xref: /openbmc/linux/mm/memory-failure.c (revision 92fd4d4d67b945c0766416284d4ab236b31542c4)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include "internal.h"
55 
56 int sysctl_memory_failure_early_kill __read_mostly = 0;
57 
58 int sysctl_memory_failure_recovery __read_mostly = 1;
59 
60 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
61 
62 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
63 
64 u32 hwpoison_filter_enable = 0;
65 u32 hwpoison_filter_dev_major = ~0U;
66 u32 hwpoison_filter_dev_minor = ~0U;
67 u64 hwpoison_filter_flags_mask;
68 u64 hwpoison_filter_flags_value;
69 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
70 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
74 
75 static int hwpoison_filter_dev(struct page *p)
76 {
77 	struct address_space *mapping;
78 	dev_t dev;
79 
80 	if (hwpoison_filter_dev_major == ~0U &&
81 	    hwpoison_filter_dev_minor == ~0U)
82 		return 0;
83 
84 	/*
85 	 * page_mapping() does not accept slab pages.
86 	 */
87 	if (PageSlab(p))
88 		return -EINVAL;
89 
90 	mapping = page_mapping(p);
91 	if (mapping == NULL || mapping->host == NULL)
92 		return -EINVAL;
93 
94 	dev = mapping->host->i_sb->s_dev;
95 	if (hwpoison_filter_dev_major != ~0U &&
96 	    hwpoison_filter_dev_major != MAJOR(dev))
97 		return -EINVAL;
98 	if (hwpoison_filter_dev_minor != ~0U &&
99 	    hwpoison_filter_dev_minor != MINOR(dev))
100 		return -EINVAL;
101 
102 	return 0;
103 }
104 
105 static int hwpoison_filter_flags(struct page *p)
106 {
107 	if (!hwpoison_filter_flags_mask)
108 		return 0;
109 
110 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
111 				    hwpoison_filter_flags_value)
112 		return 0;
113 	else
114 		return -EINVAL;
115 }
116 
117 /*
118  * This allows stress tests to limit test scope to a collection of tasks
119  * by putting them under some memcg. This prevents killing unrelated/important
120  * processes such as /sbin/init. Note that the target task may share clean
121  * pages with init (eg. libc text), which is harmless. If the target task
122  * share _dirty_ pages with another task B, the test scheme must make sure B
123  * is also included in the memcg. At last, due to race conditions this filter
124  * can only guarantee that the page either belongs to the memcg tasks, or is
125  * a freed page.
126  */
127 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
128 u64 hwpoison_filter_memcg;
129 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
130 static int hwpoison_filter_task(struct page *p)
131 {
132 	struct mem_cgroup *mem;
133 	struct cgroup_subsys_state *css;
134 	unsigned long ino;
135 
136 	if (!hwpoison_filter_memcg)
137 		return 0;
138 
139 	mem = try_get_mem_cgroup_from_page(p);
140 	if (!mem)
141 		return -EINVAL;
142 
143 	css = mem_cgroup_css(mem);
144 	/* root_mem_cgroup has NULL dentries */
145 	if (!css->cgroup->dentry)
146 		return -EINVAL;
147 
148 	ino = css->cgroup->dentry->d_inode->i_ino;
149 	css_put(css);
150 
151 	if (ino != hwpoison_filter_memcg)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159 
160 int hwpoison_filter(struct page *p)
161 {
162 	if (!hwpoison_filter_enable)
163 		return 0;
164 
165 	if (hwpoison_filter_dev(p))
166 		return -EINVAL;
167 
168 	if (hwpoison_filter_flags(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_task(p))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 	return 0;
180 }
181 #endif
182 
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184 
185 /*
186  * Send all the processes who have the page mapped an ``action optional''
187  * signal.
188  */
189 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
190 			unsigned long pfn, struct page *page)
191 {
192 	struct siginfo si;
193 	int ret;
194 
195 	printk(KERN_ERR
196 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
197 		pfn, t->comm, t->pid);
198 	si.si_signo = SIGBUS;
199 	si.si_errno = 0;
200 	si.si_code = BUS_MCEERR_AO;
201 	si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 	si.si_trapno = trapno;
204 #endif
205 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206 	/*
207 	 * Don't use force here, it's convenient if the signal
208 	 * can be temporarily blocked.
209 	 * This could cause a loop when the user sets SIGBUS
210 	 * to SIG_IGN, but hopefully noone will do that?
211 	 */
212 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
213 	if (ret < 0)
214 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
215 		       t->comm, t->pid, ret);
216 	return ret;
217 }
218 
219 /*
220  * When a unknown page type is encountered drain as many buffers as possible
221  * in the hope to turn the page into a LRU or free page, which we can handle.
222  */
223 void shake_page(struct page *p, int access)
224 {
225 	if (!PageSlab(p)) {
226 		lru_add_drain_all();
227 		if (PageLRU(p))
228 			return;
229 		drain_all_pages();
230 		if (PageLRU(p) || is_free_buddy_page(p))
231 			return;
232 	}
233 
234 	/*
235 	 * Only all shrink_slab here (which would also
236 	 * shrink other caches) if access is not potentially fatal.
237 	 */
238 	if (access) {
239 		int nr;
240 		do {
241 			nr = shrink_slab(1000, GFP_KERNEL, 1000);
242 			if (page_count(p) == 1)
243 				break;
244 		} while (nr > 10);
245 	}
246 }
247 EXPORT_SYMBOL_GPL(shake_page);
248 
249 /*
250  * Kill all processes that have a poisoned page mapped and then isolate
251  * the page.
252  *
253  * General strategy:
254  * Find all processes having the page mapped and kill them.
255  * But we keep a page reference around so that the page is not
256  * actually freed yet.
257  * Then stash the page away
258  *
259  * There's no convenient way to get back to mapped processes
260  * from the VMAs. So do a brute-force search over all
261  * running processes.
262  *
263  * Remember that machine checks are not common (or rather
264  * if they are common you have other problems), so this shouldn't
265  * be a performance issue.
266  *
267  * Also there are some races possible while we get from the
268  * error detection to actually handle it.
269  */
270 
271 struct to_kill {
272 	struct list_head nd;
273 	struct task_struct *tsk;
274 	unsigned long addr;
275 	char addr_valid;
276 };
277 
278 /*
279  * Failure handling: if we can't find or can't kill a process there's
280  * not much we can do.	We just print a message and ignore otherwise.
281  */
282 
283 /*
284  * Schedule a process for later kill.
285  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
286  * TBD would GFP_NOIO be enough?
287  */
288 static void add_to_kill(struct task_struct *tsk, struct page *p,
289 		       struct vm_area_struct *vma,
290 		       struct list_head *to_kill,
291 		       struct to_kill **tkc)
292 {
293 	struct to_kill *tk;
294 
295 	if (*tkc) {
296 		tk = *tkc;
297 		*tkc = NULL;
298 	} else {
299 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
300 		if (!tk) {
301 			printk(KERN_ERR
302 		"MCE: Out of memory while machine check handling\n");
303 			return;
304 		}
305 	}
306 	tk->addr = page_address_in_vma(p, vma);
307 	tk->addr_valid = 1;
308 
309 	/*
310 	 * In theory we don't have to kill when the page was
311 	 * munmaped. But it could be also a mremap. Since that's
312 	 * likely very rare kill anyways just out of paranoia, but use
313 	 * a SIGKILL because the error is not contained anymore.
314 	 */
315 	if (tk->addr == -EFAULT) {
316 		pr_info("MCE: Unable to find user space address %lx in %s\n",
317 			page_to_pfn(p), tsk->comm);
318 		tk->addr_valid = 0;
319 	}
320 	get_task_struct(tsk);
321 	tk->tsk = tsk;
322 	list_add_tail(&tk->nd, to_kill);
323 }
324 
325 /*
326  * Kill the processes that have been collected earlier.
327  *
328  * Only do anything when DOIT is set, otherwise just free the list
329  * (this is used for clean pages which do not need killing)
330  * Also when FAIL is set do a force kill because something went
331  * wrong earlier.
332  */
333 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
334 			  int fail, struct page *page, unsigned long pfn)
335 {
336 	struct to_kill *tk, *next;
337 
338 	list_for_each_entry_safe (tk, next, to_kill, nd) {
339 		if (doit) {
340 			/*
341 			 * In case something went wrong with munmapping
342 			 * make sure the process doesn't catch the
343 			 * signal and then access the memory. Just kill it.
344 			 */
345 			if (fail || tk->addr_valid == 0) {
346 				printk(KERN_ERR
347 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
348 					pfn, tk->tsk->comm, tk->tsk->pid);
349 				force_sig(SIGKILL, tk->tsk);
350 			}
351 
352 			/*
353 			 * In theory the process could have mapped
354 			 * something else on the address in-between. We could
355 			 * check for that, but we need to tell the
356 			 * process anyways.
357 			 */
358 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
359 					      pfn, page) < 0)
360 				printk(KERN_ERR
361 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
362 					pfn, tk->tsk->comm, tk->tsk->pid);
363 		}
364 		put_task_struct(tk->tsk);
365 		kfree(tk);
366 	}
367 }
368 
369 static int task_early_kill(struct task_struct *tsk)
370 {
371 	if (!tsk->mm)
372 		return 0;
373 	if (tsk->flags & PF_MCE_PROCESS)
374 		return !!(tsk->flags & PF_MCE_EARLY);
375 	return sysctl_memory_failure_early_kill;
376 }
377 
378 /*
379  * Collect processes when the error hit an anonymous page.
380  */
381 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
382 			      struct to_kill **tkc)
383 {
384 	struct vm_area_struct *vma;
385 	struct task_struct *tsk;
386 	struct anon_vma *av;
387 
388 	read_lock(&tasklist_lock);
389 	av = page_lock_anon_vma(page);
390 	if (av == NULL)	/* Not actually mapped anymore */
391 		goto out;
392 	for_each_process (tsk) {
393 		struct anon_vma_chain *vmac;
394 
395 		if (!task_early_kill(tsk))
396 			continue;
397 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
398 			vma = vmac->vma;
399 			if (!page_mapped_in_vma(page, vma))
400 				continue;
401 			if (vma->vm_mm == tsk->mm)
402 				add_to_kill(tsk, page, vma, to_kill, tkc);
403 		}
404 	}
405 	page_unlock_anon_vma(av);
406 out:
407 	read_unlock(&tasklist_lock);
408 }
409 
410 /*
411  * Collect processes when the error hit a file mapped page.
412  */
413 static void collect_procs_file(struct page *page, struct list_head *to_kill,
414 			      struct to_kill **tkc)
415 {
416 	struct vm_area_struct *vma;
417 	struct task_struct *tsk;
418 	struct prio_tree_iter iter;
419 	struct address_space *mapping = page->mapping;
420 
421 	/*
422 	 * A note on the locking order between the two locks.
423 	 * We don't rely on this particular order.
424 	 * If you have some other code that needs a different order
425 	 * feel free to switch them around. Or add a reverse link
426 	 * from mm_struct to task_struct, then this could be all
427 	 * done without taking tasklist_lock and looping over all tasks.
428 	 */
429 
430 	read_lock(&tasklist_lock);
431 	spin_lock(&mapping->i_mmap_lock);
432 	for_each_process(tsk) {
433 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
434 
435 		if (!task_early_kill(tsk))
436 			continue;
437 
438 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
439 				      pgoff) {
440 			/*
441 			 * Send early kill signal to tasks where a vma covers
442 			 * the page but the corrupted page is not necessarily
443 			 * mapped it in its pte.
444 			 * Assume applications who requested early kill want
445 			 * to be informed of all such data corruptions.
446 			 */
447 			if (vma->vm_mm == tsk->mm)
448 				add_to_kill(tsk, page, vma, to_kill, tkc);
449 		}
450 	}
451 	spin_unlock(&mapping->i_mmap_lock);
452 	read_unlock(&tasklist_lock);
453 }
454 
455 /*
456  * Collect the processes who have the corrupted page mapped to kill.
457  * This is done in two steps for locking reasons.
458  * First preallocate one tokill structure outside the spin locks,
459  * so that we can kill at least one process reasonably reliable.
460  */
461 static void collect_procs(struct page *page, struct list_head *tokill)
462 {
463 	struct to_kill *tk;
464 
465 	if (!page->mapping)
466 		return;
467 
468 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
469 	if (!tk)
470 		return;
471 	if (PageAnon(page))
472 		collect_procs_anon(page, tokill, &tk);
473 	else
474 		collect_procs_file(page, tokill, &tk);
475 	kfree(tk);
476 }
477 
478 /*
479  * Error handlers for various types of pages.
480  */
481 
482 enum outcome {
483 	IGNORED,	/* Error: cannot be handled */
484 	FAILED,		/* Error: handling failed */
485 	DELAYED,	/* Will be handled later */
486 	RECOVERED,	/* Successfully recovered */
487 };
488 
489 static const char *action_name[] = {
490 	[IGNORED] = "Ignored",
491 	[FAILED] = "Failed",
492 	[DELAYED] = "Delayed",
493 	[RECOVERED] = "Recovered",
494 };
495 
496 /*
497  * XXX: It is possible that a page is isolated from LRU cache,
498  * and then kept in swap cache or failed to remove from page cache.
499  * The page count will stop it from being freed by unpoison.
500  * Stress tests should be aware of this memory leak problem.
501  */
502 static int delete_from_lru_cache(struct page *p)
503 {
504 	if (!isolate_lru_page(p)) {
505 		/*
506 		 * Clear sensible page flags, so that the buddy system won't
507 		 * complain when the page is unpoison-and-freed.
508 		 */
509 		ClearPageActive(p);
510 		ClearPageUnevictable(p);
511 		/*
512 		 * drop the page count elevated by isolate_lru_page()
513 		 */
514 		page_cache_release(p);
515 		return 0;
516 	}
517 	return -EIO;
518 }
519 
520 /*
521  * Error hit kernel page.
522  * Do nothing, try to be lucky and not touch this instead. For a few cases we
523  * could be more sophisticated.
524  */
525 static int me_kernel(struct page *p, unsigned long pfn)
526 {
527 	return IGNORED;
528 }
529 
530 /*
531  * Page in unknown state. Do nothing.
532  */
533 static int me_unknown(struct page *p, unsigned long pfn)
534 {
535 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
536 	return FAILED;
537 }
538 
539 /*
540  * Clean (or cleaned) page cache page.
541  */
542 static int me_pagecache_clean(struct page *p, unsigned long pfn)
543 {
544 	int err;
545 	int ret = FAILED;
546 	struct address_space *mapping;
547 
548 	delete_from_lru_cache(p);
549 
550 	/*
551 	 * For anonymous pages we're done the only reference left
552 	 * should be the one m_f() holds.
553 	 */
554 	if (PageAnon(p))
555 		return RECOVERED;
556 
557 	/*
558 	 * Now truncate the page in the page cache. This is really
559 	 * more like a "temporary hole punch"
560 	 * Don't do this for block devices when someone else
561 	 * has a reference, because it could be file system metadata
562 	 * and that's not safe to truncate.
563 	 */
564 	mapping = page_mapping(p);
565 	if (!mapping) {
566 		/*
567 		 * Page has been teared down in the meanwhile
568 		 */
569 		return FAILED;
570 	}
571 
572 	/*
573 	 * Truncation is a bit tricky. Enable it per file system for now.
574 	 *
575 	 * Open: to take i_mutex or not for this? Right now we don't.
576 	 */
577 	if (mapping->a_ops->error_remove_page) {
578 		err = mapping->a_ops->error_remove_page(mapping, p);
579 		if (err != 0) {
580 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
581 					pfn, err);
582 		} else if (page_has_private(p) &&
583 				!try_to_release_page(p, GFP_NOIO)) {
584 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
585 		} else {
586 			ret = RECOVERED;
587 		}
588 	} else {
589 		/*
590 		 * If the file system doesn't support it just invalidate
591 		 * This fails on dirty or anything with private pages
592 		 */
593 		if (invalidate_inode_page(p))
594 			ret = RECOVERED;
595 		else
596 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
597 				pfn);
598 	}
599 	return ret;
600 }
601 
602 /*
603  * Dirty cache page page
604  * Issues: when the error hit a hole page the error is not properly
605  * propagated.
606  */
607 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
608 {
609 	struct address_space *mapping = page_mapping(p);
610 
611 	SetPageError(p);
612 	/* TBD: print more information about the file. */
613 	if (mapping) {
614 		/*
615 		 * IO error will be reported by write(), fsync(), etc.
616 		 * who check the mapping.
617 		 * This way the application knows that something went
618 		 * wrong with its dirty file data.
619 		 *
620 		 * There's one open issue:
621 		 *
622 		 * The EIO will be only reported on the next IO
623 		 * operation and then cleared through the IO map.
624 		 * Normally Linux has two mechanisms to pass IO error
625 		 * first through the AS_EIO flag in the address space
626 		 * and then through the PageError flag in the page.
627 		 * Since we drop pages on memory failure handling the
628 		 * only mechanism open to use is through AS_AIO.
629 		 *
630 		 * This has the disadvantage that it gets cleared on
631 		 * the first operation that returns an error, while
632 		 * the PageError bit is more sticky and only cleared
633 		 * when the page is reread or dropped.  If an
634 		 * application assumes it will always get error on
635 		 * fsync, but does other operations on the fd before
636 		 * and the page is dropped inbetween then the error
637 		 * will not be properly reported.
638 		 *
639 		 * This can already happen even without hwpoisoned
640 		 * pages: first on metadata IO errors (which only
641 		 * report through AS_EIO) or when the page is dropped
642 		 * at the wrong time.
643 		 *
644 		 * So right now we assume that the application DTRT on
645 		 * the first EIO, but we're not worse than other parts
646 		 * of the kernel.
647 		 */
648 		mapping_set_error(mapping, EIO);
649 	}
650 
651 	return me_pagecache_clean(p, pfn);
652 }
653 
654 /*
655  * Clean and dirty swap cache.
656  *
657  * Dirty swap cache page is tricky to handle. The page could live both in page
658  * cache and swap cache(ie. page is freshly swapped in). So it could be
659  * referenced concurrently by 2 types of PTEs:
660  * normal PTEs and swap PTEs. We try to handle them consistently by calling
661  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
662  * and then
663  *      - clear dirty bit to prevent IO
664  *      - remove from LRU
665  *      - but keep in the swap cache, so that when we return to it on
666  *        a later page fault, we know the application is accessing
667  *        corrupted data and shall be killed (we installed simple
668  *        interception code in do_swap_page to catch it).
669  *
670  * Clean swap cache pages can be directly isolated. A later page fault will
671  * bring in the known good data from disk.
672  */
673 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
674 {
675 	ClearPageDirty(p);
676 	/* Trigger EIO in shmem: */
677 	ClearPageUptodate(p);
678 
679 	if (!delete_from_lru_cache(p))
680 		return DELAYED;
681 	else
682 		return FAILED;
683 }
684 
685 static int me_swapcache_clean(struct page *p, unsigned long pfn)
686 {
687 	delete_from_swap_cache(p);
688 
689 	if (!delete_from_lru_cache(p))
690 		return RECOVERED;
691 	else
692 		return FAILED;
693 }
694 
695 /*
696  * Huge pages. Needs work.
697  * Issues:
698  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
699  *   To narrow down kill region to one page, we need to break up pmd.
700  */
701 static int me_huge_page(struct page *p, unsigned long pfn)
702 {
703 	int res = 0;
704 	struct page *hpage = compound_head(p);
705 	/*
706 	 * We can safely recover from error on free or reserved (i.e.
707 	 * not in-use) hugepage by dequeuing it from freelist.
708 	 * To check whether a hugepage is in-use or not, we can't use
709 	 * page->lru because it can be used in other hugepage operations,
710 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
711 	 * So instead we use page_mapping() and PageAnon().
712 	 * We assume that this function is called with page lock held,
713 	 * so there is no race between isolation and mapping/unmapping.
714 	 */
715 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
716 		res = dequeue_hwpoisoned_huge_page(hpage);
717 		if (!res)
718 			return RECOVERED;
719 	}
720 	return DELAYED;
721 }
722 
723 /*
724  * Various page states we can handle.
725  *
726  * A page state is defined by its current page->flags bits.
727  * The table matches them in order and calls the right handler.
728  *
729  * This is quite tricky because we can access page at any time
730  * in its live cycle, so all accesses have to be extremly careful.
731  *
732  * This is not complete. More states could be added.
733  * For any missing state don't attempt recovery.
734  */
735 
736 #define dirty		(1UL << PG_dirty)
737 #define sc		(1UL << PG_swapcache)
738 #define unevict		(1UL << PG_unevictable)
739 #define mlock		(1UL << PG_mlocked)
740 #define writeback	(1UL << PG_writeback)
741 #define lru		(1UL << PG_lru)
742 #define swapbacked	(1UL << PG_swapbacked)
743 #define head		(1UL << PG_head)
744 #define tail		(1UL << PG_tail)
745 #define compound	(1UL << PG_compound)
746 #define slab		(1UL << PG_slab)
747 #define reserved	(1UL << PG_reserved)
748 
749 static struct page_state {
750 	unsigned long mask;
751 	unsigned long res;
752 	char *msg;
753 	int (*action)(struct page *p, unsigned long pfn);
754 } error_states[] = {
755 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
756 	/*
757 	 * free pages are specially detected outside this table:
758 	 * PG_buddy pages only make a small fraction of all free pages.
759 	 */
760 
761 	/*
762 	 * Could in theory check if slab page is free or if we can drop
763 	 * currently unused objects without touching them. But just
764 	 * treat it as standard kernel for now.
765 	 */
766 	{ slab,		slab,		"kernel slab",	me_kernel },
767 
768 #ifdef CONFIG_PAGEFLAGS_EXTENDED
769 	{ head,		head,		"huge",		me_huge_page },
770 	{ tail,		tail,		"huge",		me_huge_page },
771 #else
772 	{ compound,	compound,	"huge",		me_huge_page },
773 #endif
774 
775 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
776 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
777 
778 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
779 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
780 
781 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
782 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
783 
784 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
785 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
786 
787 	/*
788 	 * Catchall entry: must be at end.
789 	 */
790 	{ 0,		0,		"unknown page state",	me_unknown },
791 };
792 
793 #undef dirty
794 #undef sc
795 #undef unevict
796 #undef mlock
797 #undef writeback
798 #undef lru
799 #undef swapbacked
800 #undef head
801 #undef tail
802 #undef compound
803 #undef slab
804 #undef reserved
805 
806 static void action_result(unsigned long pfn, char *msg, int result)
807 {
808 	struct page *page = pfn_to_page(pfn);
809 
810 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
811 		pfn,
812 		PageDirty(page) ? "dirty " : "",
813 		msg, action_name[result]);
814 }
815 
816 static int page_action(struct page_state *ps, struct page *p,
817 			unsigned long pfn)
818 {
819 	int result;
820 	int count;
821 
822 	result = ps->action(p, pfn);
823 	action_result(pfn, ps->msg, result);
824 
825 	count = page_count(p) - 1;
826 	if (ps->action == me_swapcache_dirty && result == DELAYED)
827 		count--;
828 	if (count != 0) {
829 		printk(KERN_ERR
830 		       "MCE %#lx: %s page still referenced by %d users\n",
831 		       pfn, ps->msg, count);
832 		result = FAILED;
833 	}
834 
835 	/* Could do more checks here if page looks ok */
836 	/*
837 	 * Could adjust zone counters here to correct for the missing page.
838 	 */
839 
840 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
841 }
842 
843 /*
844  * Do all that is necessary to remove user space mappings. Unmap
845  * the pages and send SIGBUS to the processes if the data was dirty.
846  */
847 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
848 				  int trapno)
849 {
850 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
851 	struct address_space *mapping;
852 	LIST_HEAD(tokill);
853 	int ret;
854 	int kill = 1;
855 	struct page *hpage = compound_head(p);
856 
857 	if (PageReserved(p) || PageSlab(p))
858 		return SWAP_SUCCESS;
859 
860 	/*
861 	 * This check implies we don't kill processes if their pages
862 	 * are in the swap cache early. Those are always late kills.
863 	 */
864 	if (!page_mapped(hpage))
865 		return SWAP_SUCCESS;
866 
867 	if (PageKsm(p))
868 		return SWAP_FAIL;
869 
870 	if (PageSwapCache(p)) {
871 		printk(KERN_ERR
872 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
873 		ttu |= TTU_IGNORE_HWPOISON;
874 	}
875 
876 	/*
877 	 * Propagate the dirty bit from PTEs to struct page first, because we
878 	 * need this to decide if we should kill or just drop the page.
879 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
880 	 * be called inside page lock (it's recommended but not enforced).
881 	 */
882 	mapping = page_mapping(hpage);
883 	if (!PageDirty(hpage) && mapping &&
884 	    mapping_cap_writeback_dirty(mapping)) {
885 		if (page_mkclean(hpage)) {
886 			SetPageDirty(hpage);
887 		} else {
888 			kill = 0;
889 			ttu |= TTU_IGNORE_HWPOISON;
890 			printk(KERN_INFO
891 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
892 				pfn);
893 		}
894 	}
895 
896 	/*
897 	 * First collect all the processes that have the page
898 	 * mapped in dirty form.  This has to be done before try_to_unmap,
899 	 * because ttu takes the rmap data structures down.
900 	 *
901 	 * Error handling: We ignore errors here because
902 	 * there's nothing that can be done.
903 	 */
904 	if (kill)
905 		collect_procs(hpage, &tokill);
906 
907 	ret = try_to_unmap(hpage, ttu);
908 	if (ret != SWAP_SUCCESS)
909 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
910 				pfn, page_mapcount(hpage));
911 
912 	/*
913 	 * Now that the dirty bit has been propagated to the
914 	 * struct page and all unmaps done we can decide if
915 	 * killing is needed or not.  Only kill when the page
916 	 * was dirty, otherwise the tokill list is merely
917 	 * freed.  When there was a problem unmapping earlier
918 	 * use a more force-full uncatchable kill to prevent
919 	 * any accesses to the poisoned memory.
920 	 */
921 	kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
922 		      ret != SWAP_SUCCESS, p, pfn);
923 
924 	return ret;
925 }
926 
927 static void set_page_hwpoison_huge_page(struct page *hpage)
928 {
929 	int i;
930 	int nr_pages = 1 << compound_order(hpage);
931 	for (i = 0; i < nr_pages; i++)
932 		SetPageHWPoison(hpage + i);
933 }
934 
935 static void clear_page_hwpoison_huge_page(struct page *hpage)
936 {
937 	int i;
938 	int nr_pages = 1 << compound_order(hpage);
939 	for (i = 0; i < nr_pages; i++)
940 		ClearPageHWPoison(hpage + i);
941 }
942 
943 int __memory_failure(unsigned long pfn, int trapno, int flags)
944 {
945 	struct page_state *ps;
946 	struct page *p;
947 	struct page *hpage;
948 	int res;
949 	unsigned int nr_pages;
950 
951 	if (!sysctl_memory_failure_recovery)
952 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
953 
954 	if (!pfn_valid(pfn)) {
955 		printk(KERN_ERR
956 		       "MCE %#lx: memory outside kernel control\n",
957 		       pfn);
958 		return -ENXIO;
959 	}
960 
961 	p = pfn_to_page(pfn);
962 	hpage = compound_head(p);
963 	if (TestSetPageHWPoison(p)) {
964 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
965 		return 0;
966 	}
967 
968 	nr_pages = 1 << compound_order(hpage);
969 	atomic_long_add(nr_pages, &mce_bad_pages);
970 
971 	/*
972 	 * We need/can do nothing about count=0 pages.
973 	 * 1) it's a free page, and therefore in safe hand:
974 	 *    prep_new_page() will be the gate keeper.
975 	 * 2) it's a free hugepage, which is also safe:
976 	 *    an affected hugepage will be dequeued from hugepage freelist,
977 	 *    so there's no concern about reusing it ever after.
978 	 * 3) it's part of a non-compound high order page.
979 	 *    Implies some kernel user: cannot stop them from
980 	 *    R/W the page; let's pray that the page has been
981 	 *    used and will be freed some time later.
982 	 * In fact it's dangerous to directly bump up page count from 0,
983 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
984 	 */
985 	if (!(flags & MF_COUNT_INCREASED) &&
986 		!get_page_unless_zero(hpage)) {
987 		if (is_free_buddy_page(p)) {
988 			action_result(pfn, "free buddy", DELAYED);
989 			return 0;
990 		} else if (PageHuge(hpage)) {
991 			/*
992 			 * Check "just unpoisoned", "filter hit", and
993 			 * "race with other subpage."
994 			 */
995 			lock_page_nosync(hpage);
996 			if (!PageHWPoison(hpage)
997 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
998 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
999 				atomic_long_sub(nr_pages, &mce_bad_pages);
1000 				return 0;
1001 			}
1002 			set_page_hwpoison_huge_page(hpage);
1003 			res = dequeue_hwpoisoned_huge_page(hpage);
1004 			action_result(pfn, "free huge",
1005 				      res ? IGNORED : DELAYED);
1006 			unlock_page(hpage);
1007 			return res;
1008 		} else {
1009 			action_result(pfn, "high order kernel", IGNORED);
1010 			return -EBUSY;
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * We ignore non-LRU pages for good reasons.
1016 	 * - PG_locked is only well defined for LRU pages and a few others
1017 	 * - to avoid races with __set_page_locked()
1018 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1019 	 * The check (unnecessarily) ignores LRU pages being isolated and
1020 	 * walked by the page reclaim code, however that's not a big loss.
1021 	 */
1022 	if (!PageLRU(p) && !PageHuge(p))
1023 		shake_page(p, 0);
1024 	if (!PageLRU(p) && !PageHuge(p)) {
1025 		/*
1026 		 * shake_page could have turned it free.
1027 		 */
1028 		if (is_free_buddy_page(p)) {
1029 			action_result(pfn, "free buddy, 2nd try", DELAYED);
1030 			return 0;
1031 		}
1032 		action_result(pfn, "non LRU", IGNORED);
1033 		put_page(p);
1034 		return -EBUSY;
1035 	}
1036 
1037 	/*
1038 	 * Lock the page and wait for writeback to finish.
1039 	 * It's very difficult to mess with pages currently under IO
1040 	 * and in many cases impossible, so we just avoid it here.
1041 	 */
1042 	lock_page_nosync(hpage);
1043 
1044 	/*
1045 	 * unpoison always clear PG_hwpoison inside page lock
1046 	 */
1047 	if (!PageHWPoison(p)) {
1048 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1049 		res = 0;
1050 		goto out;
1051 	}
1052 	if (hwpoison_filter(p)) {
1053 		if (TestClearPageHWPoison(p))
1054 			atomic_long_sub(nr_pages, &mce_bad_pages);
1055 		unlock_page(hpage);
1056 		put_page(hpage);
1057 		return 0;
1058 	}
1059 
1060 	/*
1061 	 * For error on the tail page, we should set PG_hwpoison
1062 	 * on the head page to show that the hugepage is hwpoisoned
1063 	 */
1064 	if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1065 		action_result(pfn, "hugepage already hardware poisoned",
1066 				IGNORED);
1067 		unlock_page(hpage);
1068 		put_page(hpage);
1069 		return 0;
1070 	}
1071 	/*
1072 	 * Set PG_hwpoison on all pages in an error hugepage,
1073 	 * because containment is done in hugepage unit for now.
1074 	 * Since we have done TestSetPageHWPoison() for the head page with
1075 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1076 	 */
1077 	if (PageHuge(p))
1078 		set_page_hwpoison_huge_page(hpage);
1079 
1080 	wait_on_page_writeback(p);
1081 
1082 	/*
1083 	 * Now take care of user space mappings.
1084 	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1085 	 */
1086 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1087 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1088 		res = -EBUSY;
1089 		goto out;
1090 	}
1091 
1092 	/*
1093 	 * Torn down by someone else?
1094 	 */
1095 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1096 		action_result(pfn, "already truncated LRU", IGNORED);
1097 		res = -EBUSY;
1098 		goto out;
1099 	}
1100 
1101 	res = -EBUSY;
1102 	for (ps = error_states;; ps++) {
1103 		if ((p->flags & ps->mask) == ps->res) {
1104 			res = page_action(ps, p, pfn);
1105 			break;
1106 		}
1107 	}
1108 out:
1109 	unlock_page(hpage);
1110 	return res;
1111 }
1112 EXPORT_SYMBOL_GPL(__memory_failure);
1113 
1114 /**
1115  * memory_failure - Handle memory failure of a page.
1116  * @pfn: Page Number of the corrupted page
1117  * @trapno: Trap number reported in the signal to user space.
1118  *
1119  * This function is called by the low level machine check code
1120  * of an architecture when it detects hardware memory corruption
1121  * of a page. It tries its best to recover, which includes
1122  * dropping pages, killing processes etc.
1123  *
1124  * The function is primarily of use for corruptions that
1125  * happen outside the current execution context (e.g. when
1126  * detected by a background scrubber)
1127  *
1128  * Must run in process context (e.g. a work queue) with interrupts
1129  * enabled and no spinlocks hold.
1130  */
1131 void memory_failure(unsigned long pfn, int trapno)
1132 {
1133 	__memory_failure(pfn, trapno, 0);
1134 }
1135 
1136 /**
1137  * unpoison_memory - Unpoison a previously poisoned page
1138  * @pfn: Page number of the to be unpoisoned page
1139  *
1140  * Software-unpoison a page that has been poisoned by
1141  * memory_failure() earlier.
1142  *
1143  * This is only done on the software-level, so it only works
1144  * for linux injected failures, not real hardware failures
1145  *
1146  * Returns 0 for success, otherwise -errno.
1147  */
1148 int unpoison_memory(unsigned long pfn)
1149 {
1150 	struct page *page;
1151 	struct page *p;
1152 	int freeit = 0;
1153 	unsigned int nr_pages;
1154 
1155 	if (!pfn_valid(pfn))
1156 		return -ENXIO;
1157 
1158 	p = pfn_to_page(pfn);
1159 	page = compound_head(p);
1160 
1161 	if (!PageHWPoison(p)) {
1162 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1163 		return 0;
1164 	}
1165 
1166 	nr_pages = 1 << compound_order(page);
1167 
1168 	if (!get_page_unless_zero(page)) {
1169 		/*
1170 		 * Since HWPoisoned hugepage should have non-zero refcount,
1171 		 * race between memory failure and unpoison seems to happen.
1172 		 * In such case unpoison fails and memory failure runs
1173 		 * to the end.
1174 		 */
1175 		if (PageHuge(page)) {
1176 			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1177 			return 0;
1178 		}
1179 		if (TestClearPageHWPoison(p))
1180 			atomic_long_sub(nr_pages, &mce_bad_pages);
1181 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1182 		return 0;
1183 	}
1184 
1185 	lock_page_nosync(page);
1186 	/*
1187 	 * This test is racy because PG_hwpoison is set outside of page lock.
1188 	 * That's acceptable because that won't trigger kernel panic. Instead,
1189 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1190 	 * the free buddy page pool.
1191 	 */
1192 	if (TestClearPageHWPoison(page)) {
1193 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1194 		atomic_long_sub(nr_pages, &mce_bad_pages);
1195 		freeit = 1;
1196 		if (PageHuge(page))
1197 			clear_page_hwpoison_huge_page(page);
1198 	}
1199 	unlock_page(page);
1200 
1201 	put_page(page);
1202 	if (freeit)
1203 		put_page(page);
1204 
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL(unpoison_memory);
1208 
1209 static struct page *new_page(struct page *p, unsigned long private, int **x)
1210 {
1211 	int nid = page_to_nid(p);
1212 	if (PageHuge(p))
1213 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1214 						   nid);
1215 	else
1216 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1217 }
1218 
1219 /*
1220  * Safely get reference count of an arbitrary page.
1221  * Returns 0 for a free page, -EIO for a zero refcount page
1222  * that is not free, and 1 for any other page type.
1223  * For 1 the page is returned with increased page count, otherwise not.
1224  */
1225 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1226 {
1227 	int ret;
1228 
1229 	if (flags & MF_COUNT_INCREASED)
1230 		return 1;
1231 
1232 	/*
1233 	 * The lock_system_sleep prevents a race with memory hotplug,
1234 	 * because the isolation assumes there's only a single user.
1235 	 * This is a big hammer, a better would be nicer.
1236 	 */
1237 	lock_system_sleep();
1238 
1239 	/*
1240 	 * Isolate the page, so that it doesn't get reallocated if it
1241 	 * was free.
1242 	 */
1243 	set_migratetype_isolate(p);
1244 	/*
1245 	 * When the target page is a free hugepage, just remove it
1246 	 * from free hugepage list.
1247 	 */
1248 	if (!get_page_unless_zero(compound_head(p))) {
1249 		if (PageHuge(p)) {
1250 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1251 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1252 		} else if (is_free_buddy_page(p)) {
1253 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1254 			/* Set hwpoison bit while page is still isolated */
1255 			SetPageHWPoison(p);
1256 			ret = 0;
1257 		} else {
1258 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1259 				pfn, p->flags);
1260 			ret = -EIO;
1261 		}
1262 	} else {
1263 		/* Not a free page */
1264 		ret = 1;
1265 	}
1266 	unset_migratetype_isolate(p);
1267 	unlock_system_sleep();
1268 	return ret;
1269 }
1270 
1271 static int soft_offline_huge_page(struct page *page, int flags)
1272 {
1273 	int ret;
1274 	unsigned long pfn = page_to_pfn(page);
1275 	struct page *hpage = compound_head(page);
1276 	LIST_HEAD(pagelist);
1277 
1278 	ret = get_any_page(page, pfn, flags);
1279 	if (ret < 0)
1280 		return ret;
1281 	if (ret == 0)
1282 		goto done;
1283 
1284 	if (PageHWPoison(hpage)) {
1285 		put_page(hpage);
1286 		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1287 		return -EBUSY;
1288 	}
1289 
1290 	/* Keep page count to indicate a given hugepage is isolated. */
1291 
1292 	list_add(&hpage->lru, &pagelist);
1293 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1294 	if (ret) {
1295 			putback_lru_pages(&pagelist);
1296 		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1297 			 pfn, ret, page->flags);
1298 		if (ret > 0)
1299 			ret = -EIO;
1300 		return ret;
1301 	}
1302 done:
1303 	if (!PageHWPoison(hpage))
1304 		atomic_long_add(1 << compound_order(hpage), &mce_bad_pages);
1305 	set_page_hwpoison_huge_page(hpage);
1306 	dequeue_hwpoisoned_huge_page(hpage);
1307 	/* keep elevated page count for bad page */
1308 	return ret;
1309 }
1310 
1311 /**
1312  * soft_offline_page - Soft offline a page.
1313  * @page: page to offline
1314  * @flags: flags. Same as memory_failure().
1315  *
1316  * Returns 0 on success, otherwise negated errno.
1317  *
1318  * Soft offline a page, by migration or invalidation,
1319  * without killing anything. This is for the case when
1320  * a page is not corrupted yet (so it's still valid to access),
1321  * but has had a number of corrected errors and is better taken
1322  * out.
1323  *
1324  * The actual policy on when to do that is maintained by
1325  * user space.
1326  *
1327  * This should never impact any application or cause data loss,
1328  * however it might take some time.
1329  *
1330  * This is not a 100% solution for all memory, but tries to be
1331  * ``good enough'' for the majority of memory.
1332  */
1333 int soft_offline_page(struct page *page, int flags)
1334 {
1335 	int ret;
1336 	unsigned long pfn = page_to_pfn(page);
1337 
1338 	if (PageHuge(page))
1339 		return soft_offline_huge_page(page, flags);
1340 
1341 	ret = get_any_page(page, pfn, flags);
1342 	if (ret < 0)
1343 		return ret;
1344 	if (ret == 0)
1345 		goto done;
1346 
1347 	/*
1348 	 * Page cache page we can handle?
1349 	 */
1350 	if (!PageLRU(page)) {
1351 		/*
1352 		 * Try to free it.
1353 		 */
1354 		put_page(page);
1355 		shake_page(page, 1);
1356 
1357 		/*
1358 		 * Did it turn free?
1359 		 */
1360 		ret = get_any_page(page, pfn, 0);
1361 		if (ret < 0)
1362 			return ret;
1363 		if (ret == 0)
1364 			goto done;
1365 	}
1366 	if (!PageLRU(page)) {
1367 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1368 				pfn, page->flags);
1369 		return -EIO;
1370 	}
1371 
1372 	lock_page(page);
1373 	wait_on_page_writeback(page);
1374 
1375 	/*
1376 	 * Synchronized using the page lock with memory_failure()
1377 	 */
1378 	if (PageHWPoison(page)) {
1379 		unlock_page(page);
1380 		put_page(page);
1381 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1382 		return -EBUSY;
1383 	}
1384 
1385 	/*
1386 	 * Try to invalidate first. This should work for
1387 	 * non dirty unmapped page cache pages.
1388 	 */
1389 	ret = invalidate_inode_page(page);
1390 	unlock_page(page);
1391 
1392 	/*
1393 	 * Drop count because page migration doesn't like raised
1394 	 * counts. The page could get re-allocated, but if it becomes
1395 	 * LRU the isolation will just fail.
1396 	 * RED-PEN would be better to keep it isolated here, but we
1397 	 * would need to fix isolation locking first.
1398 	 */
1399 	put_page(page);
1400 	if (ret == 1) {
1401 		ret = 0;
1402 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1403 		goto done;
1404 	}
1405 
1406 	/*
1407 	 * Simple invalidation didn't work.
1408 	 * Try to migrate to a new page instead. migrate.c
1409 	 * handles a large number of cases for us.
1410 	 */
1411 	ret = isolate_lru_page(page);
1412 	if (!ret) {
1413 		LIST_HEAD(pagelist);
1414 
1415 		list_add(&page->lru, &pagelist);
1416 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1417 		if (ret) {
1418 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1419 				pfn, ret, page->flags);
1420 			if (ret > 0)
1421 				ret = -EIO;
1422 		}
1423 	} else {
1424 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1425 				pfn, ret, page_count(page), page->flags);
1426 	}
1427 	if (ret)
1428 		return ret;
1429 
1430 done:
1431 	atomic_long_add(1, &mce_bad_pages);
1432 	SetPageHWPoison(page);
1433 	/* keep elevated page count for bad page */
1434 	return ret;
1435 }
1436 
1437 /*
1438  * The caller must hold current->mm->mmap_sem in read mode.
1439  */
1440 int is_hwpoison_address(unsigned long addr)
1441 {
1442 	pgd_t *pgdp;
1443 	pud_t pud, *pudp;
1444 	pmd_t pmd, *pmdp;
1445 	pte_t pte, *ptep;
1446 	swp_entry_t entry;
1447 
1448 	pgdp = pgd_offset(current->mm, addr);
1449 	if (!pgd_present(*pgdp))
1450 		return 0;
1451 	pudp = pud_offset(pgdp, addr);
1452 	pud = *pudp;
1453 	if (!pud_present(pud) || pud_large(pud))
1454 		return 0;
1455 	pmdp = pmd_offset(pudp, addr);
1456 	pmd = *pmdp;
1457 	if (!pmd_present(pmd) || pmd_large(pmd))
1458 		return 0;
1459 	ptep = pte_offset_map(pmdp, addr);
1460 	pte = *ptep;
1461 	pte_unmap(ptep);
1462 	if (!is_swap_pte(pte))
1463 		return 0;
1464 	entry = pte_to_swp_entry(pte);
1465 	return is_hwpoison_entry(entry);
1466 }
1467 EXPORT_SYMBOL_GPL(is_hwpoison_address);
1468