xref: /openbmc/linux/mm/memcontrol.c (revision ca707239e8a7958ffb1c31737d41cae1a674c938)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mm_struct  *mm;
211 	struct mem_cgroup *from;
212 	struct mem_cgroup *to;
213 	unsigned long flags;
214 	unsigned long precharge;
215 	unsigned long moved_charge;
216 	unsigned long moved_swap;
217 	struct task_struct *moving_task;	/* a task moving charges */
218 	wait_queue_head_t waitq;		/* a waitq for other context */
219 } mc = {
220 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223 
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230 
231 enum charge_type {
232 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 	MEM_CGROUP_CHARGE_TYPE_ANON,
234 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
235 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 	NR_CHARGE_TYPE,
237 };
238 
239 /* for encoding cft->private value on file */
240 enum res_type {
241 	_MEM,
242 	_MEMSWAP,
243 	_OOM_TYPE,
244 	_KMEM,
245 	_TCP,
246 };
247 
248 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)	((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL		(0)
253 
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 	if (!memcg)
258 		memcg = root_mem_cgroup;
259 	return &memcg->vmpressure;
260 }
261 
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266 
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 	return (memcg == root_mem_cgroup);
270 }
271 
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286 
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289 
290 void memcg_get_cache_ids(void)
291 {
292 	down_read(&memcg_cache_ids_sem);
293 }
294 
295 void memcg_put_cache_ids(void)
296 {
297 	up_read(&memcg_cache_ids_sem);
298 }
299 
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314 
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323 
324 #endif /* !CONFIG_SLOB */
325 
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 	int nid = zone_to_nid(zone);
330 	int zid = zone_idx(zone);
331 
332 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334 
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 	struct mem_cgroup *memcg;
349 
350 	memcg = page->mem_cgroup;
351 
352 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 		memcg = root_mem_cgroup;
354 
355 	return &memcg->css;
356 }
357 
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 	struct mem_cgroup *memcg;
374 	unsigned long ino = 0;
375 
376 	rcu_read_lock();
377 	memcg = READ_ONCE(page->mem_cgroup);
378 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 		memcg = parent_mem_cgroup(memcg);
380 	if (memcg)
381 		ino = cgroup_ino(memcg->css.cgroup);
382 	rcu_read_unlock();
383 	return ino;
384 }
385 
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 	int nid = page_to_nid(page);
390 	int zid = page_zonenum(page);
391 
392 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394 
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 	int nid = page_to_nid(page);
405 	int zid = page_zonenum(page);
406 
407 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 					 struct mem_cgroup_tree_per_zone *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_zone *mz_node;
417 
418 	if (mz->on_tree)
419 		return;
420 
421 	mz->usage_in_excess = new_usage_in_excess;
422 	if (!mz->usage_in_excess)
423 		return;
424 	while (*p) {
425 		parent = *p;
426 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 					tree_node);
428 		if (mz->usage_in_excess < mz_node->usage_in_excess)
429 			p = &(*p)->rb_left;
430 		/*
431 		 * We can't avoid mem cgroups that are over their soft
432 		 * limit by the same amount
433 		 */
434 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 			p = &(*p)->rb_right;
436 	}
437 	rb_link_node(&mz->tree_node, parent, p);
438 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 	mz->on_tree = true;
440 }
441 
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 					 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 	if (!mz->on_tree)
446 		return;
447 	rb_erase(&mz->tree_node, &mctz->rb_root);
448 	mz->on_tree = false;
449 }
450 
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 				       struct mem_cgroup_tree_per_zone *mctz)
453 {
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&mctz->lock, flags);
457 	__mem_cgroup_remove_exceeded(mz, mctz);
458 	spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460 
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 	unsigned long nr_pages = page_counter_read(&memcg->memory);
464 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 	unsigned long excess = 0;
466 
467 	if (nr_pages > soft_limit)
468 		excess = nr_pages - soft_limit;
469 
470 	return excess;
471 }
472 
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 	unsigned long excess;
476 	struct mem_cgroup_per_zone *mz;
477 	struct mem_cgroup_tree_per_zone *mctz;
478 
479 	mctz = soft_limit_tree_from_page(page);
480 	/*
481 	 * Necessary to update all ancestors when hierarchy is used.
482 	 * because their event counter is not touched.
483 	 */
484 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 		mz = mem_cgroup_page_zoneinfo(memcg, page);
486 		excess = soft_limit_excess(memcg);
487 		/*
488 		 * We have to update the tree if mz is on RB-tree or
489 		 * mem is over its softlimit.
490 		 */
491 		if (excess || mz->on_tree) {
492 			unsigned long flags;
493 
494 			spin_lock_irqsave(&mctz->lock, flags);
495 			/* if on-tree, remove it */
496 			if (mz->on_tree)
497 				__mem_cgroup_remove_exceeded(mz, mctz);
498 			/*
499 			 * Insert again. mz->usage_in_excess will be updated.
500 			 * If excess is 0, no tree ops.
501 			 */
502 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503 			spin_unlock_irqrestore(&mctz->lock, flags);
504 		}
505 	}
506 }
507 
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 	struct mem_cgroup_tree_per_zone *mctz;
511 	struct mem_cgroup_per_zone *mz;
512 	int nid, zid;
513 
514 	for_each_node(nid) {
515 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 			mctz = soft_limit_tree_node_zone(nid, zid);
518 			mem_cgroup_remove_exceeded(mz, mctz);
519 		}
520 	}
521 }
522 
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 	struct rb_node *rightmost = NULL;
527 	struct mem_cgroup_per_zone *mz;
528 
529 retry:
530 	mz = NULL;
531 	rightmost = rb_last(&mctz->rb_root);
532 	if (!rightmost)
533 		goto done;		/* Nothing to reclaim from */
534 
535 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 	/*
537 	 * Remove the node now but someone else can add it back,
538 	 * we will to add it back at the end of reclaim to its correct
539 	 * position in the tree.
540 	 */
541 	__mem_cgroup_remove_exceeded(mz, mctz);
542 	if (!soft_limit_excess(mz->memcg) ||
543 	    !css_tryget_online(&mz->memcg->css))
544 		goto retry;
545 done:
546 	return mz;
547 }
548 
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 	struct mem_cgroup_per_zone *mz;
553 
554 	spin_lock_irq(&mctz->lock);
555 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 	spin_unlock_irq(&mctz->lock);
557 	return mz;
558 }
559 
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 	long val = 0;
585 	int cpu;
586 
587 	/* Per-cpu values can be negative, use a signed accumulator */
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->count[idx], cpu);
590 	/*
591 	 * Summing races with updates, so val may be negative.  Avoid exposing
592 	 * transient negative values.
593 	 */
594 	if (val < 0)
595 		val = 0;
596 	return val;
597 }
598 
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 					    enum mem_cgroup_events_index idx)
601 {
602 	unsigned long val = 0;
603 	int cpu;
604 
605 	for_each_possible_cpu(cpu)
606 		val += per_cpu(memcg->stat->events[idx], cpu);
607 	return val;
608 }
609 
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 					 struct page *page,
612 					 bool compound, int nr_pages)
613 {
614 	/*
615 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 	 * counted as CACHE even if it's on ANON LRU.
617 	 */
618 	if (PageAnon(page))
619 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 				nr_pages);
621 	else
622 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 				nr_pages);
624 
625 	if (compound) {
626 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 				nr_pages);
629 	}
630 
631 	/* pagein of a big page is an event. So, ignore page size */
632 	if (nr_pages > 0)
633 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 	else {
635 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 		nr_pages = -nr_pages; /* for event */
637 	}
638 
639 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641 
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 					   int nid, unsigned int lru_mask)
644 {
645 	unsigned long nr = 0;
646 	int zid;
647 
648 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649 
650 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 		struct mem_cgroup_per_zone *mz;
652 		enum lru_list lru;
653 
654 		for_each_lru(lru) {
655 			if (!(BIT(lru) & lru_mask))
656 				continue;
657 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 			nr += mz->lru_size[lru];
659 		}
660 	}
661 	return nr;
662 }
663 
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 			unsigned int lru_mask)
666 {
667 	unsigned long nr = 0;
668 	int nid;
669 
670 	for_each_node_state(nid, N_MEMORY)
671 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 	return nr;
673 }
674 
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 				       enum mem_cgroup_events_target target)
677 {
678 	unsigned long val, next;
679 
680 	val = __this_cpu_read(memcg->stat->nr_page_events);
681 	next = __this_cpu_read(memcg->stat->targets[target]);
682 	/* from time_after() in jiffies.h */
683 	if ((long)next - (long)val < 0) {
684 		switch (target) {
685 		case MEM_CGROUP_TARGET_THRESH:
686 			next = val + THRESHOLDS_EVENTS_TARGET;
687 			break;
688 		case MEM_CGROUP_TARGET_SOFTLIMIT:
689 			next = val + SOFTLIMIT_EVENTS_TARGET;
690 			break;
691 		case MEM_CGROUP_TARGET_NUMAINFO:
692 			next = val + NUMAINFO_EVENTS_TARGET;
693 			break;
694 		default:
695 			break;
696 		}
697 		__this_cpu_write(memcg->stat->targets[target], next);
698 		return true;
699 	}
700 	return false;
701 }
702 
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 	/* threshold event is triggered in finer grain than soft limit */
710 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 						MEM_CGROUP_TARGET_THRESH))) {
712 		bool do_softlimit;
713 		bool do_numainfo __maybe_unused;
714 
715 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 						MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 						MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 		mem_cgroup_threshold(memcg);
722 		if (unlikely(do_softlimit))
723 			mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 		if (unlikely(do_numainfo))
726 			atomic_inc(&memcg->numainfo_events);
727 #endif
728 	}
729 }
730 
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 	/*
734 	 * mm_update_next_owner() may clear mm->owner to NULL
735 	 * if it races with swapoff, page migration, etc.
736 	 * So this can be called with p == NULL.
737 	 */
738 	if (unlikely(!p))
739 		return NULL;
740 
741 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744 
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 	struct mem_cgroup *memcg = NULL;
748 
749 	rcu_read_lock();
750 	do {
751 		/*
752 		 * Page cache insertions can happen withou an
753 		 * actual mm context, e.g. during disk probing
754 		 * on boot, loopback IO, acct() writes etc.
755 		 */
756 		if (unlikely(!mm))
757 			memcg = root_mem_cgroup;
758 		else {
759 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 			if (unlikely(!memcg))
761 				memcg = root_mem_cgroup;
762 		}
763 	} while (!css_tryget_online(&memcg->css));
764 	rcu_read_unlock();
765 	return memcg;
766 }
767 
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 				   struct mem_cgroup *prev,
787 				   struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 	struct cgroup_subsys_state *css = NULL;
791 	struct mem_cgroup *memcg = NULL;
792 	struct mem_cgroup *pos = NULL;
793 
794 	if (mem_cgroup_disabled())
795 		return NULL;
796 
797 	if (!root)
798 		root = root_mem_cgroup;
799 
800 	if (prev && !reclaim)
801 		pos = prev;
802 
803 	if (!root->use_hierarchy && root != root_mem_cgroup) {
804 		if (prev)
805 			goto out;
806 		return root;
807 	}
808 
809 	rcu_read_lock();
810 
811 	if (reclaim) {
812 		struct mem_cgroup_per_zone *mz;
813 
814 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 		iter = &mz->iter[reclaim->priority];
816 
817 		if (prev && reclaim->generation != iter->generation)
818 			goto out_unlock;
819 
820 		while (1) {
821 			pos = READ_ONCE(iter->position);
822 			if (!pos || css_tryget(&pos->css))
823 				break;
824 			/*
825 			 * css reference reached zero, so iter->position will
826 			 * be cleared by ->css_released. However, we should not
827 			 * rely on this happening soon, because ->css_released
828 			 * is called from a work queue, and by busy-waiting we
829 			 * might block it. So we clear iter->position right
830 			 * away.
831 			 */
832 			(void)cmpxchg(&iter->position, pos, NULL);
833 		}
834 	}
835 
836 	if (pos)
837 		css = &pos->css;
838 
839 	for (;;) {
840 		css = css_next_descendant_pre(css, &root->css);
841 		if (!css) {
842 			/*
843 			 * Reclaimers share the hierarchy walk, and a
844 			 * new one might jump in right at the end of
845 			 * the hierarchy - make sure they see at least
846 			 * one group and restart from the beginning.
847 			 */
848 			if (!prev)
849 				continue;
850 			break;
851 		}
852 
853 		/*
854 		 * Verify the css and acquire a reference.  The root
855 		 * is provided by the caller, so we know it's alive
856 		 * and kicking, and don't take an extra reference.
857 		 */
858 		memcg = mem_cgroup_from_css(css);
859 
860 		if (css == &root->css)
861 			break;
862 
863 		if (css_tryget(css))
864 			break;
865 
866 		memcg = NULL;
867 	}
868 
869 	if (reclaim) {
870 		/*
871 		 * The position could have already been updated by a competing
872 		 * thread, so check that the value hasn't changed since we read
873 		 * it to avoid reclaiming from the same cgroup twice.
874 		 */
875 		(void)cmpxchg(&iter->position, pos, memcg);
876 
877 		if (pos)
878 			css_put(&pos->css);
879 
880 		if (!memcg)
881 			iter->generation++;
882 		else if (!prev)
883 			reclaim->generation = iter->generation;
884 	}
885 
886 out_unlock:
887 	rcu_read_unlock();
888 out:
889 	if (prev && prev != root)
890 		css_put(&prev->css);
891 
892 	return memcg;
893 }
894 
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 			   struct mem_cgroup *prev)
902 {
903 	if (!root)
904 		root = root_mem_cgroup;
905 	if (prev && prev != root)
906 		css_put(&prev->css);
907 }
908 
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 	struct mem_cgroup *memcg = dead_memcg;
912 	struct mem_cgroup_reclaim_iter *iter;
913 	struct mem_cgroup_per_zone *mz;
914 	int nid, zid;
915 	int i;
916 
917 	while ((memcg = parent_mem_cgroup(memcg))) {
918 		for_each_node(nid) {
919 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 				for (i = 0; i <= DEF_PRIORITY; i++) {
922 					iter = &mz->iter[i];
923 					cmpxchg(&iter->position,
924 						dead_memcg, NULL);
925 				}
926 			}
927 		}
928 	}
929 }
930 
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)		\
937 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938 	     iter != NULL;				\
939 	     iter = mem_cgroup_iter(root, iter, NULL))
940 
941 #define for_each_mem_cgroup(iter)			\
942 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943 	     iter != NULL;				\
944 	     iter = mem_cgroup_iter(NULL, iter, NULL))
945 
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 				      struct mem_cgroup *memcg)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 	struct lruvec *lruvec;
960 
961 	if (mem_cgroup_disabled()) {
962 		lruvec = &zone->lruvec;
963 		goto out;
964 	}
965 
966 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 	lruvec = &mz->lruvec;
968 out:
969 	/*
970 	 * Since a node can be onlined after the mem_cgroup was created,
971 	 * we have to be prepared to initialize lruvec->zone here;
972 	 * and if offlined then reonlined, we need to reinitialize it.
973 	 */
974 	if (unlikely(lruvec->zone != zone))
975 		lruvec->zone = zone;
976 	return lruvec;
977 }
978 
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 	struct mem_cgroup_per_zone *mz;
991 	struct mem_cgroup *memcg;
992 	struct lruvec *lruvec;
993 
994 	if (mem_cgroup_disabled()) {
995 		lruvec = &zone->lruvec;
996 		goto out;
997 	}
998 
999 	memcg = page->mem_cgroup;
1000 	/*
1001 	 * Swapcache readahead pages are added to the LRU - and
1002 	 * possibly migrated - before they are charged.
1003 	 */
1004 	if (!memcg)
1005 		memcg = root_mem_cgroup;
1006 
1007 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 	lruvec = &mz->lruvec;
1009 out:
1010 	/*
1011 	 * Since a node can be onlined after the mem_cgroup was created,
1012 	 * we have to be prepared to initialize lruvec->zone here;
1013 	 * and if offlined then reonlined, we need to reinitialize it.
1014 	 */
1015 	if (unlikely(lruvec->zone != zone))
1016 		lruvec->zone = zone;
1017 	return lruvec;
1018 }
1019 
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 				int nr_pages)
1032 {
1033 	struct mem_cgroup_per_zone *mz;
1034 	unsigned long *lru_size;
1035 	long size;
1036 	bool empty;
1037 
1038 	if (mem_cgroup_disabled())
1039 		return;
1040 
1041 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1042 	lru_size = mz->lru_size + lru;
1043 	empty = list_empty(lruvec->lists + lru);
1044 
1045 	if (nr_pages < 0)
1046 		*lru_size += nr_pages;
1047 
1048 	size = *lru_size;
1049 	if (WARN_ONCE(size < 0 || empty != !size,
1050 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
1051 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1052 		VM_BUG_ON(1);
1053 		*lru_size = 0;
1054 	}
1055 
1056 	if (nr_pages > 0)
1057 		*lru_size += nr_pages;
1058 }
1059 
1060 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1061 {
1062 	struct mem_cgroup *task_memcg;
1063 	struct task_struct *p;
1064 	bool ret;
1065 
1066 	p = find_lock_task_mm(task);
1067 	if (p) {
1068 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1069 		task_unlock(p);
1070 	} else {
1071 		/*
1072 		 * All threads may have already detached their mm's, but the oom
1073 		 * killer still needs to detect if they have already been oom
1074 		 * killed to prevent needlessly killing additional tasks.
1075 		 */
1076 		rcu_read_lock();
1077 		task_memcg = mem_cgroup_from_task(task);
1078 		css_get(&task_memcg->css);
1079 		rcu_read_unlock();
1080 	}
1081 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1082 	css_put(&task_memcg->css);
1083 	return ret;
1084 }
1085 
1086 /**
1087  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1088  * @memcg: the memory cgroup
1089  *
1090  * Returns the maximum amount of memory @mem can be charged with, in
1091  * pages.
1092  */
1093 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1094 {
1095 	unsigned long margin = 0;
1096 	unsigned long count;
1097 	unsigned long limit;
1098 
1099 	count = page_counter_read(&memcg->memory);
1100 	limit = READ_ONCE(memcg->memory.limit);
1101 	if (count < limit)
1102 		margin = limit - count;
1103 
1104 	if (do_memsw_account()) {
1105 		count = page_counter_read(&memcg->memsw);
1106 		limit = READ_ONCE(memcg->memsw.limit);
1107 		if (count <= limit)
1108 			margin = min(margin, limit - count);
1109 	}
1110 
1111 	return margin;
1112 }
1113 
1114 /*
1115  * A routine for checking "mem" is under move_account() or not.
1116  *
1117  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1118  * moving cgroups. This is for waiting at high-memory pressure
1119  * caused by "move".
1120  */
1121 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1122 {
1123 	struct mem_cgroup *from;
1124 	struct mem_cgroup *to;
1125 	bool ret = false;
1126 	/*
1127 	 * Unlike task_move routines, we access mc.to, mc.from not under
1128 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1129 	 */
1130 	spin_lock(&mc.lock);
1131 	from = mc.from;
1132 	to = mc.to;
1133 	if (!from)
1134 		goto unlock;
1135 
1136 	ret = mem_cgroup_is_descendant(from, memcg) ||
1137 		mem_cgroup_is_descendant(to, memcg);
1138 unlock:
1139 	spin_unlock(&mc.lock);
1140 	return ret;
1141 }
1142 
1143 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1144 {
1145 	if (mc.moving_task && current != mc.moving_task) {
1146 		if (mem_cgroup_under_move(memcg)) {
1147 			DEFINE_WAIT(wait);
1148 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1149 			/* moving charge context might have finished. */
1150 			if (mc.moving_task)
1151 				schedule();
1152 			finish_wait(&mc.waitq, &wait);
1153 			return true;
1154 		}
1155 	}
1156 	return false;
1157 }
1158 
1159 #define K(x) ((x) << (PAGE_SHIFT-10))
1160 /**
1161  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1162  * @memcg: The memory cgroup that went over limit
1163  * @p: Task that is going to be killed
1164  *
1165  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1166  * enabled
1167  */
1168 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1169 {
1170 	struct mem_cgroup *iter;
1171 	unsigned int i;
1172 
1173 	rcu_read_lock();
1174 
1175 	if (p) {
1176 		pr_info("Task in ");
1177 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1178 		pr_cont(" killed as a result of limit of ");
1179 	} else {
1180 		pr_info("Memory limit reached of cgroup ");
1181 	}
1182 
1183 	pr_cont_cgroup_path(memcg->css.cgroup);
1184 	pr_cont("\n");
1185 
1186 	rcu_read_unlock();
1187 
1188 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1189 		K((u64)page_counter_read(&memcg->memory)),
1190 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1191 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1192 		K((u64)page_counter_read(&memcg->memsw)),
1193 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1194 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1195 		K((u64)page_counter_read(&memcg->kmem)),
1196 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1197 
1198 	for_each_mem_cgroup_tree(iter, memcg) {
1199 		pr_info("Memory cgroup stats for ");
1200 		pr_cont_cgroup_path(iter->css.cgroup);
1201 		pr_cont(":");
1202 
1203 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1204 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1205 				continue;
1206 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1207 				K(mem_cgroup_read_stat(iter, i)));
1208 		}
1209 
1210 		for (i = 0; i < NR_LRU_LISTS; i++)
1211 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1212 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1213 
1214 		pr_cont("\n");
1215 	}
1216 }
1217 
1218 /*
1219  * This function returns the number of memcg under hierarchy tree. Returns
1220  * 1(self count) if no children.
1221  */
1222 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1223 {
1224 	int num = 0;
1225 	struct mem_cgroup *iter;
1226 
1227 	for_each_mem_cgroup_tree(iter, memcg)
1228 		num++;
1229 	return num;
1230 }
1231 
1232 /*
1233  * Return the memory (and swap, if configured) limit for a memcg.
1234  */
1235 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1236 {
1237 	unsigned long limit;
1238 
1239 	limit = memcg->memory.limit;
1240 	if (mem_cgroup_swappiness(memcg)) {
1241 		unsigned long memsw_limit;
1242 		unsigned long swap_limit;
1243 
1244 		memsw_limit = memcg->memsw.limit;
1245 		swap_limit = memcg->swap.limit;
1246 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1247 		limit = min(limit + swap_limit, memsw_limit);
1248 	}
1249 	return limit;
1250 }
1251 
1252 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1253 				     int order)
1254 {
1255 	struct oom_control oc = {
1256 		.zonelist = NULL,
1257 		.nodemask = NULL,
1258 		.gfp_mask = gfp_mask,
1259 		.order = order,
1260 	};
1261 	struct mem_cgroup *iter;
1262 	unsigned long chosen_points = 0;
1263 	unsigned long totalpages;
1264 	unsigned int points = 0;
1265 	struct task_struct *chosen = NULL;
1266 
1267 	mutex_lock(&oom_lock);
1268 
1269 	/*
1270 	 * If current has a pending SIGKILL or is exiting, then automatically
1271 	 * select it.  The goal is to allow it to allocate so that it may
1272 	 * quickly exit and free its memory.
1273 	 */
1274 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1275 		mark_oom_victim(current);
1276 		goto unlock;
1277 	}
1278 
1279 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1280 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1281 	for_each_mem_cgroup_tree(iter, memcg) {
1282 		struct css_task_iter it;
1283 		struct task_struct *task;
1284 
1285 		css_task_iter_start(&iter->css, &it);
1286 		while ((task = css_task_iter_next(&it))) {
1287 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1288 			case OOM_SCAN_SELECT:
1289 				if (chosen)
1290 					put_task_struct(chosen);
1291 				chosen = task;
1292 				chosen_points = ULONG_MAX;
1293 				get_task_struct(chosen);
1294 				/* fall through */
1295 			case OOM_SCAN_CONTINUE:
1296 				continue;
1297 			case OOM_SCAN_ABORT:
1298 				css_task_iter_end(&it);
1299 				mem_cgroup_iter_break(memcg, iter);
1300 				if (chosen)
1301 					put_task_struct(chosen);
1302 				goto unlock;
1303 			case OOM_SCAN_OK:
1304 				break;
1305 			};
1306 			points = oom_badness(task, memcg, NULL, totalpages);
1307 			if (!points || points < chosen_points)
1308 				continue;
1309 			/* Prefer thread group leaders for display purposes */
1310 			if (points == chosen_points &&
1311 			    thread_group_leader(chosen))
1312 				continue;
1313 
1314 			if (chosen)
1315 				put_task_struct(chosen);
1316 			chosen = task;
1317 			chosen_points = points;
1318 			get_task_struct(chosen);
1319 		}
1320 		css_task_iter_end(&it);
1321 	}
1322 
1323 	if (chosen) {
1324 		points = chosen_points * 1000 / totalpages;
1325 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1326 				 "Memory cgroup out of memory");
1327 	}
1328 unlock:
1329 	mutex_unlock(&oom_lock);
1330 	return chosen;
1331 }
1332 
1333 #if MAX_NUMNODES > 1
1334 
1335 /**
1336  * test_mem_cgroup_node_reclaimable
1337  * @memcg: the target memcg
1338  * @nid: the node ID to be checked.
1339  * @noswap : specify true here if the user wants flle only information.
1340  *
1341  * This function returns whether the specified memcg contains any
1342  * reclaimable pages on a node. Returns true if there are any reclaimable
1343  * pages in the node.
1344  */
1345 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1346 		int nid, bool noswap)
1347 {
1348 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1349 		return true;
1350 	if (noswap || !total_swap_pages)
1351 		return false;
1352 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1353 		return true;
1354 	return false;
1355 
1356 }
1357 
1358 /*
1359  * Always updating the nodemask is not very good - even if we have an empty
1360  * list or the wrong list here, we can start from some node and traverse all
1361  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1362  *
1363  */
1364 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1365 {
1366 	int nid;
1367 	/*
1368 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1369 	 * pagein/pageout changes since the last update.
1370 	 */
1371 	if (!atomic_read(&memcg->numainfo_events))
1372 		return;
1373 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1374 		return;
1375 
1376 	/* make a nodemask where this memcg uses memory from */
1377 	memcg->scan_nodes = node_states[N_MEMORY];
1378 
1379 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1380 
1381 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1382 			node_clear(nid, memcg->scan_nodes);
1383 	}
1384 
1385 	atomic_set(&memcg->numainfo_events, 0);
1386 	atomic_set(&memcg->numainfo_updating, 0);
1387 }
1388 
1389 /*
1390  * Selecting a node where we start reclaim from. Because what we need is just
1391  * reducing usage counter, start from anywhere is O,K. Considering
1392  * memory reclaim from current node, there are pros. and cons.
1393  *
1394  * Freeing memory from current node means freeing memory from a node which
1395  * we'll use or we've used. So, it may make LRU bad. And if several threads
1396  * hit limits, it will see a contention on a node. But freeing from remote
1397  * node means more costs for memory reclaim because of memory latency.
1398  *
1399  * Now, we use round-robin. Better algorithm is welcomed.
1400  */
1401 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1402 {
1403 	int node;
1404 
1405 	mem_cgroup_may_update_nodemask(memcg);
1406 	node = memcg->last_scanned_node;
1407 
1408 	node = next_node_in(node, memcg->scan_nodes);
1409 	/*
1410 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1411 	 * last time it really checked all the LRUs due to rate limiting.
1412 	 * Fallback to the current node in that case for simplicity.
1413 	 */
1414 	if (unlikely(node == MAX_NUMNODES))
1415 		node = numa_node_id();
1416 
1417 	memcg->last_scanned_node = node;
1418 	return node;
1419 }
1420 #else
1421 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1422 {
1423 	return 0;
1424 }
1425 #endif
1426 
1427 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1428 				   struct zone *zone,
1429 				   gfp_t gfp_mask,
1430 				   unsigned long *total_scanned)
1431 {
1432 	struct mem_cgroup *victim = NULL;
1433 	int total = 0;
1434 	int loop = 0;
1435 	unsigned long excess;
1436 	unsigned long nr_scanned;
1437 	struct mem_cgroup_reclaim_cookie reclaim = {
1438 		.zone = zone,
1439 		.priority = 0,
1440 	};
1441 
1442 	excess = soft_limit_excess(root_memcg);
1443 
1444 	while (1) {
1445 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1446 		if (!victim) {
1447 			loop++;
1448 			if (loop >= 2) {
1449 				/*
1450 				 * If we have not been able to reclaim
1451 				 * anything, it might because there are
1452 				 * no reclaimable pages under this hierarchy
1453 				 */
1454 				if (!total)
1455 					break;
1456 				/*
1457 				 * We want to do more targeted reclaim.
1458 				 * excess >> 2 is not to excessive so as to
1459 				 * reclaim too much, nor too less that we keep
1460 				 * coming back to reclaim from this cgroup
1461 				 */
1462 				if (total >= (excess >> 2) ||
1463 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1464 					break;
1465 			}
1466 			continue;
1467 		}
1468 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1469 						     zone, &nr_scanned);
1470 		*total_scanned += nr_scanned;
1471 		if (!soft_limit_excess(root_memcg))
1472 			break;
1473 	}
1474 	mem_cgroup_iter_break(root_memcg, victim);
1475 	return total;
1476 }
1477 
1478 #ifdef CONFIG_LOCKDEP
1479 static struct lockdep_map memcg_oom_lock_dep_map = {
1480 	.name = "memcg_oom_lock",
1481 };
1482 #endif
1483 
1484 static DEFINE_SPINLOCK(memcg_oom_lock);
1485 
1486 /*
1487  * Check OOM-Killer is already running under our hierarchy.
1488  * If someone is running, return false.
1489  */
1490 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1491 {
1492 	struct mem_cgroup *iter, *failed = NULL;
1493 
1494 	spin_lock(&memcg_oom_lock);
1495 
1496 	for_each_mem_cgroup_tree(iter, memcg) {
1497 		if (iter->oom_lock) {
1498 			/*
1499 			 * this subtree of our hierarchy is already locked
1500 			 * so we cannot give a lock.
1501 			 */
1502 			failed = iter;
1503 			mem_cgroup_iter_break(memcg, iter);
1504 			break;
1505 		} else
1506 			iter->oom_lock = true;
1507 	}
1508 
1509 	if (failed) {
1510 		/*
1511 		 * OK, we failed to lock the whole subtree so we have
1512 		 * to clean up what we set up to the failing subtree
1513 		 */
1514 		for_each_mem_cgroup_tree(iter, memcg) {
1515 			if (iter == failed) {
1516 				mem_cgroup_iter_break(memcg, iter);
1517 				break;
1518 			}
1519 			iter->oom_lock = false;
1520 		}
1521 	} else
1522 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1523 
1524 	spin_unlock(&memcg_oom_lock);
1525 
1526 	return !failed;
1527 }
1528 
1529 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1530 {
1531 	struct mem_cgroup *iter;
1532 
1533 	spin_lock(&memcg_oom_lock);
1534 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1535 	for_each_mem_cgroup_tree(iter, memcg)
1536 		iter->oom_lock = false;
1537 	spin_unlock(&memcg_oom_lock);
1538 }
1539 
1540 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1541 {
1542 	struct mem_cgroup *iter;
1543 
1544 	spin_lock(&memcg_oom_lock);
1545 	for_each_mem_cgroup_tree(iter, memcg)
1546 		iter->under_oom++;
1547 	spin_unlock(&memcg_oom_lock);
1548 }
1549 
1550 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1551 {
1552 	struct mem_cgroup *iter;
1553 
1554 	/*
1555 	 * When a new child is created while the hierarchy is under oom,
1556 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1557 	 */
1558 	spin_lock(&memcg_oom_lock);
1559 	for_each_mem_cgroup_tree(iter, memcg)
1560 		if (iter->under_oom > 0)
1561 			iter->under_oom--;
1562 	spin_unlock(&memcg_oom_lock);
1563 }
1564 
1565 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1566 
1567 struct oom_wait_info {
1568 	struct mem_cgroup *memcg;
1569 	wait_queue_t	wait;
1570 };
1571 
1572 static int memcg_oom_wake_function(wait_queue_t *wait,
1573 	unsigned mode, int sync, void *arg)
1574 {
1575 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1576 	struct mem_cgroup *oom_wait_memcg;
1577 	struct oom_wait_info *oom_wait_info;
1578 
1579 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1580 	oom_wait_memcg = oom_wait_info->memcg;
1581 
1582 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1583 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1584 		return 0;
1585 	return autoremove_wake_function(wait, mode, sync, arg);
1586 }
1587 
1588 static void memcg_oom_recover(struct mem_cgroup *memcg)
1589 {
1590 	/*
1591 	 * For the following lockless ->under_oom test, the only required
1592 	 * guarantee is that it must see the state asserted by an OOM when
1593 	 * this function is called as a result of userland actions
1594 	 * triggered by the notification of the OOM.  This is trivially
1595 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1596 	 * triggering notification.
1597 	 */
1598 	if (memcg && memcg->under_oom)
1599 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1600 }
1601 
1602 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1603 {
1604 	if (!current->memcg_may_oom)
1605 		return;
1606 	/*
1607 	 * We are in the middle of the charge context here, so we
1608 	 * don't want to block when potentially sitting on a callstack
1609 	 * that holds all kinds of filesystem and mm locks.
1610 	 *
1611 	 * Also, the caller may handle a failed allocation gracefully
1612 	 * (like optional page cache readahead) and so an OOM killer
1613 	 * invocation might not even be necessary.
1614 	 *
1615 	 * That's why we don't do anything here except remember the
1616 	 * OOM context and then deal with it at the end of the page
1617 	 * fault when the stack is unwound, the locks are released,
1618 	 * and when we know whether the fault was overall successful.
1619 	 */
1620 	css_get(&memcg->css);
1621 	current->memcg_in_oom = memcg;
1622 	current->memcg_oom_gfp_mask = mask;
1623 	current->memcg_oom_order = order;
1624 }
1625 
1626 /**
1627  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1628  * @handle: actually kill/wait or just clean up the OOM state
1629  *
1630  * This has to be called at the end of a page fault if the memcg OOM
1631  * handler was enabled.
1632  *
1633  * Memcg supports userspace OOM handling where failed allocations must
1634  * sleep on a waitqueue until the userspace task resolves the
1635  * situation.  Sleeping directly in the charge context with all kinds
1636  * of locks held is not a good idea, instead we remember an OOM state
1637  * in the task and mem_cgroup_oom_synchronize() has to be called at
1638  * the end of the page fault to complete the OOM handling.
1639  *
1640  * Returns %true if an ongoing memcg OOM situation was detected and
1641  * completed, %false otherwise.
1642  */
1643 bool mem_cgroup_oom_synchronize(bool handle)
1644 {
1645 	struct mem_cgroup *memcg = current->memcg_in_oom;
1646 	struct oom_wait_info owait;
1647 	bool locked;
1648 
1649 	/* OOM is global, do not handle */
1650 	if (!memcg)
1651 		return false;
1652 
1653 	if (!handle || oom_killer_disabled)
1654 		goto cleanup;
1655 
1656 	owait.memcg = memcg;
1657 	owait.wait.flags = 0;
1658 	owait.wait.func = memcg_oom_wake_function;
1659 	owait.wait.private = current;
1660 	INIT_LIST_HEAD(&owait.wait.task_list);
1661 
1662 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1663 	mem_cgroup_mark_under_oom(memcg);
1664 
1665 	locked = mem_cgroup_oom_trylock(memcg);
1666 
1667 	if (locked)
1668 		mem_cgroup_oom_notify(memcg);
1669 
1670 	if (locked && !memcg->oom_kill_disable) {
1671 		mem_cgroup_unmark_under_oom(memcg);
1672 		finish_wait(&memcg_oom_waitq, &owait.wait);
1673 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1674 					 current->memcg_oom_order);
1675 	} else {
1676 		schedule();
1677 		mem_cgroup_unmark_under_oom(memcg);
1678 		finish_wait(&memcg_oom_waitq, &owait.wait);
1679 	}
1680 
1681 	if (locked) {
1682 		mem_cgroup_oom_unlock(memcg);
1683 		/*
1684 		 * There is no guarantee that an OOM-lock contender
1685 		 * sees the wakeups triggered by the OOM kill
1686 		 * uncharges.  Wake any sleepers explicitely.
1687 		 */
1688 		memcg_oom_recover(memcg);
1689 	}
1690 cleanup:
1691 	current->memcg_in_oom = NULL;
1692 	css_put(&memcg->css);
1693 	return true;
1694 }
1695 
1696 /**
1697  * lock_page_memcg - lock a page->mem_cgroup binding
1698  * @page: the page
1699  *
1700  * This function protects unlocked LRU pages from being moved to
1701  * another cgroup and stabilizes their page->mem_cgroup binding.
1702  */
1703 void lock_page_memcg(struct page *page)
1704 {
1705 	struct mem_cgroup *memcg;
1706 	unsigned long flags;
1707 
1708 	/*
1709 	 * The RCU lock is held throughout the transaction.  The fast
1710 	 * path can get away without acquiring the memcg->move_lock
1711 	 * because page moving starts with an RCU grace period.
1712 	 */
1713 	rcu_read_lock();
1714 
1715 	if (mem_cgroup_disabled())
1716 		return;
1717 again:
1718 	memcg = page->mem_cgroup;
1719 	if (unlikely(!memcg))
1720 		return;
1721 
1722 	if (atomic_read(&memcg->moving_account) <= 0)
1723 		return;
1724 
1725 	spin_lock_irqsave(&memcg->move_lock, flags);
1726 	if (memcg != page->mem_cgroup) {
1727 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1728 		goto again;
1729 	}
1730 
1731 	/*
1732 	 * When charge migration first begins, we can have locked and
1733 	 * unlocked page stat updates happening concurrently.  Track
1734 	 * the task who has the lock for unlock_page_memcg().
1735 	 */
1736 	memcg->move_lock_task = current;
1737 	memcg->move_lock_flags = flags;
1738 
1739 	return;
1740 }
1741 EXPORT_SYMBOL(lock_page_memcg);
1742 
1743 /**
1744  * unlock_page_memcg - unlock a page->mem_cgroup binding
1745  * @page: the page
1746  */
1747 void unlock_page_memcg(struct page *page)
1748 {
1749 	struct mem_cgroup *memcg = page->mem_cgroup;
1750 
1751 	if (memcg && memcg->move_lock_task == current) {
1752 		unsigned long flags = memcg->move_lock_flags;
1753 
1754 		memcg->move_lock_task = NULL;
1755 		memcg->move_lock_flags = 0;
1756 
1757 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1758 	}
1759 
1760 	rcu_read_unlock();
1761 }
1762 EXPORT_SYMBOL(unlock_page_memcg);
1763 
1764 /*
1765  * size of first charge trial. "32" comes from vmscan.c's magic value.
1766  * TODO: maybe necessary to use big numbers in big irons.
1767  */
1768 #define CHARGE_BATCH	32U
1769 struct memcg_stock_pcp {
1770 	struct mem_cgroup *cached; /* this never be root cgroup */
1771 	unsigned int nr_pages;
1772 	struct work_struct work;
1773 	unsigned long flags;
1774 #define FLUSHING_CACHED_CHARGE	0
1775 };
1776 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1777 static DEFINE_MUTEX(percpu_charge_mutex);
1778 
1779 /**
1780  * consume_stock: Try to consume stocked charge on this cpu.
1781  * @memcg: memcg to consume from.
1782  * @nr_pages: how many pages to charge.
1783  *
1784  * The charges will only happen if @memcg matches the current cpu's memcg
1785  * stock, and at least @nr_pages are available in that stock.  Failure to
1786  * service an allocation will refill the stock.
1787  *
1788  * returns true if successful, false otherwise.
1789  */
1790 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1791 {
1792 	struct memcg_stock_pcp *stock;
1793 	bool ret = false;
1794 
1795 	if (nr_pages > CHARGE_BATCH)
1796 		return ret;
1797 
1798 	stock = &get_cpu_var(memcg_stock);
1799 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1800 		stock->nr_pages -= nr_pages;
1801 		ret = true;
1802 	}
1803 	put_cpu_var(memcg_stock);
1804 	return ret;
1805 }
1806 
1807 /*
1808  * Returns stocks cached in percpu and reset cached information.
1809  */
1810 static void drain_stock(struct memcg_stock_pcp *stock)
1811 {
1812 	struct mem_cgroup *old = stock->cached;
1813 
1814 	if (stock->nr_pages) {
1815 		page_counter_uncharge(&old->memory, stock->nr_pages);
1816 		if (do_memsw_account())
1817 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1818 		css_put_many(&old->css, stock->nr_pages);
1819 		stock->nr_pages = 0;
1820 	}
1821 	stock->cached = NULL;
1822 }
1823 
1824 /*
1825  * This must be called under preempt disabled or must be called by
1826  * a thread which is pinned to local cpu.
1827  */
1828 static void drain_local_stock(struct work_struct *dummy)
1829 {
1830 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1831 	drain_stock(stock);
1832 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1833 }
1834 
1835 /*
1836  * Cache charges(val) to local per_cpu area.
1837  * This will be consumed by consume_stock() function, later.
1838  */
1839 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1840 {
1841 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1842 
1843 	if (stock->cached != memcg) { /* reset if necessary */
1844 		drain_stock(stock);
1845 		stock->cached = memcg;
1846 	}
1847 	stock->nr_pages += nr_pages;
1848 	put_cpu_var(memcg_stock);
1849 }
1850 
1851 /*
1852  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1853  * of the hierarchy under it.
1854  */
1855 static void drain_all_stock(struct mem_cgroup *root_memcg)
1856 {
1857 	int cpu, curcpu;
1858 
1859 	/* If someone's already draining, avoid adding running more workers. */
1860 	if (!mutex_trylock(&percpu_charge_mutex))
1861 		return;
1862 	/* Notify other cpus that system-wide "drain" is running */
1863 	get_online_cpus();
1864 	curcpu = get_cpu();
1865 	for_each_online_cpu(cpu) {
1866 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1867 		struct mem_cgroup *memcg;
1868 
1869 		memcg = stock->cached;
1870 		if (!memcg || !stock->nr_pages)
1871 			continue;
1872 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1873 			continue;
1874 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1875 			if (cpu == curcpu)
1876 				drain_local_stock(&stock->work);
1877 			else
1878 				schedule_work_on(cpu, &stock->work);
1879 		}
1880 	}
1881 	put_cpu();
1882 	put_online_cpus();
1883 	mutex_unlock(&percpu_charge_mutex);
1884 }
1885 
1886 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1887 					unsigned long action,
1888 					void *hcpu)
1889 {
1890 	int cpu = (unsigned long)hcpu;
1891 	struct memcg_stock_pcp *stock;
1892 
1893 	if (action == CPU_ONLINE)
1894 		return NOTIFY_OK;
1895 
1896 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1897 		return NOTIFY_OK;
1898 
1899 	stock = &per_cpu(memcg_stock, cpu);
1900 	drain_stock(stock);
1901 	return NOTIFY_OK;
1902 }
1903 
1904 static void reclaim_high(struct mem_cgroup *memcg,
1905 			 unsigned int nr_pages,
1906 			 gfp_t gfp_mask)
1907 {
1908 	do {
1909 		if (page_counter_read(&memcg->memory) <= memcg->high)
1910 			continue;
1911 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1912 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1913 	} while ((memcg = parent_mem_cgroup(memcg)));
1914 }
1915 
1916 static void high_work_func(struct work_struct *work)
1917 {
1918 	struct mem_cgroup *memcg;
1919 
1920 	memcg = container_of(work, struct mem_cgroup, high_work);
1921 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1922 }
1923 
1924 /*
1925  * Scheduled by try_charge() to be executed from the userland return path
1926  * and reclaims memory over the high limit.
1927  */
1928 void mem_cgroup_handle_over_high(void)
1929 {
1930 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1931 	struct mem_cgroup *memcg;
1932 
1933 	if (likely(!nr_pages))
1934 		return;
1935 
1936 	memcg = get_mem_cgroup_from_mm(current->mm);
1937 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1938 	css_put(&memcg->css);
1939 	current->memcg_nr_pages_over_high = 0;
1940 }
1941 
1942 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1943 		      unsigned int nr_pages)
1944 {
1945 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1946 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1947 	struct mem_cgroup *mem_over_limit;
1948 	struct page_counter *counter;
1949 	unsigned long nr_reclaimed;
1950 	bool may_swap = true;
1951 	bool drained = false;
1952 
1953 	if (mem_cgroup_is_root(memcg))
1954 		return 0;
1955 retry:
1956 	if (consume_stock(memcg, nr_pages))
1957 		return 0;
1958 
1959 	if (!do_memsw_account() ||
1960 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1961 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1962 			goto done_restock;
1963 		if (do_memsw_account())
1964 			page_counter_uncharge(&memcg->memsw, batch);
1965 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1966 	} else {
1967 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1968 		may_swap = false;
1969 	}
1970 
1971 	if (batch > nr_pages) {
1972 		batch = nr_pages;
1973 		goto retry;
1974 	}
1975 
1976 	/*
1977 	 * Unlike in global OOM situations, memcg is not in a physical
1978 	 * memory shortage.  Allow dying and OOM-killed tasks to
1979 	 * bypass the last charges so that they can exit quickly and
1980 	 * free their memory.
1981 	 */
1982 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1983 		     fatal_signal_pending(current) ||
1984 		     current->flags & PF_EXITING))
1985 		goto force;
1986 
1987 	if (unlikely(task_in_memcg_oom(current)))
1988 		goto nomem;
1989 
1990 	if (!gfpflags_allow_blocking(gfp_mask))
1991 		goto nomem;
1992 
1993 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1994 
1995 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1996 						    gfp_mask, may_swap);
1997 
1998 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1999 		goto retry;
2000 
2001 	if (!drained) {
2002 		drain_all_stock(mem_over_limit);
2003 		drained = true;
2004 		goto retry;
2005 	}
2006 
2007 	if (gfp_mask & __GFP_NORETRY)
2008 		goto nomem;
2009 	/*
2010 	 * Even though the limit is exceeded at this point, reclaim
2011 	 * may have been able to free some pages.  Retry the charge
2012 	 * before killing the task.
2013 	 *
2014 	 * Only for regular pages, though: huge pages are rather
2015 	 * unlikely to succeed so close to the limit, and we fall back
2016 	 * to regular pages anyway in case of failure.
2017 	 */
2018 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2019 		goto retry;
2020 	/*
2021 	 * At task move, charge accounts can be doubly counted. So, it's
2022 	 * better to wait until the end of task_move if something is going on.
2023 	 */
2024 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2025 		goto retry;
2026 
2027 	if (nr_retries--)
2028 		goto retry;
2029 
2030 	if (gfp_mask & __GFP_NOFAIL)
2031 		goto force;
2032 
2033 	if (fatal_signal_pending(current))
2034 		goto force;
2035 
2036 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2037 
2038 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2039 		       get_order(nr_pages * PAGE_SIZE));
2040 nomem:
2041 	if (!(gfp_mask & __GFP_NOFAIL))
2042 		return -ENOMEM;
2043 force:
2044 	/*
2045 	 * The allocation either can't fail or will lead to more memory
2046 	 * being freed very soon.  Allow memory usage go over the limit
2047 	 * temporarily by force charging it.
2048 	 */
2049 	page_counter_charge(&memcg->memory, nr_pages);
2050 	if (do_memsw_account())
2051 		page_counter_charge(&memcg->memsw, nr_pages);
2052 	css_get_many(&memcg->css, nr_pages);
2053 
2054 	return 0;
2055 
2056 done_restock:
2057 	css_get_many(&memcg->css, batch);
2058 	if (batch > nr_pages)
2059 		refill_stock(memcg, batch - nr_pages);
2060 
2061 	/*
2062 	 * If the hierarchy is above the normal consumption range, schedule
2063 	 * reclaim on returning to userland.  We can perform reclaim here
2064 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2065 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2066 	 * not recorded as it most likely matches current's and won't
2067 	 * change in the meantime.  As high limit is checked again before
2068 	 * reclaim, the cost of mismatch is negligible.
2069 	 */
2070 	do {
2071 		if (page_counter_read(&memcg->memory) > memcg->high) {
2072 			/* Don't bother a random interrupted task */
2073 			if (in_interrupt()) {
2074 				schedule_work(&memcg->high_work);
2075 				break;
2076 			}
2077 			current->memcg_nr_pages_over_high += batch;
2078 			set_notify_resume(current);
2079 			break;
2080 		}
2081 	} while ((memcg = parent_mem_cgroup(memcg)));
2082 
2083 	return 0;
2084 }
2085 
2086 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2087 {
2088 	if (mem_cgroup_is_root(memcg))
2089 		return;
2090 
2091 	page_counter_uncharge(&memcg->memory, nr_pages);
2092 	if (do_memsw_account())
2093 		page_counter_uncharge(&memcg->memsw, nr_pages);
2094 
2095 	css_put_many(&memcg->css, nr_pages);
2096 }
2097 
2098 static void lock_page_lru(struct page *page, int *isolated)
2099 {
2100 	struct zone *zone = page_zone(page);
2101 
2102 	spin_lock_irq(&zone->lru_lock);
2103 	if (PageLRU(page)) {
2104 		struct lruvec *lruvec;
2105 
2106 		lruvec = mem_cgroup_page_lruvec(page, zone);
2107 		ClearPageLRU(page);
2108 		del_page_from_lru_list(page, lruvec, page_lru(page));
2109 		*isolated = 1;
2110 	} else
2111 		*isolated = 0;
2112 }
2113 
2114 static void unlock_page_lru(struct page *page, int isolated)
2115 {
2116 	struct zone *zone = page_zone(page);
2117 
2118 	if (isolated) {
2119 		struct lruvec *lruvec;
2120 
2121 		lruvec = mem_cgroup_page_lruvec(page, zone);
2122 		VM_BUG_ON_PAGE(PageLRU(page), page);
2123 		SetPageLRU(page);
2124 		add_page_to_lru_list(page, lruvec, page_lru(page));
2125 	}
2126 	spin_unlock_irq(&zone->lru_lock);
2127 }
2128 
2129 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2130 			  bool lrucare)
2131 {
2132 	int isolated;
2133 
2134 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2135 
2136 	/*
2137 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2138 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2139 	 */
2140 	if (lrucare)
2141 		lock_page_lru(page, &isolated);
2142 
2143 	/*
2144 	 * Nobody should be changing or seriously looking at
2145 	 * page->mem_cgroup at this point:
2146 	 *
2147 	 * - the page is uncharged
2148 	 *
2149 	 * - the page is off-LRU
2150 	 *
2151 	 * - an anonymous fault has exclusive page access, except for
2152 	 *   a locked page table
2153 	 *
2154 	 * - a page cache insertion, a swapin fault, or a migration
2155 	 *   have the page locked
2156 	 */
2157 	page->mem_cgroup = memcg;
2158 
2159 	if (lrucare)
2160 		unlock_page_lru(page, isolated);
2161 }
2162 
2163 #ifndef CONFIG_SLOB
2164 static int memcg_alloc_cache_id(void)
2165 {
2166 	int id, size;
2167 	int err;
2168 
2169 	id = ida_simple_get(&memcg_cache_ida,
2170 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2171 	if (id < 0)
2172 		return id;
2173 
2174 	if (id < memcg_nr_cache_ids)
2175 		return id;
2176 
2177 	/*
2178 	 * There's no space for the new id in memcg_caches arrays,
2179 	 * so we have to grow them.
2180 	 */
2181 	down_write(&memcg_cache_ids_sem);
2182 
2183 	size = 2 * (id + 1);
2184 	if (size < MEMCG_CACHES_MIN_SIZE)
2185 		size = MEMCG_CACHES_MIN_SIZE;
2186 	else if (size > MEMCG_CACHES_MAX_SIZE)
2187 		size = MEMCG_CACHES_MAX_SIZE;
2188 
2189 	err = memcg_update_all_caches(size);
2190 	if (!err)
2191 		err = memcg_update_all_list_lrus(size);
2192 	if (!err)
2193 		memcg_nr_cache_ids = size;
2194 
2195 	up_write(&memcg_cache_ids_sem);
2196 
2197 	if (err) {
2198 		ida_simple_remove(&memcg_cache_ida, id);
2199 		return err;
2200 	}
2201 	return id;
2202 }
2203 
2204 static void memcg_free_cache_id(int id)
2205 {
2206 	ida_simple_remove(&memcg_cache_ida, id);
2207 }
2208 
2209 struct memcg_kmem_cache_create_work {
2210 	struct mem_cgroup *memcg;
2211 	struct kmem_cache *cachep;
2212 	struct work_struct work;
2213 };
2214 
2215 static void memcg_kmem_cache_create_func(struct work_struct *w)
2216 {
2217 	struct memcg_kmem_cache_create_work *cw =
2218 		container_of(w, struct memcg_kmem_cache_create_work, work);
2219 	struct mem_cgroup *memcg = cw->memcg;
2220 	struct kmem_cache *cachep = cw->cachep;
2221 
2222 	memcg_create_kmem_cache(memcg, cachep);
2223 
2224 	css_put(&memcg->css);
2225 	kfree(cw);
2226 }
2227 
2228 /*
2229  * Enqueue the creation of a per-memcg kmem_cache.
2230  */
2231 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2232 					       struct kmem_cache *cachep)
2233 {
2234 	struct memcg_kmem_cache_create_work *cw;
2235 
2236 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2237 	if (!cw)
2238 		return;
2239 
2240 	css_get(&memcg->css);
2241 
2242 	cw->memcg = memcg;
2243 	cw->cachep = cachep;
2244 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2245 
2246 	schedule_work(&cw->work);
2247 }
2248 
2249 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2250 					     struct kmem_cache *cachep)
2251 {
2252 	/*
2253 	 * We need to stop accounting when we kmalloc, because if the
2254 	 * corresponding kmalloc cache is not yet created, the first allocation
2255 	 * in __memcg_schedule_kmem_cache_create will recurse.
2256 	 *
2257 	 * However, it is better to enclose the whole function. Depending on
2258 	 * the debugging options enabled, INIT_WORK(), for instance, can
2259 	 * trigger an allocation. This too, will make us recurse. Because at
2260 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2261 	 * the safest choice is to do it like this, wrapping the whole function.
2262 	 */
2263 	current->memcg_kmem_skip_account = 1;
2264 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2265 	current->memcg_kmem_skip_account = 0;
2266 }
2267 
2268 /*
2269  * Return the kmem_cache we're supposed to use for a slab allocation.
2270  * We try to use the current memcg's version of the cache.
2271  *
2272  * If the cache does not exist yet, if we are the first user of it,
2273  * we either create it immediately, if possible, or create it asynchronously
2274  * in a workqueue.
2275  * In the latter case, we will let the current allocation go through with
2276  * the original cache.
2277  *
2278  * Can't be called in interrupt context or from kernel threads.
2279  * This function needs to be called with rcu_read_lock() held.
2280  */
2281 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2282 {
2283 	struct mem_cgroup *memcg;
2284 	struct kmem_cache *memcg_cachep;
2285 	int kmemcg_id;
2286 
2287 	VM_BUG_ON(!is_root_cache(cachep));
2288 
2289 	if (cachep->flags & SLAB_ACCOUNT)
2290 		gfp |= __GFP_ACCOUNT;
2291 
2292 	if (!(gfp & __GFP_ACCOUNT))
2293 		return cachep;
2294 
2295 	if (current->memcg_kmem_skip_account)
2296 		return cachep;
2297 
2298 	memcg = get_mem_cgroup_from_mm(current->mm);
2299 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2300 	if (kmemcg_id < 0)
2301 		goto out;
2302 
2303 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2304 	if (likely(memcg_cachep))
2305 		return memcg_cachep;
2306 
2307 	/*
2308 	 * If we are in a safe context (can wait, and not in interrupt
2309 	 * context), we could be be predictable and return right away.
2310 	 * This would guarantee that the allocation being performed
2311 	 * already belongs in the new cache.
2312 	 *
2313 	 * However, there are some clashes that can arrive from locking.
2314 	 * For instance, because we acquire the slab_mutex while doing
2315 	 * memcg_create_kmem_cache, this means no further allocation
2316 	 * could happen with the slab_mutex held. So it's better to
2317 	 * defer everything.
2318 	 */
2319 	memcg_schedule_kmem_cache_create(memcg, cachep);
2320 out:
2321 	css_put(&memcg->css);
2322 	return cachep;
2323 }
2324 
2325 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2326 {
2327 	if (!is_root_cache(cachep))
2328 		css_put(&cachep->memcg_params.memcg->css);
2329 }
2330 
2331 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2332 			      struct mem_cgroup *memcg)
2333 {
2334 	unsigned int nr_pages = 1 << order;
2335 	struct page_counter *counter;
2336 	int ret;
2337 
2338 	ret = try_charge(memcg, gfp, nr_pages);
2339 	if (ret)
2340 		return ret;
2341 
2342 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2343 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2344 		cancel_charge(memcg, nr_pages);
2345 		return -ENOMEM;
2346 	}
2347 
2348 	page->mem_cgroup = memcg;
2349 
2350 	return 0;
2351 }
2352 
2353 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2354 {
2355 	struct mem_cgroup *memcg;
2356 	int ret = 0;
2357 
2358 	memcg = get_mem_cgroup_from_mm(current->mm);
2359 	if (!mem_cgroup_is_root(memcg))
2360 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2361 	css_put(&memcg->css);
2362 	return ret;
2363 }
2364 
2365 void __memcg_kmem_uncharge(struct page *page, int order)
2366 {
2367 	struct mem_cgroup *memcg = page->mem_cgroup;
2368 	unsigned int nr_pages = 1 << order;
2369 
2370 	if (!memcg)
2371 		return;
2372 
2373 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2374 
2375 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2376 		page_counter_uncharge(&memcg->kmem, nr_pages);
2377 
2378 	page_counter_uncharge(&memcg->memory, nr_pages);
2379 	if (do_memsw_account())
2380 		page_counter_uncharge(&memcg->memsw, nr_pages);
2381 
2382 	page->mem_cgroup = NULL;
2383 	css_put_many(&memcg->css, nr_pages);
2384 }
2385 #endif /* !CONFIG_SLOB */
2386 
2387 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2388 
2389 /*
2390  * Because tail pages are not marked as "used", set it. We're under
2391  * zone->lru_lock and migration entries setup in all page mappings.
2392  */
2393 void mem_cgroup_split_huge_fixup(struct page *head)
2394 {
2395 	int i;
2396 
2397 	if (mem_cgroup_disabled())
2398 		return;
2399 
2400 	for (i = 1; i < HPAGE_PMD_NR; i++)
2401 		head[i].mem_cgroup = head->mem_cgroup;
2402 
2403 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2404 		       HPAGE_PMD_NR);
2405 }
2406 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2407 
2408 #ifdef CONFIG_MEMCG_SWAP
2409 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2410 					 bool charge)
2411 {
2412 	int val = (charge) ? 1 : -1;
2413 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2414 }
2415 
2416 /**
2417  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2418  * @entry: swap entry to be moved
2419  * @from:  mem_cgroup which the entry is moved from
2420  * @to:  mem_cgroup which the entry is moved to
2421  *
2422  * It succeeds only when the swap_cgroup's record for this entry is the same
2423  * as the mem_cgroup's id of @from.
2424  *
2425  * Returns 0 on success, -EINVAL on failure.
2426  *
2427  * The caller must have charged to @to, IOW, called page_counter_charge() about
2428  * both res and memsw, and called css_get().
2429  */
2430 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2431 				struct mem_cgroup *from, struct mem_cgroup *to)
2432 {
2433 	unsigned short old_id, new_id;
2434 
2435 	old_id = mem_cgroup_id(from);
2436 	new_id = mem_cgroup_id(to);
2437 
2438 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2439 		mem_cgroup_swap_statistics(from, false);
2440 		mem_cgroup_swap_statistics(to, true);
2441 		return 0;
2442 	}
2443 	return -EINVAL;
2444 }
2445 #else
2446 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2447 				struct mem_cgroup *from, struct mem_cgroup *to)
2448 {
2449 	return -EINVAL;
2450 }
2451 #endif
2452 
2453 static DEFINE_MUTEX(memcg_limit_mutex);
2454 
2455 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2456 				   unsigned long limit)
2457 {
2458 	unsigned long curusage;
2459 	unsigned long oldusage;
2460 	bool enlarge = false;
2461 	int retry_count;
2462 	int ret;
2463 
2464 	/*
2465 	 * For keeping hierarchical_reclaim simple, how long we should retry
2466 	 * is depends on callers. We set our retry-count to be function
2467 	 * of # of children which we should visit in this loop.
2468 	 */
2469 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2470 		      mem_cgroup_count_children(memcg);
2471 
2472 	oldusage = page_counter_read(&memcg->memory);
2473 
2474 	do {
2475 		if (signal_pending(current)) {
2476 			ret = -EINTR;
2477 			break;
2478 		}
2479 
2480 		mutex_lock(&memcg_limit_mutex);
2481 		if (limit > memcg->memsw.limit) {
2482 			mutex_unlock(&memcg_limit_mutex);
2483 			ret = -EINVAL;
2484 			break;
2485 		}
2486 		if (limit > memcg->memory.limit)
2487 			enlarge = true;
2488 		ret = page_counter_limit(&memcg->memory, limit);
2489 		mutex_unlock(&memcg_limit_mutex);
2490 
2491 		if (!ret)
2492 			break;
2493 
2494 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2495 
2496 		curusage = page_counter_read(&memcg->memory);
2497 		/* Usage is reduced ? */
2498 		if (curusage >= oldusage)
2499 			retry_count--;
2500 		else
2501 			oldusage = curusage;
2502 	} while (retry_count);
2503 
2504 	if (!ret && enlarge)
2505 		memcg_oom_recover(memcg);
2506 
2507 	return ret;
2508 }
2509 
2510 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2511 					 unsigned long limit)
2512 {
2513 	unsigned long curusage;
2514 	unsigned long oldusage;
2515 	bool enlarge = false;
2516 	int retry_count;
2517 	int ret;
2518 
2519 	/* see mem_cgroup_resize_res_limit */
2520 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2521 		      mem_cgroup_count_children(memcg);
2522 
2523 	oldusage = page_counter_read(&memcg->memsw);
2524 
2525 	do {
2526 		if (signal_pending(current)) {
2527 			ret = -EINTR;
2528 			break;
2529 		}
2530 
2531 		mutex_lock(&memcg_limit_mutex);
2532 		if (limit < memcg->memory.limit) {
2533 			mutex_unlock(&memcg_limit_mutex);
2534 			ret = -EINVAL;
2535 			break;
2536 		}
2537 		if (limit > memcg->memsw.limit)
2538 			enlarge = true;
2539 		ret = page_counter_limit(&memcg->memsw, limit);
2540 		mutex_unlock(&memcg_limit_mutex);
2541 
2542 		if (!ret)
2543 			break;
2544 
2545 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2546 
2547 		curusage = page_counter_read(&memcg->memsw);
2548 		/* Usage is reduced ? */
2549 		if (curusage >= oldusage)
2550 			retry_count--;
2551 		else
2552 			oldusage = curusage;
2553 	} while (retry_count);
2554 
2555 	if (!ret && enlarge)
2556 		memcg_oom_recover(memcg);
2557 
2558 	return ret;
2559 }
2560 
2561 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2562 					    gfp_t gfp_mask,
2563 					    unsigned long *total_scanned)
2564 {
2565 	unsigned long nr_reclaimed = 0;
2566 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2567 	unsigned long reclaimed;
2568 	int loop = 0;
2569 	struct mem_cgroup_tree_per_zone *mctz;
2570 	unsigned long excess;
2571 	unsigned long nr_scanned;
2572 
2573 	if (order > 0)
2574 		return 0;
2575 
2576 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2577 	/*
2578 	 * This loop can run a while, specially if mem_cgroup's continuously
2579 	 * keep exceeding their soft limit and putting the system under
2580 	 * pressure
2581 	 */
2582 	do {
2583 		if (next_mz)
2584 			mz = next_mz;
2585 		else
2586 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2587 		if (!mz)
2588 			break;
2589 
2590 		nr_scanned = 0;
2591 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2592 						    gfp_mask, &nr_scanned);
2593 		nr_reclaimed += reclaimed;
2594 		*total_scanned += nr_scanned;
2595 		spin_lock_irq(&mctz->lock);
2596 		__mem_cgroup_remove_exceeded(mz, mctz);
2597 
2598 		/*
2599 		 * If we failed to reclaim anything from this memory cgroup
2600 		 * it is time to move on to the next cgroup
2601 		 */
2602 		next_mz = NULL;
2603 		if (!reclaimed)
2604 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2605 
2606 		excess = soft_limit_excess(mz->memcg);
2607 		/*
2608 		 * One school of thought says that we should not add
2609 		 * back the node to the tree if reclaim returns 0.
2610 		 * But our reclaim could return 0, simply because due
2611 		 * to priority we are exposing a smaller subset of
2612 		 * memory to reclaim from. Consider this as a longer
2613 		 * term TODO.
2614 		 */
2615 		/* If excess == 0, no tree ops */
2616 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2617 		spin_unlock_irq(&mctz->lock);
2618 		css_put(&mz->memcg->css);
2619 		loop++;
2620 		/*
2621 		 * Could not reclaim anything and there are no more
2622 		 * mem cgroups to try or we seem to be looping without
2623 		 * reclaiming anything.
2624 		 */
2625 		if (!nr_reclaimed &&
2626 			(next_mz == NULL ||
2627 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2628 			break;
2629 	} while (!nr_reclaimed);
2630 	if (next_mz)
2631 		css_put(&next_mz->memcg->css);
2632 	return nr_reclaimed;
2633 }
2634 
2635 /*
2636  * Test whether @memcg has children, dead or alive.  Note that this
2637  * function doesn't care whether @memcg has use_hierarchy enabled and
2638  * returns %true if there are child csses according to the cgroup
2639  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2640  */
2641 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2642 {
2643 	bool ret;
2644 
2645 	rcu_read_lock();
2646 	ret = css_next_child(NULL, &memcg->css);
2647 	rcu_read_unlock();
2648 	return ret;
2649 }
2650 
2651 /*
2652  * Reclaims as many pages from the given memcg as possible and moves
2653  * the rest to the parent.
2654  *
2655  * Caller is responsible for holding css reference for memcg.
2656  */
2657 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2658 {
2659 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2660 
2661 	/* we call try-to-free pages for make this cgroup empty */
2662 	lru_add_drain_all();
2663 	/* try to free all pages in this cgroup */
2664 	while (nr_retries && page_counter_read(&memcg->memory)) {
2665 		int progress;
2666 
2667 		if (signal_pending(current))
2668 			return -EINTR;
2669 
2670 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2671 							GFP_KERNEL, true);
2672 		if (!progress) {
2673 			nr_retries--;
2674 			/* maybe some writeback is necessary */
2675 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2676 		}
2677 
2678 	}
2679 
2680 	return 0;
2681 }
2682 
2683 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2684 					    char *buf, size_t nbytes,
2685 					    loff_t off)
2686 {
2687 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2688 
2689 	if (mem_cgroup_is_root(memcg))
2690 		return -EINVAL;
2691 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2692 }
2693 
2694 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2695 				     struct cftype *cft)
2696 {
2697 	return mem_cgroup_from_css(css)->use_hierarchy;
2698 }
2699 
2700 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2701 				      struct cftype *cft, u64 val)
2702 {
2703 	int retval = 0;
2704 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2705 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2706 
2707 	if (memcg->use_hierarchy == val)
2708 		return 0;
2709 
2710 	/*
2711 	 * If parent's use_hierarchy is set, we can't make any modifications
2712 	 * in the child subtrees. If it is unset, then the change can
2713 	 * occur, provided the current cgroup has no children.
2714 	 *
2715 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2716 	 * set if there are no children.
2717 	 */
2718 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2719 				(val == 1 || val == 0)) {
2720 		if (!memcg_has_children(memcg))
2721 			memcg->use_hierarchy = val;
2722 		else
2723 			retval = -EBUSY;
2724 	} else
2725 		retval = -EINVAL;
2726 
2727 	return retval;
2728 }
2729 
2730 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2731 {
2732 	struct mem_cgroup *iter;
2733 	int i;
2734 
2735 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2736 
2737 	for_each_mem_cgroup_tree(iter, memcg) {
2738 		for (i = 0; i < MEMCG_NR_STAT; i++)
2739 			stat[i] += mem_cgroup_read_stat(iter, i);
2740 	}
2741 }
2742 
2743 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2744 {
2745 	struct mem_cgroup *iter;
2746 	int i;
2747 
2748 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2749 
2750 	for_each_mem_cgroup_tree(iter, memcg) {
2751 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2752 			events[i] += mem_cgroup_read_events(iter, i);
2753 	}
2754 }
2755 
2756 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2757 {
2758 	unsigned long val = 0;
2759 
2760 	if (mem_cgroup_is_root(memcg)) {
2761 		struct mem_cgroup *iter;
2762 
2763 		for_each_mem_cgroup_tree(iter, memcg) {
2764 			val += mem_cgroup_read_stat(iter,
2765 					MEM_CGROUP_STAT_CACHE);
2766 			val += mem_cgroup_read_stat(iter,
2767 					MEM_CGROUP_STAT_RSS);
2768 			if (swap)
2769 				val += mem_cgroup_read_stat(iter,
2770 						MEM_CGROUP_STAT_SWAP);
2771 		}
2772 	} else {
2773 		if (!swap)
2774 			val = page_counter_read(&memcg->memory);
2775 		else
2776 			val = page_counter_read(&memcg->memsw);
2777 	}
2778 	return val;
2779 }
2780 
2781 enum {
2782 	RES_USAGE,
2783 	RES_LIMIT,
2784 	RES_MAX_USAGE,
2785 	RES_FAILCNT,
2786 	RES_SOFT_LIMIT,
2787 };
2788 
2789 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2790 			       struct cftype *cft)
2791 {
2792 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2793 	struct page_counter *counter;
2794 
2795 	switch (MEMFILE_TYPE(cft->private)) {
2796 	case _MEM:
2797 		counter = &memcg->memory;
2798 		break;
2799 	case _MEMSWAP:
2800 		counter = &memcg->memsw;
2801 		break;
2802 	case _KMEM:
2803 		counter = &memcg->kmem;
2804 		break;
2805 	case _TCP:
2806 		counter = &memcg->tcpmem;
2807 		break;
2808 	default:
2809 		BUG();
2810 	}
2811 
2812 	switch (MEMFILE_ATTR(cft->private)) {
2813 	case RES_USAGE:
2814 		if (counter == &memcg->memory)
2815 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2816 		if (counter == &memcg->memsw)
2817 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2818 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2819 	case RES_LIMIT:
2820 		return (u64)counter->limit * PAGE_SIZE;
2821 	case RES_MAX_USAGE:
2822 		return (u64)counter->watermark * PAGE_SIZE;
2823 	case RES_FAILCNT:
2824 		return counter->failcnt;
2825 	case RES_SOFT_LIMIT:
2826 		return (u64)memcg->soft_limit * PAGE_SIZE;
2827 	default:
2828 		BUG();
2829 	}
2830 }
2831 
2832 #ifndef CONFIG_SLOB
2833 static int memcg_online_kmem(struct mem_cgroup *memcg)
2834 {
2835 	int memcg_id;
2836 
2837 	if (cgroup_memory_nokmem)
2838 		return 0;
2839 
2840 	BUG_ON(memcg->kmemcg_id >= 0);
2841 	BUG_ON(memcg->kmem_state);
2842 
2843 	memcg_id = memcg_alloc_cache_id();
2844 	if (memcg_id < 0)
2845 		return memcg_id;
2846 
2847 	static_branch_inc(&memcg_kmem_enabled_key);
2848 	/*
2849 	 * A memory cgroup is considered kmem-online as soon as it gets
2850 	 * kmemcg_id. Setting the id after enabling static branching will
2851 	 * guarantee no one starts accounting before all call sites are
2852 	 * patched.
2853 	 */
2854 	memcg->kmemcg_id = memcg_id;
2855 	memcg->kmem_state = KMEM_ONLINE;
2856 
2857 	return 0;
2858 }
2859 
2860 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2861 {
2862 	struct cgroup_subsys_state *css;
2863 	struct mem_cgroup *parent, *child;
2864 	int kmemcg_id;
2865 
2866 	if (memcg->kmem_state != KMEM_ONLINE)
2867 		return;
2868 	/*
2869 	 * Clear the online state before clearing memcg_caches array
2870 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2871 	 * guarantees that no cache will be created for this cgroup
2872 	 * after we are done (see memcg_create_kmem_cache()).
2873 	 */
2874 	memcg->kmem_state = KMEM_ALLOCATED;
2875 
2876 	memcg_deactivate_kmem_caches(memcg);
2877 
2878 	kmemcg_id = memcg->kmemcg_id;
2879 	BUG_ON(kmemcg_id < 0);
2880 
2881 	parent = parent_mem_cgroup(memcg);
2882 	if (!parent)
2883 		parent = root_mem_cgroup;
2884 
2885 	/*
2886 	 * Change kmemcg_id of this cgroup and all its descendants to the
2887 	 * parent's id, and then move all entries from this cgroup's list_lrus
2888 	 * to ones of the parent. After we have finished, all list_lrus
2889 	 * corresponding to this cgroup are guaranteed to remain empty. The
2890 	 * ordering is imposed by list_lru_node->lock taken by
2891 	 * memcg_drain_all_list_lrus().
2892 	 */
2893 	css_for_each_descendant_pre(css, &memcg->css) {
2894 		child = mem_cgroup_from_css(css);
2895 		BUG_ON(child->kmemcg_id != kmemcg_id);
2896 		child->kmemcg_id = parent->kmemcg_id;
2897 		if (!memcg->use_hierarchy)
2898 			break;
2899 	}
2900 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2901 
2902 	memcg_free_cache_id(kmemcg_id);
2903 }
2904 
2905 static void memcg_free_kmem(struct mem_cgroup *memcg)
2906 {
2907 	/* css_alloc() failed, offlining didn't happen */
2908 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2909 		memcg_offline_kmem(memcg);
2910 
2911 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2912 		memcg_destroy_kmem_caches(memcg);
2913 		static_branch_dec(&memcg_kmem_enabled_key);
2914 		WARN_ON(page_counter_read(&memcg->kmem));
2915 	}
2916 }
2917 #else
2918 static int memcg_online_kmem(struct mem_cgroup *memcg)
2919 {
2920 	return 0;
2921 }
2922 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2923 {
2924 }
2925 static void memcg_free_kmem(struct mem_cgroup *memcg)
2926 {
2927 }
2928 #endif /* !CONFIG_SLOB */
2929 
2930 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2931 				   unsigned long limit)
2932 {
2933 	int ret;
2934 
2935 	mutex_lock(&memcg_limit_mutex);
2936 	ret = page_counter_limit(&memcg->kmem, limit);
2937 	mutex_unlock(&memcg_limit_mutex);
2938 	return ret;
2939 }
2940 
2941 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2942 {
2943 	int ret;
2944 
2945 	mutex_lock(&memcg_limit_mutex);
2946 
2947 	ret = page_counter_limit(&memcg->tcpmem, limit);
2948 	if (ret)
2949 		goto out;
2950 
2951 	if (!memcg->tcpmem_active) {
2952 		/*
2953 		 * The active flag needs to be written after the static_key
2954 		 * update. This is what guarantees that the socket activation
2955 		 * function is the last one to run. See sock_update_memcg() for
2956 		 * details, and note that we don't mark any socket as belonging
2957 		 * to this memcg until that flag is up.
2958 		 *
2959 		 * We need to do this, because static_keys will span multiple
2960 		 * sites, but we can't control their order. If we mark a socket
2961 		 * as accounted, but the accounting functions are not patched in
2962 		 * yet, we'll lose accounting.
2963 		 *
2964 		 * We never race with the readers in sock_update_memcg(),
2965 		 * because when this value change, the code to process it is not
2966 		 * patched in yet.
2967 		 */
2968 		static_branch_inc(&memcg_sockets_enabled_key);
2969 		memcg->tcpmem_active = true;
2970 	}
2971 out:
2972 	mutex_unlock(&memcg_limit_mutex);
2973 	return ret;
2974 }
2975 
2976 /*
2977  * The user of this function is...
2978  * RES_LIMIT.
2979  */
2980 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2981 				char *buf, size_t nbytes, loff_t off)
2982 {
2983 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2984 	unsigned long nr_pages;
2985 	int ret;
2986 
2987 	buf = strstrip(buf);
2988 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2989 	if (ret)
2990 		return ret;
2991 
2992 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2993 	case RES_LIMIT:
2994 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2995 			ret = -EINVAL;
2996 			break;
2997 		}
2998 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2999 		case _MEM:
3000 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3001 			break;
3002 		case _MEMSWAP:
3003 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3004 			break;
3005 		case _KMEM:
3006 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3007 			break;
3008 		case _TCP:
3009 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3010 			break;
3011 		}
3012 		break;
3013 	case RES_SOFT_LIMIT:
3014 		memcg->soft_limit = nr_pages;
3015 		ret = 0;
3016 		break;
3017 	}
3018 	return ret ?: nbytes;
3019 }
3020 
3021 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3022 				size_t nbytes, loff_t off)
3023 {
3024 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3025 	struct page_counter *counter;
3026 
3027 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3028 	case _MEM:
3029 		counter = &memcg->memory;
3030 		break;
3031 	case _MEMSWAP:
3032 		counter = &memcg->memsw;
3033 		break;
3034 	case _KMEM:
3035 		counter = &memcg->kmem;
3036 		break;
3037 	case _TCP:
3038 		counter = &memcg->tcpmem;
3039 		break;
3040 	default:
3041 		BUG();
3042 	}
3043 
3044 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3045 	case RES_MAX_USAGE:
3046 		page_counter_reset_watermark(counter);
3047 		break;
3048 	case RES_FAILCNT:
3049 		counter->failcnt = 0;
3050 		break;
3051 	default:
3052 		BUG();
3053 	}
3054 
3055 	return nbytes;
3056 }
3057 
3058 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3059 					struct cftype *cft)
3060 {
3061 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3062 }
3063 
3064 #ifdef CONFIG_MMU
3065 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3066 					struct cftype *cft, u64 val)
3067 {
3068 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3069 
3070 	if (val & ~MOVE_MASK)
3071 		return -EINVAL;
3072 
3073 	/*
3074 	 * No kind of locking is needed in here, because ->can_attach() will
3075 	 * check this value once in the beginning of the process, and then carry
3076 	 * on with stale data. This means that changes to this value will only
3077 	 * affect task migrations starting after the change.
3078 	 */
3079 	memcg->move_charge_at_immigrate = val;
3080 	return 0;
3081 }
3082 #else
3083 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3084 					struct cftype *cft, u64 val)
3085 {
3086 	return -ENOSYS;
3087 }
3088 #endif
3089 
3090 #ifdef CONFIG_NUMA
3091 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3092 {
3093 	struct numa_stat {
3094 		const char *name;
3095 		unsigned int lru_mask;
3096 	};
3097 
3098 	static const struct numa_stat stats[] = {
3099 		{ "total", LRU_ALL },
3100 		{ "file", LRU_ALL_FILE },
3101 		{ "anon", LRU_ALL_ANON },
3102 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3103 	};
3104 	const struct numa_stat *stat;
3105 	int nid;
3106 	unsigned long nr;
3107 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3108 
3109 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3111 		seq_printf(m, "%s=%lu", stat->name, nr);
3112 		for_each_node_state(nid, N_MEMORY) {
3113 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3114 							  stat->lru_mask);
3115 			seq_printf(m, " N%d=%lu", nid, nr);
3116 		}
3117 		seq_putc(m, '\n');
3118 	}
3119 
3120 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3121 		struct mem_cgroup *iter;
3122 
3123 		nr = 0;
3124 		for_each_mem_cgroup_tree(iter, memcg)
3125 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3126 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3127 		for_each_node_state(nid, N_MEMORY) {
3128 			nr = 0;
3129 			for_each_mem_cgroup_tree(iter, memcg)
3130 				nr += mem_cgroup_node_nr_lru_pages(
3131 					iter, nid, stat->lru_mask);
3132 			seq_printf(m, " N%d=%lu", nid, nr);
3133 		}
3134 		seq_putc(m, '\n');
3135 	}
3136 
3137 	return 0;
3138 }
3139 #endif /* CONFIG_NUMA */
3140 
3141 static int memcg_stat_show(struct seq_file *m, void *v)
3142 {
3143 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3144 	unsigned long memory, memsw;
3145 	struct mem_cgroup *mi;
3146 	unsigned int i;
3147 
3148 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3149 		     MEM_CGROUP_STAT_NSTATS);
3150 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3151 		     MEM_CGROUP_EVENTS_NSTATS);
3152 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3153 
3154 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3155 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3156 			continue;
3157 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3158 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3159 	}
3160 
3161 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3162 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3163 			   mem_cgroup_read_events(memcg, i));
3164 
3165 	for (i = 0; i < NR_LRU_LISTS; i++)
3166 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3167 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3168 
3169 	/* Hierarchical information */
3170 	memory = memsw = PAGE_COUNTER_MAX;
3171 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3172 		memory = min(memory, mi->memory.limit);
3173 		memsw = min(memsw, mi->memsw.limit);
3174 	}
3175 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3176 		   (u64)memory * PAGE_SIZE);
3177 	if (do_memsw_account())
3178 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3179 			   (u64)memsw * PAGE_SIZE);
3180 
3181 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3182 		unsigned long long val = 0;
3183 
3184 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3185 			continue;
3186 		for_each_mem_cgroup_tree(mi, memcg)
3187 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3188 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3189 	}
3190 
3191 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3192 		unsigned long long val = 0;
3193 
3194 		for_each_mem_cgroup_tree(mi, memcg)
3195 			val += mem_cgroup_read_events(mi, i);
3196 		seq_printf(m, "total_%s %llu\n",
3197 			   mem_cgroup_events_names[i], val);
3198 	}
3199 
3200 	for (i = 0; i < NR_LRU_LISTS; i++) {
3201 		unsigned long long val = 0;
3202 
3203 		for_each_mem_cgroup_tree(mi, memcg)
3204 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3205 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3206 	}
3207 
3208 #ifdef CONFIG_DEBUG_VM
3209 	{
3210 		int nid, zid;
3211 		struct mem_cgroup_per_zone *mz;
3212 		struct zone_reclaim_stat *rstat;
3213 		unsigned long recent_rotated[2] = {0, 0};
3214 		unsigned long recent_scanned[2] = {0, 0};
3215 
3216 		for_each_online_node(nid)
3217 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3218 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3219 				rstat = &mz->lruvec.reclaim_stat;
3220 
3221 				recent_rotated[0] += rstat->recent_rotated[0];
3222 				recent_rotated[1] += rstat->recent_rotated[1];
3223 				recent_scanned[0] += rstat->recent_scanned[0];
3224 				recent_scanned[1] += rstat->recent_scanned[1];
3225 			}
3226 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3227 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3228 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3229 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3230 	}
3231 #endif
3232 
3233 	return 0;
3234 }
3235 
3236 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3237 				      struct cftype *cft)
3238 {
3239 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3240 
3241 	return mem_cgroup_swappiness(memcg);
3242 }
3243 
3244 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3245 				       struct cftype *cft, u64 val)
3246 {
3247 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3248 
3249 	if (val > 100)
3250 		return -EINVAL;
3251 
3252 	if (css->parent)
3253 		memcg->swappiness = val;
3254 	else
3255 		vm_swappiness = val;
3256 
3257 	return 0;
3258 }
3259 
3260 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3261 {
3262 	struct mem_cgroup_threshold_ary *t;
3263 	unsigned long usage;
3264 	int i;
3265 
3266 	rcu_read_lock();
3267 	if (!swap)
3268 		t = rcu_dereference(memcg->thresholds.primary);
3269 	else
3270 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3271 
3272 	if (!t)
3273 		goto unlock;
3274 
3275 	usage = mem_cgroup_usage(memcg, swap);
3276 
3277 	/*
3278 	 * current_threshold points to threshold just below or equal to usage.
3279 	 * If it's not true, a threshold was crossed after last
3280 	 * call of __mem_cgroup_threshold().
3281 	 */
3282 	i = t->current_threshold;
3283 
3284 	/*
3285 	 * Iterate backward over array of thresholds starting from
3286 	 * current_threshold and check if a threshold is crossed.
3287 	 * If none of thresholds below usage is crossed, we read
3288 	 * only one element of the array here.
3289 	 */
3290 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3291 		eventfd_signal(t->entries[i].eventfd, 1);
3292 
3293 	/* i = current_threshold + 1 */
3294 	i++;
3295 
3296 	/*
3297 	 * Iterate forward over array of thresholds starting from
3298 	 * current_threshold+1 and check if a threshold is crossed.
3299 	 * If none of thresholds above usage is crossed, we read
3300 	 * only one element of the array here.
3301 	 */
3302 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3303 		eventfd_signal(t->entries[i].eventfd, 1);
3304 
3305 	/* Update current_threshold */
3306 	t->current_threshold = i - 1;
3307 unlock:
3308 	rcu_read_unlock();
3309 }
3310 
3311 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3312 {
3313 	while (memcg) {
3314 		__mem_cgroup_threshold(memcg, false);
3315 		if (do_memsw_account())
3316 			__mem_cgroup_threshold(memcg, true);
3317 
3318 		memcg = parent_mem_cgroup(memcg);
3319 	}
3320 }
3321 
3322 static int compare_thresholds(const void *a, const void *b)
3323 {
3324 	const struct mem_cgroup_threshold *_a = a;
3325 	const struct mem_cgroup_threshold *_b = b;
3326 
3327 	if (_a->threshold > _b->threshold)
3328 		return 1;
3329 
3330 	if (_a->threshold < _b->threshold)
3331 		return -1;
3332 
3333 	return 0;
3334 }
3335 
3336 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3337 {
3338 	struct mem_cgroup_eventfd_list *ev;
3339 
3340 	spin_lock(&memcg_oom_lock);
3341 
3342 	list_for_each_entry(ev, &memcg->oom_notify, list)
3343 		eventfd_signal(ev->eventfd, 1);
3344 
3345 	spin_unlock(&memcg_oom_lock);
3346 	return 0;
3347 }
3348 
3349 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3350 {
3351 	struct mem_cgroup *iter;
3352 
3353 	for_each_mem_cgroup_tree(iter, memcg)
3354 		mem_cgroup_oom_notify_cb(iter);
3355 }
3356 
3357 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3358 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3359 {
3360 	struct mem_cgroup_thresholds *thresholds;
3361 	struct mem_cgroup_threshold_ary *new;
3362 	unsigned long threshold;
3363 	unsigned long usage;
3364 	int i, size, ret;
3365 
3366 	ret = page_counter_memparse(args, "-1", &threshold);
3367 	if (ret)
3368 		return ret;
3369 
3370 	mutex_lock(&memcg->thresholds_lock);
3371 
3372 	if (type == _MEM) {
3373 		thresholds = &memcg->thresholds;
3374 		usage = mem_cgroup_usage(memcg, false);
3375 	} else if (type == _MEMSWAP) {
3376 		thresholds = &memcg->memsw_thresholds;
3377 		usage = mem_cgroup_usage(memcg, true);
3378 	} else
3379 		BUG();
3380 
3381 	/* Check if a threshold crossed before adding a new one */
3382 	if (thresholds->primary)
3383 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3384 
3385 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3386 
3387 	/* Allocate memory for new array of thresholds */
3388 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3389 			GFP_KERNEL);
3390 	if (!new) {
3391 		ret = -ENOMEM;
3392 		goto unlock;
3393 	}
3394 	new->size = size;
3395 
3396 	/* Copy thresholds (if any) to new array */
3397 	if (thresholds->primary) {
3398 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3399 				sizeof(struct mem_cgroup_threshold));
3400 	}
3401 
3402 	/* Add new threshold */
3403 	new->entries[size - 1].eventfd = eventfd;
3404 	new->entries[size - 1].threshold = threshold;
3405 
3406 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3407 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3408 			compare_thresholds, NULL);
3409 
3410 	/* Find current threshold */
3411 	new->current_threshold = -1;
3412 	for (i = 0; i < size; i++) {
3413 		if (new->entries[i].threshold <= usage) {
3414 			/*
3415 			 * new->current_threshold will not be used until
3416 			 * rcu_assign_pointer(), so it's safe to increment
3417 			 * it here.
3418 			 */
3419 			++new->current_threshold;
3420 		} else
3421 			break;
3422 	}
3423 
3424 	/* Free old spare buffer and save old primary buffer as spare */
3425 	kfree(thresholds->spare);
3426 	thresholds->spare = thresholds->primary;
3427 
3428 	rcu_assign_pointer(thresholds->primary, new);
3429 
3430 	/* To be sure that nobody uses thresholds */
3431 	synchronize_rcu();
3432 
3433 unlock:
3434 	mutex_unlock(&memcg->thresholds_lock);
3435 
3436 	return ret;
3437 }
3438 
3439 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3440 	struct eventfd_ctx *eventfd, const char *args)
3441 {
3442 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3443 }
3444 
3445 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3446 	struct eventfd_ctx *eventfd, const char *args)
3447 {
3448 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3449 }
3450 
3451 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3452 	struct eventfd_ctx *eventfd, enum res_type type)
3453 {
3454 	struct mem_cgroup_thresholds *thresholds;
3455 	struct mem_cgroup_threshold_ary *new;
3456 	unsigned long usage;
3457 	int i, j, size;
3458 
3459 	mutex_lock(&memcg->thresholds_lock);
3460 
3461 	if (type == _MEM) {
3462 		thresholds = &memcg->thresholds;
3463 		usage = mem_cgroup_usage(memcg, false);
3464 	} else if (type == _MEMSWAP) {
3465 		thresholds = &memcg->memsw_thresholds;
3466 		usage = mem_cgroup_usage(memcg, true);
3467 	} else
3468 		BUG();
3469 
3470 	if (!thresholds->primary)
3471 		goto unlock;
3472 
3473 	/* Check if a threshold crossed before removing */
3474 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3475 
3476 	/* Calculate new number of threshold */
3477 	size = 0;
3478 	for (i = 0; i < thresholds->primary->size; i++) {
3479 		if (thresholds->primary->entries[i].eventfd != eventfd)
3480 			size++;
3481 	}
3482 
3483 	new = thresholds->spare;
3484 
3485 	/* Set thresholds array to NULL if we don't have thresholds */
3486 	if (!size) {
3487 		kfree(new);
3488 		new = NULL;
3489 		goto swap_buffers;
3490 	}
3491 
3492 	new->size = size;
3493 
3494 	/* Copy thresholds and find current threshold */
3495 	new->current_threshold = -1;
3496 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3497 		if (thresholds->primary->entries[i].eventfd == eventfd)
3498 			continue;
3499 
3500 		new->entries[j] = thresholds->primary->entries[i];
3501 		if (new->entries[j].threshold <= usage) {
3502 			/*
3503 			 * new->current_threshold will not be used
3504 			 * until rcu_assign_pointer(), so it's safe to increment
3505 			 * it here.
3506 			 */
3507 			++new->current_threshold;
3508 		}
3509 		j++;
3510 	}
3511 
3512 swap_buffers:
3513 	/* Swap primary and spare array */
3514 	thresholds->spare = thresholds->primary;
3515 
3516 	rcu_assign_pointer(thresholds->primary, new);
3517 
3518 	/* To be sure that nobody uses thresholds */
3519 	synchronize_rcu();
3520 
3521 	/* If all events are unregistered, free the spare array */
3522 	if (!new) {
3523 		kfree(thresholds->spare);
3524 		thresholds->spare = NULL;
3525 	}
3526 unlock:
3527 	mutex_unlock(&memcg->thresholds_lock);
3528 }
3529 
3530 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3531 	struct eventfd_ctx *eventfd)
3532 {
3533 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3534 }
3535 
3536 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3537 	struct eventfd_ctx *eventfd)
3538 {
3539 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3540 }
3541 
3542 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3543 	struct eventfd_ctx *eventfd, const char *args)
3544 {
3545 	struct mem_cgroup_eventfd_list *event;
3546 
3547 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3548 	if (!event)
3549 		return -ENOMEM;
3550 
3551 	spin_lock(&memcg_oom_lock);
3552 
3553 	event->eventfd = eventfd;
3554 	list_add(&event->list, &memcg->oom_notify);
3555 
3556 	/* already in OOM ? */
3557 	if (memcg->under_oom)
3558 		eventfd_signal(eventfd, 1);
3559 	spin_unlock(&memcg_oom_lock);
3560 
3561 	return 0;
3562 }
3563 
3564 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3565 	struct eventfd_ctx *eventfd)
3566 {
3567 	struct mem_cgroup_eventfd_list *ev, *tmp;
3568 
3569 	spin_lock(&memcg_oom_lock);
3570 
3571 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3572 		if (ev->eventfd == eventfd) {
3573 			list_del(&ev->list);
3574 			kfree(ev);
3575 		}
3576 	}
3577 
3578 	spin_unlock(&memcg_oom_lock);
3579 }
3580 
3581 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3582 {
3583 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3584 
3585 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3586 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3587 	return 0;
3588 }
3589 
3590 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3591 	struct cftype *cft, u64 val)
3592 {
3593 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3594 
3595 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3596 	if (!css->parent || !((val == 0) || (val == 1)))
3597 		return -EINVAL;
3598 
3599 	memcg->oom_kill_disable = val;
3600 	if (!val)
3601 		memcg_oom_recover(memcg);
3602 
3603 	return 0;
3604 }
3605 
3606 #ifdef CONFIG_CGROUP_WRITEBACK
3607 
3608 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3609 {
3610 	return &memcg->cgwb_list;
3611 }
3612 
3613 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3614 {
3615 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3616 }
3617 
3618 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3619 {
3620 	wb_domain_exit(&memcg->cgwb_domain);
3621 }
3622 
3623 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3624 {
3625 	wb_domain_size_changed(&memcg->cgwb_domain);
3626 }
3627 
3628 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3629 {
3630 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3631 
3632 	if (!memcg->css.parent)
3633 		return NULL;
3634 
3635 	return &memcg->cgwb_domain;
3636 }
3637 
3638 /**
3639  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3640  * @wb: bdi_writeback in question
3641  * @pfilepages: out parameter for number of file pages
3642  * @pheadroom: out parameter for number of allocatable pages according to memcg
3643  * @pdirty: out parameter for number of dirty pages
3644  * @pwriteback: out parameter for number of pages under writeback
3645  *
3646  * Determine the numbers of file, headroom, dirty, and writeback pages in
3647  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3648  * is a bit more involved.
3649  *
3650  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3651  * headroom is calculated as the lowest headroom of itself and the
3652  * ancestors.  Note that this doesn't consider the actual amount of
3653  * available memory in the system.  The caller should further cap
3654  * *@pheadroom accordingly.
3655  */
3656 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3657 			 unsigned long *pheadroom, unsigned long *pdirty,
3658 			 unsigned long *pwriteback)
3659 {
3660 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3661 	struct mem_cgroup *parent;
3662 
3663 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3664 
3665 	/* this should eventually include NR_UNSTABLE_NFS */
3666 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3667 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3668 						     (1 << LRU_ACTIVE_FILE));
3669 	*pheadroom = PAGE_COUNTER_MAX;
3670 
3671 	while ((parent = parent_mem_cgroup(memcg))) {
3672 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3673 		unsigned long used = page_counter_read(&memcg->memory);
3674 
3675 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3676 		memcg = parent;
3677 	}
3678 }
3679 
3680 #else	/* CONFIG_CGROUP_WRITEBACK */
3681 
3682 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3683 {
3684 	return 0;
3685 }
3686 
3687 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3688 {
3689 }
3690 
3691 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3692 {
3693 }
3694 
3695 #endif	/* CONFIG_CGROUP_WRITEBACK */
3696 
3697 /*
3698  * DO NOT USE IN NEW FILES.
3699  *
3700  * "cgroup.event_control" implementation.
3701  *
3702  * This is way over-engineered.  It tries to support fully configurable
3703  * events for each user.  Such level of flexibility is completely
3704  * unnecessary especially in the light of the planned unified hierarchy.
3705  *
3706  * Please deprecate this and replace with something simpler if at all
3707  * possible.
3708  */
3709 
3710 /*
3711  * Unregister event and free resources.
3712  *
3713  * Gets called from workqueue.
3714  */
3715 static void memcg_event_remove(struct work_struct *work)
3716 {
3717 	struct mem_cgroup_event *event =
3718 		container_of(work, struct mem_cgroup_event, remove);
3719 	struct mem_cgroup *memcg = event->memcg;
3720 
3721 	remove_wait_queue(event->wqh, &event->wait);
3722 
3723 	event->unregister_event(memcg, event->eventfd);
3724 
3725 	/* Notify userspace the event is going away. */
3726 	eventfd_signal(event->eventfd, 1);
3727 
3728 	eventfd_ctx_put(event->eventfd);
3729 	kfree(event);
3730 	css_put(&memcg->css);
3731 }
3732 
3733 /*
3734  * Gets called on POLLHUP on eventfd when user closes it.
3735  *
3736  * Called with wqh->lock held and interrupts disabled.
3737  */
3738 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3739 			    int sync, void *key)
3740 {
3741 	struct mem_cgroup_event *event =
3742 		container_of(wait, struct mem_cgroup_event, wait);
3743 	struct mem_cgroup *memcg = event->memcg;
3744 	unsigned long flags = (unsigned long)key;
3745 
3746 	if (flags & POLLHUP) {
3747 		/*
3748 		 * If the event has been detached at cgroup removal, we
3749 		 * can simply return knowing the other side will cleanup
3750 		 * for us.
3751 		 *
3752 		 * We can't race against event freeing since the other
3753 		 * side will require wqh->lock via remove_wait_queue(),
3754 		 * which we hold.
3755 		 */
3756 		spin_lock(&memcg->event_list_lock);
3757 		if (!list_empty(&event->list)) {
3758 			list_del_init(&event->list);
3759 			/*
3760 			 * We are in atomic context, but cgroup_event_remove()
3761 			 * may sleep, so we have to call it in workqueue.
3762 			 */
3763 			schedule_work(&event->remove);
3764 		}
3765 		spin_unlock(&memcg->event_list_lock);
3766 	}
3767 
3768 	return 0;
3769 }
3770 
3771 static void memcg_event_ptable_queue_proc(struct file *file,
3772 		wait_queue_head_t *wqh, poll_table *pt)
3773 {
3774 	struct mem_cgroup_event *event =
3775 		container_of(pt, struct mem_cgroup_event, pt);
3776 
3777 	event->wqh = wqh;
3778 	add_wait_queue(wqh, &event->wait);
3779 }
3780 
3781 /*
3782  * DO NOT USE IN NEW FILES.
3783  *
3784  * Parse input and register new cgroup event handler.
3785  *
3786  * Input must be in format '<event_fd> <control_fd> <args>'.
3787  * Interpretation of args is defined by control file implementation.
3788  */
3789 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3790 					 char *buf, size_t nbytes, loff_t off)
3791 {
3792 	struct cgroup_subsys_state *css = of_css(of);
3793 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3794 	struct mem_cgroup_event *event;
3795 	struct cgroup_subsys_state *cfile_css;
3796 	unsigned int efd, cfd;
3797 	struct fd efile;
3798 	struct fd cfile;
3799 	const char *name;
3800 	char *endp;
3801 	int ret;
3802 
3803 	buf = strstrip(buf);
3804 
3805 	efd = simple_strtoul(buf, &endp, 10);
3806 	if (*endp != ' ')
3807 		return -EINVAL;
3808 	buf = endp + 1;
3809 
3810 	cfd = simple_strtoul(buf, &endp, 10);
3811 	if ((*endp != ' ') && (*endp != '\0'))
3812 		return -EINVAL;
3813 	buf = endp + 1;
3814 
3815 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3816 	if (!event)
3817 		return -ENOMEM;
3818 
3819 	event->memcg = memcg;
3820 	INIT_LIST_HEAD(&event->list);
3821 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3822 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3823 	INIT_WORK(&event->remove, memcg_event_remove);
3824 
3825 	efile = fdget(efd);
3826 	if (!efile.file) {
3827 		ret = -EBADF;
3828 		goto out_kfree;
3829 	}
3830 
3831 	event->eventfd = eventfd_ctx_fileget(efile.file);
3832 	if (IS_ERR(event->eventfd)) {
3833 		ret = PTR_ERR(event->eventfd);
3834 		goto out_put_efile;
3835 	}
3836 
3837 	cfile = fdget(cfd);
3838 	if (!cfile.file) {
3839 		ret = -EBADF;
3840 		goto out_put_eventfd;
3841 	}
3842 
3843 	/* the process need read permission on control file */
3844 	/* AV: shouldn't we check that it's been opened for read instead? */
3845 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3846 	if (ret < 0)
3847 		goto out_put_cfile;
3848 
3849 	/*
3850 	 * Determine the event callbacks and set them in @event.  This used
3851 	 * to be done via struct cftype but cgroup core no longer knows
3852 	 * about these events.  The following is crude but the whole thing
3853 	 * is for compatibility anyway.
3854 	 *
3855 	 * DO NOT ADD NEW FILES.
3856 	 */
3857 	name = cfile.file->f_path.dentry->d_name.name;
3858 
3859 	if (!strcmp(name, "memory.usage_in_bytes")) {
3860 		event->register_event = mem_cgroup_usage_register_event;
3861 		event->unregister_event = mem_cgroup_usage_unregister_event;
3862 	} else if (!strcmp(name, "memory.oom_control")) {
3863 		event->register_event = mem_cgroup_oom_register_event;
3864 		event->unregister_event = mem_cgroup_oom_unregister_event;
3865 	} else if (!strcmp(name, "memory.pressure_level")) {
3866 		event->register_event = vmpressure_register_event;
3867 		event->unregister_event = vmpressure_unregister_event;
3868 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3869 		event->register_event = memsw_cgroup_usage_register_event;
3870 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3871 	} else {
3872 		ret = -EINVAL;
3873 		goto out_put_cfile;
3874 	}
3875 
3876 	/*
3877 	 * Verify @cfile should belong to @css.  Also, remaining events are
3878 	 * automatically removed on cgroup destruction but the removal is
3879 	 * asynchronous, so take an extra ref on @css.
3880 	 */
3881 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3882 					       &memory_cgrp_subsys);
3883 	ret = -EINVAL;
3884 	if (IS_ERR(cfile_css))
3885 		goto out_put_cfile;
3886 	if (cfile_css != css) {
3887 		css_put(cfile_css);
3888 		goto out_put_cfile;
3889 	}
3890 
3891 	ret = event->register_event(memcg, event->eventfd, buf);
3892 	if (ret)
3893 		goto out_put_css;
3894 
3895 	efile.file->f_op->poll(efile.file, &event->pt);
3896 
3897 	spin_lock(&memcg->event_list_lock);
3898 	list_add(&event->list, &memcg->event_list);
3899 	spin_unlock(&memcg->event_list_lock);
3900 
3901 	fdput(cfile);
3902 	fdput(efile);
3903 
3904 	return nbytes;
3905 
3906 out_put_css:
3907 	css_put(css);
3908 out_put_cfile:
3909 	fdput(cfile);
3910 out_put_eventfd:
3911 	eventfd_ctx_put(event->eventfd);
3912 out_put_efile:
3913 	fdput(efile);
3914 out_kfree:
3915 	kfree(event);
3916 
3917 	return ret;
3918 }
3919 
3920 static struct cftype mem_cgroup_legacy_files[] = {
3921 	{
3922 		.name = "usage_in_bytes",
3923 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3924 		.read_u64 = mem_cgroup_read_u64,
3925 	},
3926 	{
3927 		.name = "max_usage_in_bytes",
3928 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3929 		.write = mem_cgroup_reset,
3930 		.read_u64 = mem_cgroup_read_u64,
3931 	},
3932 	{
3933 		.name = "limit_in_bytes",
3934 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3935 		.write = mem_cgroup_write,
3936 		.read_u64 = mem_cgroup_read_u64,
3937 	},
3938 	{
3939 		.name = "soft_limit_in_bytes",
3940 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3941 		.write = mem_cgroup_write,
3942 		.read_u64 = mem_cgroup_read_u64,
3943 	},
3944 	{
3945 		.name = "failcnt",
3946 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3947 		.write = mem_cgroup_reset,
3948 		.read_u64 = mem_cgroup_read_u64,
3949 	},
3950 	{
3951 		.name = "stat",
3952 		.seq_show = memcg_stat_show,
3953 	},
3954 	{
3955 		.name = "force_empty",
3956 		.write = mem_cgroup_force_empty_write,
3957 	},
3958 	{
3959 		.name = "use_hierarchy",
3960 		.write_u64 = mem_cgroup_hierarchy_write,
3961 		.read_u64 = mem_cgroup_hierarchy_read,
3962 	},
3963 	{
3964 		.name = "cgroup.event_control",		/* XXX: for compat */
3965 		.write = memcg_write_event_control,
3966 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3967 	},
3968 	{
3969 		.name = "swappiness",
3970 		.read_u64 = mem_cgroup_swappiness_read,
3971 		.write_u64 = mem_cgroup_swappiness_write,
3972 	},
3973 	{
3974 		.name = "move_charge_at_immigrate",
3975 		.read_u64 = mem_cgroup_move_charge_read,
3976 		.write_u64 = mem_cgroup_move_charge_write,
3977 	},
3978 	{
3979 		.name = "oom_control",
3980 		.seq_show = mem_cgroup_oom_control_read,
3981 		.write_u64 = mem_cgroup_oom_control_write,
3982 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3983 	},
3984 	{
3985 		.name = "pressure_level",
3986 	},
3987 #ifdef CONFIG_NUMA
3988 	{
3989 		.name = "numa_stat",
3990 		.seq_show = memcg_numa_stat_show,
3991 	},
3992 #endif
3993 	{
3994 		.name = "kmem.limit_in_bytes",
3995 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3996 		.write = mem_cgroup_write,
3997 		.read_u64 = mem_cgroup_read_u64,
3998 	},
3999 	{
4000 		.name = "kmem.usage_in_bytes",
4001 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4002 		.read_u64 = mem_cgroup_read_u64,
4003 	},
4004 	{
4005 		.name = "kmem.failcnt",
4006 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4007 		.write = mem_cgroup_reset,
4008 		.read_u64 = mem_cgroup_read_u64,
4009 	},
4010 	{
4011 		.name = "kmem.max_usage_in_bytes",
4012 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4013 		.write = mem_cgroup_reset,
4014 		.read_u64 = mem_cgroup_read_u64,
4015 	},
4016 #ifdef CONFIG_SLABINFO
4017 	{
4018 		.name = "kmem.slabinfo",
4019 		.seq_start = slab_start,
4020 		.seq_next = slab_next,
4021 		.seq_stop = slab_stop,
4022 		.seq_show = memcg_slab_show,
4023 	},
4024 #endif
4025 	{
4026 		.name = "kmem.tcp.limit_in_bytes",
4027 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4028 		.write = mem_cgroup_write,
4029 		.read_u64 = mem_cgroup_read_u64,
4030 	},
4031 	{
4032 		.name = "kmem.tcp.usage_in_bytes",
4033 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4034 		.read_u64 = mem_cgroup_read_u64,
4035 	},
4036 	{
4037 		.name = "kmem.tcp.failcnt",
4038 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4039 		.write = mem_cgroup_reset,
4040 		.read_u64 = mem_cgroup_read_u64,
4041 	},
4042 	{
4043 		.name = "kmem.tcp.max_usage_in_bytes",
4044 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4045 		.write = mem_cgroup_reset,
4046 		.read_u64 = mem_cgroup_read_u64,
4047 	},
4048 	{ },	/* terminate */
4049 };
4050 
4051 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4052 {
4053 	struct mem_cgroup_per_node *pn;
4054 	struct mem_cgroup_per_zone *mz;
4055 	int zone, tmp = node;
4056 	/*
4057 	 * This routine is called against possible nodes.
4058 	 * But it's BUG to call kmalloc() against offline node.
4059 	 *
4060 	 * TODO: this routine can waste much memory for nodes which will
4061 	 *       never be onlined. It's better to use memory hotplug callback
4062 	 *       function.
4063 	 */
4064 	if (!node_state(node, N_NORMAL_MEMORY))
4065 		tmp = -1;
4066 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4067 	if (!pn)
4068 		return 1;
4069 
4070 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4071 		mz = &pn->zoneinfo[zone];
4072 		lruvec_init(&mz->lruvec);
4073 		mz->usage_in_excess = 0;
4074 		mz->on_tree = false;
4075 		mz->memcg = memcg;
4076 	}
4077 	memcg->nodeinfo[node] = pn;
4078 	return 0;
4079 }
4080 
4081 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4082 {
4083 	kfree(memcg->nodeinfo[node]);
4084 }
4085 
4086 static void mem_cgroup_free(struct mem_cgroup *memcg)
4087 {
4088 	int node;
4089 
4090 	memcg_wb_domain_exit(memcg);
4091 	for_each_node(node)
4092 		free_mem_cgroup_per_zone_info(memcg, node);
4093 	free_percpu(memcg->stat);
4094 	kfree(memcg);
4095 }
4096 
4097 static struct mem_cgroup *mem_cgroup_alloc(void)
4098 {
4099 	struct mem_cgroup *memcg;
4100 	size_t size;
4101 	int node;
4102 
4103 	size = sizeof(struct mem_cgroup);
4104 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4105 
4106 	memcg = kzalloc(size, GFP_KERNEL);
4107 	if (!memcg)
4108 		return NULL;
4109 
4110 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4111 	if (!memcg->stat)
4112 		goto fail;
4113 
4114 	for_each_node(node)
4115 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4116 			goto fail;
4117 
4118 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4119 		goto fail;
4120 
4121 	INIT_WORK(&memcg->high_work, high_work_func);
4122 	memcg->last_scanned_node = MAX_NUMNODES;
4123 	INIT_LIST_HEAD(&memcg->oom_notify);
4124 	mutex_init(&memcg->thresholds_lock);
4125 	spin_lock_init(&memcg->move_lock);
4126 	vmpressure_init(&memcg->vmpressure);
4127 	INIT_LIST_HEAD(&memcg->event_list);
4128 	spin_lock_init(&memcg->event_list_lock);
4129 	memcg->socket_pressure = jiffies;
4130 #ifndef CONFIG_SLOB
4131 	memcg->kmemcg_id = -1;
4132 #endif
4133 #ifdef CONFIG_CGROUP_WRITEBACK
4134 	INIT_LIST_HEAD(&memcg->cgwb_list);
4135 #endif
4136 	return memcg;
4137 fail:
4138 	mem_cgroup_free(memcg);
4139 	return NULL;
4140 }
4141 
4142 static struct cgroup_subsys_state * __ref
4143 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4144 {
4145 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4146 	struct mem_cgroup *memcg;
4147 	long error = -ENOMEM;
4148 
4149 	memcg = mem_cgroup_alloc();
4150 	if (!memcg)
4151 		return ERR_PTR(error);
4152 
4153 	memcg->high = PAGE_COUNTER_MAX;
4154 	memcg->soft_limit = PAGE_COUNTER_MAX;
4155 	if (parent) {
4156 		memcg->swappiness = mem_cgroup_swappiness(parent);
4157 		memcg->oom_kill_disable = parent->oom_kill_disable;
4158 	}
4159 	if (parent && parent->use_hierarchy) {
4160 		memcg->use_hierarchy = true;
4161 		page_counter_init(&memcg->memory, &parent->memory);
4162 		page_counter_init(&memcg->swap, &parent->swap);
4163 		page_counter_init(&memcg->memsw, &parent->memsw);
4164 		page_counter_init(&memcg->kmem, &parent->kmem);
4165 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4166 	} else {
4167 		page_counter_init(&memcg->memory, NULL);
4168 		page_counter_init(&memcg->swap, NULL);
4169 		page_counter_init(&memcg->memsw, NULL);
4170 		page_counter_init(&memcg->kmem, NULL);
4171 		page_counter_init(&memcg->tcpmem, NULL);
4172 		/*
4173 		 * Deeper hierachy with use_hierarchy == false doesn't make
4174 		 * much sense so let cgroup subsystem know about this
4175 		 * unfortunate state in our controller.
4176 		 */
4177 		if (parent != root_mem_cgroup)
4178 			memory_cgrp_subsys.broken_hierarchy = true;
4179 	}
4180 
4181 	/* The following stuff does not apply to the root */
4182 	if (!parent) {
4183 		root_mem_cgroup = memcg;
4184 		return &memcg->css;
4185 	}
4186 
4187 	error = memcg_online_kmem(memcg);
4188 	if (error)
4189 		goto fail;
4190 
4191 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4192 		static_branch_inc(&memcg_sockets_enabled_key);
4193 
4194 	return &memcg->css;
4195 fail:
4196 	mem_cgroup_free(memcg);
4197 	return NULL;
4198 }
4199 
4200 static int
4201 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4202 {
4203 	if (css->id > MEM_CGROUP_ID_MAX)
4204 		return -ENOSPC;
4205 
4206 	return 0;
4207 }
4208 
4209 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4210 {
4211 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4212 	struct mem_cgroup_event *event, *tmp;
4213 
4214 	/*
4215 	 * Unregister events and notify userspace.
4216 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4217 	 * directory to avoid race between userspace and kernelspace.
4218 	 */
4219 	spin_lock(&memcg->event_list_lock);
4220 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4221 		list_del_init(&event->list);
4222 		schedule_work(&event->remove);
4223 	}
4224 	spin_unlock(&memcg->event_list_lock);
4225 
4226 	memcg_offline_kmem(memcg);
4227 	wb_memcg_offline(memcg);
4228 }
4229 
4230 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4231 {
4232 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233 
4234 	invalidate_reclaim_iterators(memcg);
4235 }
4236 
4237 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4238 {
4239 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4240 
4241 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4242 		static_branch_dec(&memcg_sockets_enabled_key);
4243 
4244 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4245 		static_branch_dec(&memcg_sockets_enabled_key);
4246 
4247 	vmpressure_cleanup(&memcg->vmpressure);
4248 	cancel_work_sync(&memcg->high_work);
4249 	mem_cgroup_remove_from_trees(memcg);
4250 	memcg_free_kmem(memcg);
4251 	mem_cgroup_free(memcg);
4252 }
4253 
4254 /**
4255  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4256  * @css: the target css
4257  *
4258  * Reset the states of the mem_cgroup associated with @css.  This is
4259  * invoked when the userland requests disabling on the default hierarchy
4260  * but the memcg is pinned through dependency.  The memcg should stop
4261  * applying policies and should revert to the vanilla state as it may be
4262  * made visible again.
4263  *
4264  * The current implementation only resets the essential configurations.
4265  * This needs to be expanded to cover all the visible parts.
4266  */
4267 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4268 {
4269 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4270 
4271 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4272 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4273 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4274 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4275 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4276 	memcg->low = 0;
4277 	memcg->high = PAGE_COUNTER_MAX;
4278 	memcg->soft_limit = PAGE_COUNTER_MAX;
4279 	memcg_wb_domain_size_changed(memcg);
4280 }
4281 
4282 #ifdef CONFIG_MMU
4283 /* Handlers for move charge at task migration. */
4284 static int mem_cgroup_do_precharge(unsigned long count)
4285 {
4286 	int ret;
4287 
4288 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4289 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4290 	if (!ret) {
4291 		mc.precharge += count;
4292 		return ret;
4293 	}
4294 
4295 	/* Try charges one by one with reclaim */
4296 	while (count--) {
4297 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4298 		if (ret)
4299 			return ret;
4300 		mc.precharge++;
4301 		cond_resched();
4302 	}
4303 	return 0;
4304 }
4305 
4306 /**
4307  * get_mctgt_type - get target type of moving charge
4308  * @vma: the vma the pte to be checked belongs
4309  * @addr: the address corresponding to the pte to be checked
4310  * @ptent: the pte to be checked
4311  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4312  *
4313  * Returns
4314  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4315  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4316  *     move charge. if @target is not NULL, the page is stored in target->page
4317  *     with extra refcnt got(Callers should handle it).
4318  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4319  *     target for charge migration. if @target is not NULL, the entry is stored
4320  *     in target->ent.
4321  *
4322  * Called with pte lock held.
4323  */
4324 union mc_target {
4325 	struct page	*page;
4326 	swp_entry_t	ent;
4327 };
4328 
4329 enum mc_target_type {
4330 	MC_TARGET_NONE = 0,
4331 	MC_TARGET_PAGE,
4332 	MC_TARGET_SWAP,
4333 };
4334 
4335 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4336 						unsigned long addr, pte_t ptent)
4337 {
4338 	struct page *page = vm_normal_page(vma, addr, ptent);
4339 
4340 	if (!page || !page_mapped(page))
4341 		return NULL;
4342 	if (PageAnon(page)) {
4343 		if (!(mc.flags & MOVE_ANON))
4344 			return NULL;
4345 	} else {
4346 		if (!(mc.flags & MOVE_FILE))
4347 			return NULL;
4348 	}
4349 	if (!get_page_unless_zero(page))
4350 		return NULL;
4351 
4352 	return page;
4353 }
4354 
4355 #ifdef CONFIG_SWAP
4356 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4357 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4358 {
4359 	struct page *page = NULL;
4360 	swp_entry_t ent = pte_to_swp_entry(ptent);
4361 
4362 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4363 		return NULL;
4364 	/*
4365 	 * Because lookup_swap_cache() updates some statistics counter,
4366 	 * we call find_get_page() with swapper_space directly.
4367 	 */
4368 	page = find_get_page(swap_address_space(ent), ent.val);
4369 	if (do_memsw_account())
4370 		entry->val = ent.val;
4371 
4372 	return page;
4373 }
4374 #else
4375 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4376 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4377 {
4378 	return NULL;
4379 }
4380 #endif
4381 
4382 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4383 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4384 {
4385 	struct page *page = NULL;
4386 	struct address_space *mapping;
4387 	pgoff_t pgoff;
4388 
4389 	if (!vma->vm_file) /* anonymous vma */
4390 		return NULL;
4391 	if (!(mc.flags & MOVE_FILE))
4392 		return NULL;
4393 
4394 	mapping = vma->vm_file->f_mapping;
4395 	pgoff = linear_page_index(vma, addr);
4396 
4397 	/* page is moved even if it's not RSS of this task(page-faulted). */
4398 #ifdef CONFIG_SWAP
4399 	/* shmem/tmpfs may report page out on swap: account for that too. */
4400 	if (shmem_mapping(mapping)) {
4401 		page = find_get_entry(mapping, pgoff);
4402 		if (radix_tree_exceptional_entry(page)) {
4403 			swp_entry_t swp = radix_to_swp_entry(page);
4404 			if (do_memsw_account())
4405 				*entry = swp;
4406 			page = find_get_page(swap_address_space(swp), swp.val);
4407 		}
4408 	} else
4409 		page = find_get_page(mapping, pgoff);
4410 #else
4411 	page = find_get_page(mapping, pgoff);
4412 #endif
4413 	return page;
4414 }
4415 
4416 /**
4417  * mem_cgroup_move_account - move account of the page
4418  * @page: the page
4419  * @nr_pages: number of regular pages (>1 for huge pages)
4420  * @from: mem_cgroup which the page is moved from.
4421  * @to:	mem_cgroup which the page is moved to. @from != @to.
4422  *
4423  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4424  *
4425  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4426  * from old cgroup.
4427  */
4428 static int mem_cgroup_move_account(struct page *page,
4429 				   bool compound,
4430 				   struct mem_cgroup *from,
4431 				   struct mem_cgroup *to)
4432 {
4433 	unsigned long flags;
4434 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4435 	int ret;
4436 	bool anon;
4437 
4438 	VM_BUG_ON(from == to);
4439 	VM_BUG_ON_PAGE(PageLRU(page), page);
4440 	VM_BUG_ON(compound && !PageTransHuge(page));
4441 
4442 	/*
4443 	 * Prevent mem_cgroup_migrate() from looking at
4444 	 * page->mem_cgroup of its source page while we change it.
4445 	 */
4446 	ret = -EBUSY;
4447 	if (!trylock_page(page))
4448 		goto out;
4449 
4450 	ret = -EINVAL;
4451 	if (page->mem_cgroup != from)
4452 		goto out_unlock;
4453 
4454 	anon = PageAnon(page);
4455 
4456 	spin_lock_irqsave(&from->move_lock, flags);
4457 
4458 	if (!anon && page_mapped(page)) {
4459 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4460 			       nr_pages);
4461 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4462 			       nr_pages);
4463 	}
4464 
4465 	/*
4466 	 * move_lock grabbed above and caller set from->moving_account, so
4467 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4468 	 * So mapping should be stable for dirty pages.
4469 	 */
4470 	if (!anon && PageDirty(page)) {
4471 		struct address_space *mapping = page_mapping(page);
4472 
4473 		if (mapping_cap_account_dirty(mapping)) {
4474 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4475 				       nr_pages);
4476 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4477 				       nr_pages);
4478 		}
4479 	}
4480 
4481 	if (PageWriteback(page)) {
4482 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4483 			       nr_pages);
4484 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4485 			       nr_pages);
4486 	}
4487 
4488 	/*
4489 	 * It is safe to change page->mem_cgroup here because the page
4490 	 * is referenced, charged, and isolated - we can't race with
4491 	 * uncharging, charging, migration, or LRU putback.
4492 	 */
4493 
4494 	/* caller should have done css_get */
4495 	page->mem_cgroup = to;
4496 	spin_unlock_irqrestore(&from->move_lock, flags);
4497 
4498 	ret = 0;
4499 
4500 	local_irq_disable();
4501 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4502 	memcg_check_events(to, page);
4503 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4504 	memcg_check_events(from, page);
4505 	local_irq_enable();
4506 out_unlock:
4507 	unlock_page(page);
4508 out:
4509 	return ret;
4510 }
4511 
4512 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4513 		unsigned long addr, pte_t ptent, union mc_target *target)
4514 {
4515 	struct page *page = NULL;
4516 	enum mc_target_type ret = MC_TARGET_NONE;
4517 	swp_entry_t ent = { .val = 0 };
4518 
4519 	if (pte_present(ptent))
4520 		page = mc_handle_present_pte(vma, addr, ptent);
4521 	else if (is_swap_pte(ptent))
4522 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4523 	else if (pte_none(ptent))
4524 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4525 
4526 	if (!page && !ent.val)
4527 		return ret;
4528 	if (page) {
4529 		/*
4530 		 * Do only loose check w/o serialization.
4531 		 * mem_cgroup_move_account() checks the page is valid or
4532 		 * not under LRU exclusion.
4533 		 */
4534 		if (page->mem_cgroup == mc.from) {
4535 			ret = MC_TARGET_PAGE;
4536 			if (target)
4537 				target->page = page;
4538 		}
4539 		if (!ret || !target)
4540 			put_page(page);
4541 	}
4542 	/* There is a swap entry and a page doesn't exist or isn't charged */
4543 	if (ent.val && !ret &&
4544 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4545 		ret = MC_TARGET_SWAP;
4546 		if (target)
4547 			target->ent = ent;
4548 	}
4549 	return ret;
4550 }
4551 
4552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4553 /*
4554  * We don't consider swapping or file mapped pages because THP does not
4555  * support them for now.
4556  * Caller should make sure that pmd_trans_huge(pmd) is true.
4557  */
4558 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4559 		unsigned long addr, pmd_t pmd, union mc_target *target)
4560 {
4561 	struct page *page = NULL;
4562 	enum mc_target_type ret = MC_TARGET_NONE;
4563 
4564 	page = pmd_page(pmd);
4565 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4566 	if (!(mc.flags & MOVE_ANON))
4567 		return ret;
4568 	if (page->mem_cgroup == mc.from) {
4569 		ret = MC_TARGET_PAGE;
4570 		if (target) {
4571 			get_page(page);
4572 			target->page = page;
4573 		}
4574 	}
4575 	return ret;
4576 }
4577 #else
4578 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4579 		unsigned long addr, pmd_t pmd, union mc_target *target)
4580 {
4581 	return MC_TARGET_NONE;
4582 }
4583 #endif
4584 
4585 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4586 					unsigned long addr, unsigned long end,
4587 					struct mm_walk *walk)
4588 {
4589 	struct vm_area_struct *vma = walk->vma;
4590 	pte_t *pte;
4591 	spinlock_t *ptl;
4592 
4593 	ptl = pmd_trans_huge_lock(pmd, vma);
4594 	if (ptl) {
4595 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4596 			mc.precharge += HPAGE_PMD_NR;
4597 		spin_unlock(ptl);
4598 		return 0;
4599 	}
4600 
4601 	if (pmd_trans_unstable(pmd))
4602 		return 0;
4603 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4604 	for (; addr != end; pte++, addr += PAGE_SIZE)
4605 		if (get_mctgt_type(vma, addr, *pte, NULL))
4606 			mc.precharge++;	/* increment precharge temporarily */
4607 	pte_unmap_unlock(pte - 1, ptl);
4608 	cond_resched();
4609 
4610 	return 0;
4611 }
4612 
4613 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4614 {
4615 	unsigned long precharge;
4616 
4617 	struct mm_walk mem_cgroup_count_precharge_walk = {
4618 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4619 		.mm = mm,
4620 	};
4621 	down_read(&mm->mmap_sem);
4622 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4623 	up_read(&mm->mmap_sem);
4624 
4625 	precharge = mc.precharge;
4626 	mc.precharge = 0;
4627 
4628 	return precharge;
4629 }
4630 
4631 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4632 {
4633 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4634 
4635 	VM_BUG_ON(mc.moving_task);
4636 	mc.moving_task = current;
4637 	return mem_cgroup_do_precharge(precharge);
4638 }
4639 
4640 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4641 static void __mem_cgroup_clear_mc(void)
4642 {
4643 	struct mem_cgroup *from = mc.from;
4644 	struct mem_cgroup *to = mc.to;
4645 
4646 	/* we must uncharge all the leftover precharges from mc.to */
4647 	if (mc.precharge) {
4648 		cancel_charge(mc.to, mc.precharge);
4649 		mc.precharge = 0;
4650 	}
4651 	/*
4652 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4653 	 * we must uncharge here.
4654 	 */
4655 	if (mc.moved_charge) {
4656 		cancel_charge(mc.from, mc.moved_charge);
4657 		mc.moved_charge = 0;
4658 	}
4659 	/* we must fixup refcnts and charges */
4660 	if (mc.moved_swap) {
4661 		/* uncharge swap account from the old cgroup */
4662 		if (!mem_cgroup_is_root(mc.from))
4663 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4664 
4665 		/*
4666 		 * we charged both to->memory and to->memsw, so we
4667 		 * should uncharge to->memory.
4668 		 */
4669 		if (!mem_cgroup_is_root(mc.to))
4670 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4671 
4672 		css_put_many(&mc.from->css, mc.moved_swap);
4673 
4674 		/* we've already done css_get(mc.to) */
4675 		mc.moved_swap = 0;
4676 	}
4677 	memcg_oom_recover(from);
4678 	memcg_oom_recover(to);
4679 	wake_up_all(&mc.waitq);
4680 }
4681 
4682 static void mem_cgroup_clear_mc(void)
4683 {
4684 	struct mm_struct *mm = mc.mm;
4685 
4686 	/*
4687 	 * we must clear moving_task before waking up waiters at the end of
4688 	 * task migration.
4689 	 */
4690 	mc.moving_task = NULL;
4691 	__mem_cgroup_clear_mc();
4692 	spin_lock(&mc.lock);
4693 	mc.from = NULL;
4694 	mc.to = NULL;
4695 	mc.mm = NULL;
4696 	spin_unlock(&mc.lock);
4697 
4698 	mmput(mm);
4699 }
4700 
4701 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4702 {
4703 	struct cgroup_subsys_state *css;
4704 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4705 	struct mem_cgroup *from;
4706 	struct task_struct *leader, *p;
4707 	struct mm_struct *mm;
4708 	unsigned long move_flags;
4709 	int ret = 0;
4710 
4711 	/* charge immigration isn't supported on the default hierarchy */
4712 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4713 		return 0;
4714 
4715 	/*
4716 	 * Multi-process migrations only happen on the default hierarchy
4717 	 * where charge immigration is not used.  Perform charge
4718 	 * immigration if @tset contains a leader and whine if there are
4719 	 * multiple.
4720 	 */
4721 	p = NULL;
4722 	cgroup_taskset_for_each_leader(leader, css, tset) {
4723 		WARN_ON_ONCE(p);
4724 		p = leader;
4725 		memcg = mem_cgroup_from_css(css);
4726 	}
4727 	if (!p)
4728 		return 0;
4729 
4730 	/*
4731 	 * We are now commited to this value whatever it is. Changes in this
4732 	 * tunable will only affect upcoming migrations, not the current one.
4733 	 * So we need to save it, and keep it going.
4734 	 */
4735 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4736 	if (!move_flags)
4737 		return 0;
4738 
4739 	from = mem_cgroup_from_task(p);
4740 
4741 	VM_BUG_ON(from == memcg);
4742 
4743 	mm = get_task_mm(p);
4744 	if (!mm)
4745 		return 0;
4746 	/* We move charges only when we move a owner of the mm */
4747 	if (mm->owner == p) {
4748 		VM_BUG_ON(mc.from);
4749 		VM_BUG_ON(mc.to);
4750 		VM_BUG_ON(mc.precharge);
4751 		VM_BUG_ON(mc.moved_charge);
4752 		VM_BUG_ON(mc.moved_swap);
4753 
4754 		spin_lock(&mc.lock);
4755 		mc.mm = mm;
4756 		mc.from = from;
4757 		mc.to = memcg;
4758 		mc.flags = move_flags;
4759 		spin_unlock(&mc.lock);
4760 		/* We set mc.moving_task later */
4761 
4762 		ret = mem_cgroup_precharge_mc(mm);
4763 		if (ret)
4764 			mem_cgroup_clear_mc();
4765 	} else {
4766 		mmput(mm);
4767 	}
4768 	return ret;
4769 }
4770 
4771 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4772 {
4773 	if (mc.to)
4774 		mem_cgroup_clear_mc();
4775 }
4776 
4777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4778 				unsigned long addr, unsigned long end,
4779 				struct mm_walk *walk)
4780 {
4781 	int ret = 0;
4782 	struct vm_area_struct *vma = walk->vma;
4783 	pte_t *pte;
4784 	spinlock_t *ptl;
4785 	enum mc_target_type target_type;
4786 	union mc_target target;
4787 	struct page *page;
4788 
4789 	ptl = pmd_trans_huge_lock(pmd, vma);
4790 	if (ptl) {
4791 		if (mc.precharge < HPAGE_PMD_NR) {
4792 			spin_unlock(ptl);
4793 			return 0;
4794 		}
4795 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4796 		if (target_type == MC_TARGET_PAGE) {
4797 			page = target.page;
4798 			if (!isolate_lru_page(page)) {
4799 				if (!mem_cgroup_move_account(page, true,
4800 							     mc.from, mc.to)) {
4801 					mc.precharge -= HPAGE_PMD_NR;
4802 					mc.moved_charge += HPAGE_PMD_NR;
4803 				}
4804 				putback_lru_page(page);
4805 			}
4806 			put_page(page);
4807 		}
4808 		spin_unlock(ptl);
4809 		return 0;
4810 	}
4811 
4812 	if (pmd_trans_unstable(pmd))
4813 		return 0;
4814 retry:
4815 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4816 	for (; addr != end; addr += PAGE_SIZE) {
4817 		pte_t ptent = *(pte++);
4818 		swp_entry_t ent;
4819 
4820 		if (!mc.precharge)
4821 			break;
4822 
4823 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4824 		case MC_TARGET_PAGE:
4825 			page = target.page;
4826 			/*
4827 			 * We can have a part of the split pmd here. Moving it
4828 			 * can be done but it would be too convoluted so simply
4829 			 * ignore such a partial THP and keep it in original
4830 			 * memcg. There should be somebody mapping the head.
4831 			 */
4832 			if (PageTransCompound(page))
4833 				goto put;
4834 			if (isolate_lru_page(page))
4835 				goto put;
4836 			if (!mem_cgroup_move_account(page, false,
4837 						mc.from, mc.to)) {
4838 				mc.precharge--;
4839 				/* we uncharge from mc.from later. */
4840 				mc.moved_charge++;
4841 			}
4842 			putback_lru_page(page);
4843 put:			/* get_mctgt_type() gets the page */
4844 			put_page(page);
4845 			break;
4846 		case MC_TARGET_SWAP:
4847 			ent = target.ent;
4848 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4849 				mc.precharge--;
4850 				/* we fixup refcnts and charges later. */
4851 				mc.moved_swap++;
4852 			}
4853 			break;
4854 		default:
4855 			break;
4856 		}
4857 	}
4858 	pte_unmap_unlock(pte - 1, ptl);
4859 	cond_resched();
4860 
4861 	if (addr != end) {
4862 		/*
4863 		 * We have consumed all precharges we got in can_attach().
4864 		 * We try charge one by one, but don't do any additional
4865 		 * charges to mc.to if we have failed in charge once in attach()
4866 		 * phase.
4867 		 */
4868 		ret = mem_cgroup_do_precharge(1);
4869 		if (!ret)
4870 			goto retry;
4871 	}
4872 
4873 	return ret;
4874 }
4875 
4876 static void mem_cgroup_move_charge(void)
4877 {
4878 	struct mm_walk mem_cgroup_move_charge_walk = {
4879 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4880 		.mm = mc.mm,
4881 	};
4882 
4883 	lru_add_drain_all();
4884 	/*
4885 	 * Signal lock_page_memcg() to take the memcg's move_lock
4886 	 * while we're moving its pages to another memcg. Then wait
4887 	 * for already started RCU-only updates to finish.
4888 	 */
4889 	atomic_inc(&mc.from->moving_account);
4890 	synchronize_rcu();
4891 retry:
4892 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4893 		/*
4894 		 * Someone who are holding the mmap_sem might be waiting in
4895 		 * waitq. So we cancel all extra charges, wake up all waiters,
4896 		 * and retry. Because we cancel precharges, we might not be able
4897 		 * to move enough charges, but moving charge is a best-effort
4898 		 * feature anyway, so it wouldn't be a big problem.
4899 		 */
4900 		__mem_cgroup_clear_mc();
4901 		cond_resched();
4902 		goto retry;
4903 	}
4904 	/*
4905 	 * When we have consumed all precharges and failed in doing
4906 	 * additional charge, the page walk just aborts.
4907 	 */
4908 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4909 	up_read(&mc.mm->mmap_sem);
4910 	atomic_dec(&mc.from->moving_account);
4911 }
4912 
4913 static void mem_cgroup_move_task(void)
4914 {
4915 	if (mc.to) {
4916 		mem_cgroup_move_charge();
4917 		mem_cgroup_clear_mc();
4918 	}
4919 }
4920 #else	/* !CONFIG_MMU */
4921 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4922 {
4923 	return 0;
4924 }
4925 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4926 {
4927 }
4928 static void mem_cgroup_move_task(void)
4929 {
4930 }
4931 #endif
4932 
4933 /*
4934  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4935  * to verify whether we're attached to the default hierarchy on each mount
4936  * attempt.
4937  */
4938 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4939 {
4940 	/*
4941 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4942 	 * guarantees that @root doesn't have any children, so turning it
4943 	 * on for the root memcg is enough.
4944 	 */
4945 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4946 		root_mem_cgroup->use_hierarchy = true;
4947 	else
4948 		root_mem_cgroup->use_hierarchy = false;
4949 }
4950 
4951 static u64 memory_current_read(struct cgroup_subsys_state *css,
4952 			       struct cftype *cft)
4953 {
4954 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4955 
4956 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4957 }
4958 
4959 static int memory_low_show(struct seq_file *m, void *v)
4960 {
4961 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4962 	unsigned long low = READ_ONCE(memcg->low);
4963 
4964 	if (low == PAGE_COUNTER_MAX)
4965 		seq_puts(m, "max\n");
4966 	else
4967 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4968 
4969 	return 0;
4970 }
4971 
4972 static ssize_t memory_low_write(struct kernfs_open_file *of,
4973 				char *buf, size_t nbytes, loff_t off)
4974 {
4975 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4976 	unsigned long low;
4977 	int err;
4978 
4979 	buf = strstrip(buf);
4980 	err = page_counter_memparse(buf, "max", &low);
4981 	if (err)
4982 		return err;
4983 
4984 	memcg->low = low;
4985 
4986 	return nbytes;
4987 }
4988 
4989 static int memory_high_show(struct seq_file *m, void *v)
4990 {
4991 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4992 	unsigned long high = READ_ONCE(memcg->high);
4993 
4994 	if (high == PAGE_COUNTER_MAX)
4995 		seq_puts(m, "max\n");
4996 	else
4997 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4998 
4999 	return 0;
5000 }
5001 
5002 static ssize_t memory_high_write(struct kernfs_open_file *of,
5003 				 char *buf, size_t nbytes, loff_t off)
5004 {
5005 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5006 	unsigned long nr_pages;
5007 	unsigned long high;
5008 	int err;
5009 
5010 	buf = strstrip(buf);
5011 	err = page_counter_memparse(buf, "max", &high);
5012 	if (err)
5013 		return err;
5014 
5015 	memcg->high = high;
5016 
5017 	nr_pages = page_counter_read(&memcg->memory);
5018 	if (nr_pages > high)
5019 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5020 					     GFP_KERNEL, true);
5021 
5022 	memcg_wb_domain_size_changed(memcg);
5023 	return nbytes;
5024 }
5025 
5026 static int memory_max_show(struct seq_file *m, void *v)
5027 {
5028 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5029 	unsigned long max = READ_ONCE(memcg->memory.limit);
5030 
5031 	if (max == PAGE_COUNTER_MAX)
5032 		seq_puts(m, "max\n");
5033 	else
5034 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5035 
5036 	return 0;
5037 }
5038 
5039 static ssize_t memory_max_write(struct kernfs_open_file *of,
5040 				char *buf, size_t nbytes, loff_t off)
5041 {
5042 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5043 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5044 	bool drained = false;
5045 	unsigned long max;
5046 	int err;
5047 
5048 	buf = strstrip(buf);
5049 	err = page_counter_memparse(buf, "max", &max);
5050 	if (err)
5051 		return err;
5052 
5053 	xchg(&memcg->memory.limit, max);
5054 
5055 	for (;;) {
5056 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5057 
5058 		if (nr_pages <= max)
5059 			break;
5060 
5061 		if (signal_pending(current)) {
5062 			err = -EINTR;
5063 			break;
5064 		}
5065 
5066 		if (!drained) {
5067 			drain_all_stock(memcg);
5068 			drained = true;
5069 			continue;
5070 		}
5071 
5072 		if (nr_reclaims) {
5073 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5074 							  GFP_KERNEL, true))
5075 				nr_reclaims--;
5076 			continue;
5077 		}
5078 
5079 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5080 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5081 			break;
5082 	}
5083 
5084 	memcg_wb_domain_size_changed(memcg);
5085 	return nbytes;
5086 }
5087 
5088 static int memory_events_show(struct seq_file *m, void *v)
5089 {
5090 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5091 
5092 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5093 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5094 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5095 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5096 
5097 	return 0;
5098 }
5099 
5100 static int memory_stat_show(struct seq_file *m, void *v)
5101 {
5102 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5103 	unsigned long stat[MEMCG_NR_STAT];
5104 	unsigned long events[MEMCG_NR_EVENTS];
5105 	int i;
5106 
5107 	/*
5108 	 * Provide statistics on the state of the memory subsystem as
5109 	 * well as cumulative event counters that show past behavior.
5110 	 *
5111 	 * This list is ordered following a combination of these gradients:
5112 	 * 1) generic big picture -> specifics and details
5113 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5114 	 *
5115 	 * Current memory state:
5116 	 */
5117 
5118 	tree_stat(memcg, stat);
5119 	tree_events(memcg, events);
5120 
5121 	seq_printf(m, "anon %llu\n",
5122 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5123 	seq_printf(m, "file %llu\n",
5124 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5125 	seq_printf(m, "kernel_stack %llu\n",
5126 		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5127 	seq_printf(m, "slab %llu\n",
5128 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5129 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5130 	seq_printf(m, "sock %llu\n",
5131 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5132 
5133 	seq_printf(m, "file_mapped %llu\n",
5134 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5135 	seq_printf(m, "file_dirty %llu\n",
5136 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5137 	seq_printf(m, "file_writeback %llu\n",
5138 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5139 
5140 	for (i = 0; i < NR_LRU_LISTS; i++) {
5141 		struct mem_cgroup *mi;
5142 		unsigned long val = 0;
5143 
5144 		for_each_mem_cgroup_tree(mi, memcg)
5145 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5146 		seq_printf(m, "%s %llu\n",
5147 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5148 	}
5149 
5150 	seq_printf(m, "slab_reclaimable %llu\n",
5151 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5152 	seq_printf(m, "slab_unreclaimable %llu\n",
5153 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5154 
5155 	/* Accumulated memory events */
5156 
5157 	seq_printf(m, "pgfault %lu\n",
5158 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5159 	seq_printf(m, "pgmajfault %lu\n",
5160 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5161 
5162 	return 0;
5163 }
5164 
5165 static struct cftype memory_files[] = {
5166 	{
5167 		.name = "current",
5168 		.flags = CFTYPE_NOT_ON_ROOT,
5169 		.read_u64 = memory_current_read,
5170 	},
5171 	{
5172 		.name = "low",
5173 		.flags = CFTYPE_NOT_ON_ROOT,
5174 		.seq_show = memory_low_show,
5175 		.write = memory_low_write,
5176 	},
5177 	{
5178 		.name = "high",
5179 		.flags = CFTYPE_NOT_ON_ROOT,
5180 		.seq_show = memory_high_show,
5181 		.write = memory_high_write,
5182 	},
5183 	{
5184 		.name = "max",
5185 		.flags = CFTYPE_NOT_ON_ROOT,
5186 		.seq_show = memory_max_show,
5187 		.write = memory_max_write,
5188 	},
5189 	{
5190 		.name = "events",
5191 		.flags = CFTYPE_NOT_ON_ROOT,
5192 		.file_offset = offsetof(struct mem_cgroup, events_file),
5193 		.seq_show = memory_events_show,
5194 	},
5195 	{
5196 		.name = "stat",
5197 		.flags = CFTYPE_NOT_ON_ROOT,
5198 		.seq_show = memory_stat_show,
5199 	},
5200 	{ }	/* terminate */
5201 };
5202 
5203 struct cgroup_subsys memory_cgrp_subsys = {
5204 	.css_alloc = mem_cgroup_css_alloc,
5205 	.css_online = mem_cgroup_css_online,
5206 	.css_offline = mem_cgroup_css_offline,
5207 	.css_released = mem_cgroup_css_released,
5208 	.css_free = mem_cgroup_css_free,
5209 	.css_reset = mem_cgroup_css_reset,
5210 	.can_attach = mem_cgroup_can_attach,
5211 	.cancel_attach = mem_cgroup_cancel_attach,
5212 	.post_attach = mem_cgroup_move_task,
5213 	.bind = mem_cgroup_bind,
5214 	.dfl_cftypes = memory_files,
5215 	.legacy_cftypes = mem_cgroup_legacy_files,
5216 	.early_init = 0,
5217 };
5218 
5219 /**
5220  * mem_cgroup_low - check if memory consumption is below the normal range
5221  * @root: the highest ancestor to consider
5222  * @memcg: the memory cgroup to check
5223  *
5224  * Returns %true if memory consumption of @memcg, and that of all
5225  * configurable ancestors up to @root, is below the normal range.
5226  */
5227 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5228 {
5229 	if (mem_cgroup_disabled())
5230 		return false;
5231 
5232 	/*
5233 	 * The toplevel group doesn't have a configurable range, so
5234 	 * it's never low when looked at directly, and it is not
5235 	 * considered an ancestor when assessing the hierarchy.
5236 	 */
5237 
5238 	if (memcg == root_mem_cgroup)
5239 		return false;
5240 
5241 	if (page_counter_read(&memcg->memory) >= memcg->low)
5242 		return false;
5243 
5244 	while (memcg != root) {
5245 		memcg = parent_mem_cgroup(memcg);
5246 
5247 		if (memcg == root_mem_cgroup)
5248 			break;
5249 
5250 		if (page_counter_read(&memcg->memory) >= memcg->low)
5251 			return false;
5252 	}
5253 	return true;
5254 }
5255 
5256 /**
5257  * mem_cgroup_try_charge - try charging a page
5258  * @page: page to charge
5259  * @mm: mm context of the victim
5260  * @gfp_mask: reclaim mode
5261  * @memcgp: charged memcg return
5262  *
5263  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5264  * pages according to @gfp_mask if necessary.
5265  *
5266  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5267  * Otherwise, an error code is returned.
5268  *
5269  * After page->mapping has been set up, the caller must finalize the
5270  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5271  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5272  */
5273 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5274 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5275 			  bool compound)
5276 {
5277 	struct mem_cgroup *memcg = NULL;
5278 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5279 	int ret = 0;
5280 
5281 	if (mem_cgroup_disabled())
5282 		goto out;
5283 
5284 	if (PageSwapCache(page)) {
5285 		/*
5286 		 * Every swap fault against a single page tries to charge the
5287 		 * page, bail as early as possible.  shmem_unuse() encounters
5288 		 * already charged pages, too.  The USED bit is protected by
5289 		 * the page lock, which serializes swap cache removal, which
5290 		 * in turn serializes uncharging.
5291 		 */
5292 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5293 		if (page->mem_cgroup)
5294 			goto out;
5295 
5296 		if (do_swap_account) {
5297 			swp_entry_t ent = { .val = page_private(page), };
5298 			unsigned short id = lookup_swap_cgroup_id(ent);
5299 
5300 			rcu_read_lock();
5301 			memcg = mem_cgroup_from_id(id);
5302 			if (memcg && !css_tryget_online(&memcg->css))
5303 				memcg = NULL;
5304 			rcu_read_unlock();
5305 		}
5306 	}
5307 
5308 	if (!memcg)
5309 		memcg = get_mem_cgroup_from_mm(mm);
5310 
5311 	ret = try_charge(memcg, gfp_mask, nr_pages);
5312 
5313 	css_put(&memcg->css);
5314 out:
5315 	*memcgp = memcg;
5316 	return ret;
5317 }
5318 
5319 /**
5320  * mem_cgroup_commit_charge - commit a page charge
5321  * @page: page to charge
5322  * @memcg: memcg to charge the page to
5323  * @lrucare: page might be on LRU already
5324  *
5325  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5326  * after page->mapping has been set up.  This must happen atomically
5327  * as part of the page instantiation, i.e. under the page table lock
5328  * for anonymous pages, under the page lock for page and swap cache.
5329  *
5330  * In addition, the page must not be on the LRU during the commit, to
5331  * prevent racing with task migration.  If it might be, use @lrucare.
5332  *
5333  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5334  */
5335 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5336 			      bool lrucare, bool compound)
5337 {
5338 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5339 
5340 	VM_BUG_ON_PAGE(!page->mapping, page);
5341 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5342 
5343 	if (mem_cgroup_disabled())
5344 		return;
5345 	/*
5346 	 * Swap faults will attempt to charge the same page multiple
5347 	 * times.  But reuse_swap_page() might have removed the page
5348 	 * from swapcache already, so we can't check PageSwapCache().
5349 	 */
5350 	if (!memcg)
5351 		return;
5352 
5353 	commit_charge(page, memcg, lrucare);
5354 
5355 	local_irq_disable();
5356 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5357 	memcg_check_events(memcg, page);
5358 	local_irq_enable();
5359 
5360 	if (do_memsw_account() && PageSwapCache(page)) {
5361 		swp_entry_t entry = { .val = page_private(page) };
5362 		/*
5363 		 * The swap entry might not get freed for a long time,
5364 		 * let's not wait for it.  The page already received a
5365 		 * memory+swap charge, drop the swap entry duplicate.
5366 		 */
5367 		mem_cgroup_uncharge_swap(entry);
5368 	}
5369 }
5370 
5371 /**
5372  * mem_cgroup_cancel_charge - cancel a page charge
5373  * @page: page to charge
5374  * @memcg: memcg to charge the page to
5375  *
5376  * Cancel a charge transaction started by mem_cgroup_try_charge().
5377  */
5378 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5379 		bool compound)
5380 {
5381 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5382 
5383 	if (mem_cgroup_disabled())
5384 		return;
5385 	/*
5386 	 * Swap faults will attempt to charge the same page multiple
5387 	 * times.  But reuse_swap_page() might have removed the page
5388 	 * from swapcache already, so we can't check PageSwapCache().
5389 	 */
5390 	if (!memcg)
5391 		return;
5392 
5393 	cancel_charge(memcg, nr_pages);
5394 }
5395 
5396 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5397 			   unsigned long nr_anon, unsigned long nr_file,
5398 			   unsigned long nr_huge, struct page *dummy_page)
5399 {
5400 	unsigned long nr_pages = nr_anon + nr_file;
5401 	unsigned long flags;
5402 
5403 	if (!mem_cgroup_is_root(memcg)) {
5404 		page_counter_uncharge(&memcg->memory, nr_pages);
5405 		if (do_memsw_account())
5406 			page_counter_uncharge(&memcg->memsw, nr_pages);
5407 		memcg_oom_recover(memcg);
5408 	}
5409 
5410 	local_irq_save(flags);
5411 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5412 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5413 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5414 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5415 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5416 	memcg_check_events(memcg, dummy_page);
5417 	local_irq_restore(flags);
5418 
5419 	if (!mem_cgroup_is_root(memcg))
5420 		css_put_many(&memcg->css, nr_pages);
5421 }
5422 
5423 static void uncharge_list(struct list_head *page_list)
5424 {
5425 	struct mem_cgroup *memcg = NULL;
5426 	unsigned long nr_anon = 0;
5427 	unsigned long nr_file = 0;
5428 	unsigned long nr_huge = 0;
5429 	unsigned long pgpgout = 0;
5430 	struct list_head *next;
5431 	struct page *page;
5432 
5433 	/*
5434 	 * Note that the list can be a single page->lru; hence the
5435 	 * do-while loop instead of a simple list_for_each_entry().
5436 	 */
5437 	next = page_list->next;
5438 	do {
5439 		unsigned int nr_pages = 1;
5440 
5441 		page = list_entry(next, struct page, lru);
5442 		next = page->lru.next;
5443 
5444 		VM_BUG_ON_PAGE(PageLRU(page), page);
5445 		VM_BUG_ON_PAGE(page_count(page), page);
5446 
5447 		if (!page->mem_cgroup)
5448 			continue;
5449 
5450 		/*
5451 		 * Nobody should be changing or seriously looking at
5452 		 * page->mem_cgroup at this point, we have fully
5453 		 * exclusive access to the page.
5454 		 */
5455 
5456 		if (memcg != page->mem_cgroup) {
5457 			if (memcg) {
5458 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5459 					       nr_huge, page);
5460 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5461 			}
5462 			memcg = page->mem_cgroup;
5463 		}
5464 
5465 		if (PageTransHuge(page)) {
5466 			nr_pages <<= compound_order(page);
5467 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5468 			nr_huge += nr_pages;
5469 		}
5470 
5471 		if (PageAnon(page))
5472 			nr_anon += nr_pages;
5473 		else
5474 			nr_file += nr_pages;
5475 
5476 		page->mem_cgroup = NULL;
5477 
5478 		pgpgout++;
5479 	} while (next != page_list);
5480 
5481 	if (memcg)
5482 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5483 			       nr_huge, page);
5484 }
5485 
5486 /**
5487  * mem_cgroup_uncharge - uncharge a page
5488  * @page: page to uncharge
5489  *
5490  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5491  * mem_cgroup_commit_charge().
5492  */
5493 void mem_cgroup_uncharge(struct page *page)
5494 {
5495 	if (mem_cgroup_disabled())
5496 		return;
5497 
5498 	/* Don't touch page->lru of any random page, pre-check: */
5499 	if (!page->mem_cgroup)
5500 		return;
5501 
5502 	INIT_LIST_HEAD(&page->lru);
5503 	uncharge_list(&page->lru);
5504 }
5505 
5506 /**
5507  * mem_cgroup_uncharge_list - uncharge a list of page
5508  * @page_list: list of pages to uncharge
5509  *
5510  * Uncharge a list of pages previously charged with
5511  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5512  */
5513 void mem_cgroup_uncharge_list(struct list_head *page_list)
5514 {
5515 	if (mem_cgroup_disabled())
5516 		return;
5517 
5518 	if (!list_empty(page_list))
5519 		uncharge_list(page_list);
5520 }
5521 
5522 /**
5523  * mem_cgroup_migrate - charge a page's replacement
5524  * @oldpage: currently circulating page
5525  * @newpage: replacement page
5526  *
5527  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5528  * be uncharged upon free.
5529  *
5530  * Both pages must be locked, @newpage->mapping must be set up.
5531  */
5532 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5533 {
5534 	struct mem_cgroup *memcg;
5535 	unsigned int nr_pages;
5536 	bool compound;
5537 
5538 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5539 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5540 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5541 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5542 		       newpage);
5543 
5544 	if (mem_cgroup_disabled())
5545 		return;
5546 
5547 	/* Page cache replacement: new page already charged? */
5548 	if (newpage->mem_cgroup)
5549 		return;
5550 
5551 	/* Swapcache readahead pages can get replaced before being charged */
5552 	memcg = oldpage->mem_cgroup;
5553 	if (!memcg)
5554 		return;
5555 
5556 	/* Force-charge the new page. The old one will be freed soon */
5557 	compound = PageTransHuge(newpage);
5558 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5559 
5560 	page_counter_charge(&memcg->memory, nr_pages);
5561 	if (do_memsw_account())
5562 		page_counter_charge(&memcg->memsw, nr_pages);
5563 	css_get_many(&memcg->css, nr_pages);
5564 
5565 	commit_charge(newpage, memcg, false);
5566 
5567 	local_irq_disable();
5568 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5569 	memcg_check_events(memcg, newpage);
5570 	local_irq_enable();
5571 }
5572 
5573 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5574 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5575 
5576 void sock_update_memcg(struct sock *sk)
5577 {
5578 	struct mem_cgroup *memcg;
5579 
5580 	/* Socket cloning can throw us here with sk_cgrp already
5581 	 * filled. It won't however, necessarily happen from
5582 	 * process context. So the test for root memcg given
5583 	 * the current task's memcg won't help us in this case.
5584 	 *
5585 	 * Respecting the original socket's memcg is a better
5586 	 * decision in this case.
5587 	 */
5588 	if (sk->sk_memcg) {
5589 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5590 		css_get(&sk->sk_memcg->css);
5591 		return;
5592 	}
5593 
5594 	rcu_read_lock();
5595 	memcg = mem_cgroup_from_task(current);
5596 	if (memcg == root_mem_cgroup)
5597 		goto out;
5598 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5599 		goto out;
5600 	if (css_tryget_online(&memcg->css))
5601 		sk->sk_memcg = memcg;
5602 out:
5603 	rcu_read_unlock();
5604 }
5605 EXPORT_SYMBOL(sock_update_memcg);
5606 
5607 void sock_release_memcg(struct sock *sk)
5608 {
5609 	WARN_ON(!sk->sk_memcg);
5610 	css_put(&sk->sk_memcg->css);
5611 }
5612 
5613 /**
5614  * mem_cgroup_charge_skmem - charge socket memory
5615  * @memcg: memcg to charge
5616  * @nr_pages: number of pages to charge
5617  *
5618  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5619  * @memcg's configured limit, %false if the charge had to be forced.
5620  */
5621 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5622 {
5623 	gfp_t gfp_mask = GFP_KERNEL;
5624 
5625 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5626 		struct page_counter *fail;
5627 
5628 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5629 			memcg->tcpmem_pressure = 0;
5630 			return true;
5631 		}
5632 		page_counter_charge(&memcg->tcpmem, nr_pages);
5633 		memcg->tcpmem_pressure = 1;
5634 		return false;
5635 	}
5636 
5637 	/* Don't block in the packet receive path */
5638 	if (in_softirq())
5639 		gfp_mask = GFP_NOWAIT;
5640 
5641 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5642 
5643 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5644 		return true;
5645 
5646 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5647 	return false;
5648 }
5649 
5650 /**
5651  * mem_cgroup_uncharge_skmem - uncharge socket memory
5652  * @memcg - memcg to uncharge
5653  * @nr_pages - number of pages to uncharge
5654  */
5655 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5656 {
5657 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5658 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5659 		return;
5660 	}
5661 
5662 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5663 
5664 	page_counter_uncharge(&memcg->memory, nr_pages);
5665 	css_put_many(&memcg->css, nr_pages);
5666 }
5667 
5668 static int __init cgroup_memory(char *s)
5669 {
5670 	char *token;
5671 
5672 	while ((token = strsep(&s, ",")) != NULL) {
5673 		if (!*token)
5674 			continue;
5675 		if (!strcmp(token, "nosocket"))
5676 			cgroup_memory_nosocket = true;
5677 		if (!strcmp(token, "nokmem"))
5678 			cgroup_memory_nokmem = true;
5679 	}
5680 	return 0;
5681 }
5682 __setup("cgroup.memory=", cgroup_memory);
5683 
5684 /*
5685  * subsys_initcall() for memory controller.
5686  *
5687  * Some parts like hotcpu_notifier() have to be initialized from this context
5688  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5689  * everything that doesn't depend on a specific mem_cgroup structure should
5690  * be initialized from here.
5691  */
5692 static int __init mem_cgroup_init(void)
5693 {
5694 	int cpu, node;
5695 
5696 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5697 
5698 	for_each_possible_cpu(cpu)
5699 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5700 			  drain_local_stock);
5701 
5702 	for_each_node(node) {
5703 		struct mem_cgroup_tree_per_node *rtpn;
5704 		int zone;
5705 
5706 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5707 				    node_online(node) ? node : NUMA_NO_NODE);
5708 
5709 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5710 			struct mem_cgroup_tree_per_zone *rtpz;
5711 
5712 			rtpz = &rtpn->rb_tree_per_zone[zone];
5713 			rtpz->rb_root = RB_ROOT;
5714 			spin_lock_init(&rtpz->lock);
5715 		}
5716 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5717 	}
5718 
5719 	return 0;
5720 }
5721 subsys_initcall(mem_cgroup_init);
5722 
5723 #ifdef CONFIG_MEMCG_SWAP
5724 /**
5725  * mem_cgroup_swapout - transfer a memsw charge to swap
5726  * @page: page whose memsw charge to transfer
5727  * @entry: swap entry to move the charge to
5728  *
5729  * Transfer the memsw charge of @page to @entry.
5730  */
5731 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5732 {
5733 	struct mem_cgroup *memcg;
5734 	unsigned short oldid;
5735 
5736 	VM_BUG_ON_PAGE(PageLRU(page), page);
5737 	VM_BUG_ON_PAGE(page_count(page), page);
5738 
5739 	if (!do_memsw_account())
5740 		return;
5741 
5742 	memcg = page->mem_cgroup;
5743 
5744 	/* Readahead page, never charged */
5745 	if (!memcg)
5746 		return;
5747 
5748 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5749 	VM_BUG_ON_PAGE(oldid, page);
5750 	mem_cgroup_swap_statistics(memcg, true);
5751 
5752 	page->mem_cgroup = NULL;
5753 
5754 	if (!mem_cgroup_is_root(memcg))
5755 		page_counter_uncharge(&memcg->memory, 1);
5756 
5757 	/*
5758 	 * Interrupts should be disabled here because the caller holds the
5759 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5760 	 * important here to have the interrupts disabled because it is the
5761 	 * only synchronisation we have for udpating the per-CPU variables.
5762 	 */
5763 	VM_BUG_ON(!irqs_disabled());
5764 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5765 	memcg_check_events(memcg, page);
5766 }
5767 
5768 /*
5769  * mem_cgroup_try_charge_swap - try charging a swap entry
5770  * @page: page being added to swap
5771  * @entry: swap entry to charge
5772  *
5773  * Try to charge @entry to the memcg that @page belongs to.
5774  *
5775  * Returns 0 on success, -ENOMEM on failure.
5776  */
5777 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5778 {
5779 	struct mem_cgroup *memcg;
5780 	struct page_counter *counter;
5781 	unsigned short oldid;
5782 
5783 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5784 		return 0;
5785 
5786 	memcg = page->mem_cgroup;
5787 
5788 	/* Readahead page, never charged */
5789 	if (!memcg)
5790 		return 0;
5791 
5792 	if (!mem_cgroup_is_root(memcg) &&
5793 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5794 		return -ENOMEM;
5795 
5796 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5797 	VM_BUG_ON_PAGE(oldid, page);
5798 	mem_cgroup_swap_statistics(memcg, true);
5799 
5800 	css_get(&memcg->css);
5801 	return 0;
5802 }
5803 
5804 /**
5805  * mem_cgroup_uncharge_swap - uncharge a swap entry
5806  * @entry: swap entry to uncharge
5807  *
5808  * Drop the swap charge associated with @entry.
5809  */
5810 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5811 {
5812 	struct mem_cgroup *memcg;
5813 	unsigned short id;
5814 
5815 	if (!do_swap_account)
5816 		return;
5817 
5818 	id = swap_cgroup_record(entry, 0);
5819 	rcu_read_lock();
5820 	memcg = mem_cgroup_from_id(id);
5821 	if (memcg) {
5822 		if (!mem_cgroup_is_root(memcg)) {
5823 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5824 				page_counter_uncharge(&memcg->swap, 1);
5825 			else
5826 				page_counter_uncharge(&memcg->memsw, 1);
5827 		}
5828 		mem_cgroup_swap_statistics(memcg, false);
5829 		css_put(&memcg->css);
5830 	}
5831 	rcu_read_unlock();
5832 }
5833 
5834 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5835 {
5836 	long nr_swap_pages = get_nr_swap_pages();
5837 
5838 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5839 		return nr_swap_pages;
5840 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5841 		nr_swap_pages = min_t(long, nr_swap_pages,
5842 				      READ_ONCE(memcg->swap.limit) -
5843 				      page_counter_read(&memcg->swap));
5844 	return nr_swap_pages;
5845 }
5846 
5847 bool mem_cgroup_swap_full(struct page *page)
5848 {
5849 	struct mem_cgroup *memcg;
5850 
5851 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5852 
5853 	if (vm_swap_full())
5854 		return true;
5855 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5856 		return false;
5857 
5858 	memcg = page->mem_cgroup;
5859 	if (!memcg)
5860 		return false;
5861 
5862 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5863 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5864 			return true;
5865 
5866 	return false;
5867 }
5868 
5869 /* for remember boot option*/
5870 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5871 static int really_do_swap_account __initdata = 1;
5872 #else
5873 static int really_do_swap_account __initdata;
5874 #endif
5875 
5876 static int __init enable_swap_account(char *s)
5877 {
5878 	if (!strcmp(s, "1"))
5879 		really_do_swap_account = 1;
5880 	else if (!strcmp(s, "0"))
5881 		really_do_swap_account = 0;
5882 	return 1;
5883 }
5884 __setup("swapaccount=", enable_swap_account);
5885 
5886 static u64 swap_current_read(struct cgroup_subsys_state *css,
5887 			     struct cftype *cft)
5888 {
5889 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5890 
5891 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5892 }
5893 
5894 static int swap_max_show(struct seq_file *m, void *v)
5895 {
5896 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5897 	unsigned long max = READ_ONCE(memcg->swap.limit);
5898 
5899 	if (max == PAGE_COUNTER_MAX)
5900 		seq_puts(m, "max\n");
5901 	else
5902 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5903 
5904 	return 0;
5905 }
5906 
5907 static ssize_t swap_max_write(struct kernfs_open_file *of,
5908 			      char *buf, size_t nbytes, loff_t off)
5909 {
5910 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5911 	unsigned long max;
5912 	int err;
5913 
5914 	buf = strstrip(buf);
5915 	err = page_counter_memparse(buf, "max", &max);
5916 	if (err)
5917 		return err;
5918 
5919 	mutex_lock(&memcg_limit_mutex);
5920 	err = page_counter_limit(&memcg->swap, max);
5921 	mutex_unlock(&memcg_limit_mutex);
5922 	if (err)
5923 		return err;
5924 
5925 	return nbytes;
5926 }
5927 
5928 static struct cftype swap_files[] = {
5929 	{
5930 		.name = "swap.current",
5931 		.flags = CFTYPE_NOT_ON_ROOT,
5932 		.read_u64 = swap_current_read,
5933 	},
5934 	{
5935 		.name = "swap.max",
5936 		.flags = CFTYPE_NOT_ON_ROOT,
5937 		.seq_show = swap_max_show,
5938 		.write = swap_max_write,
5939 	},
5940 	{ }	/* terminate */
5941 };
5942 
5943 static struct cftype memsw_cgroup_files[] = {
5944 	{
5945 		.name = "memsw.usage_in_bytes",
5946 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5947 		.read_u64 = mem_cgroup_read_u64,
5948 	},
5949 	{
5950 		.name = "memsw.max_usage_in_bytes",
5951 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5952 		.write = mem_cgroup_reset,
5953 		.read_u64 = mem_cgroup_read_u64,
5954 	},
5955 	{
5956 		.name = "memsw.limit_in_bytes",
5957 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5958 		.write = mem_cgroup_write,
5959 		.read_u64 = mem_cgroup_read_u64,
5960 	},
5961 	{
5962 		.name = "memsw.failcnt",
5963 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5964 		.write = mem_cgroup_reset,
5965 		.read_u64 = mem_cgroup_read_u64,
5966 	},
5967 	{ },	/* terminate */
5968 };
5969 
5970 static int __init mem_cgroup_swap_init(void)
5971 {
5972 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5973 		do_swap_account = 1;
5974 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5975 					       swap_files));
5976 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5977 						  memsw_cgroup_files));
5978 	}
5979 	return 0;
5980 }
5981 subsys_initcall(mem_cgroup_swap_init);
5982 
5983 #endif /* CONFIG_MEMCG_SWAP */
5984