1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/page-isolation.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include "internal.h" 55 56 int sysctl_memory_failure_early_kill __read_mostly = 0; 57 58 int sysctl_memory_failure_recovery __read_mostly = 1; 59 60 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 61 62 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 63 64 u32 hwpoison_filter_enable = 0; 65 u32 hwpoison_filter_dev_major = ~0U; 66 u32 hwpoison_filter_dev_minor = ~0U; 67 u64 hwpoison_filter_flags_mask; 68 u64 hwpoison_filter_flags_value; 69 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 70 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 72 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 74 75 static int hwpoison_filter_dev(struct page *p) 76 { 77 struct address_space *mapping; 78 dev_t dev; 79 80 if (hwpoison_filter_dev_major == ~0U && 81 hwpoison_filter_dev_minor == ~0U) 82 return 0; 83 84 /* 85 * page_mapping() does not accept slab pages. 86 */ 87 if (PageSlab(p)) 88 return -EINVAL; 89 90 mapping = page_mapping(p); 91 if (mapping == NULL || mapping->host == NULL) 92 return -EINVAL; 93 94 dev = mapping->host->i_sb->s_dev; 95 if (hwpoison_filter_dev_major != ~0U && 96 hwpoison_filter_dev_major != MAJOR(dev)) 97 return -EINVAL; 98 if (hwpoison_filter_dev_minor != ~0U && 99 hwpoison_filter_dev_minor != MINOR(dev)) 100 return -EINVAL; 101 102 return 0; 103 } 104 105 static int hwpoison_filter_flags(struct page *p) 106 { 107 if (!hwpoison_filter_flags_mask) 108 return 0; 109 110 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 111 hwpoison_filter_flags_value) 112 return 0; 113 else 114 return -EINVAL; 115 } 116 117 /* 118 * This allows stress tests to limit test scope to a collection of tasks 119 * by putting them under some memcg. This prevents killing unrelated/important 120 * processes such as /sbin/init. Note that the target task may share clean 121 * pages with init (eg. libc text), which is harmless. If the target task 122 * share _dirty_ pages with another task B, the test scheme must make sure B 123 * is also included in the memcg. At last, due to race conditions this filter 124 * can only guarantee that the page either belongs to the memcg tasks, or is 125 * a freed page. 126 */ 127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 128 u64 hwpoison_filter_memcg; 129 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 130 static int hwpoison_filter_task(struct page *p) 131 { 132 struct mem_cgroup *mem; 133 struct cgroup_subsys_state *css; 134 unsigned long ino; 135 136 if (!hwpoison_filter_memcg) 137 return 0; 138 139 mem = try_get_mem_cgroup_from_page(p); 140 if (!mem) 141 return -EINVAL; 142 143 css = mem_cgroup_css(mem); 144 /* root_mem_cgroup has NULL dentries */ 145 if (!css->cgroup->dentry) 146 return -EINVAL; 147 148 ino = css->cgroup->dentry->d_inode->i_ino; 149 css_put(css); 150 151 if (ino != hwpoison_filter_memcg) 152 return -EINVAL; 153 154 return 0; 155 } 156 #else 157 static int hwpoison_filter_task(struct page *p) { return 0; } 158 #endif 159 160 int hwpoison_filter(struct page *p) 161 { 162 if (!hwpoison_filter_enable) 163 return 0; 164 165 if (hwpoison_filter_dev(p)) 166 return -EINVAL; 167 168 if (hwpoison_filter_flags(p)) 169 return -EINVAL; 170 171 if (hwpoison_filter_task(p)) 172 return -EINVAL; 173 174 return 0; 175 } 176 #else 177 int hwpoison_filter(struct page *p) 178 { 179 return 0; 180 } 181 #endif 182 183 EXPORT_SYMBOL_GPL(hwpoison_filter); 184 185 /* 186 * Send all the processes who have the page mapped an ``action optional'' 187 * signal. 188 */ 189 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, 190 unsigned long pfn, struct page *page) 191 { 192 struct siginfo si; 193 int ret; 194 195 printk(KERN_ERR 196 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", 197 pfn, t->comm, t->pid); 198 si.si_signo = SIGBUS; 199 si.si_errno = 0; 200 si.si_code = BUS_MCEERR_AO; 201 si.si_addr = (void *)addr; 202 #ifdef __ARCH_SI_TRAPNO 203 si.si_trapno = trapno; 204 #endif 205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 206 /* 207 * Don't use force here, it's convenient if the signal 208 * can be temporarily blocked. 209 * This could cause a loop when the user sets SIGBUS 210 * to SIG_IGN, but hopefully noone will do that? 211 */ 212 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 213 if (ret < 0) 214 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 215 t->comm, t->pid, ret); 216 return ret; 217 } 218 219 /* 220 * When a unknown page type is encountered drain as many buffers as possible 221 * in the hope to turn the page into a LRU or free page, which we can handle. 222 */ 223 void shake_page(struct page *p, int access) 224 { 225 if (!PageSlab(p)) { 226 lru_add_drain_all(); 227 if (PageLRU(p)) 228 return; 229 drain_all_pages(); 230 if (PageLRU(p) || is_free_buddy_page(p)) 231 return; 232 } 233 234 /* 235 * Only all shrink_slab here (which would also 236 * shrink other caches) if access is not potentially fatal. 237 */ 238 if (access) { 239 int nr; 240 do { 241 nr = shrink_slab(1000, GFP_KERNEL, 1000); 242 if (page_count(p) == 1) 243 break; 244 } while (nr > 10); 245 } 246 } 247 EXPORT_SYMBOL_GPL(shake_page); 248 249 /* 250 * Kill all processes that have a poisoned page mapped and then isolate 251 * the page. 252 * 253 * General strategy: 254 * Find all processes having the page mapped and kill them. 255 * But we keep a page reference around so that the page is not 256 * actually freed yet. 257 * Then stash the page away 258 * 259 * There's no convenient way to get back to mapped processes 260 * from the VMAs. So do a brute-force search over all 261 * running processes. 262 * 263 * Remember that machine checks are not common (or rather 264 * if they are common you have other problems), so this shouldn't 265 * be a performance issue. 266 * 267 * Also there are some races possible while we get from the 268 * error detection to actually handle it. 269 */ 270 271 struct to_kill { 272 struct list_head nd; 273 struct task_struct *tsk; 274 unsigned long addr; 275 char addr_valid; 276 }; 277 278 /* 279 * Failure handling: if we can't find or can't kill a process there's 280 * not much we can do. We just print a message and ignore otherwise. 281 */ 282 283 /* 284 * Schedule a process for later kill. 285 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 286 * TBD would GFP_NOIO be enough? 287 */ 288 static void add_to_kill(struct task_struct *tsk, struct page *p, 289 struct vm_area_struct *vma, 290 struct list_head *to_kill, 291 struct to_kill **tkc) 292 { 293 struct to_kill *tk; 294 295 if (*tkc) { 296 tk = *tkc; 297 *tkc = NULL; 298 } else { 299 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 300 if (!tk) { 301 printk(KERN_ERR 302 "MCE: Out of memory while machine check handling\n"); 303 return; 304 } 305 } 306 tk->addr = page_address_in_vma(p, vma); 307 tk->addr_valid = 1; 308 309 /* 310 * In theory we don't have to kill when the page was 311 * munmaped. But it could be also a mremap. Since that's 312 * likely very rare kill anyways just out of paranoia, but use 313 * a SIGKILL because the error is not contained anymore. 314 */ 315 if (tk->addr == -EFAULT) { 316 pr_info("MCE: Unable to find user space address %lx in %s\n", 317 page_to_pfn(p), tsk->comm); 318 tk->addr_valid = 0; 319 } 320 get_task_struct(tsk); 321 tk->tsk = tsk; 322 list_add_tail(&tk->nd, to_kill); 323 } 324 325 /* 326 * Kill the processes that have been collected earlier. 327 * 328 * Only do anything when DOIT is set, otherwise just free the list 329 * (this is used for clean pages which do not need killing) 330 * Also when FAIL is set do a force kill because something went 331 * wrong earlier. 332 */ 333 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, 334 int fail, struct page *page, unsigned long pfn) 335 { 336 struct to_kill *tk, *next; 337 338 list_for_each_entry_safe (tk, next, to_kill, nd) { 339 if (doit) { 340 /* 341 * In case something went wrong with munmapping 342 * make sure the process doesn't catch the 343 * signal and then access the memory. Just kill it. 344 */ 345 if (fail || tk->addr_valid == 0) { 346 printk(KERN_ERR 347 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 348 pfn, tk->tsk->comm, tk->tsk->pid); 349 force_sig(SIGKILL, tk->tsk); 350 } 351 352 /* 353 * In theory the process could have mapped 354 * something else on the address in-between. We could 355 * check for that, but we need to tell the 356 * process anyways. 357 */ 358 else if (kill_proc_ao(tk->tsk, tk->addr, trapno, 359 pfn, page) < 0) 360 printk(KERN_ERR 361 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 362 pfn, tk->tsk->comm, tk->tsk->pid); 363 } 364 put_task_struct(tk->tsk); 365 kfree(tk); 366 } 367 } 368 369 static int task_early_kill(struct task_struct *tsk) 370 { 371 if (!tsk->mm) 372 return 0; 373 if (tsk->flags & PF_MCE_PROCESS) 374 return !!(tsk->flags & PF_MCE_EARLY); 375 return sysctl_memory_failure_early_kill; 376 } 377 378 /* 379 * Collect processes when the error hit an anonymous page. 380 */ 381 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 382 struct to_kill **tkc) 383 { 384 struct vm_area_struct *vma; 385 struct task_struct *tsk; 386 struct anon_vma *av; 387 388 read_lock(&tasklist_lock); 389 av = page_lock_anon_vma(page); 390 if (av == NULL) /* Not actually mapped anymore */ 391 goto out; 392 for_each_process (tsk) { 393 struct anon_vma_chain *vmac; 394 395 if (!task_early_kill(tsk)) 396 continue; 397 list_for_each_entry(vmac, &av->head, same_anon_vma) { 398 vma = vmac->vma; 399 if (!page_mapped_in_vma(page, vma)) 400 continue; 401 if (vma->vm_mm == tsk->mm) 402 add_to_kill(tsk, page, vma, to_kill, tkc); 403 } 404 } 405 page_unlock_anon_vma(av); 406 out: 407 read_unlock(&tasklist_lock); 408 } 409 410 /* 411 * Collect processes when the error hit a file mapped page. 412 */ 413 static void collect_procs_file(struct page *page, struct list_head *to_kill, 414 struct to_kill **tkc) 415 { 416 struct vm_area_struct *vma; 417 struct task_struct *tsk; 418 struct prio_tree_iter iter; 419 struct address_space *mapping = page->mapping; 420 421 /* 422 * A note on the locking order between the two locks. 423 * We don't rely on this particular order. 424 * If you have some other code that needs a different order 425 * feel free to switch them around. Or add a reverse link 426 * from mm_struct to task_struct, then this could be all 427 * done without taking tasklist_lock and looping over all tasks. 428 */ 429 430 read_lock(&tasklist_lock); 431 spin_lock(&mapping->i_mmap_lock); 432 for_each_process(tsk) { 433 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 434 435 if (!task_early_kill(tsk)) 436 continue; 437 438 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, 439 pgoff) { 440 /* 441 * Send early kill signal to tasks where a vma covers 442 * the page but the corrupted page is not necessarily 443 * mapped it in its pte. 444 * Assume applications who requested early kill want 445 * to be informed of all such data corruptions. 446 */ 447 if (vma->vm_mm == tsk->mm) 448 add_to_kill(tsk, page, vma, to_kill, tkc); 449 } 450 } 451 spin_unlock(&mapping->i_mmap_lock); 452 read_unlock(&tasklist_lock); 453 } 454 455 /* 456 * Collect the processes who have the corrupted page mapped to kill. 457 * This is done in two steps for locking reasons. 458 * First preallocate one tokill structure outside the spin locks, 459 * so that we can kill at least one process reasonably reliable. 460 */ 461 static void collect_procs(struct page *page, struct list_head *tokill) 462 { 463 struct to_kill *tk; 464 465 if (!page->mapping) 466 return; 467 468 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 469 if (!tk) 470 return; 471 if (PageAnon(page)) 472 collect_procs_anon(page, tokill, &tk); 473 else 474 collect_procs_file(page, tokill, &tk); 475 kfree(tk); 476 } 477 478 /* 479 * Error handlers for various types of pages. 480 */ 481 482 enum outcome { 483 IGNORED, /* Error: cannot be handled */ 484 FAILED, /* Error: handling failed */ 485 DELAYED, /* Will be handled later */ 486 RECOVERED, /* Successfully recovered */ 487 }; 488 489 static const char *action_name[] = { 490 [IGNORED] = "Ignored", 491 [FAILED] = "Failed", 492 [DELAYED] = "Delayed", 493 [RECOVERED] = "Recovered", 494 }; 495 496 /* 497 * XXX: It is possible that a page is isolated from LRU cache, 498 * and then kept in swap cache or failed to remove from page cache. 499 * The page count will stop it from being freed by unpoison. 500 * Stress tests should be aware of this memory leak problem. 501 */ 502 static int delete_from_lru_cache(struct page *p) 503 { 504 if (!isolate_lru_page(p)) { 505 /* 506 * Clear sensible page flags, so that the buddy system won't 507 * complain when the page is unpoison-and-freed. 508 */ 509 ClearPageActive(p); 510 ClearPageUnevictable(p); 511 /* 512 * drop the page count elevated by isolate_lru_page() 513 */ 514 page_cache_release(p); 515 return 0; 516 } 517 return -EIO; 518 } 519 520 /* 521 * Error hit kernel page. 522 * Do nothing, try to be lucky and not touch this instead. For a few cases we 523 * could be more sophisticated. 524 */ 525 static int me_kernel(struct page *p, unsigned long pfn) 526 { 527 return IGNORED; 528 } 529 530 /* 531 * Page in unknown state. Do nothing. 532 */ 533 static int me_unknown(struct page *p, unsigned long pfn) 534 { 535 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 536 return FAILED; 537 } 538 539 /* 540 * Clean (or cleaned) page cache page. 541 */ 542 static int me_pagecache_clean(struct page *p, unsigned long pfn) 543 { 544 int err; 545 int ret = FAILED; 546 struct address_space *mapping; 547 548 delete_from_lru_cache(p); 549 550 /* 551 * For anonymous pages we're done the only reference left 552 * should be the one m_f() holds. 553 */ 554 if (PageAnon(p)) 555 return RECOVERED; 556 557 /* 558 * Now truncate the page in the page cache. This is really 559 * more like a "temporary hole punch" 560 * Don't do this for block devices when someone else 561 * has a reference, because it could be file system metadata 562 * and that's not safe to truncate. 563 */ 564 mapping = page_mapping(p); 565 if (!mapping) { 566 /* 567 * Page has been teared down in the meanwhile 568 */ 569 return FAILED; 570 } 571 572 /* 573 * Truncation is a bit tricky. Enable it per file system for now. 574 * 575 * Open: to take i_mutex or not for this? Right now we don't. 576 */ 577 if (mapping->a_ops->error_remove_page) { 578 err = mapping->a_ops->error_remove_page(mapping, p); 579 if (err != 0) { 580 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 581 pfn, err); 582 } else if (page_has_private(p) && 583 !try_to_release_page(p, GFP_NOIO)) { 584 pr_info("MCE %#lx: failed to release buffers\n", pfn); 585 } else { 586 ret = RECOVERED; 587 } 588 } else { 589 /* 590 * If the file system doesn't support it just invalidate 591 * This fails on dirty or anything with private pages 592 */ 593 if (invalidate_inode_page(p)) 594 ret = RECOVERED; 595 else 596 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 597 pfn); 598 } 599 return ret; 600 } 601 602 /* 603 * Dirty cache page page 604 * Issues: when the error hit a hole page the error is not properly 605 * propagated. 606 */ 607 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 608 { 609 struct address_space *mapping = page_mapping(p); 610 611 SetPageError(p); 612 /* TBD: print more information about the file. */ 613 if (mapping) { 614 /* 615 * IO error will be reported by write(), fsync(), etc. 616 * who check the mapping. 617 * This way the application knows that something went 618 * wrong with its dirty file data. 619 * 620 * There's one open issue: 621 * 622 * The EIO will be only reported on the next IO 623 * operation and then cleared through the IO map. 624 * Normally Linux has two mechanisms to pass IO error 625 * first through the AS_EIO flag in the address space 626 * and then through the PageError flag in the page. 627 * Since we drop pages on memory failure handling the 628 * only mechanism open to use is through AS_AIO. 629 * 630 * This has the disadvantage that it gets cleared on 631 * the first operation that returns an error, while 632 * the PageError bit is more sticky and only cleared 633 * when the page is reread or dropped. If an 634 * application assumes it will always get error on 635 * fsync, but does other operations on the fd before 636 * and the page is dropped inbetween then the error 637 * will not be properly reported. 638 * 639 * This can already happen even without hwpoisoned 640 * pages: first on metadata IO errors (which only 641 * report through AS_EIO) or when the page is dropped 642 * at the wrong time. 643 * 644 * So right now we assume that the application DTRT on 645 * the first EIO, but we're not worse than other parts 646 * of the kernel. 647 */ 648 mapping_set_error(mapping, EIO); 649 } 650 651 return me_pagecache_clean(p, pfn); 652 } 653 654 /* 655 * Clean and dirty swap cache. 656 * 657 * Dirty swap cache page is tricky to handle. The page could live both in page 658 * cache and swap cache(ie. page is freshly swapped in). So it could be 659 * referenced concurrently by 2 types of PTEs: 660 * normal PTEs and swap PTEs. We try to handle them consistently by calling 661 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 662 * and then 663 * - clear dirty bit to prevent IO 664 * - remove from LRU 665 * - but keep in the swap cache, so that when we return to it on 666 * a later page fault, we know the application is accessing 667 * corrupted data and shall be killed (we installed simple 668 * interception code in do_swap_page to catch it). 669 * 670 * Clean swap cache pages can be directly isolated. A later page fault will 671 * bring in the known good data from disk. 672 */ 673 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 674 { 675 ClearPageDirty(p); 676 /* Trigger EIO in shmem: */ 677 ClearPageUptodate(p); 678 679 if (!delete_from_lru_cache(p)) 680 return DELAYED; 681 else 682 return FAILED; 683 } 684 685 static int me_swapcache_clean(struct page *p, unsigned long pfn) 686 { 687 delete_from_swap_cache(p); 688 689 if (!delete_from_lru_cache(p)) 690 return RECOVERED; 691 else 692 return FAILED; 693 } 694 695 /* 696 * Huge pages. Needs work. 697 * Issues: 698 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 699 * To narrow down kill region to one page, we need to break up pmd. 700 */ 701 static int me_huge_page(struct page *p, unsigned long pfn) 702 { 703 int res = 0; 704 struct page *hpage = compound_head(p); 705 /* 706 * We can safely recover from error on free or reserved (i.e. 707 * not in-use) hugepage by dequeuing it from freelist. 708 * To check whether a hugepage is in-use or not, we can't use 709 * page->lru because it can be used in other hugepage operations, 710 * such as __unmap_hugepage_range() and gather_surplus_pages(). 711 * So instead we use page_mapping() and PageAnon(). 712 * We assume that this function is called with page lock held, 713 * so there is no race between isolation and mapping/unmapping. 714 */ 715 if (!(page_mapping(hpage) || PageAnon(hpage))) { 716 res = dequeue_hwpoisoned_huge_page(hpage); 717 if (!res) 718 return RECOVERED; 719 } 720 return DELAYED; 721 } 722 723 /* 724 * Various page states we can handle. 725 * 726 * A page state is defined by its current page->flags bits. 727 * The table matches them in order and calls the right handler. 728 * 729 * This is quite tricky because we can access page at any time 730 * in its live cycle, so all accesses have to be extremly careful. 731 * 732 * This is not complete. More states could be added. 733 * For any missing state don't attempt recovery. 734 */ 735 736 #define dirty (1UL << PG_dirty) 737 #define sc (1UL << PG_swapcache) 738 #define unevict (1UL << PG_unevictable) 739 #define mlock (1UL << PG_mlocked) 740 #define writeback (1UL << PG_writeback) 741 #define lru (1UL << PG_lru) 742 #define swapbacked (1UL << PG_swapbacked) 743 #define head (1UL << PG_head) 744 #define tail (1UL << PG_tail) 745 #define compound (1UL << PG_compound) 746 #define slab (1UL << PG_slab) 747 #define reserved (1UL << PG_reserved) 748 749 static struct page_state { 750 unsigned long mask; 751 unsigned long res; 752 char *msg; 753 int (*action)(struct page *p, unsigned long pfn); 754 } error_states[] = { 755 { reserved, reserved, "reserved kernel", me_kernel }, 756 /* 757 * free pages are specially detected outside this table: 758 * PG_buddy pages only make a small fraction of all free pages. 759 */ 760 761 /* 762 * Could in theory check if slab page is free or if we can drop 763 * currently unused objects without touching them. But just 764 * treat it as standard kernel for now. 765 */ 766 { slab, slab, "kernel slab", me_kernel }, 767 768 #ifdef CONFIG_PAGEFLAGS_EXTENDED 769 { head, head, "huge", me_huge_page }, 770 { tail, tail, "huge", me_huge_page }, 771 #else 772 { compound, compound, "huge", me_huge_page }, 773 #endif 774 775 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, 776 { sc|dirty, sc, "swapcache", me_swapcache_clean }, 777 778 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, 779 { unevict, unevict, "unevictable LRU", me_pagecache_clean}, 780 781 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, 782 { mlock, mlock, "mlocked LRU", me_pagecache_clean }, 783 784 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 785 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 786 787 /* 788 * Catchall entry: must be at end. 789 */ 790 { 0, 0, "unknown page state", me_unknown }, 791 }; 792 793 #undef dirty 794 #undef sc 795 #undef unevict 796 #undef mlock 797 #undef writeback 798 #undef lru 799 #undef swapbacked 800 #undef head 801 #undef tail 802 #undef compound 803 #undef slab 804 #undef reserved 805 806 static void action_result(unsigned long pfn, char *msg, int result) 807 { 808 struct page *page = pfn_to_page(pfn); 809 810 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 811 pfn, 812 PageDirty(page) ? "dirty " : "", 813 msg, action_name[result]); 814 } 815 816 static int page_action(struct page_state *ps, struct page *p, 817 unsigned long pfn) 818 { 819 int result; 820 int count; 821 822 result = ps->action(p, pfn); 823 action_result(pfn, ps->msg, result); 824 825 count = page_count(p) - 1; 826 if (ps->action == me_swapcache_dirty && result == DELAYED) 827 count--; 828 if (count != 0) { 829 printk(KERN_ERR 830 "MCE %#lx: %s page still referenced by %d users\n", 831 pfn, ps->msg, count); 832 result = FAILED; 833 } 834 835 /* Could do more checks here if page looks ok */ 836 /* 837 * Could adjust zone counters here to correct for the missing page. 838 */ 839 840 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 841 } 842 843 /* 844 * Do all that is necessary to remove user space mappings. Unmap 845 * the pages and send SIGBUS to the processes if the data was dirty. 846 */ 847 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 848 int trapno) 849 { 850 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 851 struct address_space *mapping; 852 LIST_HEAD(tokill); 853 int ret; 854 int kill = 1; 855 struct page *hpage = compound_head(p); 856 857 if (PageReserved(p) || PageSlab(p)) 858 return SWAP_SUCCESS; 859 860 /* 861 * This check implies we don't kill processes if their pages 862 * are in the swap cache early. Those are always late kills. 863 */ 864 if (!page_mapped(hpage)) 865 return SWAP_SUCCESS; 866 867 if (PageKsm(p)) 868 return SWAP_FAIL; 869 870 if (PageSwapCache(p)) { 871 printk(KERN_ERR 872 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 873 ttu |= TTU_IGNORE_HWPOISON; 874 } 875 876 /* 877 * Propagate the dirty bit from PTEs to struct page first, because we 878 * need this to decide if we should kill or just drop the page. 879 * XXX: the dirty test could be racy: set_page_dirty() may not always 880 * be called inside page lock (it's recommended but not enforced). 881 */ 882 mapping = page_mapping(hpage); 883 if (!PageDirty(hpage) && mapping && 884 mapping_cap_writeback_dirty(mapping)) { 885 if (page_mkclean(hpage)) { 886 SetPageDirty(hpage); 887 } else { 888 kill = 0; 889 ttu |= TTU_IGNORE_HWPOISON; 890 printk(KERN_INFO 891 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 892 pfn); 893 } 894 } 895 896 /* 897 * First collect all the processes that have the page 898 * mapped in dirty form. This has to be done before try_to_unmap, 899 * because ttu takes the rmap data structures down. 900 * 901 * Error handling: We ignore errors here because 902 * there's nothing that can be done. 903 */ 904 if (kill) 905 collect_procs(hpage, &tokill); 906 907 ret = try_to_unmap(hpage, ttu); 908 if (ret != SWAP_SUCCESS) 909 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 910 pfn, page_mapcount(hpage)); 911 912 /* 913 * Now that the dirty bit has been propagated to the 914 * struct page and all unmaps done we can decide if 915 * killing is needed or not. Only kill when the page 916 * was dirty, otherwise the tokill list is merely 917 * freed. When there was a problem unmapping earlier 918 * use a more force-full uncatchable kill to prevent 919 * any accesses to the poisoned memory. 920 */ 921 kill_procs_ao(&tokill, !!PageDirty(hpage), trapno, 922 ret != SWAP_SUCCESS, p, pfn); 923 924 return ret; 925 } 926 927 static void set_page_hwpoison_huge_page(struct page *hpage) 928 { 929 int i; 930 int nr_pages = 1 << compound_order(hpage); 931 for (i = 0; i < nr_pages; i++) 932 SetPageHWPoison(hpage + i); 933 } 934 935 static void clear_page_hwpoison_huge_page(struct page *hpage) 936 { 937 int i; 938 int nr_pages = 1 << compound_order(hpage); 939 for (i = 0; i < nr_pages; i++) 940 ClearPageHWPoison(hpage + i); 941 } 942 943 int __memory_failure(unsigned long pfn, int trapno, int flags) 944 { 945 struct page_state *ps; 946 struct page *p; 947 struct page *hpage; 948 int res; 949 unsigned int nr_pages; 950 951 if (!sysctl_memory_failure_recovery) 952 panic("Memory failure from trap %d on page %lx", trapno, pfn); 953 954 if (!pfn_valid(pfn)) { 955 printk(KERN_ERR 956 "MCE %#lx: memory outside kernel control\n", 957 pfn); 958 return -ENXIO; 959 } 960 961 p = pfn_to_page(pfn); 962 hpage = compound_head(p); 963 if (TestSetPageHWPoison(p)) { 964 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 965 return 0; 966 } 967 968 nr_pages = 1 << compound_order(hpage); 969 atomic_long_add(nr_pages, &mce_bad_pages); 970 971 /* 972 * We need/can do nothing about count=0 pages. 973 * 1) it's a free page, and therefore in safe hand: 974 * prep_new_page() will be the gate keeper. 975 * 2) it's a free hugepage, which is also safe: 976 * an affected hugepage will be dequeued from hugepage freelist, 977 * so there's no concern about reusing it ever after. 978 * 3) it's part of a non-compound high order page. 979 * Implies some kernel user: cannot stop them from 980 * R/W the page; let's pray that the page has been 981 * used and will be freed some time later. 982 * In fact it's dangerous to directly bump up page count from 0, 983 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 984 */ 985 if (!(flags & MF_COUNT_INCREASED) && 986 !get_page_unless_zero(hpage)) { 987 if (is_free_buddy_page(p)) { 988 action_result(pfn, "free buddy", DELAYED); 989 return 0; 990 } else if (PageHuge(hpage)) { 991 /* 992 * Check "just unpoisoned", "filter hit", and 993 * "race with other subpage." 994 */ 995 lock_page_nosync(hpage); 996 if (!PageHWPoison(hpage) 997 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 998 || (p != hpage && TestSetPageHWPoison(hpage))) { 999 atomic_long_sub(nr_pages, &mce_bad_pages); 1000 return 0; 1001 } 1002 set_page_hwpoison_huge_page(hpage); 1003 res = dequeue_hwpoisoned_huge_page(hpage); 1004 action_result(pfn, "free huge", 1005 res ? IGNORED : DELAYED); 1006 unlock_page(hpage); 1007 return res; 1008 } else { 1009 action_result(pfn, "high order kernel", IGNORED); 1010 return -EBUSY; 1011 } 1012 } 1013 1014 /* 1015 * We ignore non-LRU pages for good reasons. 1016 * - PG_locked is only well defined for LRU pages and a few others 1017 * - to avoid races with __set_page_locked() 1018 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1019 * The check (unnecessarily) ignores LRU pages being isolated and 1020 * walked by the page reclaim code, however that's not a big loss. 1021 */ 1022 if (!PageLRU(p) && !PageHuge(p)) 1023 shake_page(p, 0); 1024 if (!PageLRU(p) && !PageHuge(p)) { 1025 /* 1026 * shake_page could have turned it free. 1027 */ 1028 if (is_free_buddy_page(p)) { 1029 action_result(pfn, "free buddy, 2nd try", DELAYED); 1030 return 0; 1031 } 1032 action_result(pfn, "non LRU", IGNORED); 1033 put_page(p); 1034 return -EBUSY; 1035 } 1036 1037 /* 1038 * Lock the page and wait for writeback to finish. 1039 * It's very difficult to mess with pages currently under IO 1040 * and in many cases impossible, so we just avoid it here. 1041 */ 1042 lock_page_nosync(hpage); 1043 1044 /* 1045 * unpoison always clear PG_hwpoison inside page lock 1046 */ 1047 if (!PageHWPoison(p)) { 1048 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1049 res = 0; 1050 goto out; 1051 } 1052 if (hwpoison_filter(p)) { 1053 if (TestClearPageHWPoison(p)) 1054 atomic_long_sub(nr_pages, &mce_bad_pages); 1055 unlock_page(hpage); 1056 put_page(hpage); 1057 return 0; 1058 } 1059 1060 /* 1061 * For error on the tail page, we should set PG_hwpoison 1062 * on the head page to show that the hugepage is hwpoisoned 1063 */ 1064 if (PageTail(p) && TestSetPageHWPoison(hpage)) { 1065 action_result(pfn, "hugepage already hardware poisoned", 1066 IGNORED); 1067 unlock_page(hpage); 1068 put_page(hpage); 1069 return 0; 1070 } 1071 /* 1072 * Set PG_hwpoison on all pages in an error hugepage, 1073 * because containment is done in hugepage unit for now. 1074 * Since we have done TestSetPageHWPoison() for the head page with 1075 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1076 */ 1077 if (PageHuge(p)) 1078 set_page_hwpoison_huge_page(hpage); 1079 1080 wait_on_page_writeback(p); 1081 1082 /* 1083 * Now take care of user space mappings. 1084 * Abort on fail: __remove_from_page_cache() assumes unmapped page. 1085 */ 1086 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { 1087 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1088 res = -EBUSY; 1089 goto out; 1090 } 1091 1092 /* 1093 * Torn down by someone else? 1094 */ 1095 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1096 action_result(pfn, "already truncated LRU", IGNORED); 1097 res = -EBUSY; 1098 goto out; 1099 } 1100 1101 res = -EBUSY; 1102 for (ps = error_states;; ps++) { 1103 if ((p->flags & ps->mask) == ps->res) { 1104 res = page_action(ps, p, pfn); 1105 break; 1106 } 1107 } 1108 out: 1109 unlock_page(hpage); 1110 return res; 1111 } 1112 EXPORT_SYMBOL_GPL(__memory_failure); 1113 1114 /** 1115 * memory_failure - Handle memory failure of a page. 1116 * @pfn: Page Number of the corrupted page 1117 * @trapno: Trap number reported in the signal to user space. 1118 * 1119 * This function is called by the low level machine check code 1120 * of an architecture when it detects hardware memory corruption 1121 * of a page. It tries its best to recover, which includes 1122 * dropping pages, killing processes etc. 1123 * 1124 * The function is primarily of use for corruptions that 1125 * happen outside the current execution context (e.g. when 1126 * detected by a background scrubber) 1127 * 1128 * Must run in process context (e.g. a work queue) with interrupts 1129 * enabled and no spinlocks hold. 1130 */ 1131 void memory_failure(unsigned long pfn, int trapno) 1132 { 1133 __memory_failure(pfn, trapno, 0); 1134 } 1135 1136 /** 1137 * unpoison_memory - Unpoison a previously poisoned page 1138 * @pfn: Page number of the to be unpoisoned page 1139 * 1140 * Software-unpoison a page that has been poisoned by 1141 * memory_failure() earlier. 1142 * 1143 * This is only done on the software-level, so it only works 1144 * for linux injected failures, not real hardware failures 1145 * 1146 * Returns 0 for success, otherwise -errno. 1147 */ 1148 int unpoison_memory(unsigned long pfn) 1149 { 1150 struct page *page; 1151 struct page *p; 1152 int freeit = 0; 1153 unsigned int nr_pages; 1154 1155 if (!pfn_valid(pfn)) 1156 return -ENXIO; 1157 1158 p = pfn_to_page(pfn); 1159 page = compound_head(p); 1160 1161 if (!PageHWPoison(p)) { 1162 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1163 return 0; 1164 } 1165 1166 nr_pages = 1 << compound_order(page); 1167 1168 if (!get_page_unless_zero(page)) { 1169 /* 1170 * Since HWPoisoned hugepage should have non-zero refcount, 1171 * race between memory failure and unpoison seems to happen. 1172 * In such case unpoison fails and memory failure runs 1173 * to the end. 1174 */ 1175 if (PageHuge(page)) { 1176 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1177 return 0; 1178 } 1179 if (TestClearPageHWPoison(p)) 1180 atomic_long_sub(nr_pages, &mce_bad_pages); 1181 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1182 return 0; 1183 } 1184 1185 lock_page_nosync(page); 1186 /* 1187 * This test is racy because PG_hwpoison is set outside of page lock. 1188 * That's acceptable because that won't trigger kernel panic. Instead, 1189 * the PG_hwpoison page will be caught and isolated on the entrance to 1190 * the free buddy page pool. 1191 */ 1192 if (TestClearPageHWPoison(page)) { 1193 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1194 atomic_long_sub(nr_pages, &mce_bad_pages); 1195 freeit = 1; 1196 if (PageHuge(page)) 1197 clear_page_hwpoison_huge_page(page); 1198 } 1199 unlock_page(page); 1200 1201 put_page(page); 1202 if (freeit) 1203 put_page(page); 1204 1205 return 0; 1206 } 1207 EXPORT_SYMBOL(unpoison_memory); 1208 1209 static struct page *new_page(struct page *p, unsigned long private, int **x) 1210 { 1211 int nid = page_to_nid(p); 1212 if (PageHuge(p)) 1213 return alloc_huge_page_node(page_hstate(compound_head(p)), 1214 nid); 1215 else 1216 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1217 } 1218 1219 /* 1220 * Safely get reference count of an arbitrary page. 1221 * Returns 0 for a free page, -EIO for a zero refcount page 1222 * that is not free, and 1 for any other page type. 1223 * For 1 the page is returned with increased page count, otherwise not. 1224 */ 1225 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1226 { 1227 int ret; 1228 1229 if (flags & MF_COUNT_INCREASED) 1230 return 1; 1231 1232 /* 1233 * The lock_system_sleep prevents a race with memory hotplug, 1234 * because the isolation assumes there's only a single user. 1235 * This is a big hammer, a better would be nicer. 1236 */ 1237 lock_system_sleep(); 1238 1239 /* 1240 * Isolate the page, so that it doesn't get reallocated if it 1241 * was free. 1242 */ 1243 set_migratetype_isolate(p); 1244 /* 1245 * When the target page is a free hugepage, just remove it 1246 * from free hugepage list. 1247 */ 1248 if (!get_page_unless_zero(compound_head(p))) { 1249 if (PageHuge(p)) { 1250 pr_info("get_any_page: %#lx free huge page\n", pfn); 1251 ret = dequeue_hwpoisoned_huge_page(compound_head(p)); 1252 } else if (is_free_buddy_page(p)) { 1253 pr_info("get_any_page: %#lx free buddy page\n", pfn); 1254 /* Set hwpoison bit while page is still isolated */ 1255 SetPageHWPoison(p); 1256 ret = 0; 1257 } else { 1258 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n", 1259 pfn, p->flags); 1260 ret = -EIO; 1261 } 1262 } else { 1263 /* Not a free page */ 1264 ret = 1; 1265 } 1266 unset_migratetype_isolate(p); 1267 unlock_system_sleep(); 1268 return ret; 1269 } 1270 1271 static int soft_offline_huge_page(struct page *page, int flags) 1272 { 1273 int ret; 1274 unsigned long pfn = page_to_pfn(page); 1275 struct page *hpage = compound_head(page); 1276 LIST_HEAD(pagelist); 1277 1278 ret = get_any_page(page, pfn, flags); 1279 if (ret < 0) 1280 return ret; 1281 if (ret == 0) 1282 goto done; 1283 1284 if (PageHWPoison(hpage)) { 1285 put_page(hpage); 1286 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn); 1287 return -EBUSY; 1288 } 1289 1290 /* Keep page count to indicate a given hugepage is isolated. */ 1291 1292 list_add(&hpage->lru, &pagelist); 1293 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); 1294 if (ret) { 1295 putback_lru_pages(&pagelist); 1296 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", 1297 pfn, ret, page->flags); 1298 if (ret > 0) 1299 ret = -EIO; 1300 return ret; 1301 } 1302 done: 1303 if (!PageHWPoison(hpage)) 1304 atomic_long_add(1 << compound_order(hpage), &mce_bad_pages); 1305 set_page_hwpoison_huge_page(hpage); 1306 dequeue_hwpoisoned_huge_page(hpage); 1307 /* keep elevated page count for bad page */ 1308 return ret; 1309 } 1310 1311 /** 1312 * soft_offline_page - Soft offline a page. 1313 * @page: page to offline 1314 * @flags: flags. Same as memory_failure(). 1315 * 1316 * Returns 0 on success, otherwise negated errno. 1317 * 1318 * Soft offline a page, by migration or invalidation, 1319 * without killing anything. This is for the case when 1320 * a page is not corrupted yet (so it's still valid to access), 1321 * but has had a number of corrected errors and is better taken 1322 * out. 1323 * 1324 * The actual policy on when to do that is maintained by 1325 * user space. 1326 * 1327 * This should never impact any application or cause data loss, 1328 * however it might take some time. 1329 * 1330 * This is not a 100% solution for all memory, but tries to be 1331 * ``good enough'' for the majority of memory. 1332 */ 1333 int soft_offline_page(struct page *page, int flags) 1334 { 1335 int ret; 1336 unsigned long pfn = page_to_pfn(page); 1337 1338 if (PageHuge(page)) 1339 return soft_offline_huge_page(page, flags); 1340 1341 ret = get_any_page(page, pfn, flags); 1342 if (ret < 0) 1343 return ret; 1344 if (ret == 0) 1345 goto done; 1346 1347 /* 1348 * Page cache page we can handle? 1349 */ 1350 if (!PageLRU(page)) { 1351 /* 1352 * Try to free it. 1353 */ 1354 put_page(page); 1355 shake_page(page, 1); 1356 1357 /* 1358 * Did it turn free? 1359 */ 1360 ret = get_any_page(page, pfn, 0); 1361 if (ret < 0) 1362 return ret; 1363 if (ret == 0) 1364 goto done; 1365 } 1366 if (!PageLRU(page)) { 1367 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1368 pfn, page->flags); 1369 return -EIO; 1370 } 1371 1372 lock_page(page); 1373 wait_on_page_writeback(page); 1374 1375 /* 1376 * Synchronized using the page lock with memory_failure() 1377 */ 1378 if (PageHWPoison(page)) { 1379 unlock_page(page); 1380 put_page(page); 1381 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1382 return -EBUSY; 1383 } 1384 1385 /* 1386 * Try to invalidate first. This should work for 1387 * non dirty unmapped page cache pages. 1388 */ 1389 ret = invalidate_inode_page(page); 1390 unlock_page(page); 1391 1392 /* 1393 * Drop count because page migration doesn't like raised 1394 * counts. The page could get re-allocated, but if it becomes 1395 * LRU the isolation will just fail. 1396 * RED-PEN would be better to keep it isolated here, but we 1397 * would need to fix isolation locking first. 1398 */ 1399 put_page(page); 1400 if (ret == 1) { 1401 ret = 0; 1402 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1403 goto done; 1404 } 1405 1406 /* 1407 * Simple invalidation didn't work. 1408 * Try to migrate to a new page instead. migrate.c 1409 * handles a large number of cases for us. 1410 */ 1411 ret = isolate_lru_page(page); 1412 if (!ret) { 1413 LIST_HEAD(pagelist); 1414 1415 list_add(&page->lru, &pagelist); 1416 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); 1417 if (ret) { 1418 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1419 pfn, ret, page->flags); 1420 if (ret > 0) 1421 ret = -EIO; 1422 } 1423 } else { 1424 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1425 pfn, ret, page_count(page), page->flags); 1426 } 1427 if (ret) 1428 return ret; 1429 1430 done: 1431 atomic_long_add(1, &mce_bad_pages); 1432 SetPageHWPoison(page); 1433 /* keep elevated page count for bad page */ 1434 return ret; 1435 } 1436 1437 /* 1438 * The caller must hold current->mm->mmap_sem in read mode. 1439 */ 1440 int is_hwpoison_address(unsigned long addr) 1441 { 1442 pgd_t *pgdp; 1443 pud_t pud, *pudp; 1444 pmd_t pmd, *pmdp; 1445 pte_t pte, *ptep; 1446 swp_entry_t entry; 1447 1448 pgdp = pgd_offset(current->mm, addr); 1449 if (!pgd_present(*pgdp)) 1450 return 0; 1451 pudp = pud_offset(pgdp, addr); 1452 pud = *pudp; 1453 if (!pud_present(pud) || pud_large(pud)) 1454 return 0; 1455 pmdp = pmd_offset(pudp, addr); 1456 pmd = *pmdp; 1457 if (!pmd_present(pmd) || pmd_large(pmd)) 1458 return 0; 1459 ptep = pte_offset_map(pmdp, addr); 1460 pte = *ptep; 1461 pte_unmap(ptep); 1462 if (!is_swap_pte(pte)) 1463 return 0; 1464 entry = pte_to_swp_entry(pte); 1465 return is_hwpoison_entry(entry); 1466 } 1467 EXPORT_SYMBOL_GPL(is_hwpoison_address); 1468