safely get reference count of an arbitrary page.
1275  * Returns 0 for a free page, -EIO for a zero refcount page
1276  * that is not free, and 1 for any other page type.
1277  * For 1 the page is returned with increased page count, otherwise not.
1278  */
1279 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1280 {
1281 	int ret;
1282 
1283 	if (flags & MF_COUNT_INCREASED)
1284 		return 1;
1285 
1286 	/*
1287 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1288 	 * This is a big hammer, a better would be nicer.
1289 	 */
1290 	lock_memory_hotplug();
1291 
1292 	/*
1293 	 * Isolate the page, so that it doesn't get reallocated if it
1294 	 * was free.
1295 	 */
1296 	set_migratetype_isolate(p);
1297 	/*
1298 	 * When the target page is a free hugepage, just remove it
1299 	 * from free hugepage list.
1300 	 */
1301 	if (!get_page_unless_zero(compound_head(p))) {
1302 		if (PageHuge(p)) {
1303 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1304 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1305 		} else if (is_free_buddy_page(p)) {
1306 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1307 			/* Set hwpoison bit while page is still isolated */
1308 			SetPageHWPoison(p);
1309 			ret = 0;
1310 		} else {
1311 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1312 				pfn, p->flags);
1313 			ret = -EIO;
1314 		}
1315 	} else {
1316 		/* Not a free page */
1317 		ret = 1;
1318 	}
1319 	unset_migratetype_isolate(p);
1320 	unlock_memory_hotplug();
1321 	return ret;
1322 }
1323 
1324 static int soft_offline_huge_page(struct page *page, int flags)
1325 {
1326 	int ret;
1327 	unsigned long pfn = page_to_pfn(page);
1328 	struct page *hpage = compound_head(page);
1329 	LIST_HEAD(pagelist);
1330 
1331 	ret = get_any_page(page, pfn, flags);
1332 	if (ret < 0)
1333 		return ret;
1334 	if (ret == 0)
1335 		goto done;
1336 
1337 	if (PageHWPoison(hpage)) {
1338 		put_page(hpage);
1339 		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1340 		return -EBUSY;
1341 	}
1342 
1343 	/* Keep page count to indicate a given hugepage is isolated. */
1344 
1345 	list_add(&hpage->lru, &pagelist);
1346 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1347 				true);
1348 	if (ret) {
1349 		struct page *page1, *page2;
1350 		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1351 			put_page(page1);
1352 
1353 		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1354 			 pfn, ret, page->flags);
1355 		if (ret > 0)
1356 			ret = -EIO;
1357 		return ret;
1358 	}
1359 done:
1360 	if (!PageHWPoison(hpage))
1361 		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1362 	set_page_hwpoison_huge_page(hpage);
1363 	dequeue_hwpoisoned_huge_page(hpage);
1364 	/* keep elevated page count for bad page */
1365 	return ret;
1366 }
1367 
1368 /**
1369  * soft_offline_page - Soft offline a page.
1370  * @page: page to offline
1371  * @flags: flags. Same as memory_failure().
1372  *
1373  * Returns 0 on success, otherwise negated errno.
1374  *
1375  * Soft offline a page, by migration or invalidation,
1376  * without killing anything. This is for the case when
1377  * a page is not corrupted yet (so it's still valid to access),
1378  * but has had a number of corrected errors and is better taken
1379  * out.
1380  *
1381  * The actual policy on when to do that is maintained by
1382  * user space.
1383  *
1384  * This should never impact any application or cause data loss,
1385  * however it might take some time.
1386  *
1387  * This is not a 100% solution for all memory, but tries to be
1388  * ``good enough'' for the majority of memory.
1389  */
1390 int soft_offline_page(struct page *page, int flags)
1391 {
1392 	int ret;
1393 	unsigned long pfn = page_to_pfn(page);
1394 
1395 	if (PageHuge(page))
1396 		return soft_offline_huge_page(page, flags);
1397 
1398 	ret = get_any_page(page, pfn, flags);
1399 	if (ret < 0)
1400 		return ret;
1401 	if (ret == 0)
1402 		goto done;
1403 
1404 	/*
1405 	 * Page cache page we can handle?
1406 	 */
1407 	if (!PageLRU(page)) {
1408 		/*
1409 		 * Try to free it.
1410 		 */
1411 		put_page(page);
1412 		shake_page(page, 1);
1413 
1414 		/*
1415 		 * Did it turn free?
1416 		 */
1417 		ret = get_any_page(page, pfn, 0);
1418 		if (ret < 0)
1419 			return ret;
1420 		if (ret == 0)
1421 			goto done;
1422 	}
1423 	if (!PageLRU(page)) {
1424 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1425 				pfn, page->flags);
1426 		return -EIO;
1427 	}
1428 
1429 	lock_page(page);
1430 	wait_on_page_writeback(page);
1431 
1432 	/*
1433 	 * Synchronized using the page lock with memory_failure()
1434 	 */
1435 	if (PageHWPoison(page)) {
1436 		unlock_page(page);
1437 		put_page(page);
1438 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1439 		return -EBUSY;
1440 	}
1441 
1442 	/*
1443 	 * Try to invalidate first. This should work for
1444 	 * non dirty unmapped page cache pages.
1445 	 */
1446 	ret = invalidate_inode_page(page);
1447 	unlock_page(page);
1448 	/*
1449 	 * RED-PEN would be better to keep it isolated here, but we
1450 	 * would need to fix isolation locking first.
1451 	 */
1452 	if (ret == 1) {
1453 		put_page(page);
1454 		ret = 0;
1455 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1456 		goto done;
1457 	}
1458 
1459 	/*
1460 	 * Simple invalidation didn't work.
1461 	 * Try to migrate to a new page instead. migrate.c
1462 	 * handles a large number of cases for us.
1463 	 */
1464 	ret = isolate_lru_page(page);
1465 	/*
1466 	 * Drop page reference which is came from get_any_page()
1467 	 * successful isolate_lru_page() already took another one.
1468 	 */
1469 	put_page(page);
1470 	if (!ret) {
1471 		LIST_HEAD(pagelist);
1472 
1473 		list_add(&page->lru, &pagelist);
1474 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1475 								0, true);
1476 		if (ret) {
1477 			putback_lru_pages(&pagelist);
1478 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1479 				pfn, ret, page->flags);
1480 			if (ret > 0)
1481 				ret = -EIO;
1482 		}
1483 	} else {
1484 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1485 				pfn, ret, page_count(page), page->flags);
1486 	}
1487 	if (ret)
1488 		return ret;
1489 
1490 done:
1491 	atomic_long_add(1, &mce_bad_pages);
1492 	SetPageHWPoison(page);
1493 	/* keep elevated page count for bad page */
1494 	return ret;
1495 }
1496