1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_zone { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree_per_node { 141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 142 }; 143 144 struct mem_cgroup_tree { 145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 146 }; 147 148 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 149 150 /* for OOM */ 151 struct mem_cgroup_eventfd_list { 152 struct list_head list; 153 struct eventfd_ctx *eventfd; 154 }; 155 156 /* 157 * cgroup_event represents events which userspace want to receive. 158 */ 159 struct mem_cgroup_event { 160 /* 161 * memcg which the event belongs to. 162 */ 163 struct mem_cgroup *memcg; 164 /* 165 * eventfd to signal userspace about the event. 166 */ 167 struct eventfd_ctx *eventfd; 168 /* 169 * Each of these stored in a list by the cgroup. 170 */ 171 struct list_head list; 172 /* 173 * register_event() callback will be used to add new userspace 174 * waiter for changes related to this event. Use eventfd_signal() 175 * on eventfd to send notification to userspace. 176 */ 177 int (*register_event)(struct mem_cgroup *memcg, 178 struct eventfd_ctx *eventfd, const char *args); 179 /* 180 * unregister_event() callback will be called when userspace closes 181 * the eventfd or on cgroup removing. This callback must be set, 182 * if you want provide notification functionality. 183 */ 184 void (*unregister_event)(struct mem_cgroup *memcg, 185 struct eventfd_ctx *eventfd); 186 /* 187 * All fields below needed to unregister event when 188 * userspace closes eventfd. 189 */ 190 poll_table pt; 191 wait_queue_head_t *wqh; 192 wait_queue_t wait; 193 struct work_struct remove; 194 }; 195 196 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 198 199 /* Stuffs for move charges at task migration. */ 200 /* 201 * Types of charges to be moved. 202 */ 203 #define MOVE_ANON 0x1U 204 #define MOVE_FILE 0x2U 205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 206 207 /* "mc" and its members are protected by cgroup_mutex */ 208 static struct move_charge_struct { 209 spinlock_t lock; /* for from, to */ 210 struct mm_struct *mm; 211 struct mem_cgroup *from; 212 struct mem_cgroup *to; 213 unsigned long flags; 214 unsigned long precharge; 215 unsigned long moved_charge; 216 unsigned long moved_swap; 217 struct task_struct *moving_task; /* a task moving charges */ 218 wait_queue_head_t waitq; /* a waitq for other context */ 219 } mc = { 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 222 }; 223 224 /* 225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 226 * limit reclaim to prevent infinite loops, if they ever occur. 227 */ 228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 230 231 enum charge_type { 232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 233 MEM_CGROUP_CHARGE_TYPE_ANON, 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 236 NR_CHARGE_TYPE, 237 }; 238 239 /* for encoding cft->private value on file */ 240 enum res_type { 241 _MEM, 242 _MEMSWAP, 243 _OOM_TYPE, 244 _KMEM, 245 _TCP, 246 }; 247 248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 250 #define MEMFILE_ATTR(val) ((val) & 0xffff) 251 /* Used for OOM nofiier */ 252 #define OOM_CONTROL (0) 253 254 /* Some nice accessors for the vmpressure. */ 255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 256 { 257 if (!memcg) 258 memcg = root_mem_cgroup; 259 return &memcg->vmpressure; 260 } 261 262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 263 { 264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 265 } 266 267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 268 { 269 return (memcg == root_mem_cgroup); 270 } 271 272 #ifndef CONFIG_SLOB 273 /* 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 275 * The main reason for not using cgroup id for this: 276 * this works better in sparse environments, where we have a lot of memcgs, 277 * but only a few kmem-limited. Or also, if we have, for instance, 200 278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 279 * 200 entry array for that. 280 * 281 * The current size of the caches array is stored in memcg_nr_cache_ids. It 282 * will double each time we have to increase it. 283 */ 284 static DEFINE_IDA(memcg_cache_ida); 285 int memcg_nr_cache_ids; 286 287 /* Protects memcg_nr_cache_ids */ 288 static DECLARE_RWSEM(memcg_cache_ids_sem); 289 290 void memcg_get_cache_ids(void) 291 { 292 down_read(&memcg_cache_ids_sem); 293 } 294 295 void memcg_put_cache_ids(void) 296 { 297 up_read(&memcg_cache_ids_sem); 298 } 299 300 /* 301 * MIN_SIZE is different than 1, because we would like to avoid going through 302 * the alloc/free process all the time. In a small machine, 4 kmem-limited 303 * cgroups is a reasonable guess. In the future, it could be a parameter or 304 * tunable, but that is strictly not necessary. 305 * 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 307 * this constant directly from cgroup, but it is understandable that this is 308 * better kept as an internal representation in cgroup.c. In any case, the 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily 310 * increase ours as well if it increases. 311 */ 312 #define MEMCG_CACHES_MIN_SIZE 4 313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 314 315 /* 316 * A lot of the calls to the cache allocation functions are expected to be 317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 318 * conditional to this static branch, we'll have to allow modules that does 319 * kmem_cache_alloc and the such to see this symbol as well 320 */ 321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 322 EXPORT_SYMBOL(memcg_kmem_enabled_key); 323 324 #endif /* !CONFIG_SLOB */ 325 326 static struct mem_cgroup_per_zone * 327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 328 { 329 int nid = zone_to_nid(zone); 330 int zid = zone_idx(zone); 331 332 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 333 } 334 335 /** 336 * mem_cgroup_css_from_page - css of the memcg associated with a page 337 * @page: page of interest 338 * 339 * If memcg is bound to the default hierarchy, css of the memcg associated 340 * with @page is returned. The returned css remains associated with @page 341 * until it is released. 342 * 343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 344 * is returned. 345 */ 346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 347 { 348 struct mem_cgroup *memcg; 349 350 memcg = page->mem_cgroup; 351 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 353 memcg = root_mem_cgroup; 354 355 return &memcg->css; 356 } 357 358 /** 359 * page_cgroup_ino - return inode number of the memcg a page is charged to 360 * @page: the page 361 * 362 * Look up the closest online ancestor of the memory cgroup @page is charged to 363 * and return its inode number or 0 if @page is not charged to any cgroup. It 364 * is safe to call this function without holding a reference to @page. 365 * 366 * Note, this function is inherently racy, because there is nothing to prevent 367 * the cgroup inode from getting torn down and potentially reallocated a moment 368 * after page_cgroup_ino() returns, so it only should be used by callers that 369 * do not care (such as procfs interfaces). 370 */ 371 ino_t page_cgroup_ino(struct page *page) 372 { 373 struct mem_cgroup *memcg; 374 unsigned long ino = 0; 375 376 rcu_read_lock(); 377 memcg = READ_ONCE(page->mem_cgroup); 378 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 379 memcg = parent_mem_cgroup(memcg); 380 if (memcg) 381 ino = cgroup_ino(memcg->css.cgroup); 382 rcu_read_unlock(); 383 return ino; 384 } 385 386 static struct mem_cgroup_per_zone * 387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 388 { 389 int nid = page_to_nid(page); 390 int zid = page_zonenum(page); 391 392 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 393 } 394 395 static struct mem_cgroup_tree_per_zone * 396 soft_limit_tree_node_zone(int nid, int zid) 397 { 398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 399 } 400 401 static struct mem_cgroup_tree_per_zone * 402 soft_limit_tree_from_page(struct page *page) 403 { 404 int nid = page_to_nid(page); 405 int zid = page_zonenum(page); 406 407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 408 } 409 410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 411 struct mem_cgroup_tree_per_zone *mctz, 412 unsigned long new_usage_in_excess) 413 { 414 struct rb_node **p = &mctz->rb_root.rb_node; 415 struct rb_node *parent = NULL; 416 struct mem_cgroup_per_zone *mz_node; 417 418 if (mz->on_tree) 419 return; 420 421 mz->usage_in_excess = new_usage_in_excess; 422 if (!mz->usage_in_excess) 423 return; 424 while (*p) { 425 parent = *p; 426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 427 tree_node); 428 if (mz->usage_in_excess < mz_node->usage_in_excess) 429 p = &(*p)->rb_left; 430 /* 431 * We can't avoid mem cgroups that are over their soft 432 * limit by the same amount 433 */ 434 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 435 p = &(*p)->rb_right; 436 } 437 rb_link_node(&mz->tree_node, parent, p); 438 rb_insert_color(&mz->tree_node, &mctz->rb_root); 439 mz->on_tree = true; 440 } 441 442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 443 struct mem_cgroup_tree_per_zone *mctz) 444 { 445 if (!mz->on_tree) 446 return; 447 rb_erase(&mz->tree_node, &mctz->rb_root); 448 mz->on_tree = false; 449 } 450 451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 452 struct mem_cgroup_tree_per_zone *mctz) 453 { 454 unsigned long flags; 455 456 spin_lock_irqsave(&mctz->lock, flags); 457 __mem_cgroup_remove_exceeded(mz, mctz); 458 spin_unlock_irqrestore(&mctz->lock, flags); 459 } 460 461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 462 { 463 unsigned long nr_pages = page_counter_read(&memcg->memory); 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 465 unsigned long excess = 0; 466 467 if (nr_pages > soft_limit) 468 excess = nr_pages - soft_limit; 469 470 return excess; 471 } 472 473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 474 { 475 unsigned long excess; 476 struct mem_cgroup_per_zone *mz; 477 struct mem_cgroup_tree_per_zone *mctz; 478 479 mctz = soft_limit_tree_from_page(page); 480 /* 481 * Necessary to update all ancestors when hierarchy is used. 482 * because their event counter is not touched. 483 */ 484 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 485 mz = mem_cgroup_page_zoneinfo(memcg, page); 486 excess = soft_limit_excess(memcg); 487 /* 488 * We have to update the tree if mz is on RB-tree or 489 * mem is over its softlimit. 490 */ 491 if (excess || mz->on_tree) { 492 unsigned long flags; 493 494 spin_lock_irqsave(&mctz->lock, flags); 495 /* if on-tree, remove it */ 496 if (mz->on_tree) 497 __mem_cgroup_remove_exceeded(mz, mctz); 498 /* 499 * Insert again. mz->usage_in_excess will be updated. 500 * If excess is 0, no tree ops. 501 */ 502 __mem_cgroup_insert_exceeded(mz, mctz, excess); 503 spin_unlock_irqrestore(&mctz->lock, flags); 504 } 505 } 506 } 507 508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 509 { 510 struct mem_cgroup_tree_per_zone *mctz; 511 struct mem_cgroup_per_zone *mz; 512 int nid, zid; 513 514 for_each_node(nid) { 515 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 517 mctz = soft_limit_tree_node_zone(nid, zid); 518 mem_cgroup_remove_exceeded(mz, mctz); 519 } 520 } 521 } 522 523 static struct mem_cgroup_per_zone * 524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 525 { 526 struct rb_node *rightmost = NULL; 527 struct mem_cgroup_per_zone *mz; 528 529 retry: 530 mz = NULL; 531 rightmost = rb_last(&mctz->rb_root); 532 if (!rightmost) 533 goto done; /* Nothing to reclaim from */ 534 535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 536 /* 537 * Remove the node now but someone else can add it back, 538 * we will to add it back at the end of reclaim to its correct 539 * position in the tree. 540 */ 541 __mem_cgroup_remove_exceeded(mz, mctz); 542 if (!soft_limit_excess(mz->memcg) || 543 !css_tryget_online(&mz->memcg->css)) 544 goto retry; 545 done: 546 return mz; 547 } 548 549 static struct mem_cgroup_per_zone * 550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 551 { 552 struct mem_cgroup_per_zone *mz; 553 554 spin_lock_irq(&mctz->lock); 555 mz = __mem_cgroup_largest_soft_limit_node(mctz); 556 spin_unlock_irq(&mctz->lock); 557 return mz; 558 } 559 560 /* 561 * Return page count for single (non recursive) @memcg. 562 * 563 * Implementation Note: reading percpu statistics for memcg. 564 * 565 * Both of vmstat[] and percpu_counter has threshold and do periodic 566 * synchronization to implement "quick" read. There are trade-off between 567 * reading cost and precision of value. Then, we may have a chance to implement 568 * a periodic synchronization of counter in memcg's counter. 569 * 570 * But this _read() function is used for user interface now. The user accounts 571 * memory usage by memory cgroup and he _always_ requires exact value because 572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 573 * have to visit all online cpus and make sum. So, for now, unnecessary 574 * synchronization is not implemented. (just implemented for cpu hotplug) 575 * 576 * If there are kernel internal actions which can make use of some not-exact 577 * value, and reading all cpu value can be performance bottleneck in some 578 * common workload, threshold and synchronization as vmstat[] should be 579 * implemented. 580 */ 581 static unsigned long 582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 583 { 584 long val = 0; 585 int cpu; 586 587 /* Per-cpu values can be negative, use a signed accumulator */ 588 for_each_possible_cpu(cpu) 589 val += per_cpu(memcg->stat->count[idx], cpu); 590 /* 591 * Summing races with updates, so val may be negative. Avoid exposing 592 * transient negative values. 593 */ 594 if (val < 0) 595 val = 0; 596 return val; 597 } 598 599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 600 enum mem_cgroup_events_index idx) 601 { 602 unsigned long val = 0; 603 int cpu; 604 605 for_each_possible_cpu(cpu) 606 val += per_cpu(memcg->stat->events[idx], cpu); 607 return val; 608 } 609 610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 611 struct page *page, 612 bool compound, int nr_pages) 613 { 614 /* 615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 616 * counted as CACHE even if it's on ANON LRU. 617 */ 618 if (PageAnon(page)) 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 620 nr_pages); 621 else 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 623 nr_pages); 624 625 if (compound) { 626 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 628 nr_pages); 629 } 630 631 /* pagein of a big page is an event. So, ignore page size */ 632 if (nr_pages > 0) 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 634 else { 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 636 nr_pages = -nr_pages; /* for event */ 637 } 638 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 640 } 641 642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 643 int nid, unsigned int lru_mask) 644 { 645 unsigned long nr = 0; 646 int zid; 647 648 VM_BUG_ON((unsigned)nid >= nr_node_ids); 649 650 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 651 struct mem_cgroup_per_zone *mz; 652 enum lru_list lru; 653 654 for_each_lru(lru) { 655 if (!(BIT(lru) & lru_mask)) 656 continue; 657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 658 nr += mz->lru_size[lru]; 659 } 660 } 661 return nr; 662 } 663 664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 665 unsigned int lru_mask) 666 { 667 unsigned long nr = 0; 668 int nid; 669 670 for_each_node_state(nid, N_MEMORY) 671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 672 return nr; 673 } 674 675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 676 enum mem_cgroup_events_target target) 677 { 678 unsigned long val, next; 679 680 val = __this_cpu_read(memcg->stat->nr_page_events); 681 next = __this_cpu_read(memcg->stat->targets[target]); 682 /* from time_after() in jiffies.h */ 683 if ((long)next - (long)val < 0) { 684 switch (target) { 685 case MEM_CGROUP_TARGET_THRESH: 686 next = val + THRESHOLDS_EVENTS_TARGET; 687 break; 688 case MEM_CGROUP_TARGET_SOFTLIMIT: 689 next = val + SOFTLIMIT_EVENTS_TARGET; 690 break; 691 case MEM_CGROUP_TARGET_NUMAINFO: 692 next = val + NUMAINFO_EVENTS_TARGET; 693 break; 694 default: 695 break; 696 } 697 __this_cpu_write(memcg->stat->targets[target], next); 698 return true; 699 } 700 return false; 701 } 702 703 /* 704 * Check events in order. 705 * 706 */ 707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 708 { 709 /* threshold event is triggered in finer grain than soft limit */ 710 if (unlikely(mem_cgroup_event_ratelimit(memcg, 711 MEM_CGROUP_TARGET_THRESH))) { 712 bool do_softlimit; 713 bool do_numainfo __maybe_unused; 714 715 do_softlimit = mem_cgroup_event_ratelimit(memcg, 716 MEM_CGROUP_TARGET_SOFTLIMIT); 717 #if MAX_NUMNODES > 1 718 do_numainfo = mem_cgroup_event_ratelimit(memcg, 719 MEM_CGROUP_TARGET_NUMAINFO); 720 #endif 721 mem_cgroup_threshold(memcg); 722 if (unlikely(do_softlimit)) 723 mem_cgroup_update_tree(memcg, page); 724 #if MAX_NUMNODES > 1 725 if (unlikely(do_numainfo)) 726 atomic_inc(&memcg->numainfo_events); 727 #endif 728 } 729 } 730 731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 732 { 733 /* 734 * mm_update_next_owner() may clear mm->owner to NULL 735 * if it races with swapoff, page migration, etc. 736 * So this can be called with p == NULL. 737 */ 738 if (unlikely(!p)) 739 return NULL; 740 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 742 } 743 EXPORT_SYMBOL(mem_cgroup_from_task); 744 745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 746 { 747 struct mem_cgroup *memcg = NULL; 748 749 rcu_read_lock(); 750 do { 751 /* 752 * Page cache insertions can happen withou an 753 * actual mm context, e.g. during disk probing 754 * on boot, loopback IO, acct() writes etc. 755 */ 756 if (unlikely(!mm)) 757 memcg = root_mem_cgroup; 758 else { 759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 760 if (unlikely(!memcg)) 761 memcg = root_mem_cgroup; 762 } 763 } while (!css_tryget_online(&memcg->css)); 764 rcu_read_unlock(); 765 return memcg; 766 } 767 768 /** 769 * mem_cgroup_iter - iterate over memory cgroup hierarchy 770 * @root: hierarchy root 771 * @prev: previously returned memcg, NULL on first invocation 772 * @reclaim: cookie for shared reclaim walks, NULL for full walks 773 * 774 * Returns references to children of the hierarchy below @root, or 775 * @root itself, or %NULL after a full round-trip. 776 * 777 * Caller must pass the return value in @prev on subsequent 778 * invocations for reference counting, or use mem_cgroup_iter_break() 779 * to cancel a hierarchy walk before the round-trip is complete. 780 * 781 * Reclaimers can specify a zone and a priority level in @reclaim to 782 * divide up the memcgs in the hierarchy among all concurrent 783 * reclaimers operating on the same zone and priority. 784 */ 785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 786 struct mem_cgroup *prev, 787 struct mem_cgroup_reclaim_cookie *reclaim) 788 { 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 790 struct cgroup_subsys_state *css = NULL; 791 struct mem_cgroup *memcg = NULL; 792 struct mem_cgroup *pos = NULL; 793 794 if (mem_cgroup_disabled()) 795 return NULL; 796 797 if (!root) 798 root = root_mem_cgroup; 799 800 if (prev && !reclaim) 801 pos = prev; 802 803 if (!root->use_hierarchy && root != root_mem_cgroup) { 804 if (prev) 805 goto out; 806 return root; 807 } 808 809 rcu_read_lock(); 810 811 if (reclaim) { 812 struct mem_cgroup_per_zone *mz; 813 814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 815 iter = &mz->iter[reclaim->priority]; 816 817 if (prev && reclaim->generation != iter->generation) 818 goto out_unlock; 819 820 while (1) { 821 pos = READ_ONCE(iter->position); 822 if (!pos || css_tryget(&pos->css)) 823 break; 824 /* 825 * css reference reached zero, so iter->position will 826 * be cleared by ->css_released. However, we should not 827 * rely on this happening soon, because ->css_released 828 * is called from a work queue, and by busy-waiting we 829 * might block it. So we clear iter->position right 830 * away. 831 */ 832 (void)cmpxchg(&iter->position, pos, NULL); 833 } 834 } 835 836 if (pos) 837 css = &pos->css; 838 839 for (;;) { 840 css = css_next_descendant_pre(css, &root->css); 841 if (!css) { 842 /* 843 * Reclaimers share the hierarchy walk, and a 844 * new one might jump in right at the end of 845 * the hierarchy - make sure they see at least 846 * one group and restart from the beginning. 847 */ 848 if (!prev) 849 continue; 850 break; 851 } 852 853 /* 854 * Verify the css and acquire a reference. The root 855 * is provided by the caller, so we know it's alive 856 * and kicking, and don't take an extra reference. 857 */ 858 memcg = mem_cgroup_from_css(css); 859 860 if (css == &root->css) 861 break; 862 863 if (css_tryget(css)) 864 break; 865 866 memcg = NULL; 867 } 868 869 if (reclaim) { 870 /* 871 * The position could have already been updated by a competing 872 * thread, so check that the value hasn't changed since we read 873 * it to avoid reclaiming from the same cgroup twice. 874 */ 875 (void)cmpxchg(&iter->position, pos, memcg); 876 877 if (pos) 878 css_put(&pos->css); 879 880 if (!memcg) 881 iter->generation++; 882 else if (!prev) 883 reclaim->generation = iter->generation; 884 } 885 886 out_unlock: 887 rcu_read_unlock(); 888 out: 889 if (prev && prev != root) 890 css_put(&prev->css); 891 892 return memcg; 893 } 894 895 /** 896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 897 * @root: hierarchy root 898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 899 */ 900 void mem_cgroup_iter_break(struct mem_cgroup *root, 901 struct mem_cgroup *prev) 902 { 903 if (!root) 904 root = root_mem_cgroup; 905 if (prev && prev != root) 906 css_put(&prev->css); 907 } 908 909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 910 { 911 struct mem_cgroup *memcg = dead_memcg; 912 struct mem_cgroup_reclaim_iter *iter; 913 struct mem_cgroup_per_zone *mz; 914 int nid, zid; 915 int i; 916 917 while ((memcg = parent_mem_cgroup(memcg))) { 918 for_each_node(nid) { 919 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 921 for (i = 0; i <= DEF_PRIORITY; i++) { 922 iter = &mz->iter[i]; 923 cmpxchg(&iter->position, 924 dead_memcg, NULL); 925 } 926 } 927 } 928 } 929 } 930 931 /* 932 * Iteration constructs for visiting all cgroups (under a tree). If 933 * loops are exited prematurely (break), mem_cgroup_iter_break() must 934 * be used for reference counting. 935 */ 936 #define for_each_mem_cgroup_tree(iter, root) \ 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 938 iter != NULL; \ 939 iter = mem_cgroup_iter(root, iter, NULL)) 940 941 #define for_each_mem_cgroup(iter) \ 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 943 iter != NULL; \ 944 iter = mem_cgroup_iter(NULL, iter, NULL)) 945 946 /** 947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 948 * @zone: zone of the wanted lruvec 949 * @memcg: memcg of the wanted lruvec 950 * 951 * Returns the lru list vector holding pages for the given @zone and 952 * @mem. This can be the global zone lruvec, if the memory controller 953 * is disabled. 954 */ 955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 956 struct mem_cgroup *memcg) 957 { 958 struct mem_cgroup_per_zone *mz; 959 struct lruvec *lruvec; 960 961 if (mem_cgroup_disabled()) { 962 lruvec = &zone->lruvec; 963 goto out; 964 } 965 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 967 lruvec = &mz->lruvec; 968 out: 969 /* 970 * Since a node can be onlined after the mem_cgroup was created, 971 * we have to be prepared to initialize lruvec->zone here; 972 * and if offlined then reonlined, we need to reinitialize it. 973 */ 974 if (unlikely(lruvec->zone != zone)) 975 lruvec->zone = zone; 976 return lruvec; 977 } 978 979 /** 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 981 * @page: the page 982 * @zone: zone of the page 983 * 984 * This function is only safe when following the LRU page isolation 985 * and putback protocol: the LRU lock must be held, and the page must 986 * either be PageLRU() or the caller must have isolated/allocated it. 987 */ 988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 989 { 990 struct mem_cgroup_per_zone *mz; 991 struct mem_cgroup *memcg; 992 struct lruvec *lruvec; 993 994 if (mem_cgroup_disabled()) { 995 lruvec = &zone->lruvec; 996 goto out; 997 } 998 999 memcg = page->mem_cgroup; 1000 /* 1001 * Swapcache readahead pages are added to the LRU - and 1002 * possibly migrated - before they are charged. 1003 */ 1004 if (!memcg) 1005 memcg = root_mem_cgroup; 1006 1007 mz = mem_cgroup_page_zoneinfo(memcg, page); 1008 lruvec = &mz->lruvec; 1009 out: 1010 /* 1011 * Since a node can be onlined after the mem_cgroup was created, 1012 * we have to be prepared to initialize lruvec->zone here; 1013 * and if offlined then reonlined, we need to reinitialize it. 1014 */ 1015 if (unlikely(lruvec->zone != zone)) 1016 lruvec->zone = zone; 1017 return lruvec; 1018 } 1019 1020 /** 1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1022 * @lruvec: mem_cgroup per zone lru vector 1023 * @lru: index of lru list the page is sitting on 1024 * @nr_pages: positive when adding or negative when removing 1025 * 1026 * This function must be called under lru_lock, just before a page is added 1027 * to or just after a page is removed from an lru list (that ordering being 1028 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1029 */ 1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1031 int nr_pages) 1032 { 1033 struct mem_cgroup_per_zone *mz; 1034 unsigned long *lru_size; 1035 long size; 1036 bool empty; 1037 1038 if (mem_cgroup_disabled()) 1039 return; 1040 1041 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1042 lru_size = mz->lru_size + lru; 1043 empty = list_empty(lruvec->lists + lru); 1044 1045 if (nr_pages < 0) 1046 *lru_size += nr_pages; 1047 1048 size = *lru_size; 1049 if (WARN_ONCE(size < 0 || empty != !size, 1050 "%s(%p, %d, %d): lru_size %ld but %sempty\n", 1051 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { 1052 VM_BUG_ON(1); 1053 *lru_size = 0; 1054 } 1055 1056 if (nr_pages > 0) 1057 *lru_size += nr_pages; 1058 } 1059 1060 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1061 { 1062 struct mem_cgroup *task_memcg; 1063 struct task_struct *p; 1064 bool ret; 1065 1066 p = find_lock_task_mm(task); 1067 if (p) { 1068 task_memcg = get_mem_cgroup_from_mm(p->mm); 1069 task_unlock(p); 1070 } else { 1071 /* 1072 * All threads may have already detached their mm's, but the oom 1073 * killer still needs to detect if they have already been oom 1074 * killed to prevent needlessly killing additional tasks. 1075 */ 1076 rcu_read_lock(); 1077 task_memcg = mem_cgroup_from_task(task); 1078 css_get(&task_memcg->css); 1079 rcu_read_unlock(); 1080 } 1081 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1082 css_put(&task_memcg->css); 1083 return ret; 1084 } 1085 1086 /** 1087 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1088 * @memcg: the memory cgroup 1089 * 1090 * Returns the maximum amount of memory @mem can be charged with, in 1091 * pages. 1092 */ 1093 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1094 { 1095 unsigned long margin = 0; 1096 unsigned long count; 1097 unsigned long limit; 1098 1099 count = page_counter_read(&memcg->memory); 1100 limit = READ_ONCE(memcg->memory.limit); 1101 if (count < limit) 1102 margin = limit - count; 1103 1104 if (do_memsw_account()) { 1105 count = page_counter_read(&memcg->memsw); 1106 limit = READ_ONCE(memcg->memsw.limit); 1107 if (count <= limit) 1108 margin = min(margin, limit - count); 1109 } 1110 1111 return margin; 1112 } 1113 1114 /* 1115 * A routine for checking "mem" is under move_account() or not. 1116 * 1117 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1118 * moving cgroups. This is for waiting at high-memory pressure 1119 * caused by "move". 1120 */ 1121 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1122 { 1123 struct mem_cgroup *from; 1124 struct mem_cgroup *to; 1125 bool ret = false; 1126 /* 1127 * Unlike task_move routines, we access mc.to, mc.from not under 1128 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1129 */ 1130 spin_lock(&mc.lock); 1131 from = mc.from; 1132 to = mc.to; 1133 if (!from) 1134 goto unlock; 1135 1136 ret = mem_cgroup_is_descendant(from, memcg) || 1137 mem_cgroup_is_descendant(to, memcg); 1138 unlock: 1139 spin_unlock(&mc.lock); 1140 return ret; 1141 } 1142 1143 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1144 { 1145 if (mc.moving_task && current != mc.moving_task) { 1146 if (mem_cgroup_under_move(memcg)) { 1147 DEFINE_WAIT(wait); 1148 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1149 /* moving charge context might have finished. */ 1150 if (mc.moving_task) 1151 schedule(); 1152 finish_wait(&mc.waitq, &wait); 1153 return true; 1154 } 1155 } 1156 return false; 1157 } 1158 1159 #define K(x) ((x) << (PAGE_SHIFT-10)) 1160 /** 1161 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1162 * @memcg: The memory cgroup that went over limit 1163 * @p: Task that is going to be killed 1164 * 1165 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1166 * enabled 1167 */ 1168 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1169 { 1170 struct mem_cgroup *iter; 1171 unsigned int i; 1172 1173 rcu_read_lock(); 1174 1175 if (p) { 1176 pr_info("Task in "); 1177 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1178 pr_cont(" killed as a result of limit of "); 1179 } else { 1180 pr_info("Memory limit reached of cgroup "); 1181 } 1182 1183 pr_cont_cgroup_path(memcg->css.cgroup); 1184 pr_cont("\n"); 1185 1186 rcu_read_unlock(); 1187 1188 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1189 K((u64)page_counter_read(&memcg->memory)), 1190 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1191 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1192 K((u64)page_counter_read(&memcg->memsw)), 1193 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1194 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1195 K((u64)page_counter_read(&memcg->kmem)), 1196 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1197 1198 for_each_mem_cgroup_tree(iter, memcg) { 1199 pr_info("Memory cgroup stats for "); 1200 pr_cont_cgroup_path(iter->css.cgroup); 1201 pr_cont(":"); 1202 1203 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1204 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1205 continue; 1206 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1207 K(mem_cgroup_read_stat(iter, i))); 1208 } 1209 1210 for (i = 0; i < NR_LRU_LISTS; i++) 1211 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1212 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1213 1214 pr_cont("\n"); 1215 } 1216 } 1217 1218 /* 1219 * This function returns the number of memcg under hierarchy tree. Returns 1220 * 1(self count) if no children. 1221 */ 1222 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1223 { 1224 int num = 0; 1225 struct mem_cgroup *iter; 1226 1227 for_each_mem_cgroup_tree(iter, memcg) 1228 num++; 1229 return num; 1230 } 1231 1232 /* 1233 * Return the memory (and swap, if configured) limit for a memcg. 1234 */ 1235 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1236 { 1237 unsigned long limit; 1238 1239 limit = memcg->memory.limit; 1240 if (mem_cgroup_swappiness(memcg)) { 1241 unsigned long memsw_limit; 1242 unsigned long swap_limit; 1243 1244 memsw_limit = memcg->memsw.limit; 1245 swap_limit = memcg->swap.limit; 1246 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1247 limit = min(limit + swap_limit, memsw_limit); 1248 } 1249 return limit; 1250 } 1251 1252 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1253 int order) 1254 { 1255 struct oom_control oc = { 1256 .zonelist = NULL, 1257 .nodemask = NULL, 1258 .gfp_mask = gfp_mask, 1259 .order = order, 1260 }; 1261 struct mem_cgroup *iter; 1262 unsigned long chosen_points = 0; 1263 unsigned long totalpages; 1264 unsigned int points = 0; 1265 struct task_struct *chosen = NULL; 1266 1267 mutex_lock(&oom_lock); 1268 1269 /* 1270 * If current has a pending SIGKILL or is exiting, then automatically 1271 * select it. The goal is to allow it to allocate so that it may 1272 * quickly exit and free its memory. 1273 */ 1274 if (fatal_signal_pending(current) || task_will_free_mem(current)) { 1275 mark_oom_victim(current); 1276 goto unlock; 1277 } 1278 1279 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg); 1280 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1281 for_each_mem_cgroup_tree(iter, memcg) { 1282 struct css_task_iter it; 1283 struct task_struct *task; 1284 1285 css_task_iter_start(&iter->css, &it); 1286 while ((task = css_task_iter_next(&it))) { 1287 switch (oom_scan_process_thread(&oc, task, totalpages)) { 1288 case OOM_SCAN_SELECT: 1289 if (chosen) 1290 put_task_struct(chosen); 1291 chosen = task; 1292 chosen_points = ULONG_MAX; 1293 get_task_struct(chosen); 1294 /* fall through */ 1295 case OOM_SCAN_CONTINUE: 1296 continue; 1297 case OOM_SCAN_ABORT: 1298 css_task_iter_end(&it); 1299 mem_cgroup_iter_break(memcg, iter); 1300 if (chosen) 1301 put_task_struct(chosen); 1302 goto unlock; 1303 case OOM_SCAN_OK: 1304 break; 1305 }; 1306 points = oom_badness(task, memcg, NULL, totalpages); 1307 if (!points || points < chosen_points) 1308 continue; 1309 /* Prefer thread group leaders for display purposes */ 1310 if (points == chosen_points && 1311 thread_group_leader(chosen)) 1312 continue; 1313 1314 if (chosen) 1315 put_task_struct(chosen); 1316 chosen = task; 1317 chosen_points = points; 1318 get_task_struct(chosen); 1319 } 1320 css_task_iter_end(&it); 1321 } 1322 1323 if (chosen) { 1324 points = chosen_points * 1000 / totalpages; 1325 oom_kill_process(&oc, chosen, points, totalpages, memcg, 1326 "Memory cgroup out of memory"); 1327 } 1328 unlock: 1329 mutex_unlock(&oom_lock); 1330 return chosen; 1331 } 1332 1333 #if MAX_NUMNODES > 1 1334 1335 /** 1336 * test_mem_cgroup_node_reclaimable 1337 * @memcg: the target memcg 1338 * @nid: the node ID to be checked. 1339 * @noswap : specify true here if the user wants flle only information. 1340 * 1341 * This function returns whether the specified memcg contains any 1342 * reclaimable pages on a node. Returns true if there are any reclaimable 1343 * pages in the node. 1344 */ 1345 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1346 int nid, bool noswap) 1347 { 1348 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1349 return true; 1350 if (noswap || !total_swap_pages) 1351 return false; 1352 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1353 return true; 1354 return false; 1355 1356 } 1357 1358 /* 1359 * Always updating the nodemask is not very good - even if we have an empty 1360 * list or the wrong list here, we can start from some node and traverse all 1361 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1362 * 1363 */ 1364 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1365 { 1366 int nid; 1367 /* 1368 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1369 * pagein/pageout changes since the last update. 1370 */ 1371 if (!atomic_read(&memcg->numainfo_events)) 1372 return; 1373 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1374 return; 1375 1376 /* make a nodemask where this memcg uses memory from */ 1377 memcg->scan_nodes = node_states[N_MEMORY]; 1378 1379 for_each_node_mask(nid, node_states[N_MEMORY]) { 1380 1381 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1382 node_clear(nid, memcg->scan_nodes); 1383 } 1384 1385 atomic_set(&memcg->numainfo_events, 0); 1386 atomic_set(&memcg->numainfo_updating, 0); 1387 } 1388 1389 /* 1390 * Selecting a node where we start reclaim from. Because what we need is just 1391 * reducing usage counter, start from anywhere is O,K. Considering 1392 * memory reclaim from current node, there are pros. and cons. 1393 * 1394 * Freeing memory from current node means freeing memory from a node which 1395 * we'll use or we've used. So, it may make LRU bad. And if several threads 1396 * hit limits, it will see a contention on a node. But freeing from remote 1397 * node means more costs for memory reclaim because of memory latency. 1398 * 1399 * Now, we use round-robin. Better algorithm is welcomed. 1400 */ 1401 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1402 { 1403 int node; 1404 1405 mem_cgroup_may_update_nodemask(memcg); 1406 node = memcg->last_scanned_node; 1407 1408 node = next_node_in(node, memcg->scan_nodes); 1409 /* 1410 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1411 * last time it really checked all the LRUs due to rate limiting. 1412 * Fallback to the current node in that case for simplicity. 1413 */ 1414 if (unlikely(node == MAX_NUMNODES)) 1415 node = numa_node_id(); 1416 1417 memcg->last_scanned_node = node; 1418 return node; 1419 } 1420 #else 1421 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1422 { 1423 return 0; 1424 } 1425 #endif 1426 1427 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1428 struct zone *zone, 1429 gfp_t gfp_mask, 1430 unsigned long *total_scanned) 1431 { 1432 struct mem_cgroup *victim = NULL; 1433 int total = 0; 1434 int loop = 0; 1435 unsigned long excess; 1436 unsigned long nr_scanned; 1437 struct mem_cgroup_reclaim_cookie reclaim = { 1438 .zone = zone, 1439 .priority = 0, 1440 }; 1441 1442 excess = soft_limit_excess(root_memcg); 1443 1444 while (1) { 1445 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1446 if (!victim) { 1447 loop++; 1448 if (loop >= 2) { 1449 /* 1450 * If we have not been able to reclaim 1451 * anything, it might because there are 1452 * no reclaimable pages under this hierarchy 1453 */ 1454 if (!total) 1455 break; 1456 /* 1457 * We want to do more targeted reclaim. 1458 * excess >> 2 is not to excessive so as to 1459 * reclaim too much, nor too less that we keep 1460 * coming back to reclaim from this cgroup 1461 */ 1462 if (total >= (excess >> 2) || 1463 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1464 break; 1465 } 1466 continue; 1467 } 1468 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1469 zone, &nr_scanned); 1470 *total_scanned += nr_scanned; 1471 if (!soft_limit_excess(root_memcg)) 1472 break; 1473 } 1474 mem_cgroup_iter_break(root_memcg, victim); 1475 return total; 1476 } 1477 1478 #ifdef CONFIG_LOCKDEP 1479 static struct lockdep_map memcg_oom_lock_dep_map = { 1480 .name = "memcg_oom_lock", 1481 }; 1482 #endif 1483 1484 static DEFINE_SPINLOCK(memcg_oom_lock); 1485 1486 /* 1487 * Check OOM-Killer is already running under our hierarchy. 1488 * If someone is running, return false. 1489 */ 1490 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1491 { 1492 struct mem_cgroup *iter, *failed = NULL; 1493 1494 spin_lock(&memcg_oom_lock); 1495 1496 for_each_mem_cgroup_tree(iter, memcg) { 1497 if (iter->oom_lock) { 1498 /* 1499 * this subtree of our hierarchy is already locked 1500 * so we cannot give a lock. 1501 */ 1502 failed = iter; 1503 mem_cgroup_iter_break(memcg, iter); 1504 break; 1505 } else 1506 iter->oom_lock = true; 1507 } 1508 1509 if (failed) { 1510 /* 1511 * OK, we failed to lock the whole subtree so we have 1512 * to clean up what we set up to the failing subtree 1513 */ 1514 for_each_mem_cgroup_tree(iter, memcg) { 1515 if (iter == failed) { 1516 mem_cgroup_iter_break(memcg, iter); 1517 break; 1518 } 1519 iter->oom_lock = false; 1520 } 1521 } else 1522 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1523 1524 spin_unlock(&memcg_oom_lock); 1525 1526 return !failed; 1527 } 1528 1529 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1530 { 1531 struct mem_cgroup *iter; 1532 1533 spin_lock(&memcg_oom_lock); 1534 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1535 for_each_mem_cgroup_tree(iter, memcg) 1536 iter->oom_lock = false; 1537 spin_unlock(&memcg_oom_lock); 1538 } 1539 1540 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1541 { 1542 struct mem_cgroup *iter; 1543 1544 spin_lock(&memcg_oom_lock); 1545 for_each_mem_cgroup_tree(iter, memcg) 1546 iter->under_oom++; 1547 spin_unlock(&memcg_oom_lock); 1548 } 1549 1550 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1551 { 1552 struct mem_cgroup *iter; 1553 1554 /* 1555 * When a new child is created while the hierarchy is under oom, 1556 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1557 */ 1558 spin_lock(&memcg_oom_lock); 1559 for_each_mem_cgroup_tree(iter, memcg) 1560 if (iter->under_oom > 0) 1561 iter->under_oom--; 1562 spin_unlock(&memcg_oom_lock); 1563 } 1564 1565 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1566 1567 struct oom_wait_info { 1568 struct mem_cgroup *memcg; 1569 wait_queue_t wait; 1570 }; 1571 1572 static int memcg_oom_wake_function(wait_queue_t *wait, 1573 unsigned mode, int sync, void *arg) 1574 { 1575 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1576 struct mem_cgroup *oom_wait_memcg; 1577 struct oom_wait_info *oom_wait_info; 1578 1579 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1580 oom_wait_memcg = oom_wait_info->memcg; 1581 1582 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1583 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1584 return 0; 1585 return autoremove_wake_function(wait, mode, sync, arg); 1586 } 1587 1588 static void memcg_oom_recover(struct mem_cgroup *memcg) 1589 { 1590 /* 1591 * For the following lockless ->under_oom test, the only required 1592 * guarantee is that it must see the state asserted by an OOM when 1593 * this function is called as a result of userland actions 1594 * triggered by the notification of the OOM. This is trivially 1595 * achieved by invoking mem_cgroup_mark_under_oom() before 1596 * triggering notification. 1597 */ 1598 if (memcg && memcg->under_oom) 1599 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1600 } 1601 1602 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1603 { 1604 if (!current->memcg_may_oom) 1605 return; 1606 /* 1607 * We are in the middle of the charge context here, so we 1608 * don't want to block when potentially sitting on a callstack 1609 * that holds all kinds of filesystem and mm locks. 1610 * 1611 * Also, the caller may handle a failed allocation gracefully 1612 * (like optional page cache readahead) and so an OOM killer 1613 * invocation might not even be necessary. 1614 * 1615 * That's why we don't do anything here except remember the 1616 * OOM context and then deal with it at the end of the page 1617 * fault when the stack is unwound, the locks are released, 1618 * and when we know whether the fault was overall successful. 1619 */ 1620 css_get(&memcg->css); 1621 current->memcg_in_oom = memcg; 1622 current->memcg_oom_gfp_mask = mask; 1623 current->memcg_oom_order = order; 1624 } 1625 1626 /** 1627 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1628 * @handle: actually kill/wait or just clean up the OOM state 1629 * 1630 * This has to be called at the end of a page fault if the memcg OOM 1631 * handler was enabled. 1632 * 1633 * Memcg supports userspace OOM handling where failed allocations must 1634 * sleep on a waitqueue until the userspace task resolves the 1635 * situation. Sleeping directly in the charge context with all kinds 1636 * of locks held is not a good idea, instead we remember an OOM state 1637 * in the task and mem_cgroup_oom_synchronize() has to be called at 1638 * the end of the page fault to complete the OOM handling. 1639 * 1640 * Returns %true if an ongoing memcg OOM situation was detected and 1641 * completed, %false otherwise. 1642 */ 1643 bool mem_cgroup_oom_synchronize(bool handle) 1644 { 1645 struct mem_cgroup *memcg = current->memcg_in_oom; 1646 struct oom_wait_info owait; 1647 bool locked; 1648 1649 /* OOM is global, do not handle */ 1650 if (!memcg) 1651 return false; 1652 1653 if (!handle || oom_killer_disabled) 1654 goto cleanup; 1655 1656 owait.memcg = memcg; 1657 owait.wait.flags = 0; 1658 owait.wait.func = memcg_oom_wake_function; 1659 owait.wait.private = current; 1660 INIT_LIST_HEAD(&owait.wait.task_list); 1661 1662 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1663 mem_cgroup_mark_under_oom(memcg); 1664 1665 locked = mem_cgroup_oom_trylock(memcg); 1666 1667 if (locked) 1668 mem_cgroup_oom_notify(memcg); 1669 1670 if (locked && !memcg->oom_kill_disable) { 1671 mem_cgroup_unmark_under_oom(memcg); 1672 finish_wait(&memcg_oom_waitq, &owait.wait); 1673 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1674 current->memcg_oom_order); 1675 } else { 1676 schedule(); 1677 mem_cgroup_unmark_under_oom(memcg); 1678 finish_wait(&memcg_oom_waitq, &owait.wait); 1679 } 1680 1681 if (locked) { 1682 mem_cgroup_oom_unlock(memcg); 1683 /* 1684 * There is no guarantee that an OOM-lock contender 1685 * sees the wakeups triggered by the OOM kill 1686 * uncharges. Wake any sleepers explicitely. 1687 */ 1688 memcg_oom_recover(memcg); 1689 } 1690 cleanup: 1691 current->memcg_in_oom = NULL; 1692 css_put(&memcg->css); 1693 return true; 1694 } 1695 1696 /** 1697 * lock_page_memcg - lock a page->mem_cgroup binding 1698 * @page: the page 1699 * 1700 * This function protects unlocked LRU pages from being moved to 1701 * another cgroup and stabilizes their page->mem_cgroup binding. 1702 */ 1703 void lock_page_memcg(struct page *page) 1704 { 1705 struct mem_cgroup *memcg; 1706 unsigned long flags; 1707 1708 /* 1709 * The RCU lock is held throughout the transaction. The fast 1710 * path can get away without acquiring the memcg->move_lock 1711 * because page moving starts with an RCU grace period. 1712 */ 1713 rcu_read_lock(); 1714 1715 if (mem_cgroup_disabled()) 1716 return; 1717 again: 1718 memcg = page->mem_cgroup; 1719 if (unlikely(!memcg)) 1720 return; 1721 1722 if (atomic_read(&memcg->moving_account) <= 0) 1723 return; 1724 1725 spin_lock_irqsave(&memcg->move_lock, flags); 1726 if (memcg != page->mem_cgroup) { 1727 spin_unlock_irqrestore(&memcg->move_lock, flags); 1728 goto again; 1729 } 1730 1731 /* 1732 * When charge migration first begins, we can have locked and 1733 * unlocked page stat updates happening concurrently. Track 1734 * the task who has the lock for unlock_page_memcg(). 1735 */ 1736 memcg->move_lock_task = current; 1737 memcg->move_lock_flags = flags; 1738 1739 return; 1740 } 1741 EXPORT_SYMBOL(lock_page_memcg); 1742 1743 /** 1744 * unlock_page_memcg - unlock a page->mem_cgroup binding 1745 * @page: the page 1746 */ 1747 void unlock_page_memcg(struct page *page) 1748 { 1749 struct mem_cgroup *memcg = page->mem_cgroup; 1750 1751 if (memcg && memcg->move_lock_task == current) { 1752 unsigned long flags = memcg->move_lock_flags; 1753 1754 memcg->move_lock_task = NULL; 1755 memcg->move_lock_flags = 0; 1756 1757 spin_unlock_irqrestore(&memcg->move_lock, flags); 1758 } 1759 1760 rcu_read_unlock(); 1761 } 1762 EXPORT_SYMBOL(unlock_page_memcg); 1763 1764 /* 1765 * size of first charge trial. "32" comes from vmscan.c's magic value. 1766 * TODO: maybe necessary to use big numbers in big irons. 1767 */ 1768 #define CHARGE_BATCH 32U 1769 struct memcg_stock_pcp { 1770 struct mem_cgroup *cached; /* this never be root cgroup */ 1771 unsigned int nr_pages; 1772 struct work_struct work; 1773 unsigned long flags; 1774 #define FLUSHING_CACHED_CHARGE 0 1775 }; 1776 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1777 static DEFINE_MUTEX(percpu_charge_mutex); 1778 1779 /** 1780 * consume_stock: Try to consume stocked charge on this cpu. 1781 * @memcg: memcg to consume from. 1782 * @nr_pages: how many pages to charge. 1783 * 1784 * The charges will only happen if @memcg matches the current cpu's memcg 1785 * stock, and at least @nr_pages are available in that stock. Failure to 1786 * service an allocation will refill the stock. 1787 * 1788 * returns true if successful, false otherwise. 1789 */ 1790 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1791 { 1792 struct memcg_stock_pcp *stock; 1793 bool ret = false; 1794 1795 if (nr_pages > CHARGE_BATCH) 1796 return ret; 1797 1798 stock = &get_cpu_var(memcg_stock); 1799 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1800 stock->nr_pages -= nr_pages; 1801 ret = true; 1802 } 1803 put_cpu_var(memcg_stock); 1804 return ret; 1805 } 1806 1807 /* 1808 * Returns stocks cached in percpu and reset cached information. 1809 */ 1810 static void drain_stock(struct memcg_stock_pcp *stock) 1811 { 1812 struct mem_cgroup *old = stock->cached; 1813 1814 if (stock->nr_pages) { 1815 page_counter_uncharge(&old->memory, stock->nr_pages); 1816 if (do_memsw_account()) 1817 page_counter_uncharge(&old->memsw, stock->nr_pages); 1818 css_put_many(&old->css, stock->nr_pages); 1819 stock->nr_pages = 0; 1820 } 1821 stock->cached = NULL; 1822 } 1823 1824 /* 1825 * This must be called under preempt disabled or must be called by 1826 * a thread which is pinned to local cpu. 1827 */ 1828 static void drain_local_stock(struct work_struct *dummy) 1829 { 1830 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1831 drain_stock(stock); 1832 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1833 } 1834 1835 /* 1836 * Cache charges(val) to local per_cpu area. 1837 * This will be consumed by consume_stock() function, later. 1838 */ 1839 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1840 { 1841 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1842 1843 if (stock->cached != memcg) { /* reset if necessary */ 1844 drain_stock(stock); 1845 stock->cached = memcg; 1846 } 1847 stock->nr_pages += nr_pages; 1848 put_cpu_var(memcg_stock); 1849 } 1850 1851 /* 1852 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1853 * of the hierarchy under it. 1854 */ 1855 static void drain_all_stock(struct mem_cgroup *root_memcg) 1856 { 1857 int cpu, curcpu; 1858 1859 /* If someone's already draining, avoid adding running more workers. */ 1860 if (!mutex_trylock(&percpu_charge_mutex)) 1861 return; 1862 /* Notify other cpus that system-wide "drain" is running */ 1863 get_online_cpus(); 1864 curcpu = get_cpu(); 1865 for_each_online_cpu(cpu) { 1866 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1867 struct mem_cgroup *memcg; 1868 1869 memcg = stock->cached; 1870 if (!memcg || !stock->nr_pages) 1871 continue; 1872 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1873 continue; 1874 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1875 if (cpu == curcpu) 1876 drain_local_stock(&stock->work); 1877 else 1878 schedule_work_on(cpu, &stock->work); 1879 } 1880 } 1881 put_cpu(); 1882 put_online_cpus(); 1883 mutex_unlock(&percpu_charge_mutex); 1884 } 1885 1886 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1887 unsigned long action, 1888 void *hcpu) 1889 { 1890 int cpu = (unsigned long)hcpu; 1891 struct memcg_stock_pcp *stock; 1892 1893 if (action == CPU_ONLINE) 1894 return NOTIFY_OK; 1895 1896 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1897 return NOTIFY_OK; 1898 1899 stock = &per_cpu(memcg_stock, cpu); 1900 drain_stock(stock); 1901 return NOTIFY_OK; 1902 } 1903 1904 static void reclaim_high(struct mem_cgroup *memcg, 1905 unsigned int nr_pages, 1906 gfp_t gfp_mask) 1907 { 1908 do { 1909 if (page_counter_read(&memcg->memory) <= memcg->high) 1910 continue; 1911 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1912 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1913 } while ((memcg = parent_mem_cgroup(memcg))); 1914 } 1915 1916 static void high_work_func(struct work_struct *work) 1917 { 1918 struct mem_cgroup *memcg; 1919 1920 memcg = container_of(work, struct mem_cgroup, high_work); 1921 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1922 } 1923 1924 /* 1925 * Scheduled by try_charge() to be executed from the userland return path 1926 * and reclaims memory over the high limit. 1927 */ 1928 void mem_cgroup_handle_over_high(void) 1929 { 1930 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1931 struct mem_cgroup *memcg; 1932 1933 if (likely(!nr_pages)) 1934 return; 1935 1936 memcg = get_mem_cgroup_from_mm(current->mm); 1937 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1938 css_put(&memcg->css); 1939 current->memcg_nr_pages_over_high = 0; 1940 } 1941 1942 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1943 unsigned int nr_pages) 1944 { 1945 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1946 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1947 struct mem_cgroup *mem_over_limit; 1948 struct page_counter *counter; 1949 unsigned long nr_reclaimed; 1950 bool may_swap = true; 1951 bool drained = false; 1952 1953 if (mem_cgroup_is_root(memcg)) 1954 return 0; 1955 retry: 1956 if (consume_stock(memcg, nr_pages)) 1957 return 0; 1958 1959 if (!do_memsw_account() || 1960 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1961 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1962 goto done_restock; 1963 if (do_memsw_account()) 1964 page_counter_uncharge(&memcg->memsw, batch); 1965 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1966 } else { 1967 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1968 may_swap = false; 1969 } 1970 1971 if (batch > nr_pages) { 1972 batch = nr_pages; 1973 goto retry; 1974 } 1975 1976 /* 1977 * Unlike in global OOM situations, memcg is not in a physical 1978 * memory shortage. Allow dying and OOM-killed tasks to 1979 * bypass the last charges so that they can exit quickly and 1980 * free their memory. 1981 */ 1982 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1983 fatal_signal_pending(current) || 1984 current->flags & PF_EXITING)) 1985 goto force; 1986 1987 if (unlikely(task_in_memcg_oom(current))) 1988 goto nomem; 1989 1990 if (!gfpflags_allow_blocking(gfp_mask)) 1991 goto nomem; 1992 1993 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1994 1995 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1996 gfp_mask, may_swap); 1997 1998 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1999 goto retry; 2000 2001 if (!drained) { 2002 drain_all_stock(mem_over_limit); 2003 drained = true; 2004 goto retry; 2005 } 2006 2007 if (gfp_mask & __GFP_NORETRY) 2008 goto nomem; 2009 /* 2010 * Even though the limit is exceeded at this point, reclaim 2011 * may have been able to free some pages. Retry the charge 2012 * before killing the task. 2013 * 2014 * Only for regular pages, though: huge pages are rather 2015 * unlikely to succeed so close to the limit, and we fall back 2016 * to regular pages anyway in case of failure. 2017 */ 2018 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2019 goto retry; 2020 /* 2021 * At task move, charge accounts can be doubly counted. So, it's 2022 * better to wait until the end of task_move if something is going on. 2023 */ 2024 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2025 goto retry; 2026 2027 if (nr_retries--) 2028 goto retry; 2029 2030 if (gfp_mask & __GFP_NOFAIL) 2031 goto force; 2032 2033 if (fatal_signal_pending(current)) 2034 goto force; 2035 2036 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2037 2038 mem_cgroup_oom(mem_over_limit, gfp_mask, 2039 get_order(nr_pages * PAGE_SIZE)); 2040 nomem: 2041 if (!(gfp_mask & __GFP_NOFAIL)) 2042 return -ENOMEM; 2043 force: 2044 /* 2045 * The allocation either can't fail or will lead to more memory 2046 * being freed very soon. Allow memory usage go over the limit 2047 * temporarily by force charging it. 2048 */ 2049 page_counter_charge(&memcg->memory, nr_pages); 2050 if (do_memsw_account()) 2051 page_counter_charge(&memcg->memsw, nr_pages); 2052 css_get_many(&memcg->css, nr_pages); 2053 2054 return 0; 2055 2056 done_restock: 2057 css_get_many(&memcg->css, batch); 2058 if (batch > nr_pages) 2059 refill_stock(memcg, batch - nr_pages); 2060 2061 /* 2062 * If the hierarchy is above the normal consumption range, schedule 2063 * reclaim on returning to userland. We can perform reclaim here 2064 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2065 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2066 * not recorded as it most likely matches current's and won't 2067 * change in the meantime. As high limit is checked again before 2068 * reclaim, the cost of mismatch is negligible. 2069 */ 2070 do { 2071 if (page_counter_read(&memcg->memory) > memcg->high) { 2072 /* Don't bother a random interrupted task */ 2073 if (in_interrupt()) { 2074 schedule_work(&memcg->high_work); 2075 break; 2076 } 2077 current->memcg_nr_pages_over_high += batch; 2078 set_notify_resume(current); 2079 break; 2080 } 2081 } while ((memcg = parent_mem_cgroup(memcg))); 2082 2083 return 0; 2084 } 2085 2086 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2087 { 2088 if (mem_cgroup_is_root(memcg)) 2089 return; 2090 2091 page_counter_uncharge(&memcg->memory, nr_pages); 2092 if (do_memsw_account()) 2093 page_counter_uncharge(&memcg->memsw, nr_pages); 2094 2095 css_put_many(&memcg->css, nr_pages); 2096 } 2097 2098 static void lock_page_lru(struct page *page, int *isolated) 2099 { 2100 struct zone *zone = page_zone(page); 2101 2102 spin_lock_irq(&zone->lru_lock); 2103 if (PageLRU(page)) { 2104 struct lruvec *lruvec; 2105 2106 lruvec = mem_cgroup_page_lruvec(page, zone); 2107 ClearPageLRU(page); 2108 del_page_from_lru_list(page, lruvec, page_lru(page)); 2109 *isolated = 1; 2110 } else 2111 *isolated = 0; 2112 } 2113 2114 static void unlock_page_lru(struct page *page, int isolated) 2115 { 2116 struct zone *zone = page_zone(page); 2117 2118 if (isolated) { 2119 struct lruvec *lruvec; 2120 2121 lruvec = mem_cgroup_page_lruvec(page, zone); 2122 VM_BUG_ON_PAGE(PageLRU(page), page); 2123 SetPageLRU(page); 2124 add_page_to_lru_list(page, lruvec, page_lru(page)); 2125 } 2126 spin_unlock_irq(&zone->lru_lock); 2127 } 2128 2129 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2130 bool lrucare) 2131 { 2132 int isolated; 2133 2134 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2135 2136 /* 2137 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2138 * may already be on some other mem_cgroup's LRU. Take care of it. 2139 */ 2140 if (lrucare) 2141 lock_page_lru(page, &isolated); 2142 2143 /* 2144 * Nobody should be changing or seriously looking at 2145 * page->mem_cgroup at this point: 2146 * 2147 * - the page is uncharged 2148 * 2149 * - the page is off-LRU 2150 * 2151 * - an anonymous fault has exclusive page access, except for 2152 * a locked page table 2153 * 2154 * - a page cache insertion, a swapin fault, or a migration 2155 * have the page locked 2156 */ 2157 page->mem_cgroup = memcg; 2158 2159 if (lrucare) 2160 unlock_page_lru(page, isolated); 2161 } 2162 2163 #ifndef CONFIG_SLOB 2164 static int memcg_alloc_cache_id(void) 2165 { 2166 int id, size; 2167 int err; 2168 2169 id = ida_simple_get(&memcg_cache_ida, 2170 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2171 if (id < 0) 2172 return id; 2173 2174 if (id < memcg_nr_cache_ids) 2175 return id; 2176 2177 /* 2178 * There's no space for the new id in memcg_caches arrays, 2179 * so we have to grow them. 2180 */ 2181 down_write(&memcg_cache_ids_sem); 2182 2183 size = 2 * (id + 1); 2184 if (size < MEMCG_CACHES_MIN_SIZE) 2185 size = MEMCG_CACHES_MIN_SIZE; 2186 else if (size > MEMCG_CACHES_MAX_SIZE) 2187 size = MEMCG_CACHES_MAX_SIZE; 2188 2189 err = memcg_update_all_caches(size); 2190 if (!err) 2191 err = memcg_update_all_list_lrus(size); 2192 if (!err) 2193 memcg_nr_cache_ids = size; 2194 2195 up_write(&memcg_cache_ids_sem); 2196 2197 if (err) { 2198 ida_simple_remove(&memcg_cache_ida, id); 2199 return err; 2200 } 2201 return id; 2202 } 2203 2204 static void memcg_free_cache_id(int id) 2205 { 2206 ida_simple_remove(&memcg_cache_ida, id); 2207 } 2208 2209 struct memcg_kmem_cache_create_work { 2210 struct mem_cgroup *memcg; 2211 struct kmem_cache *cachep; 2212 struct work_struct work; 2213 }; 2214 2215 static void memcg_kmem_cache_create_func(struct work_struct *w) 2216 { 2217 struct memcg_kmem_cache_create_work *cw = 2218 container_of(w, struct memcg_kmem_cache_create_work, work); 2219 struct mem_cgroup *memcg = cw->memcg; 2220 struct kmem_cache *cachep = cw->cachep; 2221 2222 memcg_create_kmem_cache(memcg, cachep); 2223 2224 css_put(&memcg->css); 2225 kfree(cw); 2226 } 2227 2228 /* 2229 * Enqueue the creation of a per-memcg kmem_cache. 2230 */ 2231 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2232 struct kmem_cache *cachep) 2233 { 2234 struct memcg_kmem_cache_create_work *cw; 2235 2236 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2237 if (!cw) 2238 return; 2239 2240 css_get(&memcg->css); 2241 2242 cw->memcg = memcg; 2243 cw->cachep = cachep; 2244 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2245 2246 schedule_work(&cw->work); 2247 } 2248 2249 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2250 struct kmem_cache *cachep) 2251 { 2252 /* 2253 * We need to stop accounting when we kmalloc, because if the 2254 * corresponding kmalloc cache is not yet created, the first allocation 2255 * in __memcg_schedule_kmem_cache_create will recurse. 2256 * 2257 * However, it is better to enclose the whole function. Depending on 2258 * the debugging options enabled, INIT_WORK(), for instance, can 2259 * trigger an allocation. This too, will make us recurse. Because at 2260 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2261 * the safest choice is to do it like this, wrapping the whole function. 2262 */ 2263 current->memcg_kmem_skip_account = 1; 2264 __memcg_schedule_kmem_cache_create(memcg, cachep); 2265 current->memcg_kmem_skip_account = 0; 2266 } 2267 2268 /* 2269 * Return the kmem_cache we're supposed to use for a slab allocation. 2270 * We try to use the current memcg's version of the cache. 2271 * 2272 * If the cache does not exist yet, if we are the first user of it, 2273 * we either create it immediately, if possible, or create it asynchronously 2274 * in a workqueue. 2275 * In the latter case, we will let the current allocation go through with 2276 * the original cache. 2277 * 2278 * Can't be called in interrupt context or from kernel threads. 2279 * This function needs to be called with rcu_read_lock() held. 2280 */ 2281 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 2282 { 2283 struct mem_cgroup *memcg; 2284 struct kmem_cache *memcg_cachep; 2285 int kmemcg_id; 2286 2287 VM_BUG_ON(!is_root_cache(cachep)); 2288 2289 if (cachep->flags & SLAB_ACCOUNT) 2290 gfp |= __GFP_ACCOUNT; 2291 2292 if (!(gfp & __GFP_ACCOUNT)) 2293 return cachep; 2294 2295 if (current->memcg_kmem_skip_account) 2296 return cachep; 2297 2298 memcg = get_mem_cgroup_from_mm(current->mm); 2299 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2300 if (kmemcg_id < 0) 2301 goto out; 2302 2303 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2304 if (likely(memcg_cachep)) 2305 return memcg_cachep; 2306 2307 /* 2308 * If we are in a safe context (can wait, and not in interrupt 2309 * context), we could be be predictable and return right away. 2310 * This would guarantee that the allocation being performed 2311 * already belongs in the new cache. 2312 * 2313 * However, there are some clashes that can arrive from locking. 2314 * For instance, because we acquire the slab_mutex while doing 2315 * memcg_create_kmem_cache, this means no further allocation 2316 * could happen with the slab_mutex held. So it's better to 2317 * defer everything. 2318 */ 2319 memcg_schedule_kmem_cache_create(memcg, cachep); 2320 out: 2321 css_put(&memcg->css); 2322 return cachep; 2323 } 2324 2325 void __memcg_kmem_put_cache(struct kmem_cache *cachep) 2326 { 2327 if (!is_root_cache(cachep)) 2328 css_put(&cachep->memcg_params.memcg->css); 2329 } 2330 2331 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2332 struct mem_cgroup *memcg) 2333 { 2334 unsigned int nr_pages = 1 << order; 2335 struct page_counter *counter; 2336 int ret; 2337 2338 ret = try_charge(memcg, gfp, nr_pages); 2339 if (ret) 2340 return ret; 2341 2342 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2343 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2344 cancel_charge(memcg, nr_pages); 2345 return -ENOMEM; 2346 } 2347 2348 page->mem_cgroup = memcg; 2349 2350 return 0; 2351 } 2352 2353 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2354 { 2355 struct mem_cgroup *memcg; 2356 int ret = 0; 2357 2358 memcg = get_mem_cgroup_from_mm(current->mm); 2359 if (!mem_cgroup_is_root(memcg)) 2360 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2361 css_put(&memcg->css); 2362 return ret; 2363 } 2364 2365 void __memcg_kmem_uncharge(struct page *page, int order) 2366 { 2367 struct mem_cgroup *memcg = page->mem_cgroup; 2368 unsigned int nr_pages = 1 << order; 2369 2370 if (!memcg) 2371 return; 2372 2373 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2374 2375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2376 page_counter_uncharge(&memcg->kmem, nr_pages); 2377 2378 page_counter_uncharge(&memcg->memory, nr_pages); 2379 if (do_memsw_account()) 2380 page_counter_uncharge(&memcg->memsw, nr_pages); 2381 2382 page->mem_cgroup = NULL; 2383 css_put_many(&memcg->css, nr_pages); 2384 } 2385 #endif /* !CONFIG_SLOB */ 2386 2387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2388 2389 /* 2390 * Because tail pages are not marked as "used", set it. We're under 2391 * zone->lru_lock and migration entries setup in all page mappings. 2392 */ 2393 void mem_cgroup_split_huge_fixup(struct page *head) 2394 { 2395 int i; 2396 2397 if (mem_cgroup_disabled()) 2398 return; 2399 2400 for (i = 1; i < HPAGE_PMD_NR; i++) 2401 head[i].mem_cgroup = head->mem_cgroup; 2402 2403 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2404 HPAGE_PMD_NR); 2405 } 2406 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2407 2408 #ifdef CONFIG_MEMCG_SWAP 2409 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2410 bool charge) 2411 { 2412 int val = (charge) ? 1 : -1; 2413 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2414 } 2415 2416 /** 2417 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2418 * @entry: swap entry to be moved 2419 * @from: mem_cgroup which the entry is moved from 2420 * @to: mem_cgroup which the entry is moved to 2421 * 2422 * It succeeds only when the swap_cgroup's record for this entry is the same 2423 * as the mem_cgroup's id of @from. 2424 * 2425 * Returns 0 on success, -EINVAL on failure. 2426 * 2427 * The caller must have charged to @to, IOW, called page_counter_charge() about 2428 * both res and memsw, and called css_get(). 2429 */ 2430 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2431 struct mem_cgroup *from, struct mem_cgroup *to) 2432 { 2433 unsigned short old_id, new_id; 2434 2435 old_id = mem_cgroup_id(from); 2436 new_id = mem_cgroup_id(to); 2437 2438 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2439 mem_cgroup_swap_statistics(from, false); 2440 mem_cgroup_swap_statistics(to, true); 2441 return 0; 2442 } 2443 return -EINVAL; 2444 } 2445 #else 2446 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2447 struct mem_cgroup *from, struct mem_cgroup *to) 2448 { 2449 return -EINVAL; 2450 } 2451 #endif 2452 2453 static DEFINE_MUTEX(memcg_limit_mutex); 2454 2455 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2456 unsigned long limit) 2457 { 2458 unsigned long curusage; 2459 unsigned long oldusage; 2460 bool enlarge = false; 2461 int retry_count; 2462 int ret; 2463 2464 /* 2465 * For keeping hierarchical_reclaim simple, how long we should retry 2466 * is depends on callers. We set our retry-count to be function 2467 * of # of children which we should visit in this loop. 2468 */ 2469 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2470 mem_cgroup_count_children(memcg); 2471 2472 oldusage = page_counter_read(&memcg->memory); 2473 2474 do { 2475 if (signal_pending(current)) { 2476 ret = -EINTR; 2477 break; 2478 } 2479 2480 mutex_lock(&memcg_limit_mutex); 2481 if (limit > memcg->memsw.limit) { 2482 mutex_unlock(&memcg_limit_mutex); 2483 ret = -EINVAL; 2484 break; 2485 } 2486 if (limit > memcg->memory.limit) 2487 enlarge = true; 2488 ret = page_counter_limit(&memcg->memory, limit); 2489 mutex_unlock(&memcg_limit_mutex); 2490 2491 if (!ret) 2492 break; 2493 2494 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2495 2496 curusage = page_counter_read(&memcg->memory); 2497 /* Usage is reduced ? */ 2498 if (curusage >= oldusage) 2499 retry_count--; 2500 else 2501 oldusage = curusage; 2502 } while (retry_count); 2503 2504 if (!ret && enlarge) 2505 memcg_oom_recover(memcg); 2506 2507 return ret; 2508 } 2509 2510 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2511 unsigned long limit) 2512 { 2513 unsigned long curusage; 2514 unsigned long oldusage; 2515 bool enlarge = false; 2516 int retry_count; 2517 int ret; 2518 2519 /* see mem_cgroup_resize_res_limit */ 2520 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2521 mem_cgroup_count_children(memcg); 2522 2523 oldusage = page_counter_read(&memcg->memsw); 2524 2525 do { 2526 if (signal_pending(current)) { 2527 ret = -EINTR; 2528 break; 2529 } 2530 2531 mutex_lock(&memcg_limit_mutex); 2532 if (limit < memcg->memory.limit) { 2533 mutex_unlock(&memcg_limit_mutex); 2534 ret = -EINVAL; 2535 break; 2536 } 2537 if (limit > memcg->memsw.limit) 2538 enlarge = true; 2539 ret = page_counter_limit(&memcg->memsw, limit); 2540 mutex_unlock(&memcg_limit_mutex); 2541 2542 if (!ret) 2543 break; 2544 2545 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2546 2547 curusage = page_counter_read(&memcg->memsw); 2548 /* Usage is reduced ? */ 2549 if (curusage >= oldusage) 2550 retry_count--; 2551 else 2552 oldusage = curusage; 2553 } while (retry_count); 2554 2555 if (!ret && enlarge) 2556 memcg_oom_recover(memcg); 2557 2558 return ret; 2559 } 2560 2561 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2562 gfp_t gfp_mask, 2563 unsigned long *total_scanned) 2564 { 2565 unsigned long nr_reclaimed = 0; 2566 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2567 unsigned long reclaimed; 2568 int loop = 0; 2569 struct mem_cgroup_tree_per_zone *mctz; 2570 unsigned long excess; 2571 unsigned long nr_scanned; 2572 2573 if (order > 0) 2574 return 0; 2575 2576 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2577 /* 2578 * This loop can run a while, specially if mem_cgroup's continuously 2579 * keep exceeding their soft limit and putting the system under 2580 * pressure 2581 */ 2582 do { 2583 if (next_mz) 2584 mz = next_mz; 2585 else 2586 mz = mem_cgroup_largest_soft_limit_node(mctz); 2587 if (!mz) 2588 break; 2589 2590 nr_scanned = 0; 2591 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2592 gfp_mask, &nr_scanned); 2593 nr_reclaimed += reclaimed; 2594 *total_scanned += nr_scanned; 2595 spin_lock_irq(&mctz->lock); 2596 __mem_cgroup_remove_exceeded(mz, mctz); 2597 2598 /* 2599 * If we failed to reclaim anything from this memory cgroup 2600 * it is time to move on to the next cgroup 2601 */ 2602 next_mz = NULL; 2603 if (!reclaimed) 2604 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2605 2606 excess = soft_limit_excess(mz->memcg); 2607 /* 2608 * One school of thought says that we should not add 2609 * back the node to the tree if reclaim returns 0. 2610 * But our reclaim could return 0, simply because due 2611 * to priority we are exposing a smaller subset of 2612 * memory to reclaim from. Consider this as a longer 2613 * term TODO. 2614 */ 2615 /* If excess == 0, no tree ops */ 2616 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2617 spin_unlock_irq(&mctz->lock); 2618 css_put(&mz->memcg->css); 2619 loop++; 2620 /* 2621 * Could not reclaim anything and there are no more 2622 * mem cgroups to try or we seem to be looping without 2623 * reclaiming anything. 2624 */ 2625 if (!nr_reclaimed && 2626 (next_mz == NULL || 2627 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2628 break; 2629 } while (!nr_reclaimed); 2630 if (next_mz) 2631 css_put(&next_mz->memcg->css); 2632 return nr_reclaimed; 2633 } 2634 2635 /* 2636 * Test whether @memcg has children, dead or alive. Note that this 2637 * function doesn't care whether @memcg has use_hierarchy enabled and 2638 * returns %true if there are child csses according to the cgroup 2639 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2640 */ 2641 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2642 { 2643 bool ret; 2644 2645 rcu_read_lock(); 2646 ret = css_next_child(NULL, &memcg->css); 2647 rcu_read_unlock(); 2648 return ret; 2649 } 2650 2651 /* 2652 * Reclaims as many pages from the given memcg as possible and moves 2653 * the rest to the parent. 2654 * 2655 * Caller is responsible for holding css reference for memcg. 2656 */ 2657 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2658 { 2659 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2660 2661 /* we call try-to-free pages for make this cgroup empty */ 2662 lru_add_drain_all(); 2663 /* try to free all pages in this cgroup */ 2664 while (nr_retries && page_counter_read(&memcg->memory)) { 2665 int progress; 2666 2667 if (signal_pending(current)) 2668 return -EINTR; 2669 2670 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2671 GFP_KERNEL, true); 2672 if (!progress) { 2673 nr_retries--; 2674 /* maybe some writeback is necessary */ 2675 congestion_wait(BLK_RW_ASYNC, HZ/10); 2676 } 2677 2678 } 2679 2680 return 0; 2681 } 2682 2683 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2684 char *buf, size_t nbytes, 2685 loff_t off) 2686 { 2687 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2688 2689 if (mem_cgroup_is_root(memcg)) 2690 return -EINVAL; 2691 return mem_cgroup_force_empty(memcg) ?: nbytes; 2692 } 2693 2694 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2695 struct cftype *cft) 2696 { 2697 return mem_cgroup_from_css(css)->use_hierarchy; 2698 } 2699 2700 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2701 struct cftype *cft, u64 val) 2702 { 2703 int retval = 0; 2704 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2705 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2706 2707 if (memcg->use_hierarchy == val) 2708 return 0; 2709 2710 /* 2711 * If parent's use_hierarchy is set, we can't make any modifications 2712 * in the child subtrees. If it is unset, then the change can 2713 * occur, provided the current cgroup has no children. 2714 * 2715 * For the root cgroup, parent_mem is NULL, we allow value to be 2716 * set if there are no children. 2717 */ 2718 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2719 (val == 1 || val == 0)) { 2720 if (!memcg_has_children(memcg)) 2721 memcg->use_hierarchy = val; 2722 else 2723 retval = -EBUSY; 2724 } else 2725 retval = -EINVAL; 2726 2727 return retval; 2728 } 2729 2730 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2731 { 2732 struct mem_cgroup *iter; 2733 int i; 2734 2735 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2736 2737 for_each_mem_cgroup_tree(iter, memcg) { 2738 for (i = 0; i < MEMCG_NR_STAT; i++) 2739 stat[i] += mem_cgroup_read_stat(iter, i); 2740 } 2741 } 2742 2743 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2744 { 2745 struct mem_cgroup *iter; 2746 int i; 2747 2748 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2749 2750 for_each_mem_cgroup_tree(iter, memcg) { 2751 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2752 events[i] += mem_cgroup_read_events(iter, i); 2753 } 2754 } 2755 2756 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2757 { 2758 unsigned long val = 0; 2759 2760 if (mem_cgroup_is_root(memcg)) { 2761 struct mem_cgroup *iter; 2762 2763 for_each_mem_cgroup_tree(iter, memcg) { 2764 val += mem_cgroup_read_stat(iter, 2765 MEM_CGROUP_STAT_CACHE); 2766 val += mem_cgroup_read_stat(iter, 2767 MEM_CGROUP_STAT_RSS); 2768 if (swap) 2769 val += mem_cgroup_read_stat(iter, 2770 MEM_CGROUP_STAT_SWAP); 2771 } 2772 } else { 2773 if (!swap) 2774 val = page_counter_read(&memcg->memory); 2775 else 2776 val = page_counter_read(&memcg->memsw); 2777 } 2778 return val; 2779 } 2780 2781 enum { 2782 RES_USAGE, 2783 RES_LIMIT, 2784 RES_MAX_USAGE, 2785 RES_FAILCNT, 2786 RES_SOFT_LIMIT, 2787 }; 2788 2789 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2790 struct cftype *cft) 2791 { 2792 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2793 struct page_counter *counter; 2794 2795 switch (MEMFILE_TYPE(cft->private)) { 2796 case _MEM: 2797 counter = &memcg->memory; 2798 break; 2799 case _MEMSWAP: 2800 counter = &memcg->memsw; 2801 break; 2802 case _KMEM: 2803 counter = &memcg->kmem; 2804 break; 2805 case _TCP: 2806 counter = &memcg->tcpmem; 2807 break; 2808 default: 2809 BUG(); 2810 } 2811 2812 switch (MEMFILE_ATTR(cft->private)) { 2813 case RES_USAGE: 2814 if (counter == &memcg->memory) 2815 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2816 if (counter == &memcg->memsw) 2817 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2818 return (u64)page_counter_read(counter) * PAGE_SIZE; 2819 case RES_LIMIT: 2820 return (u64)counter->limit * PAGE_SIZE; 2821 case RES_MAX_USAGE: 2822 return (u64)counter->watermark * PAGE_SIZE; 2823 case RES_FAILCNT: 2824 return counter->failcnt; 2825 case RES_SOFT_LIMIT: 2826 return (u64)memcg->soft_limit * PAGE_SIZE; 2827 default: 2828 BUG(); 2829 } 2830 } 2831 2832 #ifndef CONFIG_SLOB 2833 static int memcg_online_kmem(struct mem_cgroup *memcg) 2834 { 2835 int memcg_id; 2836 2837 if (cgroup_memory_nokmem) 2838 return 0; 2839 2840 BUG_ON(memcg->kmemcg_id >= 0); 2841 BUG_ON(memcg->kmem_state); 2842 2843 memcg_id = memcg_alloc_cache_id(); 2844 if (memcg_id < 0) 2845 return memcg_id; 2846 2847 static_branch_inc(&memcg_kmem_enabled_key); 2848 /* 2849 * A memory cgroup is considered kmem-online as soon as it gets 2850 * kmemcg_id. Setting the id after enabling static branching will 2851 * guarantee no one starts accounting before all call sites are 2852 * patched. 2853 */ 2854 memcg->kmemcg_id = memcg_id; 2855 memcg->kmem_state = KMEM_ONLINE; 2856 2857 return 0; 2858 } 2859 2860 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2861 { 2862 struct cgroup_subsys_state *css; 2863 struct mem_cgroup *parent, *child; 2864 int kmemcg_id; 2865 2866 if (memcg->kmem_state != KMEM_ONLINE) 2867 return; 2868 /* 2869 * Clear the online state before clearing memcg_caches array 2870 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2871 * guarantees that no cache will be created for this cgroup 2872 * after we are done (see memcg_create_kmem_cache()). 2873 */ 2874 memcg->kmem_state = KMEM_ALLOCATED; 2875 2876 memcg_deactivate_kmem_caches(memcg); 2877 2878 kmemcg_id = memcg->kmemcg_id; 2879 BUG_ON(kmemcg_id < 0); 2880 2881 parent = parent_mem_cgroup(memcg); 2882 if (!parent) 2883 parent = root_mem_cgroup; 2884 2885 /* 2886 * Change kmemcg_id of this cgroup and all its descendants to the 2887 * parent's id, and then move all entries from this cgroup's list_lrus 2888 * to ones of the parent. After we have finished, all list_lrus 2889 * corresponding to this cgroup are guaranteed to remain empty. The 2890 * ordering is imposed by list_lru_node->lock taken by 2891 * memcg_drain_all_list_lrus(). 2892 */ 2893 css_for_each_descendant_pre(css, &memcg->css) { 2894 child = mem_cgroup_from_css(css); 2895 BUG_ON(child->kmemcg_id != kmemcg_id); 2896 child->kmemcg_id = parent->kmemcg_id; 2897 if (!memcg->use_hierarchy) 2898 break; 2899 } 2900 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2901 2902 memcg_free_cache_id(kmemcg_id); 2903 } 2904 2905 static void memcg_free_kmem(struct mem_cgroup *memcg) 2906 { 2907 /* css_alloc() failed, offlining didn't happen */ 2908 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2909 memcg_offline_kmem(memcg); 2910 2911 if (memcg->kmem_state == KMEM_ALLOCATED) { 2912 memcg_destroy_kmem_caches(memcg); 2913 static_branch_dec(&memcg_kmem_enabled_key); 2914 WARN_ON(page_counter_read(&memcg->kmem)); 2915 } 2916 } 2917 #else 2918 static int memcg_online_kmem(struct mem_cgroup *memcg) 2919 { 2920 return 0; 2921 } 2922 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2923 { 2924 } 2925 static void memcg_free_kmem(struct mem_cgroup *memcg) 2926 { 2927 } 2928 #endif /* !CONFIG_SLOB */ 2929 2930 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2931 unsigned long limit) 2932 { 2933 int ret; 2934 2935 mutex_lock(&memcg_limit_mutex); 2936 ret = page_counter_limit(&memcg->kmem, limit); 2937 mutex_unlock(&memcg_limit_mutex); 2938 return ret; 2939 } 2940 2941 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2942 { 2943 int ret; 2944 2945 mutex_lock(&memcg_limit_mutex); 2946 2947 ret = page_counter_limit(&memcg->tcpmem, limit); 2948 if (ret) 2949 goto out; 2950 2951 if (!memcg->tcpmem_active) { 2952 /* 2953 * The active flag needs to be written after the static_key 2954 * update. This is what guarantees that the socket activation 2955 * function is the last one to run. See sock_update_memcg() for 2956 * details, and note that we don't mark any socket as belonging 2957 * to this memcg until that flag is up. 2958 * 2959 * We need to do this, because static_keys will span multiple 2960 * sites, but we can't control their order. If we mark a socket 2961 * as accounted, but the accounting functions are not patched in 2962 * yet, we'll lose accounting. 2963 * 2964 * We never race with the readers in sock_update_memcg(), 2965 * because when this value change, the code to process it is not 2966 * patched in yet. 2967 */ 2968 static_branch_inc(&memcg_sockets_enabled_key); 2969 memcg->tcpmem_active = true; 2970 } 2971 out: 2972 mutex_unlock(&memcg_limit_mutex); 2973 return ret; 2974 } 2975 2976 /* 2977 * The user of this function is... 2978 * RES_LIMIT. 2979 */ 2980 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2981 char *buf, size_t nbytes, loff_t off) 2982 { 2983 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2984 unsigned long nr_pages; 2985 int ret; 2986 2987 buf = strstrip(buf); 2988 ret = page_counter_memparse(buf, "-1", &nr_pages); 2989 if (ret) 2990 return ret; 2991 2992 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2993 case RES_LIMIT: 2994 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2995 ret = -EINVAL; 2996 break; 2997 } 2998 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2999 case _MEM: 3000 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3001 break; 3002 case _MEMSWAP: 3003 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3004 break; 3005 case _KMEM: 3006 ret = memcg_update_kmem_limit(memcg, nr_pages); 3007 break; 3008 case _TCP: 3009 ret = memcg_update_tcp_limit(memcg, nr_pages); 3010 break; 3011 } 3012 break; 3013 case RES_SOFT_LIMIT: 3014 memcg->soft_limit = nr_pages; 3015 ret = 0; 3016 break; 3017 } 3018 return ret ?: nbytes; 3019 } 3020 3021 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3022 size_t nbytes, loff_t off) 3023 { 3024 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3025 struct page_counter *counter; 3026 3027 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3028 case _MEM: 3029 counter = &memcg->memory; 3030 break; 3031 case _MEMSWAP: 3032 counter = &memcg->memsw; 3033 break; 3034 case _KMEM: 3035 counter = &memcg->kmem; 3036 break; 3037 case _TCP: 3038 counter = &memcg->tcpmem; 3039 break; 3040 default: 3041 BUG(); 3042 } 3043 3044 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3045 case RES_MAX_USAGE: 3046 page_counter_reset_watermark(counter); 3047 break; 3048 case RES_FAILCNT: 3049 counter->failcnt = 0; 3050 break; 3051 default: 3052 BUG(); 3053 } 3054 3055 return nbytes; 3056 } 3057 3058 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3059 struct cftype *cft) 3060 { 3061 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3062 } 3063 3064 #ifdef CONFIG_MMU 3065 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3066 struct cftype *cft, u64 val) 3067 { 3068 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3069 3070 if (val & ~MOVE_MASK) 3071 return -EINVAL; 3072 3073 /* 3074 * No kind of locking is needed in here, because ->can_attach() will 3075 * check this value once in the beginning of the process, and then carry 3076 * on with stale data. This means that changes to this value will only 3077 * affect task migrations starting after the change. 3078 */ 3079 memcg->move_charge_at_immigrate = val; 3080 return 0; 3081 } 3082 #else 3083 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3084 struct cftype *cft, u64 val) 3085 { 3086 return -ENOSYS; 3087 } 3088 #endif 3089 3090 #ifdef CONFIG_NUMA 3091 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3092 { 3093 struct numa_stat { 3094 const char *name; 3095 unsigned int lru_mask; 3096 }; 3097 3098 static const struct numa_stat stats[] = { 3099 { "total", LRU_ALL }, 3100 { "file", LRU_ALL_FILE }, 3101 { "anon", LRU_ALL_ANON }, 3102 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3103 }; 3104 const struct numa_stat *stat; 3105 int nid; 3106 unsigned long nr; 3107 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3108 3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3110 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3111 seq_printf(m, "%s=%lu", stat->name, nr); 3112 for_each_node_state(nid, N_MEMORY) { 3113 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3114 stat->lru_mask); 3115 seq_printf(m, " N%d=%lu", nid, nr); 3116 } 3117 seq_putc(m, '\n'); 3118 } 3119 3120 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3121 struct mem_cgroup *iter; 3122 3123 nr = 0; 3124 for_each_mem_cgroup_tree(iter, memcg) 3125 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3126 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3127 for_each_node_state(nid, N_MEMORY) { 3128 nr = 0; 3129 for_each_mem_cgroup_tree(iter, memcg) 3130 nr += mem_cgroup_node_nr_lru_pages( 3131 iter, nid, stat->lru_mask); 3132 seq_printf(m, " N%d=%lu", nid, nr); 3133 } 3134 seq_putc(m, '\n'); 3135 } 3136 3137 return 0; 3138 } 3139 #endif /* CONFIG_NUMA */ 3140 3141 static int memcg_stat_show(struct seq_file *m, void *v) 3142 { 3143 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3144 unsigned long memory, memsw; 3145 struct mem_cgroup *mi; 3146 unsigned int i; 3147 3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3149 MEM_CGROUP_STAT_NSTATS); 3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3151 MEM_CGROUP_EVENTS_NSTATS); 3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3153 3154 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3155 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3156 continue; 3157 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3158 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3159 } 3160 3161 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3162 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3163 mem_cgroup_read_events(memcg, i)); 3164 3165 for (i = 0; i < NR_LRU_LISTS; i++) 3166 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3167 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3168 3169 /* Hierarchical information */ 3170 memory = memsw = PAGE_COUNTER_MAX; 3171 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3172 memory = min(memory, mi->memory.limit); 3173 memsw = min(memsw, mi->memsw.limit); 3174 } 3175 seq_printf(m, "hierarchical_memory_limit %llu\n", 3176 (u64)memory * PAGE_SIZE); 3177 if (do_memsw_account()) 3178 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3179 (u64)memsw * PAGE_SIZE); 3180 3181 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3182 unsigned long long val = 0; 3183 3184 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3185 continue; 3186 for_each_mem_cgroup_tree(mi, memcg) 3187 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3188 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3189 } 3190 3191 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3192 unsigned long long val = 0; 3193 3194 for_each_mem_cgroup_tree(mi, memcg) 3195 val += mem_cgroup_read_events(mi, i); 3196 seq_printf(m, "total_%s %llu\n", 3197 mem_cgroup_events_names[i], val); 3198 } 3199 3200 for (i = 0; i < NR_LRU_LISTS; i++) { 3201 unsigned long long val = 0; 3202 3203 for_each_mem_cgroup_tree(mi, memcg) 3204 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3205 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3206 } 3207 3208 #ifdef CONFIG_DEBUG_VM 3209 { 3210 int nid, zid; 3211 struct mem_cgroup_per_zone *mz; 3212 struct zone_reclaim_stat *rstat; 3213 unsigned long recent_rotated[2] = {0, 0}; 3214 unsigned long recent_scanned[2] = {0, 0}; 3215 3216 for_each_online_node(nid) 3217 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3218 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3219 rstat = &mz->lruvec.reclaim_stat; 3220 3221 recent_rotated[0] += rstat->recent_rotated[0]; 3222 recent_rotated[1] += rstat->recent_rotated[1]; 3223 recent_scanned[0] += rstat->recent_scanned[0]; 3224 recent_scanned[1] += rstat->recent_scanned[1]; 3225 } 3226 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3227 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3228 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3229 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3230 } 3231 #endif 3232 3233 return 0; 3234 } 3235 3236 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3237 struct cftype *cft) 3238 { 3239 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3240 3241 return mem_cgroup_swappiness(memcg); 3242 } 3243 3244 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3245 struct cftype *cft, u64 val) 3246 { 3247 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3248 3249 if (val > 100) 3250 return -EINVAL; 3251 3252 if (css->parent) 3253 memcg->swappiness = val; 3254 else 3255 vm_swappiness = val; 3256 3257 return 0; 3258 } 3259 3260 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3261 { 3262 struct mem_cgroup_threshold_ary *t; 3263 unsigned long usage; 3264 int i; 3265 3266 rcu_read_lock(); 3267 if (!swap) 3268 t = rcu_dereference(memcg->thresholds.primary); 3269 else 3270 t = rcu_dereference(memcg->memsw_thresholds.primary); 3271 3272 if (!t) 3273 goto unlock; 3274 3275 usage = mem_cgroup_usage(memcg, swap); 3276 3277 /* 3278 * current_threshold points to threshold just below or equal to usage. 3279 * If it's not true, a threshold was crossed after last 3280 * call of __mem_cgroup_threshold(). 3281 */ 3282 i = t->current_threshold; 3283 3284 /* 3285 * Iterate backward over array of thresholds starting from 3286 * current_threshold and check if a threshold is crossed. 3287 * If none of thresholds below usage is crossed, we read 3288 * only one element of the array here. 3289 */ 3290 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3291 eventfd_signal(t->entries[i].eventfd, 1); 3292 3293 /* i = current_threshold + 1 */ 3294 i++; 3295 3296 /* 3297 * Iterate forward over array of thresholds starting from 3298 * current_threshold+1 and check if a threshold is crossed. 3299 * If none of thresholds above usage is crossed, we read 3300 * only one element of the array here. 3301 */ 3302 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3303 eventfd_signal(t->entries[i].eventfd, 1); 3304 3305 /* Update current_threshold */ 3306 t->current_threshold = i - 1; 3307 unlock: 3308 rcu_read_unlock(); 3309 } 3310 3311 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3312 { 3313 while (memcg) { 3314 __mem_cgroup_threshold(memcg, false); 3315 if (do_memsw_account()) 3316 __mem_cgroup_threshold(memcg, true); 3317 3318 memcg = parent_mem_cgroup(memcg); 3319 } 3320 } 3321 3322 static int compare_thresholds(const void *a, const void *b) 3323 { 3324 const struct mem_cgroup_threshold *_a = a; 3325 const struct mem_cgroup_threshold *_b = b; 3326 3327 if (_a->threshold > _b->threshold) 3328 return 1; 3329 3330 if (_a->threshold < _b->threshold) 3331 return -1; 3332 3333 return 0; 3334 } 3335 3336 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3337 { 3338 struct mem_cgroup_eventfd_list *ev; 3339 3340 spin_lock(&memcg_oom_lock); 3341 3342 list_for_each_entry(ev, &memcg->oom_notify, list) 3343 eventfd_signal(ev->eventfd, 1); 3344 3345 spin_unlock(&memcg_oom_lock); 3346 return 0; 3347 } 3348 3349 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3350 { 3351 struct mem_cgroup *iter; 3352 3353 for_each_mem_cgroup_tree(iter, memcg) 3354 mem_cgroup_oom_notify_cb(iter); 3355 } 3356 3357 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3358 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3359 { 3360 struct mem_cgroup_thresholds *thresholds; 3361 struct mem_cgroup_threshold_ary *new; 3362 unsigned long threshold; 3363 unsigned long usage; 3364 int i, size, ret; 3365 3366 ret = page_counter_memparse(args, "-1", &threshold); 3367 if (ret) 3368 return ret; 3369 3370 mutex_lock(&memcg->thresholds_lock); 3371 3372 if (type == _MEM) { 3373 thresholds = &memcg->thresholds; 3374 usage = mem_cgroup_usage(memcg, false); 3375 } else if (type == _MEMSWAP) { 3376 thresholds = &memcg->memsw_thresholds; 3377 usage = mem_cgroup_usage(memcg, true); 3378 } else 3379 BUG(); 3380 3381 /* Check if a threshold crossed before adding a new one */ 3382 if (thresholds->primary) 3383 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3384 3385 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3386 3387 /* Allocate memory for new array of thresholds */ 3388 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3389 GFP_KERNEL); 3390 if (!new) { 3391 ret = -ENOMEM; 3392 goto unlock; 3393 } 3394 new->size = size; 3395 3396 /* Copy thresholds (if any) to new array */ 3397 if (thresholds->primary) { 3398 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3399 sizeof(struct mem_cgroup_threshold)); 3400 } 3401 3402 /* Add new threshold */ 3403 new->entries[size - 1].eventfd = eventfd; 3404 new->entries[size - 1].threshold = threshold; 3405 3406 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3407 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3408 compare_thresholds, NULL); 3409 3410 /* Find current threshold */ 3411 new->current_threshold = -1; 3412 for (i = 0; i < size; i++) { 3413 if (new->entries[i].threshold <= usage) { 3414 /* 3415 * new->current_threshold will not be used until 3416 * rcu_assign_pointer(), so it's safe to increment 3417 * it here. 3418 */ 3419 ++new->current_threshold; 3420 } else 3421 break; 3422 } 3423 3424 /* Free old spare buffer and save old primary buffer as spare */ 3425 kfree(thresholds->spare); 3426 thresholds->spare = thresholds->primary; 3427 3428 rcu_assign_pointer(thresholds->primary, new); 3429 3430 /* To be sure that nobody uses thresholds */ 3431 synchronize_rcu(); 3432 3433 unlock: 3434 mutex_unlock(&memcg->thresholds_lock); 3435 3436 return ret; 3437 } 3438 3439 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3440 struct eventfd_ctx *eventfd, const char *args) 3441 { 3442 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3443 } 3444 3445 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3446 struct eventfd_ctx *eventfd, const char *args) 3447 { 3448 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3449 } 3450 3451 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3452 struct eventfd_ctx *eventfd, enum res_type type) 3453 { 3454 struct mem_cgroup_thresholds *thresholds; 3455 struct mem_cgroup_threshold_ary *new; 3456 unsigned long usage; 3457 int i, j, size; 3458 3459 mutex_lock(&memcg->thresholds_lock); 3460 3461 if (type == _MEM) { 3462 thresholds = &memcg->thresholds; 3463 usage = mem_cgroup_usage(memcg, false); 3464 } else if (type == _MEMSWAP) { 3465 thresholds = &memcg->memsw_thresholds; 3466 usage = mem_cgroup_usage(memcg, true); 3467 } else 3468 BUG(); 3469 3470 if (!thresholds->primary) 3471 goto unlock; 3472 3473 /* Check if a threshold crossed before removing */ 3474 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3475 3476 /* Calculate new number of threshold */ 3477 size = 0; 3478 for (i = 0; i < thresholds->primary->size; i++) { 3479 if (thresholds->primary->entries[i].eventfd != eventfd) 3480 size++; 3481 } 3482 3483 new = thresholds->spare; 3484 3485 /* Set thresholds array to NULL if we don't have thresholds */ 3486 if (!size) { 3487 kfree(new); 3488 new = NULL; 3489 goto swap_buffers; 3490 } 3491 3492 new->size = size; 3493 3494 /* Copy thresholds and find current threshold */ 3495 new->current_threshold = -1; 3496 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3497 if (thresholds->primary->entries[i].eventfd == eventfd) 3498 continue; 3499 3500 new->entries[j] = thresholds->primary->entries[i]; 3501 if (new->entries[j].threshold <= usage) { 3502 /* 3503 * new->current_threshold will not be used 3504 * until rcu_assign_pointer(), so it's safe to increment 3505 * it here. 3506 */ 3507 ++new->current_threshold; 3508 } 3509 j++; 3510 } 3511 3512 swap_buffers: 3513 /* Swap primary and spare array */ 3514 thresholds->spare = thresholds->primary; 3515 3516 rcu_assign_pointer(thresholds->primary, new); 3517 3518 /* To be sure that nobody uses thresholds */ 3519 synchronize_rcu(); 3520 3521 /* If all events are unregistered, free the spare array */ 3522 if (!new) { 3523 kfree(thresholds->spare); 3524 thresholds->spare = NULL; 3525 } 3526 unlock: 3527 mutex_unlock(&memcg->thresholds_lock); 3528 } 3529 3530 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3531 struct eventfd_ctx *eventfd) 3532 { 3533 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3534 } 3535 3536 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3537 struct eventfd_ctx *eventfd) 3538 { 3539 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3540 } 3541 3542 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3543 struct eventfd_ctx *eventfd, const char *args) 3544 { 3545 struct mem_cgroup_eventfd_list *event; 3546 3547 event = kmalloc(sizeof(*event), GFP_KERNEL); 3548 if (!event) 3549 return -ENOMEM; 3550 3551 spin_lock(&memcg_oom_lock); 3552 3553 event->eventfd = eventfd; 3554 list_add(&event->list, &memcg->oom_notify); 3555 3556 /* already in OOM ? */ 3557 if (memcg->under_oom) 3558 eventfd_signal(eventfd, 1); 3559 spin_unlock(&memcg_oom_lock); 3560 3561 return 0; 3562 } 3563 3564 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3565 struct eventfd_ctx *eventfd) 3566 { 3567 struct mem_cgroup_eventfd_list *ev, *tmp; 3568 3569 spin_lock(&memcg_oom_lock); 3570 3571 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3572 if (ev->eventfd == eventfd) { 3573 list_del(&ev->list); 3574 kfree(ev); 3575 } 3576 } 3577 3578 spin_unlock(&memcg_oom_lock); 3579 } 3580 3581 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3582 { 3583 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3584 3585 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3586 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3587 return 0; 3588 } 3589 3590 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3591 struct cftype *cft, u64 val) 3592 { 3593 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3594 3595 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3596 if (!css->parent || !((val == 0) || (val == 1))) 3597 return -EINVAL; 3598 3599 memcg->oom_kill_disable = val; 3600 if (!val) 3601 memcg_oom_recover(memcg); 3602 3603 return 0; 3604 } 3605 3606 #ifdef CONFIG_CGROUP_WRITEBACK 3607 3608 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3609 { 3610 return &memcg->cgwb_list; 3611 } 3612 3613 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3614 { 3615 return wb_domain_init(&memcg->cgwb_domain, gfp); 3616 } 3617 3618 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3619 { 3620 wb_domain_exit(&memcg->cgwb_domain); 3621 } 3622 3623 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3624 { 3625 wb_domain_size_changed(&memcg->cgwb_domain); 3626 } 3627 3628 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3629 { 3630 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3631 3632 if (!memcg->css.parent) 3633 return NULL; 3634 3635 return &memcg->cgwb_domain; 3636 } 3637 3638 /** 3639 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3640 * @wb: bdi_writeback in question 3641 * @pfilepages: out parameter for number of file pages 3642 * @pheadroom: out parameter for number of allocatable pages according to memcg 3643 * @pdirty: out parameter for number of dirty pages 3644 * @pwriteback: out parameter for number of pages under writeback 3645 * 3646 * Determine the numbers of file, headroom, dirty, and writeback pages in 3647 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3648 * is a bit more involved. 3649 * 3650 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3651 * headroom is calculated as the lowest headroom of itself and the 3652 * ancestors. Note that this doesn't consider the actual amount of 3653 * available memory in the system. The caller should further cap 3654 * *@pheadroom accordingly. 3655 */ 3656 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3657 unsigned long *pheadroom, unsigned long *pdirty, 3658 unsigned long *pwriteback) 3659 { 3660 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3661 struct mem_cgroup *parent; 3662 3663 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3664 3665 /* this should eventually include NR_UNSTABLE_NFS */ 3666 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3667 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3668 (1 << LRU_ACTIVE_FILE)); 3669 *pheadroom = PAGE_COUNTER_MAX; 3670 3671 while ((parent = parent_mem_cgroup(memcg))) { 3672 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3673 unsigned long used = page_counter_read(&memcg->memory); 3674 3675 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3676 memcg = parent; 3677 } 3678 } 3679 3680 #else /* CONFIG_CGROUP_WRITEBACK */ 3681 3682 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3683 { 3684 return 0; 3685 } 3686 3687 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3688 { 3689 } 3690 3691 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3692 { 3693 } 3694 3695 #endif /* CONFIG_CGROUP_WRITEBACK */ 3696 3697 /* 3698 * DO NOT USE IN NEW FILES. 3699 * 3700 * "cgroup.event_control" implementation. 3701 * 3702 * This is way over-engineered. It tries to support fully configurable 3703 * events for each user. Such level of flexibility is completely 3704 * unnecessary especially in the light of the planned unified hierarchy. 3705 * 3706 * Please deprecate this and replace with something simpler if at all 3707 * possible. 3708 */ 3709 3710 /* 3711 * Unregister event and free resources. 3712 * 3713 * Gets called from workqueue. 3714 */ 3715 static void memcg_event_remove(struct work_struct *work) 3716 { 3717 struct mem_cgroup_event *event = 3718 container_of(work, struct mem_cgroup_event, remove); 3719 struct mem_cgroup *memcg = event->memcg; 3720 3721 remove_wait_queue(event->wqh, &event->wait); 3722 3723 event->unregister_event(memcg, event->eventfd); 3724 3725 /* Notify userspace the event is going away. */ 3726 eventfd_signal(event->eventfd, 1); 3727 3728 eventfd_ctx_put(event->eventfd); 3729 kfree(event); 3730 css_put(&memcg->css); 3731 } 3732 3733 /* 3734 * Gets called on POLLHUP on eventfd when user closes it. 3735 * 3736 * Called with wqh->lock held and interrupts disabled. 3737 */ 3738 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3739 int sync, void *key) 3740 { 3741 struct mem_cgroup_event *event = 3742 container_of(wait, struct mem_cgroup_event, wait); 3743 struct mem_cgroup *memcg = event->memcg; 3744 unsigned long flags = (unsigned long)key; 3745 3746 if (flags & POLLHUP) { 3747 /* 3748 * If the event has been detached at cgroup removal, we 3749 * can simply return knowing the other side will cleanup 3750 * for us. 3751 * 3752 * We can't race against event freeing since the other 3753 * side will require wqh->lock via remove_wait_queue(), 3754 * which we hold. 3755 */ 3756 spin_lock(&memcg->event_list_lock); 3757 if (!list_empty(&event->list)) { 3758 list_del_init(&event->list); 3759 /* 3760 * We are in atomic context, but cgroup_event_remove() 3761 * may sleep, so we have to call it in workqueue. 3762 */ 3763 schedule_work(&event->remove); 3764 } 3765 spin_unlock(&memcg->event_list_lock); 3766 } 3767 3768 return 0; 3769 } 3770 3771 static void memcg_event_ptable_queue_proc(struct file *file, 3772 wait_queue_head_t *wqh, poll_table *pt) 3773 { 3774 struct mem_cgroup_event *event = 3775 container_of(pt, struct mem_cgroup_event, pt); 3776 3777 event->wqh = wqh; 3778 add_wait_queue(wqh, &event->wait); 3779 } 3780 3781 /* 3782 * DO NOT USE IN NEW FILES. 3783 * 3784 * Parse input and register new cgroup event handler. 3785 * 3786 * Input must be in format '<event_fd> <control_fd> <args>'. 3787 * Interpretation of args is defined by control file implementation. 3788 */ 3789 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3790 char *buf, size_t nbytes, loff_t off) 3791 { 3792 struct cgroup_subsys_state *css = of_css(of); 3793 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3794 struct mem_cgroup_event *event; 3795 struct cgroup_subsys_state *cfile_css; 3796 unsigned int efd, cfd; 3797 struct fd efile; 3798 struct fd cfile; 3799 const char *name; 3800 char *endp; 3801 int ret; 3802 3803 buf = strstrip(buf); 3804 3805 efd = simple_strtoul(buf, &endp, 10); 3806 if (*endp != ' ') 3807 return -EINVAL; 3808 buf = endp + 1; 3809 3810 cfd = simple_strtoul(buf, &endp, 10); 3811 if ((*endp != ' ') && (*endp != '\0')) 3812 return -EINVAL; 3813 buf = endp + 1; 3814 3815 event = kzalloc(sizeof(*event), GFP_KERNEL); 3816 if (!event) 3817 return -ENOMEM; 3818 3819 event->memcg = memcg; 3820 INIT_LIST_HEAD(&event->list); 3821 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3822 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3823 INIT_WORK(&event->remove, memcg_event_remove); 3824 3825 efile = fdget(efd); 3826 if (!efile.file) { 3827 ret = -EBADF; 3828 goto out_kfree; 3829 } 3830 3831 event->eventfd = eventfd_ctx_fileget(efile.file); 3832 if (IS_ERR(event->eventfd)) { 3833 ret = PTR_ERR(event->eventfd); 3834 goto out_put_efile; 3835 } 3836 3837 cfile = fdget(cfd); 3838 if (!cfile.file) { 3839 ret = -EBADF; 3840 goto out_put_eventfd; 3841 } 3842 3843 /* the process need read permission on control file */ 3844 /* AV: shouldn't we check that it's been opened for read instead? */ 3845 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3846 if (ret < 0) 3847 goto out_put_cfile; 3848 3849 /* 3850 * Determine the event callbacks and set them in @event. This used 3851 * to be done via struct cftype but cgroup core no longer knows 3852 * about these events. The following is crude but the whole thing 3853 * is for compatibility anyway. 3854 * 3855 * DO NOT ADD NEW FILES. 3856 */ 3857 name = cfile.file->f_path.dentry->d_name.name; 3858 3859 if (!strcmp(name, "memory.usage_in_bytes")) { 3860 event->register_event = mem_cgroup_usage_register_event; 3861 event->unregister_event = mem_cgroup_usage_unregister_event; 3862 } else if (!strcmp(name, "memory.oom_control")) { 3863 event->register_event = mem_cgroup_oom_register_event; 3864 event->unregister_event = mem_cgroup_oom_unregister_event; 3865 } else if (!strcmp(name, "memory.pressure_level")) { 3866 event->register_event = vmpressure_register_event; 3867 event->unregister_event = vmpressure_unregister_event; 3868 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3869 event->register_event = memsw_cgroup_usage_register_event; 3870 event->unregister_event = memsw_cgroup_usage_unregister_event; 3871 } else { 3872 ret = -EINVAL; 3873 goto out_put_cfile; 3874 } 3875 3876 /* 3877 * Verify @cfile should belong to @css. Also, remaining events are 3878 * automatically removed on cgroup destruction but the removal is 3879 * asynchronous, so take an extra ref on @css. 3880 */ 3881 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3882 &memory_cgrp_subsys); 3883 ret = -EINVAL; 3884 if (IS_ERR(cfile_css)) 3885 goto out_put_cfile; 3886 if (cfile_css != css) { 3887 css_put(cfile_css); 3888 goto out_put_cfile; 3889 } 3890 3891 ret = event->register_event(memcg, event->eventfd, buf); 3892 if (ret) 3893 goto out_put_css; 3894 3895 efile.file->f_op->poll(efile.file, &event->pt); 3896 3897 spin_lock(&memcg->event_list_lock); 3898 list_add(&event->list, &memcg->event_list); 3899 spin_unlock(&memcg->event_list_lock); 3900 3901 fdput(cfile); 3902 fdput(efile); 3903 3904 return nbytes; 3905 3906 out_put_css: 3907 css_put(css); 3908 out_put_cfile: 3909 fdput(cfile); 3910 out_put_eventfd: 3911 eventfd_ctx_put(event->eventfd); 3912 out_put_efile: 3913 fdput(efile); 3914 out_kfree: 3915 kfree(event); 3916 3917 return ret; 3918 } 3919 3920 static struct cftype mem_cgroup_legacy_files[] = { 3921 { 3922 .name = "usage_in_bytes", 3923 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3924 .read_u64 = mem_cgroup_read_u64, 3925 }, 3926 { 3927 .name = "max_usage_in_bytes", 3928 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3929 .write = mem_cgroup_reset, 3930 .read_u64 = mem_cgroup_read_u64, 3931 }, 3932 { 3933 .name = "limit_in_bytes", 3934 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3935 .write = mem_cgroup_write, 3936 .read_u64 = mem_cgroup_read_u64, 3937 }, 3938 { 3939 .name = "soft_limit_in_bytes", 3940 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3941 .write = mem_cgroup_write, 3942 .read_u64 = mem_cgroup_read_u64, 3943 }, 3944 { 3945 .name = "failcnt", 3946 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3947 .write = mem_cgroup_reset, 3948 .read_u64 = mem_cgroup_read_u64, 3949 }, 3950 { 3951 .name = "stat", 3952 .seq_show = memcg_stat_show, 3953 }, 3954 { 3955 .name = "force_empty", 3956 .write = mem_cgroup_force_empty_write, 3957 }, 3958 { 3959 .name = "use_hierarchy", 3960 .write_u64 = mem_cgroup_hierarchy_write, 3961 .read_u64 = mem_cgroup_hierarchy_read, 3962 }, 3963 { 3964 .name = "cgroup.event_control", /* XXX: for compat */ 3965 .write = memcg_write_event_control, 3966 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3967 }, 3968 { 3969 .name = "swappiness", 3970 .read_u64 = mem_cgroup_swappiness_read, 3971 .write_u64 = mem_cgroup_swappiness_write, 3972 }, 3973 { 3974 .name = "move_charge_at_immigrate", 3975 .read_u64 = mem_cgroup_move_charge_read, 3976 .write_u64 = mem_cgroup_move_charge_write, 3977 }, 3978 { 3979 .name = "oom_control", 3980 .seq_show = mem_cgroup_oom_control_read, 3981 .write_u64 = mem_cgroup_oom_control_write, 3982 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3983 }, 3984 { 3985 .name = "pressure_level", 3986 }, 3987 #ifdef CONFIG_NUMA 3988 { 3989 .name = "numa_stat", 3990 .seq_show = memcg_numa_stat_show, 3991 }, 3992 #endif 3993 { 3994 .name = "kmem.limit_in_bytes", 3995 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3996 .write = mem_cgroup_write, 3997 .read_u64 = mem_cgroup_read_u64, 3998 }, 3999 { 4000 .name = "kmem.usage_in_bytes", 4001 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4002 .read_u64 = mem_cgroup_read_u64, 4003 }, 4004 { 4005 .name = "kmem.failcnt", 4006 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4007 .write = mem_cgroup_reset, 4008 .read_u64 = mem_cgroup_read_u64, 4009 }, 4010 { 4011 .name = "kmem.max_usage_in_bytes", 4012 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4013 .write = mem_cgroup_reset, 4014 .read_u64 = mem_cgroup_read_u64, 4015 }, 4016 #ifdef CONFIG_SLABINFO 4017 { 4018 .name = "kmem.slabinfo", 4019 .seq_start = slab_start, 4020 .seq_next = slab_next, 4021 .seq_stop = slab_stop, 4022 .seq_show = memcg_slab_show, 4023 }, 4024 #endif 4025 { 4026 .name = "kmem.tcp.limit_in_bytes", 4027 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4028 .write = mem_cgroup_write, 4029 .read_u64 = mem_cgroup_read_u64, 4030 }, 4031 { 4032 .name = "kmem.tcp.usage_in_bytes", 4033 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4034 .read_u64 = mem_cgroup_read_u64, 4035 }, 4036 { 4037 .name = "kmem.tcp.failcnt", 4038 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4039 .write = mem_cgroup_reset, 4040 .read_u64 = mem_cgroup_read_u64, 4041 }, 4042 { 4043 .name = "kmem.tcp.max_usage_in_bytes", 4044 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4045 .write = mem_cgroup_reset, 4046 .read_u64 = mem_cgroup_read_u64, 4047 }, 4048 { }, /* terminate */ 4049 }; 4050 4051 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4052 { 4053 struct mem_cgroup_per_node *pn; 4054 struct mem_cgroup_per_zone *mz; 4055 int zone, tmp = node; 4056 /* 4057 * This routine is called against possible nodes. 4058 * But it's BUG to call kmalloc() against offline node. 4059 * 4060 * TODO: this routine can waste much memory for nodes which will 4061 * never be onlined. It's better to use memory hotplug callback 4062 * function. 4063 */ 4064 if (!node_state(node, N_NORMAL_MEMORY)) 4065 tmp = -1; 4066 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4067 if (!pn) 4068 return 1; 4069 4070 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4071 mz = &pn->zoneinfo[zone]; 4072 lruvec_init(&mz->lruvec); 4073 mz->usage_in_excess = 0; 4074 mz->on_tree = false; 4075 mz->memcg = memcg; 4076 } 4077 memcg->nodeinfo[node] = pn; 4078 return 0; 4079 } 4080 4081 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4082 { 4083 kfree(memcg->nodeinfo[node]); 4084 } 4085 4086 static void mem_cgroup_free(struct mem_cgroup *memcg) 4087 { 4088 int node; 4089 4090 memcg_wb_domain_exit(memcg); 4091 for_each_node(node) 4092 free_mem_cgroup_per_zone_info(memcg, node); 4093 free_percpu(memcg->stat); 4094 kfree(memcg); 4095 } 4096 4097 static struct mem_cgroup *mem_cgroup_alloc(void) 4098 { 4099 struct mem_cgroup *memcg; 4100 size_t size; 4101 int node; 4102 4103 size = sizeof(struct mem_cgroup); 4104 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4105 4106 memcg = kzalloc(size, GFP_KERNEL); 4107 if (!memcg) 4108 return NULL; 4109 4110 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4111 if (!memcg->stat) 4112 goto fail; 4113 4114 for_each_node(node) 4115 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4116 goto fail; 4117 4118 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4119 goto fail; 4120 4121 INIT_WORK(&memcg->high_work, high_work_func); 4122 memcg->last_scanned_node = MAX_NUMNODES; 4123 INIT_LIST_HEAD(&memcg->oom_notify); 4124 mutex_init(&memcg->thresholds_lock); 4125 spin_lock_init(&memcg->move_lock); 4126 vmpressure_init(&memcg->vmpressure); 4127 INIT_LIST_HEAD(&memcg->event_list); 4128 spin_lock_init(&memcg->event_list_lock); 4129 memcg->socket_pressure = jiffies; 4130 #ifndef CONFIG_SLOB 4131 memcg->kmemcg_id = -1; 4132 #endif 4133 #ifdef CONFIG_CGROUP_WRITEBACK 4134 INIT_LIST_HEAD(&memcg->cgwb_list); 4135 #endif 4136 return memcg; 4137 fail: 4138 mem_cgroup_free(memcg); 4139 return NULL; 4140 } 4141 4142 static struct cgroup_subsys_state * __ref 4143 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4144 { 4145 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4146 struct mem_cgroup *memcg; 4147 long error = -ENOMEM; 4148 4149 memcg = mem_cgroup_alloc(); 4150 if (!memcg) 4151 return ERR_PTR(error); 4152 4153 memcg->high = PAGE_COUNTER_MAX; 4154 memcg->soft_limit = PAGE_COUNTER_MAX; 4155 if (parent) { 4156 memcg->swappiness = mem_cgroup_swappiness(parent); 4157 memcg->oom_kill_disable = parent->oom_kill_disable; 4158 } 4159 if (parent && parent->use_hierarchy) { 4160 memcg->use_hierarchy = true; 4161 page_counter_init(&memcg->memory, &parent->memory); 4162 page_counter_init(&memcg->swap, &parent->swap); 4163 page_counter_init(&memcg->memsw, &parent->memsw); 4164 page_counter_init(&memcg->kmem, &parent->kmem); 4165 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4166 } else { 4167 page_counter_init(&memcg->memory, NULL); 4168 page_counter_init(&memcg->swap, NULL); 4169 page_counter_init(&memcg->memsw, NULL); 4170 page_counter_init(&memcg->kmem, NULL); 4171 page_counter_init(&memcg->tcpmem, NULL); 4172 /* 4173 * Deeper hierachy with use_hierarchy == false doesn't make 4174 * much sense so let cgroup subsystem know about this 4175 * unfortunate state in our controller. 4176 */ 4177 if (parent != root_mem_cgroup) 4178 memory_cgrp_subsys.broken_hierarchy = true; 4179 } 4180 4181 /* The following stuff does not apply to the root */ 4182 if (!parent) { 4183 root_mem_cgroup = memcg; 4184 return &memcg->css; 4185 } 4186 4187 error = memcg_online_kmem(memcg); 4188 if (error) 4189 goto fail; 4190 4191 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4192 static_branch_inc(&memcg_sockets_enabled_key); 4193 4194 return &memcg->css; 4195 fail: 4196 mem_cgroup_free(memcg); 4197 return NULL; 4198 } 4199 4200 static int 4201 mem_cgroup_css_online(struct cgroup_subsys_state *css) 4202 { 4203 if (css->id > MEM_CGROUP_ID_MAX) 4204 return -ENOSPC; 4205 4206 return 0; 4207 } 4208 4209 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4210 { 4211 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4212 struct mem_cgroup_event *event, *tmp; 4213 4214 /* 4215 * Unregister events and notify userspace. 4216 * Notify userspace about cgroup removing only after rmdir of cgroup 4217 * directory to avoid race between userspace and kernelspace. 4218 */ 4219 spin_lock(&memcg->event_list_lock); 4220 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4221 list_del_init(&event->list); 4222 schedule_work(&event->remove); 4223 } 4224 spin_unlock(&memcg->event_list_lock); 4225 4226 memcg_offline_kmem(memcg); 4227 wb_memcg_offline(memcg); 4228 } 4229 4230 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4231 { 4232 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4233 4234 invalidate_reclaim_iterators(memcg); 4235 } 4236 4237 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4238 { 4239 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4240 4241 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4242 static_branch_dec(&memcg_sockets_enabled_key); 4243 4244 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4245 static_branch_dec(&memcg_sockets_enabled_key); 4246 4247 vmpressure_cleanup(&memcg->vmpressure); 4248 cancel_work_sync(&memcg->high_work); 4249 mem_cgroup_remove_from_trees(memcg); 4250 memcg_free_kmem(memcg); 4251 mem_cgroup_free(memcg); 4252 } 4253 4254 /** 4255 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4256 * @css: the target css 4257 * 4258 * Reset the states of the mem_cgroup associated with @css. This is 4259 * invoked when the userland requests disabling on the default hierarchy 4260 * but the memcg is pinned through dependency. The memcg should stop 4261 * applying policies and should revert to the vanilla state as it may be 4262 * made visible again. 4263 * 4264 * The current implementation only resets the essential configurations. 4265 * This needs to be expanded to cover all the visible parts. 4266 */ 4267 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4268 { 4269 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4270 4271 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4272 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4273 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4274 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4275 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4276 memcg->low = 0; 4277 memcg->high = PAGE_COUNTER_MAX; 4278 memcg->soft_limit = PAGE_COUNTER_MAX; 4279 memcg_wb_domain_size_changed(memcg); 4280 } 4281 4282 #ifdef CONFIG_MMU 4283 /* Handlers for move charge at task migration. */ 4284 static int mem_cgroup_do_precharge(unsigned long count) 4285 { 4286 int ret; 4287 4288 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4289 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4290 if (!ret) { 4291 mc.precharge += count; 4292 return ret; 4293 } 4294 4295 /* Try charges one by one with reclaim */ 4296 while (count--) { 4297 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4298 if (ret) 4299 return ret; 4300 mc.precharge++; 4301 cond_resched(); 4302 } 4303 return 0; 4304 } 4305 4306 /** 4307 * get_mctgt_type - get target type of moving charge 4308 * @vma: the vma the pte to be checked belongs 4309 * @addr: the address corresponding to the pte to be checked 4310 * @ptent: the pte to be checked 4311 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4312 * 4313 * Returns 4314 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4315 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4316 * move charge. if @target is not NULL, the page is stored in target->page 4317 * with extra refcnt got(Callers should handle it). 4318 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4319 * target for charge migration. if @target is not NULL, the entry is stored 4320 * in target->ent. 4321 * 4322 * Called with pte lock held. 4323 */ 4324 union mc_target { 4325 struct page *page; 4326 swp_entry_t ent; 4327 }; 4328 4329 enum mc_target_type { 4330 MC_TARGET_NONE = 0, 4331 MC_TARGET_PAGE, 4332 MC_TARGET_SWAP, 4333 }; 4334 4335 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4336 unsigned long addr, pte_t ptent) 4337 { 4338 struct page *page = vm_normal_page(vma, addr, ptent); 4339 4340 if (!page || !page_mapped(page)) 4341 return NULL; 4342 if (PageAnon(page)) { 4343 if (!(mc.flags & MOVE_ANON)) 4344 return NULL; 4345 } else { 4346 if (!(mc.flags & MOVE_FILE)) 4347 return NULL; 4348 } 4349 if (!get_page_unless_zero(page)) 4350 return NULL; 4351 4352 return page; 4353 } 4354 4355 #ifdef CONFIG_SWAP 4356 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4357 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4358 { 4359 struct page *page = NULL; 4360 swp_entry_t ent = pte_to_swp_entry(ptent); 4361 4362 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4363 return NULL; 4364 /* 4365 * Because lookup_swap_cache() updates some statistics counter, 4366 * we call find_get_page() with swapper_space directly. 4367 */ 4368 page = find_get_page(swap_address_space(ent), ent.val); 4369 if (do_memsw_account()) 4370 entry->val = ent.val; 4371 4372 return page; 4373 } 4374 #else 4375 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4376 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4377 { 4378 return NULL; 4379 } 4380 #endif 4381 4382 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4383 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4384 { 4385 struct page *page = NULL; 4386 struct address_space *mapping; 4387 pgoff_t pgoff; 4388 4389 if (!vma->vm_file) /* anonymous vma */ 4390 return NULL; 4391 if (!(mc.flags & MOVE_FILE)) 4392 return NULL; 4393 4394 mapping = vma->vm_file->f_mapping; 4395 pgoff = linear_page_index(vma, addr); 4396 4397 /* page is moved even if it's not RSS of this task(page-faulted). */ 4398 #ifdef CONFIG_SWAP 4399 /* shmem/tmpfs may report page out on swap: account for that too. */ 4400 if (shmem_mapping(mapping)) { 4401 page = find_get_entry(mapping, pgoff); 4402 if (radix_tree_exceptional_entry(page)) { 4403 swp_entry_t swp = radix_to_swp_entry(page); 4404 if (do_memsw_account()) 4405 *entry = swp; 4406 page = find_get_page(swap_address_space(swp), swp.val); 4407 } 4408 } else 4409 page = find_get_page(mapping, pgoff); 4410 #else 4411 page = find_get_page(mapping, pgoff); 4412 #endif 4413 return page; 4414 } 4415 4416 /** 4417 * mem_cgroup_move_account - move account of the page 4418 * @page: the page 4419 * @nr_pages: number of regular pages (>1 for huge pages) 4420 * @from: mem_cgroup which the page is moved from. 4421 * @to: mem_cgroup which the page is moved to. @from != @to. 4422 * 4423 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4424 * 4425 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4426 * from old cgroup. 4427 */ 4428 static int mem_cgroup_move_account(struct page *page, 4429 bool compound, 4430 struct mem_cgroup *from, 4431 struct mem_cgroup *to) 4432 { 4433 unsigned long flags; 4434 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4435 int ret; 4436 bool anon; 4437 4438 VM_BUG_ON(from == to); 4439 VM_BUG_ON_PAGE(PageLRU(page), page); 4440 VM_BUG_ON(compound && !PageTransHuge(page)); 4441 4442 /* 4443 * Prevent mem_cgroup_migrate() from looking at 4444 * page->mem_cgroup of its source page while we change it. 4445 */ 4446 ret = -EBUSY; 4447 if (!trylock_page(page)) 4448 goto out; 4449 4450 ret = -EINVAL; 4451 if (page->mem_cgroup != from) 4452 goto out_unlock; 4453 4454 anon = PageAnon(page); 4455 4456 spin_lock_irqsave(&from->move_lock, flags); 4457 4458 if (!anon && page_mapped(page)) { 4459 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4460 nr_pages); 4461 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4462 nr_pages); 4463 } 4464 4465 /* 4466 * move_lock grabbed above and caller set from->moving_account, so 4467 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4468 * So mapping should be stable for dirty pages. 4469 */ 4470 if (!anon && PageDirty(page)) { 4471 struct address_space *mapping = page_mapping(page); 4472 4473 if (mapping_cap_account_dirty(mapping)) { 4474 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4475 nr_pages); 4476 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4477 nr_pages); 4478 } 4479 } 4480 4481 if (PageWriteback(page)) { 4482 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4483 nr_pages); 4484 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4485 nr_pages); 4486 } 4487 4488 /* 4489 * It is safe to change page->mem_cgroup here because the page 4490 * is referenced, charged, and isolated - we can't race with 4491 * uncharging, charging, migration, or LRU putback. 4492 */ 4493 4494 /* caller should have done css_get */ 4495 page->mem_cgroup = to; 4496 spin_unlock_irqrestore(&from->move_lock, flags); 4497 4498 ret = 0; 4499 4500 local_irq_disable(); 4501 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4502 memcg_check_events(to, page); 4503 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4504 memcg_check_events(from, page); 4505 local_irq_enable(); 4506 out_unlock: 4507 unlock_page(page); 4508 out: 4509 return ret; 4510 } 4511 4512 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4513 unsigned long addr, pte_t ptent, union mc_target *target) 4514 { 4515 struct page *page = NULL; 4516 enum mc_target_type ret = MC_TARGET_NONE; 4517 swp_entry_t ent = { .val = 0 }; 4518 4519 if (pte_present(ptent)) 4520 page = mc_handle_present_pte(vma, addr, ptent); 4521 else if (is_swap_pte(ptent)) 4522 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 4523 else if (pte_none(ptent)) 4524 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4525 4526 if (!page && !ent.val) 4527 return ret; 4528 if (page) { 4529 /* 4530 * Do only loose check w/o serialization. 4531 * mem_cgroup_move_account() checks the page is valid or 4532 * not under LRU exclusion. 4533 */ 4534 if (page->mem_cgroup == mc.from) { 4535 ret = MC_TARGET_PAGE; 4536 if (target) 4537 target->page = page; 4538 } 4539 if (!ret || !target) 4540 put_page(page); 4541 } 4542 /* There is a swap entry and a page doesn't exist or isn't charged */ 4543 if (ent.val && !ret && 4544 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4545 ret = MC_TARGET_SWAP; 4546 if (target) 4547 target->ent = ent; 4548 } 4549 return ret; 4550 } 4551 4552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4553 /* 4554 * We don't consider swapping or file mapped pages because THP does not 4555 * support them for now. 4556 * Caller should make sure that pmd_trans_huge(pmd) is true. 4557 */ 4558 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4559 unsigned long addr, pmd_t pmd, union mc_target *target) 4560 { 4561 struct page *page = NULL; 4562 enum mc_target_type ret = MC_TARGET_NONE; 4563 4564 page = pmd_page(pmd); 4565 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4566 if (!(mc.flags & MOVE_ANON)) 4567 return ret; 4568 if (page->mem_cgroup == mc.from) { 4569 ret = MC_TARGET_PAGE; 4570 if (target) { 4571 get_page(page); 4572 target->page = page; 4573 } 4574 } 4575 return ret; 4576 } 4577 #else 4578 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4579 unsigned long addr, pmd_t pmd, union mc_target *target) 4580 { 4581 return MC_TARGET_NONE; 4582 } 4583 #endif 4584 4585 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4586 unsigned long addr, unsigned long end, 4587 struct mm_walk *walk) 4588 { 4589 struct vm_area_struct *vma = walk->vma; 4590 pte_t *pte; 4591 spinlock_t *ptl; 4592 4593 ptl = pmd_trans_huge_lock(pmd, vma); 4594 if (ptl) { 4595 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4596 mc.precharge += HPAGE_PMD_NR; 4597 spin_unlock(ptl); 4598 return 0; 4599 } 4600 4601 if (pmd_trans_unstable(pmd)) 4602 return 0; 4603 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4604 for (; addr != end; pte++, addr += PAGE_SIZE) 4605 if (get_mctgt_type(vma, addr, *pte, NULL)) 4606 mc.precharge++; /* increment precharge temporarily */ 4607 pte_unmap_unlock(pte - 1, ptl); 4608 cond_resched(); 4609 4610 return 0; 4611 } 4612 4613 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4614 { 4615 unsigned long precharge; 4616 4617 struct mm_walk mem_cgroup_count_precharge_walk = { 4618 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4619 .mm = mm, 4620 }; 4621 down_read(&mm->mmap_sem); 4622 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4623 up_read(&mm->mmap_sem); 4624 4625 precharge = mc.precharge; 4626 mc.precharge = 0; 4627 4628 return precharge; 4629 } 4630 4631 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4632 { 4633 unsigned long precharge = mem_cgroup_count_precharge(mm); 4634 4635 VM_BUG_ON(mc.moving_task); 4636 mc.moving_task = current; 4637 return mem_cgroup_do_precharge(precharge); 4638 } 4639 4640 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4641 static void __mem_cgroup_clear_mc(void) 4642 { 4643 struct mem_cgroup *from = mc.from; 4644 struct mem_cgroup *to = mc.to; 4645 4646 /* we must uncharge all the leftover precharges from mc.to */ 4647 if (mc.precharge) { 4648 cancel_charge(mc.to, mc.precharge); 4649 mc.precharge = 0; 4650 } 4651 /* 4652 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4653 * we must uncharge here. 4654 */ 4655 if (mc.moved_charge) { 4656 cancel_charge(mc.from, mc.moved_charge); 4657 mc.moved_charge = 0; 4658 } 4659 /* we must fixup refcnts and charges */ 4660 if (mc.moved_swap) { 4661 /* uncharge swap account from the old cgroup */ 4662 if (!mem_cgroup_is_root(mc.from)) 4663 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4664 4665 /* 4666 * we charged both to->memory and to->memsw, so we 4667 * should uncharge to->memory. 4668 */ 4669 if (!mem_cgroup_is_root(mc.to)) 4670 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4671 4672 css_put_many(&mc.from->css, mc.moved_swap); 4673 4674 /* we've already done css_get(mc.to) */ 4675 mc.moved_swap = 0; 4676 } 4677 memcg_oom_recover(from); 4678 memcg_oom_recover(to); 4679 wake_up_all(&mc.waitq); 4680 } 4681 4682 static void mem_cgroup_clear_mc(void) 4683 { 4684 struct mm_struct *mm = mc.mm; 4685 4686 /* 4687 * we must clear moving_task before waking up waiters at the end of 4688 * task migration. 4689 */ 4690 mc.moving_task = NULL; 4691 __mem_cgroup_clear_mc(); 4692 spin_lock(&mc.lock); 4693 mc.from = NULL; 4694 mc.to = NULL; 4695 mc.mm = NULL; 4696 spin_unlock(&mc.lock); 4697 4698 mmput(mm); 4699 } 4700 4701 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4702 { 4703 struct cgroup_subsys_state *css; 4704 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4705 struct mem_cgroup *from; 4706 struct task_struct *leader, *p; 4707 struct mm_struct *mm; 4708 unsigned long move_flags; 4709 int ret = 0; 4710 4711 /* charge immigration isn't supported on the default hierarchy */ 4712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4713 return 0; 4714 4715 /* 4716 * Multi-process migrations only happen on the default hierarchy 4717 * where charge immigration is not used. Perform charge 4718 * immigration if @tset contains a leader and whine if there are 4719 * multiple. 4720 */ 4721 p = NULL; 4722 cgroup_taskset_for_each_leader(leader, css, tset) { 4723 WARN_ON_ONCE(p); 4724 p = leader; 4725 memcg = mem_cgroup_from_css(css); 4726 } 4727 if (!p) 4728 return 0; 4729 4730 /* 4731 * We are now commited to this value whatever it is. Changes in this 4732 * tunable will only affect upcoming migrations, not the current one. 4733 * So we need to save it, and keep it going. 4734 */ 4735 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4736 if (!move_flags) 4737 return 0; 4738 4739 from = mem_cgroup_from_task(p); 4740 4741 VM_BUG_ON(from == memcg); 4742 4743 mm = get_task_mm(p); 4744 if (!mm) 4745 return 0; 4746 /* We move charges only when we move a owner of the mm */ 4747 if (mm->owner == p) { 4748 VM_BUG_ON(mc.from); 4749 VM_BUG_ON(mc.to); 4750 VM_BUG_ON(mc.precharge); 4751 VM_BUG_ON(mc.moved_charge); 4752 VM_BUG_ON(mc.moved_swap); 4753 4754 spin_lock(&mc.lock); 4755 mc.mm = mm; 4756 mc.from = from; 4757 mc.to = memcg; 4758 mc.flags = move_flags; 4759 spin_unlock(&mc.lock); 4760 /* We set mc.moving_task later */ 4761 4762 ret = mem_cgroup_precharge_mc(mm); 4763 if (ret) 4764 mem_cgroup_clear_mc(); 4765 } else { 4766 mmput(mm); 4767 } 4768 return ret; 4769 } 4770 4771 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4772 { 4773 if (mc.to) 4774 mem_cgroup_clear_mc(); 4775 } 4776 4777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4778 unsigned long addr, unsigned long end, 4779 struct mm_walk *walk) 4780 { 4781 int ret = 0; 4782 struct vm_area_struct *vma = walk->vma; 4783 pte_t *pte; 4784 spinlock_t *ptl; 4785 enum mc_target_type target_type; 4786 union mc_target target; 4787 struct page *page; 4788 4789 ptl = pmd_trans_huge_lock(pmd, vma); 4790 if (ptl) { 4791 if (mc.precharge < HPAGE_PMD_NR) { 4792 spin_unlock(ptl); 4793 return 0; 4794 } 4795 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4796 if (target_type == MC_TARGET_PAGE) { 4797 page = target.page; 4798 if (!isolate_lru_page(page)) { 4799 if (!mem_cgroup_move_account(page, true, 4800 mc.from, mc.to)) { 4801 mc.precharge -= HPAGE_PMD_NR; 4802 mc.moved_charge += HPAGE_PMD_NR; 4803 } 4804 putback_lru_page(page); 4805 } 4806 put_page(page); 4807 } 4808 spin_unlock(ptl); 4809 return 0; 4810 } 4811 4812 if (pmd_trans_unstable(pmd)) 4813 return 0; 4814 retry: 4815 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4816 for (; addr != end; addr += PAGE_SIZE) { 4817 pte_t ptent = *(pte++); 4818 swp_entry_t ent; 4819 4820 if (!mc.precharge) 4821 break; 4822 4823 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4824 case MC_TARGET_PAGE: 4825 page = target.page; 4826 /* 4827 * We can have a part of the split pmd here. Moving it 4828 * can be done but it would be too convoluted so simply 4829 * ignore such a partial THP and keep it in original 4830 * memcg. There should be somebody mapping the head. 4831 */ 4832 if (PageTransCompound(page)) 4833 goto put; 4834 if (isolate_lru_page(page)) 4835 goto put; 4836 if (!mem_cgroup_move_account(page, false, 4837 mc.from, mc.to)) { 4838 mc.precharge--; 4839 /* we uncharge from mc.from later. */ 4840 mc.moved_charge++; 4841 } 4842 putback_lru_page(page); 4843 put: /* get_mctgt_type() gets the page */ 4844 put_page(page); 4845 break; 4846 case MC_TARGET_SWAP: 4847 ent = target.ent; 4848 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4849 mc.precharge--; 4850 /* we fixup refcnts and charges later. */ 4851 mc.moved_swap++; 4852 } 4853 break; 4854 default: 4855 break; 4856 } 4857 } 4858 pte_unmap_unlock(pte - 1, ptl); 4859 cond_resched(); 4860 4861 if (addr != end) { 4862 /* 4863 * We have consumed all precharges we got in can_attach(). 4864 * We try charge one by one, but don't do any additional 4865 * charges to mc.to if we have failed in charge once in attach() 4866 * phase. 4867 */ 4868 ret = mem_cgroup_do_precharge(1); 4869 if (!ret) 4870 goto retry; 4871 } 4872 4873 return ret; 4874 } 4875 4876 static void mem_cgroup_move_charge(void) 4877 { 4878 struct mm_walk mem_cgroup_move_charge_walk = { 4879 .pmd_entry = mem_cgroup_move_charge_pte_range, 4880 .mm = mc.mm, 4881 }; 4882 4883 lru_add_drain_all(); 4884 /* 4885 * Signal lock_page_memcg() to take the memcg's move_lock 4886 * while we're moving its pages to another memcg. Then wait 4887 * for already started RCU-only updates to finish. 4888 */ 4889 atomic_inc(&mc.from->moving_account); 4890 synchronize_rcu(); 4891 retry: 4892 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4893 /* 4894 * Someone who are holding the mmap_sem might be waiting in 4895 * waitq. So we cancel all extra charges, wake up all waiters, 4896 * and retry. Because we cancel precharges, we might not be able 4897 * to move enough charges, but moving charge is a best-effort 4898 * feature anyway, so it wouldn't be a big problem. 4899 */ 4900 __mem_cgroup_clear_mc(); 4901 cond_resched(); 4902 goto retry; 4903 } 4904 /* 4905 * When we have consumed all precharges and failed in doing 4906 * additional charge, the page walk just aborts. 4907 */ 4908 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4909 up_read(&mc.mm->mmap_sem); 4910 atomic_dec(&mc.from->moving_account); 4911 } 4912 4913 static void mem_cgroup_move_task(void) 4914 { 4915 if (mc.to) { 4916 mem_cgroup_move_charge(); 4917 mem_cgroup_clear_mc(); 4918 } 4919 } 4920 #else /* !CONFIG_MMU */ 4921 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4922 { 4923 return 0; 4924 } 4925 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4926 { 4927 } 4928 static void mem_cgroup_move_task(void) 4929 { 4930 } 4931 #endif 4932 4933 /* 4934 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4935 * to verify whether we're attached to the default hierarchy on each mount 4936 * attempt. 4937 */ 4938 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4939 { 4940 /* 4941 * use_hierarchy is forced on the default hierarchy. cgroup core 4942 * guarantees that @root doesn't have any children, so turning it 4943 * on for the root memcg is enough. 4944 */ 4945 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4946 root_mem_cgroup->use_hierarchy = true; 4947 else 4948 root_mem_cgroup->use_hierarchy = false; 4949 } 4950 4951 static u64 memory_current_read(struct cgroup_subsys_state *css, 4952 struct cftype *cft) 4953 { 4954 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4955 4956 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4957 } 4958 4959 static int memory_low_show(struct seq_file *m, void *v) 4960 { 4961 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4962 unsigned long low = READ_ONCE(memcg->low); 4963 4964 if (low == PAGE_COUNTER_MAX) 4965 seq_puts(m, "max\n"); 4966 else 4967 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 4968 4969 return 0; 4970 } 4971 4972 static ssize_t memory_low_write(struct kernfs_open_file *of, 4973 char *buf, size_t nbytes, loff_t off) 4974 { 4975 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4976 unsigned long low; 4977 int err; 4978 4979 buf = strstrip(buf); 4980 err = page_counter_memparse(buf, "max", &low); 4981 if (err) 4982 return err; 4983 4984 memcg->low = low; 4985 4986 return nbytes; 4987 } 4988 4989 static int memory_high_show(struct seq_file *m, void *v) 4990 { 4991 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4992 unsigned long high = READ_ONCE(memcg->high); 4993 4994 if (high == PAGE_COUNTER_MAX) 4995 seq_puts(m, "max\n"); 4996 else 4997 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 4998 4999 return 0; 5000 } 5001 5002 static ssize_t memory_high_write(struct kernfs_open_file *of, 5003 char *buf, size_t nbytes, loff_t off) 5004 { 5005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5006 unsigned long nr_pages; 5007 unsigned long high; 5008 int err; 5009 5010 buf = strstrip(buf); 5011 err = page_counter_memparse(buf, "max", &high); 5012 if (err) 5013 return err; 5014 5015 memcg->high = high; 5016 5017 nr_pages = page_counter_read(&memcg->memory); 5018 if (nr_pages > high) 5019 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5020 GFP_KERNEL, true); 5021 5022 memcg_wb_domain_size_changed(memcg); 5023 return nbytes; 5024 } 5025 5026 static int memory_max_show(struct seq_file *m, void *v) 5027 { 5028 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5029 unsigned long max = READ_ONCE(memcg->memory.limit); 5030 5031 if (max == PAGE_COUNTER_MAX) 5032 seq_puts(m, "max\n"); 5033 else 5034 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5035 5036 return 0; 5037 } 5038 5039 static ssize_t memory_max_write(struct kernfs_open_file *of, 5040 char *buf, size_t nbytes, loff_t off) 5041 { 5042 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5043 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5044 bool drained = false; 5045 unsigned long max; 5046 int err; 5047 5048 buf = strstrip(buf); 5049 err = page_counter_memparse(buf, "max", &max); 5050 if (err) 5051 return err; 5052 5053 xchg(&memcg->memory.limit, max); 5054 5055 for (;;) { 5056 unsigned long nr_pages = page_counter_read(&memcg->memory); 5057 5058 if (nr_pages <= max) 5059 break; 5060 5061 if (signal_pending(current)) { 5062 err = -EINTR; 5063 break; 5064 } 5065 5066 if (!drained) { 5067 drain_all_stock(memcg); 5068 drained = true; 5069 continue; 5070 } 5071 5072 if (nr_reclaims) { 5073 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5074 GFP_KERNEL, true)) 5075 nr_reclaims--; 5076 continue; 5077 } 5078 5079 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5080 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5081 break; 5082 } 5083 5084 memcg_wb_domain_size_changed(memcg); 5085 return nbytes; 5086 } 5087 5088 static int memory_events_show(struct seq_file *m, void *v) 5089 { 5090 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5091 5092 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5093 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5094 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5095 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5096 5097 return 0; 5098 } 5099 5100 static int memory_stat_show(struct seq_file *m, void *v) 5101 { 5102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5103 unsigned long stat[MEMCG_NR_STAT]; 5104 unsigned long events[MEMCG_NR_EVENTS]; 5105 int i; 5106 5107 /* 5108 * Provide statistics on the state of the memory subsystem as 5109 * well as cumulative event counters that show past behavior. 5110 * 5111 * This list is ordered following a combination of these gradients: 5112 * 1) generic big picture -> specifics and details 5113 * 2) reflecting userspace activity -> reflecting kernel heuristics 5114 * 5115 * Current memory state: 5116 */ 5117 5118 tree_stat(memcg, stat); 5119 tree_events(memcg, events); 5120 5121 seq_printf(m, "anon %llu\n", 5122 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5123 seq_printf(m, "file %llu\n", 5124 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5125 seq_printf(m, "kernel_stack %llu\n", 5126 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); 5127 seq_printf(m, "slab %llu\n", 5128 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5129 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5130 seq_printf(m, "sock %llu\n", 5131 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5132 5133 seq_printf(m, "file_mapped %llu\n", 5134 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5135 seq_printf(m, "file_dirty %llu\n", 5136 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5137 seq_printf(m, "file_writeback %llu\n", 5138 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5139 5140 for (i = 0; i < NR_LRU_LISTS; i++) { 5141 struct mem_cgroup *mi; 5142 unsigned long val = 0; 5143 5144 for_each_mem_cgroup_tree(mi, memcg) 5145 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5146 seq_printf(m, "%s %llu\n", 5147 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5148 } 5149 5150 seq_printf(m, "slab_reclaimable %llu\n", 5151 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5152 seq_printf(m, "slab_unreclaimable %llu\n", 5153 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5154 5155 /* Accumulated memory events */ 5156 5157 seq_printf(m, "pgfault %lu\n", 5158 events[MEM_CGROUP_EVENTS_PGFAULT]); 5159 seq_printf(m, "pgmajfault %lu\n", 5160 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5161 5162 return 0; 5163 } 5164 5165 static struct cftype memory_files[] = { 5166 { 5167 .name = "current", 5168 .flags = CFTYPE_NOT_ON_ROOT, 5169 .read_u64 = memory_current_read, 5170 }, 5171 { 5172 .name = "low", 5173 .flags = CFTYPE_NOT_ON_ROOT, 5174 .seq_show = memory_low_show, 5175 .write = memory_low_write, 5176 }, 5177 { 5178 .name = "high", 5179 .flags = CFTYPE_NOT_ON_ROOT, 5180 .seq_show = memory_high_show, 5181 .write = memory_high_write, 5182 }, 5183 { 5184 .name = "max", 5185 .flags = CFTYPE_NOT_ON_ROOT, 5186 .seq_show = memory_max_show, 5187 .write = memory_max_write, 5188 }, 5189 { 5190 .name = "events", 5191 .flags = CFTYPE_NOT_ON_ROOT, 5192 .file_offset = offsetof(struct mem_cgroup, events_file), 5193 .seq_show = memory_events_show, 5194 }, 5195 { 5196 .name = "stat", 5197 .flags = CFTYPE_NOT_ON_ROOT, 5198 .seq_show = memory_stat_show, 5199 }, 5200 { } /* terminate */ 5201 }; 5202 5203 struct cgroup_subsys memory_cgrp_subsys = { 5204 .css_alloc = mem_cgroup_css_alloc, 5205 .css_online = mem_cgroup_css_online, 5206 .css_offline = mem_cgroup_css_offline, 5207 .css_released = mem_cgroup_css_released, 5208 .css_free = mem_cgroup_css_free, 5209 .css_reset = mem_cgroup_css_reset, 5210 .can_attach = mem_cgroup_can_attach, 5211 .cancel_attach = mem_cgroup_cancel_attach, 5212 .post_attach = mem_cgroup_move_task, 5213 .bind = mem_cgroup_bind, 5214 .dfl_cftypes = memory_files, 5215 .legacy_cftypes = mem_cgroup_legacy_files, 5216 .early_init = 0, 5217 }; 5218 5219 /** 5220 * mem_cgroup_low - check if memory consumption is below the normal range 5221 * @root: the highest ancestor to consider 5222 * @memcg: the memory cgroup to check 5223 * 5224 * Returns %true if memory consumption of @memcg, and that of all 5225 * configurable ancestors up to @root, is below the normal range. 5226 */ 5227 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5228 { 5229 if (mem_cgroup_disabled()) 5230 return false; 5231 5232 /* 5233 * The toplevel group doesn't have a configurable range, so 5234 * it's never low when looked at directly, and it is not 5235 * considered an ancestor when assessing the hierarchy. 5236 */ 5237 5238 if (memcg == root_mem_cgroup) 5239 return false; 5240 5241 if (page_counter_read(&memcg->memory) >= memcg->low) 5242 return false; 5243 5244 while (memcg != root) { 5245 memcg = parent_mem_cgroup(memcg); 5246 5247 if (memcg == root_mem_cgroup) 5248 break; 5249 5250 if (page_counter_read(&memcg->memory) >= memcg->low) 5251 return false; 5252 } 5253 return true; 5254 } 5255 5256 /** 5257 * mem_cgroup_try_charge - try charging a page 5258 * @page: page to charge 5259 * @mm: mm context of the victim 5260 * @gfp_mask: reclaim mode 5261 * @memcgp: charged memcg return 5262 * 5263 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5264 * pages according to @gfp_mask if necessary. 5265 * 5266 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5267 * Otherwise, an error code is returned. 5268 * 5269 * After page->mapping has been set up, the caller must finalize the 5270 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5271 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5272 */ 5273 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5274 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5275 bool compound) 5276 { 5277 struct mem_cgroup *memcg = NULL; 5278 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5279 int ret = 0; 5280 5281 if (mem_cgroup_disabled()) 5282 goto out; 5283 5284 if (PageSwapCache(page)) { 5285 /* 5286 * Every swap fault against a single page tries to charge the 5287 * page, bail as early as possible. shmem_unuse() encounters 5288 * already charged pages, too. The USED bit is protected by 5289 * the page lock, which serializes swap cache removal, which 5290 * in turn serializes uncharging. 5291 */ 5292 VM_BUG_ON_PAGE(!PageLocked(page), page); 5293 if (page->mem_cgroup) 5294 goto out; 5295 5296 if (do_swap_account) { 5297 swp_entry_t ent = { .val = page_private(page), }; 5298 unsigned short id = lookup_swap_cgroup_id(ent); 5299 5300 rcu_read_lock(); 5301 memcg = mem_cgroup_from_id(id); 5302 if (memcg && !css_tryget_online(&memcg->css)) 5303 memcg = NULL; 5304 rcu_read_unlock(); 5305 } 5306 } 5307 5308 if (!memcg) 5309 memcg = get_mem_cgroup_from_mm(mm); 5310 5311 ret = try_charge(memcg, gfp_mask, nr_pages); 5312 5313 css_put(&memcg->css); 5314 out: 5315 *memcgp = memcg; 5316 return ret; 5317 } 5318 5319 /** 5320 * mem_cgroup_commit_charge - commit a page charge 5321 * @page: page to charge 5322 * @memcg: memcg to charge the page to 5323 * @lrucare: page might be on LRU already 5324 * 5325 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5326 * after page->mapping has been set up. This must happen atomically 5327 * as part of the page instantiation, i.e. under the page table lock 5328 * for anonymous pages, under the page lock for page and swap cache. 5329 * 5330 * In addition, the page must not be on the LRU during the commit, to 5331 * prevent racing with task migration. If it might be, use @lrucare. 5332 * 5333 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5334 */ 5335 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5336 bool lrucare, bool compound) 5337 { 5338 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5339 5340 VM_BUG_ON_PAGE(!page->mapping, page); 5341 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5342 5343 if (mem_cgroup_disabled()) 5344 return; 5345 /* 5346 * Swap faults will attempt to charge the same page multiple 5347 * times. But reuse_swap_page() might have removed the page 5348 * from swapcache already, so we can't check PageSwapCache(). 5349 */ 5350 if (!memcg) 5351 return; 5352 5353 commit_charge(page, memcg, lrucare); 5354 5355 local_irq_disable(); 5356 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5357 memcg_check_events(memcg, page); 5358 local_irq_enable(); 5359 5360 if (do_memsw_account() && PageSwapCache(page)) { 5361 swp_entry_t entry = { .val = page_private(page) }; 5362 /* 5363 * The swap entry might not get freed for a long time, 5364 * let's not wait for it. The page already received a 5365 * memory+swap charge, drop the swap entry duplicate. 5366 */ 5367 mem_cgroup_uncharge_swap(entry); 5368 } 5369 } 5370 5371 /** 5372 * mem_cgroup_cancel_charge - cancel a page charge 5373 * @page: page to charge 5374 * @memcg: memcg to charge the page to 5375 * 5376 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5377 */ 5378 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5379 bool compound) 5380 { 5381 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5382 5383 if (mem_cgroup_disabled()) 5384 return; 5385 /* 5386 * Swap faults will attempt to charge the same page multiple 5387 * times. But reuse_swap_page() might have removed the page 5388 * from swapcache already, so we can't check PageSwapCache(). 5389 */ 5390 if (!memcg) 5391 return; 5392 5393 cancel_charge(memcg, nr_pages); 5394 } 5395 5396 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5397 unsigned long nr_anon, unsigned long nr_file, 5398 unsigned long nr_huge, struct page *dummy_page) 5399 { 5400 unsigned long nr_pages = nr_anon + nr_file; 5401 unsigned long flags; 5402 5403 if (!mem_cgroup_is_root(memcg)) { 5404 page_counter_uncharge(&memcg->memory, nr_pages); 5405 if (do_memsw_account()) 5406 page_counter_uncharge(&memcg->memsw, nr_pages); 5407 memcg_oom_recover(memcg); 5408 } 5409 5410 local_irq_save(flags); 5411 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5412 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5414 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5415 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5416 memcg_check_events(memcg, dummy_page); 5417 local_irq_restore(flags); 5418 5419 if (!mem_cgroup_is_root(memcg)) 5420 css_put_many(&memcg->css, nr_pages); 5421 } 5422 5423 static void uncharge_list(struct list_head *page_list) 5424 { 5425 struct mem_cgroup *memcg = NULL; 5426 unsigned long nr_anon = 0; 5427 unsigned long nr_file = 0; 5428 unsigned long nr_huge = 0; 5429 unsigned long pgpgout = 0; 5430 struct list_head *next; 5431 struct page *page; 5432 5433 /* 5434 * Note that the list can be a single page->lru; hence the 5435 * do-while loop instead of a simple list_for_each_entry(). 5436 */ 5437 next = page_list->next; 5438 do { 5439 unsigned int nr_pages = 1; 5440 5441 page = list_entry(next, struct page, lru); 5442 next = page->lru.next; 5443 5444 VM_BUG_ON_PAGE(PageLRU(page), page); 5445 VM_BUG_ON_PAGE(page_count(page), page); 5446 5447 if (!page->mem_cgroup) 5448 continue; 5449 5450 /* 5451 * Nobody should be changing or seriously looking at 5452 * page->mem_cgroup at this point, we have fully 5453 * exclusive access to the page. 5454 */ 5455 5456 if (memcg != page->mem_cgroup) { 5457 if (memcg) { 5458 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5459 nr_huge, page); 5460 pgpgout = nr_anon = nr_file = nr_huge = 0; 5461 } 5462 memcg = page->mem_cgroup; 5463 } 5464 5465 if (PageTransHuge(page)) { 5466 nr_pages <<= compound_order(page); 5467 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 5468 nr_huge += nr_pages; 5469 } 5470 5471 if (PageAnon(page)) 5472 nr_anon += nr_pages; 5473 else 5474 nr_file += nr_pages; 5475 5476 page->mem_cgroup = NULL; 5477 5478 pgpgout++; 5479 } while (next != page_list); 5480 5481 if (memcg) 5482 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5483 nr_huge, page); 5484 } 5485 5486 /** 5487 * mem_cgroup_uncharge - uncharge a page 5488 * @page: page to uncharge 5489 * 5490 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5491 * mem_cgroup_commit_charge(). 5492 */ 5493 void mem_cgroup_uncharge(struct page *page) 5494 { 5495 if (mem_cgroup_disabled()) 5496 return; 5497 5498 /* Don't touch page->lru of any random page, pre-check: */ 5499 if (!page->mem_cgroup) 5500 return; 5501 5502 INIT_LIST_HEAD(&page->lru); 5503 uncharge_list(&page->lru); 5504 } 5505 5506 /** 5507 * mem_cgroup_uncharge_list - uncharge a list of page 5508 * @page_list: list of pages to uncharge 5509 * 5510 * Uncharge a list of pages previously charged with 5511 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5512 */ 5513 void mem_cgroup_uncharge_list(struct list_head *page_list) 5514 { 5515 if (mem_cgroup_disabled()) 5516 return; 5517 5518 if (!list_empty(page_list)) 5519 uncharge_list(page_list); 5520 } 5521 5522 /** 5523 * mem_cgroup_migrate - charge a page's replacement 5524 * @oldpage: currently circulating page 5525 * @newpage: replacement page 5526 * 5527 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5528 * be uncharged upon free. 5529 * 5530 * Both pages must be locked, @newpage->mapping must be set up. 5531 */ 5532 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5533 { 5534 struct mem_cgroup *memcg; 5535 unsigned int nr_pages; 5536 bool compound; 5537 5538 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5539 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5540 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5541 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5542 newpage); 5543 5544 if (mem_cgroup_disabled()) 5545 return; 5546 5547 /* Page cache replacement: new page already charged? */ 5548 if (newpage->mem_cgroup) 5549 return; 5550 5551 /* Swapcache readahead pages can get replaced before being charged */ 5552 memcg = oldpage->mem_cgroup; 5553 if (!memcg) 5554 return; 5555 5556 /* Force-charge the new page. The old one will be freed soon */ 5557 compound = PageTransHuge(newpage); 5558 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5559 5560 page_counter_charge(&memcg->memory, nr_pages); 5561 if (do_memsw_account()) 5562 page_counter_charge(&memcg->memsw, nr_pages); 5563 css_get_many(&memcg->css, nr_pages); 5564 5565 commit_charge(newpage, memcg, false); 5566 5567 local_irq_disable(); 5568 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5569 memcg_check_events(memcg, newpage); 5570 local_irq_enable(); 5571 } 5572 5573 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5574 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5575 5576 void sock_update_memcg(struct sock *sk) 5577 { 5578 struct mem_cgroup *memcg; 5579 5580 /* Socket cloning can throw us here with sk_cgrp already 5581 * filled. It won't however, necessarily happen from 5582 * process context. So the test for root memcg given 5583 * the current task's memcg won't help us in this case. 5584 * 5585 * Respecting the original socket's memcg is a better 5586 * decision in this case. 5587 */ 5588 if (sk->sk_memcg) { 5589 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5590 css_get(&sk->sk_memcg->css); 5591 return; 5592 } 5593 5594 rcu_read_lock(); 5595 memcg = mem_cgroup_from_task(current); 5596 if (memcg == root_mem_cgroup) 5597 goto out; 5598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5599 goto out; 5600 if (css_tryget_online(&memcg->css)) 5601 sk->sk_memcg = memcg; 5602 out: 5603 rcu_read_unlock(); 5604 } 5605 EXPORT_SYMBOL(sock_update_memcg); 5606 5607 void sock_release_memcg(struct sock *sk) 5608 { 5609 WARN_ON(!sk->sk_memcg); 5610 css_put(&sk->sk_memcg->css); 5611 } 5612 5613 /** 5614 * mem_cgroup_charge_skmem - charge socket memory 5615 * @memcg: memcg to charge 5616 * @nr_pages: number of pages to charge 5617 * 5618 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5619 * @memcg's configured limit, %false if the charge had to be forced. 5620 */ 5621 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5622 { 5623 gfp_t gfp_mask = GFP_KERNEL; 5624 5625 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5626 struct page_counter *fail; 5627 5628 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5629 memcg->tcpmem_pressure = 0; 5630 return true; 5631 } 5632 page_counter_charge(&memcg->tcpmem, nr_pages); 5633 memcg->tcpmem_pressure = 1; 5634 return false; 5635 } 5636 5637 /* Don't block in the packet receive path */ 5638 if (in_softirq()) 5639 gfp_mask = GFP_NOWAIT; 5640 5641 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5642 5643 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5644 return true; 5645 5646 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5647 return false; 5648 } 5649 5650 /** 5651 * mem_cgroup_uncharge_skmem - uncharge socket memory 5652 * @memcg - memcg to uncharge 5653 * @nr_pages - number of pages to uncharge 5654 */ 5655 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5656 { 5657 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5658 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5659 return; 5660 } 5661 5662 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5663 5664 page_counter_uncharge(&memcg->memory, nr_pages); 5665 css_put_many(&memcg->css, nr_pages); 5666 } 5667 5668 static int __init cgroup_memory(char *s) 5669 { 5670 char *token; 5671 5672 while ((token = strsep(&s, ",")) != NULL) { 5673 if (!*token) 5674 continue; 5675 if (!strcmp(token, "nosocket")) 5676 cgroup_memory_nosocket = true; 5677 if (!strcmp(token, "nokmem")) 5678 cgroup_memory_nokmem = true; 5679 } 5680 return 0; 5681 } 5682 __setup("cgroup.memory=", cgroup_memory); 5683 5684 /* 5685 * subsys_initcall() for memory controller. 5686 * 5687 * Some parts like hotcpu_notifier() have to be initialized from this context 5688 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5689 * everything that doesn't depend on a specific mem_cgroup structure should 5690 * be initialized from here. 5691 */ 5692 static int __init mem_cgroup_init(void) 5693 { 5694 int cpu, node; 5695 5696 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5697 5698 for_each_possible_cpu(cpu) 5699 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5700 drain_local_stock); 5701 5702 for_each_node(node) { 5703 struct mem_cgroup_tree_per_node *rtpn; 5704 int zone; 5705 5706 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5707 node_online(node) ? node : NUMA_NO_NODE); 5708 5709 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5710 struct mem_cgroup_tree_per_zone *rtpz; 5711 5712 rtpz = &rtpn->rb_tree_per_zone[zone]; 5713 rtpz->rb_root = RB_ROOT; 5714 spin_lock_init(&rtpz->lock); 5715 } 5716 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5717 } 5718 5719 return 0; 5720 } 5721 subsys_initcall(mem_cgroup_init); 5722 5723 #ifdef CONFIG_MEMCG_SWAP 5724 /** 5725 * mem_cgroup_swapout - transfer a memsw charge to swap 5726 * @page: page whose memsw charge to transfer 5727 * @entry: swap entry to move the charge to 5728 * 5729 * Transfer the memsw charge of @page to @entry. 5730 */ 5731 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5732 { 5733 struct mem_cgroup *memcg; 5734 unsigned short oldid; 5735 5736 VM_BUG_ON_PAGE(PageLRU(page), page); 5737 VM_BUG_ON_PAGE(page_count(page), page); 5738 5739 if (!do_memsw_account()) 5740 return; 5741 5742 memcg = page->mem_cgroup; 5743 5744 /* Readahead page, never charged */ 5745 if (!memcg) 5746 return; 5747 5748 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5749 VM_BUG_ON_PAGE(oldid, page); 5750 mem_cgroup_swap_statistics(memcg, true); 5751 5752 page->mem_cgroup = NULL; 5753 5754 if (!mem_cgroup_is_root(memcg)) 5755 page_counter_uncharge(&memcg->memory, 1); 5756 5757 /* 5758 * Interrupts should be disabled here because the caller holds the 5759 * mapping->tree_lock lock which is taken with interrupts-off. It is 5760 * important here to have the interrupts disabled because it is the 5761 * only synchronisation we have for udpating the per-CPU variables. 5762 */ 5763 VM_BUG_ON(!irqs_disabled()); 5764 mem_cgroup_charge_statistics(memcg, page, false, -1); 5765 memcg_check_events(memcg, page); 5766 } 5767 5768 /* 5769 * mem_cgroup_try_charge_swap - try charging a swap entry 5770 * @page: page being added to swap 5771 * @entry: swap entry to charge 5772 * 5773 * Try to charge @entry to the memcg that @page belongs to. 5774 * 5775 * Returns 0 on success, -ENOMEM on failure. 5776 */ 5777 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5778 { 5779 struct mem_cgroup *memcg; 5780 struct page_counter *counter; 5781 unsigned short oldid; 5782 5783 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5784 return 0; 5785 5786 memcg = page->mem_cgroup; 5787 5788 /* Readahead page, never charged */ 5789 if (!memcg) 5790 return 0; 5791 5792 if (!mem_cgroup_is_root(memcg) && 5793 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5794 return -ENOMEM; 5795 5796 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5797 VM_BUG_ON_PAGE(oldid, page); 5798 mem_cgroup_swap_statistics(memcg, true); 5799 5800 css_get(&memcg->css); 5801 return 0; 5802 } 5803 5804 /** 5805 * mem_cgroup_uncharge_swap - uncharge a swap entry 5806 * @entry: swap entry to uncharge 5807 * 5808 * Drop the swap charge associated with @entry. 5809 */ 5810 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5811 { 5812 struct mem_cgroup *memcg; 5813 unsigned short id; 5814 5815 if (!do_swap_account) 5816 return; 5817 5818 id = swap_cgroup_record(entry, 0); 5819 rcu_read_lock(); 5820 memcg = mem_cgroup_from_id(id); 5821 if (memcg) { 5822 if (!mem_cgroup_is_root(memcg)) { 5823 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5824 page_counter_uncharge(&memcg->swap, 1); 5825 else 5826 page_counter_uncharge(&memcg->memsw, 1); 5827 } 5828 mem_cgroup_swap_statistics(memcg, false); 5829 css_put(&memcg->css); 5830 } 5831 rcu_read_unlock(); 5832 } 5833 5834 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5835 { 5836 long nr_swap_pages = get_nr_swap_pages(); 5837 5838 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5839 return nr_swap_pages; 5840 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5841 nr_swap_pages = min_t(long, nr_swap_pages, 5842 READ_ONCE(memcg->swap.limit) - 5843 page_counter_read(&memcg->swap)); 5844 return nr_swap_pages; 5845 } 5846 5847 bool mem_cgroup_swap_full(struct page *page) 5848 { 5849 struct mem_cgroup *memcg; 5850 5851 VM_BUG_ON_PAGE(!PageLocked(page), page); 5852 5853 if (vm_swap_full()) 5854 return true; 5855 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5856 return false; 5857 5858 memcg = page->mem_cgroup; 5859 if (!memcg) 5860 return false; 5861 5862 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5863 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5864 return true; 5865 5866 return false; 5867 } 5868 5869 /* for remember boot option*/ 5870 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5871 static int really_do_swap_account __initdata = 1; 5872 #else 5873 static int really_do_swap_account __initdata; 5874 #endif 5875 5876 static int __init enable_swap_account(char *s) 5877 { 5878 if (!strcmp(s, "1")) 5879 really_do_swap_account = 1; 5880 else if (!strcmp(s, "0")) 5881 really_do_swap_account = 0; 5882 return 1; 5883 } 5884 __setup("swapaccount=", enable_swap_account); 5885 5886 static u64 swap_current_read(struct cgroup_subsys_state *css, 5887 struct cftype *cft) 5888 { 5889 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5890 5891 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5892 } 5893 5894 static int swap_max_show(struct seq_file *m, void *v) 5895 { 5896 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5897 unsigned long max = READ_ONCE(memcg->swap.limit); 5898 5899 if (max == PAGE_COUNTER_MAX) 5900 seq_puts(m, "max\n"); 5901 else 5902 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5903 5904 return 0; 5905 } 5906 5907 static ssize_t swap_max_write(struct kernfs_open_file *of, 5908 char *buf, size_t nbytes, loff_t off) 5909 { 5910 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5911 unsigned long max; 5912 int err; 5913 5914 buf = strstrip(buf); 5915 err = page_counter_memparse(buf, "max", &max); 5916 if (err) 5917 return err; 5918 5919 mutex_lock(&memcg_limit_mutex); 5920 err = page_counter_limit(&memcg->swap, max); 5921 mutex_unlock(&memcg_limit_mutex); 5922 if (err) 5923 return err; 5924 5925 return nbytes; 5926 } 5927 5928 static struct cftype swap_files[] = { 5929 { 5930 .name = "swap.current", 5931 .flags = CFTYPE_NOT_ON_ROOT, 5932 .read_u64 = swap_current_read, 5933 }, 5934 { 5935 .name = "swap.max", 5936 .flags = CFTYPE_NOT_ON_ROOT, 5937 .seq_show = swap_max_show, 5938 .write = swap_max_write, 5939 }, 5940 { } /* terminate */ 5941 }; 5942 5943 static struct cftype memsw_cgroup_files[] = { 5944 { 5945 .name = "memsw.usage_in_bytes", 5946 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5947 .read_u64 = mem_cgroup_read_u64, 5948 }, 5949 { 5950 .name = "memsw.max_usage_in_bytes", 5951 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5952 .write = mem_cgroup_reset, 5953 .read_u64 = mem_cgroup_read_u64, 5954 }, 5955 { 5956 .name = "memsw.limit_in_bytes", 5957 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5958 .write = mem_cgroup_write, 5959 .read_u64 = mem_cgroup_read_u64, 5960 }, 5961 { 5962 .name = "memsw.failcnt", 5963 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5964 .write = mem_cgroup_reset, 5965 .read_u64 = mem_cgroup_read_u64, 5966 }, 5967 { }, /* terminate */ 5968 }; 5969 5970 static int __init mem_cgroup_swap_init(void) 5971 { 5972 if (!mem_cgroup_disabled() && really_do_swap_account) { 5973 do_swap_account = 1; 5974 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 5975 swap_files)); 5976 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 5977 memsw_cgroup_files)); 5978 } 5979 return 0; 5980 } 5981 subsys_initcall(mem_cgroup_swap_init); 5982 5983 #endif /* CONFIG_MEMCG_SWAP */ 5984