xref: /openbmc/linux/mm/memcontrol.c (revision ef8f2327996b5c20f11420f64e439e87c7a01604)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_node {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree {
141 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143 
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145 
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 	struct list_head list;
149 	struct eventfd_ctx *eventfd;
150 };
151 
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156 	/*
157 	 * memcg which the event belongs to.
158 	 */
159 	struct mem_cgroup *memcg;
160 	/*
161 	 * eventfd to signal userspace about the event.
162 	 */
163 	struct eventfd_ctx *eventfd;
164 	/*
165 	 * Each of these stored in a list by the cgroup.
166 	 */
167 	struct list_head list;
168 	/*
169 	 * register_event() callback will be used to add new userspace
170 	 * waiter for changes related to this event.  Use eventfd_signal()
171 	 * on eventfd to send notification to userspace.
172 	 */
173 	int (*register_event)(struct mem_cgroup *memcg,
174 			      struct eventfd_ctx *eventfd, const char *args);
175 	/*
176 	 * unregister_event() callback will be called when userspace closes
177 	 * the eventfd or on cgroup removing.  This callback must be set,
178 	 * if you want provide notification functionality.
179 	 */
180 	void (*unregister_event)(struct mem_cgroup *memcg,
181 				 struct eventfd_ctx *eventfd);
182 	/*
183 	 * All fields below needed to unregister event when
184 	 * userspace closes eventfd.
185 	 */
186 	poll_table pt;
187 	wait_queue_head_t *wqh;
188 	wait_queue_t wait;
189 	struct work_struct remove;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194 
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON	0x1U
200 #define MOVE_FILE	0x2U
201 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202 
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 	spinlock_t	  lock; /* for from, to */
206 	struct mm_struct  *mm;
207 	struct mem_cgroup *from;
208 	struct mem_cgroup *to;
209 	unsigned long flags;
210 	unsigned long precharge;
211 	unsigned long moved_charge;
212 	unsigned long moved_swap;
213 	struct task_struct *moving_task;	/* a task moving charges */
214 	wait_queue_head_t waitq;		/* a waitq for other context */
215 } mc = {
216 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219 
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226 
227 enum charge_type {
228 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 	MEM_CGROUP_CHARGE_TYPE_ANON,
230 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
231 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 	NR_CHARGE_TYPE,
233 };
234 
235 /* for encoding cft->private value on file */
236 enum res_type {
237 	_MEM,
238 	_MEMSWAP,
239 	_OOM_TYPE,
240 	_KMEM,
241 	_TCP,
242 };
243 
244 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)	((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL		(0)
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 	return (memcg == root_mem_cgroup);
266 }
267 
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 #endif /* !CONFIG_SLOB */
321 
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 	struct mem_cgroup *memcg;
336 
337 	memcg = page->mem_cgroup;
338 
339 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 		memcg = root_mem_cgroup;
341 
342 	return &memcg->css;
343 }
344 
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 	struct mem_cgroup *memcg;
361 	unsigned long ino = 0;
362 
363 	rcu_read_lock();
364 	memcg = READ_ONCE(page->mem_cgroup);
365 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 		memcg = parent_mem_cgroup(memcg);
367 	if (memcg)
368 		ino = cgroup_ino(memcg->css.cgroup);
369 	rcu_read_unlock();
370 	return ino;
371 }
372 
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 	int nid = page_to_nid(page);
377 
378 	return memcg->nodeinfo[nid];
379 }
380 
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 	return soft_limit_tree.rb_tree_per_node[nid];
385 }
386 
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 	int nid = page_to_nid(page);
391 
392 	return soft_limit_tree.rb_tree_per_node[nid];
393 }
394 
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 					 struct mem_cgroup_tree_per_node *mctz,
397 					 unsigned long new_usage_in_excess)
398 {
399 	struct rb_node **p = &mctz->rb_root.rb_node;
400 	struct rb_node *parent = NULL;
401 	struct mem_cgroup_per_node *mz_node;
402 
403 	if (mz->on_tree)
404 		return;
405 
406 	mz->usage_in_excess = new_usage_in_excess;
407 	if (!mz->usage_in_excess)
408 		return;
409 	while (*p) {
410 		parent = *p;
411 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 					tree_node);
413 		if (mz->usage_in_excess < mz_node->usage_in_excess)
414 			p = &(*p)->rb_left;
415 		/*
416 		 * We can't avoid mem cgroups that are over their soft
417 		 * limit by the same amount
418 		 */
419 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 			p = &(*p)->rb_right;
421 	}
422 	rb_link_node(&mz->tree_node, parent, p);
423 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 	mz->on_tree = true;
425 }
426 
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 					 struct mem_cgroup_tree_per_node *mctz)
429 {
430 	if (!mz->on_tree)
431 		return;
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	/*
466 	 * Necessary to update all ancestors when hierarchy is used.
467 	 * because their event counter is not touched.
468 	 */
469 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 		mz = mem_cgroup_page_nodeinfo(memcg, page);
471 		excess = soft_limit_excess(memcg);
472 		/*
473 		 * We have to update the tree if mz is on RB-tree or
474 		 * mem is over its softlimit.
475 		 */
476 		if (excess || mz->on_tree) {
477 			unsigned long flags;
478 
479 			spin_lock_irqsave(&mctz->lock, flags);
480 			/* if on-tree, remove it */
481 			if (mz->on_tree)
482 				__mem_cgroup_remove_exceeded(mz, mctz);
483 			/*
484 			 * Insert again. mz->usage_in_excess will be updated.
485 			 * If excess is 0, no tree ops.
486 			 */
487 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488 			spin_unlock_irqrestore(&mctz->lock, flags);
489 		}
490 	}
491 }
492 
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 	struct mem_cgroup_tree_per_node *mctz;
496 	struct mem_cgroup_per_node *mz;
497 	int nid;
498 
499 	for_each_node(nid) {
500 		mz = mem_cgroup_nodeinfo(memcg, nid);
501 		mctz = soft_limit_tree_node(nid);
502 		mem_cgroup_remove_exceeded(mz, mctz);
503 	}
504 }
505 
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 	struct rb_node *rightmost = NULL;
510 	struct mem_cgroup_per_node *mz;
511 
512 retry:
513 	mz = NULL;
514 	rightmost = rb_last(&mctz->rb_root);
515 	if (!rightmost)
516 		goto done;		/* Nothing to reclaim from */
517 
518 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 	/*
520 	 * Remove the node now but someone else can add it back,
521 	 * we will to add it back at the end of reclaim to its correct
522 	 * position in the tree.
523 	 */
524 	__mem_cgroup_remove_exceeded(mz, mctz);
525 	if (!soft_limit_excess(mz->memcg) ||
526 	    !css_tryget_online(&mz->memcg->css))
527 		goto retry;
528 done:
529 	return mz;
530 }
531 
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 	spin_lock_irq(&mctz->lock);
538 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 	spin_unlock_irq(&mctz->lock);
540 	return mz;
541 }
542 
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 	long val = 0;
568 	int cpu;
569 
570 	/* Per-cpu values can be negative, use a signed accumulator */
571 	for_each_possible_cpu(cpu)
572 		val += per_cpu(memcg->stat->count[idx], cpu);
573 	/*
574 	 * Summing races with updates, so val may be negative.  Avoid exposing
575 	 * transient negative values.
576 	 */
577 	if (val < 0)
578 		val = 0;
579 	return val;
580 }
581 
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 					    enum mem_cgroup_events_index idx)
584 {
585 	unsigned long val = 0;
586 	int cpu;
587 
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->events[idx], cpu);
590 	return val;
591 }
592 
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 					 struct page *page,
595 					 bool compound, int nr_pages)
596 {
597 	/*
598 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 	 * counted as CACHE even if it's on ANON LRU.
600 	 */
601 	if (PageAnon(page))
602 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 				nr_pages);
604 	else
605 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 				nr_pages);
607 
608 	if (compound) {
609 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 				nr_pages);
612 	}
613 
614 	/* pagein of a big page is an event. So, ignore page size */
615 	if (nr_pages > 0)
616 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 	else {
618 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 		nr_pages = -nr_pages; /* for event */
620 	}
621 
622 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624 
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 					   int nid, unsigned int lru_mask)
627 {
628 	unsigned long nr = 0;
629 	struct mem_cgroup_per_node *mz;
630 	enum lru_list lru;
631 
632 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633 
634 	for_each_lru(lru) {
635 		if (!(BIT(lru) & lru_mask))
636 			continue;
637 		mz = mem_cgroup_nodeinfo(memcg, nid);
638 		nr += mz->lru_size[lru];
639 	}
640 	return nr;
641 }
642 
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 			unsigned int lru_mask)
645 {
646 	unsigned long nr = 0;
647 	int nid;
648 
649 	for_each_node_state(nid, N_MEMORY)
650 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 	return nr;
652 }
653 
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 				       enum mem_cgroup_events_target target)
656 {
657 	unsigned long val, next;
658 
659 	val = __this_cpu_read(memcg->stat->nr_page_events);
660 	next = __this_cpu_read(memcg->stat->targets[target]);
661 	/* from time_after() in jiffies.h */
662 	if ((long)next - (long)val < 0) {
663 		switch (target) {
664 		case MEM_CGROUP_TARGET_THRESH:
665 			next = val + THRESHOLDS_EVENTS_TARGET;
666 			break;
667 		case MEM_CGROUP_TARGET_SOFTLIMIT:
668 			next = val + SOFTLIMIT_EVENTS_TARGET;
669 			break;
670 		case MEM_CGROUP_TARGET_NUMAINFO:
671 			next = val + NUMAINFO_EVENTS_TARGET;
672 			break;
673 		default:
674 			break;
675 		}
676 		__this_cpu_write(memcg->stat->targets[target], next);
677 		return true;
678 	}
679 	return false;
680 }
681 
682 /*
683  * Check events in order.
684  *
685  */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 	/* threshold event is triggered in finer grain than soft limit */
689 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 						MEM_CGROUP_TARGET_THRESH))) {
691 		bool do_softlimit;
692 		bool do_numainfo __maybe_unused;
693 
694 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 						MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 						MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 		mem_cgroup_threshold(memcg);
701 		if (unlikely(do_softlimit))
702 			mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 		if (unlikely(do_numainfo))
705 			atomic_inc(&memcg->numainfo_events);
706 #endif
707 	}
708 }
709 
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 	/*
713 	 * mm_update_next_owner() may clear mm->owner to NULL
714 	 * if it races with swapoff, page migration, etc.
715 	 * So this can be called with p == NULL.
716 	 */
717 	if (unlikely(!p))
718 		return NULL;
719 
720 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723 
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 	struct mem_cgroup *memcg = NULL;
727 
728 	rcu_read_lock();
729 	do {
730 		/*
731 		 * Page cache insertions can happen withou an
732 		 * actual mm context, e.g. during disk probing
733 		 * on boot, loopback IO, acct() writes etc.
734 		 */
735 		if (unlikely(!mm))
736 			memcg = root_mem_cgroup;
737 		else {
738 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 			if (unlikely(!memcg))
740 				memcg = root_mem_cgroup;
741 		}
742 	} while (!css_tryget_online(&memcg->css));
743 	rcu_read_unlock();
744 	return memcg;
745 }
746 
747 /**
748  * mem_cgroup_iter - iterate over memory cgroup hierarchy
749  * @root: hierarchy root
750  * @prev: previously returned memcg, NULL on first invocation
751  * @reclaim: cookie for shared reclaim walks, NULL for full walks
752  *
753  * Returns references to children of the hierarchy below @root, or
754  * @root itself, or %NULL after a full round-trip.
755  *
756  * Caller must pass the return value in @prev on subsequent
757  * invocations for reference counting, or use mem_cgroup_iter_break()
758  * to cancel a hierarchy walk before the round-trip is complete.
759  *
760  * Reclaimers can specify a zone and a priority level in @reclaim to
761  * divide up the memcgs in the hierarchy among all concurrent
762  * reclaimers operating on the same zone and priority.
763  */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 				   struct mem_cgroup *prev,
766 				   struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 	struct cgroup_subsys_state *css = NULL;
770 	struct mem_cgroup *memcg = NULL;
771 	struct mem_cgroup *pos = NULL;
772 
773 	if (mem_cgroup_disabled())
774 		return NULL;
775 
776 	if (!root)
777 		root = root_mem_cgroup;
778 
779 	if (prev && !reclaim)
780 		pos = prev;
781 
782 	if (!root->use_hierarchy && root != root_mem_cgroup) {
783 		if (prev)
784 			goto out;
785 		return root;
786 	}
787 
788 	rcu_read_lock();
789 
790 	if (reclaim) {
791 		struct mem_cgroup_per_node *mz;
792 
793 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 		iter = &mz->iter[reclaim->priority];
795 
796 		if (prev && reclaim->generation != iter->generation)
797 			goto out_unlock;
798 
799 		while (1) {
800 			pos = READ_ONCE(iter->position);
801 			if (!pos || css_tryget(&pos->css))
802 				break;
803 			/*
804 			 * css reference reached zero, so iter->position will
805 			 * be cleared by ->css_released. However, we should not
806 			 * rely on this happening soon, because ->css_released
807 			 * is called from a work queue, and by busy-waiting we
808 			 * might block it. So we clear iter->position right
809 			 * away.
810 			 */
811 			(void)cmpxchg(&iter->position, pos, NULL);
812 		}
813 	}
814 
815 	if (pos)
816 		css = &pos->css;
817 
818 	for (;;) {
819 		css = css_next_descendant_pre(css, &root->css);
820 		if (!css) {
821 			/*
822 			 * Reclaimers share the hierarchy walk, and a
823 			 * new one might jump in right at the end of
824 			 * the hierarchy - make sure they see at least
825 			 * one group and restart from the beginning.
826 			 */
827 			if (!prev)
828 				continue;
829 			break;
830 		}
831 
832 		/*
833 		 * Verify the css and acquire a reference.  The root
834 		 * is provided by the caller, so we know it's alive
835 		 * and kicking, and don't take an extra reference.
836 		 */
837 		memcg = mem_cgroup_from_css(css);
838 
839 		if (css == &root->css)
840 			break;
841 
842 		if (css_tryget(css))
843 			break;
844 
845 		memcg = NULL;
846 	}
847 
848 	if (reclaim) {
849 		/*
850 		 * The position could have already been updated by a competing
851 		 * thread, so check that the value hasn't changed since we read
852 		 * it to avoid reclaiming from the same cgroup twice.
853 		 */
854 		(void)cmpxchg(&iter->position, pos, memcg);
855 
856 		if (pos)
857 			css_put(&pos->css);
858 
859 		if (!memcg)
860 			iter->generation++;
861 		else if (!prev)
862 			reclaim->generation = iter->generation;
863 	}
864 
865 out_unlock:
866 	rcu_read_unlock();
867 out:
868 	if (prev && prev != root)
869 		css_put(&prev->css);
870 
871 	return memcg;
872 }
873 
874 /**
875  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876  * @root: hierarchy root
877  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878  */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 			   struct mem_cgroup *prev)
881 {
882 	if (!root)
883 		root = root_mem_cgroup;
884 	if (prev && prev != root)
885 		css_put(&prev->css);
886 }
887 
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 	struct mem_cgroup *memcg = dead_memcg;
891 	struct mem_cgroup_reclaim_iter *iter;
892 	struct mem_cgroup_per_node *mz;
893 	int nid;
894 	int i;
895 
896 	while ((memcg = parent_mem_cgroup(memcg))) {
897 		for_each_node(nid) {
898 			mz = mem_cgroup_nodeinfo(memcg, nid);
899 			for (i = 0; i <= DEF_PRIORITY; i++) {
900 				iter = &mz->iter[i];
901 				cmpxchg(&iter->position,
902 					dead_memcg, NULL);
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * Iteration constructs for visiting all cgroups (under a tree).  If
910  * loops are exited prematurely (break), mem_cgroup_iter_break() must
911  * be used for reference counting.
912  */
913 #define for_each_mem_cgroup_tree(iter, root)		\
914 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915 	     iter != NULL;				\
916 	     iter = mem_cgroup_iter(root, iter, NULL))
917 
918 #define for_each_mem_cgroup(iter)			\
919 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920 	     iter != NULL;				\
921 	     iter = mem_cgroup_iter(NULL, iter, NULL))
922 
923 /**
924  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925  * @page: the page
926  * @zone: zone of the page
927  *
928  * This function is only safe when following the LRU page isolation
929  * and putback protocol: the LRU lock must be held, and the page must
930  * either be PageLRU() or the caller must have isolated/allocated it.
931  */
932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
933 {
934 	struct mem_cgroup_per_node *mz;
935 	struct mem_cgroup *memcg;
936 	struct lruvec *lruvec;
937 
938 	if (mem_cgroup_disabled()) {
939 		lruvec = &pgdat->lruvec;
940 		goto out;
941 	}
942 
943 	memcg = page->mem_cgroup;
944 	/*
945 	 * Swapcache readahead pages are added to the LRU - and
946 	 * possibly migrated - before they are charged.
947 	 */
948 	if (!memcg)
949 		memcg = root_mem_cgroup;
950 
951 	mz = mem_cgroup_page_nodeinfo(memcg, page);
952 	lruvec = &mz->lruvec;
953 out:
954 	/*
955 	 * Since a node can be onlined after the mem_cgroup was created,
956 	 * we have to be prepared to initialize lruvec->zone here;
957 	 * and if offlined then reonlined, we need to reinitialize it.
958 	 */
959 	if (unlikely(lruvec->pgdat != pgdat))
960 		lruvec->pgdat = pgdat;
961 	return lruvec;
962 }
963 
964 /**
965  * mem_cgroup_update_lru_size - account for adding or removing an lru page
966  * @lruvec: mem_cgroup per zone lru vector
967  * @lru: index of lru list the page is sitting on
968  * @zid: Zone ID of the zone pages have been added to
969  * @nr_pages: positive when adding or negative when removing
970  *
971  * This function must be called under lru_lock, just before a page is added
972  * to or just after a page is removed from an lru list (that ordering being
973  * so as to allow it to check that lru_size 0 is consistent with list_empty).
974  */
975 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
976 				enum zone_type zid, int nr_pages)
977 {
978 	struct mem_cgroup_per_node *mz;
979 	unsigned long *lru_size;
980 	long size;
981 	bool empty;
982 
983 	__update_lru_size(lruvec, lru, zid, nr_pages);
984 
985 	if (mem_cgroup_disabled())
986 		return;
987 
988 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
989 	lru_size = mz->lru_size + lru;
990 	empty = list_empty(lruvec->lists + lru);
991 
992 	if (nr_pages < 0)
993 		*lru_size += nr_pages;
994 
995 	size = *lru_size;
996 	if (WARN_ONCE(size < 0 || empty != !size,
997 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
998 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
999 		VM_BUG_ON(1);
1000 		*lru_size = 0;
1001 	}
1002 
1003 	if (nr_pages > 0)
1004 		*lru_size += nr_pages;
1005 }
1006 
1007 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1008 {
1009 	struct mem_cgroup *task_memcg;
1010 	struct task_struct *p;
1011 	bool ret;
1012 
1013 	p = find_lock_task_mm(task);
1014 	if (p) {
1015 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1016 		task_unlock(p);
1017 	} else {
1018 		/*
1019 		 * All threads may have already detached their mm's, but the oom
1020 		 * killer still needs to detect if they have already been oom
1021 		 * killed to prevent needlessly killing additional tasks.
1022 		 */
1023 		rcu_read_lock();
1024 		task_memcg = mem_cgroup_from_task(task);
1025 		css_get(&task_memcg->css);
1026 		rcu_read_unlock();
1027 	}
1028 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1029 	css_put(&task_memcg->css);
1030 	return ret;
1031 }
1032 
1033 /**
1034  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1035  * @memcg: the memory cgroup
1036  *
1037  * Returns the maximum amount of memory @mem can be charged with, in
1038  * pages.
1039  */
1040 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1041 {
1042 	unsigned long margin = 0;
1043 	unsigned long count;
1044 	unsigned long limit;
1045 
1046 	count = page_counter_read(&memcg->memory);
1047 	limit = READ_ONCE(memcg->memory.limit);
1048 	if (count < limit)
1049 		margin = limit - count;
1050 
1051 	if (do_memsw_account()) {
1052 		count = page_counter_read(&memcg->memsw);
1053 		limit = READ_ONCE(memcg->memsw.limit);
1054 		if (count <= limit)
1055 			margin = min(margin, limit - count);
1056 		else
1057 			margin = 0;
1058 	}
1059 
1060 	return margin;
1061 }
1062 
1063 /*
1064  * A routine for checking "mem" is under move_account() or not.
1065  *
1066  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1067  * moving cgroups. This is for waiting at high-memory pressure
1068  * caused by "move".
1069  */
1070 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1071 {
1072 	struct mem_cgroup *from;
1073 	struct mem_cgroup *to;
1074 	bool ret = false;
1075 	/*
1076 	 * Unlike task_move routines, we access mc.to, mc.from not under
1077 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1078 	 */
1079 	spin_lock(&mc.lock);
1080 	from = mc.from;
1081 	to = mc.to;
1082 	if (!from)
1083 		goto unlock;
1084 
1085 	ret = mem_cgroup_is_descendant(from, memcg) ||
1086 		mem_cgroup_is_descendant(to, memcg);
1087 unlock:
1088 	spin_unlock(&mc.lock);
1089 	return ret;
1090 }
1091 
1092 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1093 {
1094 	if (mc.moving_task && current != mc.moving_task) {
1095 		if (mem_cgroup_under_move(memcg)) {
1096 			DEFINE_WAIT(wait);
1097 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1098 			/* moving charge context might have finished. */
1099 			if (mc.moving_task)
1100 				schedule();
1101 			finish_wait(&mc.waitq, &wait);
1102 			return true;
1103 		}
1104 	}
1105 	return false;
1106 }
1107 
1108 #define K(x) ((x) << (PAGE_SHIFT-10))
1109 /**
1110  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1111  * @memcg: The memory cgroup that went over limit
1112  * @p: Task that is going to be killed
1113  *
1114  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1115  * enabled
1116  */
1117 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1118 {
1119 	struct mem_cgroup *iter;
1120 	unsigned int i;
1121 
1122 	rcu_read_lock();
1123 
1124 	if (p) {
1125 		pr_info("Task in ");
1126 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1127 		pr_cont(" killed as a result of limit of ");
1128 	} else {
1129 		pr_info("Memory limit reached of cgroup ");
1130 	}
1131 
1132 	pr_cont_cgroup_path(memcg->css.cgroup);
1133 	pr_cont("\n");
1134 
1135 	rcu_read_unlock();
1136 
1137 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1138 		K((u64)page_counter_read(&memcg->memory)),
1139 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1140 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1141 		K((u64)page_counter_read(&memcg->memsw)),
1142 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1143 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1144 		K((u64)page_counter_read(&memcg->kmem)),
1145 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1146 
1147 	for_each_mem_cgroup_tree(iter, memcg) {
1148 		pr_info("Memory cgroup stats for ");
1149 		pr_cont_cgroup_path(iter->css.cgroup);
1150 		pr_cont(":");
1151 
1152 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1153 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1154 				continue;
1155 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1156 				K(mem_cgroup_read_stat(iter, i)));
1157 		}
1158 
1159 		for (i = 0; i < NR_LRU_LISTS; i++)
1160 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1161 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1162 
1163 		pr_cont("\n");
1164 	}
1165 }
1166 
1167 /*
1168  * This function returns the number of memcg under hierarchy tree. Returns
1169  * 1(self count) if no children.
1170  */
1171 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1172 {
1173 	int num = 0;
1174 	struct mem_cgroup *iter;
1175 
1176 	for_each_mem_cgroup_tree(iter, memcg)
1177 		num++;
1178 	return num;
1179 }
1180 
1181 /*
1182  * Return the memory (and swap, if configured) limit for a memcg.
1183  */
1184 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1185 {
1186 	unsigned long limit;
1187 
1188 	limit = memcg->memory.limit;
1189 	if (mem_cgroup_swappiness(memcg)) {
1190 		unsigned long memsw_limit;
1191 		unsigned long swap_limit;
1192 
1193 		memsw_limit = memcg->memsw.limit;
1194 		swap_limit = memcg->swap.limit;
1195 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1196 		limit = min(limit + swap_limit, memsw_limit);
1197 	}
1198 	return limit;
1199 }
1200 
1201 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1202 				     int order)
1203 {
1204 	struct oom_control oc = {
1205 		.zonelist = NULL,
1206 		.nodemask = NULL,
1207 		.memcg = memcg,
1208 		.gfp_mask = gfp_mask,
1209 		.order = order,
1210 	};
1211 	struct mem_cgroup *iter;
1212 	unsigned long chosen_points = 0;
1213 	unsigned long totalpages;
1214 	unsigned int points = 0;
1215 	struct task_struct *chosen = NULL;
1216 
1217 	mutex_lock(&oom_lock);
1218 
1219 	/*
1220 	 * If current has a pending SIGKILL or is exiting, then automatically
1221 	 * select it.  The goal is to allow it to allocate so that it may
1222 	 * quickly exit and free its memory.
1223 	 */
1224 	if (task_will_free_mem(current)) {
1225 		mark_oom_victim(current);
1226 		wake_oom_reaper(current);
1227 		goto unlock;
1228 	}
1229 
1230 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1231 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1232 	for_each_mem_cgroup_tree(iter, memcg) {
1233 		struct css_task_iter it;
1234 		struct task_struct *task;
1235 
1236 		css_task_iter_start(&iter->css, &it);
1237 		while ((task = css_task_iter_next(&it))) {
1238 			switch (oom_scan_process_thread(&oc, task)) {
1239 			case OOM_SCAN_SELECT:
1240 				if (chosen)
1241 					put_task_struct(chosen);
1242 				chosen = task;
1243 				chosen_points = ULONG_MAX;
1244 				get_task_struct(chosen);
1245 				/* fall through */
1246 			case OOM_SCAN_CONTINUE:
1247 				continue;
1248 			case OOM_SCAN_ABORT:
1249 				css_task_iter_end(&it);
1250 				mem_cgroup_iter_break(memcg, iter);
1251 				if (chosen)
1252 					put_task_struct(chosen);
1253 				/* Set a dummy value to return "true". */
1254 				chosen = (void *) 1;
1255 				goto unlock;
1256 			case OOM_SCAN_OK:
1257 				break;
1258 			};
1259 			points = oom_badness(task, memcg, NULL, totalpages);
1260 			if (!points || points < chosen_points)
1261 				continue;
1262 			/* Prefer thread group leaders for display purposes */
1263 			if (points == chosen_points &&
1264 			    thread_group_leader(chosen))
1265 				continue;
1266 
1267 			if (chosen)
1268 				put_task_struct(chosen);
1269 			chosen = task;
1270 			chosen_points = points;
1271 			get_task_struct(chosen);
1272 		}
1273 		css_task_iter_end(&it);
1274 	}
1275 
1276 	if (chosen) {
1277 		points = chosen_points * 1000 / totalpages;
1278 		oom_kill_process(&oc, chosen, points, totalpages,
1279 				 "Memory cgroup out of memory");
1280 	}
1281 unlock:
1282 	mutex_unlock(&oom_lock);
1283 	return chosen;
1284 }
1285 
1286 #if MAX_NUMNODES > 1
1287 
1288 /**
1289  * test_mem_cgroup_node_reclaimable
1290  * @memcg: the target memcg
1291  * @nid: the node ID to be checked.
1292  * @noswap : specify true here if the user wants flle only information.
1293  *
1294  * This function returns whether the specified memcg contains any
1295  * reclaimable pages on a node. Returns true if there are any reclaimable
1296  * pages in the node.
1297  */
1298 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1299 		int nid, bool noswap)
1300 {
1301 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1302 		return true;
1303 	if (noswap || !total_swap_pages)
1304 		return false;
1305 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1306 		return true;
1307 	return false;
1308 
1309 }
1310 
1311 /*
1312  * Always updating the nodemask is not very good - even if we have an empty
1313  * list or the wrong list here, we can start from some node and traverse all
1314  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1315  *
1316  */
1317 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1318 {
1319 	int nid;
1320 	/*
1321 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1322 	 * pagein/pageout changes since the last update.
1323 	 */
1324 	if (!atomic_read(&memcg->numainfo_events))
1325 		return;
1326 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1327 		return;
1328 
1329 	/* make a nodemask where this memcg uses memory from */
1330 	memcg->scan_nodes = node_states[N_MEMORY];
1331 
1332 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1333 
1334 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1335 			node_clear(nid, memcg->scan_nodes);
1336 	}
1337 
1338 	atomic_set(&memcg->numainfo_events, 0);
1339 	atomic_set(&memcg->numainfo_updating, 0);
1340 }
1341 
1342 /*
1343  * Selecting a node where we start reclaim from. Because what we need is just
1344  * reducing usage counter, start from anywhere is O,K. Considering
1345  * memory reclaim from current node, there are pros. and cons.
1346  *
1347  * Freeing memory from current node means freeing memory from a node which
1348  * we'll use or we've used. So, it may make LRU bad. And if several threads
1349  * hit limits, it will see a contention on a node. But freeing from remote
1350  * node means more costs for memory reclaim because of memory latency.
1351  *
1352  * Now, we use round-robin. Better algorithm is welcomed.
1353  */
1354 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1355 {
1356 	int node;
1357 
1358 	mem_cgroup_may_update_nodemask(memcg);
1359 	node = memcg->last_scanned_node;
1360 
1361 	node = next_node_in(node, memcg->scan_nodes);
1362 	/*
1363 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1364 	 * last time it really checked all the LRUs due to rate limiting.
1365 	 * Fallback to the current node in that case for simplicity.
1366 	 */
1367 	if (unlikely(node == MAX_NUMNODES))
1368 		node = numa_node_id();
1369 
1370 	memcg->last_scanned_node = node;
1371 	return node;
1372 }
1373 #else
1374 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1375 {
1376 	return 0;
1377 }
1378 #endif
1379 
1380 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1381 				   pg_data_t *pgdat,
1382 				   gfp_t gfp_mask,
1383 				   unsigned long *total_scanned)
1384 {
1385 	struct mem_cgroup *victim = NULL;
1386 	int total = 0;
1387 	int loop = 0;
1388 	unsigned long excess;
1389 	unsigned long nr_scanned;
1390 	struct mem_cgroup_reclaim_cookie reclaim = {
1391 		.pgdat = pgdat,
1392 		.priority = 0,
1393 	};
1394 
1395 	excess = soft_limit_excess(root_memcg);
1396 
1397 	while (1) {
1398 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1399 		if (!victim) {
1400 			loop++;
1401 			if (loop >= 2) {
1402 				/*
1403 				 * If we have not been able to reclaim
1404 				 * anything, it might because there are
1405 				 * no reclaimable pages under this hierarchy
1406 				 */
1407 				if (!total)
1408 					break;
1409 				/*
1410 				 * We want to do more targeted reclaim.
1411 				 * excess >> 2 is not to excessive so as to
1412 				 * reclaim too much, nor too less that we keep
1413 				 * coming back to reclaim from this cgroup
1414 				 */
1415 				if (total >= (excess >> 2) ||
1416 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1417 					break;
1418 			}
1419 			continue;
1420 		}
1421 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1422 					pgdat, &nr_scanned);
1423 		*total_scanned += nr_scanned;
1424 		if (!soft_limit_excess(root_memcg))
1425 			break;
1426 	}
1427 	mem_cgroup_iter_break(root_memcg, victim);
1428 	return total;
1429 }
1430 
1431 #ifdef CONFIG_LOCKDEP
1432 static struct lockdep_map memcg_oom_lock_dep_map = {
1433 	.name = "memcg_oom_lock",
1434 };
1435 #endif
1436 
1437 static DEFINE_SPINLOCK(memcg_oom_lock);
1438 
1439 /*
1440  * Check OOM-Killer is already running under our hierarchy.
1441  * If someone is running, return false.
1442  */
1443 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1444 {
1445 	struct mem_cgroup *iter, *failed = NULL;
1446 
1447 	spin_lock(&memcg_oom_lock);
1448 
1449 	for_each_mem_cgroup_tree(iter, memcg) {
1450 		if (iter->oom_lock) {
1451 			/*
1452 			 * this subtree of our hierarchy is already locked
1453 			 * so we cannot give a lock.
1454 			 */
1455 			failed = iter;
1456 			mem_cgroup_iter_break(memcg, iter);
1457 			break;
1458 		} else
1459 			iter->oom_lock = true;
1460 	}
1461 
1462 	if (failed) {
1463 		/*
1464 		 * OK, we failed to lock the whole subtree so we have
1465 		 * to clean up what we set up to the failing subtree
1466 		 */
1467 		for_each_mem_cgroup_tree(iter, memcg) {
1468 			if (iter == failed) {
1469 				mem_cgroup_iter_break(memcg, iter);
1470 				break;
1471 			}
1472 			iter->oom_lock = false;
1473 		}
1474 	} else
1475 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1476 
1477 	spin_unlock(&memcg_oom_lock);
1478 
1479 	return !failed;
1480 }
1481 
1482 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1483 {
1484 	struct mem_cgroup *iter;
1485 
1486 	spin_lock(&memcg_oom_lock);
1487 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1488 	for_each_mem_cgroup_tree(iter, memcg)
1489 		iter->oom_lock = false;
1490 	spin_unlock(&memcg_oom_lock);
1491 }
1492 
1493 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1494 {
1495 	struct mem_cgroup *iter;
1496 
1497 	spin_lock(&memcg_oom_lock);
1498 	for_each_mem_cgroup_tree(iter, memcg)
1499 		iter->under_oom++;
1500 	spin_unlock(&memcg_oom_lock);
1501 }
1502 
1503 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1504 {
1505 	struct mem_cgroup *iter;
1506 
1507 	/*
1508 	 * When a new child is created while the hierarchy is under oom,
1509 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1510 	 */
1511 	spin_lock(&memcg_oom_lock);
1512 	for_each_mem_cgroup_tree(iter, memcg)
1513 		if (iter->under_oom > 0)
1514 			iter->under_oom--;
1515 	spin_unlock(&memcg_oom_lock);
1516 }
1517 
1518 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1519 
1520 struct oom_wait_info {
1521 	struct mem_cgroup *memcg;
1522 	wait_queue_t	wait;
1523 };
1524 
1525 static int memcg_oom_wake_function(wait_queue_t *wait,
1526 	unsigned mode, int sync, void *arg)
1527 {
1528 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1529 	struct mem_cgroup *oom_wait_memcg;
1530 	struct oom_wait_info *oom_wait_info;
1531 
1532 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1533 	oom_wait_memcg = oom_wait_info->memcg;
1534 
1535 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1536 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1537 		return 0;
1538 	return autoremove_wake_function(wait, mode, sync, arg);
1539 }
1540 
1541 static void memcg_oom_recover(struct mem_cgroup *memcg)
1542 {
1543 	/*
1544 	 * For the following lockless ->under_oom test, the only required
1545 	 * guarantee is that it must see the state asserted by an OOM when
1546 	 * this function is called as a result of userland actions
1547 	 * triggered by the notification of the OOM.  This is trivially
1548 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1549 	 * triggering notification.
1550 	 */
1551 	if (memcg && memcg->under_oom)
1552 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1553 }
1554 
1555 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1556 {
1557 	if (!current->memcg_may_oom)
1558 		return;
1559 	/*
1560 	 * We are in the middle of the charge context here, so we
1561 	 * don't want to block when potentially sitting on a callstack
1562 	 * that holds all kinds of filesystem and mm locks.
1563 	 *
1564 	 * Also, the caller may handle a failed allocation gracefully
1565 	 * (like optional page cache readahead) and so an OOM killer
1566 	 * invocation might not even be necessary.
1567 	 *
1568 	 * That's why we don't do anything here except remember the
1569 	 * OOM context and then deal with it at the end of the page
1570 	 * fault when the stack is unwound, the locks are released,
1571 	 * and when we know whether the fault was overall successful.
1572 	 */
1573 	css_get(&memcg->css);
1574 	current->memcg_in_oom = memcg;
1575 	current->memcg_oom_gfp_mask = mask;
1576 	current->memcg_oom_order = order;
1577 }
1578 
1579 /**
1580  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1581  * @handle: actually kill/wait or just clean up the OOM state
1582  *
1583  * This has to be called at the end of a page fault if the memcg OOM
1584  * handler was enabled.
1585  *
1586  * Memcg supports userspace OOM handling where failed allocations must
1587  * sleep on a waitqueue until the userspace task resolves the
1588  * situation.  Sleeping directly in the charge context with all kinds
1589  * of locks held is not a good idea, instead we remember an OOM state
1590  * in the task and mem_cgroup_oom_synchronize() has to be called at
1591  * the end of the page fault to complete the OOM handling.
1592  *
1593  * Returns %true if an ongoing memcg OOM situation was detected and
1594  * completed, %false otherwise.
1595  */
1596 bool mem_cgroup_oom_synchronize(bool handle)
1597 {
1598 	struct mem_cgroup *memcg = current->memcg_in_oom;
1599 	struct oom_wait_info owait;
1600 	bool locked;
1601 
1602 	/* OOM is global, do not handle */
1603 	if (!memcg)
1604 		return false;
1605 
1606 	if (!handle || oom_killer_disabled)
1607 		goto cleanup;
1608 
1609 	owait.memcg = memcg;
1610 	owait.wait.flags = 0;
1611 	owait.wait.func = memcg_oom_wake_function;
1612 	owait.wait.private = current;
1613 	INIT_LIST_HEAD(&owait.wait.task_list);
1614 
1615 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1616 	mem_cgroup_mark_under_oom(memcg);
1617 
1618 	locked = mem_cgroup_oom_trylock(memcg);
1619 
1620 	if (locked)
1621 		mem_cgroup_oom_notify(memcg);
1622 
1623 	if (locked && !memcg->oom_kill_disable) {
1624 		mem_cgroup_unmark_under_oom(memcg);
1625 		finish_wait(&memcg_oom_waitq, &owait.wait);
1626 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1627 					 current->memcg_oom_order);
1628 	} else {
1629 		schedule();
1630 		mem_cgroup_unmark_under_oom(memcg);
1631 		finish_wait(&memcg_oom_waitq, &owait.wait);
1632 	}
1633 
1634 	if (locked) {
1635 		mem_cgroup_oom_unlock(memcg);
1636 		/*
1637 		 * There is no guarantee that an OOM-lock contender
1638 		 * sees the wakeups triggered by the OOM kill
1639 		 * uncharges.  Wake any sleepers explicitely.
1640 		 */
1641 		memcg_oom_recover(memcg);
1642 	}
1643 cleanup:
1644 	current->memcg_in_oom = NULL;
1645 	css_put(&memcg->css);
1646 	return true;
1647 }
1648 
1649 /**
1650  * lock_page_memcg - lock a page->mem_cgroup binding
1651  * @page: the page
1652  *
1653  * This function protects unlocked LRU pages from being moved to
1654  * another cgroup and stabilizes their page->mem_cgroup binding.
1655  */
1656 void lock_page_memcg(struct page *page)
1657 {
1658 	struct mem_cgroup *memcg;
1659 	unsigned long flags;
1660 
1661 	/*
1662 	 * The RCU lock is held throughout the transaction.  The fast
1663 	 * path can get away without acquiring the memcg->move_lock
1664 	 * because page moving starts with an RCU grace period.
1665 	 */
1666 	rcu_read_lock();
1667 
1668 	if (mem_cgroup_disabled())
1669 		return;
1670 again:
1671 	memcg = page->mem_cgroup;
1672 	if (unlikely(!memcg))
1673 		return;
1674 
1675 	if (atomic_read(&memcg->moving_account) <= 0)
1676 		return;
1677 
1678 	spin_lock_irqsave(&memcg->move_lock, flags);
1679 	if (memcg != page->mem_cgroup) {
1680 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1681 		goto again;
1682 	}
1683 
1684 	/*
1685 	 * When charge migration first begins, we can have locked and
1686 	 * unlocked page stat updates happening concurrently.  Track
1687 	 * the task who has the lock for unlock_page_memcg().
1688 	 */
1689 	memcg->move_lock_task = current;
1690 	memcg->move_lock_flags = flags;
1691 
1692 	return;
1693 }
1694 EXPORT_SYMBOL(lock_page_memcg);
1695 
1696 /**
1697  * unlock_page_memcg - unlock a page->mem_cgroup binding
1698  * @page: the page
1699  */
1700 void unlock_page_memcg(struct page *page)
1701 {
1702 	struct mem_cgroup *memcg = page->mem_cgroup;
1703 
1704 	if (memcg && memcg->move_lock_task == current) {
1705 		unsigned long flags = memcg->move_lock_flags;
1706 
1707 		memcg->move_lock_task = NULL;
1708 		memcg->move_lock_flags = 0;
1709 
1710 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1711 	}
1712 
1713 	rcu_read_unlock();
1714 }
1715 EXPORT_SYMBOL(unlock_page_memcg);
1716 
1717 /*
1718  * size of first charge trial. "32" comes from vmscan.c's magic value.
1719  * TODO: maybe necessary to use big numbers in big irons.
1720  */
1721 #define CHARGE_BATCH	32U
1722 struct memcg_stock_pcp {
1723 	struct mem_cgroup *cached; /* this never be root cgroup */
1724 	unsigned int nr_pages;
1725 	struct work_struct work;
1726 	unsigned long flags;
1727 #define FLUSHING_CACHED_CHARGE	0
1728 };
1729 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1730 static DEFINE_MUTEX(percpu_charge_mutex);
1731 
1732 /**
1733  * consume_stock: Try to consume stocked charge on this cpu.
1734  * @memcg: memcg to consume from.
1735  * @nr_pages: how many pages to charge.
1736  *
1737  * The charges will only happen if @memcg matches the current cpu's memcg
1738  * stock, and at least @nr_pages are available in that stock.  Failure to
1739  * service an allocation will refill the stock.
1740  *
1741  * returns true if successful, false otherwise.
1742  */
1743 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1744 {
1745 	struct memcg_stock_pcp *stock;
1746 	bool ret = false;
1747 
1748 	if (nr_pages > CHARGE_BATCH)
1749 		return ret;
1750 
1751 	stock = &get_cpu_var(memcg_stock);
1752 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1753 		stock->nr_pages -= nr_pages;
1754 		ret = true;
1755 	}
1756 	put_cpu_var(memcg_stock);
1757 	return ret;
1758 }
1759 
1760 /*
1761  * Returns stocks cached in percpu and reset cached information.
1762  */
1763 static void drain_stock(struct memcg_stock_pcp *stock)
1764 {
1765 	struct mem_cgroup *old = stock->cached;
1766 
1767 	if (stock->nr_pages) {
1768 		page_counter_uncharge(&old->memory, stock->nr_pages);
1769 		if (do_memsw_account())
1770 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1771 		css_put_many(&old->css, stock->nr_pages);
1772 		stock->nr_pages = 0;
1773 	}
1774 	stock->cached = NULL;
1775 }
1776 
1777 /*
1778  * This must be called under preempt disabled or must be called by
1779  * a thread which is pinned to local cpu.
1780  */
1781 static void drain_local_stock(struct work_struct *dummy)
1782 {
1783 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1784 	drain_stock(stock);
1785 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1786 }
1787 
1788 /*
1789  * Cache charges(val) to local per_cpu area.
1790  * This will be consumed by consume_stock() function, later.
1791  */
1792 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1793 {
1794 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1795 
1796 	if (stock->cached != memcg) { /* reset if necessary */
1797 		drain_stock(stock);
1798 		stock->cached = memcg;
1799 	}
1800 	stock->nr_pages += nr_pages;
1801 	put_cpu_var(memcg_stock);
1802 }
1803 
1804 /*
1805  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1806  * of the hierarchy under it.
1807  */
1808 static void drain_all_stock(struct mem_cgroup *root_memcg)
1809 {
1810 	int cpu, curcpu;
1811 
1812 	/* If someone's already draining, avoid adding running more workers. */
1813 	if (!mutex_trylock(&percpu_charge_mutex))
1814 		return;
1815 	/* Notify other cpus that system-wide "drain" is running */
1816 	get_online_cpus();
1817 	curcpu = get_cpu();
1818 	for_each_online_cpu(cpu) {
1819 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1820 		struct mem_cgroup *memcg;
1821 
1822 		memcg = stock->cached;
1823 		if (!memcg || !stock->nr_pages)
1824 			continue;
1825 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1826 			continue;
1827 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1828 			if (cpu == curcpu)
1829 				drain_local_stock(&stock->work);
1830 			else
1831 				schedule_work_on(cpu, &stock->work);
1832 		}
1833 	}
1834 	put_cpu();
1835 	put_online_cpus();
1836 	mutex_unlock(&percpu_charge_mutex);
1837 }
1838 
1839 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1840 					unsigned long action,
1841 					void *hcpu)
1842 {
1843 	int cpu = (unsigned long)hcpu;
1844 	struct memcg_stock_pcp *stock;
1845 
1846 	if (action == CPU_ONLINE)
1847 		return NOTIFY_OK;
1848 
1849 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1850 		return NOTIFY_OK;
1851 
1852 	stock = &per_cpu(memcg_stock, cpu);
1853 	drain_stock(stock);
1854 	return NOTIFY_OK;
1855 }
1856 
1857 static void reclaim_high(struct mem_cgroup *memcg,
1858 			 unsigned int nr_pages,
1859 			 gfp_t gfp_mask)
1860 {
1861 	do {
1862 		if (page_counter_read(&memcg->memory) <= memcg->high)
1863 			continue;
1864 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1865 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1866 	} while ((memcg = parent_mem_cgroup(memcg)));
1867 }
1868 
1869 static void high_work_func(struct work_struct *work)
1870 {
1871 	struct mem_cgroup *memcg;
1872 
1873 	memcg = container_of(work, struct mem_cgroup, high_work);
1874 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1875 }
1876 
1877 /*
1878  * Scheduled by try_charge() to be executed from the userland return path
1879  * and reclaims memory over the high limit.
1880  */
1881 void mem_cgroup_handle_over_high(void)
1882 {
1883 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1884 	struct mem_cgroup *memcg;
1885 
1886 	if (likely(!nr_pages))
1887 		return;
1888 
1889 	memcg = get_mem_cgroup_from_mm(current->mm);
1890 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1891 	css_put(&memcg->css);
1892 	current->memcg_nr_pages_over_high = 0;
1893 }
1894 
1895 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1896 		      unsigned int nr_pages)
1897 {
1898 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1899 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1900 	struct mem_cgroup *mem_over_limit;
1901 	struct page_counter *counter;
1902 	unsigned long nr_reclaimed;
1903 	bool may_swap = true;
1904 	bool drained = false;
1905 
1906 	if (mem_cgroup_is_root(memcg))
1907 		return 0;
1908 retry:
1909 	if (consume_stock(memcg, nr_pages))
1910 		return 0;
1911 
1912 	if (!do_memsw_account() ||
1913 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1914 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1915 			goto done_restock;
1916 		if (do_memsw_account())
1917 			page_counter_uncharge(&memcg->memsw, batch);
1918 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1919 	} else {
1920 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1921 		may_swap = false;
1922 	}
1923 
1924 	if (batch > nr_pages) {
1925 		batch = nr_pages;
1926 		goto retry;
1927 	}
1928 
1929 	/*
1930 	 * Unlike in global OOM situations, memcg is not in a physical
1931 	 * memory shortage.  Allow dying and OOM-killed tasks to
1932 	 * bypass the last charges so that they can exit quickly and
1933 	 * free their memory.
1934 	 */
1935 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1936 		     fatal_signal_pending(current) ||
1937 		     current->flags & PF_EXITING))
1938 		goto force;
1939 
1940 	if (unlikely(task_in_memcg_oom(current)))
1941 		goto nomem;
1942 
1943 	if (!gfpflags_allow_blocking(gfp_mask))
1944 		goto nomem;
1945 
1946 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1947 
1948 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1949 						    gfp_mask, may_swap);
1950 
1951 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1952 		goto retry;
1953 
1954 	if (!drained) {
1955 		drain_all_stock(mem_over_limit);
1956 		drained = true;
1957 		goto retry;
1958 	}
1959 
1960 	if (gfp_mask & __GFP_NORETRY)
1961 		goto nomem;
1962 	/*
1963 	 * Even though the limit is exceeded at this point, reclaim
1964 	 * may have been able to free some pages.  Retry the charge
1965 	 * before killing the task.
1966 	 *
1967 	 * Only for regular pages, though: huge pages are rather
1968 	 * unlikely to succeed so close to the limit, and we fall back
1969 	 * to regular pages anyway in case of failure.
1970 	 */
1971 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1972 		goto retry;
1973 	/*
1974 	 * At task move, charge accounts can be doubly counted. So, it's
1975 	 * better to wait until the end of task_move if something is going on.
1976 	 */
1977 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1978 		goto retry;
1979 
1980 	if (nr_retries--)
1981 		goto retry;
1982 
1983 	if (gfp_mask & __GFP_NOFAIL)
1984 		goto force;
1985 
1986 	if (fatal_signal_pending(current))
1987 		goto force;
1988 
1989 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1990 
1991 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1992 		       get_order(nr_pages * PAGE_SIZE));
1993 nomem:
1994 	if (!(gfp_mask & __GFP_NOFAIL))
1995 		return -ENOMEM;
1996 force:
1997 	/*
1998 	 * The allocation either can't fail or will lead to more memory
1999 	 * being freed very soon.  Allow memory usage go over the limit
2000 	 * temporarily by force charging it.
2001 	 */
2002 	page_counter_charge(&memcg->memory, nr_pages);
2003 	if (do_memsw_account())
2004 		page_counter_charge(&memcg->memsw, nr_pages);
2005 	css_get_many(&memcg->css, nr_pages);
2006 
2007 	return 0;
2008 
2009 done_restock:
2010 	css_get_many(&memcg->css, batch);
2011 	if (batch > nr_pages)
2012 		refill_stock(memcg, batch - nr_pages);
2013 
2014 	/*
2015 	 * If the hierarchy is above the normal consumption range, schedule
2016 	 * reclaim on returning to userland.  We can perform reclaim here
2017 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2018 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2019 	 * not recorded as it most likely matches current's and won't
2020 	 * change in the meantime.  As high limit is checked again before
2021 	 * reclaim, the cost of mismatch is negligible.
2022 	 */
2023 	do {
2024 		if (page_counter_read(&memcg->memory) > memcg->high) {
2025 			/* Don't bother a random interrupted task */
2026 			if (in_interrupt()) {
2027 				schedule_work(&memcg->high_work);
2028 				break;
2029 			}
2030 			current->memcg_nr_pages_over_high += batch;
2031 			set_notify_resume(current);
2032 			break;
2033 		}
2034 	} while ((memcg = parent_mem_cgroup(memcg)));
2035 
2036 	return 0;
2037 }
2038 
2039 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2040 {
2041 	if (mem_cgroup_is_root(memcg))
2042 		return;
2043 
2044 	page_counter_uncharge(&memcg->memory, nr_pages);
2045 	if (do_memsw_account())
2046 		page_counter_uncharge(&memcg->memsw, nr_pages);
2047 
2048 	css_put_many(&memcg->css, nr_pages);
2049 }
2050 
2051 static void lock_page_lru(struct page *page, int *isolated)
2052 {
2053 	struct zone *zone = page_zone(page);
2054 
2055 	spin_lock_irq(zone_lru_lock(zone));
2056 	if (PageLRU(page)) {
2057 		struct lruvec *lruvec;
2058 
2059 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2060 		ClearPageLRU(page);
2061 		del_page_from_lru_list(page, lruvec, page_lru(page));
2062 		*isolated = 1;
2063 	} else
2064 		*isolated = 0;
2065 }
2066 
2067 static void unlock_page_lru(struct page *page, int isolated)
2068 {
2069 	struct zone *zone = page_zone(page);
2070 
2071 	if (isolated) {
2072 		struct lruvec *lruvec;
2073 
2074 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2075 		VM_BUG_ON_PAGE(PageLRU(page), page);
2076 		SetPageLRU(page);
2077 		add_page_to_lru_list(page, lruvec, page_lru(page));
2078 	}
2079 	spin_unlock_irq(zone_lru_lock(zone));
2080 }
2081 
2082 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2083 			  bool lrucare)
2084 {
2085 	int isolated;
2086 
2087 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2088 
2089 	/*
2090 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2091 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2092 	 */
2093 	if (lrucare)
2094 		lock_page_lru(page, &isolated);
2095 
2096 	/*
2097 	 * Nobody should be changing or seriously looking at
2098 	 * page->mem_cgroup at this point:
2099 	 *
2100 	 * - the page is uncharged
2101 	 *
2102 	 * - the page is off-LRU
2103 	 *
2104 	 * - an anonymous fault has exclusive page access, except for
2105 	 *   a locked page table
2106 	 *
2107 	 * - a page cache insertion, a swapin fault, or a migration
2108 	 *   have the page locked
2109 	 */
2110 	page->mem_cgroup = memcg;
2111 
2112 	if (lrucare)
2113 		unlock_page_lru(page, isolated);
2114 }
2115 
2116 #ifndef CONFIG_SLOB
2117 static int memcg_alloc_cache_id(void)
2118 {
2119 	int id, size;
2120 	int err;
2121 
2122 	id = ida_simple_get(&memcg_cache_ida,
2123 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2124 	if (id < 0)
2125 		return id;
2126 
2127 	if (id < memcg_nr_cache_ids)
2128 		return id;
2129 
2130 	/*
2131 	 * There's no space for the new id in memcg_caches arrays,
2132 	 * so we have to grow them.
2133 	 */
2134 	down_write(&memcg_cache_ids_sem);
2135 
2136 	size = 2 * (id + 1);
2137 	if (size < MEMCG_CACHES_MIN_SIZE)
2138 		size = MEMCG_CACHES_MIN_SIZE;
2139 	else if (size > MEMCG_CACHES_MAX_SIZE)
2140 		size = MEMCG_CACHES_MAX_SIZE;
2141 
2142 	err = memcg_update_all_caches(size);
2143 	if (!err)
2144 		err = memcg_update_all_list_lrus(size);
2145 	if (!err)
2146 		memcg_nr_cache_ids = size;
2147 
2148 	up_write(&memcg_cache_ids_sem);
2149 
2150 	if (err) {
2151 		ida_simple_remove(&memcg_cache_ida, id);
2152 		return err;
2153 	}
2154 	return id;
2155 }
2156 
2157 static void memcg_free_cache_id(int id)
2158 {
2159 	ida_simple_remove(&memcg_cache_ida, id);
2160 }
2161 
2162 struct memcg_kmem_cache_create_work {
2163 	struct mem_cgroup *memcg;
2164 	struct kmem_cache *cachep;
2165 	struct work_struct work;
2166 };
2167 
2168 static void memcg_kmem_cache_create_func(struct work_struct *w)
2169 {
2170 	struct memcg_kmem_cache_create_work *cw =
2171 		container_of(w, struct memcg_kmem_cache_create_work, work);
2172 	struct mem_cgroup *memcg = cw->memcg;
2173 	struct kmem_cache *cachep = cw->cachep;
2174 
2175 	memcg_create_kmem_cache(memcg, cachep);
2176 
2177 	css_put(&memcg->css);
2178 	kfree(cw);
2179 }
2180 
2181 /*
2182  * Enqueue the creation of a per-memcg kmem_cache.
2183  */
2184 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2185 					       struct kmem_cache *cachep)
2186 {
2187 	struct memcg_kmem_cache_create_work *cw;
2188 
2189 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2190 	if (!cw)
2191 		return;
2192 
2193 	css_get(&memcg->css);
2194 
2195 	cw->memcg = memcg;
2196 	cw->cachep = cachep;
2197 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2198 
2199 	schedule_work(&cw->work);
2200 }
2201 
2202 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2203 					     struct kmem_cache *cachep)
2204 {
2205 	/*
2206 	 * We need to stop accounting when we kmalloc, because if the
2207 	 * corresponding kmalloc cache is not yet created, the first allocation
2208 	 * in __memcg_schedule_kmem_cache_create will recurse.
2209 	 *
2210 	 * However, it is better to enclose the whole function. Depending on
2211 	 * the debugging options enabled, INIT_WORK(), for instance, can
2212 	 * trigger an allocation. This too, will make us recurse. Because at
2213 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2214 	 * the safest choice is to do it like this, wrapping the whole function.
2215 	 */
2216 	current->memcg_kmem_skip_account = 1;
2217 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2218 	current->memcg_kmem_skip_account = 0;
2219 }
2220 
2221 static inline bool memcg_kmem_bypass(void)
2222 {
2223 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2224 		return true;
2225 	return false;
2226 }
2227 
2228 /**
2229  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2230  * @cachep: the original global kmem cache
2231  *
2232  * Return the kmem_cache we're supposed to use for a slab allocation.
2233  * We try to use the current memcg's version of the cache.
2234  *
2235  * If the cache does not exist yet, if we are the first user of it, we
2236  * create it asynchronously in a workqueue and let the current allocation
2237  * go through with the original cache.
2238  *
2239  * This function takes a reference to the cache it returns to assure it
2240  * won't get destroyed while we are working with it. Once the caller is
2241  * done with it, memcg_kmem_put_cache() must be called to release the
2242  * reference.
2243  */
2244 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2245 {
2246 	struct mem_cgroup *memcg;
2247 	struct kmem_cache *memcg_cachep;
2248 	int kmemcg_id;
2249 
2250 	VM_BUG_ON(!is_root_cache(cachep));
2251 
2252 	if (memcg_kmem_bypass())
2253 		return cachep;
2254 
2255 	if (current->memcg_kmem_skip_account)
2256 		return cachep;
2257 
2258 	memcg = get_mem_cgroup_from_mm(current->mm);
2259 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2260 	if (kmemcg_id < 0)
2261 		goto out;
2262 
2263 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2264 	if (likely(memcg_cachep))
2265 		return memcg_cachep;
2266 
2267 	/*
2268 	 * If we are in a safe context (can wait, and not in interrupt
2269 	 * context), we could be be predictable and return right away.
2270 	 * This would guarantee that the allocation being performed
2271 	 * already belongs in the new cache.
2272 	 *
2273 	 * However, there are some clashes that can arrive from locking.
2274 	 * For instance, because we acquire the slab_mutex while doing
2275 	 * memcg_create_kmem_cache, this means no further allocation
2276 	 * could happen with the slab_mutex held. So it's better to
2277 	 * defer everything.
2278 	 */
2279 	memcg_schedule_kmem_cache_create(memcg, cachep);
2280 out:
2281 	css_put(&memcg->css);
2282 	return cachep;
2283 }
2284 
2285 /**
2286  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2287  * @cachep: the cache returned by memcg_kmem_get_cache
2288  */
2289 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2290 {
2291 	if (!is_root_cache(cachep))
2292 		css_put(&cachep->memcg_params.memcg->css);
2293 }
2294 
2295 /**
2296  * memcg_kmem_charge: charge a kmem page
2297  * @page: page to charge
2298  * @gfp: reclaim mode
2299  * @order: allocation order
2300  * @memcg: memory cgroup to charge
2301  *
2302  * Returns 0 on success, an error code on failure.
2303  */
2304 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2305 			    struct mem_cgroup *memcg)
2306 {
2307 	unsigned int nr_pages = 1 << order;
2308 	struct page_counter *counter;
2309 	int ret;
2310 
2311 	ret = try_charge(memcg, gfp, nr_pages);
2312 	if (ret)
2313 		return ret;
2314 
2315 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2316 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2317 		cancel_charge(memcg, nr_pages);
2318 		return -ENOMEM;
2319 	}
2320 
2321 	page->mem_cgroup = memcg;
2322 
2323 	return 0;
2324 }
2325 
2326 /**
2327  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2328  * @page: page to charge
2329  * @gfp: reclaim mode
2330  * @order: allocation order
2331  *
2332  * Returns 0 on success, an error code on failure.
2333  */
2334 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2335 {
2336 	struct mem_cgroup *memcg;
2337 	int ret = 0;
2338 
2339 	if (memcg_kmem_bypass())
2340 		return 0;
2341 
2342 	memcg = get_mem_cgroup_from_mm(current->mm);
2343 	if (!mem_cgroup_is_root(memcg))
2344 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2345 	css_put(&memcg->css);
2346 	return ret;
2347 }
2348 /**
2349  * memcg_kmem_uncharge: uncharge a kmem page
2350  * @page: page to uncharge
2351  * @order: allocation order
2352  */
2353 void memcg_kmem_uncharge(struct page *page, int order)
2354 {
2355 	struct mem_cgroup *memcg = page->mem_cgroup;
2356 	unsigned int nr_pages = 1 << order;
2357 
2358 	if (!memcg)
2359 		return;
2360 
2361 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2362 
2363 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 		page_counter_uncharge(&memcg->kmem, nr_pages);
2365 
2366 	page_counter_uncharge(&memcg->memory, nr_pages);
2367 	if (do_memsw_account())
2368 		page_counter_uncharge(&memcg->memsw, nr_pages);
2369 
2370 	page->mem_cgroup = NULL;
2371 	css_put_many(&memcg->css, nr_pages);
2372 }
2373 #endif /* !CONFIG_SLOB */
2374 
2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376 
2377 /*
2378  * Because tail pages are not marked as "used", set it. We're under
2379  * zone_lru_lock and migration entries setup in all page mappings.
2380  */
2381 void mem_cgroup_split_huge_fixup(struct page *head)
2382 {
2383 	int i;
2384 
2385 	if (mem_cgroup_disabled())
2386 		return;
2387 
2388 	for (i = 1; i < HPAGE_PMD_NR; i++)
2389 		head[i].mem_cgroup = head->mem_cgroup;
2390 
2391 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2392 		       HPAGE_PMD_NR);
2393 }
2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395 
2396 #ifdef CONFIG_MEMCG_SWAP
2397 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2398 					 bool charge)
2399 {
2400 	int val = (charge) ? 1 : -1;
2401 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2402 }
2403 
2404 /**
2405  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2406  * @entry: swap entry to be moved
2407  * @from:  mem_cgroup which the entry is moved from
2408  * @to:  mem_cgroup which the entry is moved to
2409  *
2410  * It succeeds only when the swap_cgroup's record for this entry is the same
2411  * as the mem_cgroup's id of @from.
2412  *
2413  * Returns 0 on success, -EINVAL on failure.
2414  *
2415  * The caller must have charged to @to, IOW, called page_counter_charge() about
2416  * both res and memsw, and called css_get().
2417  */
2418 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2419 				struct mem_cgroup *from, struct mem_cgroup *to)
2420 {
2421 	unsigned short old_id, new_id;
2422 
2423 	old_id = mem_cgroup_id(from);
2424 	new_id = mem_cgroup_id(to);
2425 
2426 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2427 		mem_cgroup_swap_statistics(from, false);
2428 		mem_cgroup_swap_statistics(to, true);
2429 		return 0;
2430 	}
2431 	return -EINVAL;
2432 }
2433 #else
2434 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2435 				struct mem_cgroup *from, struct mem_cgroup *to)
2436 {
2437 	return -EINVAL;
2438 }
2439 #endif
2440 
2441 static DEFINE_MUTEX(memcg_limit_mutex);
2442 
2443 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2444 				   unsigned long limit)
2445 {
2446 	unsigned long curusage;
2447 	unsigned long oldusage;
2448 	bool enlarge = false;
2449 	int retry_count;
2450 	int ret;
2451 
2452 	/*
2453 	 * For keeping hierarchical_reclaim simple, how long we should retry
2454 	 * is depends on callers. We set our retry-count to be function
2455 	 * of # of children which we should visit in this loop.
2456 	 */
2457 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2458 		      mem_cgroup_count_children(memcg);
2459 
2460 	oldusage = page_counter_read(&memcg->memory);
2461 
2462 	do {
2463 		if (signal_pending(current)) {
2464 			ret = -EINTR;
2465 			break;
2466 		}
2467 
2468 		mutex_lock(&memcg_limit_mutex);
2469 		if (limit > memcg->memsw.limit) {
2470 			mutex_unlock(&memcg_limit_mutex);
2471 			ret = -EINVAL;
2472 			break;
2473 		}
2474 		if (limit > memcg->memory.limit)
2475 			enlarge = true;
2476 		ret = page_counter_limit(&memcg->memory, limit);
2477 		mutex_unlock(&memcg_limit_mutex);
2478 
2479 		if (!ret)
2480 			break;
2481 
2482 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2483 
2484 		curusage = page_counter_read(&memcg->memory);
2485 		/* Usage is reduced ? */
2486 		if (curusage >= oldusage)
2487 			retry_count--;
2488 		else
2489 			oldusage = curusage;
2490 	} while (retry_count);
2491 
2492 	if (!ret && enlarge)
2493 		memcg_oom_recover(memcg);
2494 
2495 	return ret;
2496 }
2497 
2498 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2499 					 unsigned long limit)
2500 {
2501 	unsigned long curusage;
2502 	unsigned long oldusage;
2503 	bool enlarge = false;
2504 	int retry_count;
2505 	int ret;
2506 
2507 	/* see mem_cgroup_resize_res_limit */
2508 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2509 		      mem_cgroup_count_children(memcg);
2510 
2511 	oldusage = page_counter_read(&memcg->memsw);
2512 
2513 	do {
2514 		if (signal_pending(current)) {
2515 			ret = -EINTR;
2516 			break;
2517 		}
2518 
2519 		mutex_lock(&memcg_limit_mutex);
2520 		if (limit < memcg->memory.limit) {
2521 			mutex_unlock(&memcg_limit_mutex);
2522 			ret = -EINVAL;
2523 			break;
2524 		}
2525 		if (limit > memcg->memsw.limit)
2526 			enlarge = true;
2527 		ret = page_counter_limit(&memcg->memsw, limit);
2528 		mutex_unlock(&memcg_limit_mutex);
2529 
2530 		if (!ret)
2531 			break;
2532 
2533 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2534 
2535 		curusage = page_counter_read(&memcg->memsw);
2536 		/* Usage is reduced ? */
2537 		if (curusage >= oldusage)
2538 			retry_count--;
2539 		else
2540 			oldusage = curusage;
2541 	} while (retry_count);
2542 
2543 	if (!ret && enlarge)
2544 		memcg_oom_recover(memcg);
2545 
2546 	return ret;
2547 }
2548 
2549 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2550 					    gfp_t gfp_mask,
2551 					    unsigned long *total_scanned)
2552 {
2553 	unsigned long nr_reclaimed = 0;
2554 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2555 	unsigned long reclaimed;
2556 	int loop = 0;
2557 	struct mem_cgroup_tree_per_node *mctz;
2558 	unsigned long excess;
2559 	unsigned long nr_scanned;
2560 
2561 	if (order > 0)
2562 		return 0;
2563 
2564 	mctz = soft_limit_tree_node(pgdat->node_id);
2565 	/*
2566 	 * This loop can run a while, specially if mem_cgroup's continuously
2567 	 * keep exceeding their soft limit and putting the system under
2568 	 * pressure
2569 	 */
2570 	do {
2571 		if (next_mz)
2572 			mz = next_mz;
2573 		else
2574 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2575 		if (!mz)
2576 			break;
2577 
2578 		nr_scanned = 0;
2579 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2580 						    gfp_mask, &nr_scanned);
2581 		nr_reclaimed += reclaimed;
2582 		*total_scanned += nr_scanned;
2583 		spin_lock_irq(&mctz->lock);
2584 		__mem_cgroup_remove_exceeded(mz, mctz);
2585 
2586 		/*
2587 		 * If we failed to reclaim anything from this memory cgroup
2588 		 * it is time to move on to the next cgroup
2589 		 */
2590 		next_mz = NULL;
2591 		if (!reclaimed)
2592 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2593 
2594 		excess = soft_limit_excess(mz->memcg);
2595 		/*
2596 		 * One school of thought says that we should not add
2597 		 * back the node to the tree if reclaim returns 0.
2598 		 * But our reclaim could return 0, simply because due
2599 		 * to priority we are exposing a smaller subset of
2600 		 * memory to reclaim from. Consider this as a longer
2601 		 * term TODO.
2602 		 */
2603 		/* If excess == 0, no tree ops */
2604 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2605 		spin_unlock_irq(&mctz->lock);
2606 		css_put(&mz->memcg->css);
2607 		loop++;
2608 		/*
2609 		 * Could not reclaim anything and there are no more
2610 		 * mem cgroups to try or we seem to be looping without
2611 		 * reclaiming anything.
2612 		 */
2613 		if (!nr_reclaimed &&
2614 			(next_mz == NULL ||
2615 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2616 			break;
2617 	} while (!nr_reclaimed);
2618 	if (next_mz)
2619 		css_put(&next_mz->memcg->css);
2620 	return nr_reclaimed;
2621 }
2622 
2623 /*
2624  * Test whether @memcg has children, dead or alive.  Note that this
2625  * function doesn't care whether @memcg has use_hierarchy enabled and
2626  * returns %true if there are child csses according to the cgroup
2627  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2628  */
2629 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2630 {
2631 	bool ret;
2632 
2633 	rcu_read_lock();
2634 	ret = css_next_child(NULL, &memcg->css);
2635 	rcu_read_unlock();
2636 	return ret;
2637 }
2638 
2639 /*
2640  * Reclaims as many pages from the given memcg as possible.
2641  *
2642  * Caller is responsible for holding css reference for memcg.
2643  */
2644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645 {
2646 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647 
2648 	/* we call try-to-free pages for make this cgroup empty */
2649 	lru_add_drain_all();
2650 	/* try to free all pages in this cgroup */
2651 	while (nr_retries && page_counter_read(&memcg->memory)) {
2652 		int progress;
2653 
2654 		if (signal_pending(current))
2655 			return -EINTR;
2656 
2657 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 							GFP_KERNEL, true);
2659 		if (!progress) {
2660 			nr_retries--;
2661 			/* maybe some writeback is necessary */
2662 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 		}
2664 
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 					    char *buf, size_t nbytes,
2672 					    loff_t off)
2673 {
2674 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675 
2676 	if (mem_cgroup_is_root(memcg))
2677 		return -EINVAL;
2678 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2679 }
2680 
2681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 				     struct cftype *cft)
2683 {
2684 	return mem_cgroup_from_css(css)->use_hierarchy;
2685 }
2686 
2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 				      struct cftype *cft, u64 val)
2689 {
2690 	int retval = 0;
2691 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693 
2694 	if (memcg->use_hierarchy == val)
2695 		return 0;
2696 
2697 	/*
2698 	 * If parent's use_hierarchy is set, we can't make any modifications
2699 	 * in the child subtrees. If it is unset, then the change can
2700 	 * occur, provided the current cgroup has no children.
2701 	 *
2702 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 	 * set if there are no children.
2704 	 */
2705 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 				(val == 1 || val == 0)) {
2707 		if (!memcg_has_children(memcg))
2708 			memcg->use_hierarchy = val;
2709 		else
2710 			retval = -EBUSY;
2711 	} else
2712 		retval = -EINVAL;
2713 
2714 	return retval;
2715 }
2716 
2717 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718 {
2719 	struct mem_cgroup *iter;
2720 	int i;
2721 
2722 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723 
2724 	for_each_mem_cgroup_tree(iter, memcg) {
2725 		for (i = 0; i < MEMCG_NR_STAT; i++)
2726 			stat[i] += mem_cgroup_read_stat(iter, i);
2727 	}
2728 }
2729 
2730 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731 {
2732 	struct mem_cgroup *iter;
2733 	int i;
2734 
2735 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736 
2737 	for_each_mem_cgroup_tree(iter, memcg) {
2738 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 			events[i] += mem_cgroup_read_events(iter, i);
2740 	}
2741 }
2742 
2743 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744 {
2745 	unsigned long val = 0;
2746 
2747 	if (mem_cgroup_is_root(memcg)) {
2748 		struct mem_cgroup *iter;
2749 
2750 		for_each_mem_cgroup_tree(iter, memcg) {
2751 			val += mem_cgroup_read_stat(iter,
2752 					MEM_CGROUP_STAT_CACHE);
2753 			val += mem_cgroup_read_stat(iter,
2754 					MEM_CGROUP_STAT_RSS);
2755 			if (swap)
2756 				val += mem_cgroup_read_stat(iter,
2757 						MEM_CGROUP_STAT_SWAP);
2758 		}
2759 	} else {
2760 		if (!swap)
2761 			val = page_counter_read(&memcg->memory);
2762 		else
2763 			val = page_counter_read(&memcg->memsw);
2764 	}
2765 	return val;
2766 }
2767 
2768 enum {
2769 	RES_USAGE,
2770 	RES_LIMIT,
2771 	RES_MAX_USAGE,
2772 	RES_FAILCNT,
2773 	RES_SOFT_LIMIT,
2774 };
2775 
2776 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 			       struct cftype *cft)
2778 {
2779 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 	struct page_counter *counter;
2781 
2782 	switch (MEMFILE_TYPE(cft->private)) {
2783 	case _MEM:
2784 		counter = &memcg->memory;
2785 		break;
2786 	case _MEMSWAP:
2787 		counter = &memcg->memsw;
2788 		break;
2789 	case _KMEM:
2790 		counter = &memcg->kmem;
2791 		break;
2792 	case _TCP:
2793 		counter = &memcg->tcpmem;
2794 		break;
2795 	default:
2796 		BUG();
2797 	}
2798 
2799 	switch (MEMFILE_ATTR(cft->private)) {
2800 	case RES_USAGE:
2801 		if (counter == &memcg->memory)
2802 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 		if (counter == &memcg->memsw)
2804 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 	case RES_LIMIT:
2807 		return (u64)counter->limit * PAGE_SIZE;
2808 	case RES_MAX_USAGE:
2809 		return (u64)counter->watermark * PAGE_SIZE;
2810 	case RES_FAILCNT:
2811 		return counter->failcnt;
2812 	case RES_SOFT_LIMIT:
2813 		return (u64)memcg->soft_limit * PAGE_SIZE;
2814 	default:
2815 		BUG();
2816 	}
2817 }
2818 
2819 #ifndef CONFIG_SLOB
2820 static int memcg_online_kmem(struct mem_cgroup *memcg)
2821 {
2822 	int memcg_id;
2823 
2824 	if (cgroup_memory_nokmem)
2825 		return 0;
2826 
2827 	BUG_ON(memcg->kmemcg_id >= 0);
2828 	BUG_ON(memcg->kmem_state);
2829 
2830 	memcg_id = memcg_alloc_cache_id();
2831 	if (memcg_id < 0)
2832 		return memcg_id;
2833 
2834 	static_branch_inc(&memcg_kmem_enabled_key);
2835 	/*
2836 	 * A memory cgroup is considered kmem-online as soon as it gets
2837 	 * kmemcg_id. Setting the id after enabling static branching will
2838 	 * guarantee no one starts accounting before all call sites are
2839 	 * patched.
2840 	 */
2841 	memcg->kmemcg_id = memcg_id;
2842 	memcg->kmem_state = KMEM_ONLINE;
2843 
2844 	return 0;
2845 }
2846 
2847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848 {
2849 	struct cgroup_subsys_state *css;
2850 	struct mem_cgroup *parent, *child;
2851 	int kmemcg_id;
2852 
2853 	if (memcg->kmem_state != KMEM_ONLINE)
2854 		return;
2855 	/*
2856 	 * Clear the online state before clearing memcg_caches array
2857 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 	 * guarantees that no cache will be created for this cgroup
2859 	 * after we are done (see memcg_create_kmem_cache()).
2860 	 */
2861 	memcg->kmem_state = KMEM_ALLOCATED;
2862 
2863 	memcg_deactivate_kmem_caches(memcg);
2864 
2865 	kmemcg_id = memcg->kmemcg_id;
2866 	BUG_ON(kmemcg_id < 0);
2867 
2868 	parent = parent_mem_cgroup(memcg);
2869 	if (!parent)
2870 		parent = root_mem_cgroup;
2871 
2872 	/*
2873 	 * Change kmemcg_id of this cgroup and all its descendants to the
2874 	 * parent's id, and then move all entries from this cgroup's list_lrus
2875 	 * to ones of the parent. After we have finished, all list_lrus
2876 	 * corresponding to this cgroup are guaranteed to remain empty. The
2877 	 * ordering is imposed by list_lru_node->lock taken by
2878 	 * memcg_drain_all_list_lrus().
2879 	 */
2880 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2881 	css_for_each_descendant_pre(css, &memcg->css) {
2882 		child = mem_cgroup_from_css(css);
2883 		BUG_ON(child->kmemcg_id != kmemcg_id);
2884 		child->kmemcg_id = parent->kmemcg_id;
2885 		if (!memcg->use_hierarchy)
2886 			break;
2887 	}
2888 	rcu_read_unlock();
2889 
2890 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891 
2892 	memcg_free_cache_id(kmemcg_id);
2893 }
2894 
2895 static void memcg_free_kmem(struct mem_cgroup *memcg)
2896 {
2897 	/* css_alloc() failed, offlining didn't happen */
2898 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899 		memcg_offline_kmem(memcg);
2900 
2901 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2902 		memcg_destroy_kmem_caches(memcg);
2903 		static_branch_dec(&memcg_kmem_enabled_key);
2904 		WARN_ON(page_counter_read(&memcg->kmem));
2905 	}
2906 }
2907 #else
2908 static int memcg_online_kmem(struct mem_cgroup *memcg)
2909 {
2910 	return 0;
2911 }
2912 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 static void memcg_free_kmem(struct mem_cgroup *memcg)
2916 {
2917 }
2918 #endif /* !CONFIG_SLOB */
2919 
2920 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2921 				   unsigned long limit)
2922 {
2923 	int ret;
2924 
2925 	mutex_lock(&memcg_limit_mutex);
2926 	ret = page_counter_limit(&memcg->kmem, limit);
2927 	mutex_unlock(&memcg_limit_mutex);
2928 	return ret;
2929 }
2930 
2931 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932 {
2933 	int ret;
2934 
2935 	mutex_lock(&memcg_limit_mutex);
2936 
2937 	ret = page_counter_limit(&memcg->tcpmem, limit);
2938 	if (ret)
2939 		goto out;
2940 
2941 	if (!memcg->tcpmem_active) {
2942 		/*
2943 		 * The active flag needs to be written after the static_key
2944 		 * update. This is what guarantees that the socket activation
2945 		 * function is the last one to run. See sock_update_memcg() for
2946 		 * details, and note that we don't mark any socket as belonging
2947 		 * to this memcg until that flag is up.
2948 		 *
2949 		 * We need to do this, because static_keys will span multiple
2950 		 * sites, but we can't control their order. If we mark a socket
2951 		 * as accounted, but the accounting functions are not patched in
2952 		 * yet, we'll lose accounting.
2953 		 *
2954 		 * We never race with the readers in sock_update_memcg(),
2955 		 * because when this value change, the code to process it is not
2956 		 * patched in yet.
2957 		 */
2958 		static_branch_inc(&memcg_sockets_enabled_key);
2959 		memcg->tcpmem_active = true;
2960 	}
2961 out:
2962 	mutex_unlock(&memcg_limit_mutex);
2963 	return ret;
2964 }
2965 
2966 /*
2967  * The user of this function is...
2968  * RES_LIMIT.
2969  */
2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 				char *buf, size_t nbytes, loff_t off)
2972 {
2973 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974 	unsigned long nr_pages;
2975 	int ret;
2976 
2977 	buf = strstrip(buf);
2978 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2979 	if (ret)
2980 		return ret;
2981 
2982 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983 	case RES_LIMIT:
2984 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 			ret = -EINVAL;
2986 			break;
2987 		}
2988 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 		case _MEM:
2990 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991 			break;
2992 		case _MEMSWAP:
2993 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994 			break;
2995 		case _KMEM:
2996 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 			break;
2998 		case _TCP:
2999 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3000 			break;
3001 		}
3002 		break;
3003 	case RES_SOFT_LIMIT:
3004 		memcg->soft_limit = nr_pages;
3005 		ret = 0;
3006 		break;
3007 	}
3008 	return ret ?: nbytes;
3009 }
3010 
3011 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012 				size_t nbytes, loff_t off)
3013 {
3014 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015 	struct page_counter *counter;
3016 
3017 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 	case _MEM:
3019 		counter = &memcg->memory;
3020 		break;
3021 	case _MEMSWAP:
3022 		counter = &memcg->memsw;
3023 		break;
3024 	case _KMEM:
3025 		counter = &memcg->kmem;
3026 		break;
3027 	case _TCP:
3028 		counter = &memcg->tcpmem;
3029 		break;
3030 	default:
3031 		BUG();
3032 	}
3033 
3034 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 	case RES_MAX_USAGE:
3036 		page_counter_reset_watermark(counter);
3037 		break;
3038 	case RES_FAILCNT:
3039 		counter->failcnt = 0;
3040 		break;
3041 	default:
3042 		BUG();
3043 	}
3044 
3045 	return nbytes;
3046 }
3047 
3048 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3049 					struct cftype *cft)
3050 {
3051 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3052 }
3053 
3054 #ifdef CONFIG_MMU
3055 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3056 					struct cftype *cft, u64 val)
3057 {
3058 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059 
3060 	if (val & ~MOVE_MASK)
3061 		return -EINVAL;
3062 
3063 	/*
3064 	 * No kind of locking is needed in here, because ->can_attach() will
3065 	 * check this value once in the beginning of the process, and then carry
3066 	 * on with stale data. This means that changes to this value will only
3067 	 * affect task migrations starting after the change.
3068 	 */
3069 	memcg->move_charge_at_immigrate = val;
3070 	return 0;
3071 }
3072 #else
3073 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3074 					struct cftype *cft, u64 val)
3075 {
3076 	return -ENOSYS;
3077 }
3078 #endif
3079 
3080 #ifdef CONFIG_NUMA
3081 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3082 {
3083 	struct numa_stat {
3084 		const char *name;
3085 		unsigned int lru_mask;
3086 	};
3087 
3088 	static const struct numa_stat stats[] = {
3089 		{ "total", LRU_ALL },
3090 		{ "file", LRU_ALL_FILE },
3091 		{ "anon", LRU_ALL_ANON },
3092 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3093 	};
3094 	const struct numa_stat *stat;
3095 	int nid;
3096 	unsigned long nr;
3097 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098 
3099 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101 		seq_printf(m, "%s=%lu", stat->name, nr);
3102 		for_each_node_state(nid, N_MEMORY) {
3103 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 							  stat->lru_mask);
3105 			seq_printf(m, " N%d=%lu", nid, nr);
3106 		}
3107 		seq_putc(m, '\n');
3108 	}
3109 
3110 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 		struct mem_cgroup *iter;
3112 
3113 		nr = 0;
3114 		for_each_mem_cgroup_tree(iter, memcg)
3115 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117 		for_each_node_state(nid, N_MEMORY) {
3118 			nr = 0;
3119 			for_each_mem_cgroup_tree(iter, memcg)
3120 				nr += mem_cgroup_node_nr_lru_pages(
3121 					iter, nid, stat->lru_mask);
3122 			seq_printf(m, " N%d=%lu", nid, nr);
3123 		}
3124 		seq_putc(m, '\n');
3125 	}
3126 
3127 	return 0;
3128 }
3129 #endif /* CONFIG_NUMA */
3130 
3131 static int memcg_stat_show(struct seq_file *m, void *v)
3132 {
3133 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134 	unsigned long memory, memsw;
3135 	struct mem_cgroup *mi;
3136 	unsigned int i;
3137 
3138 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139 		     MEM_CGROUP_STAT_NSTATS);
3140 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141 		     MEM_CGROUP_EVENTS_NSTATS);
3142 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143 
3144 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3145 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146 			continue;
3147 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3148 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3149 	}
3150 
3151 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153 			   mem_cgroup_read_events(memcg, i));
3154 
3155 	for (i = 0; i < NR_LRU_LISTS; i++)
3156 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158 
3159 	/* Hierarchical information */
3160 	memory = memsw = PAGE_COUNTER_MAX;
3161 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 		memory = min(memory, mi->memory.limit);
3163 		memsw = min(memsw, mi->memsw.limit);
3164 	}
3165 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 		   (u64)memory * PAGE_SIZE);
3167 	if (do_memsw_account())
3168 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 			   (u64)memsw * PAGE_SIZE);
3170 
3171 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 		unsigned long long val = 0;
3173 
3174 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175 			continue;
3176 		for_each_mem_cgroup_tree(mi, memcg)
3177 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3178 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3179 	}
3180 
3181 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182 		unsigned long long val = 0;
3183 
3184 		for_each_mem_cgroup_tree(mi, memcg)
3185 			val += mem_cgroup_read_events(mi, i);
3186 		seq_printf(m, "total_%s %llu\n",
3187 			   mem_cgroup_events_names[i], val);
3188 	}
3189 
3190 	for (i = 0; i < NR_LRU_LISTS; i++) {
3191 		unsigned long long val = 0;
3192 
3193 		for_each_mem_cgroup_tree(mi, memcg)
3194 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196 	}
3197 
3198 #ifdef CONFIG_DEBUG_VM
3199 	{
3200 		pg_data_t *pgdat;
3201 		struct mem_cgroup_per_node *mz;
3202 		struct zone_reclaim_stat *rstat;
3203 		unsigned long recent_rotated[2] = {0, 0};
3204 		unsigned long recent_scanned[2] = {0, 0};
3205 
3206 		for_each_online_pgdat(pgdat) {
3207 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 			rstat = &mz->lruvec.reclaim_stat;
3209 
3210 			recent_rotated[0] += rstat->recent_rotated[0];
3211 			recent_rotated[1] += rstat->recent_rotated[1];
3212 			recent_scanned[0] += rstat->recent_scanned[0];
3213 			recent_scanned[1] += rstat->recent_scanned[1];
3214 		}
3215 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219 	}
3220 #endif
3221 
3222 	return 0;
3223 }
3224 
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 				      struct cftype *cft)
3227 {
3228 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229 
3230 	return mem_cgroup_swappiness(memcg);
3231 }
3232 
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 				       struct cftype *cft, u64 val)
3235 {
3236 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237 
3238 	if (val > 100)
3239 		return -EINVAL;
3240 
3241 	if (css->parent)
3242 		memcg->swappiness = val;
3243 	else
3244 		vm_swappiness = val;
3245 
3246 	return 0;
3247 }
3248 
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251 	struct mem_cgroup_threshold_ary *t;
3252 	unsigned long usage;
3253 	int i;
3254 
3255 	rcu_read_lock();
3256 	if (!swap)
3257 		t = rcu_dereference(memcg->thresholds.primary);
3258 	else
3259 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3260 
3261 	if (!t)
3262 		goto unlock;
3263 
3264 	usage = mem_cgroup_usage(memcg, swap);
3265 
3266 	/*
3267 	 * current_threshold points to threshold just below or equal to usage.
3268 	 * If it's not true, a threshold was crossed after last
3269 	 * call of __mem_cgroup_threshold().
3270 	 */
3271 	i = t->current_threshold;
3272 
3273 	/*
3274 	 * Iterate backward over array of thresholds starting from
3275 	 * current_threshold and check if a threshold is crossed.
3276 	 * If none of thresholds below usage is crossed, we read
3277 	 * only one element of the array here.
3278 	 */
3279 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 		eventfd_signal(t->entries[i].eventfd, 1);
3281 
3282 	/* i = current_threshold + 1 */
3283 	i++;
3284 
3285 	/*
3286 	 * Iterate forward over array of thresholds starting from
3287 	 * current_threshold+1 and check if a threshold is crossed.
3288 	 * If none of thresholds above usage is crossed, we read
3289 	 * only one element of the array here.
3290 	 */
3291 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 		eventfd_signal(t->entries[i].eventfd, 1);
3293 
3294 	/* Update current_threshold */
3295 	t->current_threshold = i - 1;
3296 unlock:
3297 	rcu_read_unlock();
3298 }
3299 
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302 	while (memcg) {
3303 		__mem_cgroup_threshold(memcg, false);
3304 		if (do_memsw_account())
3305 			__mem_cgroup_threshold(memcg, true);
3306 
3307 		memcg = parent_mem_cgroup(memcg);
3308 	}
3309 }
3310 
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313 	const struct mem_cgroup_threshold *_a = a;
3314 	const struct mem_cgroup_threshold *_b = b;
3315 
3316 	if (_a->threshold > _b->threshold)
3317 		return 1;
3318 
3319 	if (_a->threshold < _b->threshold)
3320 		return -1;
3321 
3322 	return 0;
3323 }
3324 
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327 	struct mem_cgroup_eventfd_list *ev;
3328 
3329 	spin_lock(&memcg_oom_lock);
3330 
3331 	list_for_each_entry(ev, &memcg->oom_notify, list)
3332 		eventfd_signal(ev->eventfd, 1);
3333 
3334 	spin_unlock(&memcg_oom_lock);
3335 	return 0;
3336 }
3337 
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340 	struct mem_cgroup *iter;
3341 
3342 	for_each_mem_cgroup_tree(iter, memcg)
3343 		mem_cgroup_oom_notify_cb(iter);
3344 }
3345 
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349 	struct mem_cgroup_thresholds *thresholds;
3350 	struct mem_cgroup_threshold_ary *new;
3351 	unsigned long threshold;
3352 	unsigned long usage;
3353 	int i, size, ret;
3354 
3355 	ret = page_counter_memparse(args, "-1", &threshold);
3356 	if (ret)
3357 		return ret;
3358 
3359 	mutex_lock(&memcg->thresholds_lock);
3360 
3361 	if (type == _MEM) {
3362 		thresholds = &memcg->thresholds;
3363 		usage = mem_cgroup_usage(memcg, false);
3364 	} else if (type == _MEMSWAP) {
3365 		thresholds = &memcg->memsw_thresholds;
3366 		usage = mem_cgroup_usage(memcg, true);
3367 	} else
3368 		BUG();
3369 
3370 	/* Check if a threshold crossed before adding a new one */
3371 	if (thresholds->primary)
3372 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373 
3374 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375 
3376 	/* Allocate memory for new array of thresholds */
3377 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378 			GFP_KERNEL);
3379 	if (!new) {
3380 		ret = -ENOMEM;
3381 		goto unlock;
3382 	}
3383 	new->size = size;
3384 
3385 	/* Copy thresholds (if any) to new array */
3386 	if (thresholds->primary) {
3387 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388 				sizeof(struct mem_cgroup_threshold));
3389 	}
3390 
3391 	/* Add new threshold */
3392 	new->entries[size - 1].eventfd = eventfd;
3393 	new->entries[size - 1].threshold = threshold;
3394 
3395 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3396 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 			compare_thresholds, NULL);
3398 
3399 	/* Find current threshold */
3400 	new->current_threshold = -1;
3401 	for (i = 0; i < size; i++) {
3402 		if (new->entries[i].threshold <= usage) {
3403 			/*
3404 			 * new->current_threshold will not be used until
3405 			 * rcu_assign_pointer(), so it's safe to increment
3406 			 * it here.
3407 			 */
3408 			++new->current_threshold;
3409 		} else
3410 			break;
3411 	}
3412 
3413 	/* Free old spare buffer and save old primary buffer as spare */
3414 	kfree(thresholds->spare);
3415 	thresholds->spare = thresholds->primary;
3416 
3417 	rcu_assign_pointer(thresholds->primary, new);
3418 
3419 	/* To be sure that nobody uses thresholds */
3420 	synchronize_rcu();
3421 
3422 unlock:
3423 	mutex_unlock(&memcg->thresholds_lock);
3424 
3425 	return ret;
3426 }
3427 
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429 	struct eventfd_ctx *eventfd, const char *args)
3430 {
3431 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433 
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 	struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439 
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441 	struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443 	struct mem_cgroup_thresholds *thresholds;
3444 	struct mem_cgroup_threshold_ary *new;
3445 	unsigned long usage;
3446 	int i, j, size;
3447 
3448 	mutex_lock(&memcg->thresholds_lock);
3449 
3450 	if (type == _MEM) {
3451 		thresholds = &memcg->thresholds;
3452 		usage = mem_cgroup_usage(memcg, false);
3453 	} else if (type == _MEMSWAP) {
3454 		thresholds = &memcg->memsw_thresholds;
3455 		usage = mem_cgroup_usage(memcg, true);
3456 	} else
3457 		BUG();
3458 
3459 	if (!thresholds->primary)
3460 		goto unlock;
3461 
3462 	/* Check if a threshold crossed before removing */
3463 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464 
3465 	/* Calculate new number of threshold */
3466 	size = 0;
3467 	for (i = 0; i < thresholds->primary->size; i++) {
3468 		if (thresholds->primary->entries[i].eventfd != eventfd)
3469 			size++;
3470 	}
3471 
3472 	new = thresholds->spare;
3473 
3474 	/* Set thresholds array to NULL if we don't have thresholds */
3475 	if (!size) {
3476 		kfree(new);
3477 		new = NULL;
3478 		goto swap_buffers;
3479 	}
3480 
3481 	new->size = size;
3482 
3483 	/* Copy thresholds and find current threshold */
3484 	new->current_threshold = -1;
3485 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 		if (thresholds->primary->entries[i].eventfd == eventfd)
3487 			continue;
3488 
3489 		new->entries[j] = thresholds->primary->entries[i];
3490 		if (new->entries[j].threshold <= usage) {
3491 			/*
3492 			 * new->current_threshold will not be used
3493 			 * until rcu_assign_pointer(), so it's safe to increment
3494 			 * it here.
3495 			 */
3496 			++new->current_threshold;
3497 		}
3498 		j++;
3499 	}
3500 
3501 swap_buffers:
3502 	/* Swap primary and spare array */
3503 	thresholds->spare = thresholds->primary;
3504 
3505 	rcu_assign_pointer(thresholds->primary, new);
3506 
3507 	/* To be sure that nobody uses thresholds */
3508 	synchronize_rcu();
3509 
3510 	/* If all events are unregistered, free the spare array */
3511 	if (!new) {
3512 		kfree(thresholds->spare);
3513 		thresholds->spare = NULL;
3514 	}
3515 unlock:
3516 	mutex_unlock(&memcg->thresholds_lock);
3517 }
3518 
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 	struct eventfd_ctx *eventfd)
3521 {
3522 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524 
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 	struct eventfd_ctx *eventfd)
3527 {
3528 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530 
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532 	struct eventfd_ctx *eventfd, const char *args)
3533 {
3534 	struct mem_cgroup_eventfd_list *event;
3535 
3536 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3537 	if (!event)
3538 		return -ENOMEM;
3539 
3540 	spin_lock(&memcg_oom_lock);
3541 
3542 	event->eventfd = eventfd;
3543 	list_add(&event->list, &memcg->oom_notify);
3544 
3545 	/* already in OOM ? */
3546 	if (memcg->under_oom)
3547 		eventfd_signal(eventfd, 1);
3548 	spin_unlock(&memcg_oom_lock);
3549 
3550 	return 0;
3551 }
3552 
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554 	struct eventfd_ctx *eventfd)
3555 {
3556 	struct mem_cgroup_eventfd_list *ev, *tmp;
3557 
3558 	spin_lock(&memcg_oom_lock);
3559 
3560 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561 		if (ev->eventfd == eventfd) {
3562 			list_del(&ev->list);
3563 			kfree(ev);
3564 		}
3565 	}
3566 
3567 	spin_unlock(&memcg_oom_lock);
3568 }
3569 
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573 
3574 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 	return 0;
3577 }
3578 
3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3580 	struct cftype *cft, u64 val)
3581 {
3582 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583 
3584 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3585 	if (!css->parent || !((val == 0) || (val == 1)))
3586 		return -EINVAL;
3587 
3588 	memcg->oom_kill_disable = val;
3589 	if (!val)
3590 		memcg_oom_recover(memcg);
3591 
3592 	return 0;
3593 }
3594 
3595 #ifdef CONFIG_CGROUP_WRITEBACK
3596 
3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598 {
3599 	return &memcg->cgwb_list;
3600 }
3601 
3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603 {
3604 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3605 }
3606 
3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608 {
3609 	wb_domain_exit(&memcg->cgwb_domain);
3610 }
3611 
3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613 {
3614 	wb_domain_size_changed(&memcg->cgwb_domain);
3615 }
3616 
3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618 {
3619 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620 
3621 	if (!memcg->css.parent)
3622 		return NULL;
3623 
3624 	return &memcg->cgwb_domain;
3625 }
3626 
3627 /**
3628  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629  * @wb: bdi_writeback in question
3630  * @pfilepages: out parameter for number of file pages
3631  * @pheadroom: out parameter for number of allocatable pages according to memcg
3632  * @pdirty: out parameter for number of dirty pages
3633  * @pwriteback: out parameter for number of pages under writeback
3634  *
3635  * Determine the numbers of file, headroom, dirty, and writeback pages in
3636  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3637  * is a bit more involved.
3638  *
3639  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3640  * headroom is calculated as the lowest headroom of itself and the
3641  * ancestors.  Note that this doesn't consider the actual amount of
3642  * available memory in the system.  The caller should further cap
3643  * *@pheadroom accordingly.
3644  */
3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 			 unsigned long *pheadroom, unsigned long *pdirty,
3647 			 unsigned long *pwriteback)
3648 {
3649 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 	struct mem_cgroup *parent;
3651 
3652 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653 
3654 	/* this should eventually include NR_UNSTABLE_NFS */
3655 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3656 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 						     (1 << LRU_ACTIVE_FILE));
3658 	*pheadroom = PAGE_COUNTER_MAX;
3659 
3660 	while ((parent = parent_mem_cgroup(memcg))) {
3661 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 		unsigned long used = page_counter_read(&memcg->memory);
3663 
3664 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3665 		memcg = parent;
3666 	}
3667 }
3668 
3669 #else	/* CONFIG_CGROUP_WRITEBACK */
3670 
3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672 {
3673 	return 0;
3674 }
3675 
3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677 {
3678 }
3679 
3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681 {
3682 }
3683 
3684 #endif	/* CONFIG_CGROUP_WRITEBACK */
3685 
3686 /*
3687  * DO NOT USE IN NEW FILES.
3688  *
3689  * "cgroup.event_control" implementation.
3690  *
3691  * This is way over-engineered.  It tries to support fully configurable
3692  * events for each user.  Such level of flexibility is completely
3693  * unnecessary especially in the light of the planned unified hierarchy.
3694  *
3695  * Please deprecate this and replace with something simpler if at all
3696  * possible.
3697  */
3698 
3699 /*
3700  * Unregister event and free resources.
3701  *
3702  * Gets called from workqueue.
3703  */
3704 static void memcg_event_remove(struct work_struct *work)
3705 {
3706 	struct mem_cgroup_event *event =
3707 		container_of(work, struct mem_cgroup_event, remove);
3708 	struct mem_cgroup *memcg = event->memcg;
3709 
3710 	remove_wait_queue(event->wqh, &event->wait);
3711 
3712 	event->unregister_event(memcg, event->eventfd);
3713 
3714 	/* Notify userspace the event is going away. */
3715 	eventfd_signal(event->eventfd, 1);
3716 
3717 	eventfd_ctx_put(event->eventfd);
3718 	kfree(event);
3719 	css_put(&memcg->css);
3720 }
3721 
3722 /*
3723  * Gets called on POLLHUP on eventfd when user closes it.
3724  *
3725  * Called with wqh->lock held and interrupts disabled.
3726  */
3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 			    int sync, void *key)
3729 {
3730 	struct mem_cgroup_event *event =
3731 		container_of(wait, struct mem_cgroup_event, wait);
3732 	struct mem_cgroup *memcg = event->memcg;
3733 	unsigned long flags = (unsigned long)key;
3734 
3735 	if (flags & POLLHUP) {
3736 		/*
3737 		 * If the event has been detached at cgroup removal, we
3738 		 * can simply return knowing the other side will cleanup
3739 		 * for us.
3740 		 *
3741 		 * We can't race against event freeing since the other
3742 		 * side will require wqh->lock via remove_wait_queue(),
3743 		 * which we hold.
3744 		 */
3745 		spin_lock(&memcg->event_list_lock);
3746 		if (!list_empty(&event->list)) {
3747 			list_del_init(&event->list);
3748 			/*
3749 			 * We are in atomic context, but cgroup_event_remove()
3750 			 * may sleep, so we have to call it in workqueue.
3751 			 */
3752 			schedule_work(&event->remove);
3753 		}
3754 		spin_unlock(&memcg->event_list_lock);
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 static void memcg_event_ptable_queue_proc(struct file *file,
3761 		wait_queue_head_t *wqh, poll_table *pt)
3762 {
3763 	struct mem_cgroup_event *event =
3764 		container_of(pt, struct mem_cgroup_event, pt);
3765 
3766 	event->wqh = wqh;
3767 	add_wait_queue(wqh, &event->wait);
3768 }
3769 
3770 /*
3771  * DO NOT USE IN NEW FILES.
3772  *
3773  * Parse input and register new cgroup event handler.
3774  *
3775  * Input must be in format '<event_fd> <control_fd> <args>'.
3776  * Interpretation of args is defined by control file implementation.
3777  */
3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 					 char *buf, size_t nbytes, loff_t off)
3780 {
3781 	struct cgroup_subsys_state *css = of_css(of);
3782 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783 	struct mem_cgroup_event *event;
3784 	struct cgroup_subsys_state *cfile_css;
3785 	unsigned int efd, cfd;
3786 	struct fd efile;
3787 	struct fd cfile;
3788 	const char *name;
3789 	char *endp;
3790 	int ret;
3791 
3792 	buf = strstrip(buf);
3793 
3794 	efd = simple_strtoul(buf, &endp, 10);
3795 	if (*endp != ' ')
3796 		return -EINVAL;
3797 	buf = endp + 1;
3798 
3799 	cfd = simple_strtoul(buf, &endp, 10);
3800 	if ((*endp != ' ') && (*endp != '\0'))
3801 		return -EINVAL;
3802 	buf = endp + 1;
3803 
3804 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 	if (!event)
3806 		return -ENOMEM;
3807 
3808 	event->memcg = memcg;
3809 	INIT_LIST_HEAD(&event->list);
3810 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 	INIT_WORK(&event->remove, memcg_event_remove);
3813 
3814 	efile = fdget(efd);
3815 	if (!efile.file) {
3816 		ret = -EBADF;
3817 		goto out_kfree;
3818 	}
3819 
3820 	event->eventfd = eventfd_ctx_fileget(efile.file);
3821 	if (IS_ERR(event->eventfd)) {
3822 		ret = PTR_ERR(event->eventfd);
3823 		goto out_put_efile;
3824 	}
3825 
3826 	cfile = fdget(cfd);
3827 	if (!cfile.file) {
3828 		ret = -EBADF;
3829 		goto out_put_eventfd;
3830 	}
3831 
3832 	/* the process need read permission on control file */
3833 	/* AV: shouldn't we check that it's been opened for read instead? */
3834 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 	if (ret < 0)
3836 		goto out_put_cfile;
3837 
3838 	/*
3839 	 * Determine the event callbacks and set them in @event.  This used
3840 	 * to be done via struct cftype but cgroup core no longer knows
3841 	 * about these events.  The following is crude but the whole thing
3842 	 * is for compatibility anyway.
3843 	 *
3844 	 * DO NOT ADD NEW FILES.
3845 	 */
3846 	name = cfile.file->f_path.dentry->d_name.name;
3847 
3848 	if (!strcmp(name, "memory.usage_in_bytes")) {
3849 		event->register_event = mem_cgroup_usage_register_event;
3850 		event->unregister_event = mem_cgroup_usage_unregister_event;
3851 	} else if (!strcmp(name, "memory.oom_control")) {
3852 		event->register_event = mem_cgroup_oom_register_event;
3853 		event->unregister_event = mem_cgroup_oom_unregister_event;
3854 	} else if (!strcmp(name, "memory.pressure_level")) {
3855 		event->register_event = vmpressure_register_event;
3856 		event->unregister_event = vmpressure_unregister_event;
3857 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3858 		event->register_event = memsw_cgroup_usage_register_event;
3859 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3860 	} else {
3861 		ret = -EINVAL;
3862 		goto out_put_cfile;
3863 	}
3864 
3865 	/*
3866 	 * Verify @cfile should belong to @css.  Also, remaining events are
3867 	 * automatically removed on cgroup destruction but the removal is
3868 	 * asynchronous, so take an extra ref on @css.
3869 	 */
3870 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3871 					       &memory_cgrp_subsys);
3872 	ret = -EINVAL;
3873 	if (IS_ERR(cfile_css))
3874 		goto out_put_cfile;
3875 	if (cfile_css != css) {
3876 		css_put(cfile_css);
3877 		goto out_put_cfile;
3878 	}
3879 
3880 	ret = event->register_event(memcg, event->eventfd, buf);
3881 	if (ret)
3882 		goto out_put_css;
3883 
3884 	efile.file->f_op->poll(efile.file, &event->pt);
3885 
3886 	spin_lock(&memcg->event_list_lock);
3887 	list_add(&event->list, &memcg->event_list);
3888 	spin_unlock(&memcg->event_list_lock);
3889 
3890 	fdput(cfile);
3891 	fdput(efile);
3892 
3893 	return nbytes;
3894 
3895 out_put_css:
3896 	css_put(css);
3897 out_put_cfile:
3898 	fdput(cfile);
3899 out_put_eventfd:
3900 	eventfd_ctx_put(event->eventfd);
3901 out_put_efile:
3902 	fdput(efile);
3903 out_kfree:
3904 	kfree(event);
3905 
3906 	return ret;
3907 }
3908 
3909 static struct cftype mem_cgroup_legacy_files[] = {
3910 	{
3911 		.name = "usage_in_bytes",
3912 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3913 		.read_u64 = mem_cgroup_read_u64,
3914 	},
3915 	{
3916 		.name = "max_usage_in_bytes",
3917 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3918 		.write = mem_cgroup_reset,
3919 		.read_u64 = mem_cgroup_read_u64,
3920 	},
3921 	{
3922 		.name = "limit_in_bytes",
3923 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3924 		.write = mem_cgroup_write,
3925 		.read_u64 = mem_cgroup_read_u64,
3926 	},
3927 	{
3928 		.name = "soft_limit_in_bytes",
3929 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3930 		.write = mem_cgroup_write,
3931 		.read_u64 = mem_cgroup_read_u64,
3932 	},
3933 	{
3934 		.name = "failcnt",
3935 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3936 		.write = mem_cgroup_reset,
3937 		.read_u64 = mem_cgroup_read_u64,
3938 	},
3939 	{
3940 		.name = "stat",
3941 		.seq_show = memcg_stat_show,
3942 	},
3943 	{
3944 		.name = "force_empty",
3945 		.write = mem_cgroup_force_empty_write,
3946 	},
3947 	{
3948 		.name = "use_hierarchy",
3949 		.write_u64 = mem_cgroup_hierarchy_write,
3950 		.read_u64 = mem_cgroup_hierarchy_read,
3951 	},
3952 	{
3953 		.name = "cgroup.event_control",		/* XXX: for compat */
3954 		.write = memcg_write_event_control,
3955 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956 	},
3957 	{
3958 		.name = "swappiness",
3959 		.read_u64 = mem_cgroup_swappiness_read,
3960 		.write_u64 = mem_cgroup_swappiness_write,
3961 	},
3962 	{
3963 		.name = "move_charge_at_immigrate",
3964 		.read_u64 = mem_cgroup_move_charge_read,
3965 		.write_u64 = mem_cgroup_move_charge_write,
3966 	},
3967 	{
3968 		.name = "oom_control",
3969 		.seq_show = mem_cgroup_oom_control_read,
3970 		.write_u64 = mem_cgroup_oom_control_write,
3971 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 	},
3973 	{
3974 		.name = "pressure_level",
3975 	},
3976 #ifdef CONFIG_NUMA
3977 	{
3978 		.name = "numa_stat",
3979 		.seq_show = memcg_numa_stat_show,
3980 	},
3981 #endif
3982 	{
3983 		.name = "kmem.limit_in_bytes",
3984 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3985 		.write = mem_cgroup_write,
3986 		.read_u64 = mem_cgroup_read_u64,
3987 	},
3988 	{
3989 		.name = "kmem.usage_in_bytes",
3990 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3991 		.read_u64 = mem_cgroup_read_u64,
3992 	},
3993 	{
3994 		.name = "kmem.failcnt",
3995 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3996 		.write = mem_cgroup_reset,
3997 		.read_u64 = mem_cgroup_read_u64,
3998 	},
3999 	{
4000 		.name = "kmem.max_usage_in_bytes",
4001 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4002 		.write = mem_cgroup_reset,
4003 		.read_u64 = mem_cgroup_read_u64,
4004 	},
4005 #ifdef CONFIG_SLABINFO
4006 	{
4007 		.name = "kmem.slabinfo",
4008 		.seq_start = slab_start,
4009 		.seq_next = slab_next,
4010 		.seq_stop = slab_stop,
4011 		.seq_show = memcg_slab_show,
4012 	},
4013 #endif
4014 	{
4015 		.name = "kmem.tcp.limit_in_bytes",
4016 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 		.write = mem_cgroup_write,
4018 		.read_u64 = mem_cgroup_read_u64,
4019 	},
4020 	{
4021 		.name = "kmem.tcp.usage_in_bytes",
4022 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 		.read_u64 = mem_cgroup_read_u64,
4024 	},
4025 	{
4026 		.name = "kmem.tcp.failcnt",
4027 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 		.write = mem_cgroup_reset,
4029 		.read_u64 = mem_cgroup_read_u64,
4030 	},
4031 	{
4032 		.name = "kmem.tcp.max_usage_in_bytes",
4033 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 		.write = mem_cgroup_reset,
4035 		.read_u64 = mem_cgroup_read_u64,
4036 	},
4037 	{ },	/* terminate */
4038 };
4039 
4040 /*
4041  * Private memory cgroup IDR
4042  *
4043  * Swap-out records and page cache shadow entries need to store memcg
4044  * references in constrained space, so we maintain an ID space that is
4045  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4046  * memory-controlled cgroups to 64k.
4047  *
4048  * However, there usually are many references to the oflline CSS after
4049  * the cgroup has been destroyed, such as page cache or reclaimable
4050  * slab objects, that don't need to hang on to the ID. We want to keep
4051  * those dead CSS from occupying IDs, or we might quickly exhaust the
4052  * relatively small ID space and prevent the creation of new cgroups
4053  * even when there are much fewer than 64k cgroups - possibly none.
4054  *
4055  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4056  * be freed and recycled when it's no longer needed, which is usually
4057  * when the CSS is offlined.
4058  *
4059  * The only exception to that are records of swapped out tmpfs/shmem
4060  * pages that need to be attributed to live ancestors on swapin. But
4061  * those references are manageable from userspace.
4062  */
4063 
4064 static DEFINE_IDR(mem_cgroup_idr);
4065 
4066 static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4067 {
4068 	atomic_inc(&memcg->id.ref);
4069 }
4070 
4071 static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4072 {
4073 	if (atomic_dec_and_test(&memcg->id.ref)) {
4074 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4075 		memcg->id.id = 0;
4076 
4077 		/* Memcg ID pins CSS */
4078 		css_put(&memcg->css);
4079 	}
4080 }
4081 
4082 /**
4083  * mem_cgroup_from_id - look up a memcg from a memcg id
4084  * @id: the memcg id to look up
4085  *
4086  * Caller must hold rcu_read_lock().
4087  */
4088 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4089 {
4090 	WARN_ON_ONCE(!rcu_read_lock_held());
4091 	return idr_find(&mem_cgroup_idr, id);
4092 }
4093 
4094 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4095 {
4096 	struct mem_cgroup_per_node *pn;
4097 	int tmp = node;
4098 	/*
4099 	 * This routine is called against possible nodes.
4100 	 * But it's BUG to call kmalloc() against offline node.
4101 	 *
4102 	 * TODO: this routine can waste much memory for nodes which will
4103 	 *       never be onlined. It's better to use memory hotplug callback
4104 	 *       function.
4105 	 */
4106 	if (!node_state(node, N_NORMAL_MEMORY))
4107 		tmp = -1;
4108 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4109 	if (!pn)
4110 		return 1;
4111 
4112 	lruvec_init(&pn->lruvec);
4113 	pn->usage_in_excess = 0;
4114 	pn->on_tree = false;
4115 	pn->memcg = memcg;
4116 
4117 	memcg->nodeinfo[node] = pn;
4118 	return 0;
4119 }
4120 
4121 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4122 {
4123 	kfree(memcg->nodeinfo[node]);
4124 }
4125 
4126 static void mem_cgroup_free(struct mem_cgroup *memcg)
4127 {
4128 	int node;
4129 
4130 	memcg_wb_domain_exit(memcg);
4131 	for_each_node(node)
4132 		free_mem_cgroup_per_node_info(memcg, node);
4133 	free_percpu(memcg->stat);
4134 	kfree(memcg);
4135 }
4136 
4137 static struct mem_cgroup *mem_cgroup_alloc(void)
4138 {
4139 	struct mem_cgroup *memcg;
4140 	size_t size;
4141 	int node;
4142 
4143 	size = sizeof(struct mem_cgroup);
4144 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4145 
4146 	memcg = kzalloc(size, GFP_KERNEL);
4147 	if (!memcg)
4148 		return NULL;
4149 
4150 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4151 				 1, MEM_CGROUP_ID_MAX,
4152 				 GFP_KERNEL);
4153 	if (memcg->id.id < 0)
4154 		goto fail;
4155 
4156 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4157 	if (!memcg->stat)
4158 		goto fail;
4159 
4160 	for_each_node(node)
4161 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4162 			goto fail;
4163 
4164 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4165 		goto fail;
4166 
4167 	INIT_WORK(&memcg->high_work, high_work_func);
4168 	memcg->last_scanned_node = MAX_NUMNODES;
4169 	INIT_LIST_HEAD(&memcg->oom_notify);
4170 	mutex_init(&memcg->thresholds_lock);
4171 	spin_lock_init(&memcg->move_lock);
4172 	vmpressure_init(&memcg->vmpressure);
4173 	INIT_LIST_HEAD(&memcg->event_list);
4174 	spin_lock_init(&memcg->event_list_lock);
4175 	memcg->socket_pressure = jiffies;
4176 #ifndef CONFIG_SLOB
4177 	memcg->kmemcg_id = -1;
4178 #endif
4179 #ifdef CONFIG_CGROUP_WRITEBACK
4180 	INIT_LIST_HEAD(&memcg->cgwb_list);
4181 #endif
4182 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4183 	return memcg;
4184 fail:
4185 	if (memcg->id.id > 0)
4186 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4187 	mem_cgroup_free(memcg);
4188 	return NULL;
4189 }
4190 
4191 static struct cgroup_subsys_state * __ref
4192 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4193 {
4194 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4195 	struct mem_cgroup *memcg;
4196 	long error = -ENOMEM;
4197 
4198 	memcg = mem_cgroup_alloc();
4199 	if (!memcg)
4200 		return ERR_PTR(error);
4201 
4202 	memcg->high = PAGE_COUNTER_MAX;
4203 	memcg->soft_limit = PAGE_COUNTER_MAX;
4204 	if (parent) {
4205 		memcg->swappiness = mem_cgroup_swappiness(parent);
4206 		memcg->oom_kill_disable = parent->oom_kill_disable;
4207 	}
4208 	if (parent && parent->use_hierarchy) {
4209 		memcg->use_hierarchy = true;
4210 		page_counter_init(&memcg->memory, &parent->memory);
4211 		page_counter_init(&memcg->swap, &parent->swap);
4212 		page_counter_init(&memcg->memsw, &parent->memsw);
4213 		page_counter_init(&memcg->kmem, &parent->kmem);
4214 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4215 	} else {
4216 		page_counter_init(&memcg->memory, NULL);
4217 		page_counter_init(&memcg->swap, NULL);
4218 		page_counter_init(&memcg->memsw, NULL);
4219 		page_counter_init(&memcg->kmem, NULL);
4220 		page_counter_init(&memcg->tcpmem, NULL);
4221 		/*
4222 		 * Deeper hierachy with use_hierarchy == false doesn't make
4223 		 * much sense so let cgroup subsystem know about this
4224 		 * unfortunate state in our controller.
4225 		 */
4226 		if (parent != root_mem_cgroup)
4227 			memory_cgrp_subsys.broken_hierarchy = true;
4228 	}
4229 
4230 	/* The following stuff does not apply to the root */
4231 	if (!parent) {
4232 		root_mem_cgroup = memcg;
4233 		return &memcg->css;
4234 	}
4235 
4236 	error = memcg_online_kmem(memcg);
4237 	if (error)
4238 		goto fail;
4239 
4240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4241 		static_branch_inc(&memcg_sockets_enabled_key);
4242 
4243 	return &memcg->css;
4244 fail:
4245 	mem_cgroup_free(memcg);
4246 	return ERR_PTR(-ENOMEM);
4247 }
4248 
4249 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4250 {
4251 	/* Online state pins memcg ID, memcg ID pins CSS */
4252 	mem_cgroup_id_get(mem_cgroup_from_css(css));
4253 	css_get(css);
4254 	return 0;
4255 }
4256 
4257 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4258 {
4259 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4260 	struct mem_cgroup_event *event, *tmp;
4261 
4262 	/*
4263 	 * Unregister events and notify userspace.
4264 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4265 	 * directory to avoid race between userspace and kernelspace.
4266 	 */
4267 	spin_lock(&memcg->event_list_lock);
4268 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4269 		list_del_init(&event->list);
4270 		schedule_work(&event->remove);
4271 	}
4272 	spin_unlock(&memcg->event_list_lock);
4273 
4274 	memcg_offline_kmem(memcg);
4275 	wb_memcg_offline(memcg);
4276 
4277 	mem_cgroup_id_put(memcg);
4278 }
4279 
4280 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4281 {
4282 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4283 
4284 	invalidate_reclaim_iterators(memcg);
4285 }
4286 
4287 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4288 {
4289 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4290 
4291 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4292 		static_branch_dec(&memcg_sockets_enabled_key);
4293 
4294 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4295 		static_branch_dec(&memcg_sockets_enabled_key);
4296 
4297 	vmpressure_cleanup(&memcg->vmpressure);
4298 	cancel_work_sync(&memcg->high_work);
4299 	mem_cgroup_remove_from_trees(memcg);
4300 	memcg_free_kmem(memcg);
4301 	mem_cgroup_free(memcg);
4302 }
4303 
4304 /**
4305  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4306  * @css: the target css
4307  *
4308  * Reset the states of the mem_cgroup associated with @css.  This is
4309  * invoked when the userland requests disabling on the default hierarchy
4310  * but the memcg is pinned through dependency.  The memcg should stop
4311  * applying policies and should revert to the vanilla state as it may be
4312  * made visible again.
4313  *
4314  * The current implementation only resets the essential configurations.
4315  * This needs to be expanded to cover all the visible parts.
4316  */
4317 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4318 {
4319 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4320 
4321 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4322 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4323 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4324 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4325 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4326 	memcg->low = 0;
4327 	memcg->high = PAGE_COUNTER_MAX;
4328 	memcg->soft_limit = PAGE_COUNTER_MAX;
4329 	memcg_wb_domain_size_changed(memcg);
4330 }
4331 
4332 #ifdef CONFIG_MMU
4333 /* Handlers for move charge at task migration. */
4334 static int mem_cgroup_do_precharge(unsigned long count)
4335 {
4336 	int ret;
4337 
4338 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4339 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4340 	if (!ret) {
4341 		mc.precharge += count;
4342 		return ret;
4343 	}
4344 
4345 	/* Try charges one by one with reclaim */
4346 	while (count--) {
4347 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4348 		if (ret)
4349 			return ret;
4350 		mc.precharge++;
4351 		cond_resched();
4352 	}
4353 	return 0;
4354 }
4355 
4356 union mc_target {
4357 	struct page	*page;
4358 	swp_entry_t	ent;
4359 };
4360 
4361 enum mc_target_type {
4362 	MC_TARGET_NONE = 0,
4363 	MC_TARGET_PAGE,
4364 	MC_TARGET_SWAP,
4365 };
4366 
4367 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4368 						unsigned long addr, pte_t ptent)
4369 {
4370 	struct page *page = vm_normal_page(vma, addr, ptent);
4371 
4372 	if (!page || !page_mapped(page))
4373 		return NULL;
4374 	if (PageAnon(page)) {
4375 		if (!(mc.flags & MOVE_ANON))
4376 			return NULL;
4377 	} else {
4378 		if (!(mc.flags & MOVE_FILE))
4379 			return NULL;
4380 	}
4381 	if (!get_page_unless_zero(page))
4382 		return NULL;
4383 
4384 	return page;
4385 }
4386 
4387 #ifdef CONFIG_SWAP
4388 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4389 			pte_t ptent, swp_entry_t *entry)
4390 {
4391 	struct page *page = NULL;
4392 	swp_entry_t ent = pte_to_swp_entry(ptent);
4393 
4394 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4395 		return NULL;
4396 	/*
4397 	 * Because lookup_swap_cache() updates some statistics counter,
4398 	 * we call find_get_page() with swapper_space directly.
4399 	 */
4400 	page = find_get_page(swap_address_space(ent), ent.val);
4401 	if (do_memsw_account())
4402 		entry->val = ent.val;
4403 
4404 	return page;
4405 }
4406 #else
4407 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4408 			pte_t ptent, swp_entry_t *entry)
4409 {
4410 	return NULL;
4411 }
4412 #endif
4413 
4414 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4415 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4416 {
4417 	struct page *page = NULL;
4418 	struct address_space *mapping;
4419 	pgoff_t pgoff;
4420 
4421 	if (!vma->vm_file) /* anonymous vma */
4422 		return NULL;
4423 	if (!(mc.flags & MOVE_FILE))
4424 		return NULL;
4425 
4426 	mapping = vma->vm_file->f_mapping;
4427 	pgoff = linear_page_index(vma, addr);
4428 
4429 	/* page is moved even if it's not RSS of this task(page-faulted). */
4430 #ifdef CONFIG_SWAP
4431 	/* shmem/tmpfs may report page out on swap: account for that too. */
4432 	if (shmem_mapping(mapping)) {
4433 		page = find_get_entry(mapping, pgoff);
4434 		if (radix_tree_exceptional_entry(page)) {
4435 			swp_entry_t swp = radix_to_swp_entry(page);
4436 			if (do_memsw_account())
4437 				*entry = swp;
4438 			page = find_get_page(swap_address_space(swp), swp.val);
4439 		}
4440 	} else
4441 		page = find_get_page(mapping, pgoff);
4442 #else
4443 	page = find_get_page(mapping, pgoff);
4444 #endif
4445 	return page;
4446 }
4447 
4448 /**
4449  * mem_cgroup_move_account - move account of the page
4450  * @page: the page
4451  * @compound: charge the page as compound or small page
4452  * @from: mem_cgroup which the page is moved from.
4453  * @to:	mem_cgroup which the page is moved to. @from != @to.
4454  *
4455  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4456  *
4457  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4458  * from old cgroup.
4459  */
4460 static int mem_cgroup_move_account(struct page *page,
4461 				   bool compound,
4462 				   struct mem_cgroup *from,
4463 				   struct mem_cgroup *to)
4464 {
4465 	unsigned long flags;
4466 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4467 	int ret;
4468 	bool anon;
4469 
4470 	VM_BUG_ON(from == to);
4471 	VM_BUG_ON_PAGE(PageLRU(page), page);
4472 	VM_BUG_ON(compound && !PageTransHuge(page));
4473 
4474 	/*
4475 	 * Prevent mem_cgroup_migrate() from looking at
4476 	 * page->mem_cgroup of its source page while we change it.
4477 	 */
4478 	ret = -EBUSY;
4479 	if (!trylock_page(page))
4480 		goto out;
4481 
4482 	ret = -EINVAL;
4483 	if (page->mem_cgroup != from)
4484 		goto out_unlock;
4485 
4486 	anon = PageAnon(page);
4487 
4488 	spin_lock_irqsave(&from->move_lock, flags);
4489 
4490 	if (!anon && page_mapped(page)) {
4491 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4492 			       nr_pages);
4493 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4494 			       nr_pages);
4495 	}
4496 
4497 	/*
4498 	 * move_lock grabbed above and caller set from->moving_account, so
4499 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4500 	 * So mapping should be stable for dirty pages.
4501 	 */
4502 	if (!anon && PageDirty(page)) {
4503 		struct address_space *mapping = page_mapping(page);
4504 
4505 		if (mapping_cap_account_dirty(mapping)) {
4506 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4507 				       nr_pages);
4508 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4509 				       nr_pages);
4510 		}
4511 	}
4512 
4513 	if (PageWriteback(page)) {
4514 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4515 			       nr_pages);
4516 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4517 			       nr_pages);
4518 	}
4519 
4520 	/*
4521 	 * It is safe to change page->mem_cgroup here because the page
4522 	 * is referenced, charged, and isolated - we can't race with
4523 	 * uncharging, charging, migration, or LRU putback.
4524 	 */
4525 
4526 	/* caller should have done css_get */
4527 	page->mem_cgroup = to;
4528 	spin_unlock_irqrestore(&from->move_lock, flags);
4529 
4530 	ret = 0;
4531 
4532 	local_irq_disable();
4533 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4534 	memcg_check_events(to, page);
4535 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4536 	memcg_check_events(from, page);
4537 	local_irq_enable();
4538 out_unlock:
4539 	unlock_page(page);
4540 out:
4541 	return ret;
4542 }
4543 
4544 /**
4545  * get_mctgt_type - get target type of moving charge
4546  * @vma: the vma the pte to be checked belongs
4547  * @addr: the address corresponding to the pte to be checked
4548  * @ptent: the pte to be checked
4549  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4550  *
4551  * Returns
4552  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4553  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4554  *     move charge. if @target is not NULL, the page is stored in target->page
4555  *     with extra refcnt got(Callers should handle it).
4556  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4557  *     target for charge migration. if @target is not NULL, the entry is stored
4558  *     in target->ent.
4559  *
4560  * Called with pte lock held.
4561  */
4562 
4563 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4564 		unsigned long addr, pte_t ptent, union mc_target *target)
4565 {
4566 	struct page *page = NULL;
4567 	enum mc_target_type ret = MC_TARGET_NONE;
4568 	swp_entry_t ent = { .val = 0 };
4569 
4570 	if (pte_present(ptent))
4571 		page = mc_handle_present_pte(vma, addr, ptent);
4572 	else if (is_swap_pte(ptent))
4573 		page = mc_handle_swap_pte(vma, ptent, &ent);
4574 	else if (pte_none(ptent))
4575 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4576 
4577 	if (!page && !ent.val)
4578 		return ret;
4579 	if (page) {
4580 		/*
4581 		 * Do only loose check w/o serialization.
4582 		 * mem_cgroup_move_account() checks the page is valid or
4583 		 * not under LRU exclusion.
4584 		 */
4585 		if (page->mem_cgroup == mc.from) {
4586 			ret = MC_TARGET_PAGE;
4587 			if (target)
4588 				target->page = page;
4589 		}
4590 		if (!ret || !target)
4591 			put_page(page);
4592 	}
4593 	/* There is a swap entry and a page doesn't exist or isn't charged */
4594 	if (ent.val && !ret &&
4595 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4596 		ret = MC_TARGET_SWAP;
4597 		if (target)
4598 			target->ent = ent;
4599 	}
4600 	return ret;
4601 }
4602 
4603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4604 /*
4605  * We don't consider swapping or file mapped pages because THP does not
4606  * support them for now.
4607  * Caller should make sure that pmd_trans_huge(pmd) is true.
4608  */
4609 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4610 		unsigned long addr, pmd_t pmd, union mc_target *target)
4611 {
4612 	struct page *page = NULL;
4613 	enum mc_target_type ret = MC_TARGET_NONE;
4614 
4615 	page = pmd_page(pmd);
4616 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4617 	if (!(mc.flags & MOVE_ANON))
4618 		return ret;
4619 	if (page->mem_cgroup == mc.from) {
4620 		ret = MC_TARGET_PAGE;
4621 		if (target) {
4622 			get_page(page);
4623 			target->page = page;
4624 		}
4625 	}
4626 	return ret;
4627 }
4628 #else
4629 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4630 		unsigned long addr, pmd_t pmd, union mc_target *target)
4631 {
4632 	return MC_TARGET_NONE;
4633 }
4634 #endif
4635 
4636 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4637 					unsigned long addr, unsigned long end,
4638 					struct mm_walk *walk)
4639 {
4640 	struct vm_area_struct *vma = walk->vma;
4641 	pte_t *pte;
4642 	spinlock_t *ptl;
4643 
4644 	ptl = pmd_trans_huge_lock(pmd, vma);
4645 	if (ptl) {
4646 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4647 			mc.precharge += HPAGE_PMD_NR;
4648 		spin_unlock(ptl);
4649 		return 0;
4650 	}
4651 
4652 	if (pmd_trans_unstable(pmd))
4653 		return 0;
4654 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4655 	for (; addr != end; pte++, addr += PAGE_SIZE)
4656 		if (get_mctgt_type(vma, addr, *pte, NULL))
4657 			mc.precharge++;	/* increment precharge temporarily */
4658 	pte_unmap_unlock(pte - 1, ptl);
4659 	cond_resched();
4660 
4661 	return 0;
4662 }
4663 
4664 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4665 {
4666 	unsigned long precharge;
4667 
4668 	struct mm_walk mem_cgroup_count_precharge_walk = {
4669 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4670 		.mm = mm,
4671 	};
4672 	down_read(&mm->mmap_sem);
4673 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4674 	up_read(&mm->mmap_sem);
4675 
4676 	precharge = mc.precharge;
4677 	mc.precharge = 0;
4678 
4679 	return precharge;
4680 }
4681 
4682 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4683 {
4684 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4685 
4686 	VM_BUG_ON(mc.moving_task);
4687 	mc.moving_task = current;
4688 	return mem_cgroup_do_precharge(precharge);
4689 }
4690 
4691 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4692 static void __mem_cgroup_clear_mc(void)
4693 {
4694 	struct mem_cgroup *from = mc.from;
4695 	struct mem_cgroup *to = mc.to;
4696 
4697 	/* we must uncharge all the leftover precharges from mc.to */
4698 	if (mc.precharge) {
4699 		cancel_charge(mc.to, mc.precharge);
4700 		mc.precharge = 0;
4701 	}
4702 	/*
4703 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4704 	 * we must uncharge here.
4705 	 */
4706 	if (mc.moved_charge) {
4707 		cancel_charge(mc.from, mc.moved_charge);
4708 		mc.moved_charge = 0;
4709 	}
4710 	/* we must fixup refcnts and charges */
4711 	if (mc.moved_swap) {
4712 		/* uncharge swap account from the old cgroup */
4713 		if (!mem_cgroup_is_root(mc.from))
4714 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4715 
4716 		/*
4717 		 * we charged both to->memory and to->memsw, so we
4718 		 * should uncharge to->memory.
4719 		 */
4720 		if (!mem_cgroup_is_root(mc.to))
4721 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4722 
4723 		css_put_many(&mc.from->css, mc.moved_swap);
4724 
4725 		/* we've already done css_get(mc.to) */
4726 		mc.moved_swap = 0;
4727 	}
4728 	memcg_oom_recover(from);
4729 	memcg_oom_recover(to);
4730 	wake_up_all(&mc.waitq);
4731 }
4732 
4733 static void mem_cgroup_clear_mc(void)
4734 {
4735 	struct mm_struct *mm = mc.mm;
4736 
4737 	/*
4738 	 * we must clear moving_task before waking up waiters at the end of
4739 	 * task migration.
4740 	 */
4741 	mc.moving_task = NULL;
4742 	__mem_cgroup_clear_mc();
4743 	spin_lock(&mc.lock);
4744 	mc.from = NULL;
4745 	mc.to = NULL;
4746 	mc.mm = NULL;
4747 	spin_unlock(&mc.lock);
4748 
4749 	mmput(mm);
4750 }
4751 
4752 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4753 {
4754 	struct cgroup_subsys_state *css;
4755 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4756 	struct mem_cgroup *from;
4757 	struct task_struct *leader, *p;
4758 	struct mm_struct *mm;
4759 	unsigned long move_flags;
4760 	int ret = 0;
4761 
4762 	/* charge immigration isn't supported on the default hierarchy */
4763 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4764 		return 0;
4765 
4766 	/*
4767 	 * Multi-process migrations only happen on the default hierarchy
4768 	 * where charge immigration is not used.  Perform charge
4769 	 * immigration if @tset contains a leader and whine if there are
4770 	 * multiple.
4771 	 */
4772 	p = NULL;
4773 	cgroup_taskset_for_each_leader(leader, css, tset) {
4774 		WARN_ON_ONCE(p);
4775 		p = leader;
4776 		memcg = mem_cgroup_from_css(css);
4777 	}
4778 	if (!p)
4779 		return 0;
4780 
4781 	/*
4782 	 * We are now commited to this value whatever it is. Changes in this
4783 	 * tunable will only affect upcoming migrations, not the current one.
4784 	 * So we need to save it, and keep it going.
4785 	 */
4786 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4787 	if (!move_flags)
4788 		return 0;
4789 
4790 	from = mem_cgroup_from_task(p);
4791 
4792 	VM_BUG_ON(from == memcg);
4793 
4794 	mm = get_task_mm(p);
4795 	if (!mm)
4796 		return 0;
4797 	/* We move charges only when we move a owner of the mm */
4798 	if (mm->owner == p) {
4799 		VM_BUG_ON(mc.from);
4800 		VM_BUG_ON(mc.to);
4801 		VM_BUG_ON(mc.precharge);
4802 		VM_BUG_ON(mc.moved_charge);
4803 		VM_BUG_ON(mc.moved_swap);
4804 
4805 		spin_lock(&mc.lock);
4806 		mc.mm = mm;
4807 		mc.from = from;
4808 		mc.to = memcg;
4809 		mc.flags = move_flags;
4810 		spin_unlock(&mc.lock);
4811 		/* We set mc.moving_task later */
4812 
4813 		ret = mem_cgroup_precharge_mc(mm);
4814 		if (ret)
4815 			mem_cgroup_clear_mc();
4816 	} else {
4817 		mmput(mm);
4818 	}
4819 	return ret;
4820 }
4821 
4822 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4823 {
4824 	if (mc.to)
4825 		mem_cgroup_clear_mc();
4826 }
4827 
4828 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4829 				unsigned long addr, unsigned long end,
4830 				struct mm_walk *walk)
4831 {
4832 	int ret = 0;
4833 	struct vm_area_struct *vma = walk->vma;
4834 	pte_t *pte;
4835 	spinlock_t *ptl;
4836 	enum mc_target_type target_type;
4837 	union mc_target target;
4838 	struct page *page;
4839 
4840 	ptl = pmd_trans_huge_lock(pmd, vma);
4841 	if (ptl) {
4842 		if (mc.precharge < HPAGE_PMD_NR) {
4843 			spin_unlock(ptl);
4844 			return 0;
4845 		}
4846 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4847 		if (target_type == MC_TARGET_PAGE) {
4848 			page = target.page;
4849 			if (!isolate_lru_page(page)) {
4850 				if (!mem_cgroup_move_account(page, true,
4851 							     mc.from, mc.to)) {
4852 					mc.precharge -= HPAGE_PMD_NR;
4853 					mc.moved_charge += HPAGE_PMD_NR;
4854 				}
4855 				putback_lru_page(page);
4856 			}
4857 			put_page(page);
4858 		}
4859 		spin_unlock(ptl);
4860 		return 0;
4861 	}
4862 
4863 	if (pmd_trans_unstable(pmd))
4864 		return 0;
4865 retry:
4866 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4867 	for (; addr != end; addr += PAGE_SIZE) {
4868 		pte_t ptent = *(pte++);
4869 		swp_entry_t ent;
4870 
4871 		if (!mc.precharge)
4872 			break;
4873 
4874 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4875 		case MC_TARGET_PAGE:
4876 			page = target.page;
4877 			/*
4878 			 * We can have a part of the split pmd here. Moving it
4879 			 * can be done but it would be too convoluted so simply
4880 			 * ignore such a partial THP and keep it in original
4881 			 * memcg. There should be somebody mapping the head.
4882 			 */
4883 			if (PageTransCompound(page))
4884 				goto put;
4885 			if (isolate_lru_page(page))
4886 				goto put;
4887 			if (!mem_cgroup_move_account(page, false,
4888 						mc.from, mc.to)) {
4889 				mc.precharge--;
4890 				/* we uncharge from mc.from later. */
4891 				mc.moved_charge++;
4892 			}
4893 			putback_lru_page(page);
4894 put:			/* get_mctgt_type() gets the page */
4895 			put_page(page);
4896 			break;
4897 		case MC_TARGET_SWAP:
4898 			ent = target.ent;
4899 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4900 				mc.precharge--;
4901 				/* we fixup refcnts and charges later. */
4902 				mc.moved_swap++;
4903 			}
4904 			break;
4905 		default:
4906 			break;
4907 		}
4908 	}
4909 	pte_unmap_unlock(pte - 1, ptl);
4910 	cond_resched();
4911 
4912 	if (addr != end) {
4913 		/*
4914 		 * We have consumed all precharges we got in can_attach().
4915 		 * We try charge one by one, but don't do any additional
4916 		 * charges to mc.to if we have failed in charge once in attach()
4917 		 * phase.
4918 		 */
4919 		ret = mem_cgroup_do_precharge(1);
4920 		if (!ret)
4921 			goto retry;
4922 	}
4923 
4924 	return ret;
4925 }
4926 
4927 static void mem_cgroup_move_charge(void)
4928 {
4929 	struct mm_walk mem_cgroup_move_charge_walk = {
4930 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4931 		.mm = mc.mm,
4932 	};
4933 
4934 	lru_add_drain_all();
4935 	/*
4936 	 * Signal lock_page_memcg() to take the memcg's move_lock
4937 	 * while we're moving its pages to another memcg. Then wait
4938 	 * for already started RCU-only updates to finish.
4939 	 */
4940 	atomic_inc(&mc.from->moving_account);
4941 	synchronize_rcu();
4942 retry:
4943 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4944 		/*
4945 		 * Someone who are holding the mmap_sem might be waiting in
4946 		 * waitq. So we cancel all extra charges, wake up all waiters,
4947 		 * and retry. Because we cancel precharges, we might not be able
4948 		 * to move enough charges, but moving charge is a best-effort
4949 		 * feature anyway, so it wouldn't be a big problem.
4950 		 */
4951 		__mem_cgroup_clear_mc();
4952 		cond_resched();
4953 		goto retry;
4954 	}
4955 	/*
4956 	 * When we have consumed all precharges and failed in doing
4957 	 * additional charge, the page walk just aborts.
4958 	 */
4959 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4960 	up_read(&mc.mm->mmap_sem);
4961 	atomic_dec(&mc.from->moving_account);
4962 }
4963 
4964 static void mem_cgroup_move_task(void)
4965 {
4966 	if (mc.to) {
4967 		mem_cgroup_move_charge();
4968 		mem_cgroup_clear_mc();
4969 	}
4970 }
4971 #else	/* !CONFIG_MMU */
4972 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4973 {
4974 	return 0;
4975 }
4976 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4977 {
4978 }
4979 static void mem_cgroup_move_task(void)
4980 {
4981 }
4982 #endif
4983 
4984 /*
4985  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4986  * to verify whether we're attached to the default hierarchy on each mount
4987  * attempt.
4988  */
4989 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4990 {
4991 	/*
4992 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4993 	 * guarantees that @root doesn't have any children, so turning it
4994 	 * on for the root memcg is enough.
4995 	 */
4996 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4997 		root_mem_cgroup->use_hierarchy = true;
4998 	else
4999 		root_mem_cgroup->use_hierarchy = false;
5000 }
5001 
5002 static u64 memory_current_read(struct cgroup_subsys_state *css,
5003 			       struct cftype *cft)
5004 {
5005 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5006 
5007 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5008 }
5009 
5010 static int memory_low_show(struct seq_file *m, void *v)
5011 {
5012 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5013 	unsigned long low = READ_ONCE(memcg->low);
5014 
5015 	if (low == PAGE_COUNTER_MAX)
5016 		seq_puts(m, "max\n");
5017 	else
5018 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5019 
5020 	return 0;
5021 }
5022 
5023 static ssize_t memory_low_write(struct kernfs_open_file *of,
5024 				char *buf, size_t nbytes, loff_t off)
5025 {
5026 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5027 	unsigned long low;
5028 	int err;
5029 
5030 	buf = strstrip(buf);
5031 	err = page_counter_memparse(buf, "max", &low);
5032 	if (err)
5033 		return err;
5034 
5035 	memcg->low = low;
5036 
5037 	return nbytes;
5038 }
5039 
5040 static int memory_high_show(struct seq_file *m, void *v)
5041 {
5042 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043 	unsigned long high = READ_ONCE(memcg->high);
5044 
5045 	if (high == PAGE_COUNTER_MAX)
5046 		seq_puts(m, "max\n");
5047 	else
5048 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5049 
5050 	return 0;
5051 }
5052 
5053 static ssize_t memory_high_write(struct kernfs_open_file *of,
5054 				 char *buf, size_t nbytes, loff_t off)
5055 {
5056 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5057 	unsigned long nr_pages;
5058 	unsigned long high;
5059 	int err;
5060 
5061 	buf = strstrip(buf);
5062 	err = page_counter_memparse(buf, "max", &high);
5063 	if (err)
5064 		return err;
5065 
5066 	memcg->high = high;
5067 
5068 	nr_pages = page_counter_read(&memcg->memory);
5069 	if (nr_pages > high)
5070 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5071 					     GFP_KERNEL, true);
5072 
5073 	memcg_wb_domain_size_changed(memcg);
5074 	return nbytes;
5075 }
5076 
5077 static int memory_max_show(struct seq_file *m, void *v)
5078 {
5079 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5080 	unsigned long max = READ_ONCE(memcg->memory.limit);
5081 
5082 	if (max == PAGE_COUNTER_MAX)
5083 		seq_puts(m, "max\n");
5084 	else
5085 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5086 
5087 	return 0;
5088 }
5089 
5090 static ssize_t memory_max_write(struct kernfs_open_file *of,
5091 				char *buf, size_t nbytes, loff_t off)
5092 {
5093 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5094 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5095 	bool drained = false;
5096 	unsigned long max;
5097 	int err;
5098 
5099 	buf = strstrip(buf);
5100 	err = page_counter_memparse(buf, "max", &max);
5101 	if (err)
5102 		return err;
5103 
5104 	xchg(&memcg->memory.limit, max);
5105 
5106 	for (;;) {
5107 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5108 
5109 		if (nr_pages <= max)
5110 			break;
5111 
5112 		if (signal_pending(current)) {
5113 			err = -EINTR;
5114 			break;
5115 		}
5116 
5117 		if (!drained) {
5118 			drain_all_stock(memcg);
5119 			drained = true;
5120 			continue;
5121 		}
5122 
5123 		if (nr_reclaims) {
5124 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5125 							  GFP_KERNEL, true))
5126 				nr_reclaims--;
5127 			continue;
5128 		}
5129 
5130 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5131 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5132 			break;
5133 	}
5134 
5135 	memcg_wb_domain_size_changed(memcg);
5136 	return nbytes;
5137 }
5138 
5139 static int memory_events_show(struct seq_file *m, void *v)
5140 {
5141 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5142 
5143 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5144 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5145 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5146 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5147 
5148 	return 0;
5149 }
5150 
5151 static int memory_stat_show(struct seq_file *m, void *v)
5152 {
5153 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5154 	unsigned long stat[MEMCG_NR_STAT];
5155 	unsigned long events[MEMCG_NR_EVENTS];
5156 	int i;
5157 
5158 	/*
5159 	 * Provide statistics on the state of the memory subsystem as
5160 	 * well as cumulative event counters that show past behavior.
5161 	 *
5162 	 * This list is ordered following a combination of these gradients:
5163 	 * 1) generic big picture -> specifics and details
5164 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5165 	 *
5166 	 * Current memory state:
5167 	 */
5168 
5169 	tree_stat(memcg, stat);
5170 	tree_events(memcg, events);
5171 
5172 	seq_printf(m, "anon %llu\n",
5173 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5174 	seq_printf(m, "file %llu\n",
5175 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5176 	seq_printf(m, "kernel_stack %llu\n",
5177 		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5178 	seq_printf(m, "slab %llu\n",
5179 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5180 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5181 	seq_printf(m, "sock %llu\n",
5182 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5183 
5184 	seq_printf(m, "file_mapped %llu\n",
5185 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5186 	seq_printf(m, "file_dirty %llu\n",
5187 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5188 	seq_printf(m, "file_writeback %llu\n",
5189 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5190 
5191 	for (i = 0; i < NR_LRU_LISTS; i++) {
5192 		struct mem_cgroup *mi;
5193 		unsigned long val = 0;
5194 
5195 		for_each_mem_cgroup_tree(mi, memcg)
5196 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5197 		seq_printf(m, "%s %llu\n",
5198 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5199 	}
5200 
5201 	seq_printf(m, "slab_reclaimable %llu\n",
5202 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5203 	seq_printf(m, "slab_unreclaimable %llu\n",
5204 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5205 
5206 	/* Accumulated memory events */
5207 
5208 	seq_printf(m, "pgfault %lu\n",
5209 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5210 	seq_printf(m, "pgmajfault %lu\n",
5211 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5212 
5213 	return 0;
5214 }
5215 
5216 static struct cftype memory_files[] = {
5217 	{
5218 		.name = "current",
5219 		.flags = CFTYPE_NOT_ON_ROOT,
5220 		.read_u64 = memory_current_read,
5221 	},
5222 	{
5223 		.name = "low",
5224 		.flags = CFTYPE_NOT_ON_ROOT,
5225 		.seq_show = memory_low_show,
5226 		.write = memory_low_write,
5227 	},
5228 	{
5229 		.name = "high",
5230 		.flags = CFTYPE_NOT_ON_ROOT,
5231 		.seq_show = memory_high_show,
5232 		.write = memory_high_write,
5233 	},
5234 	{
5235 		.name = "max",
5236 		.flags = CFTYPE_NOT_ON_ROOT,
5237 		.seq_show = memory_max_show,
5238 		.write = memory_max_write,
5239 	},
5240 	{
5241 		.name = "events",
5242 		.flags = CFTYPE_NOT_ON_ROOT,
5243 		.file_offset = offsetof(struct mem_cgroup, events_file),
5244 		.seq_show = memory_events_show,
5245 	},
5246 	{
5247 		.name = "stat",
5248 		.flags = CFTYPE_NOT_ON_ROOT,
5249 		.seq_show = memory_stat_show,
5250 	},
5251 	{ }	/* terminate */
5252 };
5253 
5254 struct cgroup_subsys memory_cgrp_subsys = {
5255 	.css_alloc = mem_cgroup_css_alloc,
5256 	.css_online = mem_cgroup_css_online,
5257 	.css_offline = mem_cgroup_css_offline,
5258 	.css_released = mem_cgroup_css_released,
5259 	.css_free = mem_cgroup_css_free,
5260 	.css_reset = mem_cgroup_css_reset,
5261 	.can_attach = mem_cgroup_can_attach,
5262 	.cancel_attach = mem_cgroup_cancel_attach,
5263 	.post_attach = mem_cgroup_move_task,
5264 	.bind = mem_cgroup_bind,
5265 	.dfl_cftypes = memory_files,
5266 	.legacy_cftypes = mem_cgroup_legacy_files,
5267 	.early_init = 0,
5268 };
5269 
5270 /**
5271  * mem_cgroup_low - check if memory consumption is below the normal range
5272  * @root: the highest ancestor to consider
5273  * @memcg: the memory cgroup to check
5274  *
5275  * Returns %true if memory consumption of @memcg, and that of all
5276  * configurable ancestors up to @root, is below the normal range.
5277  */
5278 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5279 {
5280 	if (mem_cgroup_disabled())
5281 		return false;
5282 
5283 	/*
5284 	 * The toplevel group doesn't have a configurable range, so
5285 	 * it's never low when looked at directly, and it is not
5286 	 * considered an ancestor when assessing the hierarchy.
5287 	 */
5288 
5289 	if (memcg == root_mem_cgroup)
5290 		return false;
5291 
5292 	if (page_counter_read(&memcg->memory) >= memcg->low)
5293 		return false;
5294 
5295 	while (memcg != root) {
5296 		memcg = parent_mem_cgroup(memcg);
5297 
5298 		if (memcg == root_mem_cgroup)
5299 			break;
5300 
5301 		if (page_counter_read(&memcg->memory) >= memcg->low)
5302 			return false;
5303 	}
5304 	return true;
5305 }
5306 
5307 /**
5308  * mem_cgroup_try_charge - try charging a page
5309  * @page: page to charge
5310  * @mm: mm context of the victim
5311  * @gfp_mask: reclaim mode
5312  * @memcgp: charged memcg return
5313  * @compound: charge the page as compound or small page
5314  *
5315  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5316  * pages according to @gfp_mask if necessary.
5317  *
5318  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5319  * Otherwise, an error code is returned.
5320  *
5321  * After page->mapping has been set up, the caller must finalize the
5322  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5323  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5324  */
5325 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5326 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5327 			  bool compound)
5328 {
5329 	struct mem_cgroup *memcg = NULL;
5330 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5331 	int ret = 0;
5332 
5333 	if (mem_cgroup_disabled())
5334 		goto out;
5335 
5336 	if (PageSwapCache(page)) {
5337 		/*
5338 		 * Every swap fault against a single page tries to charge the
5339 		 * page, bail as early as possible.  shmem_unuse() encounters
5340 		 * already charged pages, too.  The USED bit is protected by
5341 		 * the page lock, which serializes swap cache removal, which
5342 		 * in turn serializes uncharging.
5343 		 */
5344 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5345 		if (page->mem_cgroup)
5346 			goto out;
5347 
5348 		if (do_swap_account) {
5349 			swp_entry_t ent = { .val = page_private(page), };
5350 			unsigned short id = lookup_swap_cgroup_id(ent);
5351 
5352 			rcu_read_lock();
5353 			memcg = mem_cgroup_from_id(id);
5354 			if (memcg && !css_tryget_online(&memcg->css))
5355 				memcg = NULL;
5356 			rcu_read_unlock();
5357 		}
5358 	}
5359 
5360 	if (!memcg)
5361 		memcg = get_mem_cgroup_from_mm(mm);
5362 
5363 	ret = try_charge(memcg, gfp_mask, nr_pages);
5364 
5365 	css_put(&memcg->css);
5366 out:
5367 	*memcgp = memcg;
5368 	return ret;
5369 }
5370 
5371 /**
5372  * mem_cgroup_commit_charge - commit a page charge
5373  * @page: page to charge
5374  * @memcg: memcg to charge the page to
5375  * @lrucare: page might be on LRU already
5376  * @compound: charge the page as compound or small page
5377  *
5378  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5379  * after page->mapping has been set up.  This must happen atomically
5380  * as part of the page instantiation, i.e. under the page table lock
5381  * for anonymous pages, under the page lock for page and swap cache.
5382  *
5383  * In addition, the page must not be on the LRU during the commit, to
5384  * prevent racing with task migration.  If it might be, use @lrucare.
5385  *
5386  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5387  */
5388 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5389 			      bool lrucare, bool compound)
5390 {
5391 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5392 
5393 	VM_BUG_ON_PAGE(!page->mapping, page);
5394 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5395 
5396 	if (mem_cgroup_disabled())
5397 		return;
5398 	/*
5399 	 * Swap faults will attempt to charge the same page multiple
5400 	 * times.  But reuse_swap_page() might have removed the page
5401 	 * from swapcache already, so we can't check PageSwapCache().
5402 	 */
5403 	if (!memcg)
5404 		return;
5405 
5406 	commit_charge(page, memcg, lrucare);
5407 
5408 	local_irq_disable();
5409 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5410 	memcg_check_events(memcg, page);
5411 	local_irq_enable();
5412 
5413 	if (do_memsw_account() && PageSwapCache(page)) {
5414 		swp_entry_t entry = { .val = page_private(page) };
5415 		/*
5416 		 * The swap entry might not get freed for a long time,
5417 		 * let's not wait for it.  The page already received a
5418 		 * memory+swap charge, drop the swap entry duplicate.
5419 		 */
5420 		mem_cgroup_uncharge_swap(entry);
5421 	}
5422 }
5423 
5424 /**
5425  * mem_cgroup_cancel_charge - cancel a page charge
5426  * @page: page to charge
5427  * @memcg: memcg to charge the page to
5428  * @compound: charge the page as compound or small page
5429  *
5430  * Cancel a charge transaction started by mem_cgroup_try_charge().
5431  */
5432 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5433 		bool compound)
5434 {
5435 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436 
5437 	if (mem_cgroup_disabled())
5438 		return;
5439 	/*
5440 	 * Swap faults will attempt to charge the same page multiple
5441 	 * times.  But reuse_swap_page() might have removed the page
5442 	 * from swapcache already, so we can't check PageSwapCache().
5443 	 */
5444 	if (!memcg)
5445 		return;
5446 
5447 	cancel_charge(memcg, nr_pages);
5448 }
5449 
5450 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5451 			   unsigned long nr_anon, unsigned long nr_file,
5452 			   unsigned long nr_huge, unsigned long nr_kmem,
5453 			   struct page *dummy_page)
5454 {
5455 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5456 	unsigned long flags;
5457 
5458 	if (!mem_cgroup_is_root(memcg)) {
5459 		page_counter_uncharge(&memcg->memory, nr_pages);
5460 		if (do_memsw_account())
5461 			page_counter_uncharge(&memcg->memsw, nr_pages);
5462 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5463 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5464 		memcg_oom_recover(memcg);
5465 	}
5466 
5467 	local_irq_save(flags);
5468 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5469 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5470 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5471 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5472 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5473 	memcg_check_events(memcg, dummy_page);
5474 	local_irq_restore(flags);
5475 
5476 	if (!mem_cgroup_is_root(memcg))
5477 		css_put_many(&memcg->css, nr_pages);
5478 }
5479 
5480 static void uncharge_list(struct list_head *page_list)
5481 {
5482 	struct mem_cgroup *memcg = NULL;
5483 	unsigned long nr_anon = 0;
5484 	unsigned long nr_file = 0;
5485 	unsigned long nr_huge = 0;
5486 	unsigned long nr_kmem = 0;
5487 	unsigned long pgpgout = 0;
5488 	struct list_head *next;
5489 	struct page *page;
5490 
5491 	/*
5492 	 * Note that the list can be a single page->lru; hence the
5493 	 * do-while loop instead of a simple list_for_each_entry().
5494 	 */
5495 	next = page_list->next;
5496 	do {
5497 		page = list_entry(next, struct page, lru);
5498 		next = page->lru.next;
5499 
5500 		VM_BUG_ON_PAGE(PageLRU(page), page);
5501 		VM_BUG_ON_PAGE(page_count(page), page);
5502 
5503 		if (!page->mem_cgroup)
5504 			continue;
5505 
5506 		/*
5507 		 * Nobody should be changing or seriously looking at
5508 		 * page->mem_cgroup at this point, we have fully
5509 		 * exclusive access to the page.
5510 		 */
5511 
5512 		if (memcg != page->mem_cgroup) {
5513 			if (memcg) {
5514 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5515 					       nr_huge, nr_kmem, page);
5516 				pgpgout = nr_anon = nr_file =
5517 					nr_huge = nr_kmem = 0;
5518 			}
5519 			memcg = page->mem_cgroup;
5520 		}
5521 
5522 		if (!PageKmemcg(page)) {
5523 			unsigned int nr_pages = 1;
5524 
5525 			if (PageTransHuge(page)) {
5526 				nr_pages <<= compound_order(page);
5527 				nr_huge += nr_pages;
5528 			}
5529 			if (PageAnon(page))
5530 				nr_anon += nr_pages;
5531 			else
5532 				nr_file += nr_pages;
5533 			pgpgout++;
5534 		} else
5535 			nr_kmem += 1 << compound_order(page);
5536 
5537 		page->mem_cgroup = NULL;
5538 	} while (next != page_list);
5539 
5540 	if (memcg)
5541 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5542 			       nr_huge, nr_kmem, page);
5543 }
5544 
5545 /**
5546  * mem_cgroup_uncharge - uncharge a page
5547  * @page: page to uncharge
5548  *
5549  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5550  * mem_cgroup_commit_charge().
5551  */
5552 void mem_cgroup_uncharge(struct page *page)
5553 {
5554 	if (mem_cgroup_disabled())
5555 		return;
5556 
5557 	/* Don't touch page->lru of any random page, pre-check: */
5558 	if (!page->mem_cgroup)
5559 		return;
5560 
5561 	INIT_LIST_HEAD(&page->lru);
5562 	uncharge_list(&page->lru);
5563 }
5564 
5565 /**
5566  * mem_cgroup_uncharge_list - uncharge a list of page
5567  * @page_list: list of pages to uncharge
5568  *
5569  * Uncharge a list of pages previously charged with
5570  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5571  */
5572 void mem_cgroup_uncharge_list(struct list_head *page_list)
5573 {
5574 	if (mem_cgroup_disabled())
5575 		return;
5576 
5577 	if (!list_empty(page_list))
5578 		uncharge_list(page_list);
5579 }
5580 
5581 /**
5582  * mem_cgroup_migrate - charge a page's replacement
5583  * @oldpage: currently circulating page
5584  * @newpage: replacement page
5585  *
5586  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5587  * be uncharged upon free.
5588  *
5589  * Both pages must be locked, @newpage->mapping must be set up.
5590  */
5591 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5592 {
5593 	struct mem_cgroup *memcg;
5594 	unsigned int nr_pages;
5595 	bool compound;
5596 	unsigned long flags;
5597 
5598 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5599 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5600 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5601 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5602 		       newpage);
5603 
5604 	if (mem_cgroup_disabled())
5605 		return;
5606 
5607 	/* Page cache replacement: new page already charged? */
5608 	if (newpage->mem_cgroup)
5609 		return;
5610 
5611 	/* Swapcache readahead pages can get replaced before being charged */
5612 	memcg = oldpage->mem_cgroup;
5613 	if (!memcg)
5614 		return;
5615 
5616 	/* Force-charge the new page. The old one will be freed soon */
5617 	compound = PageTransHuge(newpage);
5618 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5619 
5620 	page_counter_charge(&memcg->memory, nr_pages);
5621 	if (do_memsw_account())
5622 		page_counter_charge(&memcg->memsw, nr_pages);
5623 	css_get_many(&memcg->css, nr_pages);
5624 
5625 	commit_charge(newpage, memcg, false);
5626 
5627 	local_irq_save(flags);
5628 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5629 	memcg_check_events(memcg, newpage);
5630 	local_irq_restore(flags);
5631 }
5632 
5633 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5634 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5635 
5636 void sock_update_memcg(struct sock *sk)
5637 {
5638 	struct mem_cgroup *memcg;
5639 
5640 	/* Socket cloning can throw us here with sk_cgrp already
5641 	 * filled. It won't however, necessarily happen from
5642 	 * process context. So the test for root memcg given
5643 	 * the current task's memcg won't help us in this case.
5644 	 *
5645 	 * Respecting the original socket's memcg is a better
5646 	 * decision in this case.
5647 	 */
5648 	if (sk->sk_memcg) {
5649 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5650 		css_get(&sk->sk_memcg->css);
5651 		return;
5652 	}
5653 
5654 	rcu_read_lock();
5655 	memcg = mem_cgroup_from_task(current);
5656 	if (memcg == root_mem_cgroup)
5657 		goto out;
5658 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5659 		goto out;
5660 	if (css_tryget_online(&memcg->css))
5661 		sk->sk_memcg = memcg;
5662 out:
5663 	rcu_read_unlock();
5664 }
5665 EXPORT_SYMBOL(sock_update_memcg);
5666 
5667 void sock_release_memcg(struct sock *sk)
5668 {
5669 	WARN_ON(!sk->sk_memcg);
5670 	css_put(&sk->sk_memcg->css);
5671 }
5672 
5673 /**
5674  * mem_cgroup_charge_skmem - charge socket memory
5675  * @memcg: memcg to charge
5676  * @nr_pages: number of pages to charge
5677  *
5678  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5679  * @memcg's configured limit, %false if the charge had to be forced.
5680  */
5681 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5682 {
5683 	gfp_t gfp_mask = GFP_KERNEL;
5684 
5685 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5686 		struct page_counter *fail;
5687 
5688 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5689 			memcg->tcpmem_pressure = 0;
5690 			return true;
5691 		}
5692 		page_counter_charge(&memcg->tcpmem, nr_pages);
5693 		memcg->tcpmem_pressure = 1;
5694 		return false;
5695 	}
5696 
5697 	/* Don't block in the packet receive path */
5698 	if (in_softirq())
5699 		gfp_mask = GFP_NOWAIT;
5700 
5701 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5702 
5703 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5704 		return true;
5705 
5706 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5707 	return false;
5708 }
5709 
5710 /**
5711  * mem_cgroup_uncharge_skmem - uncharge socket memory
5712  * @memcg - memcg to uncharge
5713  * @nr_pages - number of pages to uncharge
5714  */
5715 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5716 {
5717 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5718 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5719 		return;
5720 	}
5721 
5722 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5723 
5724 	page_counter_uncharge(&memcg->memory, nr_pages);
5725 	css_put_many(&memcg->css, nr_pages);
5726 }
5727 
5728 static int __init cgroup_memory(char *s)
5729 {
5730 	char *token;
5731 
5732 	while ((token = strsep(&s, ",")) != NULL) {
5733 		if (!*token)
5734 			continue;
5735 		if (!strcmp(token, "nosocket"))
5736 			cgroup_memory_nosocket = true;
5737 		if (!strcmp(token, "nokmem"))
5738 			cgroup_memory_nokmem = true;
5739 	}
5740 	return 0;
5741 }
5742 __setup("cgroup.memory=", cgroup_memory);
5743 
5744 /*
5745  * subsys_initcall() for memory controller.
5746  *
5747  * Some parts like hotcpu_notifier() have to be initialized from this context
5748  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5749  * everything that doesn't depend on a specific mem_cgroup structure should
5750  * be initialized from here.
5751  */
5752 static int __init mem_cgroup_init(void)
5753 {
5754 	int cpu, node;
5755 
5756 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5757 
5758 	for_each_possible_cpu(cpu)
5759 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5760 			  drain_local_stock);
5761 
5762 	for_each_node(node) {
5763 		struct mem_cgroup_tree_per_node *rtpn;
5764 
5765 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5766 				    node_online(node) ? node : NUMA_NO_NODE);
5767 
5768 		rtpn->rb_root = RB_ROOT;
5769 		spin_lock_init(&rtpn->lock);
5770 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5771 	}
5772 
5773 	return 0;
5774 }
5775 subsys_initcall(mem_cgroup_init);
5776 
5777 #ifdef CONFIG_MEMCG_SWAP
5778 /**
5779  * mem_cgroup_swapout - transfer a memsw charge to swap
5780  * @page: page whose memsw charge to transfer
5781  * @entry: swap entry to move the charge to
5782  *
5783  * Transfer the memsw charge of @page to @entry.
5784  */
5785 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5786 {
5787 	struct mem_cgroup *memcg;
5788 	unsigned short oldid;
5789 
5790 	VM_BUG_ON_PAGE(PageLRU(page), page);
5791 	VM_BUG_ON_PAGE(page_count(page), page);
5792 
5793 	if (!do_memsw_account())
5794 		return;
5795 
5796 	memcg = page->mem_cgroup;
5797 
5798 	/* Readahead page, never charged */
5799 	if (!memcg)
5800 		return;
5801 
5802 	mem_cgroup_id_get(memcg);
5803 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5804 	VM_BUG_ON_PAGE(oldid, page);
5805 	mem_cgroup_swap_statistics(memcg, true);
5806 
5807 	page->mem_cgroup = NULL;
5808 
5809 	if (!mem_cgroup_is_root(memcg))
5810 		page_counter_uncharge(&memcg->memory, 1);
5811 
5812 	/*
5813 	 * Interrupts should be disabled here because the caller holds the
5814 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5815 	 * important here to have the interrupts disabled because it is the
5816 	 * only synchronisation we have for udpating the per-CPU variables.
5817 	 */
5818 	VM_BUG_ON(!irqs_disabled());
5819 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5820 	memcg_check_events(memcg, page);
5821 
5822 	if (!mem_cgroup_is_root(memcg))
5823 		css_put(&memcg->css);
5824 }
5825 
5826 /*
5827  * mem_cgroup_try_charge_swap - try charging a swap entry
5828  * @page: page being added to swap
5829  * @entry: swap entry to charge
5830  *
5831  * Try to charge @entry to the memcg that @page belongs to.
5832  *
5833  * Returns 0 on success, -ENOMEM on failure.
5834  */
5835 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5836 {
5837 	struct mem_cgroup *memcg;
5838 	struct page_counter *counter;
5839 	unsigned short oldid;
5840 
5841 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5842 		return 0;
5843 
5844 	memcg = page->mem_cgroup;
5845 
5846 	/* Readahead page, never charged */
5847 	if (!memcg)
5848 		return 0;
5849 
5850 	if (!mem_cgroup_is_root(memcg) &&
5851 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5852 		return -ENOMEM;
5853 
5854 	mem_cgroup_id_get(memcg);
5855 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5856 	VM_BUG_ON_PAGE(oldid, page);
5857 	mem_cgroup_swap_statistics(memcg, true);
5858 
5859 	return 0;
5860 }
5861 
5862 /**
5863  * mem_cgroup_uncharge_swap - uncharge a swap entry
5864  * @entry: swap entry to uncharge
5865  *
5866  * Drop the swap charge associated with @entry.
5867  */
5868 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5869 {
5870 	struct mem_cgroup *memcg;
5871 	unsigned short id;
5872 
5873 	if (!do_swap_account)
5874 		return;
5875 
5876 	id = swap_cgroup_record(entry, 0);
5877 	rcu_read_lock();
5878 	memcg = mem_cgroup_from_id(id);
5879 	if (memcg) {
5880 		if (!mem_cgroup_is_root(memcg)) {
5881 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5882 				page_counter_uncharge(&memcg->swap, 1);
5883 			else
5884 				page_counter_uncharge(&memcg->memsw, 1);
5885 		}
5886 		mem_cgroup_swap_statistics(memcg, false);
5887 		mem_cgroup_id_put(memcg);
5888 	}
5889 	rcu_read_unlock();
5890 }
5891 
5892 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5893 {
5894 	long nr_swap_pages = get_nr_swap_pages();
5895 
5896 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5897 		return nr_swap_pages;
5898 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5899 		nr_swap_pages = min_t(long, nr_swap_pages,
5900 				      READ_ONCE(memcg->swap.limit) -
5901 				      page_counter_read(&memcg->swap));
5902 	return nr_swap_pages;
5903 }
5904 
5905 bool mem_cgroup_swap_full(struct page *page)
5906 {
5907 	struct mem_cgroup *memcg;
5908 
5909 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5910 
5911 	if (vm_swap_full())
5912 		return true;
5913 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5914 		return false;
5915 
5916 	memcg = page->mem_cgroup;
5917 	if (!memcg)
5918 		return false;
5919 
5920 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5921 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5922 			return true;
5923 
5924 	return false;
5925 }
5926 
5927 /* for remember boot option*/
5928 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5929 static int really_do_swap_account __initdata = 1;
5930 #else
5931 static int really_do_swap_account __initdata;
5932 #endif
5933 
5934 static int __init enable_swap_account(char *s)
5935 {
5936 	if (!strcmp(s, "1"))
5937 		really_do_swap_account = 1;
5938 	else if (!strcmp(s, "0"))
5939 		really_do_swap_account = 0;
5940 	return 1;
5941 }
5942 __setup("swapaccount=", enable_swap_account);
5943 
5944 static u64 swap_current_read(struct cgroup_subsys_state *css,
5945 			     struct cftype *cft)
5946 {
5947 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5948 
5949 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5950 }
5951 
5952 static int swap_max_show(struct seq_file *m, void *v)
5953 {
5954 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5955 	unsigned long max = READ_ONCE(memcg->swap.limit);
5956 
5957 	if (max == PAGE_COUNTER_MAX)
5958 		seq_puts(m, "max\n");
5959 	else
5960 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5961 
5962 	return 0;
5963 }
5964 
5965 static ssize_t swap_max_write(struct kernfs_open_file *of,
5966 			      char *buf, size_t nbytes, loff_t off)
5967 {
5968 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5969 	unsigned long max;
5970 	int err;
5971 
5972 	buf = strstrip(buf);
5973 	err = page_counter_memparse(buf, "max", &max);
5974 	if (err)
5975 		return err;
5976 
5977 	mutex_lock(&memcg_limit_mutex);
5978 	err = page_counter_limit(&memcg->swap, max);
5979 	mutex_unlock(&memcg_limit_mutex);
5980 	if (err)
5981 		return err;
5982 
5983 	return nbytes;
5984 }
5985 
5986 static struct cftype swap_files[] = {
5987 	{
5988 		.name = "swap.current",
5989 		.flags = CFTYPE_NOT_ON_ROOT,
5990 		.read_u64 = swap_current_read,
5991 	},
5992 	{
5993 		.name = "swap.max",
5994 		.flags = CFTYPE_NOT_ON_ROOT,
5995 		.seq_show = swap_max_show,
5996 		.write = swap_max_write,
5997 	},
5998 	{ }	/* terminate */
5999 };
6000 
6001 static struct cftype memsw_cgroup_files[] = {
6002 	{
6003 		.name = "memsw.usage_in_bytes",
6004 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6005 		.read_u64 = mem_cgroup_read_u64,
6006 	},
6007 	{
6008 		.name = "memsw.max_usage_in_bytes",
6009 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6010 		.write = mem_cgroup_reset,
6011 		.read_u64 = mem_cgroup_read_u64,
6012 	},
6013 	{
6014 		.name = "memsw.limit_in_bytes",
6015 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6016 		.write = mem_cgroup_write,
6017 		.read_u64 = mem_cgroup_read_u64,
6018 	},
6019 	{
6020 		.name = "memsw.failcnt",
6021 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6022 		.write = mem_cgroup_reset,
6023 		.read_u64 = mem_cgroup_read_u64,
6024 	},
6025 	{ },	/* terminate */
6026 };
6027 
6028 static int __init mem_cgroup_swap_init(void)
6029 {
6030 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6031 		do_swap_account = 1;
6032 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6033 					       swap_files));
6034 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6035 						  memsw_cgroup_files));
6036 	}
6037 	return 0;
6038 }
6039 subsys_initcall(mem_cgroup_swap_init);
6040 
6041 #endif /* CONFIG_MEMCG_SWAP */
6042