xref: /openbmc/linux/mm/memory-failure.c (revision 1495f230fa7750479c79e3656286b9183d662077)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include "internal.h"
56 
57 int sysctl_memory_failure_early_kill __read_mostly = 0;
58 
59 int sysctl_memory_failure_recovery __read_mostly = 1;
60 
61 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62 
63 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64 
65 u32 hwpoison_filter_enable = 0;
66 u32 hwpoison_filter_dev_major = ~0U;
67 u32 hwpoison_filter_dev_minor = ~0U;
68 u64 hwpoison_filter_flags_mask;
69 u64 hwpoison_filter_flags_value;
70 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75 
76 static int hwpoison_filter_dev(struct page *p)
77 {
78 	struct address_space *mapping;
79 	dev_t dev;
80 
81 	if (hwpoison_filter_dev_major == ~0U &&
82 	    hwpoison_filter_dev_minor == ~0U)
83 		return 0;
84 
85 	/*
86 	 * page_mapping() does not accept slab pages.
87 	 */
88 	if (PageSlab(p))
89 		return -EINVAL;
90 
91 	mapping = page_mapping(p);
92 	if (mapping == NULL || mapping->host == NULL)
93 		return -EINVAL;
94 
95 	dev = mapping->host->i_sb->s_dev;
96 	if (hwpoison_filter_dev_major != ~0U &&
97 	    hwpoison_filter_dev_major != MAJOR(dev))
98 		return -EINVAL;
99 	if (hwpoison_filter_dev_minor != ~0U &&
100 	    hwpoison_filter_dev_minor != MINOR(dev))
101 		return -EINVAL;
102 
103 	return 0;
104 }
105 
106 static int hwpoison_filter_flags(struct page *p)
107 {
108 	if (!hwpoison_filter_flags_mask)
109 		return 0;
110 
111 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112 				    hwpoison_filter_flags_value)
113 		return 0;
114 	else
115 		return -EINVAL;
116 }
117 
118 /*
119  * This allows stress tests to limit test scope to a collection of tasks
120  * by putting them under some memcg. This prevents killing unrelated/important
121  * processes such as /sbin/init. Note that the target task may share clean
122  * pages with init (eg. libc text), which is harmless. If the target task
123  * share _dirty_ pages with another task B, the test scheme must make sure B
124  * is also included in the memcg. At last, due to race conditions this filter
125  * can only guarantee that the page either belongs to the memcg tasks, or is
126  * a freed page.
127  */
128 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129 u64 hwpoison_filter_memcg;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131 static int hwpoison_filter_task(struct page *p)
132 {
133 	struct mem_cgroup *mem;
134 	struct cgroup_subsys_state *css;
135 	unsigned long ino;
136 
137 	if (!hwpoison_filter_memcg)
138 		return 0;
139 
140 	mem = try_get_mem_cgroup_from_page(p);
141 	if (!mem)
142 		return -EINVAL;
143 
144 	css = mem_cgroup_css(mem);
145 	/* root_mem_cgroup has NULL dentries */
146 	if (!css->cgroup->dentry)
147 		return -EINVAL;
148 
149 	ino = css->cgroup->dentry->d_inode->i_ino;
150 	css_put(css);
151 
152 	if (ino != hwpoison_filter_memcg)
153 		return -EINVAL;
154 
155 	return 0;
156 }
157 #else
158 static int hwpoison_filter_task(struct page *p) { return 0; }
159 #endif
160 
161 int hwpoison_filter(struct page *p)
162 {
163 	if (!hwpoison_filter_enable)
164 		return 0;
165 
166 	if (hwpoison_filter_dev(p))
167 		return -EINVAL;
168 
169 	if (hwpoison_filter_flags(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_task(p))
173 		return -EINVAL;
174 
175 	return 0;
176 }
177 #else
178 int hwpoison_filter(struct page *p)
179 {
180 	return 0;
181 }
182 #endif
183 
184 EXPORT_SYMBOL_GPL(hwpoison_filter);
185 
186 /*
187  * Send all the processes who have the page mapped an ``action optional''
188  * signal.
189  */
190 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_code = BUS_MCEERR_AO;
202 	si.si_addr = (void *)addr;
203 #ifdef __ARCH_SI_TRAPNO
204 	si.si_trapno = trapno;
205 #endif
206 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
207 	/*
208 	 * Don't use force here, it's convenient if the signal
209 	 * can be temporarily blocked.
210 	 * This could cause a loop when the user sets SIGBUS
211 	 * to SIG_IGN, but hopefully no one will do that?
212 	 */
213 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
214 	if (ret < 0)
215 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216 		       t->comm, t->pid, ret);
217 	return ret;
218 }
219 
220 /*
221  * When a unknown page type is encountered drain as many buffers as possible
222  * in the hope to turn the page into a LRU or free page, which we can handle.
223  */
224 void shake_page(struct page *p, int access)
225 {
226 	if (!PageSlab(p)) {
227 		lru_add_drain_all();
228 		if (PageLRU(p))
229 			return;
230 		drain_all_pages();
231 		if (PageLRU(p) || is_free_buddy_page(p))
232 			return;
233 	}
234 
235 	/*
236 	 * Only call shrink_slab here (which would also shrink other caches) if
237 	 * access is not potentially fatal.
238 	 */
239 	if (access) {
240 		int nr;
241 		do {
242 			struct shrink_control shrink = {
243 				.gfp_mask = GFP_KERNEL,
244 			};
245 
246 			nr = shrink_slab(&shrink, 1000, 1000);
247 			if (page_count(p) == 1)
248 				break;
249 		} while (nr > 10);
250 	}
251 }
252 EXPORT_SYMBOL_GPL(shake_page);
253 
254 /*
255  * Kill all processes that have a poisoned page mapped and then isolate
256  * the page.
257  *
258  * General strategy:
259  * Find all processes having the page mapped and kill them.
260  * But we keep a page reference around so that the page is not
261  * actually freed yet.
262  * Then stash the page away
263  *
264  * There's no convenient way to get back to mapped processes
265  * from the VMAs. So do a brute-force search over all
266  * running processes.
267  *
268  * Remember that machine checks are not common (or rather
269  * if they are common you have other problems), so this shouldn't
270  * be a performance issue.
271  *
272  * Also there are some races possible while we get from the
273  * error detection to actually handle it.
274  */
275 
276 struct to_kill {
277 	struct list_head nd;
278 	struct task_struct *tsk;
279 	unsigned long addr;
280 	char addr_valid;
281 };
282 
283 /*
284  * Failure handling: if we can't find or can't kill a process there's
285  * not much we can do.	We just print a message and ignore otherwise.
286  */
287 
288 /*
289  * Schedule a process for later kill.
290  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
291  * TBD would GFP_NOIO be enough?
292  */
293 static void add_to_kill(struct task_struct *tsk, struct page *p,
294 		       struct vm_area_struct *vma,
295 		       struct list_head *to_kill,
296 		       struct to_kill **tkc)
297 {
298 	struct to_kill *tk;
299 
300 	if (*tkc) {
301 		tk = *tkc;
302 		*tkc = NULL;
303 	} else {
304 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
305 		if (!tk) {
306 			printk(KERN_ERR
307 		"MCE: Out of memory while machine check handling\n");
308 			return;
309 		}
310 	}
311 	tk->addr = page_address_in_vma(p, vma);
312 	tk->addr_valid = 1;
313 
314 	/*
315 	 * In theory we don't have to kill when the page was
316 	 * munmaped. But it could be also a mremap. Since that's
317 	 * likely very rare kill anyways just out of paranoia, but use
318 	 * a SIGKILL because the error is not contained anymore.
319 	 */
320 	if (tk->addr == -EFAULT) {
321 		pr_info("MCE: Unable to find user space address %lx in %s\n",
322 			page_to_pfn(p), tsk->comm);
323 		tk->addr_valid = 0;
324 	}
325 	get_task_struct(tsk);
326 	tk->tsk = tsk;
327 	list_add_tail(&tk->nd, to_kill);
328 }
329 
330 /*
331  * Kill the processes that have been collected earlier.
332  *
333  * Only do anything when DOIT is set, otherwise just free the list
334  * (this is used for clean pages which do not need killing)
335  * Also when FAIL is set do a force kill because something went
336  * wrong earlier.
337  */
338 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
339 			  int fail, struct page *page, unsigned long pfn)
340 {
341 	struct to_kill *tk, *next;
342 
343 	list_for_each_entry_safe (tk, next, to_kill, nd) {
344 		if (doit) {
345 			/*
346 			 * In case something went wrong with munmapping
347 			 * make sure the process doesn't catch the
348 			 * signal and then access the memory. Just kill it.
349 			 */
350 			if (fail || tk->addr_valid == 0) {
351 				printk(KERN_ERR
352 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
353 					pfn, tk->tsk->comm, tk->tsk->pid);
354 				force_sig(SIGKILL, tk->tsk);
355 			}
356 
357 			/*
358 			 * In theory the process could have mapped
359 			 * something else on the address in-between. We could
360 			 * check for that, but we need to tell the
361 			 * process anyways.
362 			 */
363 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
364 					      pfn, page) < 0)
365 				printk(KERN_ERR
366 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
367 					pfn, tk->tsk->comm, tk->tsk->pid);
368 		}
369 		put_task_struct(tk->tsk);
370 		kfree(tk);
371 	}
372 }
373 
374 static int task_early_kill(struct task_struct *tsk)
375 {
376 	if (!tsk->mm)
377 		return 0;
378 	if (tsk->flags & PF_MCE_PROCESS)
379 		return !!(tsk->flags & PF_MCE_EARLY);
380 	return sysctl_memory_failure_early_kill;
381 }
382 
383 /*
384  * Collect processes when the error hit an anonymous page.
385  */
386 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
387 			      struct to_kill **tkc)
388 {
389 	struct vm_area_struct *vma;
390 	struct task_struct *tsk;
391 	struct anon_vma *av;
392 
393 	read_lock(&tasklist_lock);
394 	av = page_lock_anon_vma(page);
395 	if (av == NULL)	/* Not actually mapped anymore */
396 		goto out;
397 	for_each_process (tsk) {
398 		struct anon_vma_chain *vmac;
399 
400 		if (!task_early_kill(tsk))
401 			continue;
402 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
403 			vma = vmac->vma;
404 			if (!page_mapped_in_vma(page, vma))
405 				continue;
406 			if (vma->vm_mm == tsk->mm)
407 				add_to_kill(tsk, page, vma, to_kill, tkc);
408 		}
409 	}
410 	page_unlock_anon_vma(av);
411 out:
412 	read_unlock(&tasklist_lock);
413 }
414 
415 /*
416  * Collect processes when the error hit a file mapped page.
417  */
418 static void collect_procs_file(struct page *page, struct list_head *to_kill,
419 			      struct to_kill **tkc)
420 {
421 	struct vm_area_struct *vma;
422 	struct task_struct *tsk;
423 	struct prio_tree_iter iter;
424 	struct address_space *mapping = page->mapping;
425 
426 	/*
427 	 * A note on the locking order between the two locks.
428 	 * We don't rely on this particular order.
429 	 * If you have some other code that needs a different order
430 	 * feel free to switch them around. Or add a reverse link
431 	 * from mm_struct to task_struct, then this could be all
432 	 * done without taking tasklist_lock and looping over all tasks.
433 	 */
434 
435 	read_lock(&tasklist_lock);
436 	mutex_lock(&mapping->i_mmap_mutex);
437 	for_each_process(tsk) {
438 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
439 
440 		if (!task_early_kill(tsk))
441 			continue;
442 
443 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
444 				      pgoff) {
445 			/*
446 			 * Send early kill signal to tasks where a vma covers
447 			 * the page but the corrupted page is not necessarily
448 			 * mapped it in its pte.
449 			 * Assume applications who requested early kill want
450 			 * to be informed of all such data corruptions.
451 			 */
452 			if (vma->vm_mm == tsk->mm)
453 				add_to_kill(tsk, page, vma, to_kill, tkc);
454 		}
455 	}
456 	mutex_unlock(&mapping->i_mmap_mutex);
457 	read_unlock(&tasklist_lock);
458 }
459 
460 /*
461  * Collect the processes who have the corrupted page mapped to kill.
462  * This is done in two steps for locking reasons.
463  * First preallocate one tokill structure outside the spin locks,
464  * so that we can kill at least one process reasonably reliable.
465  */
466 static void collect_procs(struct page *page, struct list_head *tokill)
467 {
468 	struct to_kill *tk;
469 
470 	if (!page->mapping)
471 		return;
472 
473 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
474 	if (!tk)
475 		return;
476 	if (PageAnon(page))
477 		collect_procs_anon(page, tokill, &tk);
478 	else
479 		collect_procs_file(page, tokill, &tk);
480 	kfree(tk);
481 }
482 
483 /*
484  * Error handlers for various types of pages.
485  */
486 
487 enum outcome {
488 	IGNORED,	/* Error: cannot be handled */
489 	FAILED,		/* Error: handling failed */
490 	DELAYED,	/* Will be handled later */
491 	RECOVERED,	/* Successfully recovered */
492 };
493 
494 static const char *action_name[] = {
495 	[IGNORED] = "Ignored",
496 	[FAILED] = "Failed",
497 	[DELAYED] = "Delayed",
498 	[RECOVERED] = "Recovered",
499 };
500 
501 /*
502  * XXX: It is possible that a page is isolated from LRU cache,
503  * and then kept in swap cache or failed to remove from page cache.
504  * The page count will stop it from being freed by unpoison.
505  * Stress tests should be aware of this memory leak problem.
506  */
507 static int delete_from_lru_cache(struct page *p)
508 {
509 	if (!isolate_lru_page(p)) {
510 		/*
511 		 * Clear sensible page flags, so that the buddy system won't
512 		 * complain when the page is unpoison-and-freed.
513 		 */
514 		ClearPageActive(p);
515 		ClearPageUnevictable(p);
516 		/*
517 		 * drop the page count elevated by isolate_lru_page()
518 		 */
519 		page_cache_release(p);
520 		return 0;
521 	}
522 	return -EIO;
523 }
524 
525 /*
526  * Error hit kernel page.
527  * Do nothing, try to be lucky and not touch this instead. For a few cases we
528  * could be more sophisticated.
529  */
530 static int me_kernel(struct page *p, unsigned long pfn)
531 {
532 	return IGNORED;
533 }
534 
535 /*
536  * Page in unknown state. Do nothing.
537  */
538 static int me_unknown(struct page *p, unsigned long pfn)
539 {
540 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
541 	return FAILED;
542 }
543 
544 /*
545  * Clean (or cleaned) page cache page.
546  */
547 static int me_pagecache_clean(struct page *p, unsigned long pfn)
548 {
549 	int err;
550 	int ret = FAILED;
551 	struct address_space *mapping;
552 
553 	delete_from_lru_cache(p);
554 
555 	/*
556 	 * For anonymous pages we're done the only reference left
557 	 * should be the one m_f() holds.
558 	 */
559 	if (PageAnon(p))
560 		return RECOVERED;
561 
562 	/*
563 	 * Now truncate the page in the page cache. This is really
564 	 * more like a "temporary hole punch"
565 	 * Don't do this for block devices when someone else
566 	 * has a reference, because it could be file system metadata
567 	 * and that's not safe to truncate.
568 	 */
569 	mapping = page_mapping(p);
570 	if (!mapping) {
571 		/*
572 		 * Page has been teared down in the meanwhile
573 		 */
574 		return FAILED;
575 	}
576 
577 	/*
578 	 * Truncation is a bit tricky. Enable it per file system for now.
579 	 *
580 	 * Open: to take i_mutex or not for this? Right now we don't.
581 	 */
582 	if (mapping->a_ops->error_remove_page) {
583 		err = mapping->a_ops->error_remove_page(mapping, p);
584 		if (err != 0) {
585 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
586 					pfn, err);
587 		} else if (page_has_private(p) &&
588 				!try_to_release_page(p, GFP_NOIO)) {
589 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
590 		} else {
591 			ret = RECOVERED;
592 		}
593 	} else {
594 		/*
595 		 * If the file system doesn't support it just invalidate
596 		 * This fails on dirty or anything with private pages
597 		 */
598 		if (invalidate_inode_page(p))
599 			ret = RECOVERED;
600 		else
601 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
602 				pfn);
603 	}
604 	return ret;
605 }
606 
607 /*
608  * Dirty cache page page
609  * Issues: when the error hit a hole page the error is not properly
610  * propagated.
611  */
612 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
613 {
614 	struct address_space *mapping = page_mapping(p);
615 
616 	SetPageError(p);
617 	/* TBD: print more information about the file. */
618 	if (mapping) {
619 		/*
620 		 * IO error will be reported by write(), fsync(), etc.
621 		 * who check the mapping.
622 		 * This way the application knows that something went
623 		 * wrong with its dirty file data.
624 		 *
625 		 * There's one open issue:
626 		 *
627 		 * The EIO will be only reported on the next IO
628 		 * operation and then cleared through the IO map.
629 		 * Normally Linux has two mechanisms to pass IO error
630 		 * first through the AS_EIO flag in the address space
631 		 * and then through the PageError flag in the page.
632 		 * Since we drop pages on memory failure handling the
633 		 * only mechanism open to use is through AS_AIO.
634 		 *
635 		 * This has the disadvantage that it gets cleared on
636 		 * the first operation that returns an error, while
637 		 * the PageError bit is more sticky and only cleared
638 		 * when the page is reread or dropped.  If an
639 		 * application assumes it will always get error on
640 		 * fsync, but does other operations on the fd before
641 		 * and the page is dropped between then the error
642 		 * will not be properly reported.
643 		 *
644 		 * This can already happen even without hwpoisoned
645 		 * pages: first on metadata IO errors (which only
646 		 * report through AS_EIO) or when the page is dropped
647 		 * at the wrong time.
648 		 *
649 		 * So right now we assume that the application DTRT on
650 		 * the first EIO, but we're not worse than other parts
651 		 * of the kernel.
652 		 */
653 		mapping_set_error(mapping, EIO);
654 	}
655 
656 	return me_pagecache_clean(p, pfn);
657 }
658 
659 /*
660  * Clean and dirty swap cache.
661  *
662  * Dirty swap cache page is tricky to handle. The page could live both in page
663  * cache and swap cache(ie. page is freshly swapped in). So it could be
664  * referenced concurrently by 2 types of PTEs:
665  * normal PTEs and swap PTEs. We try to handle them consistently by calling
666  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
667  * and then
668  *      - clear dirty bit to prevent IO
669  *      - remove from LRU
670  *      - but keep in the swap cache, so that when we return to it on
671  *        a later page fault, we know the application is accessing
672  *        corrupted data and shall be killed (we installed simple
673  *        interception code in do_swap_page to catch it).
674  *
675  * Clean swap cache pages can be directly isolated. A later page fault will
676  * bring in the known good data from disk.
677  */
678 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
679 {
680 	ClearPageDirty(p);
681 	/* Trigger EIO in shmem: */
682 	ClearPageUptodate(p);
683 
684 	if (!delete_from_lru_cache(p))
685 		return DELAYED;
686 	else
687 		return FAILED;
688 }
689 
690 static int me_swapcache_clean(struct page *p, unsigned long pfn)
691 {
692 	delete_from_swap_cache(p);
693 
694 	if (!delete_from_lru_cache(p))
695 		return RECOVERED;
696 	else
697 		return FAILED;
698 }
699 
700 /*
701  * Huge pages. Needs work.
702  * Issues:
703  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
704  *   To narrow down kill region to one page, we need to break up pmd.
705  */
706 static int me_huge_page(struct page *p, unsigned long pfn)
707 {
708 	int res = 0;
709 	struct page *hpage = compound_head(p);
710 	/*
711 	 * We can safely recover from error on free or reserved (i.e.
712 	 * not in-use) hugepage by dequeuing it from freelist.
713 	 * To check whether a hugepage is in-use or not, we can't use
714 	 * page->lru because it can be used in other hugepage operations,
715 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
716 	 * So instead we use page_mapping() and PageAnon().
717 	 * We assume that this function is called with page lock held,
718 	 * so there is no race between isolation and mapping/unmapping.
719 	 */
720 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
721 		res = dequeue_hwpoisoned_huge_page(hpage);
722 		if (!res)
723 			return RECOVERED;
724 	}
725 	return DELAYED;
726 }
727 
728 /*
729  * Various page states we can handle.
730  *
731  * A page state is defined by its current page->flags bits.
732  * The table matches them in order and calls the right handler.
733  *
734  * This is quite tricky because we can access page at any time
735  * in its live cycle, so all accesses have to be extremely careful.
736  *
737  * This is not complete. More states could be added.
738  * For any missing state don't attempt recovery.
739  */
740 
741 #define dirty		(1UL << PG_dirty)
742 #define sc		(1UL << PG_swapcache)
743 #define unevict		(1UL << PG_unevictable)
744 #define mlock		(1UL << PG_mlocked)
745 #define writeback	(1UL << PG_writeback)
746 #define lru		(1UL << PG_lru)
747 #define swapbacked	(1UL << PG_swapbacked)
748 #define head		(1UL << PG_head)
749 #define tail		(1UL << PG_tail)
750 #define compound	(1UL << PG_compound)
751 #define slab		(1UL << PG_slab)
752 #define reserved	(1UL << PG_reserved)
753 
754 static struct page_state {
755 	unsigned long mask;
756 	unsigned long res;
757 	char *msg;
758 	int (*action)(struct page *p, unsigned long pfn);
759 } error_states[] = {
760 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
761 	/*
762 	 * free pages are specially detected outside this table:
763 	 * PG_buddy pages only make a small fraction of all free pages.
764 	 */
765 
766 	/*
767 	 * Could in theory check if slab page is free or if we can drop
768 	 * currently unused objects without touching them. But just
769 	 * treat it as standard kernel for now.
770 	 */
771 	{ slab,		slab,		"kernel slab",	me_kernel },
772 
773 #ifdef CONFIG_PAGEFLAGS_EXTENDED
774 	{ head,		head,		"huge",		me_huge_page },
775 	{ tail,		tail,		"huge",		me_huge_page },
776 #else
777 	{ compound,	compound,	"huge",		me_huge_page },
778 #endif
779 
780 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
781 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
782 
783 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
784 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
785 
786 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
787 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
788 
789 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
790 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
791 
792 	/*
793 	 * Catchall entry: must be at end.
794 	 */
795 	{ 0,		0,		"unknown page state",	me_unknown },
796 };
797 
798 #undef dirty
799 #undef sc
800 #undef unevict
801 #undef mlock
802 #undef writeback
803 #undef lru
804 #undef swapbacked
805 #undef head
806 #undef tail
807 #undef compound
808 #undef slab
809 #undef reserved
810 
811 static void action_result(unsigned long pfn, char *msg, int result)
812 {
813 	struct page *page = pfn_to_page(pfn);
814 
815 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
816 		pfn,
817 		PageDirty(page) ? "dirty " : "",
818 		msg, action_name[result]);
819 }
820 
821 static int page_action(struct page_state *ps, struct page *p,
822 			unsigned long pfn)
823 {
824 	int result;
825 	int count;
826 
827 	result = ps->action(p, pfn);
828 	action_result(pfn, ps->msg, result);
829 
830 	count = page_count(p) - 1;
831 	if (ps->action == me_swapcache_dirty && result == DELAYED)
832 		count--;
833 	if (count != 0) {
834 		printk(KERN_ERR
835 		       "MCE %#lx: %s page still referenced by %d users\n",
836 		       pfn, ps->msg, count);
837 		result = FAILED;
838 	}
839 
840 	/* Could do more checks here if page looks ok */
841 	/*
842 	 * Could adjust zone counters here to correct for the missing page.
843 	 */
844 
845 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
846 }
847 
848 /*
849  * Do all that is necessary to remove user space mappings. Unmap
850  * the pages and send SIGBUS to the processes if the data was dirty.
851  */
852 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
853 				  int trapno)
854 {
855 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
856 	struct address_space *mapping;
857 	LIST_HEAD(tokill);
858 	int ret;
859 	int kill = 1;
860 	struct page *hpage = compound_head(p);
861 	struct page *ppage;
862 
863 	if (PageReserved(p) || PageSlab(p))
864 		return SWAP_SUCCESS;
865 
866 	/*
867 	 * This check implies we don't kill processes if their pages
868 	 * are in the swap cache early. Those are always late kills.
869 	 */
870 	if (!page_mapped(hpage))
871 		return SWAP_SUCCESS;
872 
873 	if (PageKsm(p))
874 		return SWAP_FAIL;
875 
876 	if (PageSwapCache(p)) {
877 		printk(KERN_ERR
878 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
879 		ttu |= TTU_IGNORE_HWPOISON;
880 	}
881 
882 	/*
883 	 * Propagate the dirty bit from PTEs to struct page first, because we
884 	 * need this to decide if we should kill or just drop the page.
885 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
886 	 * be called inside page lock (it's recommended but not enforced).
887 	 */
888 	mapping = page_mapping(hpage);
889 	if (!PageDirty(hpage) && mapping &&
890 	    mapping_cap_writeback_dirty(mapping)) {
891 		if (page_mkclean(hpage)) {
892 			SetPageDirty(hpage);
893 		} else {
894 			kill = 0;
895 			ttu |= TTU_IGNORE_HWPOISON;
896 			printk(KERN_INFO
897 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
898 				pfn);
899 		}
900 	}
901 
902 	/*
903 	 * ppage: poisoned page
904 	 *   if p is regular page(4k page)
905 	 *        ppage == real poisoned page;
906 	 *   else p is hugetlb or THP, ppage == head page.
907 	 */
908 	ppage = hpage;
909 
910 	if (PageTransHuge(hpage)) {
911 		/*
912 		 * Verify that this isn't a hugetlbfs head page, the check for
913 		 * PageAnon is just for avoid tripping a split_huge_page
914 		 * internal debug check, as split_huge_page refuses to deal with
915 		 * anything that isn't an anon page. PageAnon can't go away fro
916 		 * under us because we hold a refcount on the hpage, without a
917 		 * refcount on the hpage. split_huge_page can't be safely called
918 		 * in the first place, having a refcount on the tail isn't
919 		 * enough * to be safe.
920 		 */
921 		if (!PageHuge(hpage) && PageAnon(hpage)) {
922 			if (unlikely(split_huge_page(hpage))) {
923 				/*
924 				 * FIXME: if splitting THP is failed, it is
925 				 * better to stop the following operation rather
926 				 * than causing panic by unmapping. System might
927 				 * survive if the page is freed later.
928 				 */
929 				printk(KERN_INFO
930 					"MCE %#lx: failed to split THP\n", pfn);
931 
932 				BUG_ON(!PageHWPoison(p));
933 				return SWAP_FAIL;
934 			}
935 			/* THP is split, so ppage should be the real poisoned page. */
936 			ppage = p;
937 		}
938 	}
939 
940 	/*
941 	 * First collect all the processes that have the page
942 	 * mapped in dirty form.  This has to be done before try_to_unmap,
943 	 * because ttu takes the rmap data structures down.
944 	 *
945 	 * Error handling: We ignore errors here because
946 	 * there's nothing that can be done.
947 	 */
948 	if (kill)
949 		collect_procs(ppage, &tokill);
950 
951 	if (hpage != ppage)
952 		lock_page(ppage);
953 
954 	ret = try_to_unmap(ppage, ttu);
955 	if (ret != SWAP_SUCCESS)
956 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
957 				pfn, page_mapcount(ppage));
958 
959 	if (hpage != ppage)
960 		unlock_page(ppage);
961 
962 	/*
963 	 * Now that the dirty bit has been propagated to the
964 	 * struct page and all unmaps done we can decide if
965 	 * killing is needed or not.  Only kill when the page
966 	 * was dirty, otherwise the tokill list is merely
967 	 * freed.  When there was a problem unmapping earlier
968 	 * use a more force-full uncatchable kill to prevent
969 	 * any accesses to the poisoned memory.
970 	 */
971 	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
972 		      ret != SWAP_SUCCESS, p, pfn);
973 
974 	return ret;
975 }
976 
977 static void set_page_hwpoison_huge_page(struct page *hpage)
978 {
979 	int i;
980 	int nr_pages = 1 << compound_trans_order(hpage);
981 	for (i = 0; i < nr_pages; i++)
982 		SetPageHWPoison(hpage + i);
983 }
984 
985 static void clear_page_hwpoison_huge_page(struct page *hpage)
986 {
987 	int i;
988 	int nr_pages = 1 << compound_trans_order(hpage);
989 	for (i = 0; i < nr_pages; i++)
990 		ClearPageHWPoison(hpage + i);
991 }
992 
993 int __memory_failure(unsigned long pfn, int trapno, int flags)
994 {
995 	struct page_state *ps;
996 	struct page *p;
997 	struct page *hpage;
998 	int res;
999 	unsigned int nr_pages;
1000 
1001 	if (!sysctl_memory_failure_recovery)
1002 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1003 
1004 	if (!pfn_valid(pfn)) {
1005 		printk(KERN_ERR
1006 		       "MCE %#lx: memory outside kernel control\n",
1007 		       pfn);
1008 		return -ENXIO;
1009 	}
1010 
1011 	p = pfn_to_page(pfn);
1012 	hpage = compound_head(p);
1013 	if (TestSetPageHWPoison(p)) {
1014 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1015 		return 0;
1016 	}
1017 
1018 	nr_pages = 1 << compound_trans_order(hpage);
1019 	atomic_long_add(nr_pages, &mce_bad_pages);
1020 
1021 	/*
1022 	 * We need/can do nothing about count=0 pages.
1023 	 * 1) it's a free page, and therefore in safe hand:
1024 	 *    prep_new_page() will be the gate keeper.
1025 	 * 2) it's a free hugepage, which is also safe:
1026 	 *    an affected hugepage will be dequeued from hugepage freelist,
1027 	 *    so there's no concern about reusing it ever after.
1028 	 * 3) it's part of a non-compound high order page.
1029 	 *    Implies some kernel user: cannot stop them from
1030 	 *    R/W the page; let's pray that the page has been
1031 	 *    used and will be freed some time later.
1032 	 * In fact it's dangerous to directly bump up page count from 0,
1033 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1034 	 */
1035 	if (!(flags & MF_COUNT_INCREASED) &&
1036 		!get_page_unless_zero(hpage)) {
1037 		if (is_free_buddy_page(p)) {
1038 			action_result(pfn, "free buddy", DELAYED);
1039 			return 0;
1040 		} else if (PageHuge(hpage)) {
1041 			/*
1042 			 * Check "just unpoisoned", "filter hit", and
1043 			 * "race with other subpage."
1044 			 */
1045 			lock_page(hpage);
1046 			if (!PageHWPoison(hpage)
1047 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1048 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1049 				atomic_long_sub(nr_pages, &mce_bad_pages);
1050 				return 0;
1051 			}
1052 			set_page_hwpoison_huge_page(hpage);
1053 			res = dequeue_hwpoisoned_huge_page(hpage);
1054 			action_result(pfn, "free huge",
1055 				      res ? IGNORED : DELAYED);
1056 			unlock_page(hpage);
1057 			return res;
1058 		} else {
1059 			action_result(pfn, "high order kernel", IGNORED);
1060 			return -EBUSY;
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * We ignore non-LRU pages for good reasons.
1066 	 * - PG_locked is only well defined for LRU pages and a few others
1067 	 * - to avoid races with __set_page_locked()
1068 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1069 	 * The check (unnecessarily) ignores LRU pages being isolated and
1070 	 * walked by the page reclaim code, however that's not a big loss.
1071 	 */
1072 	if (!PageHuge(p) && !PageTransCompound(p)) {
1073 		if (!PageLRU(p))
1074 			shake_page(p, 0);
1075 		if (!PageLRU(p)) {
1076 			/*
1077 			 * shake_page could have turned it free.
1078 			 */
1079 			if (is_free_buddy_page(p)) {
1080 				action_result(pfn, "free buddy, 2nd try",
1081 						DELAYED);
1082 				return 0;
1083 			}
1084 			action_result(pfn, "non LRU", IGNORED);
1085 			put_page(p);
1086 			return -EBUSY;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Lock the page and wait for writeback to finish.
1092 	 * It's very difficult to mess with pages currently under IO
1093 	 * and in many cases impossible, so we just avoid it here.
1094 	 */
1095 	lock_page(hpage);
1096 
1097 	/*
1098 	 * unpoison always clear PG_hwpoison inside page lock
1099 	 */
1100 	if (!PageHWPoison(p)) {
1101 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1102 		res = 0;
1103 		goto out;
1104 	}
1105 	if (hwpoison_filter(p)) {
1106 		if (TestClearPageHWPoison(p))
1107 			atomic_long_sub(nr_pages, &mce_bad_pages);
1108 		unlock_page(hpage);
1109 		put_page(hpage);
1110 		return 0;
1111 	}
1112 
1113 	/*
1114 	 * For error on the tail page, we should set PG_hwpoison
1115 	 * on the head page to show that the hugepage is hwpoisoned
1116 	 */
1117 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1118 		action_result(pfn, "hugepage already hardware poisoned",
1119 				IGNORED);
1120 		unlock_page(hpage);
1121 		put_page(hpage);
1122 		return 0;
1123 	}
1124 	/*
1125 	 * Set PG_hwpoison on all pages in an error hugepage,
1126 	 * because containment is done in hugepage unit for now.
1127 	 * Since we have done TestSetPageHWPoison() for the head page with
1128 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1129 	 */
1130 	if (PageHuge(p))
1131 		set_page_hwpoison_huge_page(hpage);
1132 
1133 	wait_on_page_writeback(p);
1134 
1135 	/*
1136 	 * Now take care of user space mappings.
1137 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1138 	 */
1139 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1140 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1141 		res = -EBUSY;
1142 		goto out;
1143 	}
1144 
1145 	/*
1146 	 * Torn down by someone else?
1147 	 */
1148 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1149 		action_result(pfn, "already truncated LRU", IGNORED);
1150 		res = -EBUSY;
1151 		goto out;
1152 	}
1153 
1154 	res = -EBUSY;
1155 	for (ps = error_states;; ps++) {
1156 		if ((p->flags & ps->mask) == ps->res) {
1157 			res = page_action(ps, p, pfn);
1158 			break;
1159 		}
1160 	}
1161 out:
1162 	unlock_page(hpage);
1163 	return res;
1164 }
1165 EXPORT_SYMBOL_GPL(__memory_failure);
1166 
1167 /**
1168  * memory_failure - Handle memory failure of a page.
1169  * @pfn: Page Number of the corrupted page
1170  * @trapno: Trap number reported in the signal to user space.
1171  *
1172  * This function is called by the low level machine check code
1173  * of an architecture when it detects hardware memory corruption
1174  * of a page. It tries its best to recover, which includes
1175  * dropping pages, killing processes etc.
1176  *
1177  * The function is primarily of use for corruptions that
1178  * happen outside the current execution context (e.g. when
1179  * detected by a background scrubber)
1180  *
1181  * Must run in process context (e.g. a work queue) with interrupts
1182  * enabled and no spinlocks hold.
1183  */
1184 void memory_failure(unsigned long pfn, int trapno)
1185 {
1186 	__memory_failure(pfn, trapno, 0);
1187 }
1188 
1189 /**
1190  * unpoison_memory - Unpoison a previously poisoned page
1191  * @pfn: Page number of the to be unpoisoned page
1192  *
1193  * Software-unpoison a page that has been poisoned by
1194  * memory_failure() earlier.
1195  *
1196  * This is only done on the software-level, so it only works
1197  * for linux injected failures, not real hardware failures
1198  *
1199  * Returns 0 for success, otherwise -errno.
1200  */
1201 int unpoison_memory(unsigned long pfn)
1202 {
1203 	struct page *page;
1204 	struct page *p;
1205 	int freeit = 0;
1206 	unsigned int nr_pages;
1207 
1208 	if (!pfn_valid(pfn))
1209 		return -ENXIO;
1210 
1211 	p = pfn_to_page(pfn);
1212 	page = compound_head(p);
1213 
1214 	if (!PageHWPoison(p)) {
1215 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1216 		return 0;
1217 	}
1218 
1219 	nr_pages = 1 << compound_trans_order(page);
1220 
1221 	if (!get_page_unless_zero(page)) {
1222 		/*
1223 		 * Since HWPoisoned hugepage should have non-zero refcount,
1224 		 * race between memory failure and unpoison seems to happen.
1225 		 * In such case unpoison fails and memory failure runs
1226 		 * to the end.
1227 		 */
1228 		if (PageHuge(page)) {
1229 			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1230 			return 0;
1231 		}
1232 		if (TestClearPageHWPoison(p))
1233 			atomic_long_sub(nr_pages, &mce_bad_pages);
1234 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1235 		return 0;
1236 	}
1237 
1238 	lock_page(page);
1239 	/*
1240 	 * This test is racy because PG_hwpoison is set outside of page lock.
1241 	 * That's acceptable because that won't trigger kernel panic. Instead,
1242 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1243 	 * the free buddy page pool.
1244 	 */
1245 	if (TestClearPageHWPoison(page)) {
1246 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1247 		atomic_long_sub(nr_pages, &mce_bad_pages);
1248 		freeit = 1;
1249 		if (PageHuge(page))
1250 			clear_page_hwpoison_huge_page(page);
1251 	}
1252 	unlock_page(page);
1253 
1254 	put_page(page);
1255 	if (freeit)
1256 		put_page(page);
1257 
1258 	return 0;
1259 }
1260 EXPORT_SYMBOL(unpoison_memory);
1261 
1262 static struct page *new_page(struct page *p, unsigned long private, int **x)
1263 {
1264 	int nid = page_to_nid(p);
1265 	if (PageHuge(p))
1266 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1267 						   nid);
1268 	else
1269 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1270 }
1271 
1272 /*
1273  * Safely get reference count of an arbitrary page.
1274  * Returns 0 for a free page, -EIO for a zero refcount page
1275  * that is not free, and 1 for any other page type.
1276  * For 1 the page is returned with increased page count, otherwise not.
1277  */
1278 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1279 {
1280 	int ret;
1281 
1282 	if (flags & MF_COUNT_INCREASED)
1283 		return 1;
1284 
1285 	/*
1286 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1287 	 * This is a big hammer, a better would be nicer.
1288 	 */
1289 	lock_memory_hotplug();
1290 
1291 	/*
1292 	 * Isolate the page, so that it doesn't get reallocated if it
1293 	 * was free.
1294 	 */
1295 	set_migratetype_isolate(p);
1296 	/*
1297 	 * When the target page is a free hugepage, just remove it
1298 	 * from free hugepage list.
1299 	 */
1300 	if (!get_page_unless_zero(compound_head(p))) {
1301 		if (PageHuge(p)) {
1302 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1303 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1304 		} else if (is_free_buddy_page(p)) {
1305 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1306 			/* Set hwpoison bit while page is still isolated */
1307 			SetPageHWPoison(p);
1308 			ret = 0;
1309 		} else {
1310 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1311 				pfn, p->flags);
1312 			ret = -EIO;
1313 		}
1314 	} else {
1315 		/* Not a free page */
1316 		ret = 1;
1317 	}
1318 	unset_migratetype_isolate(p);
1319 	unlock_memory_hotplug();
1320 	return ret;
1321 }
1322 
1323 static int soft_offline_huge_page(struct page *page, int flags)
1324 {
1325 	int ret;
1326 	unsigned long pfn = page_to_pfn(page);
1327 	struct page *hpage = compound_head(page);
1328 	LIST_HEAD(pagelist);
1329 
1330 	ret = get_any_page(page, pfn, flags);
1331 	if (ret < 0)
1332 		return ret;
1333 	if (ret == 0)
1334 		goto done;
1335 
1336 	if (PageHWPoison(hpage)) {
1337 		put_page(hpage);
1338 		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1339 		return -EBUSY;
1340 	}
1341 
1342 	/* Keep page count to indicate a given hugepage is isolated. */
1343 
1344 	list_add(&hpage->lru, &pagelist);
1345 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1346 				true);
1347 	if (ret) {
1348 		struct page *page1, *page2;
1349 		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1350 			put_page(page1);
1351 
1352 		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1353 			 pfn, ret, page->flags);
1354 		if (ret > 0)
1355 			ret = -EIO;
1356 		return ret;
1357 	}
1358 done:
1359 	if (!PageHWPoison(hpage))
1360 		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1361 	set_page_hwpoison_huge_page(hpage);
1362 	dequeue_hwpoisoned_huge_page(hpage);
1363 	/* keep elevated page count for bad page */
1364 	return ret;
1365 }
1366 
1367 /**
1368  * soft_offline_page - Soft offline a page.
1369  * @page: page to offline
1370  * @flags: flags. Same as memory_failure().
1371  *
1372  * Returns 0 on success, otherwise negated errno.
1373  *
1374  * Soft offline a page, by migration or invalidation,
1375  * without killing anything. This is for the case when
1376  * a page is not corrupted yet (so it's still valid to access),
1377  * but has had a number of corrected errors and is better taken
1378  * out.
1379  *
1380  * The actual policy on when to do that is maintained by
1381  * user space.
1382  *
1383  * This should never impact any application or cause data loss,
1384  * however it might take some time.
1385  *
1386  * This is not a 100% solution for all memory, but tries to be
1387  * ``good enough'' for the majority of memory.
1388  */
1389 int soft_offline_page(struct page *page, int flags)
1390 {
1391 	int ret;
1392 	unsigned long pfn = page_to_pfn(page);
1393 
1394 	if (PageHuge(page))
1395 		return soft_offline_huge_page(page, flags);
1396 
1397 	ret = get_any_page(page, pfn, flags);
1398 	if (ret < 0)
1399 		return ret;
1400 	if (ret == 0)
1401 		goto done;
1402 
1403 	/*
1404 	 * Page cache page we can handle?
1405 	 */
1406 	if (!PageLRU(page)) {
1407 		/*
1408 		 * Try to free it.
1409 		 */
1410 		put_page(page);
1411 		shake_page(page, 1);
1412 
1413 		/*
1414 		 * Did it turn free?
1415 		 */
1416 		ret = get_any_page(page, pfn, 0);
1417 		if (ret < 0)
1418 			return ret;
1419 		if (ret == 0)
1420 			goto done;
1421 	}
1422 	if (!PageLRU(page)) {
1423 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1424 				pfn, page->flags);
1425 		return -EIO;
1426 	}
1427 
1428 	lock_page(page);
1429 	wait_on_page_writeback(page);
1430 
1431 	/*
1432 	 * Synchronized using the page lock with memory_failure()
1433 	 */
1434 	if (PageHWPoison(page)) {
1435 		unlock_page(page);
1436 		put_page(page);
1437 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1438 		return -EBUSY;
1439 	}
1440 
1441 	/*
1442 	 * Try to invalidate first. This should work for
1443 	 * non dirty unmapped page cache pages.
1444 	 */
1445 	ret = invalidate_inode_page(page);
1446 	unlock_page(page);
1447 	/*
1448 	 * RED-PEN would be better to keep it isolated here, but we
1449 	 * would need to fix isolation locking first.
1450 	 */
1451 	if (ret == 1) {
1452 		put_page(page);
1453 		ret = 0;
1454 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1455 		goto done;
1456 	}
1457 
1458 	/*
1459 	 * Simple invalidation didn't work.
1460 	 * Try to migrate to a new page instead. migrate.c
1461 	 * handles a large number of cases for us.
1462 	 */
1463 	ret = isolate_lru_page(page);
1464 	/*
1465 	 * Drop page reference which is came from get_any_page()
1466 	 * successful isolate_lru_page() already took another one.
1467 	 */
1468 	put_page(page);
1469 	if (!ret) {
1470 		LIST_HEAD(pagelist);
1471 
1472 		list_add(&page->lru, &pagelist);
1473 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1474 								0, true);
1475 		if (ret) {
1476 			putback_lru_pages(&pagelist);
1477 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1478 				pfn, ret, page->flags);
1479 			if (ret > 0)
1480 				ret = -EIO;
1481 		}
1482 	} else {
1483 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1484 				pfn, ret, page_count(page), page->flags);
1485 	}
1486 	if (ret)
1487 		return ret;
1488 
1489 done:
1490 	atomic_long_add(1, &mce_bad_pages);
1491 	SetPageHWPoison(page);
1492 	/* keep elevated page count for bad page */
1493 	return ret;
1494 }
1495