1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/page-isolation.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include "internal.h" 56 57 int sysctl_memory_failure_early_kill __read_mostly = 0; 58 59 int sysctl_memory_failure_recovery __read_mostly = 1; 60 61 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 62 63 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 64 65 u32 hwpoison_filter_enable = 0; 66 u32 hwpoison_filter_dev_major = ~0U; 67 u32 hwpoison_filter_dev_minor = ~0U; 68 u64 hwpoison_filter_flags_mask; 69 u64 hwpoison_filter_flags_value; 70 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 75 76 static int hwpoison_filter_dev(struct page *p) 77 { 78 struct address_space *mapping; 79 dev_t dev; 80 81 if (hwpoison_filter_dev_major == ~0U && 82 hwpoison_filter_dev_minor == ~0U) 83 return 0; 84 85 /* 86 * page_mapping() does not accept slab pages. 87 */ 88 if (PageSlab(p)) 89 return -EINVAL; 90 91 mapping = page_mapping(p); 92 if (mapping == NULL || mapping->host == NULL) 93 return -EINVAL; 94 95 dev = mapping->host->i_sb->s_dev; 96 if (hwpoison_filter_dev_major != ~0U && 97 hwpoison_filter_dev_major != MAJOR(dev)) 98 return -EINVAL; 99 if (hwpoison_filter_dev_minor != ~0U && 100 hwpoison_filter_dev_minor != MINOR(dev)) 101 return -EINVAL; 102 103 return 0; 104 } 105 106 static int hwpoison_filter_flags(struct page *p) 107 { 108 if (!hwpoison_filter_flags_mask) 109 return 0; 110 111 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 112 hwpoison_filter_flags_value) 113 return 0; 114 else 115 return -EINVAL; 116 } 117 118 /* 119 * This allows stress tests to limit test scope to a collection of tasks 120 * by putting them under some memcg. This prevents killing unrelated/important 121 * processes such as /sbin/init. Note that the target task may share clean 122 * pages with init (eg. libc text), which is harmless. If the target task 123 * share _dirty_ pages with another task B, the test scheme must make sure B 124 * is also included in the memcg. At last, due to race conditions this filter 125 * can only guarantee that the page either belongs to the memcg tasks, or is 126 * a freed page. 127 */ 128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 129 u64 hwpoison_filter_memcg; 130 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 131 static int hwpoison_filter_task(struct page *p) 132 { 133 struct mem_cgroup *mem; 134 struct cgroup_subsys_state *css; 135 unsigned long ino; 136 137 if (!hwpoison_filter_memcg) 138 return 0; 139 140 mem = try_get_mem_cgroup_from_page(p); 141 if (!mem) 142 return -EINVAL; 143 144 css = mem_cgroup_css(mem); 145 /* root_mem_cgroup has NULL dentries */ 146 if (!css->cgroup->dentry) 147 return -EINVAL; 148 149 ino = css->cgroup->dentry->d_inode->i_ino; 150 css_put(css); 151 152 if (ino != hwpoison_filter_memcg) 153 return -EINVAL; 154 155 return 0; 156 } 157 #else 158 static int hwpoison_filter_task(struct page *p) { return 0; } 159 #endif 160 161 int hwpoison_filter(struct page *p) 162 { 163 if (!hwpoison_filter_enable) 164 return 0; 165 166 if (hwpoison_filter_dev(p)) 167 return -EINVAL; 168 169 if (hwpoison_filter_flags(p)) 170 return -EINVAL; 171 172 if (hwpoison_filter_task(p)) 173 return -EINVAL; 174 175 return 0; 176 } 177 #else 178 int hwpoison_filter(struct page *p) 179 { 180 return 0; 181 } 182 #endif 183 184 EXPORT_SYMBOL_GPL(hwpoison_filter); 185 186 /* 187 * Send all the processes who have the page mapped an ``action optional'' 188 * signal. 189 */ 190 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, 191 unsigned long pfn, struct page *page) 192 { 193 struct siginfo si; 194 int ret; 195 196 printk(KERN_ERR 197 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", 198 pfn, t->comm, t->pid); 199 si.si_signo = SIGBUS; 200 si.si_errno = 0; 201 si.si_code = BUS_MCEERR_AO; 202 si.si_addr = (void *)addr; 203 #ifdef __ARCH_SI_TRAPNO 204 si.si_trapno = trapno; 205 #endif 206 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT; 207 /* 208 * Don't use force here, it's convenient if the signal 209 * can be temporarily blocked. 210 * This could cause a loop when the user sets SIGBUS 211 * to SIG_IGN, but hopefully no one will do that? 212 */ 213 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 214 if (ret < 0) 215 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 216 t->comm, t->pid, ret); 217 return ret; 218 } 219 220 /* 221 * When a unknown page type is encountered drain as many buffers as possible 222 * in the hope to turn the page into a LRU or free page, which we can handle. 223 */ 224 void shake_page(struct page *p, int access) 225 { 226 if (!PageSlab(p)) { 227 lru_add_drain_all(); 228 if (PageLRU(p)) 229 return; 230 drain_all_pages(); 231 if (PageLRU(p) || is_free_buddy_page(p)) 232 return; 233 } 234 235 /* 236 * Only call shrink_slab here (which would also shrink other caches) if 237 * access is not potentially fatal. 238 */ 239 if (access) { 240 int nr; 241 do { 242 struct shrink_control shrink = { 243 .gfp_mask = GFP_KERNEL, 244 }; 245 246 nr = shrink_slab(&shrink, 1000, 1000); 247 if (page_count(p) == 1) 248 break; 249 } while (nr > 10); 250 } 251 } 252 EXPORT_SYMBOL_GPL(shake_page); 253 254 /* 255 * Kill all processes that have a poisoned page mapped and then isolate 256 * the page. 257 * 258 * General strategy: 259 * Find all processes having the page mapped and kill them. 260 * But we keep a page reference around so that the page is not 261 * actually freed yet. 262 * Then stash the page away 263 * 264 * There's no convenient way to get back to mapped processes 265 * from the VMAs. So do a brute-force search over all 266 * running processes. 267 * 268 * Remember that machine checks are not common (or rather 269 * if they are common you have other problems), so this shouldn't 270 * be a performance issue. 271 * 272 * Also there are some races possible while we get from the 273 * error detection to actually handle it. 274 */ 275 276 struct to_kill { 277 struct list_head nd; 278 struct task_struct *tsk; 279 unsigned long addr; 280 char addr_valid; 281 }; 282 283 /* 284 * Failure handling: if we can't find or can't kill a process there's 285 * not much we can do. We just print a message and ignore otherwise. 286 */ 287 288 /* 289 * Schedule a process for later kill. 290 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 291 * TBD would GFP_NOIO be enough? 292 */ 293 static void add_to_kill(struct task_struct *tsk, struct page *p, 294 struct vm_area_struct *vma, 295 struct list_head *to_kill, 296 struct to_kill **tkc) 297 { 298 struct to_kill *tk; 299 300 if (*tkc) { 301 tk = *tkc; 302 *tkc = NULL; 303 } else { 304 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 305 if (!tk) { 306 printk(KERN_ERR 307 "MCE: Out of memory while machine check handling\n"); 308 return; 309 } 310 } 311 tk->addr = page_address_in_vma(p, vma); 312 tk->addr_valid = 1; 313 314 /* 315 * In theory we don't have to kill when the page was 316 * munmaped. But it could be also a mremap. Since that's 317 * likely very rare kill anyways just out of paranoia, but use 318 * a SIGKILL because the error is not contained anymore. 319 */ 320 if (tk->addr == -EFAULT) { 321 pr_info("MCE: Unable to find user space address %lx in %s\n", 322 page_to_pfn(p), tsk->comm); 323 tk->addr_valid = 0; 324 } 325 get_task_struct(tsk); 326 tk->tsk = tsk; 327 list_add_tail(&tk->nd, to_kill); 328 } 329 330 /* 331 * Kill the processes that have been collected earlier. 332 * 333 * Only do anything when DOIT is set, otherwise just free the list 334 * (this is used for clean pages which do not need killing) 335 * Also when FAIL is set do a force kill because something went 336 * wrong earlier. 337 */ 338 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, 339 int fail, struct page *page, unsigned long pfn) 340 { 341 struct to_kill *tk, *next; 342 343 list_for_each_entry_safe (tk, next, to_kill, nd) { 344 if (doit) { 345 /* 346 * In case something went wrong with munmapping 347 * make sure the process doesn't catch the 348 * signal and then access the memory. Just kill it. 349 */ 350 if (fail || tk->addr_valid == 0) { 351 printk(KERN_ERR 352 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 353 pfn, tk->tsk->comm, tk->tsk->pid); 354 force_sig(SIGKILL, tk->tsk); 355 } 356 357 /* 358 * In theory the process could have mapped 359 * something else on the address in-between. We could 360 * check for that, but we need to tell the 361 * process anyways. 362 */ 363 else if (kill_proc_ao(tk->tsk, tk->addr, trapno, 364 pfn, page) < 0) 365 printk(KERN_ERR 366 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 367 pfn, tk->tsk->comm, tk->tsk->pid); 368 } 369 put_task_struct(tk->tsk); 370 kfree(tk); 371 } 372 } 373 374 static int task_early_kill(struct task_struct *tsk) 375 { 376 if (!tsk->mm) 377 return 0; 378 if (tsk->flags & PF_MCE_PROCESS) 379 return !!(tsk->flags & PF_MCE_EARLY); 380 return sysctl_memory_failure_early_kill; 381 } 382 383 /* 384 * Collect processes when the error hit an anonymous page. 385 */ 386 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 387 struct to_kill **tkc) 388 { 389 struct vm_area_struct *vma; 390 struct task_struct *tsk; 391 struct anon_vma *av; 392 393 read_lock(&tasklist_lock); 394 av = page_lock_anon_vma(page); 395 if (av == NULL) /* Not actually mapped anymore */ 396 goto out; 397 for_each_process (tsk) { 398 struct anon_vma_chain *vmac; 399 400 if (!task_early_kill(tsk)) 401 continue; 402 list_for_each_entry(vmac, &av->head, same_anon_vma) { 403 vma = vmac->vma; 404 if (!page_mapped_in_vma(page, vma)) 405 continue; 406 if (vma->vm_mm == tsk->mm) 407 add_to_kill(tsk, page, vma, to_kill, tkc); 408 } 409 } 410 page_unlock_anon_vma(av); 411 out: 412 read_unlock(&tasklist_lock); 413 } 414 415 /* 416 * Collect processes when the error hit a file mapped page. 417 */ 418 static void collect_procs_file(struct page *page, struct list_head *to_kill, 419 struct to_kill **tkc) 420 { 421 struct vm_area_struct *vma; 422 struct task_struct *tsk; 423 struct prio_tree_iter iter; 424 struct address_space *mapping = page->mapping; 425 426 /* 427 * A note on the locking order between the two locks. 428 * We don't rely on this particular order. 429 * If you have some other code that needs a different order 430 * feel free to switch them around. Or add a reverse link 431 * from mm_struct to task_struct, then this could be all 432 * done without taking tasklist_lock and looping over all tasks. 433 */ 434 435 read_lock(&tasklist_lock); 436 mutex_lock(&mapping->i_mmap_mutex); 437 for_each_process(tsk) { 438 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 439 440 if (!task_early_kill(tsk)) 441 continue; 442 443 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, 444 pgoff) { 445 /* 446 * Send early kill signal to tasks where a vma covers 447 * the page but the corrupted page is not necessarily 448 * mapped it in its pte. 449 * Assume applications who requested early kill want 450 * to be informed of all such data corruptions. 451 */ 452 if (vma->vm_mm == tsk->mm) 453 add_to_kill(tsk, page, vma, to_kill, tkc); 454 } 455 } 456 mutex_unlock(&mapping->i_mmap_mutex); 457 read_unlock(&tasklist_lock); 458 } 459 460 /* 461 * Collect the processes who have the corrupted page mapped to kill. 462 * This is done in two steps for locking reasons. 463 * First preallocate one tokill structure outside the spin locks, 464 * so that we can kill at least one process reasonably reliable. 465 */ 466 static void collect_procs(struct page *page, struct list_head *tokill) 467 { 468 struct to_kill *tk; 469 470 if (!page->mapping) 471 return; 472 473 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 474 if (!tk) 475 return; 476 if (PageAnon(page)) 477 collect_procs_anon(page, tokill, &tk); 478 else 479 collect_procs_file(page, tokill, &tk); 480 kfree(tk); 481 } 482 483 /* 484 * Error handlers for various types of pages. 485 */ 486 487 enum outcome { 488 IGNORED, /* Error: cannot be handled */ 489 FAILED, /* Error: handling failed */ 490 DELAYED, /* Will be handled later */ 491 RECOVERED, /* Successfully recovered */ 492 }; 493 494 static const char *action_name[] = { 495 [IGNORED] = "Ignored", 496 [FAILED] = "Failed", 497 [DELAYED] = "Delayed", 498 [RECOVERED] = "Recovered", 499 }; 500 501 /* 502 * XXX: It is possible that a page is isolated from LRU cache, 503 * and then kept in swap cache or failed to remove from page cache. 504 * The page count will stop it from being freed by unpoison. 505 * Stress tests should be aware of this memory leak problem. 506 */ 507 static int delete_from_lru_cache(struct page *p) 508 { 509 if (!isolate_lru_page(p)) { 510 /* 511 * Clear sensible page flags, so that the buddy system won't 512 * complain when the page is unpoison-and-freed. 513 */ 514 ClearPageActive(p); 515 ClearPageUnevictable(p); 516 /* 517 * drop the page count elevated by isolate_lru_page() 518 */ 519 page_cache_release(p); 520 return 0; 521 } 522 return -EIO; 523 } 524 525 /* 526 * Error hit kernel page. 527 * Do nothing, try to be lucky and not touch this instead. For a few cases we 528 * could be more sophisticated. 529 */ 530 static int me_kernel(struct page *p, unsigned long pfn) 531 { 532 return IGNORED; 533 } 534 535 /* 536 * Page in unknown state. Do nothing. 537 */ 538 static int me_unknown(struct page *p, unsigned long pfn) 539 { 540 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 541 return FAILED; 542 } 543 544 /* 545 * Clean (or cleaned) page cache page. 546 */ 547 static int me_pagecache_clean(struct page *p, unsigned long pfn) 548 { 549 int err; 550 int ret = FAILED; 551 struct address_space *mapping; 552 553 delete_from_lru_cache(p); 554 555 /* 556 * For anonymous pages we're done the only reference left 557 * should be the one m_f() holds. 558 */ 559 if (PageAnon(p)) 560 return RECOVERED; 561 562 /* 563 * Now truncate the page in the page cache. This is really 564 * more like a "temporary hole punch" 565 * Don't do this for block devices when someone else 566 * has a reference, because it could be file system metadata 567 * and that's not safe to truncate. 568 */ 569 mapping = page_mapping(p); 570 if (!mapping) { 571 /* 572 * Page has been teared down in the meanwhile 573 */ 574 return FAILED; 575 } 576 577 /* 578 * Truncation is a bit tricky. Enable it per file system for now. 579 * 580 * Open: to take i_mutex or not for this? Right now we don't. 581 */ 582 if (mapping->a_ops->error_remove_page) { 583 err = mapping->a_ops->error_remove_page(mapping, p); 584 if (err != 0) { 585 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 586 pfn, err); 587 } else if (page_has_private(p) && 588 !try_to_release_page(p, GFP_NOIO)) { 589 pr_info("MCE %#lx: failed to release buffers\n", pfn); 590 } else { 591 ret = RECOVERED; 592 } 593 } else { 594 /* 595 * If the file system doesn't support it just invalidate 596 * This fails on dirty or anything with private pages 597 */ 598 if (invalidate_inode_page(p)) 599 ret = RECOVERED; 600 else 601 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 602 pfn); 603 } 604 return ret; 605 } 606 607 /* 608 * Dirty cache page page 609 * Issues: when the error hit a hole page the error is not properly 610 * propagated. 611 */ 612 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 613 { 614 struct address_space *mapping = page_mapping(p); 615 616 SetPageError(p); 617 /* TBD: print more information about the file. */ 618 if (mapping) { 619 /* 620 * IO error will be reported by write(), fsync(), etc. 621 * who check the mapping. 622 * This way the application knows that something went 623 * wrong with its dirty file data. 624 * 625 * There's one open issue: 626 * 627 * The EIO will be only reported on the next IO 628 * operation and then cleared through the IO map. 629 * Normally Linux has two mechanisms to pass IO error 630 * first through the AS_EIO flag in the address space 631 * and then through the PageError flag in the page. 632 * Since we drop pages on memory failure handling the 633 * only mechanism open to use is through AS_AIO. 634 * 635 * This has the disadvantage that it gets cleared on 636 * the first operation that returns an error, while 637 * the PageError bit is more sticky and only cleared 638 * when the page is reread or dropped. If an 639 * application assumes it will always get error on 640 * fsync, but does other operations on the fd before 641 * and the page is dropped between then the error 642 * will not be properly reported. 643 * 644 * This can already happen even without hwpoisoned 645 * pages: first on metadata IO errors (which only 646 * report through AS_EIO) or when the page is dropped 647 * at the wrong time. 648 * 649 * So right now we assume that the application DTRT on 650 * the first EIO, but we're not worse than other parts 651 * of the kernel. 652 */ 653 mapping_set_error(mapping, EIO); 654 } 655 656 return me_pagecache_clean(p, pfn); 657 } 658 659 /* 660 * Clean and dirty swap cache. 661 * 662 * Dirty swap cache page is tricky to handle. The page could live both in page 663 * cache and swap cache(ie. page is freshly swapped in). So it could be 664 * referenced concurrently by 2 types of PTEs: 665 * normal PTEs and swap PTEs. We try to handle them consistently by calling 666 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 667 * and then 668 * - clear dirty bit to prevent IO 669 * - remove from LRU 670 * - but keep in the swap cache, so that when we return to it on 671 * a later page fault, we know the application is accessing 672 * corrupted data and shall be killed (we installed simple 673 * interception code in do_swap_page to catch it). 674 * 675 * Clean swap cache pages can be directly isolated. A later page fault will 676 * bring in the known good data from disk. 677 */ 678 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 679 { 680 ClearPageDirty(p); 681 /* Trigger EIO in shmem: */ 682 ClearPageUptodate(p); 683 684 if (!delete_from_lru_cache(p)) 685 return DELAYED; 686 else 687 return FAILED; 688 } 689 690 static int me_swapcache_clean(struct page *p, unsigned long pfn) 691 { 692 delete_from_swap_cache(p); 693 694 if (!delete_from_lru_cache(p)) 695 return RECOVERED; 696 else 697 return FAILED; 698 } 699 700 /* 701 * Huge pages. Needs work. 702 * Issues: 703 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 704 * To narrow down kill region to one page, we need to break up pmd. 705 */ 706 static int me_huge_page(struct page *p, unsigned long pfn) 707 { 708 int res = 0; 709 struct page *hpage = compound_head(p); 710 /* 711 * We can safely recover from error on free or reserved (i.e. 712 * not in-use) hugepage by dequeuing it from freelist. 713 * To check whether a hugepage is in-use or not, we can't use 714 * page->lru because it can be used in other hugepage operations, 715 * such as __unmap_hugepage_range() and gather_surplus_pages(). 716 * So instead we use page_mapping() and PageAnon(). 717 * We assume that this function is called with page lock held, 718 * so there is no race between isolation and mapping/unmapping. 719 */ 720 if (!(page_mapping(hpage) || PageAnon(hpage))) { 721 res = dequeue_hwpoisoned_huge_page(hpage); 722 if (!res) 723 return RECOVERED; 724 } 725 return DELAYED; 726 } 727 728 /* 729 * Various page states we can handle. 730 * 731 * A page state is defined by its current page->flags bits. 732 * The table matches them in order and calls the right handler. 733 * 734 * This is quite tricky because we can access page at any time 735 * in its live cycle, so all accesses have to be extremely careful. 736 * 737 * This is not complete. More states could be added. 738 * For any missing state don't attempt recovery. 739 */ 740 741 #define dirty (1UL << PG_dirty) 742 #define sc (1UL << PG_swapcache) 743 #define unevict (1UL << PG_unevictable) 744 #define mlock (1UL << PG_mlocked) 745 #define writeback (1UL << PG_writeback) 746 #define lru (1UL << PG_lru) 747 #define swapbacked (1UL << PG_swapbacked) 748 #define head (1UL << PG_head) 749 #define tail (1UL << PG_tail) 750 #define compound (1UL << PG_compound) 751 #define slab (1UL << PG_slab) 752 #define reserved (1UL << PG_reserved) 753 754 static struct page_state { 755 unsigned long mask; 756 unsigned long res; 757 char *msg; 758 int (*action)(struct page *p, unsigned long pfn); 759 } error_states[] = { 760 { reserved, reserved, "reserved kernel", me_kernel }, 761 /* 762 * free pages are specially detected outside this table: 763 * PG_buddy pages only make a small fraction of all free pages. 764 */ 765 766 /* 767 * Could in theory check if slab page is free or if we can drop 768 * currently unused objects without touching them. But just 769 * treat it as standard kernel for now. 770 */ 771 { slab, slab, "kernel slab", me_kernel }, 772 773 #ifdef CONFIG_PAGEFLAGS_EXTENDED 774 { head, head, "huge", me_huge_page }, 775 { tail, tail, "huge", me_huge_page }, 776 #else 777 { compound, compound, "huge", me_huge_page }, 778 #endif 779 780 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, 781 { sc|dirty, sc, "swapcache", me_swapcache_clean }, 782 783 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, 784 { unevict, unevict, "unevictable LRU", me_pagecache_clean}, 785 786 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, 787 { mlock, mlock, "mlocked LRU", me_pagecache_clean }, 788 789 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 790 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 791 792 /* 793 * Catchall entry: must be at end. 794 */ 795 { 0, 0, "unknown page state", me_unknown }, 796 }; 797 798 #undef dirty 799 #undef sc 800 #undef unevict 801 #undef mlock 802 #undef writeback 803 #undef lru 804 #undef swapbacked 805 #undef head 806 #undef tail 807 #undef compound 808 #undef slab 809 #undef reserved 810 811 static void action_result(unsigned long pfn, char *msg, int result) 812 { 813 struct page *page = pfn_to_page(pfn); 814 815 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 816 pfn, 817 PageDirty(page) ? "dirty " : "", 818 msg, action_name[result]); 819 } 820 821 static int page_action(struct page_state *ps, struct page *p, 822 unsigned long pfn) 823 { 824 int result; 825 int count; 826 827 result = ps->action(p, pfn); 828 action_result(pfn, ps->msg, result); 829 830 count = page_count(p) - 1; 831 if (ps->action == me_swapcache_dirty && result == DELAYED) 832 count--; 833 if (count != 0) { 834 printk(KERN_ERR 835 "MCE %#lx: %s page still referenced by %d users\n", 836 pfn, ps->msg, count); 837 result = FAILED; 838 } 839 840 /* Could do more checks here if page looks ok */ 841 /* 842 * Could adjust zone counters here to correct for the missing page. 843 */ 844 845 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 846 } 847 848 /* 849 * Do all that is necessary to remove user space mappings. Unmap 850 * the pages and send SIGBUS to the processes if the data was dirty. 851 */ 852 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 853 int trapno) 854 { 855 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 856 struct address_space *mapping; 857 LIST_HEAD(tokill); 858 int ret; 859 int kill = 1; 860 struct page *hpage = compound_head(p); 861 struct page *ppage; 862 863 if (PageReserved(p) || PageSlab(p)) 864 return SWAP_SUCCESS; 865 866 /* 867 * This check implies we don't kill processes if their pages 868 * are in the swap cache early. Those are always late kills. 869 */ 870 if (!page_mapped(hpage)) 871 return SWAP_SUCCESS; 872 873 if (PageKsm(p)) 874 return SWAP_FAIL; 875 876 if (PageSwapCache(p)) { 877 printk(KERN_ERR 878 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 879 ttu |= TTU_IGNORE_HWPOISON; 880 } 881 882 /* 883 * Propagate the dirty bit from PTEs to struct page first, because we 884 * need this to decide if we should kill or just drop the page. 885 * XXX: the dirty test could be racy: set_page_dirty() may not always 886 * be called inside page lock (it's recommended but not enforced). 887 */ 888 mapping = page_mapping(hpage); 889 if (!PageDirty(hpage) && mapping && 890 mapping_cap_writeback_dirty(mapping)) { 891 if (page_mkclean(hpage)) { 892 SetPageDirty(hpage); 893 } else { 894 kill = 0; 895 ttu |= TTU_IGNORE_HWPOISON; 896 printk(KERN_INFO 897 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 898 pfn); 899 } 900 } 901 902 /* 903 * ppage: poisoned page 904 * if p is regular page(4k page) 905 * ppage == real poisoned page; 906 * else p is hugetlb or THP, ppage == head page. 907 */ 908 ppage = hpage; 909 910 if (PageTransHuge(hpage)) { 911 /* 912 * Verify that this isn't a hugetlbfs head page, the check for 913 * PageAnon is just for avoid tripping a split_huge_page 914 * internal debug check, as split_huge_page refuses to deal with 915 * anything that isn't an anon page. PageAnon can't go away fro 916 * under us because we hold a refcount on the hpage, without a 917 * refcount on the hpage. split_huge_page can't be safely called 918 * in the first place, having a refcount on the tail isn't 919 * enough * to be safe. 920 */ 921 if (!PageHuge(hpage) && PageAnon(hpage)) { 922 if (unlikely(split_huge_page(hpage))) { 923 /* 924 * FIXME: if splitting THP is failed, it is 925 * better to stop the following operation rather 926 * than causing panic by unmapping. System might 927 * survive if the page is freed later. 928 */ 929 printk(KERN_INFO 930 "MCE %#lx: failed to split THP\n", pfn); 931 932 BUG_ON(!PageHWPoison(p)); 933 return SWAP_FAIL; 934 } 935 /* THP is split, so ppage should be the real poisoned page. */ 936 ppage = p; 937 } 938 } 939 940 /* 941 * First collect all the processes that have the page 942 * mapped in dirty form. This has to be done before try_to_unmap, 943 * because ttu takes the rmap data structures down. 944 * 945 * Error handling: We ignore errors here because 946 * there's nothing that can be done. 947 */ 948 if (kill) 949 collect_procs(ppage, &tokill); 950 951 if (hpage != ppage) 952 lock_page(ppage); 953 954 ret = try_to_unmap(ppage, ttu); 955 if (ret != SWAP_SUCCESS) 956 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 957 pfn, page_mapcount(ppage)); 958 959 if (hpage != ppage) 960 unlock_page(ppage); 961 962 /* 963 * Now that the dirty bit has been propagated to the 964 * struct page and all unmaps done we can decide if 965 * killing is needed or not. Only kill when the page 966 * was dirty, otherwise the tokill list is merely 967 * freed. When there was a problem unmapping earlier 968 * use a more force-full uncatchable kill to prevent 969 * any accesses to the poisoned memory. 970 */ 971 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno, 972 ret != SWAP_SUCCESS, p, pfn); 973 974 return ret; 975 } 976 977 static void set_page_hwpoison_huge_page(struct page *hpage) 978 { 979 int i; 980 int nr_pages = 1 << compound_trans_order(hpage); 981 for (i = 0; i < nr_pages; i++) 982 SetPageHWPoison(hpage + i); 983 } 984 985 static void clear_page_hwpoison_huge_page(struct page *hpage) 986 { 987 int i; 988 int nr_pages = 1 << compound_trans_order(hpage); 989 for (i = 0; i < nr_pages; i++) 990 ClearPageHWPoison(hpage + i); 991 } 992 993 int __memory_failure(unsigned long pfn, int trapno, int flags) 994 { 995 struct page_state *ps; 996 struct page *p; 997 struct page *hpage; 998 int res; 999 unsigned int nr_pages; 1000 1001 if (!sysctl_memory_failure_recovery) 1002 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1003 1004 if (!pfn_valid(pfn)) { 1005 printk(KERN_ERR 1006 "MCE %#lx: memory outside kernel control\n", 1007 pfn); 1008 return -ENXIO; 1009 } 1010 1011 p = pfn_to_page(pfn); 1012 hpage = compound_head(p); 1013 if (TestSetPageHWPoison(p)) { 1014 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1015 return 0; 1016 } 1017 1018 nr_pages = 1 << compound_trans_order(hpage); 1019 atomic_long_add(nr_pages, &mce_bad_pages); 1020 1021 /* 1022 * We need/can do nothing about count=0 pages. 1023 * 1) it's a free page, and therefore in safe hand: 1024 * prep_new_page() will be the gate keeper. 1025 * 2) it's a free hugepage, which is also safe: 1026 * an affected hugepage will be dequeued from hugepage freelist, 1027 * so there's no concern about reusing it ever after. 1028 * 3) it's part of a non-compound high order page. 1029 * Implies some kernel user: cannot stop them from 1030 * R/W the page; let's pray that the page has been 1031 * used and will be freed some time later. 1032 * In fact it's dangerous to directly bump up page count from 0, 1033 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1034 */ 1035 if (!(flags & MF_COUNT_INCREASED) && 1036 !get_page_unless_zero(hpage)) { 1037 if (is_free_buddy_page(p)) { 1038 action_result(pfn, "free buddy", DELAYED); 1039 return 0; 1040 } else if (PageHuge(hpage)) { 1041 /* 1042 * Check "just unpoisoned", "filter hit", and 1043 * "race with other subpage." 1044 */ 1045 lock_page(hpage); 1046 if (!PageHWPoison(hpage) 1047 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 1048 || (p != hpage && TestSetPageHWPoison(hpage))) { 1049 atomic_long_sub(nr_pages, &mce_bad_pages); 1050 return 0; 1051 } 1052 set_page_hwpoison_huge_page(hpage); 1053 res = dequeue_hwpoisoned_huge_page(hpage); 1054 action_result(pfn, "free huge", 1055 res ? IGNORED : DELAYED); 1056 unlock_page(hpage); 1057 return res; 1058 } else { 1059 action_result(pfn, "high order kernel", IGNORED); 1060 return -EBUSY; 1061 } 1062 } 1063 1064 /* 1065 * We ignore non-LRU pages for good reasons. 1066 * - PG_locked is only well defined for LRU pages and a few others 1067 * - to avoid races with __set_page_locked() 1068 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1069 * The check (unnecessarily) ignores LRU pages being isolated and 1070 * walked by the page reclaim code, however that's not a big loss. 1071 */ 1072 if (!PageHuge(p) && !PageTransCompound(p)) { 1073 if (!PageLRU(p)) 1074 shake_page(p, 0); 1075 if (!PageLRU(p)) { 1076 /* 1077 * shake_page could have turned it free. 1078 */ 1079 if (is_free_buddy_page(p)) { 1080 action_result(pfn, "free buddy, 2nd try", 1081 DELAYED); 1082 return 0; 1083 } 1084 action_result(pfn, "non LRU", IGNORED); 1085 put_page(p); 1086 return -EBUSY; 1087 } 1088 } 1089 1090 /* 1091 * Lock the page and wait for writeback to finish. 1092 * It's very difficult to mess with pages currently under IO 1093 * and in many cases impossible, so we just avoid it here. 1094 */ 1095 lock_page(hpage); 1096 1097 /* 1098 * unpoison always clear PG_hwpoison inside page lock 1099 */ 1100 if (!PageHWPoison(p)) { 1101 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1102 res = 0; 1103 goto out; 1104 } 1105 if (hwpoison_filter(p)) { 1106 if (TestClearPageHWPoison(p)) 1107 atomic_long_sub(nr_pages, &mce_bad_pages); 1108 unlock_page(hpage); 1109 put_page(hpage); 1110 return 0; 1111 } 1112 1113 /* 1114 * For error on the tail page, we should set PG_hwpoison 1115 * on the head page to show that the hugepage is hwpoisoned 1116 */ 1117 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1118 action_result(pfn, "hugepage already hardware poisoned", 1119 IGNORED); 1120 unlock_page(hpage); 1121 put_page(hpage); 1122 return 0; 1123 } 1124 /* 1125 * Set PG_hwpoison on all pages in an error hugepage, 1126 * because containment is done in hugepage unit for now. 1127 * Since we have done TestSetPageHWPoison() for the head page with 1128 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1129 */ 1130 if (PageHuge(p)) 1131 set_page_hwpoison_huge_page(hpage); 1132 1133 wait_on_page_writeback(p); 1134 1135 /* 1136 * Now take care of user space mappings. 1137 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1138 */ 1139 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { 1140 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1141 res = -EBUSY; 1142 goto out; 1143 } 1144 1145 /* 1146 * Torn down by someone else? 1147 */ 1148 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1149 action_result(pfn, "already truncated LRU", IGNORED); 1150 res = -EBUSY; 1151 goto out; 1152 } 1153 1154 res = -EBUSY; 1155 for (ps = error_states;; ps++) { 1156 if ((p->flags & ps->mask) == ps->res) { 1157 res = page_action(ps, p, pfn); 1158 break; 1159 } 1160 } 1161 out: 1162 unlock_page(hpage); 1163 return res; 1164 } 1165 EXPORT_SYMBOL_GPL(__memory_failure); 1166 1167 /** 1168 * memory_failure - Handle memory failure of a page. 1169 * @pfn: Page Number of the corrupted page 1170 * @trapno: Trap number reported in the signal to user space. 1171 * 1172 * This function is called by the low level machine check code 1173 * of an architecture when it detects hardware memory corruption 1174 * of a page. It tries its best to recover, which includes 1175 * dropping pages, killing processes etc. 1176 * 1177 * The function is primarily of use for corruptions that 1178 * happen outside the current execution context (e.g. when 1179 * detected by a background scrubber) 1180 * 1181 * Must run in process context (e.g. a work queue) with interrupts 1182 * enabled and no spinlocks hold. 1183 */ 1184 void memory_failure(unsigned long pfn, int trapno) 1185 { 1186 __memory_failure(pfn, trapno, 0); 1187 } 1188 1189 /** 1190 * unpoison_memory - Unpoison a previously poisoned page 1191 * @pfn: Page number of the to be unpoisoned page 1192 * 1193 * Software-unpoison a page that has been poisoned by 1194 * memory_failure() earlier. 1195 * 1196 * This is only done on the software-level, so it only works 1197 * for linux injected failures, not real hardware failures 1198 * 1199 * Returns 0 for success, otherwise -errno. 1200 */ 1201 int unpoison_memory(unsigned long pfn) 1202 { 1203 struct page *page; 1204 struct page *p; 1205 int freeit = 0; 1206 unsigned int nr_pages; 1207 1208 if (!pfn_valid(pfn)) 1209 return -ENXIO; 1210 1211 p = pfn_to_page(pfn); 1212 page = compound_head(p); 1213 1214 if (!PageHWPoison(p)) { 1215 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1216 return 0; 1217 } 1218 1219 nr_pages = 1 << compound_trans_order(page); 1220 1221 if (!get_page_unless_zero(page)) { 1222 /* 1223 * Since HWPoisoned hugepage should have non-zero refcount, 1224 * race between memory failure and unpoison seems to happen. 1225 * In such case unpoison fails and memory failure runs 1226 * to the end. 1227 */ 1228 if (PageHuge(page)) { 1229 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1230 return 0; 1231 } 1232 if (TestClearPageHWPoison(p)) 1233 atomic_long_sub(nr_pages, &mce_bad_pages); 1234 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1235 return 0; 1236 } 1237 1238 lock_page(page); 1239 /* 1240 * This test is racy because PG_hwpoison is set outside of page lock. 1241 * That's acceptable because that won't trigger kernel panic. Instead, 1242 * the PG_hwpoison page will be caught and isolated on the entrance to 1243 * the free buddy page pool. 1244 */ 1245 if (TestClearPageHWPoison(page)) { 1246 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1247 atomic_long_sub(nr_pages, &mce_bad_pages); 1248 freeit = 1; 1249 if (PageHuge(page)) 1250 clear_page_hwpoison_huge_page(page); 1251 } 1252 unlock_page(page); 1253 1254 put_page(page); 1255 if (freeit) 1256 put_page(page); 1257 1258 return 0; 1259 } 1260 EXPORT_SYMBOL(unpoison_memory); 1261 1262 static struct page *new_page(struct page *p, unsigned long private, int **x) 1263 { 1264 int nid = page_to_nid(p); 1265 if (PageHuge(p)) 1266 return alloc_huge_page_node(page_hstate(compound_head(p)), 1267 nid); 1268 else 1269 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1270 } 1271 1272 /* 1273 * Safely get reference count of an arbitrary page. 1274 * Returns 0 for a free page, -EIO for a zero refcount page 1275 * that is not free, and 1 for any other page type. 1276 * For 1 the page is returned with increased page count, otherwise not. 1277 */ 1278 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1279 { 1280 int ret; 1281 1282 if (flags & MF_COUNT_INCREASED) 1283 return 1; 1284 1285 /* 1286 * The lock_memory_hotplug prevents a race with memory hotplug. 1287 * This is a big hammer, a better would be nicer. 1288 */ 1289 lock_memory_hotplug(); 1290 1291 /* 1292 * Isolate the page, so that it doesn't get reallocated if it 1293 * was free. 1294 */ 1295 set_migratetype_isolate(p); 1296 /* 1297 * When the target page is a free hugepage, just remove it 1298 * from free hugepage list. 1299 */ 1300 if (!get_page_unless_zero(compound_head(p))) { 1301 if (PageHuge(p)) { 1302 pr_info("get_any_page: %#lx free huge page\n", pfn); 1303 ret = dequeue_hwpoisoned_huge_page(compound_head(p)); 1304 } else if (is_free_buddy_page(p)) { 1305 pr_info("get_any_page: %#lx free buddy page\n", pfn); 1306 /* Set hwpoison bit while page is still isolated */ 1307 SetPageHWPoison(p); 1308 ret = 0; 1309 } else { 1310 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n", 1311 pfn, p->flags); 1312 ret = -EIO; 1313 } 1314 } else { 1315 /* Not a free page */ 1316 ret = 1; 1317 } 1318 unset_migratetype_isolate(p); 1319 unlock_memory_hotplug(); 1320 return ret; 1321 } 1322 1323 static int soft_offline_huge_page(struct page *page, int flags) 1324 { 1325 int ret; 1326 unsigned long pfn = page_to_pfn(page); 1327 struct page *hpage = compound_head(page); 1328 LIST_HEAD(pagelist); 1329 1330 ret = get_any_page(page, pfn, flags); 1331 if (ret < 0) 1332 return ret; 1333 if (ret == 0) 1334 goto done; 1335 1336 if (PageHWPoison(hpage)) { 1337 put_page(hpage); 1338 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn); 1339 return -EBUSY; 1340 } 1341 1342 /* Keep page count to indicate a given hugepage is isolated. */ 1343 1344 list_add(&hpage->lru, &pagelist); 1345 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0, 1346 true); 1347 if (ret) { 1348 struct page *page1, *page2; 1349 list_for_each_entry_safe(page1, page2, &pagelist, lru) 1350 put_page(page1); 1351 1352 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", 1353 pfn, ret, page->flags); 1354 if (ret > 0) 1355 ret = -EIO; 1356 return ret; 1357 } 1358 done: 1359 if (!PageHWPoison(hpage)) 1360 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages); 1361 set_page_hwpoison_huge_page(hpage); 1362 dequeue_hwpoisoned_huge_page(hpage); 1363 /* keep elevated page count for bad page */ 1364 return ret; 1365 } 1366 1367 /** 1368 * soft_offline_page - Soft offline a page. 1369 * @page: page to offline 1370 * @flags: flags. Same as memory_failure(). 1371 * 1372 * Returns 0 on success, otherwise negated errno. 1373 * 1374 * Soft offline a page, by migration or invalidation, 1375 * without killing anything. This is for the case when 1376 * a page is not corrupted yet (so it's still valid to access), 1377 * but has had a number of corrected errors and is better taken 1378 * out. 1379 * 1380 * The actual policy on when to do that is maintained by 1381 * user space. 1382 * 1383 * This should never impact any application or cause data loss, 1384 * however it might take some time. 1385 * 1386 * This is not a 100% solution for all memory, but tries to be 1387 * ``good enough'' for the majority of memory. 1388 */ 1389 int soft_offline_page(struct page *page, int flags) 1390 { 1391 int ret; 1392 unsigned long pfn = page_to_pfn(page); 1393 1394 if (PageHuge(page)) 1395 return soft_offline_huge_page(page, flags); 1396 1397 ret = get_any_page(page, pfn, flags); 1398 if (ret < 0) 1399 return ret; 1400 if (ret == 0) 1401 goto done; 1402 1403 /* 1404 * Page cache page we can handle? 1405 */ 1406 if (!PageLRU(page)) { 1407 /* 1408 * Try to free it. 1409 */ 1410 put_page(page); 1411 shake_page(page, 1); 1412 1413 /* 1414 * Did it turn free? 1415 */ 1416 ret = get_any_page(page, pfn, 0); 1417 if (ret < 0) 1418 return ret; 1419 if (ret == 0) 1420 goto done; 1421 } 1422 if (!PageLRU(page)) { 1423 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1424 pfn, page->flags); 1425 return -EIO; 1426 } 1427 1428 lock_page(page); 1429 wait_on_page_writeback(page); 1430 1431 /* 1432 * Synchronized using the page lock with memory_failure() 1433 */ 1434 if (PageHWPoison(page)) { 1435 unlock_page(page); 1436 put_page(page); 1437 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1438 return -EBUSY; 1439 } 1440 1441 /* 1442 * Try to invalidate first. This should work for 1443 * non dirty unmapped page cache pages. 1444 */ 1445 ret = invalidate_inode_page(page); 1446 unlock_page(page); 1447 /* 1448 * RED-PEN would be better to keep it isolated here, but we 1449 * would need to fix isolation locking first. 1450 */ 1451 if (ret == 1) { 1452 put_page(page); 1453 ret = 0; 1454 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1455 goto done; 1456 } 1457 1458 /* 1459 * Simple invalidation didn't work. 1460 * Try to migrate to a new page instead. migrate.c 1461 * handles a large number of cases for us. 1462 */ 1463 ret = isolate_lru_page(page); 1464 /* 1465 * Drop page reference which is came from get_any_page() 1466 * successful isolate_lru_page() already took another one. 1467 */ 1468 put_page(page); 1469 if (!ret) { 1470 LIST_HEAD(pagelist); 1471 1472 list_add(&page->lru, &pagelist); 1473 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1474 0, true); 1475 if (ret) { 1476 putback_lru_pages(&pagelist); 1477 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1478 pfn, ret, page->flags); 1479 if (ret > 0) 1480 ret = -EIO; 1481 } 1482 } else { 1483 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1484 pfn, ret, page_count(page), page->flags); 1485 } 1486 if (ret) 1487 return ret; 1488 1489 done: 1490 atomic_long_add(1, &mce_bad_pages); 1491 SetPageHWPoison(page); 1492 /* keep elevated page count for bad page */ 1493 return ret; 1494 } 1495