1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_node { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree { 141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 142 }; 143 144 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 145 146 /* for OOM */ 147 struct mem_cgroup_eventfd_list { 148 struct list_head list; 149 struct eventfd_ctx *eventfd; 150 }; 151 152 /* 153 * cgroup_event represents events which userspace want to receive. 154 */ 155 struct mem_cgroup_event { 156 /* 157 * memcg which the event belongs to. 158 */ 159 struct mem_cgroup *memcg; 160 /* 161 * eventfd to signal userspace about the event. 162 */ 163 struct eventfd_ctx *eventfd; 164 /* 165 * Each of these stored in a list by the cgroup. 166 */ 167 struct list_head list; 168 /* 169 * register_event() callback will be used to add new userspace 170 * waiter for changes related to this event. Use eventfd_signal() 171 * on eventfd to send notification to userspace. 172 */ 173 int (*register_event)(struct mem_cgroup *memcg, 174 struct eventfd_ctx *eventfd, const char *args); 175 /* 176 * unregister_event() callback will be called when userspace closes 177 * the eventfd or on cgroup removing. This callback must be set, 178 * if you want provide notification functionality. 179 */ 180 void (*unregister_event)(struct mem_cgroup *memcg, 181 struct eventfd_ctx *eventfd); 182 /* 183 * All fields below needed to unregister event when 184 * userspace closes eventfd. 185 */ 186 poll_table pt; 187 wait_queue_head_t *wqh; 188 wait_queue_t wait; 189 struct work_struct remove; 190 }; 191 192 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 194 195 /* Stuffs for move charges at task migration. */ 196 /* 197 * Types of charges to be moved. 198 */ 199 #define MOVE_ANON 0x1U 200 #define MOVE_FILE 0x2U 201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 202 203 /* "mc" and its members are protected by cgroup_mutex */ 204 static struct move_charge_struct { 205 spinlock_t lock; /* for from, to */ 206 struct mm_struct *mm; 207 struct mem_cgroup *from; 208 struct mem_cgroup *to; 209 unsigned long flags; 210 unsigned long precharge; 211 unsigned long moved_charge; 212 unsigned long moved_swap; 213 struct task_struct *moving_task; /* a task moving charges */ 214 wait_queue_head_t waitq; /* a waitq for other context */ 215 } mc = { 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 218 }; 219 220 /* 221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 222 * limit reclaim to prevent infinite loops, if they ever occur. 223 */ 224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 226 227 enum charge_type { 228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 229 MEM_CGROUP_CHARGE_TYPE_ANON, 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 232 NR_CHARGE_TYPE, 233 }; 234 235 /* for encoding cft->private value on file */ 236 enum res_type { 237 _MEM, 238 _MEMSWAP, 239 _OOM_TYPE, 240 _KMEM, 241 _TCP, 242 }; 243 244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 246 #define MEMFILE_ATTR(val) ((val) & 0xffff) 247 /* Used for OOM nofiier */ 248 #define OOM_CONTROL (0) 249 250 /* Some nice accessors for the vmpressure. */ 251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 252 { 253 if (!memcg) 254 memcg = root_mem_cgroup; 255 return &memcg->vmpressure; 256 } 257 258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 259 { 260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 261 } 262 263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 264 { 265 return (memcg == root_mem_cgroup); 266 } 267 268 #ifndef CONFIG_SLOB 269 /* 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 271 * The main reason for not using cgroup id for this: 272 * this works better in sparse environments, where we have a lot of memcgs, 273 * but only a few kmem-limited. Or also, if we have, for instance, 200 274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 275 * 200 entry array for that. 276 * 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It 278 * will double each time we have to increase it. 279 */ 280 static DEFINE_IDA(memcg_cache_ida); 281 int memcg_nr_cache_ids; 282 283 /* Protects memcg_nr_cache_ids */ 284 static DECLARE_RWSEM(memcg_cache_ids_sem); 285 286 void memcg_get_cache_ids(void) 287 { 288 down_read(&memcg_cache_ids_sem); 289 } 290 291 void memcg_put_cache_ids(void) 292 { 293 up_read(&memcg_cache_ids_sem); 294 } 295 296 /* 297 * MIN_SIZE is different than 1, because we would like to avoid going through 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited 299 * cgroups is a reasonable guess. In the future, it could be a parameter or 300 * tunable, but that is strictly not necessary. 301 * 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 303 * this constant directly from cgroup, but it is understandable that this is 304 * better kept as an internal representation in cgroup.c. In any case, the 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily 306 * increase ours as well if it increases. 307 */ 308 #define MEMCG_CACHES_MIN_SIZE 4 309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 310 311 /* 312 * A lot of the calls to the cache allocation functions are expected to be 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 314 * conditional to this static branch, we'll have to allow modules that does 315 * kmem_cache_alloc and the such to see this symbol as well 316 */ 317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 318 EXPORT_SYMBOL(memcg_kmem_enabled_key); 319 320 #endif /* !CONFIG_SLOB */ 321 322 /** 323 * mem_cgroup_css_from_page - css of the memcg associated with a page 324 * @page: page of interest 325 * 326 * If memcg is bound to the default hierarchy, css of the memcg associated 327 * with @page is returned. The returned css remains associated with @page 328 * until it is released. 329 * 330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 331 * is returned. 332 */ 333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 334 { 335 struct mem_cgroup *memcg; 336 337 memcg = page->mem_cgroup; 338 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 340 memcg = root_mem_cgroup; 341 342 return &memcg->css; 343 } 344 345 /** 346 * page_cgroup_ino - return inode number of the memcg a page is charged to 347 * @page: the page 348 * 349 * Look up the closest online ancestor of the memory cgroup @page is charged to 350 * and return its inode number or 0 if @page is not charged to any cgroup. It 351 * is safe to call this function without holding a reference to @page. 352 * 353 * Note, this function is inherently racy, because there is nothing to prevent 354 * the cgroup inode from getting torn down and potentially reallocated a moment 355 * after page_cgroup_ino() returns, so it only should be used by callers that 356 * do not care (such as procfs interfaces). 357 */ 358 ino_t page_cgroup_ino(struct page *page) 359 { 360 struct mem_cgroup *memcg; 361 unsigned long ino = 0; 362 363 rcu_read_lock(); 364 memcg = READ_ONCE(page->mem_cgroup); 365 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 366 memcg = parent_mem_cgroup(memcg); 367 if (memcg) 368 ino = cgroup_ino(memcg->css.cgroup); 369 rcu_read_unlock(); 370 return ino; 371 } 372 373 static struct mem_cgroup_per_node * 374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 375 { 376 int nid = page_to_nid(page); 377 378 return memcg->nodeinfo[nid]; 379 } 380 381 static struct mem_cgroup_tree_per_node * 382 soft_limit_tree_node(int nid) 383 { 384 return soft_limit_tree.rb_tree_per_node[nid]; 385 } 386 387 static struct mem_cgroup_tree_per_node * 388 soft_limit_tree_from_page(struct page *page) 389 { 390 int nid = page_to_nid(page); 391 392 return soft_limit_tree.rb_tree_per_node[nid]; 393 } 394 395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 396 struct mem_cgroup_tree_per_node *mctz, 397 unsigned long new_usage_in_excess) 398 { 399 struct rb_node **p = &mctz->rb_root.rb_node; 400 struct rb_node *parent = NULL; 401 struct mem_cgroup_per_node *mz_node; 402 403 if (mz->on_tree) 404 return; 405 406 mz->usage_in_excess = new_usage_in_excess; 407 if (!mz->usage_in_excess) 408 return; 409 while (*p) { 410 parent = *p; 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 412 tree_node); 413 if (mz->usage_in_excess < mz_node->usage_in_excess) 414 p = &(*p)->rb_left; 415 /* 416 * We can't avoid mem cgroups that are over their soft 417 * limit by the same amount 418 */ 419 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 420 p = &(*p)->rb_right; 421 } 422 rb_link_node(&mz->tree_node, parent, p); 423 rb_insert_color(&mz->tree_node, &mctz->rb_root); 424 mz->on_tree = true; 425 } 426 427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 428 struct mem_cgroup_tree_per_node *mctz) 429 { 430 if (!mz->on_tree) 431 return; 432 rb_erase(&mz->tree_node, &mctz->rb_root); 433 mz->on_tree = false; 434 } 435 436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 437 struct mem_cgroup_tree_per_node *mctz) 438 { 439 unsigned long flags; 440 441 spin_lock_irqsave(&mctz->lock, flags); 442 __mem_cgroup_remove_exceeded(mz, mctz); 443 spin_unlock_irqrestore(&mctz->lock, flags); 444 } 445 446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 447 { 448 unsigned long nr_pages = page_counter_read(&memcg->memory); 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 450 unsigned long excess = 0; 451 452 if (nr_pages > soft_limit) 453 excess = nr_pages - soft_limit; 454 455 return excess; 456 } 457 458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 459 { 460 unsigned long excess; 461 struct mem_cgroup_per_node *mz; 462 struct mem_cgroup_tree_per_node *mctz; 463 464 mctz = soft_limit_tree_from_page(page); 465 /* 466 * Necessary to update all ancestors when hierarchy is used. 467 * because their event counter is not touched. 468 */ 469 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 470 mz = mem_cgroup_page_nodeinfo(memcg, page); 471 excess = soft_limit_excess(memcg); 472 /* 473 * We have to update the tree if mz is on RB-tree or 474 * mem is over its softlimit. 475 */ 476 if (excess || mz->on_tree) { 477 unsigned long flags; 478 479 spin_lock_irqsave(&mctz->lock, flags); 480 /* if on-tree, remove it */ 481 if (mz->on_tree) 482 __mem_cgroup_remove_exceeded(mz, mctz); 483 /* 484 * Insert again. mz->usage_in_excess will be updated. 485 * If excess is 0, no tree ops. 486 */ 487 __mem_cgroup_insert_exceeded(mz, mctz, excess); 488 spin_unlock_irqrestore(&mctz->lock, flags); 489 } 490 } 491 } 492 493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 494 { 495 struct mem_cgroup_tree_per_node *mctz; 496 struct mem_cgroup_per_node *mz; 497 int nid; 498 499 for_each_node(nid) { 500 mz = mem_cgroup_nodeinfo(memcg, nid); 501 mctz = soft_limit_tree_node(nid); 502 mem_cgroup_remove_exceeded(mz, mctz); 503 } 504 } 505 506 static struct mem_cgroup_per_node * 507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 508 { 509 struct rb_node *rightmost = NULL; 510 struct mem_cgroup_per_node *mz; 511 512 retry: 513 mz = NULL; 514 rightmost = rb_last(&mctz->rb_root); 515 if (!rightmost) 516 goto done; /* Nothing to reclaim from */ 517 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node); 519 /* 520 * Remove the node now but someone else can add it back, 521 * we will to add it back at the end of reclaim to its correct 522 * position in the tree. 523 */ 524 __mem_cgroup_remove_exceeded(mz, mctz); 525 if (!soft_limit_excess(mz->memcg) || 526 !css_tryget_online(&mz->memcg->css)) 527 goto retry; 528 done: 529 return mz; 530 } 531 532 static struct mem_cgroup_per_node * 533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 534 { 535 struct mem_cgroup_per_node *mz; 536 537 spin_lock_irq(&mctz->lock); 538 mz = __mem_cgroup_largest_soft_limit_node(mctz); 539 spin_unlock_irq(&mctz->lock); 540 return mz; 541 } 542 543 /* 544 * Return page count for single (non recursive) @memcg. 545 * 546 * Implementation Note: reading percpu statistics for memcg. 547 * 548 * Both of vmstat[] and percpu_counter has threshold and do periodic 549 * synchronization to implement "quick" read. There are trade-off between 550 * reading cost and precision of value. Then, we may have a chance to implement 551 * a periodic synchronization of counter in memcg's counter. 552 * 553 * But this _read() function is used for user interface now. The user accounts 554 * memory usage by memory cgroup and he _always_ requires exact value because 555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 556 * have to visit all online cpus and make sum. So, for now, unnecessary 557 * synchronization is not implemented. (just implemented for cpu hotplug) 558 * 559 * If there are kernel internal actions which can make use of some not-exact 560 * value, and reading all cpu value can be performance bottleneck in some 561 * common workload, threshold and synchronization as vmstat[] should be 562 * implemented. 563 */ 564 static unsigned long 565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 566 { 567 long val = 0; 568 int cpu; 569 570 /* Per-cpu values can be negative, use a signed accumulator */ 571 for_each_possible_cpu(cpu) 572 val += per_cpu(memcg->stat->count[idx], cpu); 573 /* 574 * Summing races with updates, so val may be negative. Avoid exposing 575 * transient negative values. 576 */ 577 if (val < 0) 578 val = 0; 579 return val; 580 } 581 582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 583 enum mem_cgroup_events_index idx) 584 { 585 unsigned long val = 0; 586 int cpu; 587 588 for_each_possible_cpu(cpu) 589 val += per_cpu(memcg->stat->events[idx], cpu); 590 return val; 591 } 592 593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 594 struct page *page, 595 bool compound, int nr_pages) 596 { 597 /* 598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 599 * counted as CACHE even if it's on ANON LRU. 600 */ 601 if (PageAnon(page)) 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 603 nr_pages); 604 else 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 606 nr_pages); 607 608 if (compound) { 609 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 611 nr_pages); 612 } 613 614 /* pagein of a big page is an event. So, ignore page size */ 615 if (nr_pages > 0) 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 617 else { 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 619 nr_pages = -nr_pages; /* for event */ 620 } 621 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 623 } 624 625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 626 int nid, unsigned int lru_mask) 627 { 628 unsigned long nr = 0; 629 struct mem_cgroup_per_node *mz; 630 enum lru_list lru; 631 632 VM_BUG_ON((unsigned)nid >= nr_node_ids); 633 634 for_each_lru(lru) { 635 if (!(BIT(lru) & lru_mask)) 636 continue; 637 mz = mem_cgroup_nodeinfo(memcg, nid); 638 nr += mz->lru_size[lru]; 639 } 640 return nr; 641 } 642 643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 644 unsigned int lru_mask) 645 { 646 unsigned long nr = 0; 647 int nid; 648 649 for_each_node_state(nid, N_MEMORY) 650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 651 return nr; 652 } 653 654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 655 enum mem_cgroup_events_target target) 656 { 657 unsigned long val, next; 658 659 val = __this_cpu_read(memcg->stat->nr_page_events); 660 next = __this_cpu_read(memcg->stat->targets[target]); 661 /* from time_after() in jiffies.h */ 662 if ((long)next - (long)val < 0) { 663 switch (target) { 664 case MEM_CGROUP_TARGET_THRESH: 665 next = val + THRESHOLDS_EVENTS_TARGET; 666 break; 667 case MEM_CGROUP_TARGET_SOFTLIMIT: 668 next = val + SOFTLIMIT_EVENTS_TARGET; 669 break; 670 case MEM_CGROUP_TARGET_NUMAINFO: 671 next = val + NUMAINFO_EVENTS_TARGET; 672 break; 673 default: 674 break; 675 } 676 __this_cpu_write(memcg->stat->targets[target], next); 677 return true; 678 } 679 return false; 680 } 681 682 /* 683 * Check events in order. 684 * 685 */ 686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 687 { 688 /* threshold event is triggered in finer grain than soft limit */ 689 if (unlikely(mem_cgroup_event_ratelimit(memcg, 690 MEM_CGROUP_TARGET_THRESH))) { 691 bool do_softlimit; 692 bool do_numainfo __maybe_unused; 693 694 do_softlimit = mem_cgroup_event_ratelimit(memcg, 695 MEM_CGROUP_TARGET_SOFTLIMIT); 696 #if MAX_NUMNODES > 1 697 do_numainfo = mem_cgroup_event_ratelimit(memcg, 698 MEM_CGROUP_TARGET_NUMAINFO); 699 #endif 700 mem_cgroup_threshold(memcg); 701 if (unlikely(do_softlimit)) 702 mem_cgroup_update_tree(memcg, page); 703 #if MAX_NUMNODES > 1 704 if (unlikely(do_numainfo)) 705 atomic_inc(&memcg->numainfo_events); 706 #endif 707 } 708 } 709 710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 711 { 712 /* 713 * mm_update_next_owner() may clear mm->owner to NULL 714 * if it races with swapoff, page migration, etc. 715 * So this can be called with p == NULL. 716 */ 717 if (unlikely(!p)) 718 return NULL; 719 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 721 } 722 EXPORT_SYMBOL(mem_cgroup_from_task); 723 724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 725 { 726 struct mem_cgroup *memcg = NULL; 727 728 rcu_read_lock(); 729 do { 730 /* 731 * Page cache insertions can happen withou an 732 * actual mm context, e.g. during disk probing 733 * on boot, loopback IO, acct() writes etc. 734 */ 735 if (unlikely(!mm)) 736 memcg = root_mem_cgroup; 737 else { 738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 739 if (unlikely(!memcg)) 740 memcg = root_mem_cgroup; 741 } 742 } while (!css_tryget_online(&memcg->css)); 743 rcu_read_unlock(); 744 return memcg; 745 } 746 747 /** 748 * mem_cgroup_iter - iterate over memory cgroup hierarchy 749 * @root: hierarchy root 750 * @prev: previously returned memcg, NULL on first invocation 751 * @reclaim: cookie for shared reclaim walks, NULL for full walks 752 * 753 * Returns references to children of the hierarchy below @root, or 754 * @root itself, or %NULL after a full round-trip. 755 * 756 * Caller must pass the return value in @prev on subsequent 757 * invocations for reference counting, or use mem_cgroup_iter_break() 758 * to cancel a hierarchy walk before the round-trip is complete. 759 * 760 * Reclaimers can specify a zone and a priority level in @reclaim to 761 * divide up the memcgs in the hierarchy among all concurrent 762 * reclaimers operating on the same zone and priority. 763 */ 764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 765 struct mem_cgroup *prev, 766 struct mem_cgroup_reclaim_cookie *reclaim) 767 { 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 769 struct cgroup_subsys_state *css = NULL; 770 struct mem_cgroup *memcg = NULL; 771 struct mem_cgroup *pos = NULL; 772 773 if (mem_cgroup_disabled()) 774 return NULL; 775 776 if (!root) 777 root = root_mem_cgroup; 778 779 if (prev && !reclaim) 780 pos = prev; 781 782 if (!root->use_hierarchy && root != root_mem_cgroup) { 783 if (prev) 784 goto out; 785 return root; 786 } 787 788 rcu_read_lock(); 789 790 if (reclaim) { 791 struct mem_cgroup_per_node *mz; 792 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 794 iter = &mz->iter[reclaim->priority]; 795 796 if (prev && reclaim->generation != iter->generation) 797 goto out_unlock; 798 799 while (1) { 800 pos = READ_ONCE(iter->position); 801 if (!pos || css_tryget(&pos->css)) 802 break; 803 /* 804 * css reference reached zero, so iter->position will 805 * be cleared by ->css_released. However, we should not 806 * rely on this happening soon, because ->css_released 807 * is called from a work queue, and by busy-waiting we 808 * might block it. So we clear iter->position right 809 * away. 810 */ 811 (void)cmpxchg(&iter->position, pos, NULL); 812 } 813 } 814 815 if (pos) 816 css = &pos->css; 817 818 for (;;) { 819 css = css_next_descendant_pre(css, &root->css); 820 if (!css) { 821 /* 822 * Reclaimers share the hierarchy walk, and a 823 * new one might jump in right at the end of 824 * the hierarchy - make sure they see at least 825 * one group and restart from the beginning. 826 */ 827 if (!prev) 828 continue; 829 break; 830 } 831 832 /* 833 * Verify the css and acquire a reference. The root 834 * is provided by the caller, so we know it's alive 835 * and kicking, and don't take an extra reference. 836 */ 837 memcg = mem_cgroup_from_css(css); 838 839 if (css == &root->css) 840 break; 841 842 if (css_tryget(css)) 843 break; 844 845 memcg = NULL; 846 } 847 848 if (reclaim) { 849 /* 850 * The position could have already been updated by a competing 851 * thread, so check that the value hasn't changed since we read 852 * it to avoid reclaiming from the same cgroup twice. 853 */ 854 (void)cmpxchg(&iter->position, pos, memcg); 855 856 if (pos) 857 css_put(&pos->css); 858 859 if (!memcg) 860 iter->generation++; 861 else if (!prev) 862 reclaim->generation = iter->generation; 863 } 864 865 out_unlock: 866 rcu_read_unlock(); 867 out: 868 if (prev && prev != root) 869 css_put(&prev->css); 870 871 return memcg; 872 } 873 874 /** 875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 876 * @root: hierarchy root 877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 878 */ 879 void mem_cgroup_iter_break(struct mem_cgroup *root, 880 struct mem_cgroup *prev) 881 { 882 if (!root) 883 root = root_mem_cgroup; 884 if (prev && prev != root) 885 css_put(&prev->css); 886 } 887 888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 889 { 890 struct mem_cgroup *memcg = dead_memcg; 891 struct mem_cgroup_reclaim_iter *iter; 892 struct mem_cgroup_per_node *mz; 893 int nid; 894 int i; 895 896 while ((memcg = parent_mem_cgroup(memcg))) { 897 for_each_node(nid) { 898 mz = mem_cgroup_nodeinfo(memcg, nid); 899 for (i = 0; i <= DEF_PRIORITY; i++) { 900 iter = &mz->iter[i]; 901 cmpxchg(&iter->position, 902 dead_memcg, NULL); 903 } 904 } 905 } 906 } 907 908 /* 909 * Iteration constructs for visiting all cgroups (under a tree). If 910 * loops are exited prematurely (break), mem_cgroup_iter_break() must 911 * be used for reference counting. 912 */ 913 #define for_each_mem_cgroup_tree(iter, root) \ 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 915 iter != NULL; \ 916 iter = mem_cgroup_iter(root, iter, NULL)) 917 918 #define for_each_mem_cgroup(iter) \ 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 920 iter != NULL; \ 921 iter = mem_cgroup_iter(NULL, iter, NULL)) 922 923 /** 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 925 * @page: the page 926 * @zone: zone of the page 927 * 928 * This function is only safe when following the LRU page isolation 929 * and putback protocol: the LRU lock must be held, and the page must 930 * either be PageLRU() or the caller must have isolated/allocated it. 931 */ 932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 933 { 934 struct mem_cgroup_per_node *mz; 935 struct mem_cgroup *memcg; 936 struct lruvec *lruvec; 937 938 if (mem_cgroup_disabled()) { 939 lruvec = &pgdat->lruvec; 940 goto out; 941 } 942 943 memcg = page->mem_cgroup; 944 /* 945 * Swapcache readahead pages are added to the LRU - and 946 * possibly migrated - before they are charged. 947 */ 948 if (!memcg) 949 memcg = root_mem_cgroup; 950 951 mz = mem_cgroup_page_nodeinfo(memcg, page); 952 lruvec = &mz->lruvec; 953 out: 954 /* 955 * Since a node can be onlined after the mem_cgroup was created, 956 * we have to be prepared to initialize lruvec->zone here; 957 * and if offlined then reonlined, we need to reinitialize it. 958 */ 959 if (unlikely(lruvec->pgdat != pgdat)) 960 lruvec->pgdat = pgdat; 961 return lruvec; 962 } 963 964 /** 965 * mem_cgroup_update_lru_size - account for adding or removing an lru page 966 * @lruvec: mem_cgroup per zone lru vector 967 * @lru: index of lru list the page is sitting on 968 * @zid: Zone ID of the zone pages have been added to 969 * @nr_pages: positive when adding or negative when removing 970 * 971 * This function must be called under lru_lock, just before a page is added 972 * to or just after a page is removed from an lru list (that ordering being 973 * so as to allow it to check that lru_size 0 is consistent with list_empty). 974 */ 975 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 976 enum zone_type zid, int nr_pages) 977 { 978 struct mem_cgroup_per_node *mz; 979 unsigned long *lru_size; 980 long size; 981 bool empty; 982 983 __update_lru_size(lruvec, lru, zid, nr_pages); 984 985 if (mem_cgroup_disabled()) 986 return; 987 988 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 989 lru_size = mz->lru_size + lru; 990 empty = list_empty(lruvec->lists + lru); 991 992 if (nr_pages < 0) 993 *lru_size += nr_pages; 994 995 size = *lru_size; 996 if (WARN_ONCE(size < 0 || empty != !size, 997 "%s(%p, %d, %d): lru_size %ld but %sempty\n", 998 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { 999 VM_BUG_ON(1); 1000 *lru_size = 0; 1001 } 1002 1003 if (nr_pages > 0) 1004 *lru_size += nr_pages; 1005 } 1006 1007 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1008 { 1009 struct mem_cgroup *task_memcg; 1010 struct task_struct *p; 1011 bool ret; 1012 1013 p = find_lock_task_mm(task); 1014 if (p) { 1015 task_memcg = get_mem_cgroup_from_mm(p->mm); 1016 task_unlock(p); 1017 } else { 1018 /* 1019 * All threads may have already detached their mm's, but the oom 1020 * killer still needs to detect if they have already been oom 1021 * killed to prevent needlessly killing additional tasks. 1022 */ 1023 rcu_read_lock(); 1024 task_memcg = mem_cgroup_from_task(task); 1025 css_get(&task_memcg->css); 1026 rcu_read_unlock(); 1027 } 1028 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1029 css_put(&task_memcg->css); 1030 return ret; 1031 } 1032 1033 /** 1034 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1035 * @memcg: the memory cgroup 1036 * 1037 * Returns the maximum amount of memory @mem can be charged with, in 1038 * pages. 1039 */ 1040 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1041 { 1042 unsigned long margin = 0; 1043 unsigned long count; 1044 unsigned long limit; 1045 1046 count = page_counter_read(&memcg->memory); 1047 limit = READ_ONCE(memcg->memory.limit); 1048 if (count < limit) 1049 margin = limit - count; 1050 1051 if (do_memsw_account()) { 1052 count = page_counter_read(&memcg->memsw); 1053 limit = READ_ONCE(memcg->memsw.limit); 1054 if (count <= limit) 1055 margin = min(margin, limit - count); 1056 else 1057 margin = 0; 1058 } 1059 1060 return margin; 1061 } 1062 1063 /* 1064 * A routine for checking "mem" is under move_account() or not. 1065 * 1066 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1067 * moving cgroups. This is for waiting at high-memory pressure 1068 * caused by "move". 1069 */ 1070 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1071 { 1072 struct mem_cgroup *from; 1073 struct mem_cgroup *to; 1074 bool ret = false; 1075 /* 1076 * Unlike task_move routines, we access mc.to, mc.from not under 1077 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1078 */ 1079 spin_lock(&mc.lock); 1080 from = mc.from; 1081 to = mc.to; 1082 if (!from) 1083 goto unlock; 1084 1085 ret = mem_cgroup_is_descendant(from, memcg) || 1086 mem_cgroup_is_descendant(to, memcg); 1087 unlock: 1088 spin_unlock(&mc.lock); 1089 return ret; 1090 } 1091 1092 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1093 { 1094 if (mc.moving_task && current != mc.moving_task) { 1095 if (mem_cgroup_under_move(memcg)) { 1096 DEFINE_WAIT(wait); 1097 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1098 /* moving charge context might have finished. */ 1099 if (mc.moving_task) 1100 schedule(); 1101 finish_wait(&mc.waitq, &wait); 1102 return true; 1103 } 1104 } 1105 return false; 1106 } 1107 1108 #define K(x) ((x) << (PAGE_SHIFT-10)) 1109 /** 1110 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1111 * @memcg: The memory cgroup that went over limit 1112 * @p: Task that is going to be killed 1113 * 1114 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1115 * enabled 1116 */ 1117 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1118 { 1119 struct mem_cgroup *iter; 1120 unsigned int i; 1121 1122 rcu_read_lock(); 1123 1124 if (p) { 1125 pr_info("Task in "); 1126 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1127 pr_cont(" killed as a result of limit of "); 1128 } else { 1129 pr_info("Memory limit reached of cgroup "); 1130 } 1131 1132 pr_cont_cgroup_path(memcg->css.cgroup); 1133 pr_cont("\n"); 1134 1135 rcu_read_unlock(); 1136 1137 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1138 K((u64)page_counter_read(&memcg->memory)), 1139 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1140 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1141 K((u64)page_counter_read(&memcg->memsw)), 1142 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1143 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1144 K((u64)page_counter_read(&memcg->kmem)), 1145 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1146 1147 for_each_mem_cgroup_tree(iter, memcg) { 1148 pr_info("Memory cgroup stats for "); 1149 pr_cont_cgroup_path(iter->css.cgroup); 1150 pr_cont(":"); 1151 1152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1153 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1154 continue; 1155 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1156 K(mem_cgroup_read_stat(iter, i))); 1157 } 1158 1159 for (i = 0; i < NR_LRU_LISTS; i++) 1160 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1161 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1162 1163 pr_cont("\n"); 1164 } 1165 } 1166 1167 /* 1168 * This function returns the number of memcg under hierarchy tree. Returns 1169 * 1(self count) if no children. 1170 */ 1171 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1172 { 1173 int num = 0; 1174 struct mem_cgroup *iter; 1175 1176 for_each_mem_cgroup_tree(iter, memcg) 1177 num++; 1178 return num; 1179 } 1180 1181 /* 1182 * Return the memory (and swap, if configured) limit for a memcg. 1183 */ 1184 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1185 { 1186 unsigned long limit; 1187 1188 limit = memcg->memory.limit; 1189 if (mem_cgroup_swappiness(memcg)) { 1190 unsigned long memsw_limit; 1191 unsigned long swap_limit; 1192 1193 memsw_limit = memcg->memsw.limit; 1194 swap_limit = memcg->swap.limit; 1195 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1196 limit = min(limit + swap_limit, memsw_limit); 1197 } 1198 return limit; 1199 } 1200 1201 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1202 int order) 1203 { 1204 struct oom_control oc = { 1205 .zonelist = NULL, 1206 .nodemask = NULL, 1207 .memcg = memcg, 1208 .gfp_mask = gfp_mask, 1209 .order = order, 1210 }; 1211 struct mem_cgroup *iter; 1212 unsigned long chosen_points = 0; 1213 unsigned long totalpages; 1214 unsigned int points = 0; 1215 struct task_struct *chosen = NULL; 1216 1217 mutex_lock(&oom_lock); 1218 1219 /* 1220 * If current has a pending SIGKILL or is exiting, then automatically 1221 * select it. The goal is to allow it to allocate so that it may 1222 * quickly exit and free its memory. 1223 */ 1224 if (task_will_free_mem(current)) { 1225 mark_oom_victim(current); 1226 wake_oom_reaper(current); 1227 goto unlock; 1228 } 1229 1230 check_panic_on_oom(&oc, CONSTRAINT_MEMCG); 1231 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1232 for_each_mem_cgroup_tree(iter, memcg) { 1233 struct css_task_iter it; 1234 struct task_struct *task; 1235 1236 css_task_iter_start(&iter->css, &it); 1237 while ((task = css_task_iter_next(&it))) { 1238 switch (oom_scan_process_thread(&oc, task)) { 1239 case OOM_SCAN_SELECT: 1240 if (chosen) 1241 put_task_struct(chosen); 1242 chosen = task; 1243 chosen_points = ULONG_MAX; 1244 get_task_struct(chosen); 1245 /* fall through */ 1246 case OOM_SCAN_CONTINUE: 1247 continue; 1248 case OOM_SCAN_ABORT: 1249 css_task_iter_end(&it); 1250 mem_cgroup_iter_break(memcg, iter); 1251 if (chosen) 1252 put_task_struct(chosen); 1253 /* Set a dummy value to return "true". */ 1254 chosen = (void *) 1; 1255 goto unlock; 1256 case OOM_SCAN_OK: 1257 break; 1258 }; 1259 points = oom_badness(task, memcg, NULL, totalpages); 1260 if (!points || points < chosen_points) 1261 continue; 1262 /* Prefer thread group leaders for display purposes */ 1263 if (points == chosen_points && 1264 thread_group_leader(chosen)) 1265 continue; 1266 1267 if (chosen) 1268 put_task_struct(chosen); 1269 chosen = task; 1270 chosen_points = points; 1271 get_task_struct(chosen); 1272 } 1273 css_task_iter_end(&it); 1274 } 1275 1276 if (chosen) { 1277 points = chosen_points * 1000 / totalpages; 1278 oom_kill_process(&oc, chosen, points, totalpages, 1279 "Memory cgroup out of memory"); 1280 } 1281 unlock: 1282 mutex_unlock(&oom_lock); 1283 return chosen; 1284 } 1285 1286 #if MAX_NUMNODES > 1 1287 1288 /** 1289 * test_mem_cgroup_node_reclaimable 1290 * @memcg: the target memcg 1291 * @nid: the node ID to be checked. 1292 * @noswap : specify true here if the user wants flle only information. 1293 * 1294 * This function returns whether the specified memcg contains any 1295 * reclaimable pages on a node. Returns true if there are any reclaimable 1296 * pages in the node. 1297 */ 1298 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1299 int nid, bool noswap) 1300 { 1301 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1302 return true; 1303 if (noswap || !total_swap_pages) 1304 return false; 1305 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1306 return true; 1307 return false; 1308 1309 } 1310 1311 /* 1312 * Always updating the nodemask is not very good - even if we have an empty 1313 * list or the wrong list here, we can start from some node and traverse all 1314 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1315 * 1316 */ 1317 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1318 { 1319 int nid; 1320 /* 1321 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1322 * pagein/pageout changes since the last update. 1323 */ 1324 if (!atomic_read(&memcg->numainfo_events)) 1325 return; 1326 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1327 return; 1328 1329 /* make a nodemask where this memcg uses memory from */ 1330 memcg->scan_nodes = node_states[N_MEMORY]; 1331 1332 for_each_node_mask(nid, node_states[N_MEMORY]) { 1333 1334 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1335 node_clear(nid, memcg->scan_nodes); 1336 } 1337 1338 atomic_set(&memcg->numainfo_events, 0); 1339 atomic_set(&memcg->numainfo_updating, 0); 1340 } 1341 1342 /* 1343 * Selecting a node where we start reclaim from. Because what we need is just 1344 * reducing usage counter, start from anywhere is O,K. Considering 1345 * memory reclaim from current node, there are pros. and cons. 1346 * 1347 * Freeing memory from current node means freeing memory from a node which 1348 * we'll use or we've used. So, it may make LRU bad. And if several threads 1349 * hit limits, it will see a contention on a node. But freeing from remote 1350 * node means more costs for memory reclaim because of memory latency. 1351 * 1352 * Now, we use round-robin. Better algorithm is welcomed. 1353 */ 1354 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1355 { 1356 int node; 1357 1358 mem_cgroup_may_update_nodemask(memcg); 1359 node = memcg->last_scanned_node; 1360 1361 node = next_node_in(node, memcg->scan_nodes); 1362 /* 1363 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1364 * last time it really checked all the LRUs due to rate limiting. 1365 * Fallback to the current node in that case for simplicity. 1366 */ 1367 if (unlikely(node == MAX_NUMNODES)) 1368 node = numa_node_id(); 1369 1370 memcg->last_scanned_node = node; 1371 return node; 1372 } 1373 #else 1374 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1375 { 1376 return 0; 1377 } 1378 #endif 1379 1380 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1381 pg_data_t *pgdat, 1382 gfp_t gfp_mask, 1383 unsigned long *total_scanned) 1384 { 1385 struct mem_cgroup *victim = NULL; 1386 int total = 0; 1387 int loop = 0; 1388 unsigned long excess; 1389 unsigned long nr_scanned; 1390 struct mem_cgroup_reclaim_cookie reclaim = { 1391 .pgdat = pgdat, 1392 .priority = 0, 1393 }; 1394 1395 excess = soft_limit_excess(root_memcg); 1396 1397 while (1) { 1398 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1399 if (!victim) { 1400 loop++; 1401 if (loop >= 2) { 1402 /* 1403 * If we have not been able to reclaim 1404 * anything, it might because there are 1405 * no reclaimable pages under this hierarchy 1406 */ 1407 if (!total) 1408 break; 1409 /* 1410 * We want to do more targeted reclaim. 1411 * excess >> 2 is not to excessive so as to 1412 * reclaim too much, nor too less that we keep 1413 * coming back to reclaim from this cgroup 1414 */ 1415 if (total >= (excess >> 2) || 1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1417 break; 1418 } 1419 continue; 1420 } 1421 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1422 pgdat, &nr_scanned); 1423 *total_scanned += nr_scanned; 1424 if (!soft_limit_excess(root_memcg)) 1425 break; 1426 } 1427 mem_cgroup_iter_break(root_memcg, victim); 1428 return total; 1429 } 1430 1431 #ifdef CONFIG_LOCKDEP 1432 static struct lockdep_map memcg_oom_lock_dep_map = { 1433 .name = "memcg_oom_lock", 1434 }; 1435 #endif 1436 1437 static DEFINE_SPINLOCK(memcg_oom_lock); 1438 1439 /* 1440 * Check OOM-Killer is already running under our hierarchy. 1441 * If someone is running, return false. 1442 */ 1443 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1444 { 1445 struct mem_cgroup *iter, *failed = NULL; 1446 1447 spin_lock(&memcg_oom_lock); 1448 1449 for_each_mem_cgroup_tree(iter, memcg) { 1450 if (iter->oom_lock) { 1451 /* 1452 * this subtree of our hierarchy is already locked 1453 * so we cannot give a lock. 1454 */ 1455 failed = iter; 1456 mem_cgroup_iter_break(memcg, iter); 1457 break; 1458 } else 1459 iter->oom_lock = true; 1460 } 1461 1462 if (failed) { 1463 /* 1464 * OK, we failed to lock the whole subtree so we have 1465 * to clean up what we set up to the failing subtree 1466 */ 1467 for_each_mem_cgroup_tree(iter, memcg) { 1468 if (iter == failed) { 1469 mem_cgroup_iter_break(memcg, iter); 1470 break; 1471 } 1472 iter->oom_lock = false; 1473 } 1474 } else 1475 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1476 1477 spin_unlock(&memcg_oom_lock); 1478 1479 return !failed; 1480 } 1481 1482 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1483 { 1484 struct mem_cgroup *iter; 1485 1486 spin_lock(&memcg_oom_lock); 1487 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1488 for_each_mem_cgroup_tree(iter, memcg) 1489 iter->oom_lock = false; 1490 spin_unlock(&memcg_oom_lock); 1491 } 1492 1493 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1494 { 1495 struct mem_cgroup *iter; 1496 1497 spin_lock(&memcg_oom_lock); 1498 for_each_mem_cgroup_tree(iter, memcg) 1499 iter->under_oom++; 1500 spin_unlock(&memcg_oom_lock); 1501 } 1502 1503 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1504 { 1505 struct mem_cgroup *iter; 1506 1507 /* 1508 * When a new child is created while the hierarchy is under oom, 1509 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1510 */ 1511 spin_lock(&memcg_oom_lock); 1512 for_each_mem_cgroup_tree(iter, memcg) 1513 if (iter->under_oom > 0) 1514 iter->under_oom--; 1515 spin_unlock(&memcg_oom_lock); 1516 } 1517 1518 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1519 1520 struct oom_wait_info { 1521 struct mem_cgroup *memcg; 1522 wait_queue_t wait; 1523 }; 1524 1525 static int memcg_oom_wake_function(wait_queue_t *wait, 1526 unsigned mode, int sync, void *arg) 1527 { 1528 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1529 struct mem_cgroup *oom_wait_memcg; 1530 struct oom_wait_info *oom_wait_info; 1531 1532 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1533 oom_wait_memcg = oom_wait_info->memcg; 1534 1535 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1536 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1537 return 0; 1538 return autoremove_wake_function(wait, mode, sync, arg); 1539 } 1540 1541 static void memcg_oom_recover(struct mem_cgroup *memcg) 1542 { 1543 /* 1544 * For the following lockless ->under_oom test, the only required 1545 * guarantee is that it must see the state asserted by an OOM when 1546 * this function is called as a result of userland actions 1547 * triggered by the notification of the OOM. This is trivially 1548 * achieved by invoking mem_cgroup_mark_under_oom() before 1549 * triggering notification. 1550 */ 1551 if (memcg && memcg->under_oom) 1552 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1553 } 1554 1555 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1556 { 1557 if (!current->memcg_may_oom) 1558 return; 1559 /* 1560 * We are in the middle of the charge context here, so we 1561 * don't want to block when potentially sitting on a callstack 1562 * that holds all kinds of filesystem and mm locks. 1563 * 1564 * Also, the caller may handle a failed allocation gracefully 1565 * (like optional page cache readahead) and so an OOM killer 1566 * invocation might not even be necessary. 1567 * 1568 * That's why we don't do anything here except remember the 1569 * OOM context and then deal with it at the end of the page 1570 * fault when the stack is unwound, the locks are released, 1571 * and when we know whether the fault was overall successful. 1572 */ 1573 css_get(&memcg->css); 1574 current->memcg_in_oom = memcg; 1575 current->memcg_oom_gfp_mask = mask; 1576 current->memcg_oom_order = order; 1577 } 1578 1579 /** 1580 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1581 * @handle: actually kill/wait or just clean up the OOM state 1582 * 1583 * This has to be called at the end of a page fault if the memcg OOM 1584 * handler was enabled. 1585 * 1586 * Memcg supports userspace OOM handling where failed allocations must 1587 * sleep on a waitqueue until the userspace task resolves the 1588 * situation. Sleeping directly in the charge context with all kinds 1589 * of locks held is not a good idea, instead we remember an OOM state 1590 * in the task and mem_cgroup_oom_synchronize() has to be called at 1591 * the end of the page fault to complete the OOM handling. 1592 * 1593 * Returns %true if an ongoing memcg OOM situation was detected and 1594 * completed, %false otherwise. 1595 */ 1596 bool mem_cgroup_oom_synchronize(bool handle) 1597 { 1598 struct mem_cgroup *memcg = current->memcg_in_oom; 1599 struct oom_wait_info owait; 1600 bool locked; 1601 1602 /* OOM is global, do not handle */ 1603 if (!memcg) 1604 return false; 1605 1606 if (!handle || oom_killer_disabled) 1607 goto cleanup; 1608 1609 owait.memcg = memcg; 1610 owait.wait.flags = 0; 1611 owait.wait.func = memcg_oom_wake_function; 1612 owait.wait.private = current; 1613 INIT_LIST_HEAD(&owait.wait.task_list); 1614 1615 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1616 mem_cgroup_mark_under_oom(memcg); 1617 1618 locked = mem_cgroup_oom_trylock(memcg); 1619 1620 if (locked) 1621 mem_cgroup_oom_notify(memcg); 1622 1623 if (locked && !memcg->oom_kill_disable) { 1624 mem_cgroup_unmark_under_oom(memcg); 1625 finish_wait(&memcg_oom_waitq, &owait.wait); 1626 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1627 current->memcg_oom_order); 1628 } else { 1629 schedule(); 1630 mem_cgroup_unmark_under_oom(memcg); 1631 finish_wait(&memcg_oom_waitq, &owait.wait); 1632 } 1633 1634 if (locked) { 1635 mem_cgroup_oom_unlock(memcg); 1636 /* 1637 * There is no guarantee that an OOM-lock contender 1638 * sees the wakeups triggered by the OOM kill 1639 * uncharges. Wake any sleepers explicitely. 1640 */ 1641 memcg_oom_recover(memcg); 1642 } 1643 cleanup: 1644 current->memcg_in_oom = NULL; 1645 css_put(&memcg->css); 1646 return true; 1647 } 1648 1649 /** 1650 * lock_page_memcg - lock a page->mem_cgroup binding 1651 * @page: the page 1652 * 1653 * This function protects unlocked LRU pages from being moved to 1654 * another cgroup and stabilizes their page->mem_cgroup binding. 1655 */ 1656 void lock_page_memcg(struct page *page) 1657 { 1658 struct mem_cgroup *memcg; 1659 unsigned long flags; 1660 1661 /* 1662 * The RCU lock is held throughout the transaction. The fast 1663 * path can get away without acquiring the memcg->move_lock 1664 * because page moving starts with an RCU grace period. 1665 */ 1666 rcu_read_lock(); 1667 1668 if (mem_cgroup_disabled()) 1669 return; 1670 again: 1671 memcg = page->mem_cgroup; 1672 if (unlikely(!memcg)) 1673 return; 1674 1675 if (atomic_read(&memcg->moving_account) <= 0) 1676 return; 1677 1678 spin_lock_irqsave(&memcg->move_lock, flags); 1679 if (memcg != page->mem_cgroup) { 1680 spin_unlock_irqrestore(&memcg->move_lock, flags); 1681 goto again; 1682 } 1683 1684 /* 1685 * When charge migration first begins, we can have locked and 1686 * unlocked page stat updates happening concurrently. Track 1687 * the task who has the lock for unlock_page_memcg(). 1688 */ 1689 memcg->move_lock_task = current; 1690 memcg->move_lock_flags = flags; 1691 1692 return; 1693 } 1694 EXPORT_SYMBOL(lock_page_memcg); 1695 1696 /** 1697 * unlock_page_memcg - unlock a page->mem_cgroup binding 1698 * @page: the page 1699 */ 1700 void unlock_page_memcg(struct page *page) 1701 { 1702 struct mem_cgroup *memcg = page->mem_cgroup; 1703 1704 if (memcg && memcg->move_lock_task == current) { 1705 unsigned long flags = memcg->move_lock_flags; 1706 1707 memcg->move_lock_task = NULL; 1708 memcg->move_lock_flags = 0; 1709 1710 spin_unlock_irqrestore(&memcg->move_lock, flags); 1711 } 1712 1713 rcu_read_unlock(); 1714 } 1715 EXPORT_SYMBOL(unlock_page_memcg); 1716 1717 /* 1718 * size of first charge trial. "32" comes from vmscan.c's magic value. 1719 * TODO: maybe necessary to use big numbers in big irons. 1720 */ 1721 #define CHARGE_BATCH 32U 1722 struct memcg_stock_pcp { 1723 struct mem_cgroup *cached; /* this never be root cgroup */ 1724 unsigned int nr_pages; 1725 struct work_struct work; 1726 unsigned long flags; 1727 #define FLUSHING_CACHED_CHARGE 0 1728 }; 1729 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1730 static DEFINE_MUTEX(percpu_charge_mutex); 1731 1732 /** 1733 * consume_stock: Try to consume stocked charge on this cpu. 1734 * @memcg: memcg to consume from. 1735 * @nr_pages: how many pages to charge. 1736 * 1737 * The charges will only happen if @memcg matches the current cpu's memcg 1738 * stock, and at least @nr_pages are available in that stock. Failure to 1739 * service an allocation will refill the stock. 1740 * 1741 * returns true if successful, false otherwise. 1742 */ 1743 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1744 { 1745 struct memcg_stock_pcp *stock; 1746 bool ret = false; 1747 1748 if (nr_pages > CHARGE_BATCH) 1749 return ret; 1750 1751 stock = &get_cpu_var(memcg_stock); 1752 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1753 stock->nr_pages -= nr_pages; 1754 ret = true; 1755 } 1756 put_cpu_var(memcg_stock); 1757 return ret; 1758 } 1759 1760 /* 1761 * Returns stocks cached in percpu and reset cached information. 1762 */ 1763 static void drain_stock(struct memcg_stock_pcp *stock) 1764 { 1765 struct mem_cgroup *old = stock->cached; 1766 1767 if (stock->nr_pages) { 1768 page_counter_uncharge(&old->memory, stock->nr_pages); 1769 if (do_memsw_account()) 1770 page_counter_uncharge(&old->memsw, stock->nr_pages); 1771 css_put_many(&old->css, stock->nr_pages); 1772 stock->nr_pages = 0; 1773 } 1774 stock->cached = NULL; 1775 } 1776 1777 /* 1778 * This must be called under preempt disabled or must be called by 1779 * a thread which is pinned to local cpu. 1780 */ 1781 static void drain_local_stock(struct work_struct *dummy) 1782 { 1783 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1784 drain_stock(stock); 1785 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1786 } 1787 1788 /* 1789 * Cache charges(val) to local per_cpu area. 1790 * This will be consumed by consume_stock() function, later. 1791 */ 1792 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1793 { 1794 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1795 1796 if (stock->cached != memcg) { /* reset if necessary */ 1797 drain_stock(stock); 1798 stock->cached = memcg; 1799 } 1800 stock->nr_pages += nr_pages; 1801 put_cpu_var(memcg_stock); 1802 } 1803 1804 /* 1805 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1806 * of the hierarchy under it. 1807 */ 1808 static void drain_all_stock(struct mem_cgroup *root_memcg) 1809 { 1810 int cpu, curcpu; 1811 1812 /* If someone's already draining, avoid adding running more workers. */ 1813 if (!mutex_trylock(&percpu_charge_mutex)) 1814 return; 1815 /* Notify other cpus that system-wide "drain" is running */ 1816 get_online_cpus(); 1817 curcpu = get_cpu(); 1818 for_each_online_cpu(cpu) { 1819 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1820 struct mem_cgroup *memcg; 1821 1822 memcg = stock->cached; 1823 if (!memcg || !stock->nr_pages) 1824 continue; 1825 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1826 continue; 1827 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1828 if (cpu == curcpu) 1829 drain_local_stock(&stock->work); 1830 else 1831 schedule_work_on(cpu, &stock->work); 1832 } 1833 } 1834 put_cpu(); 1835 put_online_cpus(); 1836 mutex_unlock(&percpu_charge_mutex); 1837 } 1838 1839 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1840 unsigned long action, 1841 void *hcpu) 1842 { 1843 int cpu = (unsigned long)hcpu; 1844 struct memcg_stock_pcp *stock; 1845 1846 if (action == CPU_ONLINE) 1847 return NOTIFY_OK; 1848 1849 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1850 return NOTIFY_OK; 1851 1852 stock = &per_cpu(memcg_stock, cpu); 1853 drain_stock(stock); 1854 return NOTIFY_OK; 1855 } 1856 1857 static void reclaim_high(struct mem_cgroup *memcg, 1858 unsigned int nr_pages, 1859 gfp_t gfp_mask) 1860 { 1861 do { 1862 if (page_counter_read(&memcg->memory) <= memcg->high) 1863 continue; 1864 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1865 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1866 } while ((memcg = parent_mem_cgroup(memcg))); 1867 } 1868 1869 static void high_work_func(struct work_struct *work) 1870 { 1871 struct mem_cgroup *memcg; 1872 1873 memcg = container_of(work, struct mem_cgroup, high_work); 1874 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1875 } 1876 1877 /* 1878 * Scheduled by try_charge() to be executed from the userland return path 1879 * and reclaims memory over the high limit. 1880 */ 1881 void mem_cgroup_handle_over_high(void) 1882 { 1883 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1884 struct mem_cgroup *memcg; 1885 1886 if (likely(!nr_pages)) 1887 return; 1888 1889 memcg = get_mem_cgroup_from_mm(current->mm); 1890 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1891 css_put(&memcg->css); 1892 current->memcg_nr_pages_over_high = 0; 1893 } 1894 1895 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1896 unsigned int nr_pages) 1897 { 1898 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1899 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1900 struct mem_cgroup *mem_over_limit; 1901 struct page_counter *counter; 1902 unsigned long nr_reclaimed; 1903 bool may_swap = true; 1904 bool drained = false; 1905 1906 if (mem_cgroup_is_root(memcg)) 1907 return 0; 1908 retry: 1909 if (consume_stock(memcg, nr_pages)) 1910 return 0; 1911 1912 if (!do_memsw_account() || 1913 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1914 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1915 goto done_restock; 1916 if (do_memsw_account()) 1917 page_counter_uncharge(&memcg->memsw, batch); 1918 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1919 } else { 1920 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1921 may_swap = false; 1922 } 1923 1924 if (batch > nr_pages) { 1925 batch = nr_pages; 1926 goto retry; 1927 } 1928 1929 /* 1930 * Unlike in global OOM situations, memcg is not in a physical 1931 * memory shortage. Allow dying and OOM-killed tasks to 1932 * bypass the last charges so that they can exit quickly and 1933 * free their memory. 1934 */ 1935 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1936 fatal_signal_pending(current) || 1937 current->flags & PF_EXITING)) 1938 goto force; 1939 1940 if (unlikely(task_in_memcg_oom(current))) 1941 goto nomem; 1942 1943 if (!gfpflags_allow_blocking(gfp_mask)) 1944 goto nomem; 1945 1946 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1947 1948 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1949 gfp_mask, may_swap); 1950 1951 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1952 goto retry; 1953 1954 if (!drained) { 1955 drain_all_stock(mem_over_limit); 1956 drained = true; 1957 goto retry; 1958 } 1959 1960 if (gfp_mask & __GFP_NORETRY) 1961 goto nomem; 1962 /* 1963 * Even though the limit is exceeded at this point, reclaim 1964 * may have been able to free some pages. Retry the charge 1965 * before killing the task. 1966 * 1967 * Only for regular pages, though: huge pages are rather 1968 * unlikely to succeed so close to the limit, and we fall back 1969 * to regular pages anyway in case of failure. 1970 */ 1971 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1972 goto retry; 1973 /* 1974 * At task move, charge accounts can be doubly counted. So, it's 1975 * better to wait until the end of task_move if something is going on. 1976 */ 1977 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1978 goto retry; 1979 1980 if (nr_retries--) 1981 goto retry; 1982 1983 if (gfp_mask & __GFP_NOFAIL) 1984 goto force; 1985 1986 if (fatal_signal_pending(current)) 1987 goto force; 1988 1989 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 1990 1991 mem_cgroup_oom(mem_over_limit, gfp_mask, 1992 get_order(nr_pages * PAGE_SIZE)); 1993 nomem: 1994 if (!(gfp_mask & __GFP_NOFAIL)) 1995 return -ENOMEM; 1996 force: 1997 /* 1998 * The allocation either can't fail or will lead to more memory 1999 * being freed very soon. Allow memory usage go over the limit 2000 * temporarily by force charging it. 2001 */ 2002 page_counter_charge(&memcg->memory, nr_pages); 2003 if (do_memsw_account()) 2004 page_counter_charge(&memcg->memsw, nr_pages); 2005 css_get_many(&memcg->css, nr_pages); 2006 2007 return 0; 2008 2009 done_restock: 2010 css_get_many(&memcg->css, batch); 2011 if (batch > nr_pages) 2012 refill_stock(memcg, batch - nr_pages); 2013 2014 /* 2015 * If the hierarchy is above the normal consumption range, schedule 2016 * reclaim on returning to userland. We can perform reclaim here 2017 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2018 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2019 * not recorded as it most likely matches current's and won't 2020 * change in the meantime. As high limit is checked again before 2021 * reclaim, the cost of mismatch is negligible. 2022 */ 2023 do { 2024 if (page_counter_read(&memcg->memory) > memcg->high) { 2025 /* Don't bother a random interrupted task */ 2026 if (in_interrupt()) { 2027 schedule_work(&memcg->high_work); 2028 break; 2029 } 2030 current->memcg_nr_pages_over_high += batch; 2031 set_notify_resume(current); 2032 break; 2033 } 2034 } while ((memcg = parent_mem_cgroup(memcg))); 2035 2036 return 0; 2037 } 2038 2039 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2040 { 2041 if (mem_cgroup_is_root(memcg)) 2042 return; 2043 2044 page_counter_uncharge(&memcg->memory, nr_pages); 2045 if (do_memsw_account()) 2046 page_counter_uncharge(&memcg->memsw, nr_pages); 2047 2048 css_put_many(&memcg->css, nr_pages); 2049 } 2050 2051 static void lock_page_lru(struct page *page, int *isolated) 2052 { 2053 struct zone *zone = page_zone(page); 2054 2055 spin_lock_irq(zone_lru_lock(zone)); 2056 if (PageLRU(page)) { 2057 struct lruvec *lruvec; 2058 2059 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2060 ClearPageLRU(page); 2061 del_page_from_lru_list(page, lruvec, page_lru(page)); 2062 *isolated = 1; 2063 } else 2064 *isolated = 0; 2065 } 2066 2067 static void unlock_page_lru(struct page *page, int isolated) 2068 { 2069 struct zone *zone = page_zone(page); 2070 2071 if (isolated) { 2072 struct lruvec *lruvec; 2073 2074 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2075 VM_BUG_ON_PAGE(PageLRU(page), page); 2076 SetPageLRU(page); 2077 add_page_to_lru_list(page, lruvec, page_lru(page)); 2078 } 2079 spin_unlock_irq(zone_lru_lock(zone)); 2080 } 2081 2082 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2083 bool lrucare) 2084 { 2085 int isolated; 2086 2087 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2088 2089 /* 2090 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2091 * may already be on some other mem_cgroup's LRU. Take care of it. 2092 */ 2093 if (lrucare) 2094 lock_page_lru(page, &isolated); 2095 2096 /* 2097 * Nobody should be changing or seriously looking at 2098 * page->mem_cgroup at this point: 2099 * 2100 * - the page is uncharged 2101 * 2102 * - the page is off-LRU 2103 * 2104 * - an anonymous fault has exclusive page access, except for 2105 * a locked page table 2106 * 2107 * - a page cache insertion, a swapin fault, or a migration 2108 * have the page locked 2109 */ 2110 page->mem_cgroup = memcg; 2111 2112 if (lrucare) 2113 unlock_page_lru(page, isolated); 2114 } 2115 2116 #ifndef CONFIG_SLOB 2117 static int memcg_alloc_cache_id(void) 2118 { 2119 int id, size; 2120 int err; 2121 2122 id = ida_simple_get(&memcg_cache_ida, 2123 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2124 if (id < 0) 2125 return id; 2126 2127 if (id < memcg_nr_cache_ids) 2128 return id; 2129 2130 /* 2131 * There's no space for the new id in memcg_caches arrays, 2132 * so we have to grow them. 2133 */ 2134 down_write(&memcg_cache_ids_sem); 2135 2136 size = 2 * (id + 1); 2137 if (size < MEMCG_CACHES_MIN_SIZE) 2138 size = MEMCG_CACHES_MIN_SIZE; 2139 else if (size > MEMCG_CACHES_MAX_SIZE) 2140 size = MEMCG_CACHES_MAX_SIZE; 2141 2142 err = memcg_update_all_caches(size); 2143 if (!err) 2144 err = memcg_update_all_list_lrus(size); 2145 if (!err) 2146 memcg_nr_cache_ids = size; 2147 2148 up_write(&memcg_cache_ids_sem); 2149 2150 if (err) { 2151 ida_simple_remove(&memcg_cache_ida, id); 2152 return err; 2153 } 2154 return id; 2155 } 2156 2157 static void memcg_free_cache_id(int id) 2158 { 2159 ida_simple_remove(&memcg_cache_ida, id); 2160 } 2161 2162 struct memcg_kmem_cache_create_work { 2163 struct mem_cgroup *memcg; 2164 struct kmem_cache *cachep; 2165 struct work_struct work; 2166 }; 2167 2168 static void memcg_kmem_cache_create_func(struct work_struct *w) 2169 { 2170 struct memcg_kmem_cache_create_work *cw = 2171 container_of(w, struct memcg_kmem_cache_create_work, work); 2172 struct mem_cgroup *memcg = cw->memcg; 2173 struct kmem_cache *cachep = cw->cachep; 2174 2175 memcg_create_kmem_cache(memcg, cachep); 2176 2177 css_put(&memcg->css); 2178 kfree(cw); 2179 } 2180 2181 /* 2182 * Enqueue the creation of a per-memcg kmem_cache. 2183 */ 2184 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2185 struct kmem_cache *cachep) 2186 { 2187 struct memcg_kmem_cache_create_work *cw; 2188 2189 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2190 if (!cw) 2191 return; 2192 2193 css_get(&memcg->css); 2194 2195 cw->memcg = memcg; 2196 cw->cachep = cachep; 2197 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2198 2199 schedule_work(&cw->work); 2200 } 2201 2202 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2203 struct kmem_cache *cachep) 2204 { 2205 /* 2206 * We need to stop accounting when we kmalloc, because if the 2207 * corresponding kmalloc cache is not yet created, the first allocation 2208 * in __memcg_schedule_kmem_cache_create will recurse. 2209 * 2210 * However, it is better to enclose the whole function. Depending on 2211 * the debugging options enabled, INIT_WORK(), for instance, can 2212 * trigger an allocation. This too, will make us recurse. Because at 2213 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2214 * the safest choice is to do it like this, wrapping the whole function. 2215 */ 2216 current->memcg_kmem_skip_account = 1; 2217 __memcg_schedule_kmem_cache_create(memcg, cachep); 2218 current->memcg_kmem_skip_account = 0; 2219 } 2220 2221 static inline bool memcg_kmem_bypass(void) 2222 { 2223 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2224 return true; 2225 return false; 2226 } 2227 2228 /** 2229 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2230 * @cachep: the original global kmem cache 2231 * 2232 * Return the kmem_cache we're supposed to use for a slab allocation. 2233 * We try to use the current memcg's version of the cache. 2234 * 2235 * If the cache does not exist yet, if we are the first user of it, we 2236 * create it asynchronously in a workqueue and let the current allocation 2237 * go through with the original cache. 2238 * 2239 * This function takes a reference to the cache it returns to assure it 2240 * won't get destroyed while we are working with it. Once the caller is 2241 * done with it, memcg_kmem_put_cache() must be called to release the 2242 * reference. 2243 */ 2244 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2245 { 2246 struct mem_cgroup *memcg; 2247 struct kmem_cache *memcg_cachep; 2248 int kmemcg_id; 2249 2250 VM_BUG_ON(!is_root_cache(cachep)); 2251 2252 if (memcg_kmem_bypass()) 2253 return cachep; 2254 2255 if (current->memcg_kmem_skip_account) 2256 return cachep; 2257 2258 memcg = get_mem_cgroup_from_mm(current->mm); 2259 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2260 if (kmemcg_id < 0) 2261 goto out; 2262 2263 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2264 if (likely(memcg_cachep)) 2265 return memcg_cachep; 2266 2267 /* 2268 * If we are in a safe context (can wait, and not in interrupt 2269 * context), we could be be predictable and return right away. 2270 * This would guarantee that the allocation being performed 2271 * already belongs in the new cache. 2272 * 2273 * However, there are some clashes that can arrive from locking. 2274 * For instance, because we acquire the slab_mutex while doing 2275 * memcg_create_kmem_cache, this means no further allocation 2276 * could happen with the slab_mutex held. So it's better to 2277 * defer everything. 2278 */ 2279 memcg_schedule_kmem_cache_create(memcg, cachep); 2280 out: 2281 css_put(&memcg->css); 2282 return cachep; 2283 } 2284 2285 /** 2286 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2287 * @cachep: the cache returned by memcg_kmem_get_cache 2288 */ 2289 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2290 { 2291 if (!is_root_cache(cachep)) 2292 css_put(&cachep->memcg_params.memcg->css); 2293 } 2294 2295 /** 2296 * memcg_kmem_charge: charge a kmem page 2297 * @page: page to charge 2298 * @gfp: reclaim mode 2299 * @order: allocation order 2300 * @memcg: memory cgroup to charge 2301 * 2302 * Returns 0 on success, an error code on failure. 2303 */ 2304 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2305 struct mem_cgroup *memcg) 2306 { 2307 unsigned int nr_pages = 1 << order; 2308 struct page_counter *counter; 2309 int ret; 2310 2311 ret = try_charge(memcg, gfp, nr_pages); 2312 if (ret) 2313 return ret; 2314 2315 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2316 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2317 cancel_charge(memcg, nr_pages); 2318 return -ENOMEM; 2319 } 2320 2321 page->mem_cgroup = memcg; 2322 2323 return 0; 2324 } 2325 2326 /** 2327 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2328 * @page: page to charge 2329 * @gfp: reclaim mode 2330 * @order: allocation order 2331 * 2332 * Returns 0 on success, an error code on failure. 2333 */ 2334 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2335 { 2336 struct mem_cgroup *memcg; 2337 int ret = 0; 2338 2339 if (memcg_kmem_bypass()) 2340 return 0; 2341 2342 memcg = get_mem_cgroup_from_mm(current->mm); 2343 if (!mem_cgroup_is_root(memcg)) 2344 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2345 css_put(&memcg->css); 2346 return ret; 2347 } 2348 /** 2349 * memcg_kmem_uncharge: uncharge a kmem page 2350 * @page: page to uncharge 2351 * @order: allocation order 2352 */ 2353 void memcg_kmem_uncharge(struct page *page, int order) 2354 { 2355 struct mem_cgroup *memcg = page->mem_cgroup; 2356 unsigned int nr_pages = 1 << order; 2357 2358 if (!memcg) 2359 return; 2360 2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2362 2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2364 page_counter_uncharge(&memcg->kmem, nr_pages); 2365 2366 page_counter_uncharge(&memcg->memory, nr_pages); 2367 if (do_memsw_account()) 2368 page_counter_uncharge(&memcg->memsw, nr_pages); 2369 2370 page->mem_cgroup = NULL; 2371 css_put_many(&memcg->css, nr_pages); 2372 } 2373 #endif /* !CONFIG_SLOB */ 2374 2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2376 2377 /* 2378 * Because tail pages are not marked as "used", set it. We're under 2379 * zone_lru_lock and migration entries setup in all page mappings. 2380 */ 2381 void mem_cgroup_split_huge_fixup(struct page *head) 2382 { 2383 int i; 2384 2385 if (mem_cgroup_disabled()) 2386 return; 2387 2388 for (i = 1; i < HPAGE_PMD_NR; i++) 2389 head[i].mem_cgroup = head->mem_cgroup; 2390 2391 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2392 HPAGE_PMD_NR); 2393 } 2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2395 2396 #ifdef CONFIG_MEMCG_SWAP 2397 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2398 bool charge) 2399 { 2400 int val = (charge) ? 1 : -1; 2401 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2402 } 2403 2404 /** 2405 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2406 * @entry: swap entry to be moved 2407 * @from: mem_cgroup which the entry is moved from 2408 * @to: mem_cgroup which the entry is moved to 2409 * 2410 * It succeeds only when the swap_cgroup's record for this entry is the same 2411 * as the mem_cgroup's id of @from. 2412 * 2413 * Returns 0 on success, -EINVAL on failure. 2414 * 2415 * The caller must have charged to @to, IOW, called page_counter_charge() about 2416 * both res and memsw, and called css_get(). 2417 */ 2418 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2419 struct mem_cgroup *from, struct mem_cgroup *to) 2420 { 2421 unsigned short old_id, new_id; 2422 2423 old_id = mem_cgroup_id(from); 2424 new_id = mem_cgroup_id(to); 2425 2426 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2427 mem_cgroup_swap_statistics(from, false); 2428 mem_cgroup_swap_statistics(to, true); 2429 return 0; 2430 } 2431 return -EINVAL; 2432 } 2433 #else 2434 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2435 struct mem_cgroup *from, struct mem_cgroup *to) 2436 { 2437 return -EINVAL; 2438 } 2439 #endif 2440 2441 static DEFINE_MUTEX(memcg_limit_mutex); 2442 2443 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2444 unsigned long limit) 2445 { 2446 unsigned long curusage; 2447 unsigned long oldusage; 2448 bool enlarge = false; 2449 int retry_count; 2450 int ret; 2451 2452 /* 2453 * For keeping hierarchical_reclaim simple, how long we should retry 2454 * is depends on callers. We set our retry-count to be function 2455 * of # of children which we should visit in this loop. 2456 */ 2457 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2458 mem_cgroup_count_children(memcg); 2459 2460 oldusage = page_counter_read(&memcg->memory); 2461 2462 do { 2463 if (signal_pending(current)) { 2464 ret = -EINTR; 2465 break; 2466 } 2467 2468 mutex_lock(&memcg_limit_mutex); 2469 if (limit > memcg->memsw.limit) { 2470 mutex_unlock(&memcg_limit_mutex); 2471 ret = -EINVAL; 2472 break; 2473 } 2474 if (limit > memcg->memory.limit) 2475 enlarge = true; 2476 ret = page_counter_limit(&memcg->memory, limit); 2477 mutex_unlock(&memcg_limit_mutex); 2478 2479 if (!ret) 2480 break; 2481 2482 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2483 2484 curusage = page_counter_read(&memcg->memory); 2485 /* Usage is reduced ? */ 2486 if (curusage >= oldusage) 2487 retry_count--; 2488 else 2489 oldusage = curusage; 2490 } while (retry_count); 2491 2492 if (!ret && enlarge) 2493 memcg_oom_recover(memcg); 2494 2495 return ret; 2496 } 2497 2498 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2499 unsigned long limit) 2500 { 2501 unsigned long curusage; 2502 unsigned long oldusage; 2503 bool enlarge = false; 2504 int retry_count; 2505 int ret; 2506 2507 /* see mem_cgroup_resize_res_limit */ 2508 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2509 mem_cgroup_count_children(memcg); 2510 2511 oldusage = page_counter_read(&memcg->memsw); 2512 2513 do { 2514 if (signal_pending(current)) { 2515 ret = -EINTR; 2516 break; 2517 } 2518 2519 mutex_lock(&memcg_limit_mutex); 2520 if (limit < memcg->memory.limit) { 2521 mutex_unlock(&memcg_limit_mutex); 2522 ret = -EINVAL; 2523 break; 2524 } 2525 if (limit > memcg->memsw.limit) 2526 enlarge = true; 2527 ret = page_counter_limit(&memcg->memsw, limit); 2528 mutex_unlock(&memcg_limit_mutex); 2529 2530 if (!ret) 2531 break; 2532 2533 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2534 2535 curusage = page_counter_read(&memcg->memsw); 2536 /* Usage is reduced ? */ 2537 if (curusage >= oldusage) 2538 retry_count--; 2539 else 2540 oldusage = curusage; 2541 } while (retry_count); 2542 2543 if (!ret && enlarge) 2544 memcg_oom_recover(memcg); 2545 2546 return ret; 2547 } 2548 2549 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2550 gfp_t gfp_mask, 2551 unsigned long *total_scanned) 2552 { 2553 unsigned long nr_reclaimed = 0; 2554 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2555 unsigned long reclaimed; 2556 int loop = 0; 2557 struct mem_cgroup_tree_per_node *mctz; 2558 unsigned long excess; 2559 unsigned long nr_scanned; 2560 2561 if (order > 0) 2562 return 0; 2563 2564 mctz = soft_limit_tree_node(pgdat->node_id); 2565 /* 2566 * This loop can run a while, specially if mem_cgroup's continuously 2567 * keep exceeding their soft limit and putting the system under 2568 * pressure 2569 */ 2570 do { 2571 if (next_mz) 2572 mz = next_mz; 2573 else 2574 mz = mem_cgroup_largest_soft_limit_node(mctz); 2575 if (!mz) 2576 break; 2577 2578 nr_scanned = 0; 2579 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2580 gfp_mask, &nr_scanned); 2581 nr_reclaimed += reclaimed; 2582 *total_scanned += nr_scanned; 2583 spin_lock_irq(&mctz->lock); 2584 __mem_cgroup_remove_exceeded(mz, mctz); 2585 2586 /* 2587 * If we failed to reclaim anything from this memory cgroup 2588 * it is time to move on to the next cgroup 2589 */ 2590 next_mz = NULL; 2591 if (!reclaimed) 2592 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2593 2594 excess = soft_limit_excess(mz->memcg); 2595 /* 2596 * One school of thought says that we should not add 2597 * back the node to the tree if reclaim returns 0. 2598 * But our reclaim could return 0, simply because due 2599 * to priority we are exposing a smaller subset of 2600 * memory to reclaim from. Consider this as a longer 2601 * term TODO. 2602 */ 2603 /* If excess == 0, no tree ops */ 2604 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2605 spin_unlock_irq(&mctz->lock); 2606 css_put(&mz->memcg->css); 2607 loop++; 2608 /* 2609 * Could not reclaim anything and there are no more 2610 * mem cgroups to try or we seem to be looping without 2611 * reclaiming anything. 2612 */ 2613 if (!nr_reclaimed && 2614 (next_mz == NULL || 2615 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2616 break; 2617 } while (!nr_reclaimed); 2618 if (next_mz) 2619 css_put(&next_mz->memcg->css); 2620 return nr_reclaimed; 2621 } 2622 2623 /* 2624 * Test whether @memcg has children, dead or alive. Note that this 2625 * function doesn't care whether @memcg has use_hierarchy enabled and 2626 * returns %true if there are child csses according to the cgroup 2627 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2628 */ 2629 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2630 { 2631 bool ret; 2632 2633 rcu_read_lock(); 2634 ret = css_next_child(NULL, &memcg->css); 2635 rcu_read_unlock(); 2636 return ret; 2637 } 2638 2639 /* 2640 * Reclaims as many pages from the given memcg as possible. 2641 * 2642 * Caller is responsible for holding css reference for memcg. 2643 */ 2644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2645 { 2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2647 2648 /* we call try-to-free pages for make this cgroup empty */ 2649 lru_add_drain_all(); 2650 /* try to free all pages in this cgroup */ 2651 while (nr_retries && page_counter_read(&memcg->memory)) { 2652 int progress; 2653 2654 if (signal_pending(current)) 2655 return -EINTR; 2656 2657 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2658 GFP_KERNEL, true); 2659 if (!progress) { 2660 nr_retries--; 2661 /* maybe some writeback is necessary */ 2662 congestion_wait(BLK_RW_ASYNC, HZ/10); 2663 } 2664 2665 } 2666 2667 return 0; 2668 } 2669 2670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2671 char *buf, size_t nbytes, 2672 loff_t off) 2673 { 2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2675 2676 if (mem_cgroup_is_root(memcg)) 2677 return -EINVAL; 2678 return mem_cgroup_force_empty(memcg) ?: nbytes; 2679 } 2680 2681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2682 struct cftype *cft) 2683 { 2684 return mem_cgroup_from_css(css)->use_hierarchy; 2685 } 2686 2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2688 struct cftype *cft, u64 val) 2689 { 2690 int retval = 0; 2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2693 2694 if (memcg->use_hierarchy == val) 2695 return 0; 2696 2697 /* 2698 * If parent's use_hierarchy is set, we can't make any modifications 2699 * in the child subtrees. If it is unset, then the change can 2700 * occur, provided the current cgroup has no children. 2701 * 2702 * For the root cgroup, parent_mem is NULL, we allow value to be 2703 * set if there are no children. 2704 */ 2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2706 (val == 1 || val == 0)) { 2707 if (!memcg_has_children(memcg)) 2708 memcg->use_hierarchy = val; 2709 else 2710 retval = -EBUSY; 2711 } else 2712 retval = -EINVAL; 2713 2714 return retval; 2715 } 2716 2717 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2718 { 2719 struct mem_cgroup *iter; 2720 int i; 2721 2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2723 2724 for_each_mem_cgroup_tree(iter, memcg) { 2725 for (i = 0; i < MEMCG_NR_STAT; i++) 2726 stat[i] += mem_cgroup_read_stat(iter, i); 2727 } 2728 } 2729 2730 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2731 { 2732 struct mem_cgroup *iter; 2733 int i; 2734 2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2736 2737 for_each_mem_cgroup_tree(iter, memcg) { 2738 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2739 events[i] += mem_cgroup_read_events(iter, i); 2740 } 2741 } 2742 2743 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2744 { 2745 unsigned long val = 0; 2746 2747 if (mem_cgroup_is_root(memcg)) { 2748 struct mem_cgroup *iter; 2749 2750 for_each_mem_cgroup_tree(iter, memcg) { 2751 val += mem_cgroup_read_stat(iter, 2752 MEM_CGROUP_STAT_CACHE); 2753 val += mem_cgroup_read_stat(iter, 2754 MEM_CGROUP_STAT_RSS); 2755 if (swap) 2756 val += mem_cgroup_read_stat(iter, 2757 MEM_CGROUP_STAT_SWAP); 2758 } 2759 } else { 2760 if (!swap) 2761 val = page_counter_read(&memcg->memory); 2762 else 2763 val = page_counter_read(&memcg->memsw); 2764 } 2765 return val; 2766 } 2767 2768 enum { 2769 RES_USAGE, 2770 RES_LIMIT, 2771 RES_MAX_USAGE, 2772 RES_FAILCNT, 2773 RES_SOFT_LIMIT, 2774 }; 2775 2776 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2777 struct cftype *cft) 2778 { 2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2780 struct page_counter *counter; 2781 2782 switch (MEMFILE_TYPE(cft->private)) { 2783 case _MEM: 2784 counter = &memcg->memory; 2785 break; 2786 case _MEMSWAP: 2787 counter = &memcg->memsw; 2788 break; 2789 case _KMEM: 2790 counter = &memcg->kmem; 2791 break; 2792 case _TCP: 2793 counter = &memcg->tcpmem; 2794 break; 2795 default: 2796 BUG(); 2797 } 2798 2799 switch (MEMFILE_ATTR(cft->private)) { 2800 case RES_USAGE: 2801 if (counter == &memcg->memory) 2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2803 if (counter == &memcg->memsw) 2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2805 return (u64)page_counter_read(counter) * PAGE_SIZE; 2806 case RES_LIMIT: 2807 return (u64)counter->limit * PAGE_SIZE; 2808 case RES_MAX_USAGE: 2809 return (u64)counter->watermark * PAGE_SIZE; 2810 case RES_FAILCNT: 2811 return counter->failcnt; 2812 case RES_SOFT_LIMIT: 2813 return (u64)memcg->soft_limit * PAGE_SIZE; 2814 default: 2815 BUG(); 2816 } 2817 } 2818 2819 #ifndef CONFIG_SLOB 2820 static int memcg_online_kmem(struct mem_cgroup *memcg) 2821 { 2822 int memcg_id; 2823 2824 if (cgroup_memory_nokmem) 2825 return 0; 2826 2827 BUG_ON(memcg->kmemcg_id >= 0); 2828 BUG_ON(memcg->kmem_state); 2829 2830 memcg_id = memcg_alloc_cache_id(); 2831 if (memcg_id < 0) 2832 return memcg_id; 2833 2834 static_branch_inc(&memcg_kmem_enabled_key); 2835 /* 2836 * A memory cgroup is considered kmem-online as soon as it gets 2837 * kmemcg_id. Setting the id after enabling static branching will 2838 * guarantee no one starts accounting before all call sites are 2839 * patched. 2840 */ 2841 memcg->kmemcg_id = memcg_id; 2842 memcg->kmem_state = KMEM_ONLINE; 2843 2844 return 0; 2845 } 2846 2847 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2848 { 2849 struct cgroup_subsys_state *css; 2850 struct mem_cgroup *parent, *child; 2851 int kmemcg_id; 2852 2853 if (memcg->kmem_state != KMEM_ONLINE) 2854 return; 2855 /* 2856 * Clear the online state before clearing memcg_caches array 2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2858 * guarantees that no cache will be created for this cgroup 2859 * after we are done (see memcg_create_kmem_cache()). 2860 */ 2861 memcg->kmem_state = KMEM_ALLOCATED; 2862 2863 memcg_deactivate_kmem_caches(memcg); 2864 2865 kmemcg_id = memcg->kmemcg_id; 2866 BUG_ON(kmemcg_id < 0); 2867 2868 parent = parent_mem_cgroup(memcg); 2869 if (!parent) 2870 parent = root_mem_cgroup; 2871 2872 /* 2873 * Change kmemcg_id of this cgroup and all its descendants to the 2874 * parent's id, and then move all entries from this cgroup's list_lrus 2875 * to ones of the parent. After we have finished, all list_lrus 2876 * corresponding to this cgroup are guaranteed to remain empty. The 2877 * ordering is imposed by list_lru_node->lock taken by 2878 * memcg_drain_all_list_lrus(). 2879 */ 2880 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2881 css_for_each_descendant_pre(css, &memcg->css) { 2882 child = mem_cgroup_from_css(css); 2883 BUG_ON(child->kmemcg_id != kmemcg_id); 2884 child->kmemcg_id = parent->kmemcg_id; 2885 if (!memcg->use_hierarchy) 2886 break; 2887 } 2888 rcu_read_unlock(); 2889 2890 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2891 2892 memcg_free_cache_id(kmemcg_id); 2893 } 2894 2895 static void memcg_free_kmem(struct mem_cgroup *memcg) 2896 { 2897 /* css_alloc() failed, offlining didn't happen */ 2898 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2899 memcg_offline_kmem(memcg); 2900 2901 if (memcg->kmem_state == KMEM_ALLOCATED) { 2902 memcg_destroy_kmem_caches(memcg); 2903 static_branch_dec(&memcg_kmem_enabled_key); 2904 WARN_ON(page_counter_read(&memcg->kmem)); 2905 } 2906 } 2907 #else 2908 static int memcg_online_kmem(struct mem_cgroup *memcg) 2909 { 2910 return 0; 2911 } 2912 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2913 { 2914 } 2915 static void memcg_free_kmem(struct mem_cgroup *memcg) 2916 { 2917 } 2918 #endif /* !CONFIG_SLOB */ 2919 2920 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2921 unsigned long limit) 2922 { 2923 int ret; 2924 2925 mutex_lock(&memcg_limit_mutex); 2926 ret = page_counter_limit(&memcg->kmem, limit); 2927 mutex_unlock(&memcg_limit_mutex); 2928 return ret; 2929 } 2930 2931 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2932 { 2933 int ret; 2934 2935 mutex_lock(&memcg_limit_mutex); 2936 2937 ret = page_counter_limit(&memcg->tcpmem, limit); 2938 if (ret) 2939 goto out; 2940 2941 if (!memcg->tcpmem_active) { 2942 /* 2943 * The active flag needs to be written after the static_key 2944 * update. This is what guarantees that the socket activation 2945 * function is the last one to run. See sock_update_memcg() for 2946 * details, and note that we don't mark any socket as belonging 2947 * to this memcg until that flag is up. 2948 * 2949 * We need to do this, because static_keys will span multiple 2950 * sites, but we can't control their order. If we mark a socket 2951 * as accounted, but the accounting functions are not patched in 2952 * yet, we'll lose accounting. 2953 * 2954 * We never race with the readers in sock_update_memcg(), 2955 * because when this value change, the code to process it is not 2956 * patched in yet. 2957 */ 2958 static_branch_inc(&memcg_sockets_enabled_key); 2959 memcg->tcpmem_active = true; 2960 } 2961 out: 2962 mutex_unlock(&memcg_limit_mutex); 2963 return ret; 2964 } 2965 2966 /* 2967 * The user of this function is... 2968 * RES_LIMIT. 2969 */ 2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2971 char *buf, size_t nbytes, loff_t off) 2972 { 2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2974 unsigned long nr_pages; 2975 int ret; 2976 2977 buf = strstrip(buf); 2978 ret = page_counter_memparse(buf, "-1", &nr_pages); 2979 if (ret) 2980 return ret; 2981 2982 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2983 case RES_LIMIT: 2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2985 ret = -EINVAL; 2986 break; 2987 } 2988 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2989 case _MEM: 2990 ret = mem_cgroup_resize_limit(memcg, nr_pages); 2991 break; 2992 case _MEMSWAP: 2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 2994 break; 2995 case _KMEM: 2996 ret = memcg_update_kmem_limit(memcg, nr_pages); 2997 break; 2998 case _TCP: 2999 ret = memcg_update_tcp_limit(memcg, nr_pages); 3000 break; 3001 } 3002 break; 3003 case RES_SOFT_LIMIT: 3004 memcg->soft_limit = nr_pages; 3005 ret = 0; 3006 break; 3007 } 3008 return ret ?: nbytes; 3009 } 3010 3011 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3012 size_t nbytes, loff_t off) 3013 { 3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3015 struct page_counter *counter; 3016 3017 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3018 case _MEM: 3019 counter = &memcg->memory; 3020 break; 3021 case _MEMSWAP: 3022 counter = &memcg->memsw; 3023 break; 3024 case _KMEM: 3025 counter = &memcg->kmem; 3026 break; 3027 case _TCP: 3028 counter = &memcg->tcpmem; 3029 break; 3030 default: 3031 BUG(); 3032 } 3033 3034 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3035 case RES_MAX_USAGE: 3036 page_counter_reset_watermark(counter); 3037 break; 3038 case RES_FAILCNT: 3039 counter->failcnt = 0; 3040 break; 3041 default: 3042 BUG(); 3043 } 3044 3045 return nbytes; 3046 } 3047 3048 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3049 struct cftype *cft) 3050 { 3051 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3052 } 3053 3054 #ifdef CONFIG_MMU 3055 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3056 struct cftype *cft, u64 val) 3057 { 3058 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3059 3060 if (val & ~MOVE_MASK) 3061 return -EINVAL; 3062 3063 /* 3064 * No kind of locking is needed in here, because ->can_attach() will 3065 * check this value once in the beginning of the process, and then carry 3066 * on with stale data. This means that changes to this value will only 3067 * affect task migrations starting after the change. 3068 */ 3069 memcg->move_charge_at_immigrate = val; 3070 return 0; 3071 } 3072 #else 3073 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3074 struct cftype *cft, u64 val) 3075 { 3076 return -ENOSYS; 3077 } 3078 #endif 3079 3080 #ifdef CONFIG_NUMA 3081 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3082 { 3083 struct numa_stat { 3084 const char *name; 3085 unsigned int lru_mask; 3086 }; 3087 3088 static const struct numa_stat stats[] = { 3089 { "total", LRU_ALL }, 3090 { "file", LRU_ALL_FILE }, 3091 { "anon", LRU_ALL_ANON }, 3092 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3093 }; 3094 const struct numa_stat *stat; 3095 int nid; 3096 unsigned long nr; 3097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3098 3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3100 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3101 seq_printf(m, "%s=%lu", stat->name, nr); 3102 for_each_node_state(nid, N_MEMORY) { 3103 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3104 stat->lru_mask); 3105 seq_printf(m, " N%d=%lu", nid, nr); 3106 } 3107 seq_putc(m, '\n'); 3108 } 3109 3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3111 struct mem_cgroup *iter; 3112 3113 nr = 0; 3114 for_each_mem_cgroup_tree(iter, memcg) 3115 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3116 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3117 for_each_node_state(nid, N_MEMORY) { 3118 nr = 0; 3119 for_each_mem_cgroup_tree(iter, memcg) 3120 nr += mem_cgroup_node_nr_lru_pages( 3121 iter, nid, stat->lru_mask); 3122 seq_printf(m, " N%d=%lu", nid, nr); 3123 } 3124 seq_putc(m, '\n'); 3125 } 3126 3127 return 0; 3128 } 3129 #endif /* CONFIG_NUMA */ 3130 3131 static int memcg_stat_show(struct seq_file *m, void *v) 3132 { 3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3134 unsigned long memory, memsw; 3135 struct mem_cgroup *mi; 3136 unsigned int i; 3137 3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3139 MEM_CGROUP_STAT_NSTATS); 3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3141 MEM_CGROUP_EVENTS_NSTATS); 3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3143 3144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3145 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3146 continue; 3147 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3149 } 3150 3151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3153 mem_cgroup_read_events(memcg, i)); 3154 3155 for (i = 0; i < NR_LRU_LISTS; i++) 3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3158 3159 /* Hierarchical information */ 3160 memory = memsw = PAGE_COUNTER_MAX; 3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3162 memory = min(memory, mi->memory.limit); 3163 memsw = min(memsw, mi->memsw.limit); 3164 } 3165 seq_printf(m, "hierarchical_memory_limit %llu\n", 3166 (u64)memory * PAGE_SIZE); 3167 if (do_memsw_account()) 3168 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3169 (u64)memsw * PAGE_SIZE); 3170 3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3172 unsigned long long val = 0; 3173 3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3175 continue; 3176 for_each_mem_cgroup_tree(mi, memcg) 3177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3178 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3179 } 3180 3181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3182 unsigned long long val = 0; 3183 3184 for_each_mem_cgroup_tree(mi, memcg) 3185 val += mem_cgroup_read_events(mi, i); 3186 seq_printf(m, "total_%s %llu\n", 3187 mem_cgroup_events_names[i], val); 3188 } 3189 3190 for (i = 0; i < NR_LRU_LISTS; i++) { 3191 unsigned long long val = 0; 3192 3193 for_each_mem_cgroup_tree(mi, memcg) 3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3196 } 3197 3198 #ifdef CONFIG_DEBUG_VM 3199 { 3200 pg_data_t *pgdat; 3201 struct mem_cgroup_per_node *mz; 3202 struct zone_reclaim_stat *rstat; 3203 unsigned long recent_rotated[2] = {0, 0}; 3204 unsigned long recent_scanned[2] = {0, 0}; 3205 3206 for_each_online_pgdat(pgdat) { 3207 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3208 rstat = &mz->lruvec.reclaim_stat; 3209 3210 recent_rotated[0] += rstat->recent_rotated[0]; 3211 recent_rotated[1] += rstat->recent_rotated[1]; 3212 recent_scanned[0] += rstat->recent_scanned[0]; 3213 recent_scanned[1] += rstat->recent_scanned[1]; 3214 } 3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3219 } 3220 #endif 3221 3222 return 0; 3223 } 3224 3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3226 struct cftype *cft) 3227 { 3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3229 3230 return mem_cgroup_swappiness(memcg); 3231 } 3232 3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3234 struct cftype *cft, u64 val) 3235 { 3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3237 3238 if (val > 100) 3239 return -EINVAL; 3240 3241 if (css->parent) 3242 memcg->swappiness = val; 3243 else 3244 vm_swappiness = val; 3245 3246 return 0; 3247 } 3248 3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3250 { 3251 struct mem_cgroup_threshold_ary *t; 3252 unsigned long usage; 3253 int i; 3254 3255 rcu_read_lock(); 3256 if (!swap) 3257 t = rcu_dereference(memcg->thresholds.primary); 3258 else 3259 t = rcu_dereference(memcg->memsw_thresholds.primary); 3260 3261 if (!t) 3262 goto unlock; 3263 3264 usage = mem_cgroup_usage(memcg, swap); 3265 3266 /* 3267 * current_threshold points to threshold just below or equal to usage. 3268 * If it's not true, a threshold was crossed after last 3269 * call of __mem_cgroup_threshold(). 3270 */ 3271 i = t->current_threshold; 3272 3273 /* 3274 * Iterate backward over array of thresholds starting from 3275 * current_threshold and check if a threshold is crossed. 3276 * If none of thresholds below usage is crossed, we read 3277 * only one element of the array here. 3278 */ 3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3280 eventfd_signal(t->entries[i].eventfd, 1); 3281 3282 /* i = current_threshold + 1 */ 3283 i++; 3284 3285 /* 3286 * Iterate forward over array of thresholds starting from 3287 * current_threshold+1 and check if a threshold is crossed. 3288 * If none of thresholds above usage is crossed, we read 3289 * only one element of the array here. 3290 */ 3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3292 eventfd_signal(t->entries[i].eventfd, 1); 3293 3294 /* Update current_threshold */ 3295 t->current_threshold = i - 1; 3296 unlock: 3297 rcu_read_unlock(); 3298 } 3299 3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3301 { 3302 while (memcg) { 3303 __mem_cgroup_threshold(memcg, false); 3304 if (do_memsw_account()) 3305 __mem_cgroup_threshold(memcg, true); 3306 3307 memcg = parent_mem_cgroup(memcg); 3308 } 3309 } 3310 3311 static int compare_thresholds(const void *a, const void *b) 3312 { 3313 const struct mem_cgroup_threshold *_a = a; 3314 const struct mem_cgroup_threshold *_b = b; 3315 3316 if (_a->threshold > _b->threshold) 3317 return 1; 3318 3319 if (_a->threshold < _b->threshold) 3320 return -1; 3321 3322 return 0; 3323 } 3324 3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3326 { 3327 struct mem_cgroup_eventfd_list *ev; 3328 3329 spin_lock(&memcg_oom_lock); 3330 3331 list_for_each_entry(ev, &memcg->oom_notify, list) 3332 eventfd_signal(ev->eventfd, 1); 3333 3334 spin_unlock(&memcg_oom_lock); 3335 return 0; 3336 } 3337 3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3339 { 3340 struct mem_cgroup *iter; 3341 3342 for_each_mem_cgroup_tree(iter, memcg) 3343 mem_cgroup_oom_notify_cb(iter); 3344 } 3345 3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3348 { 3349 struct mem_cgroup_thresholds *thresholds; 3350 struct mem_cgroup_threshold_ary *new; 3351 unsigned long threshold; 3352 unsigned long usage; 3353 int i, size, ret; 3354 3355 ret = page_counter_memparse(args, "-1", &threshold); 3356 if (ret) 3357 return ret; 3358 3359 mutex_lock(&memcg->thresholds_lock); 3360 3361 if (type == _MEM) { 3362 thresholds = &memcg->thresholds; 3363 usage = mem_cgroup_usage(memcg, false); 3364 } else if (type == _MEMSWAP) { 3365 thresholds = &memcg->memsw_thresholds; 3366 usage = mem_cgroup_usage(memcg, true); 3367 } else 3368 BUG(); 3369 3370 /* Check if a threshold crossed before adding a new one */ 3371 if (thresholds->primary) 3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3373 3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3375 3376 /* Allocate memory for new array of thresholds */ 3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3378 GFP_KERNEL); 3379 if (!new) { 3380 ret = -ENOMEM; 3381 goto unlock; 3382 } 3383 new->size = size; 3384 3385 /* Copy thresholds (if any) to new array */ 3386 if (thresholds->primary) { 3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3388 sizeof(struct mem_cgroup_threshold)); 3389 } 3390 3391 /* Add new threshold */ 3392 new->entries[size - 1].eventfd = eventfd; 3393 new->entries[size - 1].threshold = threshold; 3394 3395 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3397 compare_thresholds, NULL); 3398 3399 /* Find current threshold */ 3400 new->current_threshold = -1; 3401 for (i = 0; i < size; i++) { 3402 if (new->entries[i].threshold <= usage) { 3403 /* 3404 * new->current_threshold will not be used until 3405 * rcu_assign_pointer(), so it's safe to increment 3406 * it here. 3407 */ 3408 ++new->current_threshold; 3409 } else 3410 break; 3411 } 3412 3413 /* Free old spare buffer and save old primary buffer as spare */ 3414 kfree(thresholds->spare); 3415 thresholds->spare = thresholds->primary; 3416 3417 rcu_assign_pointer(thresholds->primary, new); 3418 3419 /* To be sure that nobody uses thresholds */ 3420 synchronize_rcu(); 3421 3422 unlock: 3423 mutex_unlock(&memcg->thresholds_lock); 3424 3425 return ret; 3426 } 3427 3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3429 struct eventfd_ctx *eventfd, const char *args) 3430 { 3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3432 } 3433 3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3435 struct eventfd_ctx *eventfd, const char *args) 3436 { 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3438 } 3439 3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3441 struct eventfd_ctx *eventfd, enum res_type type) 3442 { 3443 struct mem_cgroup_thresholds *thresholds; 3444 struct mem_cgroup_threshold_ary *new; 3445 unsigned long usage; 3446 int i, j, size; 3447 3448 mutex_lock(&memcg->thresholds_lock); 3449 3450 if (type == _MEM) { 3451 thresholds = &memcg->thresholds; 3452 usage = mem_cgroup_usage(memcg, false); 3453 } else if (type == _MEMSWAP) { 3454 thresholds = &memcg->memsw_thresholds; 3455 usage = mem_cgroup_usage(memcg, true); 3456 } else 3457 BUG(); 3458 3459 if (!thresholds->primary) 3460 goto unlock; 3461 3462 /* Check if a threshold crossed before removing */ 3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3464 3465 /* Calculate new number of threshold */ 3466 size = 0; 3467 for (i = 0; i < thresholds->primary->size; i++) { 3468 if (thresholds->primary->entries[i].eventfd != eventfd) 3469 size++; 3470 } 3471 3472 new = thresholds->spare; 3473 3474 /* Set thresholds array to NULL if we don't have thresholds */ 3475 if (!size) { 3476 kfree(new); 3477 new = NULL; 3478 goto swap_buffers; 3479 } 3480 3481 new->size = size; 3482 3483 /* Copy thresholds and find current threshold */ 3484 new->current_threshold = -1; 3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3486 if (thresholds->primary->entries[i].eventfd == eventfd) 3487 continue; 3488 3489 new->entries[j] = thresholds->primary->entries[i]; 3490 if (new->entries[j].threshold <= usage) { 3491 /* 3492 * new->current_threshold will not be used 3493 * until rcu_assign_pointer(), so it's safe to increment 3494 * it here. 3495 */ 3496 ++new->current_threshold; 3497 } 3498 j++; 3499 } 3500 3501 swap_buffers: 3502 /* Swap primary and spare array */ 3503 thresholds->spare = thresholds->primary; 3504 3505 rcu_assign_pointer(thresholds->primary, new); 3506 3507 /* To be sure that nobody uses thresholds */ 3508 synchronize_rcu(); 3509 3510 /* If all events are unregistered, free the spare array */ 3511 if (!new) { 3512 kfree(thresholds->spare); 3513 thresholds->spare = NULL; 3514 } 3515 unlock: 3516 mutex_unlock(&memcg->thresholds_lock); 3517 } 3518 3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3520 struct eventfd_ctx *eventfd) 3521 { 3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3523 } 3524 3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3526 struct eventfd_ctx *eventfd) 3527 { 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3529 } 3530 3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3532 struct eventfd_ctx *eventfd, const char *args) 3533 { 3534 struct mem_cgroup_eventfd_list *event; 3535 3536 event = kmalloc(sizeof(*event), GFP_KERNEL); 3537 if (!event) 3538 return -ENOMEM; 3539 3540 spin_lock(&memcg_oom_lock); 3541 3542 event->eventfd = eventfd; 3543 list_add(&event->list, &memcg->oom_notify); 3544 3545 /* already in OOM ? */ 3546 if (memcg->under_oom) 3547 eventfd_signal(eventfd, 1); 3548 spin_unlock(&memcg_oom_lock); 3549 3550 return 0; 3551 } 3552 3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3554 struct eventfd_ctx *eventfd) 3555 { 3556 struct mem_cgroup_eventfd_list *ev, *tmp; 3557 3558 spin_lock(&memcg_oom_lock); 3559 3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3561 if (ev->eventfd == eventfd) { 3562 list_del(&ev->list); 3563 kfree(ev); 3564 } 3565 } 3566 3567 spin_unlock(&memcg_oom_lock); 3568 } 3569 3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3571 { 3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3573 3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3576 return 0; 3577 } 3578 3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3580 struct cftype *cft, u64 val) 3581 { 3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3583 3584 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3585 if (!css->parent || !((val == 0) || (val == 1))) 3586 return -EINVAL; 3587 3588 memcg->oom_kill_disable = val; 3589 if (!val) 3590 memcg_oom_recover(memcg); 3591 3592 return 0; 3593 } 3594 3595 #ifdef CONFIG_CGROUP_WRITEBACK 3596 3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3598 { 3599 return &memcg->cgwb_list; 3600 } 3601 3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3603 { 3604 return wb_domain_init(&memcg->cgwb_domain, gfp); 3605 } 3606 3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3608 { 3609 wb_domain_exit(&memcg->cgwb_domain); 3610 } 3611 3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3613 { 3614 wb_domain_size_changed(&memcg->cgwb_domain); 3615 } 3616 3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3618 { 3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3620 3621 if (!memcg->css.parent) 3622 return NULL; 3623 3624 return &memcg->cgwb_domain; 3625 } 3626 3627 /** 3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3629 * @wb: bdi_writeback in question 3630 * @pfilepages: out parameter for number of file pages 3631 * @pheadroom: out parameter for number of allocatable pages according to memcg 3632 * @pdirty: out parameter for number of dirty pages 3633 * @pwriteback: out parameter for number of pages under writeback 3634 * 3635 * Determine the numbers of file, headroom, dirty, and writeback pages in 3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3637 * is a bit more involved. 3638 * 3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3640 * headroom is calculated as the lowest headroom of itself and the 3641 * ancestors. Note that this doesn't consider the actual amount of 3642 * available memory in the system. The caller should further cap 3643 * *@pheadroom accordingly. 3644 */ 3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3646 unsigned long *pheadroom, unsigned long *pdirty, 3647 unsigned long *pwriteback) 3648 { 3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3650 struct mem_cgroup *parent; 3651 3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3653 3654 /* this should eventually include NR_UNSTABLE_NFS */ 3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3657 (1 << LRU_ACTIVE_FILE)); 3658 *pheadroom = PAGE_COUNTER_MAX; 3659 3660 while ((parent = parent_mem_cgroup(memcg))) { 3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3662 unsigned long used = page_counter_read(&memcg->memory); 3663 3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3665 memcg = parent; 3666 } 3667 } 3668 3669 #else /* CONFIG_CGROUP_WRITEBACK */ 3670 3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3672 { 3673 return 0; 3674 } 3675 3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3677 { 3678 } 3679 3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3681 { 3682 } 3683 3684 #endif /* CONFIG_CGROUP_WRITEBACK */ 3685 3686 /* 3687 * DO NOT USE IN NEW FILES. 3688 * 3689 * "cgroup.event_control" implementation. 3690 * 3691 * This is way over-engineered. It tries to support fully configurable 3692 * events for each user. Such level of flexibility is completely 3693 * unnecessary especially in the light of the planned unified hierarchy. 3694 * 3695 * Please deprecate this and replace with something simpler if at all 3696 * possible. 3697 */ 3698 3699 /* 3700 * Unregister event and free resources. 3701 * 3702 * Gets called from workqueue. 3703 */ 3704 static void memcg_event_remove(struct work_struct *work) 3705 { 3706 struct mem_cgroup_event *event = 3707 container_of(work, struct mem_cgroup_event, remove); 3708 struct mem_cgroup *memcg = event->memcg; 3709 3710 remove_wait_queue(event->wqh, &event->wait); 3711 3712 event->unregister_event(memcg, event->eventfd); 3713 3714 /* Notify userspace the event is going away. */ 3715 eventfd_signal(event->eventfd, 1); 3716 3717 eventfd_ctx_put(event->eventfd); 3718 kfree(event); 3719 css_put(&memcg->css); 3720 } 3721 3722 /* 3723 * Gets called on POLLHUP on eventfd when user closes it. 3724 * 3725 * Called with wqh->lock held and interrupts disabled. 3726 */ 3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3728 int sync, void *key) 3729 { 3730 struct mem_cgroup_event *event = 3731 container_of(wait, struct mem_cgroup_event, wait); 3732 struct mem_cgroup *memcg = event->memcg; 3733 unsigned long flags = (unsigned long)key; 3734 3735 if (flags & POLLHUP) { 3736 /* 3737 * If the event has been detached at cgroup removal, we 3738 * can simply return knowing the other side will cleanup 3739 * for us. 3740 * 3741 * We can't race against event freeing since the other 3742 * side will require wqh->lock via remove_wait_queue(), 3743 * which we hold. 3744 */ 3745 spin_lock(&memcg->event_list_lock); 3746 if (!list_empty(&event->list)) { 3747 list_del_init(&event->list); 3748 /* 3749 * We are in atomic context, but cgroup_event_remove() 3750 * may sleep, so we have to call it in workqueue. 3751 */ 3752 schedule_work(&event->remove); 3753 } 3754 spin_unlock(&memcg->event_list_lock); 3755 } 3756 3757 return 0; 3758 } 3759 3760 static void memcg_event_ptable_queue_proc(struct file *file, 3761 wait_queue_head_t *wqh, poll_table *pt) 3762 { 3763 struct mem_cgroup_event *event = 3764 container_of(pt, struct mem_cgroup_event, pt); 3765 3766 event->wqh = wqh; 3767 add_wait_queue(wqh, &event->wait); 3768 } 3769 3770 /* 3771 * DO NOT USE IN NEW FILES. 3772 * 3773 * Parse input and register new cgroup event handler. 3774 * 3775 * Input must be in format '<event_fd> <control_fd> <args>'. 3776 * Interpretation of args is defined by control file implementation. 3777 */ 3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3779 char *buf, size_t nbytes, loff_t off) 3780 { 3781 struct cgroup_subsys_state *css = of_css(of); 3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3783 struct mem_cgroup_event *event; 3784 struct cgroup_subsys_state *cfile_css; 3785 unsigned int efd, cfd; 3786 struct fd efile; 3787 struct fd cfile; 3788 const char *name; 3789 char *endp; 3790 int ret; 3791 3792 buf = strstrip(buf); 3793 3794 efd = simple_strtoul(buf, &endp, 10); 3795 if (*endp != ' ') 3796 return -EINVAL; 3797 buf = endp + 1; 3798 3799 cfd = simple_strtoul(buf, &endp, 10); 3800 if ((*endp != ' ') && (*endp != '\0')) 3801 return -EINVAL; 3802 buf = endp + 1; 3803 3804 event = kzalloc(sizeof(*event), GFP_KERNEL); 3805 if (!event) 3806 return -ENOMEM; 3807 3808 event->memcg = memcg; 3809 INIT_LIST_HEAD(&event->list); 3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3812 INIT_WORK(&event->remove, memcg_event_remove); 3813 3814 efile = fdget(efd); 3815 if (!efile.file) { 3816 ret = -EBADF; 3817 goto out_kfree; 3818 } 3819 3820 event->eventfd = eventfd_ctx_fileget(efile.file); 3821 if (IS_ERR(event->eventfd)) { 3822 ret = PTR_ERR(event->eventfd); 3823 goto out_put_efile; 3824 } 3825 3826 cfile = fdget(cfd); 3827 if (!cfile.file) { 3828 ret = -EBADF; 3829 goto out_put_eventfd; 3830 } 3831 3832 /* the process need read permission on control file */ 3833 /* AV: shouldn't we check that it's been opened for read instead? */ 3834 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3835 if (ret < 0) 3836 goto out_put_cfile; 3837 3838 /* 3839 * Determine the event callbacks and set them in @event. This used 3840 * to be done via struct cftype but cgroup core no longer knows 3841 * about these events. The following is crude but the whole thing 3842 * is for compatibility anyway. 3843 * 3844 * DO NOT ADD NEW FILES. 3845 */ 3846 name = cfile.file->f_path.dentry->d_name.name; 3847 3848 if (!strcmp(name, "memory.usage_in_bytes")) { 3849 event->register_event = mem_cgroup_usage_register_event; 3850 event->unregister_event = mem_cgroup_usage_unregister_event; 3851 } else if (!strcmp(name, "memory.oom_control")) { 3852 event->register_event = mem_cgroup_oom_register_event; 3853 event->unregister_event = mem_cgroup_oom_unregister_event; 3854 } else if (!strcmp(name, "memory.pressure_level")) { 3855 event->register_event = vmpressure_register_event; 3856 event->unregister_event = vmpressure_unregister_event; 3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3858 event->register_event = memsw_cgroup_usage_register_event; 3859 event->unregister_event = memsw_cgroup_usage_unregister_event; 3860 } else { 3861 ret = -EINVAL; 3862 goto out_put_cfile; 3863 } 3864 3865 /* 3866 * Verify @cfile should belong to @css. Also, remaining events are 3867 * automatically removed on cgroup destruction but the removal is 3868 * asynchronous, so take an extra ref on @css. 3869 */ 3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3871 &memory_cgrp_subsys); 3872 ret = -EINVAL; 3873 if (IS_ERR(cfile_css)) 3874 goto out_put_cfile; 3875 if (cfile_css != css) { 3876 css_put(cfile_css); 3877 goto out_put_cfile; 3878 } 3879 3880 ret = event->register_event(memcg, event->eventfd, buf); 3881 if (ret) 3882 goto out_put_css; 3883 3884 efile.file->f_op->poll(efile.file, &event->pt); 3885 3886 spin_lock(&memcg->event_list_lock); 3887 list_add(&event->list, &memcg->event_list); 3888 spin_unlock(&memcg->event_list_lock); 3889 3890 fdput(cfile); 3891 fdput(efile); 3892 3893 return nbytes; 3894 3895 out_put_css: 3896 css_put(css); 3897 out_put_cfile: 3898 fdput(cfile); 3899 out_put_eventfd: 3900 eventfd_ctx_put(event->eventfd); 3901 out_put_efile: 3902 fdput(efile); 3903 out_kfree: 3904 kfree(event); 3905 3906 return ret; 3907 } 3908 3909 static struct cftype mem_cgroup_legacy_files[] = { 3910 { 3911 .name = "usage_in_bytes", 3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3913 .read_u64 = mem_cgroup_read_u64, 3914 }, 3915 { 3916 .name = "max_usage_in_bytes", 3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3918 .write = mem_cgroup_reset, 3919 .read_u64 = mem_cgroup_read_u64, 3920 }, 3921 { 3922 .name = "limit_in_bytes", 3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3924 .write = mem_cgroup_write, 3925 .read_u64 = mem_cgroup_read_u64, 3926 }, 3927 { 3928 .name = "soft_limit_in_bytes", 3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3930 .write = mem_cgroup_write, 3931 .read_u64 = mem_cgroup_read_u64, 3932 }, 3933 { 3934 .name = "failcnt", 3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3936 .write = mem_cgroup_reset, 3937 .read_u64 = mem_cgroup_read_u64, 3938 }, 3939 { 3940 .name = "stat", 3941 .seq_show = memcg_stat_show, 3942 }, 3943 { 3944 .name = "force_empty", 3945 .write = mem_cgroup_force_empty_write, 3946 }, 3947 { 3948 .name = "use_hierarchy", 3949 .write_u64 = mem_cgroup_hierarchy_write, 3950 .read_u64 = mem_cgroup_hierarchy_read, 3951 }, 3952 { 3953 .name = "cgroup.event_control", /* XXX: for compat */ 3954 .write = memcg_write_event_control, 3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3956 }, 3957 { 3958 .name = "swappiness", 3959 .read_u64 = mem_cgroup_swappiness_read, 3960 .write_u64 = mem_cgroup_swappiness_write, 3961 }, 3962 { 3963 .name = "move_charge_at_immigrate", 3964 .read_u64 = mem_cgroup_move_charge_read, 3965 .write_u64 = mem_cgroup_move_charge_write, 3966 }, 3967 { 3968 .name = "oom_control", 3969 .seq_show = mem_cgroup_oom_control_read, 3970 .write_u64 = mem_cgroup_oom_control_write, 3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3972 }, 3973 { 3974 .name = "pressure_level", 3975 }, 3976 #ifdef CONFIG_NUMA 3977 { 3978 .name = "numa_stat", 3979 .seq_show = memcg_numa_stat_show, 3980 }, 3981 #endif 3982 { 3983 .name = "kmem.limit_in_bytes", 3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3985 .write = mem_cgroup_write, 3986 .read_u64 = mem_cgroup_read_u64, 3987 }, 3988 { 3989 .name = "kmem.usage_in_bytes", 3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 3991 .read_u64 = mem_cgroup_read_u64, 3992 }, 3993 { 3994 .name = "kmem.failcnt", 3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 3996 .write = mem_cgroup_reset, 3997 .read_u64 = mem_cgroup_read_u64, 3998 }, 3999 { 4000 .name = "kmem.max_usage_in_bytes", 4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4002 .write = mem_cgroup_reset, 4003 .read_u64 = mem_cgroup_read_u64, 4004 }, 4005 #ifdef CONFIG_SLABINFO 4006 { 4007 .name = "kmem.slabinfo", 4008 .seq_start = slab_start, 4009 .seq_next = slab_next, 4010 .seq_stop = slab_stop, 4011 .seq_show = memcg_slab_show, 4012 }, 4013 #endif 4014 { 4015 .name = "kmem.tcp.limit_in_bytes", 4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4017 .write = mem_cgroup_write, 4018 .read_u64 = mem_cgroup_read_u64, 4019 }, 4020 { 4021 .name = "kmem.tcp.usage_in_bytes", 4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4023 .read_u64 = mem_cgroup_read_u64, 4024 }, 4025 { 4026 .name = "kmem.tcp.failcnt", 4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4028 .write = mem_cgroup_reset, 4029 .read_u64 = mem_cgroup_read_u64, 4030 }, 4031 { 4032 .name = "kmem.tcp.max_usage_in_bytes", 4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4034 .write = mem_cgroup_reset, 4035 .read_u64 = mem_cgroup_read_u64, 4036 }, 4037 { }, /* terminate */ 4038 }; 4039 4040 /* 4041 * Private memory cgroup IDR 4042 * 4043 * Swap-out records and page cache shadow entries need to store memcg 4044 * references in constrained space, so we maintain an ID space that is 4045 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4046 * memory-controlled cgroups to 64k. 4047 * 4048 * However, there usually are many references to the oflline CSS after 4049 * the cgroup has been destroyed, such as page cache or reclaimable 4050 * slab objects, that don't need to hang on to the ID. We want to keep 4051 * those dead CSS from occupying IDs, or we might quickly exhaust the 4052 * relatively small ID space and prevent the creation of new cgroups 4053 * even when there are much fewer than 64k cgroups - possibly none. 4054 * 4055 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4056 * be freed and recycled when it's no longer needed, which is usually 4057 * when the CSS is offlined. 4058 * 4059 * The only exception to that are records of swapped out tmpfs/shmem 4060 * pages that need to be attributed to live ancestors on swapin. But 4061 * those references are manageable from userspace. 4062 */ 4063 4064 static DEFINE_IDR(mem_cgroup_idr); 4065 4066 static void mem_cgroup_id_get(struct mem_cgroup *memcg) 4067 { 4068 atomic_inc(&memcg->id.ref); 4069 } 4070 4071 static void mem_cgroup_id_put(struct mem_cgroup *memcg) 4072 { 4073 if (atomic_dec_and_test(&memcg->id.ref)) { 4074 idr_remove(&mem_cgroup_idr, memcg->id.id); 4075 memcg->id.id = 0; 4076 4077 /* Memcg ID pins CSS */ 4078 css_put(&memcg->css); 4079 } 4080 } 4081 4082 /** 4083 * mem_cgroup_from_id - look up a memcg from a memcg id 4084 * @id: the memcg id to look up 4085 * 4086 * Caller must hold rcu_read_lock(). 4087 */ 4088 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4089 { 4090 WARN_ON_ONCE(!rcu_read_lock_held()); 4091 return idr_find(&mem_cgroup_idr, id); 4092 } 4093 4094 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4095 { 4096 struct mem_cgroup_per_node *pn; 4097 int tmp = node; 4098 /* 4099 * This routine is called against possible nodes. 4100 * But it's BUG to call kmalloc() against offline node. 4101 * 4102 * TODO: this routine can waste much memory for nodes which will 4103 * never be onlined. It's better to use memory hotplug callback 4104 * function. 4105 */ 4106 if (!node_state(node, N_NORMAL_MEMORY)) 4107 tmp = -1; 4108 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4109 if (!pn) 4110 return 1; 4111 4112 lruvec_init(&pn->lruvec); 4113 pn->usage_in_excess = 0; 4114 pn->on_tree = false; 4115 pn->memcg = memcg; 4116 4117 memcg->nodeinfo[node] = pn; 4118 return 0; 4119 } 4120 4121 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4122 { 4123 kfree(memcg->nodeinfo[node]); 4124 } 4125 4126 static void mem_cgroup_free(struct mem_cgroup *memcg) 4127 { 4128 int node; 4129 4130 memcg_wb_domain_exit(memcg); 4131 for_each_node(node) 4132 free_mem_cgroup_per_node_info(memcg, node); 4133 free_percpu(memcg->stat); 4134 kfree(memcg); 4135 } 4136 4137 static struct mem_cgroup *mem_cgroup_alloc(void) 4138 { 4139 struct mem_cgroup *memcg; 4140 size_t size; 4141 int node; 4142 4143 size = sizeof(struct mem_cgroup); 4144 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4145 4146 memcg = kzalloc(size, GFP_KERNEL); 4147 if (!memcg) 4148 return NULL; 4149 4150 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4151 1, MEM_CGROUP_ID_MAX, 4152 GFP_KERNEL); 4153 if (memcg->id.id < 0) 4154 goto fail; 4155 4156 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4157 if (!memcg->stat) 4158 goto fail; 4159 4160 for_each_node(node) 4161 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4162 goto fail; 4163 4164 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4165 goto fail; 4166 4167 INIT_WORK(&memcg->high_work, high_work_func); 4168 memcg->last_scanned_node = MAX_NUMNODES; 4169 INIT_LIST_HEAD(&memcg->oom_notify); 4170 mutex_init(&memcg->thresholds_lock); 4171 spin_lock_init(&memcg->move_lock); 4172 vmpressure_init(&memcg->vmpressure); 4173 INIT_LIST_HEAD(&memcg->event_list); 4174 spin_lock_init(&memcg->event_list_lock); 4175 memcg->socket_pressure = jiffies; 4176 #ifndef CONFIG_SLOB 4177 memcg->kmemcg_id = -1; 4178 #endif 4179 #ifdef CONFIG_CGROUP_WRITEBACK 4180 INIT_LIST_HEAD(&memcg->cgwb_list); 4181 #endif 4182 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4183 return memcg; 4184 fail: 4185 if (memcg->id.id > 0) 4186 idr_remove(&mem_cgroup_idr, memcg->id.id); 4187 mem_cgroup_free(memcg); 4188 return NULL; 4189 } 4190 4191 static struct cgroup_subsys_state * __ref 4192 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4193 { 4194 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4195 struct mem_cgroup *memcg; 4196 long error = -ENOMEM; 4197 4198 memcg = mem_cgroup_alloc(); 4199 if (!memcg) 4200 return ERR_PTR(error); 4201 4202 memcg->high = PAGE_COUNTER_MAX; 4203 memcg->soft_limit = PAGE_COUNTER_MAX; 4204 if (parent) { 4205 memcg->swappiness = mem_cgroup_swappiness(parent); 4206 memcg->oom_kill_disable = parent->oom_kill_disable; 4207 } 4208 if (parent && parent->use_hierarchy) { 4209 memcg->use_hierarchy = true; 4210 page_counter_init(&memcg->memory, &parent->memory); 4211 page_counter_init(&memcg->swap, &parent->swap); 4212 page_counter_init(&memcg->memsw, &parent->memsw); 4213 page_counter_init(&memcg->kmem, &parent->kmem); 4214 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4215 } else { 4216 page_counter_init(&memcg->memory, NULL); 4217 page_counter_init(&memcg->swap, NULL); 4218 page_counter_init(&memcg->memsw, NULL); 4219 page_counter_init(&memcg->kmem, NULL); 4220 page_counter_init(&memcg->tcpmem, NULL); 4221 /* 4222 * Deeper hierachy with use_hierarchy == false doesn't make 4223 * much sense so let cgroup subsystem know about this 4224 * unfortunate state in our controller. 4225 */ 4226 if (parent != root_mem_cgroup) 4227 memory_cgrp_subsys.broken_hierarchy = true; 4228 } 4229 4230 /* The following stuff does not apply to the root */ 4231 if (!parent) { 4232 root_mem_cgroup = memcg; 4233 return &memcg->css; 4234 } 4235 4236 error = memcg_online_kmem(memcg); 4237 if (error) 4238 goto fail; 4239 4240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4241 static_branch_inc(&memcg_sockets_enabled_key); 4242 4243 return &memcg->css; 4244 fail: 4245 mem_cgroup_free(memcg); 4246 return ERR_PTR(-ENOMEM); 4247 } 4248 4249 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4250 { 4251 /* Online state pins memcg ID, memcg ID pins CSS */ 4252 mem_cgroup_id_get(mem_cgroup_from_css(css)); 4253 css_get(css); 4254 return 0; 4255 } 4256 4257 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4258 { 4259 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4260 struct mem_cgroup_event *event, *tmp; 4261 4262 /* 4263 * Unregister events and notify userspace. 4264 * Notify userspace about cgroup removing only after rmdir of cgroup 4265 * directory to avoid race between userspace and kernelspace. 4266 */ 4267 spin_lock(&memcg->event_list_lock); 4268 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4269 list_del_init(&event->list); 4270 schedule_work(&event->remove); 4271 } 4272 spin_unlock(&memcg->event_list_lock); 4273 4274 memcg_offline_kmem(memcg); 4275 wb_memcg_offline(memcg); 4276 4277 mem_cgroup_id_put(memcg); 4278 } 4279 4280 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4281 { 4282 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4283 4284 invalidate_reclaim_iterators(memcg); 4285 } 4286 4287 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4288 { 4289 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4290 4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4292 static_branch_dec(&memcg_sockets_enabled_key); 4293 4294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4295 static_branch_dec(&memcg_sockets_enabled_key); 4296 4297 vmpressure_cleanup(&memcg->vmpressure); 4298 cancel_work_sync(&memcg->high_work); 4299 mem_cgroup_remove_from_trees(memcg); 4300 memcg_free_kmem(memcg); 4301 mem_cgroup_free(memcg); 4302 } 4303 4304 /** 4305 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4306 * @css: the target css 4307 * 4308 * Reset the states of the mem_cgroup associated with @css. This is 4309 * invoked when the userland requests disabling on the default hierarchy 4310 * but the memcg is pinned through dependency. The memcg should stop 4311 * applying policies and should revert to the vanilla state as it may be 4312 * made visible again. 4313 * 4314 * The current implementation only resets the essential configurations. 4315 * This needs to be expanded to cover all the visible parts. 4316 */ 4317 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4318 { 4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4320 4321 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4322 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4323 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4324 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4325 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4326 memcg->low = 0; 4327 memcg->high = PAGE_COUNTER_MAX; 4328 memcg->soft_limit = PAGE_COUNTER_MAX; 4329 memcg_wb_domain_size_changed(memcg); 4330 } 4331 4332 #ifdef CONFIG_MMU 4333 /* Handlers for move charge at task migration. */ 4334 static int mem_cgroup_do_precharge(unsigned long count) 4335 { 4336 int ret; 4337 4338 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4339 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4340 if (!ret) { 4341 mc.precharge += count; 4342 return ret; 4343 } 4344 4345 /* Try charges one by one with reclaim */ 4346 while (count--) { 4347 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4348 if (ret) 4349 return ret; 4350 mc.precharge++; 4351 cond_resched(); 4352 } 4353 return 0; 4354 } 4355 4356 union mc_target { 4357 struct page *page; 4358 swp_entry_t ent; 4359 }; 4360 4361 enum mc_target_type { 4362 MC_TARGET_NONE = 0, 4363 MC_TARGET_PAGE, 4364 MC_TARGET_SWAP, 4365 }; 4366 4367 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4368 unsigned long addr, pte_t ptent) 4369 { 4370 struct page *page = vm_normal_page(vma, addr, ptent); 4371 4372 if (!page || !page_mapped(page)) 4373 return NULL; 4374 if (PageAnon(page)) { 4375 if (!(mc.flags & MOVE_ANON)) 4376 return NULL; 4377 } else { 4378 if (!(mc.flags & MOVE_FILE)) 4379 return NULL; 4380 } 4381 if (!get_page_unless_zero(page)) 4382 return NULL; 4383 4384 return page; 4385 } 4386 4387 #ifdef CONFIG_SWAP 4388 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4389 pte_t ptent, swp_entry_t *entry) 4390 { 4391 struct page *page = NULL; 4392 swp_entry_t ent = pte_to_swp_entry(ptent); 4393 4394 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4395 return NULL; 4396 /* 4397 * Because lookup_swap_cache() updates some statistics counter, 4398 * we call find_get_page() with swapper_space directly. 4399 */ 4400 page = find_get_page(swap_address_space(ent), ent.val); 4401 if (do_memsw_account()) 4402 entry->val = ent.val; 4403 4404 return page; 4405 } 4406 #else 4407 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4408 pte_t ptent, swp_entry_t *entry) 4409 { 4410 return NULL; 4411 } 4412 #endif 4413 4414 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4415 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4416 { 4417 struct page *page = NULL; 4418 struct address_space *mapping; 4419 pgoff_t pgoff; 4420 4421 if (!vma->vm_file) /* anonymous vma */ 4422 return NULL; 4423 if (!(mc.flags & MOVE_FILE)) 4424 return NULL; 4425 4426 mapping = vma->vm_file->f_mapping; 4427 pgoff = linear_page_index(vma, addr); 4428 4429 /* page is moved even if it's not RSS of this task(page-faulted). */ 4430 #ifdef CONFIG_SWAP 4431 /* shmem/tmpfs may report page out on swap: account for that too. */ 4432 if (shmem_mapping(mapping)) { 4433 page = find_get_entry(mapping, pgoff); 4434 if (radix_tree_exceptional_entry(page)) { 4435 swp_entry_t swp = radix_to_swp_entry(page); 4436 if (do_memsw_account()) 4437 *entry = swp; 4438 page = find_get_page(swap_address_space(swp), swp.val); 4439 } 4440 } else 4441 page = find_get_page(mapping, pgoff); 4442 #else 4443 page = find_get_page(mapping, pgoff); 4444 #endif 4445 return page; 4446 } 4447 4448 /** 4449 * mem_cgroup_move_account - move account of the page 4450 * @page: the page 4451 * @compound: charge the page as compound or small page 4452 * @from: mem_cgroup which the page is moved from. 4453 * @to: mem_cgroup which the page is moved to. @from != @to. 4454 * 4455 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4456 * 4457 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4458 * from old cgroup. 4459 */ 4460 static int mem_cgroup_move_account(struct page *page, 4461 bool compound, 4462 struct mem_cgroup *from, 4463 struct mem_cgroup *to) 4464 { 4465 unsigned long flags; 4466 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4467 int ret; 4468 bool anon; 4469 4470 VM_BUG_ON(from == to); 4471 VM_BUG_ON_PAGE(PageLRU(page), page); 4472 VM_BUG_ON(compound && !PageTransHuge(page)); 4473 4474 /* 4475 * Prevent mem_cgroup_migrate() from looking at 4476 * page->mem_cgroup of its source page while we change it. 4477 */ 4478 ret = -EBUSY; 4479 if (!trylock_page(page)) 4480 goto out; 4481 4482 ret = -EINVAL; 4483 if (page->mem_cgroup != from) 4484 goto out_unlock; 4485 4486 anon = PageAnon(page); 4487 4488 spin_lock_irqsave(&from->move_lock, flags); 4489 4490 if (!anon && page_mapped(page)) { 4491 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4492 nr_pages); 4493 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4494 nr_pages); 4495 } 4496 4497 /* 4498 * move_lock grabbed above and caller set from->moving_account, so 4499 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4500 * So mapping should be stable for dirty pages. 4501 */ 4502 if (!anon && PageDirty(page)) { 4503 struct address_space *mapping = page_mapping(page); 4504 4505 if (mapping_cap_account_dirty(mapping)) { 4506 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4507 nr_pages); 4508 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4509 nr_pages); 4510 } 4511 } 4512 4513 if (PageWriteback(page)) { 4514 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4515 nr_pages); 4516 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4517 nr_pages); 4518 } 4519 4520 /* 4521 * It is safe to change page->mem_cgroup here because the page 4522 * is referenced, charged, and isolated - we can't race with 4523 * uncharging, charging, migration, or LRU putback. 4524 */ 4525 4526 /* caller should have done css_get */ 4527 page->mem_cgroup = to; 4528 spin_unlock_irqrestore(&from->move_lock, flags); 4529 4530 ret = 0; 4531 4532 local_irq_disable(); 4533 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4534 memcg_check_events(to, page); 4535 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4536 memcg_check_events(from, page); 4537 local_irq_enable(); 4538 out_unlock: 4539 unlock_page(page); 4540 out: 4541 return ret; 4542 } 4543 4544 /** 4545 * get_mctgt_type - get target type of moving charge 4546 * @vma: the vma the pte to be checked belongs 4547 * @addr: the address corresponding to the pte to be checked 4548 * @ptent: the pte to be checked 4549 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4550 * 4551 * Returns 4552 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4553 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4554 * move charge. if @target is not NULL, the page is stored in target->page 4555 * with extra refcnt got(Callers should handle it). 4556 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4557 * target for charge migration. if @target is not NULL, the entry is stored 4558 * in target->ent. 4559 * 4560 * Called with pte lock held. 4561 */ 4562 4563 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4564 unsigned long addr, pte_t ptent, union mc_target *target) 4565 { 4566 struct page *page = NULL; 4567 enum mc_target_type ret = MC_TARGET_NONE; 4568 swp_entry_t ent = { .val = 0 }; 4569 4570 if (pte_present(ptent)) 4571 page = mc_handle_present_pte(vma, addr, ptent); 4572 else if (is_swap_pte(ptent)) 4573 page = mc_handle_swap_pte(vma, ptent, &ent); 4574 else if (pte_none(ptent)) 4575 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4576 4577 if (!page && !ent.val) 4578 return ret; 4579 if (page) { 4580 /* 4581 * Do only loose check w/o serialization. 4582 * mem_cgroup_move_account() checks the page is valid or 4583 * not under LRU exclusion. 4584 */ 4585 if (page->mem_cgroup == mc.from) { 4586 ret = MC_TARGET_PAGE; 4587 if (target) 4588 target->page = page; 4589 } 4590 if (!ret || !target) 4591 put_page(page); 4592 } 4593 /* There is a swap entry and a page doesn't exist or isn't charged */ 4594 if (ent.val && !ret && 4595 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4596 ret = MC_TARGET_SWAP; 4597 if (target) 4598 target->ent = ent; 4599 } 4600 return ret; 4601 } 4602 4603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4604 /* 4605 * We don't consider swapping or file mapped pages because THP does not 4606 * support them for now. 4607 * Caller should make sure that pmd_trans_huge(pmd) is true. 4608 */ 4609 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4610 unsigned long addr, pmd_t pmd, union mc_target *target) 4611 { 4612 struct page *page = NULL; 4613 enum mc_target_type ret = MC_TARGET_NONE; 4614 4615 page = pmd_page(pmd); 4616 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4617 if (!(mc.flags & MOVE_ANON)) 4618 return ret; 4619 if (page->mem_cgroup == mc.from) { 4620 ret = MC_TARGET_PAGE; 4621 if (target) { 4622 get_page(page); 4623 target->page = page; 4624 } 4625 } 4626 return ret; 4627 } 4628 #else 4629 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4630 unsigned long addr, pmd_t pmd, union mc_target *target) 4631 { 4632 return MC_TARGET_NONE; 4633 } 4634 #endif 4635 4636 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4637 unsigned long addr, unsigned long end, 4638 struct mm_walk *walk) 4639 { 4640 struct vm_area_struct *vma = walk->vma; 4641 pte_t *pte; 4642 spinlock_t *ptl; 4643 4644 ptl = pmd_trans_huge_lock(pmd, vma); 4645 if (ptl) { 4646 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4647 mc.precharge += HPAGE_PMD_NR; 4648 spin_unlock(ptl); 4649 return 0; 4650 } 4651 4652 if (pmd_trans_unstable(pmd)) 4653 return 0; 4654 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4655 for (; addr != end; pte++, addr += PAGE_SIZE) 4656 if (get_mctgt_type(vma, addr, *pte, NULL)) 4657 mc.precharge++; /* increment precharge temporarily */ 4658 pte_unmap_unlock(pte - 1, ptl); 4659 cond_resched(); 4660 4661 return 0; 4662 } 4663 4664 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4665 { 4666 unsigned long precharge; 4667 4668 struct mm_walk mem_cgroup_count_precharge_walk = { 4669 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4670 .mm = mm, 4671 }; 4672 down_read(&mm->mmap_sem); 4673 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4674 up_read(&mm->mmap_sem); 4675 4676 precharge = mc.precharge; 4677 mc.precharge = 0; 4678 4679 return precharge; 4680 } 4681 4682 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4683 { 4684 unsigned long precharge = mem_cgroup_count_precharge(mm); 4685 4686 VM_BUG_ON(mc.moving_task); 4687 mc.moving_task = current; 4688 return mem_cgroup_do_precharge(precharge); 4689 } 4690 4691 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4692 static void __mem_cgroup_clear_mc(void) 4693 { 4694 struct mem_cgroup *from = mc.from; 4695 struct mem_cgroup *to = mc.to; 4696 4697 /* we must uncharge all the leftover precharges from mc.to */ 4698 if (mc.precharge) { 4699 cancel_charge(mc.to, mc.precharge); 4700 mc.precharge = 0; 4701 } 4702 /* 4703 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4704 * we must uncharge here. 4705 */ 4706 if (mc.moved_charge) { 4707 cancel_charge(mc.from, mc.moved_charge); 4708 mc.moved_charge = 0; 4709 } 4710 /* we must fixup refcnts and charges */ 4711 if (mc.moved_swap) { 4712 /* uncharge swap account from the old cgroup */ 4713 if (!mem_cgroup_is_root(mc.from)) 4714 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4715 4716 /* 4717 * we charged both to->memory and to->memsw, so we 4718 * should uncharge to->memory. 4719 */ 4720 if (!mem_cgroup_is_root(mc.to)) 4721 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4722 4723 css_put_many(&mc.from->css, mc.moved_swap); 4724 4725 /* we've already done css_get(mc.to) */ 4726 mc.moved_swap = 0; 4727 } 4728 memcg_oom_recover(from); 4729 memcg_oom_recover(to); 4730 wake_up_all(&mc.waitq); 4731 } 4732 4733 static void mem_cgroup_clear_mc(void) 4734 { 4735 struct mm_struct *mm = mc.mm; 4736 4737 /* 4738 * we must clear moving_task before waking up waiters at the end of 4739 * task migration. 4740 */ 4741 mc.moving_task = NULL; 4742 __mem_cgroup_clear_mc(); 4743 spin_lock(&mc.lock); 4744 mc.from = NULL; 4745 mc.to = NULL; 4746 mc.mm = NULL; 4747 spin_unlock(&mc.lock); 4748 4749 mmput(mm); 4750 } 4751 4752 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4753 { 4754 struct cgroup_subsys_state *css; 4755 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4756 struct mem_cgroup *from; 4757 struct task_struct *leader, *p; 4758 struct mm_struct *mm; 4759 unsigned long move_flags; 4760 int ret = 0; 4761 4762 /* charge immigration isn't supported on the default hierarchy */ 4763 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4764 return 0; 4765 4766 /* 4767 * Multi-process migrations only happen on the default hierarchy 4768 * where charge immigration is not used. Perform charge 4769 * immigration if @tset contains a leader and whine if there are 4770 * multiple. 4771 */ 4772 p = NULL; 4773 cgroup_taskset_for_each_leader(leader, css, tset) { 4774 WARN_ON_ONCE(p); 4775 p = leader; 4776 memcg = mem_cgroup_from_css(css); 4777 } 4778 if (!p) 4779 return 0; 4780 4781 /* 4782 * We are now commited to this value whatever it is. Changes in this 4783 * tunable will only affect upcoming migrations, not the current one. 4784 * So we need to save it, and keep it going. 4785 */ 4786 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4787 if (!move_flags) 4788 return 0; 4789 4790 from = mem_cgroup_from_task(p); 4791 4792 VM_BUG_ON(from == memcg); 4793 4794 mm = get_task_mm(p); 4795 if (!mm) 4796 return 0; 4797 /* We move charges only when we move a owner of the mm */ 4798 if (mm->owner == p) { 4799 VM_BUG_ON(mc.from); 4800 VM_BUG_ON(mc.to); 4801 VM_BUG_ON(mc.precharge); 4802 VM_BUG_ON(mc.moved_charge); 4803 VM_BUG_ON(mc.moved_swap); 4804 4805 spin_lock(&mc.lock); 4806 mc.mm = mm; 4807 mc.from = from; 4808 mc.to = memcg; 4809 mc.flags = move_flags; 4810 spin_unlock(&mc.lock); 4811 /* We set mc.moving_task later */ 4812 4813 ret = mem_cgroup_precharge_mc(mm); 4814 if (ret) 4815 mem_cgroup_clear_mc(); 4816 } else { 4817 mmput(mm); 4818 } 4819 return ret; 4820 } 4821 4822 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4823 { 4824 if (mc.to) 4825 mem_cgroup_clear_mc(); 4826 } 4827 4828 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4829 unsigned long addr, unsigned long end, 4830 struct mm_walk *walk) 4831 { 4832 int ret = 0; 4833 struct vm_area_struct *vma = walk->vma; 4834 pte_t *pte; 4835 spinlock_t *ptl; 4836 enum mc_target_type target_type; 4837 union mc_target target; 4838 struct page *page; 4839 4840 ptl = pmd_trans_huge_lock(pmd, vma); 4841 if (ptl) { 4842 if (mc.precharge < HPAGE_PMD_NR) { 4843 spin_unlock(ptl); 4844 return 0; 4845 } 4846 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4847 if (target_type == MC_TARGET_PAGE) { 4848 page = target.page; 4849 if (!isolate_lru_page(page)) { 4850 if (!mem_cgroup_move_account(page, true, 4851 mc.from, mc.to)) { 4852 mc.precharge -= HPAGE_PMD_NR; 4853 mc.moved_charge += HPAGE_PMD_NR; 4854 } 4855 putback_lru_page(page); 4856 } 4857 put_page(page); 4858 } 4859 spin_unlock(ptl); 4860 return 0; 4861 } 4862 4863 if (pmd_trans_unstable(pmd)) 4864 return 0; 4865 retry: 4866 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4867 for (; addr != end; addr += PAGE_SIZE) { 4868 pte_t ptent = *(pte++); 4869 swp_entry_t ent; 4870 4871 if (!mc.precharge) 4872 break; 4873 4874 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4875 case MC_TARGET_PAGE: 4876 page = target.page; 4877 /* 4878 * We can have a part of the split pmd here. Moving it 4879 * can be done but it would be too convoluted so simply 4880 * ignore such a partial THP and keep it in original 4881 * memcg. There should be somebody mapping the head. 4882 */ 4883 if (PageTransCompound(page)) 4884 goto put; 4885 if (isolate_lru_page(page)) 4886 goto put; 4887 if (!mem_cgroup_move_account(page, false, 4888 mc.from, mc.to)) { 4889 mc.precharge--; 4890 /* we uncharge from mc.from later. */ 4891 mc.moved_charge++; 4892 } 4893 putback_lru_page(page); 4894 put: /* get_mctgt_type() gets the page */ 4895 put_page(page); 4896 break; 4897 case MC_TARGET_SWAP: 4898 ent = target.ent; 4899 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4900 mc.precharge--; 4901 /* we fixup refcnts and charges later. */ 4902 mc.moved_swap++; 4903 } 4904 break; 4905 default: 4906 break; 4907 } 4908 } 4909 pte_unmap_unlock(pte - 1, ptl); 4910 cond_resched(); 4911 4912 if (addr != end) { 4913 /* 4914 * We have consumed all precharges we got in can_attach(). 4915 * We try charge one by one, but don't do any additional 4916 * charges to mc.to if we have failed in charge once in attach() 4917 * phase. 4918 */ 4919 ret = mem_cgroup_do_precharge(1); 4920 if (!ret) 4921 goto retry; 4922 } 4923 4924 return ret; 4925 } 4926 4927 static void mem_cgroup_move_charge(void) 4928 { 4929 struct mm_walk mem_cgroup_move_charge_walk = { 4930 .pmd_entry = mem_cgroup_move_charge_pte_range, 4931 .mm = mc.mm, 4932 }; 4933 4934 lru_add_drain_all(); 4935 /* 4936 * Signal lock_page_memcg() to take the memcg's move_lock 4937 * while we're moving its pages to another memcg. Then wait 4938 * for already started RCU-only updates to finish. 4939 */ 4940 atomic_inc(&mc.from->moving_account); 4941 synchronize_rcu(); 4942 retry: 4943 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4944 /* 4945 * Someone who are holding the mmap_sem might be waiting in 4946 * waitq. So we cancel all extra charges, wake up all waiters, 4947 * and retry. Because we cancel precharges, we might not be able 4948 * to move enough charges, but moving charge is a best-effort 4949 * feature anyway, so it wouldn't be a big problem. 4950 */ 4951 __mem_cgroup_clear_mc(); 4952 cond_resched(); 4953 goto retry; 4954 } 4955 /* 4956 * When we have consumed all precharges and failed in doing 4957 * additional charge, the page walk just aborts. 4958 */ 4959 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4960 up_read(&mc.mm->mmap_sem); 4961 atomic_dec(&mc.from->moving_account); 4962 } 4963 4964 static void mem_cgroup_move_task(void) 4965 { 4966 if (mc.to) { 4967 mem_cgroup_move_charge(); 4968 mem_cgroup_clear_mc(); 4969 } 4970 } 4971 #else /* !CONFIG_MMU */ 4972 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4973 { 4974 return 0; 4975 } 4976 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4977 { 4978 } 4979 static void mem_cgroup_move_task(void) 4980 { 4981 } 4982 #endif 4983 4984 /* 4985 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4986 * to verify whether we're attached to the default hierarchy on each mount 4987 * attempt. 4988 */ 4989 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4990 { 4991 /* 4992 * use_hierarchy is forced on the default hierarchy. cgroup core 4993 * guarantees that @root doesn't have any children, so turning it 4994 * on for the root memcg is enough. 4995 */ 4996 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4997 root_mem_cgroup->use_hierarchy = true; 4998 else 4999 root_mem_cgroup->use_hierarchy = false; 5000 } 5001 5002 static u64 memory_current_read(struct cgroup_subsys_state *css, 5003 struct cftype *cft) 5004 { 5005 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5006 5007 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5008 } 5009 5010 static int memory_low_show(struct seq_file *m, void *v) 5011 { 5012 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5013 unsigned long low = READ_ONCE(memcg->low); 5014 5015 if (low == PAGE_COUNTER_MAX) 5016 seq_puts(m, "max\n"); 5017 else 5018 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5019 5020 return 0; 5021 } 5022 5023 static ssize_t memory_low_write(struct kernfs_open_file *of, 5024 char *buf, size_t nbytes, loff_t off) 5025 { 5026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5027 unsigned long low; 5028 int err; 5029 5030 buf = strstrip(buf); 5031 err = page_counter_memparse(buf, "max", &low); 5032 if (err) 5033 return err; 5034 5035 memcg->low = low; 5036 5037 return nbytes; 5038 } 5039 5040 static int memory_high_show(struct seq_file *m, void *v) 5041 { 5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5043 unsigned long high = READ_ONCE(memcg->high); 5044 5045 if (high == PAGE_COUNTER_MAX) 5046 seq_puts(m, "max\n"); 5047 else 5048 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5049 5050 return 0; 5051 } 5052 5053 static ssize_t memory_high_write(struct kernfs_open_file *of, 5054 char *buf, size_t nbytes, loff_t off) 5055 { 5056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5057 unsigned long nr_pages; 5058 unsigned long high; 5059 int err; 5060 5061 buf = strstrip(buf); 5062 err = page_counter_memparse(buf, "max", &high); 5063 if (err) 5064 return err; 5065 5066 memcg->high = high; 5067 5068 nr_pages = page_counter_read(&memcg->memory); 5069 if (nr_pages > high) 5070 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5071 GFP_KERNEL, true); 5072 5073 memcg_wb_domain_size_changed(memcg); 5074 return nbytes; 5075 } 5076 5077 static int memory_max_show(struct seq_file *m, void *v) 5078 { 5079 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5080 unsigned long max = READ_ONCE(memcg->memory.limit); 5081 5082 if (max == PAGE_COUNTER_MAX) 5083 seq_puts(m, "max\n"); 5084 else 5085 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5086 5087 return 0; 5088 } 5089 5090 static ssize_t memory_max_write(struct kernfs_open_file *of, 5091 char *buf, size_t nbytes, loff_t off) 5092 { 5093 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5094 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5095 bool drained = false; 5096 unsigned long max; 5097 int err; 5098 5099 buf = strstrip(buf); 5100 err = page_counter_memparse(buf, "max", &max); 5101 if (err) 5102 return err; 5103 5104 xchg(&memcg->memory.limit, max); 5105 5106 for (;;) { 5107 unsigned long nr_pages = page_counter_read(&memcg->memory); 5108 5109 if (nr_pages <= max) 5110 break; 5111 5112 if (signal_pending(current)) { 5113 err = -EINTR; 5114 break; 5115 } 5116 5117 if (!drained) { 5118 drain_all_stock(memcg); 5119 drained = true; 5120 continue; 5121 } 5122 5123 if (nr_reclaims) { 5124 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5125 GFP_KERNEL, true)) 5126 nr_reclaims--; 5127 continue; 5128 } 5129 5130 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5131 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5132 break; 5133 } 5134 5135 memcg_wb_domain_size_changed(memcg); 5136 return nbytes; 5137 } 5138 5139 static int memory_events_show(struct seq_file *m, void *v) 5140 { 5141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5142 5143 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5144 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5145 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5146 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5147 5148 return 0; 5149 } 5150 5151 static int memory_stat_show(struct seq_file *m, void *v) 5152 { 5153 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5154 unsigned long stat[MEMCG_NR_STAT]; 5155 unsigned long events[MEMCG_NR_EVENTS]; 5156 int i; 5157 5158 /* 5159 * Provide statistics on the state of the memory subsystem as 5160 * well as cumulative event counters that show past behavior. 5161 * 5162 * This list is ordered following a combination of these gradients: 5163 * 1) generic big picture -> specifics and details 5164 * 2) reflecting userspace activity -> reflecting kernel heuristics 5165 * 5166 * Current memory state: 5167 */ 5168 5169 tree_stat(memcg, stat); 5170 tree_events(memcg, events); 5171 5172 seq_printf(m, "anon %llu\n", 5173 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5174 seq_printf(m, "file %llu\n", 5175 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5176 seq_printf(m, "kernel_stack %llu\n", 5177 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); 5178 seq_printf(m, "slab %llu\n", 5179 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5180 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5181 seq_printf(m, "sock %llu\n", 5182 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5183 5184 seq_printf(m, "file_mapped %llu\n", 5185 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5186 seq_printf(m, "file_dirty %llu\n", 5187 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5188 seq_printf(m, "file_writeback %llu\n", 5189 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5190 5191 for (i = 0; i < NR_LRU_LISTS; i++) { 5192 struct mem_cgroup *mi; 5193 unsigned long val = 0; 5194 5195 for_each_mem_cgroup_tree(mi, memcg) 5196 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5197 seq_printf(m, "%s %llu\n", 5198 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5199 } 5200 5201 seq_printf(m, "slab_reclaimable %llu\n", 5202 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5203 seq_printf(m, "slab_unreclaimable %llu\n", 5204 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5205 5206 /* Accumulated memory events */ 5207 5208 seq_printf(m, "pgfault %lu\n", 5209 events[MEM_CGROUP_EVENTS_PGFAULT]); 5210 seq_printf(m, "pgmajfault %lu\n", 5211 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5212 5213 return 0; 5214 } 5215 5216 static struct cftype memory_files[] = { 5217 { 5218 .name = "current", 5219 .flags = CFTYPE_NOT_ON_ROOT, 5220 .read_u64 = memory_current_read, 5221 }, 5222 { 5223 .name = "low", 5224 .flags = CFTYPE_NOT_ON_ROOT, 5225 .seq_show = memory_low_show, 5226 .write = memory_low_write, 5227 }, 5228 { 5229 .name = "high", 5230 .flags = CFTYPE_NOT_ON_ROOT, 5231 .seq_show = memory_high_show, 5232 .write = memory_high_write, 5233 }, 5234 { 5235 .name = "max", 5236 .flags = CFTYPE_NOT_ON_ROOT, 5237 .seq_show = memory_max_show, 5238 .write = memory_max_write, 5239 }, 5240 { 5241 .name = "events", 5242 .flags = CFTYPE_NOT_ON_ROOT, 5243 .file_offset = offsetof(struct mem_cgroup, events_file), 5244 .seq_show = memory_events_show, 5245 }, 5246 { 5247 .name = "stat", 5248 .flags = CFTYPE_NOT_ON_ROOT, 5249 .seq_show = memory_stat_show, 5250 }, 5251 { } /* terminate */ 5252 }; 5253 5254 struct cgroup_subsys memory_cgrp_subsys = { 5255 .css_alloc = mem_cgroup_css_alloc, 5256 .css_online = mem_cgroup_css_online, 5257 .css_offline = mem_cgroup_css_offline, 5258 .css_released = mem_cgroup_css_released, 5259 .css_free = mem_cgroup_css_free, 5260 .css_reset = mem_cgroup_css_reset, 5261 .can_attach = mem_cgroup_can_attach, 5262 .cancel_attach = mem_cgroup_cancel_attach, 5263 .post_attach = mem_cgroup_move_task, 5264 .bind = mem_cgroup_bind, 5265 .dfl_cftypes = memory_files, 5266 .legacy_cftypes = mem_cgroup_legacy_files, 5267 .early_init = 0, 5268 }; 5269 5270 /** 5271 * mem_cgroup_low - check if memory consumption is below the normal range 5272 * @root: the highest ancestor to consider 5273 * @memcg: the memory cgroup to check 5274 * 5275 * Returns %true if memory consumption of @memcg, and that of all 5276 * configurable ancestors up to @root, is below the normal range. 5277 */ 5278 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5279 { 5280 if (mem_cgroup_disabled()) 5281 return false; 5282 5283 /* 5284 * The toplevel group doesn't have a configurable range, so 5285 * it's never low when looked at directly, and it is not 5286 * considered an ancestor when assessing the hierarchy. 5287 */ 5288 5289 if (memcg == root_mem_cgroup) 5290 return false; 5291 5292 if (page_counter_read(&memcg->memory) >= memcg->low) 5293 return false; 5294 5295 while (memcg != root) { 5296 memcg = parent_mem_cgroup(memcg); 5297 5298 if (memcg == root_mem_cgroup) 5299 break; 5300 5301 if (page_counter_read(&memcg->memory) >= memcg->low) 5302 return false; 5303 } 5304 return true; 5305 } 5306 5307 /** 5308 * mem_cgroup_try_charge - try charging a page 5309 * @page: page to charge 5310 * @mm: mm context of the victim 5311 * @gfp_mask: reclaim mode 5312 * @memcgp: charged memcg return 5313 * @compound: charge the page as compound or small page 5314 * 5315 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5316 * pages according to @gfp_mask if necessary. 5317 * 5318 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5319 * Otherwise, an error code is returned. 5320 * 5321 * After page->mapping has been set up, the caller must finalize the 5322 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5323 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5324 */ 5325 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5326 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5327 bool compound) 5328 { 5329 struct mem_cgroup *memcg = NULL; 5330 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5331 int ret = 0; 5332 5333 if (mem_cgroup_disabled()) 5334 goto out; 5335 5336 if (PageSwapCache(page)) { 5337 /* 5338 * Every swap fault against a single page tries to charge the 5339 * page, bail as early as possible. shmem_unuse() encounters 5340 * already charged pages, too. The USED bit is protected by 5341 * the page lock, which serializes swap cache removal, which 5342 * in turn serializes uncharging. 5343 */ 5344 VM_BUG_ON_PAGE(!PageLocked(page), page); 5345 if (page->mem_cgroup) 5346 goto out; 5347 5348 if (do_swap_account) { 5349 swp_entry_t ent = { .val = page_private(page), }; 5350 unsigned short id = lookup_swap_cgroup_id(ent); 5351 5352 rcu_read_lock(); 5353 memcg = mem_cgroup_from_id(id); 5354 if (memcg && !css_tryget_online(&memcg->css)) 5355 memcg = NULL; 5356 rcu_read_unlock(); 5357 } 5358 } 5359 5360 if (!memcg) 5361 memcg = get_mem_cgroup_from_mm(mm); 5362 5363 ret = try_charge(memcg, gfp_mask, nr_pages); 5364 5365 css_put(&memcg->css); 5366 out: 5367 *memcgp = memcg; 5368 return ret; 5369 } 5370 5371 /** 5372 * mem_cgroup_commit_charge - commit a page charge 5373 * @page: page to charge 5374 * @memcg: memcg to charge the page to 5375 * @lrucare: page might be on LRU already 5376 * @compound: charge the page as compound or small page 5377 * 5378 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5379 * after page->mapping has been set up. This must happen atomically 5380 * as part of the page instantiation, i.e. under the page table lock 5381 * for anonymous pages, under the page lock for page and swap cache. 5382 * 5383 * In addition, the page must not be on the LRU during the commit, to 5384 * prevent racing with task migration. If it might be, use @lrucare. 5385 * 5386 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5387 */ 5388 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5389 bool lrucare, bool compound) 5390 { 5391 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5392 5393 VM_BUG_ON_PAGE(!page->mapping, page); 5394 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5395 5396 if (mem_cgroup_disabled()) 5397 return; 5398 /* 5399 * Swap faults will attempt to charge the same page multiple 5400 * times. But reuse_swap_page() might have removed the page 5401 * from swapcache already, so we can't check PageSwapCache(). 5402 */ 5403 if (!memcg) 5404 return; 5405 5406 commit_charge(page, memcg, lrucare); 5407 5408 local_irq_disable(); 5409 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5410 memcg_check_events(memcg, page); 5411 local_irq_enable(); 5412 5413 if (do_memsw_account() && PageSwapCache(page)) { 5414 swp_entry_t entry = { .val = page_private(page) }; 5415 /* 5416 * The swap entry might not get freed for a long time, 5417 * let's not wait for it. The page already received a 5418 * memory+swap charge, drop the swap entry duplicate. 5419 */ 5420 mem_cgroup_uncharge_swap(entry); 5421 } 5422 } 5423 5424 /** 5425 * mem_cgroup_cancel_charge - cancel a page charge 5426 * @page: page to charge 5427 * @memcg: memcg to charge the page to 5428 * @compound: charge the page as compound or small page 5429 * 5430 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5431 */ 5432 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5433 bool compound) 5434 { 5435 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5436 5437 if (mem_cgroup_disabled()) 5438 return; 5439 /* 5440 * Swap faults will attempt to charge the same page multiple 5441 * times. But reuse_swap_page() might have removed the page 5442 * from swapcache already, so we can't check PageSwapCache(). 5443 */ 5444 if (!memcg) 5445 return; 5446 5447 cancel_charge(memcg, nr_pages); 5448 } 5449 5450 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5451 unsigned long nr_anon, unsigned long nr_file, 5452 unsigned long nr_huge, unsigned long nr_kmem, 5453 struct page *dummy_page) 5454 { 5455 unsigned long nr_pages = nr_anon + nr_file + nr_kmem; 5456 unsigned long flags; 5457 5458 if (!mem_cgroup_is_root(memcg)) { 5459 page_counter_uncharge(&memcg->memory, nr_pages); 5460 if (do_memsw_account()) 5461 page_counter_uncharge(&memcg->memsw, nr_pages); 5462 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) 5463 page_counter_uncharge(&memcg->kmem, nr_kmem); 5464 memcg_oom_recover(memcg); 5465 } 5466 5467 local_irq_save(flags); 5468 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5469 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5470 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5471 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5472 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5473 memcg_check_events(memcg, dummy_page); 5474 local_irq_restore(flags); 5475 5476 if (!mem_cgroup_is_root(memcg)) 5477 css_put_many(&memcg->css, nr_pages); 5478 } 5479 5480 static void uncharge_list(struct list_head *page_list) 5481 { 5482 struct mem_cgroup *memcg = NULL; 5483 unsigned long nr_anon = 0; 5484 unsigned long nr_file = 0; 5485 unsigned long nr_huge = 0; 5486 unsigned long nr_kmem = 0; 5487 unsigned long pgpgout = 0; 5488 struct list_head *next; 5489 struct page *page; 5490 5491 /* 5492 * Note that the list can be a single page->lru; hence the 5493 * do-while loop instead of a simple list_for_each_entry(). 5494 */ 5495 next = page_list->next; 5496 do { 5497 page = list_entry(next, struct page, lru); 5498 next = page->lru.next; 5499 5500 VM_BUG_ON_PAGE(PageLRU(page), page); 5501 VM_BUG_ON_PAGE(page_count(page), page); 5502 5503 if (!page->mem_cgroup) 5504 continue; 5505 5506 /* 5507 * Nobody should be changing or seriously looking at 5508 * page->mem_cgroup at this point, we have fully 5509 * exclusive access to the page. 5510 */ 5511 5512 if (memcg != page->mem_cgroup) { 5513 if (memcg) { 5514 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5515 nr_huge, nr_kmem, page); 5516 pgpgout = nr_anon = nr_file = 5517 nr_huge = nr_kmem = 0; 5518 } 5519 memcg = page->mem_cgroup; 5520 } 5521 5522 if (!PageKmemcg(page)) { 5523 unsigned int nr_pages = 1; 5524 5525 if (PageTransHuge(page)) { 5526 nr_pages <<= compound_order(page); 5527 nr_huge += nr_pages; 5528 } 5529 if (PageAnon(page)) 5530 nr_anon += nr_pages; 5531 else 5532 nr_file += nr_pages; 5533 pgpgout++; 5534 } else 5535 nr_kmem += 1 << compound_order(page); 5536 5537 page->mem_cgroup = NULL; 5538 } while (next != page_list); 5539 5540 if (memcg) 5541 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5542 nr_huge, nr_kmem, page); 5543 } 5544 5545 /** 5546 * mem_cgroup_uncharge - uncharge a page 5547 * @page: page to uncharge 5548 * 5549 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5550 * mem_cgroup_commit_charge(). 5551 */ 5552 void mem_cgroup_uncharge(struct page *page) 5553 { 5554 if (mem_cgroup_disabled()) 5555 return; 5556 5557 /* Don't touch page->lru of any random page, pre-check: */ 5558 if (!page->mem_cgroup) 5559 return; 5560 5561 INIT_LIST_HEAD(&page->lru); 5562 uncharge_list(&page->lru); 5563 } 5564 5565 /** 5566 * mem_cgroup_uncharge_list - uncharge a list of page 5567 * @page_list: list of pages to uncharge 5568 * 5569 * Uncharge a list of pages previously charged with 5570 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5571 */ 5572 void mem_cgroup_uncharge_list(struct list_head *page_list) 5573 { 5574 if (mem_cgroup_disabled()) 5575 return; 5576 5577 if (!list_empty(page_list)) 5578 uncharge_list(page_list); 5579 } 5580 5581 /** 5582 * mem_cgroup_migrate - charge a page's replacement 5583 * @oldpage: currently circulating page 5584 * @newpage: replacement page 5585 * 5586 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5587 * be uncharged upon free. 5588 * 5589 * Both pages must be locked, @newpage->mapping must be set up. 5590 */ 5591 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5592 { 5593 struct mem_cgroup *memcg; 5594 unsigned int nr_pages; 5595 bool compound; 5596 unsigned long flags; 5597 5598 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5599 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5600 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5601 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5602 newpage); 5603 5604 if (mem_cgroup_disabled()) 5605 return; 5606 5607 /* Page cache replacement: new page already charged? */ 5608 if (newpage->mem_cgroup) 5609 return; 5610 5611 /* Swapcache readahead pages can get replaced before being charged */ 5612 memcg = oldpage->mem_cgroup; 5613 if (!memcg) 5614 return; 5615 5616 /* Force-charge the new page. The old one will be freed soon */ 5617 compound = PageTransHuge(newpage); 5618 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5619 5620 page_counter_charge(&memcg->memory, nr_pages); 5621 if (do_memsw_account()) 5622 page_counter_charge(&memcg->memsw, nr_pages); 5623 css_get_many(&memcg->css, nr_pages); 5624 5625 commit_charge(newpage, memcg, false); 5626 5627 local_irq_save(flags); 5628 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5629 memcg_check_events(memcg, newpage); 5630 local_irq_restore(flags); 5631 } 5632 5633 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5634 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5635 5636 void sock_update_memcg(struct sock *sk) 5637 { 5638 struct mem_cgroup *memcg; 5639 5640 /* Socket cloning can throw us here with sk_cgrp already 5641 * filled. It won't however, necessarily happen from 5642 * process context. So the test for root memcg given 5643 * the current task's memcg won't help us in this case. 5644 * 5645 * Respecting the original socket's memcg is a better 5646 * decision in this case. 5647 */ 5648 if (sk->sk_memcg) { 5649 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5650 css_get(&sk->sk_memcg->css); 5651 return; 5652 } 5653 5654 rcu_read_lock(); 5655 memcg = mem_cgroup_from_task(current); 5656 if (memcg == root_mem_cgroup) 5657 goto out; 5658 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5659 goto out; 5660 if (css_tryget_online(&memcg->css)) 5661 sk->sk_memcg = memcg; 5662 out: 5663 rcu_read_unlock(); 5664 } 5665 EXPORT_SYMBOL(sock_update_memcg); 5666 5667 void sock_release_memcg(struct sock *sk) 5668 { 5669 WARN_ON(!sk->sk_memcg); 5670 css_put(&sk->sk_memcg->css); 5671 } 5672 5673 /** 5674 * mem_cgroup_charge_skmem - charge socket memory 5675 * @memcg: memcg to charge 5676 * @nr_pages: number of pages to charge 5677 * 5678 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5679 * @memcg's configured limit, %false if the charge had to be forced. 5680 */ 5681 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5682 { 5683 gfp_t gfp_mask = GFP_KERNEL; 5684 5685 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5686 struct page_counter *fail; 5687 5688 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5689 memcg->tcpmem_pressure = 0; 5690 return true; 5691 } 5692 page_counter_charge(&memcg->tcpmem, nr_pages); 5693 memcg->tcpmem_pressure = 1; 5694 return false; 5695 } 5696 5697 /* Don't block in the packet receive path */ 5698 if (in_softirq()) 5699 gfp_mask = GFP_NOWAIT; 5700 5701 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5702 5703 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5704 return true; 5705 5706 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5707 return false; 5708 } 5709 5710 /** 5711 * mem_cgroup_uncharge_skmem - uncharge socket memory 5712 * @memcg - memcg to uncharge 5713 * @nr_pages - number of pages to uncharge 5714 */ 5715 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5716 { 5717 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5718 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5719 return; 5720 } 5721 5722 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5723 5724 page_counter_uncharge(&memcg->memory, nr_pages); 5725 css_put_many(&memcg->css, nr_pages); 5726 } 5727 5728 static int __init cgroup_memory(char *s) 5729 { 5730 char *token; 5731 5732 while ((token = strsep(&s, ",")) != NULL) { 5733 if (!*token) 5734 continue; 5735 if (!strcmp(token, "nosocket")) 5736 cgroup_memory_nosocket = true; 5737 if (!strcmp(token, "nokmem")) 5738 cgroup_memory_nokmem = true; 5739 } 5740 return 0; 5741 } 5742 __setup("cgroup.memory=", cgroup_memory); 5743 5744 /* 5745 * subsys_initcall() for memory controller. 5746 * 5747 * Some parts like hotcpu_notifier() have to be initialized from this context 5748 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5749 * everything that doesn't depend on a specific mem_cgroup structure should 5750 * be initialized from here. 5751 */ 5752 static int __init mem_cgroup_init(void) 5753 { 5754 int cpu, node; 5755 5756 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5757 5758 for_each_possible_cpu(cpu) 5759 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5760 drain_local_stock); 5761 5762 for_each_node(node) { 5763 struct mem_cgroup_tree_per_node *rtpn; 5764 5765 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5766 node_online(node) ? node : NUMA_NO_NODE); 5767 5768 rtpn->rb_root = RB_ROOT; 5769 spin_lock_init(&rtpn->lock); 5770 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5771 } 5772 5773 return 0; 5774 } 5775 subsys_initcall(mem_cgroup_init); 5776 5777 #ifdef CONFIG_MEMCG_SWAP 5778 /** 5779 * mem_cgroup_swapout - transfer a memsw charge to swap 5780 * @page: page whose memsw charge to transfer 5781 * @entry: swap entry to move the charge to 5782 * 5783 * Transfer the memsw charge of @page to @entry. 5784 */ 5785 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5786 { 5787 struct mem_cgroup *memcg; 5788 unsigned short oldid; 5789 5790 VM_BUG_ON_PAGE(PageLRU(page), page); 5791 VM_BUG_ON_PAGE(page_count(page), page); 5792 5793 if (!do_memsw_account()) 5794 return; 5795 5796 memcg = page->mem_cgroup; 5797 5798 /* Readahead page, never charged */ 5799 if (!memcg) 5800 return; 5801 5802 mem_cgroup_id_get(memcg); 5803 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5804 VM_BUG_ON_PAGE(oldid, page); 5805 mem_cgroup_swap_statistics(memcg, true); 5806 5807 page->mem_cgroup = NULL; 5808 5809 if (!mem_cgroup_is_root(memcg)) 5810 page_counter_uncharge(&memcg->memory, 1); 5811 5812 /* 5813 * Interrupts should be disabled here because the caller holds the 5814 * mapping->tree_lock lock which is taken with interrupts-off. It is 5815 * important here to have the interrupts disabled because it is the 5816 * only synchronisation we have for udpating the per-CPU variables. 5817 */ 5818 VM_BUG_ON(!irqs_disabled()); 5819 mem_cgroup_charge_statistics(memcg, page, false, -1); 5820 memcg_check_events(memcg, page); 5821 5822 if (!mem_cgroup_is_root(memcg)) 5823 css_put(&memcg->css); 5824 } 5825 5826 /* 5827 * mem_cgroup_try_charge_swap - try charging a swap entry 5828 * @page: page being added to swap 5829 * @entry: swap entry to charge 5830 * 5831 * Try to charge @entry to the memcg that @page belongs to. 5832 * 5833 * Returns 0 on success, -ENOMEM on failure. 5834 */ 5835 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5836 { 5837 struct mem_cgroup *memcg; 5838 struct page_counter *counter; 5839 unsigned short oldid; 5840 5841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5842 return 0; 5843 5844 memcg = page->mem_cgroup; 5845 5846 /* Readahead page, never charged */ 5847 if (!memcg) 5848 return 0; 5849 5850 if (!mem_cgroup_is_root(memcg) && 5851 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5852 return -ENOMEM; 5853 5854 mem_cgroup_id_get(memcg); 5855 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5856 VM_BUG_ON_PAGE(oldid, page); 5857 mem_cgroup_swap_statistics(memcg, true); 5858 5859 return 0; 5860 } 5861 5862 /** 5863 * mem_cgroup_uncharge_swap - uncharge a swap entry 5864 * @entry: swap entry to uncharge 5865 * 5866 * Drop the swap charge associated with @entry. 5867 */ 5868 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5869 { 5870 struct mem_cgroup *memcg; 5871 unsigned short id; 5872 5873 if (!do_swap_account) 5874 return; 5875 5876 id = swap_cgroup_record(entry, 0); 5877 rcu_read_lock(); 5878 memcg = mem_cgroup_from_id(id); 5879 if (memcg) { 5880 if (!mem_cgroup_is_root(memcg)) { 5881 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5882 page_counter_uncharge(&memcg->swap, 1); 5883 else 5884 page_counter_uncharge(&memcg->memsw, 1); 5885 } 5886 mem_cgroup_swap_statistics(memcg, false); 5887 mem_cgroup_id_put(memcg); 5888 } 5889 rcu_read_unlock(); 5890 } 5891 5892 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5893 { 5894 long nr_swap_pages = get_nr_swap_pages(); 5895 5896 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5897 return nr_swap_pages; 5898 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5899 nr_swap_pages = min_t(long, nr_swap_pages, 5900 READ_ONCE(memcg->swap.limit) - 5901 page_counter_read(&memcg->swap)); 5902 return nr_swap_pages; 5903 } 5904 5905 bool mem_cgroup_swap_full(struct page *page) 5906 { 5907 struct mem_cgroup *memcg; 5908 5909 VM_BUG_ON_PAGE(!PageLocked(page), page); 5910 5911 if (vm_swap_full()) 5912 return true; 5913 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5914 return false; 5915 5916 memcg = page->mem_cgroup; 5917 if (!memcg) 5918 return false; 5919 5920 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5921 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5922 return true; 5923 5924 return false; 5925 } 5926 5927 /* for remember boot option*/ 5928 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5929 static int really_do_swap_account __initdata = 1; 5930 #else 5931 static int really_do_swap_account __initdata; 5932 #endif 5933 5934 static int __init enable_swap_account(char *s) 5935 { 5936 if (!strcmp(s, "1")) 5937 really_do_swap_account = 1; 5938 else if (!strcmp(s, "0")) 5939 really_do_swap_account = 0; 5940 return 1; 5941 } 5942 __setup("swapaccount=", enable_swap_account); 5943 5944 static u64 swap_current_read(struct cgroup_subsys_state *css, 5945 struct cftype *cft) 5946 { 5947 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5948 5949 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5950 } 5951 5952 static int swap_max_show(struct seq_file *m, void *v) 5953 { 5954 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5955 unsigned long max = READ_ONCE(memcg->swap.limit); 5956 5957 if (max == PAGE_COUNTER_MAX) 5958 seq_puts(m, "max\n"); 5959 else 5960 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5961 5962 return 0; 5963 } 5964 5965 static ssize_t swap_max_write(struct kernfs_open_file *of, 5966 char *buf, size_t nbytes, loff_t off) 5967 { 5968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5969 unsigned long max; 5970 int err; 5971 5972 buf = strstrip(buf); 5973 err = page_counter_memparse(buf, "max", &max); 5974 if (err) 5975 return err; 5976 5977 mutex_lock(&memcg_limit_mutex); 5978 err = page_counter_limit(&memcg->swap, max); 5979 mutex_unlock(&memcg_limit_mutex); 5980 if (err) 5981 return err; 5982 5983 return nbytes; 5984 } 5985 5986 static struct cftype swap_files[] = { 5987 { 5988 .name = "swap.current", 5989 .flags = CFTYPE_NOT_ON_ROOT, 5990 .read_u64 = swap_current_read, 5991 }, 5992 { 5993 .name = "swap.max", 5994 .flags = CFTYPE_NOT_ON_ROOT, 5995 .seq_show = swap_max_show, 5996 .write = swap_max_write, 5997 }, 5998 { } /* terminate */ 5999 }; 6000 6001 static struct cftype memsw_cgroup_files[] = { 6002 { 6003 .name = "memsw.usage_in_bytes", 6004 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6005 .read_u64 = mem_cgroup_read_u64, 6006 }, 6007 { 6008 .name = "memsw.max_usage_in_bytes", 6009 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6010 .write = mem_cgroup_reset, 6011 .read_u64 = mem_cgroup_read_u64, 6012 }, 6013 { 6014 .name = "memsw.limit_in_bytes", 6015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6016 .write = mem_cgroup_write, 6017 .read_u64 = mem_cgroup_read_u64, 6018 }, 6019 { 6020 .name = "memsw.failcnt", 6021 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6022 .write = mem_cgroup_reset, 6023 .read_u64 = mem_cgroup_read_u64, 6024 }, 6025 { }, /* terminate */ 6026 }; 6027 6028 static int __init mem_cgroup_swap_init(void) 6029 { 6030 if (!mem_cgroup_disabled() && really_do_swap_account) { 6031 do_swap_account = 1; 6032 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6033 swap_files)); 6034 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6035 memsw_cgroup_files)); 6036 } 6037 return 0; 6038 } 6039 subsys_initcall(mem_cgroup_swap_init); 6040 6041 #endif /* CONFIG_MEMCG_SWAP */ 6042