xref: /openbmc/linux/mm/memcontrol.c (revision a9dd0a83104c01269ea36a9b4ec42b51edf85427)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mm_struct  *mm;
211 	struct mem_cgroup *from;
212 	struct mem_cgroup *to;
213 	unsigned long flags;
214 	unsigned long precharge;
215 	unsigned long moved_charge;
216 	unsigned long moved_swap;
217 	struct task_struct *moving_task;	/* a task moving charges */
218 	wait_queue_head_t waitq;		/* a waitq for other context */
219 } mc = {
220 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223 
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230 
231 enum charge_type {
232 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 	MEM_CGROUP_CHARGE_TYPE_ANON,
234 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
235 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 	NR_CHARGE_TYPE,
237 };
238 
239 /* for encoding cft->private value on file */
240 enum res_type {
241 	_MEM,
242 	_MEMSWAP,
243 	_OOM_TYPE,
244 	_KMEM,
245 	_TCP,
246 };
247 
248 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)	((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL		(0)
253 
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 	if (!memcg)
258 		memcg = root_mem_cgroup;
259 	return &memcg->vmpressure;
260 }
261 
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266 
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 	return (memcg == root_mem_cgroup);
270 }
271 
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286 
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289 
290 void memcg_get_cache_ids(void)
291 {
292 	down_read(&memcg_cache_ids_sem);
293 }
294 
295 void memcg_put_cache_ids(void)
296 {
297 	up_read(&memcg_cache_ids_sem);
298 }
299 
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314 
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323 
324 #endif /* !CONFIG_SLOB */
325 
326 /**
327  * mem_cgroup_css_from_page - css of the memcg associated with a page
328  * @page: page of interest
329  *
330  * If memcg is bound to the default hierarchy, css of the memcg associated
331  * with @page is returned.  The returned css remains associated with @page
332  * until it is released.
333  *
334  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335  * is returned.
336  */
337 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338 {
339 	struct mem_cgroup *memcg;
340 
341 	memcg = page->mem_cgroup;
342 
343 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 		memcg = root_mem_cgroup;
345 
346 	return &memcg->css;
347 }
348 
349 /**
350  * page_cgroup_ino - return inode number of the memcg a page is charged to
351  * @page: the page
352  *
353  * Look up the closest online ancestor of the memory cgroup @page is charged to
354  * and return its inode number or 0 if @page is not charged to any cgroup. It
355  * is safe to call this function without holding a reference to @page.
356  *
357  * Note, this function is inherently racy, because there is nothing to prevent
358  * the cgroup inode from getting torn down and potentially reallocated a moment
359  * after page_cgroup_ino() returns, so it only should be used by callers that
360  * do not care (such as procfs interfaces).
361  */
362 ino_t page_cgroup_ino(struct page *page)
363 {
364 	struct mem_cgroup *memcg;
365 	unsigned long ino = 0;
366 
367 	rcu_read_lock();
368 	memcg = READ_ONCE(page->mem_cgroup);
369 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 		memcg = parent_mem_cgroup(memcg);
371 	if (memcg)
372 		ino = cgroup_ino(memcg->css.cgroup);
373 	rcu_read_unlock();
374 	return ino;
375 }
376 
377 static struct mem_cgroup_per_zone *
378 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
379 {
380 	int nid = page_to_nid(page);
381 	int zid = page_zonenum(page);
382 
383 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
384 }
385 
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391 
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 	int nid = page_to_nid(page);
396 	int zid = page_zonenum(page);
397 
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
402 					 struct mem_cgroup_tree_per_zone *mctz,
403 					 unsigned long new_usage_in_excess)
404 {
405 	struct rb_node **p = &mctz->rb_root.rb_node;
406 	struct rb_node *parent = NULL;
407 	struct mem_cgroup_per_zone *mz_node;
408 
409 	if (mz->on_tree)
410 		return;
411 
412 	mz->usage_in_excess = new_usage_in_excess;
413 	if (!mz->usage_in_excess)
414 		return;
415 	while (*p) {
416 		parent = *p;
417 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
418 					tree_node);
419 		if (mz->usage_in_excess < mz_node->usage_in_excess)
420 			p = &(*p)->rb_left;
421 		/*
422 		 * We can't avoid mem cgroups that are over their soft
423 		 * limit by the same amount
424 		 */
425 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
426 			p = &(*p)->rb_right;
427 	}
428 	rb_link_node(&mz->tree_node, parent, p);
429 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 	mz->on_tree = true;
431 }
432 
433 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
434 					 struct mem_cgroup_tree_per_zone *mctz)
435 {
436 	if (!mz->on_tree)
437 		return;
438 	rb_erase(&mz->tree_node, &mctz->rb_root);
439 	mz->on_tree = false;
440 }
441 
442 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 				       struct mem_cgroup_tree_per_zone *mctz)
444 {
445 	unsigned long flags;
446 
447 	spin_lock_irqsave(&mctz->lock, flags);
448 	__mem_cgroup_remove_exceeded(mz, mctz);
449 	spin_unlock_irqrestore(&mctz->lock, flags);
450 }
451 
452 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453 {
454 	unsigned long nr_pages = page_counter_read(&memcg->memory);
455 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
456 	unsigned long excess = 0;
457 
458 	if (nr_pages > soft_limit)
459 		excess = nr_pages - soft_limit;
460 
461 	return excess;
462 }
463 
464 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465 {
466 	unsigned long excess;
467 	struct mem_cgroup_per_zone *mz;
468 	struct mem_cgroup_tree_per_zone *mctz;
469 
470 	mctz = soft_limit_tree_from_page(page);
471 	/*
472 	 * Necessary to update all ancestors when hierarchy is used.
473 	 * because their event counter is not touched.
474 	 */
475 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476 		mz = mem_cgroup_page_zoneinfo(memcg, page);
477 		excess = soft_limit_excess(memcg);
478 		/*
479 		 * We have to update the tree if mz is on RB-tree or
480 		 * mem is over its softlimit.
481 		 */
482 		if (excess || mz->on_tree) {
483 			unsigned long flags;
484 
485 			spin_lock_irqsave(&mctz->lock, flags);
486 			/* if on-tree, remove it */
487 			if (mz->on_tree)
488 				__mem_cgroup_remove_exceeded(mz, mctz);
489 			/*
490 			 * Insert again. mz->usage_in_excess will be updated.
491 			 * If excess is 0, no tree ops.
492 			 */
493 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
494 			spin_unlock_irqrestore(&mctz->lock, flags);
495 		}
496 	}
497 }
498 
499 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
500 {
501 	struct mem_cgroup_tree_per_zone *mctz;
502 	struct mem_cgroup_per_zone *mz;
503 	int nid, zid;
504 
505 	for_each_node(nid) {
506 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
507 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
508 			mctz = soft_limit_tree_node_zone(nid, zid);
509 			mem_cgroup_remove_exceeded(mz, mctz);
510 		}
511 	}
512 }
513 
514 static struct mem_cgroup_per_zone *
515 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
516 {
517 	struct rb_node *rightmost = NULL;
518 	struct mem_cgroup_per_zone *mz;
519 
520 retry:
521 	mz = NULL;
522 	rightmost = rb_last(&mctz->rb_root);
523 	if (!rightmost)
524 		goto done;		/* Nothing to reclaim from */
525 
526 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
527 	/*
528 	 * Remove the node now but someone else can add it back,
529 	 * we will to add it back at the end of reclaim to its correct
530 	 * position in the tree.
531 	 */
532 	__mem_cgroup_remove_exceeded(mz, mctz);
533 	if (!soft_limit_excess(mz->memcg) ||
534 	    !css_tryget_online(&mz->memcg->css))
535 		goto retry;
536 done:
537 	return mz;
538 }
539 
540 static struct mem_cgroup_per_zone *
541 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
542 {
543 	struct mem_cgroup_per_zone *mz;
544 
545 	spin_lock_irq(&mctz->lock);
546 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
547 	spin_unlock_irq(&mctz->lock);
548 	return mz;
549 }
550 
551 /*
552  * Return page count for single (non recursive) @memcg.
553  *
554  * Implementation Note: reading percpu statistics for memcg.
555  *
556  * Both of vmstat[] and percpu_counter has threshold and do periodic
557  * synchronization to implement "quick" read. There are trade-off between
558  * reading cost and precision of value. Then, we may have a chance to implement
559  * a periodic synchronization of counter in memcg's counter.
560  *
561  * But this _read() function is used for user interface now. The user accounts
562  * memory usage by memory cgroup and he _always_ requires exact value because
563  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564  * have to visit all online cpus and make sum. So, for now, unnecessary
565  * synchronization is not implemented. (just implemented for cpu hotplug)
566  *
567  * If there are kernel internal actions which can make use of some not-exact
568  * value, and reading all cpu value can be performance bottleneck in some
569  * common workload, threshold and synchronization as vmstat[] should be
570  * implemented.
571  */
572 static unsigned long
573 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
574 {
575 	long val = 0;
576 	int cpu;
577 
578 	/* Per-cpu values can be negative, use a signed accumulator */
579 	for_each_possible_cpu(cpu)
580 		val += per_cpu(memcg->stat->count[idx], cpu);
581 	/*
582 	 * Summing races with updates, so val may be negative.  Avoid exposing
583 	 * transient negative values.
584 	 */
585 	if (val < 0)
586 		val = 0;
587 	return val;
588 }
589 
590 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
591 					    enum mem_cgroup_events_index idx)
592 {
593 	unsigned long val = 0;
594 	int cpu;
595 
596 	for_each_possible_cpu(cpu)
597 		val += per_cpu(memcg->stat->events[idx], cpu);
598 	return val;
599 }
600 
601 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
602 					 struct page *page,
603 					 bool compound, int nr_pages)
604 {
605 	/*
606 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
607 	 * counted as CACHE even if it's on ANON LRU.
608 	 */
609 	if (PageAnon(page))
610 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
611 				nr_pages);
612 	else
613 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
614 				nr_pages);
615 
616 	if (compound) {
617 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
618 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
619 				nr_pages);
620 	}
621 
622 	/* pagein of a big page is an event. So, ignore page size */
623 	if (nr_pages > 0)
624 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
625 	else {
626 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
627 		nr_pages = -nr_pages; /* for event */
628 	}
629 
630 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
631 }
632 
633 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
634 					   int nid, unsigned int lru_mask)
635 {
636 	unsigned long nr = 0;
637 	int zid;
638 
639 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
640 
641 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
642 		struct mem_cgroup_per_zone *mz;
643 		enum lru_list lru;
644 
645 		for_each_lru(lru) {
646 			if (!(BIT(lru) & lru_mask))
647 				continue;
648 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
649 			nr += mz->lru_size[lru];
650 		}
651 	}
652 	return nr;
653 }
654 
655 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
656 			unsigned int lru_mask)
657 {
658 	unsigned long nr = 0;
659 	int nid;
660 
661 	for_each_node_state(nid, N_MEMORY)
662 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
663 	return nr;
664 }
665 
666 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
667 				       enum mem_cgroup_events_target target)
668 {
669 	unsigned long val, next;
670 
671 	val = __this_cpu_read(memcg->stat->nr_page_events);
672 	next = __this_cpu_read(memcg->stat->targets[target]);
673 	/* from time_after() in jiffies.h */
674 	if ((long)next - (long)val < 0) {
675 		switch (target) {
676 		case MEM_CGROUP_TARGET_THRESH:
677 			next = val + THRESHOLDS_EVENTS_TARGET;
678 			break;
679 		case MEM_CGROUP_TARGET_SOFTLIMIT:
680 			next = val + SOFTLIMIT_EVENTS_TARGET;
681 			break;
682 		case MEM_CGROUP_TARGET_NUMAINFO:
683 			next = val + NUMAINFO_EVENTS_TARGET;
684 			break;
685 		default:
686 			break;
687 		}
688 		__this_cpu_write(memcg->stat->targets[target], next);
689 		return true;
690 	}
691 	return false;
692 }
693 
694 /*
695  * Check events in order.
696  *
697  */
698 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
699 {
700 	/* threshold event is triggered in finer grain than soft limit */
701 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
702 						MEM_CGROUP_TARGET_THRESH))) {
703 		bool do_softlimit;
704 		bool do_numainfo __maybe_unused;
705 
706 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
707 						MEM_CGROUP_TARGET_SOFTLIMIT);
708 #if MAX_NUMNODES > 1
709 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
710 						MEM_CGROUP_TARGET_NUMAINFO);
711 #endif
712 		mem_cgroup_threshold(memcg);
713 		if (unlikely(do_softlimit))
714 			mem_cgroup_update_tree(memcg, page);
715 #if MAX_NUMNODES > 1
716 		if (unlikely(do_numainfo))
717 			atomic_inc(&memcg->numainfo_events);
718 #endif
719 	}
720 }
721 
722 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
723 {
724 	/*
725 	 * mm_update_next_owner() may clear mm->owner to NULL
726 	 * if it races with swapoff, page migration, etc.
727 	 * So this can be called with p == NULL.
728 	 */
729 	if (unlikely(!p))
730 		return NULL;
731 
732 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
733 }
734 EXPORT_SYMBOL(mem_cgroup_from_task);
735 
736 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
737 {
738 	struct mem_cgroup *memcg = NULL;
739 
740 	rcu_read_lock();
741 	do {
742 		/*
743 		 * Page cache insertions can happen withou an
744 		 * actual mm context, e.g. during disk probing
745 		 * on boot, loopback IO, acct() writes etc.
746 		 */
747 		if (unlikely(!mm))
748 			memcg = root_mem_cgroup;
749 		else {
750 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
751 			if (unlikely(!memcg))
752 				memcg = root_mem_cgroup;
753 		}
754 	} while (!css_tryget_online(&memcg->css));
755 	rcu_read_unlock();
756 	return memcg;
757 }
758 
759 /**
760  * mem_cgroup_iter - iterate over memory cgroup hierarchy
761  * @root: hierarchy root
762  * @prev: previously returned memcg, NULL on first invocation
763  * @reclaim: cookie for shared reclaim walks, NULL for full walks
764  *
765  * Returns references to children of the hierarchy below @root, or
766  * @root itself, or %NULL after a full round-trip.
767  *
768  * Caller must pass the return value in @prev on subsequent
769  * invocations for reference counting, or use mem_cgroup_iter_break()
770  * to cancel a hierarchy walk before the round-trip is complete.
771  *
772  * Reclaimers can specify a zone and a priority level in @reclaim to
773  * divide up the memcgs in the hierarchy among all concurrent
774  * reclaimers operating on the same zone and priority.
775  */
776 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
777 				   struct mem_cgroup *prev,
778 				   struct mem_cgroup_reclaim_cookie *reclaim)
779 {
780 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
781 	struct cgroup_subsys_state *css = NULL;
782 	struct mem_cgroup *memcg = NULL;
783 	struct mem_cgroup *pos = NULL;
784 
785 	if (mem_cgroup_disabled())
786 		return NULL;
787 
788 	if (!root)
789 		root = root_mem_cgroup;
790 
791 	if (prev && !reclaim)
792 		pos = prev;
793 
794 	if (!root->use_hierarchy && root != root_mem_cgroup) {
795 		if (prev)
796 			goto out;
797 		return root;
798 	}
799 
800 	rcu_read_lock();
801 
802 	if (reclaim) {
803 		struct mem_cgroup_per_zone *mz;
804 
805 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
806 		iter = &mz->iter[reclaim->priority];
807 
808 		if (prev && reclaim->generation != iter->generation)
809 			goto out_unlock;
810 
811 		while (1) {
812 			pos = READ_ONCE(iter->position);
813 			if (!pos || css_tryget(&pos->css))
814 				break;
815 			/*
816 			 * css reference reached zero, so iter->position will
817 			 * be cleared by ->css_released. However, we should not
818 			 * rely on this happening soon, because ->css_released
819 			 * is called from a work queue, and by busy-waiting we
820 			 * might block it. So we clear iter->position right
821 			 * away.
822 			 */
823 			(void)cmpxchg(&iter->position, pos, NULL);
824 		}
825 	}
826 
827 	if (pos)
828 		css = &pos->css;
829 
830 	for (;;) {
831 		css = css_next_descendant_pre(css, &root->css);
832 		if (!css) {
833 			/*
834 			 * Reclaimers share the hierarchy walk, and a
835 			 * new one might jump in right at the end of
836 			 * the hierarchy - make sure they see at least
837 			 * one group and restart from the beginning.
838 			 */
839 			if (!prev)
840 				continue;
841 			break;
842 		}
843 
844 		/*
845 		 * Verify the css and acquire a reference.  The root
846 		 * is provided by the caller, so we know it's alive
847 		 * and kicking, and don't take an extra reference.
848 		 */
849 		memcg = mem_cgroup_from_css(css);
850 
851 		if (css == &root->css)
852 			break;
853 
854 		if (css_tryget(css))
855 			break;
856 
857 		memcg = NULL;
858 	}
859 
860 	if (reclaim) {
861 		/*
862 		 * The position could have already been updated by a competing
863 		 * thread, so check that the value hasn't changed since we read
864 		 * it to avoid reclaiming from the same cgroup twice.
865 		 */
866 		(void)cmpxchg(&iter->position, pos, memcg);
867 
868 		if (pos)
869 			css_put(&pos->css);
870 
871 		if (!memcg)
872 			iter->generation++;
873 		else if (!prev)
874 			reclaim->generation = iter->generation;
875 	}
876 
877 out_unlock:
878 	rcu_read_unlock();
879 out:
880 	if (prev && prev != root)
881 		css_put(&prev->css);
882 
883 	return memcg;
884 }
885 
886 /**
887  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
888  * @root: hierarchy root
889  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
890  */
891 void mem_cgroup_iter_break(struct mem_cgroup *root,
892 			   struct mem_cgroup *prev)
893 {
894 	if (!root)
895 		root = root_mem_cgroup;
896 	if (prev && prev != root)
897 		css_put(&prev->css);
898 }
899 
900 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
901 {
902 	struct mem_cgroup *memcg = dead_memcg;
903 	struct mem_cgroup_reclaim_iter *iter;
904 	struct mem_cgroup_per_zone *mz;
905 	int nid, zid;
906 	int i;
907 
908 	while ((memcg = parent_mem_cgroup(memcg))) {
909 		for_each_node(nid) {
910 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
911 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
912 				for (i = 0; i <= DEF_PRIORITY; i++) {
913 					iter = &mz->iter[i];
914 					cmpxchg(&iter->position,
915 						dead_memcg, NULL);
916 				}
917 			}
918 		}
919 	}
920 }
921 
922 /*
923  * Iteration constructs for visiting all cgroups (under a tree).  If
924  * loops are exited prematurely (break), mem_cgroup_iter_break() must
925  * be used for reference counting.
926  */
927 #define for_each_mem_cgroup_tree(iter, root)		\
928 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
929 	     iter != NULL;				\
930 	     iter = mem_cgroup_iter(root, iter, NULL))
931 
932 #define for_each_mem_cgroup(iter)			\
933 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
934 	     iter != NULL;				\
935 	     iter = mem_cgroup_iter(NULL, iter, NULL))
936 
937 /**
938  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
939  * @page: the page
940  * @zone: zone of the page
941  *
942  * This function is only safe when following the LRU page isolation
943  * and putback protocol: the LRU lock must be held, and the page must
944  * either be PageLRU() or the caller must have isolated/allocated it.
945  */
946 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
947 {
948 	struct mem_cgroup_per_zone *mz;
949 	struct mem_cgroup *memcg;
950 	struct lruvec *lruvec;
951 
952 	if (mem_cgroup_disabled()) {
953 		lruvec = &pgdat->lruvec;
954 		goto out;
955 	}
956 
957 	memcg = page->mem_cgroup;
958 	/*
959 	 * Swapcache readahead pages are added to the LRU - and
960 	 * possibly migrated - before they are charged.
961 	 */
962 	if (!memcg)
963 		memcg = root_mem_cgroup;
964 
965 	mz = mem_cgroup_page_zoneinfo(memcg, page);
966 	lruvec = &mz->lruvec;
967 out:
968 	/*
969 	 * Since a node can be onlined after the mem_cgroup was created,
970 	 * we have to be prepared to initialize lruvec->zone here;
971 	 * and if offlined then reonlined, we need to reinitialize it.
972 	 */
973 	if (unlikely(lruvec->pgdat != pgdat))
974 		lruvec->pgdat = pgdat;
975 	return lruvec;
976 }
977 
978 /**
979  * mem_cgroup_update_lru_size - account for adding or removing an lru page
980  * @lruvec: mem_cgroup per zone lru vector
981  * @lru: index of lru list the page is sitting on
982  * @zid: Zone ID of the zone pages have been added to
983  * @nr_pages: positive when adding or negative when removing
984  *
985  * This function must be called under lru_lock, just before a page is added
986  * to or just after a page is removed from an lru list (that ordering being
987  * so as to allow it to check that lru_size 0 is consistent with list_empty).
988  */
989 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
990 				enum zone_type zid, int nr_pages)
991 {
992 	struct mem_cgroup_per_zone *mz;
993 	unsigned long *lru_size;
994 	long size;
995 	bool empty;
996 
997 	__update_lru_size(lruvec, lru, zid, nr_pages);
998 
999 	if (mem_cgroup_disabled())
1000 		return;
1001 
1002 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1003 	lru_size = mz->lru_size + lru;
1004 	empty = list_empty(lruvec->lists + lru);
1005 
1006 	if (nr_pages < 0)
1007 		*lru_size += nr_pages;
1008 
1009 	size = *lru_size;
1010 	if (WARN_ONCE(size < 0 || empty != !size,
1011 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
1012 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1013 		VM_BUG_ON(1);
1014 		*lru_size = 0;
1015 	}
1016 
1017 	if (nr_pages > 0)
1018 		*lru_size += nr_pages;
1019 }
1020 
1021 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1022 {
1023 	struct mem_cgroup *task_memcg;
1024 	struct task_struct *p;
1025 	bool ret;
1026 
1027 	p = find_lock_task_mm(task);
1028 	if (p) {
1029 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1030 		task_unlock(p);
1031 	} else {
1032 		/*
1033 		 * All threads may have already detached their mm's, but the oom
1034 		 * killer still needs to detect if they have already been oom
1035 		 * killed to prevent needlessly killing additional tasks.
1036 		 */
1037 		rcu_read_lock();
1038 		task_memcg = mem_cgroup_from_task(task);
1039 		css_get(&task_memcg->css);
1040 		rcu_read_unlock();
1041 	}
1042 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1043 	css_put(&task_memcg->css);
1044 	return ret;
1045 }
1046 
1047 /**
1048  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1049  * @memcg: the memory cgroup
1050  *
1051  * Returns the maximum amount of memory @mem can be charged with, in
1052  * pages.
1053  */
1054 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1055 {
1056 	unsigned long margin = 0;
1057 	unsigned long count;
1058 	unsigned long limit;
1059 
1060 	count = page_counter_read(&memcg->memory);
1061 	limit = READ_ONCE(memcg->memory.limit);
1062 	if (count < limit)
1063 		margin = limit - count;
1064 
1065 	if (do_memsw_account()) {
1066 		count = page_counter_read(&memcg->memsw);
1067 		limit = READ_ONCE(memcg->memsw.limit);
1068 		if (count <= limit)
1069 			margin = min(margin, limit - count);
1070 		else
1071 			margin = 0;
1072 	}
1073 
1074 	return margin;
1075 }
1076 
1077 /*
1078  * A routine for checking "mem" is under move_account() or not.
1079  *
1080  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1081  * moving cgroups. This is for waiting at high-memory pressure
1082  * caused by "move".
1083  */
1084 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1085 {
1086 	struct mem_cgroup *from;
1087 	struct mem_cgroup *to;
1088 	bool ret = false;
1089 	/*
1090 	 * Unlike task_move routines, we access mc.to, mc.from not under
1091 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1092 	 */
1093 	spin_lock(&mc.lock);
1094 	from = mc.from;
1095 	to = mc.to;
1096 	if (!from)
1097 		goto unlock;
1098 
1099 	ret = mem_cgroup_is_descendant(from, memcg) ||
1100 		mem_cgroup_is_descendant(to, memcg);
1101 unlock:
1102 	spin_unlock(&mc.lock);
1103 	return ret;
1104 }
1105 
1106 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1107 {
1108 	if (mc.moving_task && current != mc.moving_task) {
1109 		if (mem_cgroup_under_move(memcg)) {
1110 			DEFINE_WAIT(wait);
1111 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1112 			/* moving charge context might have finished. */
1113 			if (mc.moving_task)
1114 				schedule();
1115 			finish_wait(&mc.waitq, &wait);
1116 			return true;
1117 		}
1118 	}
1119 	return false;
1120 }
1121 
1122 #define K(x) ((x) << (PAGE_SHIFT-10))
1123 /**
1124  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1125  * @memcg: The memory cgroup that went over limit
1126  * @p: Task that is going to be killed
1127  *
1128  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1129  * enabled
1130  */
1131 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1132 {
1133 	struct mem_cgroup *iter;
1134 	unsigned int i;
1135 
1136 	rcu_read_lock();
1137 
1138 	if (p) {
1139 		pr_info("Task in ");
1140 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1141 		pr_cont(" killed as a result of limit of ");
1142 	} else {
1143 		pr_info("Memory limit reached of cgroup ");
1144 	}
1145 
1146 	pr_cont_cgroup_path(memcg->css.cgroup);
1147 	pr_cont("\n");
1148 
1149 	rcu_read_unlock();
1150 
1151 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1152 		K((u64)page_counter_read(&memcg->memory)),
1153 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1154 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1155 		K((u64)page_counter_read(&memcg->memsw)),
1156 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1157 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1158 		K((u64)page_counter_read(&memcg->kmem)),
1159 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1160 
1161 	for_each_mem_cgroup_tree(iter, memcg) {
1162 		pr_info("Memory cgroup stats for ");
1163 		pr_cont_cgroup_path(iter->css.cgroup);
1164 		pr_cont(":");
1165 
1166 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1167 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1168 				continue;
1169 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1170 				K(mem_cgroup_read_stat(iter, i)));
1171 		}
1172 
1173 		for (i = 0; i < NR_LRU_LISTS; i++)
1174 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1175 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1176 
1177 		pr_cont("\n");
1178 	}
1179 }
1180 
1181 /*
1182  * This function returns the number of memcg under hierarchy tree. Returns
1183  * 1(self count) if no children.
1184  */
1185 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1186 {
1187 	int num = 0;
1188 	struct mem_cgroup *iter;
1189 
1190 	for_each_mem_cgroup_tree(iter, memcg)
1191 		num++;
1192 	return num;
1193 }
1194 
1195 /*
1196  * Return the memory (and swap, if configured) limit for a memcg.
1197  */
1198 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1199 {
1200 	unsigned long limit;
1201 
1202 	limit = memcg->memory.limit;
1203 	if (mem_cgroup_swappiness(memcg)) {
1204 		unsigned long memsw_limit;
1205 		unsigned long swap_limit;
1206 
1207 		memsw_limit = memcg->memsw.limit;
1208 		swap_limit = memcg->swap.limit;
1209 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1210 		limit = min(limit + swap_limit, memsw_limit);
1211 	}
1212 	return limit;
1213 }
1214 
1215 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1216 				     int order)
1217 {
1218 	struct oom_control oc = {
1219 		.zonelist = NULL,
1220 		.nodemask = NULL,
1221 		.memcg = memcg,
1222 		.gfp_mask = gfp_mask,
1223 		.order = order,
1224 	};
1225 	struct mem_cgroup *iter;
1226 	unsigned long chosen_points = 0;
1227 	unsigned long totalpages;
1228 	unsigned int points = 0;
1229 	struct task_struct *chosen = NULL;
1230 
1231 	mutex_lock(&oom_lock);
1232 
1233 	/*
1234 	 * If current has a pending SIGKILL or is exiting, then automatically
1235 	 * select it.  The goal is to allow it to allocate so that it may
1236 	 * quickly exit and free its memory.
1237 	 */
1238 	if (task_will_free_mem(current)) {
1239 		mark_oom_victim(current);
1240 		wake_oom_reaper(current);
1241 		goto unlock;
1242 	}
1243 
1244 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1245 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1246 	for_each_mem_cgroup_tree(iter, memcg) {
1247 		struct css_task_iter it;
1248 		struct task_struct *task;
1249 
1250 		css_task_iter_start(&iter->css, &it);
1251 		while ((task = css_task_iter_next(&it))) {
1252 			switch (oom_scan_process_thread(&oc, task)) {
1253 			case OOM_SCAN_SELECT:
1254 				if (chosen)
1255 					put_task_struct(chosen);
1256 				chosen = task;
1257 				chosen_points = ULONG_MAX;
1258 				get_task_struct(chosen);
1259 				/* fall through */
1260 			case OOM_SCAN_CONTINUE:
1261 				continue;
1262 			case OOM_SCAN_ABORT:
1263 				css_task_iter_end(&it);
1264 				mem_cgroup_iter_break(memcg, iter);
1265 				if (chosen)
1266 					put_task_struct(chosen);
1267 				/* Set a dummy value to return "true". */
1268 				chosen = (void *) 1;
1269 				goto unlock;
1270 			case OOM_SCAN_OK:
1271 				break;
1272 			};
1273 			points = oom_badness(task, memcg, NULL, totalpages);
1274 			if (!points || points < chosen_points)
1275 				continue;
1276 			/* Prefer thread group leaders for display purposes */
1277 			if (points == chosen_points &&
1278 			    thread_group_leader(chosen))
1279 				continue;
1280 
1281 			if (chosen)
1282 				put_task_struct(chosen);
1283 			chosen = task;
1284 			chosen_points = points;
1285 			get_task_struct(chosen);
1286 		}
1287 		css_task_iter_end(&it);
1288 	}
1289 
1290 	if (chosen) {
1291 		points = chosen_points * 1000 / totalpages;
1292 		oom_kill_process(&oc, chosen, points, totalpages,
1293 				 "Memory cgroup out of memory");
1294 	}
1295 unlock:
1296 	mutex_unlock(&oom_lock);
1297 	return chosen;
1298 }
1299 
1300 #if MAX_NUMNODES > 1
1301 
1302 /**
1303  * test_mem_cgroup_node_reclaimable
1304  * @memcg: the target memcg
1305  * @nid: the node ID to be checked.
1306  * @noswap : specify true here if the user wants flle only information.
1307  *
1308  * This function returns whether the specified memcg contains any
1309  * reclaimable pages on a node. Returns true if there are any reclaimable
1310  * pages in the node.
1311  */
1312 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1313 		int nid, bool noswap)
1314 {
1315 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1316 		return true;
1317 	if (noswap || !total_swap_pages)
1318 		return false;
1319 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1320 		return true;
1321 	return false;
1322 
1323 }
1324 
1325 /*
1326  * Always updating the nodemask is not very good - even if we have an empty
1327  * list or the wrong list here, we can start from some node and traverse all
1328  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1329  *
1330  */
1331 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1332 {
1333 	int nid;
1334 	/*
1335 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1336 	 * pagein/pageout changes since the last update.
1337 	 */
1338 	if (!atomic_read(&memcg->numainfo_events))
1339 		return;
1340 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1341 		return;
1342 
1343 	/* make a nodemask where this memcg uses memory from */
1344 	memcg->scan_nodes = node_states[N_MEMORY];
1345 
1346 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1347 
1348 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1349 			node_clear(nid, memcg->scan_nodes);
1350 	}
1351 
1352 	atomic_set(&memcg->numainfo_events, 0);
1353 	atomic_set(&memcg->numainfo_updating, 0);
1354 }
1355 
1356 /*
1357  * Selecting a node where we start reclaim from. Because what we need is just
1358  * reducing usage counter, start from anywhere is O,K. Considering
1359  * memory reclaim from current node, there are pros. and cons.
1360  *
1361  * Freeing memory from current node means freeing memory from a node which
1362  * we'll use or we've used. So, it may make LRU bad. And if several threads
1363  * hit limits, it will see a contention on a node. But freeing from remote
1364  * node means more costs for memory reclaim because of memory latency.
1365  *
1366  * Now, we use round-robin. Better algorithm is welcomed.
1367  */
1368 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1369 {
1370 	int node;
1371 
1372 	mem_cgroup_may_update_nodemask(memcg);
1373 	node = memcg->last_scanned_node;
1374 
1375 	node = next_node_in(node, memcg->scan_nodes);
1376 	/*
1377 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1378 	 * last time it really checked all the LRUs due to rate limiting.
1379 	 * Fallback to the current node in that case for simplicity.
1380 	 */
1381 	if (unlikely(node == MAX_NUMNODES))
1382 		node = numa_node_id();
1383 
1384 	memcg->last_scanned_node = node;
1385 	return node;
1386 }
1387 #else
1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 {
1390 	return 0;
1391 }
1392 #endif
1393 
1394 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1395 				   struct zone *zone,
1396 				   gfp_t gfp_mask,
1397 				   unsigned long *total_scanned)
1398 {
1399 	struct mem_cgroup *victim = NULL;
1400 	int total = 0;
1401 	int loop = 0;
1402 	unsigned long excess;
1403 	unsigned long nr_scanned;
1404 	struct mem_cgroup_reclaim_cookie reclaim = {
1405 		.zone = zone,
1406 		.priority = 0,
1407 	};
1408 
1409 	excess = soft_limit_excess(root_memcg);
1410 
1411 	while (1) {
1412 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1413 		if (!victim) {
1414 			loop++;
1415 			if (loop >= 2) {
1416 				/*
1417 				 * If we have not been able to reclaim
1418 				 * anything, it might because there are
1419 				 * no reclaimable pages under this hierarchy
1420 				 */
1421 				if (!total)
1422 					break;
1423 				/*
1424 				 * We want to do more targeted reclaim.
1425 				 * excess >> 2 is not to excessive so as to
1426 				 * reclaim too much, nor too less that we keep
1427 				 * coming back to reclaim from this cgroup
1428 				 */
1429 				if (total >= (excess >> 2) ||
1430 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1431 					break;
1432 			}
1433 			continue;
1434 		}
1435 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1436 					zone, &nr_scanned);
1437 		*total_scanned += nr_scanned;
1438 		if (!soft_limit_excess(root_memcg))
1439 			break;
1440 	}
1441 	mem_cgroup_iter_break(root_memcg, victim);
1442 	return total;
1443 }
1444 
1445 #ifdef CONFIG_LOCKDEP
1446 static struct lockdep_map memcg_oom_lock_dep_map = {
1447 	.name = "memcg_oom_lock",
1448 };
1449 #endif
1450 
1451 static DEFINE_SPINLOCK(memcg_oom_lock);
1452 
1453 /*
1454  * Check OOM-Killer is already running under our hierarchy.
1455  * If someone is running, return false.
1456  */
1457 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1458 {
1459 	struct mem_cgroup *iter, *failed = NULL;
1460 
1461 	spin_lock(&memcg_oom_lock);
1462 
1463 	for_each_mem_cgroup_tree(iter, memcg) {
1464 		if (iter->oom_lock) {
1465 			/*
1466 			 * this subtree of our hierarchy is already locked
1467 			 * so we cannot give a lock.
1468 			 */
1469 			failed = iter;
1470 			mem_cgroup_iter_break(memcg, iter);
1471 			break;
1472 		} else
1473 			iter->oom_lock = true;
1474 	}
1475 
1476 	if (failed) {
1477 		/*
1478 		 * OK, we failed to lock the whole subtree so we have
1479 		 * to clean up what we set up to the failing subtree
1480 		 */
1481 		for_each_mem_cgroup_tree(iter, memcg) {
1482 			if (iter == failed) {
1483 				mem_cgroup_iter_break(memcg, iter);
1484 				break;
1485 			}
1486 			iter->oom_lock = false;
1487 		}
1488 	} else
1489 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1490 
1491 	spin_unlock(&memcg_oom_lock);
1492 
1493 	return !failed;
1494 }
1495 
1496 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1497 {
1498 	struct mem_cgroup *iter;
1499 
1500 	spin_lock(&memcg_oom_lock);
1501 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1502 	for_each_mem_cgroup_tree(iter, memcg)
1503 		iter->oom_lock = false;
1504 	spin_unlock(&memcg_oom_lock);
1505 }
1506 
1507 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1508 {
1509 	struct mem_cgroup *iter;
1510 
1511 	spin_lock(&memcg_oom_lock);
1512 	for_each_mem_cgroup_tree(iter, memcg)
1513 		iter->under_oom++;
1514 	spin_unlock(&memcg_oom_lock);
1515 }
1516 
1517 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1518 {
1519 	struct mem_cgroup *iter;
1520 
1521 	/*
1522 	 * When a new child is created while the hierarchy is under oom,
1523 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1524 	 */
1525 	spin_lock(&memcg_oom_lock);
1526 	for_each_mem_cgroup_tree(iter, memcg)
1527 		if (iter->under_oom > 0)
1528 			iter->under_oom--;
1529 	spin_unlock(&memcg_oom_lock);
1530 }
1531 
1532 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1533 
1534 struct oom_wait_info {
1535 	struct mem_cgroup *memcg;
1536 	wait_queue_t	wait;
1537 };
1538 
1539 static int memcg_oom_wake_function(wait_queue_t *wait,
1540 	unsigned mode, int sync, void *arg)
1541 {
1542 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1543 	struct mem_cgroup *oom_wait_memcg;
1544 	struct oom_wait_info *oom_wait_info;
1545 
1546 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1547 	oom_wait_memcg = oom_wait_info->memcg;
1548 
1549 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1550 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1551 		return 0;
1552 	return autoremove_wake_function(wait, mode, sync, arg);
1553 }
1554 
1555 static void memcg_oom_recover(struct mem_cgroup *memcg)
1556 {
1557 	/*
1558 	 * For the following lockless ->under_oom test, the only required
1559 	 * guarantee is that it must see the state asserted by an OOM when
1560 	 * this function is called as a result of userland actions
1561 	 * triggered by the notification of the OOM.  This is trivially
1562 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1563 	 * triggering notification.
1564 	 */
1565 	if (memcg && memcg->under_oom)
1566 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1567 }
1568 
1569 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1570 {
1571 	if (!current->memcg_may_oom)
1572 		return;
1573 	/*
1574 	 * We are in the middle of the charge context here, so we
1575 	 * don't want to block when potentially sitting on a callstack
1576 	 * that holds all kinds of filesystem and mm locks.
1577 	 *
1578 	 * Also, the caller may handle a failed allocation gracefully
1579 	 * (like optional page cache readahead) and so an OOM killer
1580 	 * invocation might not even be necessary.
1581 	 *
1582 	 * That's why we don't do anything here except remember the
1583 	 * OOM context and then deal with it at the end of the page
1584 	 * fault when the stack is unwound, the locks are released,
1585 	 * and when we know whether the fault was overall successful.
1586 	 */
1587 	css_get(&memcg->css);
1588 	current->memcg_in_oom = memcg;
1589 	current->memcg_oom_gfp_mask = mask;
1590 	current->memcg_oom_order = order;
1591 }
1592 
1593 /**
1594  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1595  * @handle: actually kill/wait or just clean up the OOM state
1596  *
1597  * This has to be called at the end of a page fault if the memcg OOM
1598  * handler was enabled.
1599  *
1600  * Memcg supports userspace OOM handling where failed allocations must
1601  * sleep on a waitqueue until the userspace task resolves the
1602  * situation.  Sleeping directly in the charge context with all kinds
1603  * of locks held is not a good idea, instead we remember an OOM state
1604  * in the task and mem_cgroup_oom_synchronize() has to be called at
1605  * the end of the page fault to complete the OOM handling.
1606  *
1607  * Returns %true if an ongoing memcg OOM situation was detected and
1608  * completed, %false otherwise.
1609  */
1610 bool mem_cgroup_oom_synchronize(bool handle)
1611 {
1612 	struct mem_cgroup *memcg = current->memcg_in_oom;
1613 	struct oom_wait_info owait;
1614 	bool locked;
1615 
1616 	/* OOM is global, do not handle */
1617 	if (!memcg)
1618 		return false;
1619 
1620 	if (!handle || oom_killer_disabled)
1621 		goto cleanup;
1622 
1623 	owait.memcg = memcg;
1624 	owait.wait.flags = 0;
1625 	owait.wait.func = memcg_oom_wake_function;
1626 	owait.wait.private = current;
1627 	INIT_LIST_HEAD(&owait.wait.task_list);
1628 
1629 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1630 	mem_cgroup_mark_under_oom(memcg);
1631 
1632 	locked = mem_cgroup_oom_trylock(memcg);
1633 
1634 	if (locked)
1635 		mem_cgroup_oom_notify(memcg);
1636 
1637 	if (locked && !memcg->oom_kill_disable) {
1638 		mem_cgroup_unmark_under_oom(memcg);
1639 		finish_wait(&memcg_oom_waitq, &owait.wait);
1640 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1641 					 current->memcg_oom_order);
1642 	} else {
1643 		schedule();
1644 		mem_cgroup_unmark_under_oom(memcg);
1645 		finish_wait(&memcg_oom_waitq, &owait.wait);
1646 	}
1647 
1648 	if (locked) {
1649 		mem_cgroup_oom_unlock(memcg);
1650 		/*
1651 		 * There is no guarantee that an OOM-lock contender
1652 		 * sees the wakeups triggered by the OOM kill
1653 		 * uncharges.  Wake any sleepers explicitely.
1654 		 */
1655 		memcg_oom_recover(memcg);
1656 	}
1657 cleanup:
1658 	current->memcg_in_oom = NULL;
1659 	css_put(&memcg->css);
1660 	return true;
1661 }
1662 
1663 /**
1664  * lock_page_memcg - lock a page->mem_cgroup binding
1665  * @page: the page
1666  *
1667  * This function protects unlocked LRU pages from being moved to
1668  * another cgroup and stabilizes their page->mem_cgroup binding.
1669  */
1670 void lock_page_memcg(struct page *page)
1671 {
1672 	struct mem_cgroup *memcg;
1673 	unsigned long flags;
1674 
1675 	/*
1676 	 * The RCU lock is held throughout the transaction.  The fast
1677 	 * path can get away without acquiring the memcg->move_lock
1678 	 * because page moving starts with an RCU grace period.
1679 	 */
1680 	rcu_read_lock();
1681 
1682 	if (mem_cgroup_disabled())
1683 		return;
1684 again:
1685 	memcg = page->mem_cgroup;
1686 	if (unlikely(!memcg))
1687 		return;
1688 
1689 	if (atomic_read(&memcg->moving_account) <= 0)
1690 		return;
1691 
1692 	spin_lock_irqsave(&memcg->move_lock, flags);
1693 	if (memcg != page->mem_cgroup) {
1694 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1695 		goto again;
1696 	}
1697 
1698 	/*
1699 	 * When charge migration first begins, we can have locked and
1700 	 * unlocked page stat updates happening concurrently.  Track
1701 	 * the task who has the lock for unlock_page_memcg().
1702 	 */
1703 	memcg->move_lock_task = current;
1704 	memcg->move_lock_flags = flags;
1705 
1706 	return;
1707 }
1708 EXPORT_SYMBOL(lock_page_memcg);
1709 
1710 /**
1711  * unlock_page_memcg - unlock a page->mem_cgroup binding
1712  * @page: the page
1713  */
1714 void unlock_page_memcg(struct page *page)
1715 {
1716 	struct mem_cgroup *memcg = page->mem_cgroup;
1717 
1718 	if (memcg && memcg->move_lock_task == current) {
1719 		unsigned long flags = memcg->move_lock_flags;
1720 
1721 		memcg->move_lock_task = NULL;
1722 		memcg->move_lock_flags = 0;
1723 
1724 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1725 	}
1726 
1727 	rcu_read_unlock();
1728 }
1729 EXPORT_SYMBOL(unlock_page_memcg);
1730 
1731 /*
1732  * size of first charge trial. "32" comes from vmscan.c's magic value.
1733  * TODO: maybe necessary to use big numbers in big irons.
1734  */
1735 #define CHARGE_BATCH	32U
1736 struct memcg_stock_pcp {
1737 	struct mem_cgroup *cached; /* this never be root cgroup */
1738 	unsigned int nr_pages;
1739 	struct work_struct work;
1740 	unsigned long flags;
1741 #define FLUSHING_CACHED_CHARGE	0
1742 };
1743 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1744 static DEFINE_MUTEX(percpu_charge_mutex);
1745 
1746 /**
1747  * consume_stock: Try to consume stocked charge on this cpu.
1748  * @memcg: memcg to consume from.
1749  * @nr_pages: how many pages to charge.
1750  *
1751  * The charges will only happen if @memcg matches the current cpu's memcg
1752  * stock, and at least @nr_pages are available in that stock.  Failure to
1753  * service an allocation will refill the stock.
1754  *
1755  * returns true if successful, false otherwise.
1756  */
1757 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1758 {
1759 	struct memcg_stock_pcp *stock;
1760 	bool ret = false;
1761 
1762 	if (nr_pages > CHARGE_BATCH)
1763 		return ret;
1764 
1765 	stock = &get_cpu_var(memcg_stock);
1766 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1767 		stock->nr_pages -= nr_pages;
1768 		ret = true;
1769 	}
1770 	put_cpu_var(memcg_stock);
1771 	return ret;
1772 }
1773 
1774 /*
1775  * Returns stocks cached in percpu and reset cached information.
1776  */
1777 static void drain_stock(struct memcg_stock_pcp *stock)
1778 {
1779 	struct mem_cgroup *old = stock->cached;
1780 
1781 	if (stock->nr_pages) {
1782 		page_counter_uncharge(&old->memory, stock->nr_pages);
1783 		if (do_memsw_account())
1784 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1785 		css_put_many(&old->css, stock->nr_pages);
1786 		stock->nr_pages = 0;
1787 	}
1788 	stock->cached = NULL;
1789 }
1790 
1791 /*
1792  * This must be called under preempt disabled or must be called by
1793  * a thread which is pinned to local cpu.
1794  */
1795 static void drain_local_stock(struct work_struct *dummy)
1796 {
1797 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1798 	drain_stock(stock);
1799 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1800 }
1801 
1802 /*
1803  * Cache charges(val) to local per_cpu area.
1804  * This will be consumed by consume_stock() function, later.
1805  */
1806 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1807 {
1808 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1809 
1810 	if (stock->cached != memcg) { /* reset if necessary */
1811 		drain_stock(stock);
1812 		stock->cached = memcg;
1813 	}
1814 	stock->nr_pages += nr_pages;
1815 	put_cpu_var(memcg_stock);
1816 }
1817 
1818 /*
1819  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1820  * of the hierarchy under it.
1821  */
1822 static void drain_all_stock(struct mem_cgroup *root_memcg)
1823 {
1824 	int cpu, curcpu;
1825 
1826 	/* If someone's already draining, avoid adding running more workers. */
1827 	if (!mutex_trylock(&percpu_charge_mutex))
1828 		return;
1829 	/* Notify other cpus that system-wide "drain" is running */
1830 	get_online_cpus();
1831 	curcpu = get_cpu();
1832 	for_each_online_cpu(cpu) {
1833 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1834 		struct mem_cgroup *memcg;
1835 
1836 		memcg = stock->cached;
1837 		if (!memcg || !stock->nr_pages)
1838 			continue;
1839 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1840 			continue;
1841 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1842 			if (cpu == curcpu)
1843 				drain_local_stock(&stock->work);
1844 			else
1845 				schedule_work_on(cpu, &stock->work);
1846 		}
1847 	}
1848 	put_cpu();
1849 	put_online_cpus();
1850 	mutex_unlock(&percpu_charge_mutex);
1851 }
1852 
1853 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1854 					unsigned long action,
1855 					void *hcpu)
1856 {
1857 	int cpu = (unsigned long)hcpu;
1858 	struct memcg_stock_pcp *stock;
1859 
1860 	if (action == CPU_ONLINE)
1861 		return NOTIFY_OK;
1862 
1863 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1864 		return NOTIFY_OK;
1865 
1866 	stock = &per_cpu(memcg_stock, cpu);
1867 	drain_stock(stock);
1868 	return NOTIFY_OK;
1869 }
1870 
1871 static void reclaim_high(struct mem_cgroup *memcg,
1872 			 unsigned int nr_pages,
1873 			 gfp_t gfp_mask)
1874 {
1875 	do {
1876 		if (page_counter_read(&memcg->memory) <= memcg->high)
1877 			continue;
1878 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1879 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1880 	} while ((memcg = parent_mem_cgroup(memcg)));
1881 }
1882 
1883 static void high_work_func(struct work_struct *work)
1884 {
1885 	struct mem_cgroup *memcg;
1886 
1887 	memcg = container_of(work, struct mem_cgroup, high_work);
1888 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1889 }
1890 
1891 /*
1892  * Scheduled by try_charge() to be executed from the userland return path
1893  * and reclaims memory over the high limit.
1894  */
1895 void mem_cgroup_handle_over_high(void)
1896 {
1897 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1898 	struct mem_cgroup *memcg;
1899 
1900 	if (likely(!nr_pages))
1901 		return;
1902 
1903 	memcg = get_mem_cgroup_from_mm(current->mm);
1904 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1905 	css_put(&memcg->css);
1906 	current->memcg_nr_pages_over_high = 0;
1907 }
1908 
1909 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1910 		      unsigned int nr_pages)
1911 {
1912 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1913 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1914 	struct mem_cgroup *mem_over_limit;
1915 	struct page_counter *counter;
1916 	unsigned long nr_reclaimed;
1917 	bool may_swap = true;
1918 	bool drained = false;
1919 
1920 	if (mem_cgroup_is_root(memcg))
1921 		return 0;
1922 retry:
1923 	if (consume_stock(memcg, nr_pages))
1924 		return 0;
1925 
1926 	if (!do_memsw_account() ||
1927 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1928 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1929 			goto done_restock;
1930 		if (do_memsw_account())
1931 			page_counter_uncharge(&memcg->memsw, batch);
1932 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1933 	} else {
1934 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1935 		may_swap = false;
1936 	}
1937 
1938 	if (batch > nr_pages) {
1939 		batch = nr_pages;
1940 		goto retry;
1941 	}
1942 
1943 	/*
1944 	 * Unlike in global OOM situations, memcg is not in a physical
1945 	 * memory shortage.  Allow dying and OOM-killed tasks to
1946 	 * bypass the last charges so that they can exit quickly and
1947 	 * free their memory.
1948 	 */
1949 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1950 		     fatal_signal_pending(current) ||
1951 		     current->flags & PF_EXITING))
1952 		goto force;
1953 
1954 	if (unlikely(task_in_memcg_oom(current)))
1955 		goto nomem;
1956 
1957 	if (!gfpflags_allow_blocking(gfp_mask))
1958 		goto nomem;
1959 
1960 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1961 
1962 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1963 						    gfp_mask, may_swap);
1964 
1965 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1966 		goto retry;
1967 
1968 	if (!drained) {
1969 		drain_all_stock(mem_over_limit);
1970 		drained = true;
1971 		goto retry;
1972 	}
1973 
1974 	if (gfp_mask & __GFP_NORETRY)
1975 		goto nomem;
1976 	/*
1977 	 * Even though the limit is exceeded at this point, reclaim
1978 	 * may have been able to free some pages.  Retry the charge
1979 	 * before killing the task.
1980 	 *
1981 	 * Only for regular pages, though: huge pages are rather
1982 	 * unlikely to succeed so close to the limit, and we fall back
1983 	 * to regular pages anyway in case of failure.
1984 	 */
1985 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1986 		goto retry;
1987 	/*
1988 	 * At task move, charge accounts can be doubly counted. So, it's
1989 	 * better to wait until the end of task_move if something is going on.
1990 	 */
1991 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1992 		goto retry;
1993 
1994 	if (nr_retries--)
1995 		goto retry;
1996 
1997 	if (gfp_mask & __GFP_NOFAIL)
1998 		goto force;
1999 
2000 	if (fatal_signal_pending(current))
2001 		goto force;
2002 
2003 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2004 
2005 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2006 		       get_order(nr_pages * PAGE_SIZE));
2007 nomem:
2008 	if (!(gfp_mask & __GFP_NOFAIL))
2009 		return -ENOMEM;
2010 force:
2011 	/*
2012 	 * The allocation either can't fail or will lead to more memory
2013 	 * being freed very soon.  Allow memory usage go over the limit
2014 	 * temporarily by force charging it.
2015 	 */
2016 	page_counter_charge(&memcg->memory, nr_pages);
2017 	if (do_memsw_account())
2018 		page_counter_charge(&memcg->memsw, nr_pages);
2019 	css_get_many(&memcg->css, nr_pages);
2020 
2021 	return 0;
2022 
2023 done_restock:
2024 	css_get_many(&memcg->css, batch);
2025 	if (batch > nr_pages)
2026 		refill_stock(memcg, batch - nr_pages);
2027 
2028 	/*
2029 	 * If the hierarchy is above the normal consumption range, schedule
2030 	 * reclaim on returning to userland.  We can perform reclaim here
2031 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2032 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2033 	 * not recorded as it most likely matches current's and won't
2034 	 * change in the meantime.  As high limit is checked again before
2035 	 * reclaim, the cost of mismatch is negligible.
2036 	 */
2037 	do {
2038 		if (page_counter_read(&memcg->memory) > memcg->high) {
2039 			/* Don't bother a random interrupted task */
2040 			if (in_interrupt()) {
2041 				schedule_work(&memcg->high_work);
2042 				break;
2043 			}
2044 			current->memcg_nr_pages_over_high += batch;
2045 			set_notify_resume(current);
2046 			break;
2047 		}
2048 	} while ((memcg = parent_mem_cgroup(memcg)));
2049 
2050 	return 0;
2051 }
2052 
2053 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2054 {
2055 	if (mem_cgroup_is_root(memcg))
2056 		return;
2057 
2058 	page_counter_uncharge(&memcg->memory, nr_pages);
2059 	if (do_memsw_account())
2060 		page_counter_uncharge(&memcg->memsw, nr_pages);
2061 
2062 	css_put_many(&memcg->css, nr_pages);
2063 }
2064 
2065 static void lock_page_lru(struct page *page, int *isolated)
2066 {
2067 	struct zone *zone = page_zone(page);
2068 
2069 	spin_lock_irq(zone_lru_lock(zone));
2070 	if (PageLRU(page)) {
2071 		struct lruvec *lruvec;
2072 
2073 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2074 		ClearPageLRU(page);
2075 		del_page_from_lru_list(page, lruvec, page_lru(page));
2076 		*isolated = 1;
2077 	} else
2078 		*isolated = 0;
2079 }
2080 
2081 static void unlock_page_lru(struct page *page, int isolated)
2082 {
2083 	struct zone *zone = page_zone(page);
2084 
2085 	if (isolated) {
2086 		struct lruvec *lruvec;
2087 
2088 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2089 		VM_BUG_ON_PAGE(PageLRU(page), page);
2090 		SetPageLRU(page);
2091 		add_page_to_lru_list(page, lruvec, page_lru(page));
2092 	}
2093 	spin_unlock_irq(zone_lru_lock(zone));
2094 }
2095 
2096 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2097 			  bool lrucare)
2098 {
2099 	int isolated;
2100 
2101 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2102 
2103 	/*
2104 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2105 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2106 	 */
2107 	if (lrucare)
2108 		lock_page_lru(page, &isolated);
2109 
2110 	/*
2111 	 * Nobody should be changing or seriously looking at
2112 	 * page->mem_cgroup at this point:
2113 	 *
2114 	 * - the page is uncharged
2115 	 *
2116 	 * - the page is off-LRU
2117 	 *
2118 	 * - an anonymous fault has exclusive page access, except for
2119 	 *   a locked page table
2120 	 *
2121 	 * - a page cache insertion, a swapin fault, or a migration
2122 	 *   have the page locked
2123 	 */
2124 	page->mem_cgroup = memcg;
2125 
2126 	if (lrucare)
2127 		unlock_page_lru(page, isolated);
2128 }
2129 
2130 #ifndef CONFIG_SLOB
2131 static int memcg_alloc_cache_id(void)
2132 {
2133 	int id, size;
2134 	int err;
2135 
2136 	id = ida_simple_get(&memcg_cache_ida,
2137 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2138 	if (id < 0)
2139 		return id;
2140 
2141 	if (id < memcg_nr_cache_ids)
2142 		return id;
2143 
2144 	/*
2145 	 * There's no space for the new id in memcg_caches arrays,
2146 	 * so we have to grow them.
2147 	 */
2148 	down_write(&memcg_cache_ids_sem);
2149 
2150 	size = 2 * (id + 1);
2151 	if (size < MEMCG_CACHES_MIN_SIZE)
2152 		size = MEMCG_CACHES_MIN_SIZE;
2153 	else if (size > MEMCG_CACHES_MAX_SIZE)
2154 		size = MEMCG_CACHES_MAX_SIZE;
2155 
2156 	err = memcg_update_all_caches(size);
2157 	if (!err)
2158 		err = memcg_update_all_list_lrus(size);
2159 	if (!err)
2160 		memcg_nr_cache_ids = size;
2161 
2162 	up_write(&memcg_cache_ids_sem);
2163 
2164 	if (err) {
2165 		ida_simple_remove(&memcg_cache_ida, id);
2166 		return err;
2167 	}
2168 	return id;
2169 }
2170 
2171 static void memcg_free_cache_id(int id)
2172 {
2173 	ida_simple_remove(&memcg_cache_ida, id);
2174 }
2175 
2176 struct memcg_kmem_cache_create_work {
2177 	struct mem_cgroup *memcg;
2178 	struct kmem_cache *cachep;
2179 	struct work_struct work;
2180 };
2181 
2182 static void memcg_kmem_cache_create_func(struct work_struct *w)
2183 {
2184 	struct memcg_kmem_cache_create_work *cw =
2185 		container_of(w, struct memcg_kmem_cache_create_work, work);
2186 	struct mem_cgroup *memcg = cw->memcg;
2187 	struct kmem_cache *cachep = cw->cachep;
2188 
2189 	memcg_create_kmem_cache(memcg, cachep);
2190 
2191 	css_put(&memcg->css);
2192 	kfree(cw);
2193 }
2194 
2195 /*
2196  * Enqueue the creation of a per-memcg kmem_cache.
2197  */
2198 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2199 					       struct kmem_cache *cachep)
2200 {
2201 	struct memcg_kmem_cache_create_work *cw;
2202 
2203 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2204 	if (!cw)
2205 		return;
2206 
2207 	css_get(&memcg->css);
2208 
2209 	cw->memcg = memcg;
2210 	cw->cachep = cachep;
2211 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2212 
2213 	schedule_work(&cw->work);
2214 }
2215 
2216 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2217 					     struct kmem_cache *cachep)
2218 {
2219 	/*
2220 	 * We need to stop accounting when we kmalloc, because if the
2221 	 * corresponding kmalloc cache is not yet created, the first allocation
2222 	 * in __memcg_schedule_kmem_cache_create will recurse.
2223 	 *
2224 	 * However, it is better to enclose the whole function. Depending on
2225 	 * the debugging options enabled, INIT_WORK(), for instance, can
2226 	 * trigger an allocation. This too, will make us recurse. Because at
2227 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2228 	 * the safest choice is to do it like this, wrapping the whole function.
2229 	 */
2230 	current->memcg_kmem_skip_account = 1;
2231 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2232 	current->memcg_kmem_skip_account = 0;
2233 }
2234 
2235 static inline bool memcg_kmem_bypass(void)
2236 {
2237 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2238 		return true;
2239 	return false;
2240 }
2241 
2242 /**
2243  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2244  * @cachep: the original global kmem cache
2245  *
2246  * Return the kmem_cache we're supposed to use for a slab allocation.
2247  * We try to use the current memcg's version of the cache.
2248  *
2249  * If the cache does not exist yet, if we are the first user of it, we
2250  * create it asynchronously in a workqueue and let the current allocation
2251  * go through with the original cache.
2252  *
2253  * This function takes a reference to the cache it returns to assure it
2254  * won't get destroyed while we are working with it. Once the caller is
2255  * done with it, memcg_kmem_put_cache() must be called to release the
2256  * reference.
2257  */
2258 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2259 {
2260 	struct mem_cgroup *memcg;
2261 	struct kmem_cache *memcg_cachep;
2262 	int kmemcg_id;
2263 
2264 	VM_BUG_ON(!is_root_cache(cachep));
2265 
2266 	if (memcg_kmem_bypass())
2267 		return cachep;
2268 
2269 	if (current->memcg_kmem_skip_account)
2270 		return cachep;
2271 
2272 	memcg = get_mem_cgroup_from_mm(current->mm);
2273 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2274 	if (kmemcg_id < 0)
2275 		goto out;
2276 
2277 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2278 	if (likely(memcg_cachep))
2279 		return memcg_cachep;
2280 
2281 	/*
2282 	 * If we are in a safe context (can wait, and not in interrupt
2283 	 * context), we could be be predictable and return right away.
2284 	 * This would guarantee that the allocation being performed
2285 	 * already belongs in the new cache.
2286 	 *
2287 	 * However, there are some clashes that can arrive from locking.
2288 	 * For instance, because we acquire the slab_mutex while doing
2289 	 * memcg_create_kmem_cache, this means no further allocation
2290 	 * could happen with the slab_mutex held. So it's better to
2291 	 * defer everything.
2292 	 */
2293 	memcg_schedule_kmem_cache_create(memcg, cachep);
2294 out:
2295 	css_put(&memcg->css);
2296 	return cachep;
2297 }
2298 
2299 /**
2300  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2301  * @cachep: the cache returned by memcg_kmem_get_cache
2302  */
2303 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2304 {
2305 	if (!is_root_cache(cachep))
2306 		css_put(&cachep->memcg_params.memcg->css);
2307 }
2308 
2309 /**
2310  * memcg_kmem_charge: charge a kmem page
2311  * @page: page to charge
2312  * @gfp: reclaim mode
2313  * @order: allocation order
2314  * @memcg: memory cgroup to charge
2315  *
2316  * Returns 0 on success, an error code on failure.
2317  */
2318 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 			    struct mem_cgroup *memcg)
2320 {
2321 	unsigned int nr_pages = 1 << order;
2322 	struct page_counter *counter;
2323 	int ret;
2324 
2325 	ret = try_charge(memcg, gfp, nr_pages);
2326 	if (ret)
2327 		return ret;
2328 
2329 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 		cancel_charge(memcg, nr_pages);
2332 		return -ENOMEM;
2333 	}
2334 
2335 	page->mem_cgroup = memcg;
2336 
2337 	return 0;
2338 }
2339 
2340 /**
2341  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2342  * @page: page to charge
2343  * @gfp: reclaim mode
2344  * @order: allocation order
2345  *
2346  * Returns 0 on success, an error code on failure.
2347  */
2348 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2349 {
2350 	struct mem_cgroup *memcg;
2351 	int ret = 0;
2352 
2353 	if (memcg_kmem_bypass())
2354 		return 0;
2355 
2356 	memcg = get_mem_cgroup_from_mm(current->mm);
2357 	if (!mem_cgroup_is_root(memcg))
2358 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2359 	css_put(&memcg->css);
2360 	return ret;
2361 }
2362 /**
2363  * memcg_kmem_uncharge: uncharge a kmem page
2364  * @page: page to uncharge
2365  * @order: allocation order
2366  */
2367 void memcg_kmem_uncharge(struct page *page, int order)
2368 {
2369 	struct mem_cgroup *memcg = page->mem_cgroup;
2370 	unsigned int nr_pages = 1 << order;
2371 
2372 	if (!memcg)
2373 		return;
2374 
2375 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2376 
2377 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2378 		page_counter_uncharge(&memcg->kmem, nr_pages);
2379 
2380 	page_counter_uncharge(&memcg->memory, nr_pages);
2381 	if (do_memsw_account())
2382 		page_counter_uncharge(&memcg->memsw, nr_pages);
2383 
2384 	page->mem_cgroup = NULL;
2385 	css_put_many(&memcg->css, nr_pages);
2386 }
2387 #endif /* !CONFIG_SLOB */
2388 
2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390 
2391 /*
2392  * Because tail pages are not marked as "used", set it. We're under
2393  * zone_lru_lock and migration entries setup in all page mappings.
2394  */
2395 void mem_cgroup_split_huge_fixup(struct page *head)
2396 {
2397 	int i;
2398 
2399 	if (mem_cgroup_disabled())
2400 		return;
2401 
2402 	for (i = 1; i < HPAGE_PMD_NR; i++)
2403 		head[i].mem_cgroup = head->mem_cgroup;
2404 
2405 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2406 		       HPAGE_PMD_NR);
2407 }
2408 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2409 
2410 #ifdef CONFIG_MEMCG_SWAP
2411 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2412 					 bool charge)
2413 {
2414 	int val = (charge) ? 1 : -1;
2415 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2416 }
2417 
2418 /**
2419  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2420  * @entry: swap entry to be moved
2421  * @from:  mem_cgroup which the entry is moved from
2422  * @to:  mem_cgroup which the entry is moved to
2423  *
2424  * It succeeds only when the swap_cgroup's record for this entry is the same
2425  * as the mem_cgroup's id of @from.
2426  *
2427  * Returns 0 on success, -EINVAL on failure.
2428  *
2429  * The caller must have charged to @to, IOW, called page_counter_charge() about
2430  * both res and memsw, and called css_get().
2431  */
2432 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2433 				struct mem_cgroup *from, struct mem_cgroup *to)
2434 {
2435 	unsigned short old_id, new_id;
2436 
2437 	old_id = mem_cgroup_id(from);
2438 	new_id = mem_cgroup_id(to);
2439 
2440 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2441 		mem_cgroup_swap_statistics(from, false);
2442 		mem_cgroup_swap_statistics(to, true);
2443 		return 0;
2444 	}
2445 	return -EINVAL;
2446 }
2447 #else
2448 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2449 				struct mem_cgroup *from, struct mem_cgroup *to)
2450 {
2451 	return -EINVAL;
2452 }
2453 #endif
2454 
2455 static DEFINE_MUTEX(memcg_limit_mutex);
2456 
2457 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2458 				   unsigned long limit)
2459 {
2460 	unsigned long curusage;
2461 	unsigned long oldusage;
2462 	bool enlarge = false;
2463 	int retry_count;
2464 	int ret;
2465 
2466 	/*
2467 	 * For keeping hierarchical_reclaim simple, how long we should retry
2468 	 * is depends on callers. We set our retry-count to be function
2469 	 * of # of children which we should visit in this loop.
2470 	 */
2471 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2472 		      mem_cgroup_count_children(memcg);
2473 
2474 	oldusage = page_counter_read(&memcg->memory);
2475 
2476 	do {
2477 		if (signal_pending(current)) {
2478 			ret = -EINTR;
2479 			break;
2480 		}
2481 
2482 		mutex_lock(&memcg_limit_mutex);
2483 		if (limit > memcg->memsw.limit) {
2484 			mutex_unlock(&memcg_limit_mutex);
2485 			ret = -EINVAL;
2486 			break;
2487 		}
2488 		if (limit > memcg->memory.limit)
2489 			enlarge = true;
2490 		ret = page_counter_limit(&memcg->memory, limit);
2491 		mutex_unlock(&memcg_limit_mutex);
2492 
2493 		if (!ret)
2494 			break;
2495 
2496 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2497 
2498 		curusage = page_counter_read(&memcg->memory);
2499 		/* Usage is reduced ? */
2500 		if (curusage >= oldusage)
2501 			retry_count--;
2502 		else
2503 			oldusage = curusage;
2504 	} while (retry_count);
2505 
2506 	if (!ret && enlarge)
2507 		memcg_oom_recover(memcg);
2508 
2509 	return ret;
2510 }
2511 
2512 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2513 					 unsigned long limit)
2514 {
2515 	unsigned long curusage;
2516 	unsigned long oldusage;
2517 	bool enlarge = false;
2518 	int retry_count;
2519 	int ret;
2520 
2521 	/* see mem_cgroup_resize_res_limit */
2522 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2523 		      mem_cgroup_count_children(memcg);
2524 
2525 	oldusage = page_counter_read(&memcg->memsw);
2526 
2527 	do {
2528 		if (signal_pending(current)) {
2529 			ret = -EINTR;
2530 			break;
2531 		}
2532 
2533 		mutex_lock(&memcg_limit_mutex);
2534 		if (limit < memcg->memory.limit) {
2535 			mutex_unlock(&memcg_limit_mutex);
2536 			ret = -EINVAL;
2537 			break;
2538 		}
2539 		if (limit > memcg->memsw.limit)
2540 			enlarge = true;
2541 		ret = page_counter_limit(&memcg->memsw, limit);
2542 		mutex_unlock(&memcg_limit_mutex);
2543 
2544 		if (!ret)
2545 			break;
2546 
2547 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2548 
2549 		curusage = page_counter_read(&memcg->memsw);
2550 		/* Usage is reduced ? */
2551 		if (curusage >= oldusage)
2552 			retry_count--;
2553 		else
2554 			oldusage = curusage;
2555 	} while (retry_count);
2556 
2557 	if (!ret && enlarge)
2558 		memcg_oom_recover(memcg);
2559 
2560 	return ret;
2561 }
2562 
2563 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2564 					    gfp_t gfp_mask,
2565 					    unsigned long *total_scanned)
2566 {
2567 	unsigned long nr_reclaimed = 0;
2568 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2569 	unsigned long reclaimed;
2570 	int loop = 0;
2571 	struct mem_cgroup_tree_per_zone *mctz;
2572 	unsigned long excess;
2573 	unsigned long nr_scanned;
2574 
2575 	if (order > 0)
2576 		return 0;
2577 
2578 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2579 	/*
2580 	 * This loop can run a while, specially if mem_cgroup's continuously
2581 	 * keep exceeding their soft limit and putting the system under
2582 	 * pressure
2583 	 */
2584 	do {
2585 		if (next_mz)
2586 			mz = next_mz;
2587 		else
2588 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2589 		if (!mz)
2590 			break;
2591 
2592 		nr_scanned = 0;
2593 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2594 						    gfp_mask, &nr_scanned);
2595 		nr_reclaimed += reclaimed;
2596 		*total_scanned += nr_scanned;
2597 		spin_lock_irq(&mctz->lock);
2598 		__mem_cgroup_remove_exceeded(mz, mctz);
2599 
2600 		/*
2601 		 * If we failed to reclaim anything from this memory cgroup
2602 		 * it is time to move on to the next cgroup
2603 		 */
2604 		next_mz = NULL;
2605 		if (!reclaimed)
2606 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607 
2608 		excess = soft_limit_excess(mz->memcg);
2609 		/*
2610 		 * One school of thought says that we should not add
2611 		 * back the node to the tree if reclaim returns 0.
2612 		 * But our reclaim could return 0, simply because due
2613 		 * to priority we are exposing a smaller subset of
2614 		 * memory to reclaim from. Consider this as a longer
2615 		 * term TODO.
2616 		 */
2617 		/* If excess == 0, no tree ops */
2618 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2619 		spin_unlock_irq(&mctz->lock);
2620 		css_put(&mz->memcg->css);
2621 		loop++;
2622 		/*
2623 		 * Could not reclaim anything and there are no more
2624 		 * mem cgroups to try or we seem to be looping without
2625 		 * reclaiming anything.
2626 		 */
2627 		if (!nr_reclaimed &&
2628 			(next_mz == NULL ||
2629 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2630 			break;
2631 	} while (!nr_reclaimed);
2632 	if (next_mz)
2633 		css_put(&next_mz->memcg->css);
2634 	return nr_reclaimed;
2635 }
2636 
2637 /*
2638  * Test whether @memcg has children, dead or alive.  Note that this
2639  * function doesn't care whether @memcg has use_hierarchy enabled and
2640  * returns %true if there are child csses according to the cgroup
2641  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2642  */
2643 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644 {
2645 	bool ret;
2646 
2647 	rcu_read_lock();
2648 	ret = css_next_child(NULL, &memcg->css);
2649 	rcu_read_unlock();
2650 	return ret;
2651 }
2652 
2653 /*
2654  * Reclaims as many pages from the given memcg as possible.
2655  *
2656  * Caller is responsible for holding css reference for memcg.
2657  */
2658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659 {
2660 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2661 
2662 	/* we call try-to-free pages for make this cgroup empty */
2663 	lru_add_drain_all();
2664 	/* try to free all pages in this cgroup */
2665 	while (nr_retries && page_counter_read(&memcg->memory)) {
2666 		int progress;
2667 
2668 		if (signal_pending(current))
2669 			return -EINTR;
2670 
2671 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2672 							GFP_KERNEL, true);
2673 		if (!progress) {
2674 			nr_retries--;
2675 			/* maybe some writeback is necessary */
2676 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2677 		}
2678 
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2685 					    char *buf, size_t nbytes,
2686 					    loff_t off)
2687 {
2688 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2689 
2690 	if (mem_cgroup_is_root(memcg))
2691 		return -EINVAL;
2692 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2693 }
2694 
2695 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2696 				     struct cftype *cft)
2697 {
2698 	return mem_cgroup_from_css(css)->use_hierarchy;
2699 }
2700 
2701 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2702 				      struct cftype *cft, u64 val)
2703 {
2704 	int retval = 0;
2705 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2706 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2707 
2708 	if (memcg->use_hierarchy == val)
2709 		return 0;
2710 
2711 	/*
2712 	 * If parent's use_hierarchy is set, we can't make any modifications
2713 	 * in the child subtrees. If it is unset, then the change can
2714 	 * occur, provided the current cgroup has no children.
2715 	 *
2716 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2717 	 * set if there are no children.
2718 	 */
2719 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2720 				(val == 1 || val == 0)) {
2721 		if (!memcg_has_children(memcg))
2722 			memcg->use_hierarchy = val;
2723 		else
2724 			retval = -EBUSY;
2725 	} else
2726 		retval = -EINVAL;
2727 
2728 	return retval;
2729 }
2730 
2731 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2732 {
2733 	struct mem_cgroup *iter;
2734 	int i;
2735 
2736 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2737 
2738 	for_each_mem_cgroup_tree(iter, memcg) {
2739 		for (i = 0; i < MEMCG_NR_STAT; i++)
2740 			stat[i] += mem_cgroup_read_stat(iter, i);
2741 	}
2742 }
2743 
2744 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2745 {
2746 	struct mem_cgroup *iter;
2747 	int i;
2748 
2749 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2750 
2751 	for_each_mem_cgroup_tree(iter, memcg) {
2752 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2753 			events[i] += mem_cgroup_read_events(iter, i);
2754 	}
2755 }
2756 
2757 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2758 {
2759 	unsigned long val = 0;
2760 
2761 	if (mem_cgroup_is_root(memcg)) {
2762 		struct mem_cgroup *iter;
2763 
2764 		for_each_mem_cgroup_tree(iter, memcg) {
2765 			val += mem_cgroup_read_stat(iter,
2766 					MEM_CGROUP_STAT_CACHE);
2767 			val += mem_cgroup_read_stat(iter,
2768 					MEM_CGROUP_STAT_RSS);
2769 			if (swap)
2770 				val += mem_cgroup_read_stat(iter,
2771 						MEM_CGROUP_STAT_SWAP);
2772 		}
2773 	} else {
2774 		if (!swap)
2775 			val = page_counter_read(&memcg->memory);
2776 		else
2777 			val = page_counter_read(&memcg->memsw);
2778 	}
2779 	return val;
2780 }
2781 
2782 enum {
2783 	RES_USAGE,
2784 	RES_LIMIT,
2785 	RES_MAX_USAGE,
2786 	RES_FAILCNT,
2787 	RES_SOFT_LIMIT,
2788 };
2789 
2790 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2791 			       struct cftype *cft)
2792 {
2793 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2794 	struct page_counter *counter;
2795 
2796 	switch (MEMFILE_TYPE(cft->private)) {
2797 	case _MEM:
2798 		counter = &memcg->memory;
2799 		break;
2800 	case _MEMSWAP:
2801 		counter = &memcg->memsw;
2802 		break;
2803 	case _KMEM:
2804 		counter = &memcg->kmem;
2805 		break;
2806 	case _TCP:
2807 		counter = &memcg->tcpmem;
2808 		break;
2809 	default:
2810 		BUG();
2811 	}
2812 
2813 	switch (MEMFILE_ATTR(cft->private)) {
2814 	case RES_USAGE:
2815 		if (counter == &memcg->memory)
2816 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2817 		if (counter == &memcg->memsw)
2818 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2819 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2820 	case RES_LIMIT:
2821 		return (u64)counter->limit * PAGE_SIZE;
2822 	case RES_MAX_USAGE:
2823 		return (u64)counter->watermark * PAGE_SIZE;
2824 	case RES_FAILCNT:
2825 		return counter->failcnt;
2826 	case RES_SOFT_LIMIT:
2827 		return (u64)memcg->soft_limit * PAGE_SIZE;
2828 	default:
2829 		BUG();
2830 	}
2831 }
2832 
2833 #ifndef CONFIG_SLOB
2834 static int memcg_online_kmem(struct mem_cgroup *memcg)
2835 {
2836 	int memcg_id;
2837 
2838 	if (cgroup_memory_nokmem)
2839 		return 0;
2840 
2841 	BUG_ON(memcg->kmemcg_id >= 0);
2842 	BUG_ON(memcg->kmem_state);
2843 
2844 	memcg_id = memcg_alloc_cache_id();
2845 	if (memcg_id < 0)
2846 		return memcg_id;
2847 
2848 	static_branch_inc(&memcg_kmem_enabled_key);
2849 	/*
2850 	 * A memory cgroup is considered kmem-online as soon as it gets
2851 	 * kmemcg_id. Setting the id after enabling static branching will
2852 	 * guarantee no one starts accounting before all call sites are
2853 	 * patched.
2854 	 */
2855 	memcg->kmemcg_id = memcg_id;
2856 	memcg->kmem_state = KMEM_ONLINE;
2857 
2858 	return 0;
2859 }
2860 
2861 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2862 {
2863 	struct cgroup_subsys_state *css;
2864 	struct mem_cgroup *parent, *child;
2865 	int kmemcg_id;
2866 
2867 	if (memcg->kmem_state != KMEM_ONLINE)
2868 		return;
2869 	/*
2870 	 * Clear the online state before clearing memcg_caches array
2871 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2872 	 * guarantees that no cache will be created for this cgroup
2873 	 * after we are done (see memcg_create_kmem_cache()).
2874 	 */
2875 	memcg->kmem_state = KMEM_ALLOCATED;
2876 
2877 	memcg_deactivate_kmem_caches(memcg);
2878 
2879 	kmemcg_id = memcg->kmemcg_id;
2880 	BUG_ON(kmemcg_id < 0);
2881 
2882 	parent = parent_mem_cgroup(memcg);
2883 	if (!parent)
2884 		parent = root_mem_cgroup;
2885 
2886 	/*
2887 	 * Change kmemcg_id of this cgroup and all its descendants to the
2888 	 * parent's id, and then move all entries from this cgroup's list_lrus
2889 	 * to ones of the parent. After we have finished, all list_lrus
2890 	 * corresponding to this cgroup are guaranteed to remain empty. The
2891 	 * ordering is imposed by list_lru_node->lock taken by
2892 	 * memcg_drain_all_list_lrus().
2893 	 */
2894 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2895 	css_for_each_descendant_pre(css, &memcg->css) {
2896 		child = mem_cgroup_from_css(css);
2897 		BUG_ON(child->kmemcg_id != kmemcg_id);
2898 		child->kmemcg_id = parent->kmemcg_id;
2899 		if (!memcg->use_hierarchy)
2900 			break;
2901 	}
2902 	rcu_read_unlock();
2903 
2904 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905 
2906 	memcg_free_cache_id(kmemcg_id);
2907 }
2908 
2909 static void memcg_free_kmem(struct mem_cgroup *memcg)
2910 {
2911 	/* css_alloc() failed, offlining didn't happen */
2912 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913 		memcg_offline_kmem(memcg);
2914 
2915 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2916 		memcg_destroy_kmem_caches(memcg);
2917 		static_branch_dec(&memcg_kmem_enabled_key);
2918 		WARN_ON(page_counter_read(&memcg->kmem));
2919 	}
2920 }
2921 #else
2922 static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 {
2924 	return 0;
2925 }
2926 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927 {
2928 }
2929 static void memcg_free_kmem(struct mem_cgroup *memcg)
2930 {
2931 }
2932 #endif /* !CONFIG_SLOB */
2933 
2934 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935 				   unsigned long limit)
2936 {
2937 	int ret;
2938 
2939 	mutex_lock(&memcg_limit_mutex);
2940 	ret = page_counter_limit(&memcg->kmem, limit);
2941 	mutex_unlock(&memcg_limit_mutex);
2942 	return ret;
2943 }
2944 
2945 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946 {
2947 	int ret;
2948 
2949 	mutex_lock(&memcg_limit_mutex);
2950 
2951 	ret = page_counter_limit(&memcg->tcpmem, limit);
2952 	if (ret)
2953 		goto out;
2954 
2955 	if (!memcg->tcpmem_active) {
2956 		/*
2957 		 * The active flag needs to be written after the static_key
2958 		 * update. This is what guarantees that the socket activation
2959 		 * function is the last one to run. See sock_update_memcg() for
2960 		 * details, and note that we don't mark any socket as belonging
2961 		 * to this memcg until that flag is up.
2962 		 *
2963 		 * We need to do this, because static_keys will span multiple
2964 		 * sites, but we can't control their order. If we mark a socket
2965 		 * as accounted, but the accounting functions are not patched in
2966 		 * yet, we'll lose accounting.
2967 		 *
2968 		 * We never race with the readers in sock_update_memcg(),
2969 		 * because when this value change, the code to process it is not
2970 		 * patched in yet.
2971 		 */
2972 		static_branch_inc(&memcg_sockets_enabled_key);
2973 		memcg->tcpmem_active = true;
2974 	}
2975 out:
2976 	mutex_unlock(&memcg_limit_mutex);
2977 	return ret;
2978 }
2979 
2980 /*
2981  * The user of this function is...
2982  * RES_LIMIT.
2983  */
2984 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 				char *buf, size_t nbytes, loff_t off)
2986 {
2987 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988 	unsigned long nr_pages;
2989 	int ret;
2990 
2991 	buf = strstrip(buf);
2992 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 	if (ret)
2994 		return ret;
2995 
2996 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997 	case RES_LIMIT:
2998 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 			ret = -EINVAL;
3000 			break;
3001 		}
3002 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 		case _MEM:
3004 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005 			break;
3006 		case _MEMSWAP:
3007 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008 			break;
3009 		case _KMEM:
3010 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 			break;
3012 		case _TCP:
3013 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3014 			break;
3015 		}
3016 		break;
3017 	case RES_SOFT_LIMIT:
3018 		memcg->soft_limit = nr_pages;
3019 		ret = 0;
3020 		break;
3021 	}
3022 	return ret ?: nbytes;
3023 }
3024 
3025 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026 				size_t nbytes, loff_t off)
3027 {
3028 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029 	struct page_counter *counter;
3030 
3031 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032 	case _MEM:
3033 		counter = &memcg->memory;
3034 		break;
3035 	case _MEMSWAP:
3036 		counter = &memcg->memsw;
3037 		break;
3038 	case _KMEM:
3039 		counter = &memcg->kmem;
3040 		break;
3041 	case _TCP:
3042 		counter = &memcg->tcpmem;
3043 		break;
3044 	default:
3045 		BUG();
3046 	}
3047 
3048 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049 	case RES_MAX_USAGE:
3050 		page_counter_reset_watermark(counter);
3051 		break;
3052 	case RES_FAILCNT:
3053 		counter->failcnt = 0;
3054 		break;
3055 	default:
3056 		BUG();
3057 	}
3058 
3059 	return nbytes;
3060 }
3061 
3062 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063 					struct cftype *cft)
3064 {
3065 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 }
3067 
3068 #ifdef CONFIG_MMU
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 					struct cftype *cft, u64 val)
3071 {
3072 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073 
3074 	if (val & ~MOVE_MASK)
3075 		return -EINVAL;
3076 
3077 	/*
3078 	 * No kind of locking is needed in here, because ->can_attach() will
3079 	 * check this value once in the beginning of the process, and then carry
3080 	 * on with stale data. This means that changes to this value will only
3081 	 * affect task migrations starting after the change.
3082 	 */
3083 	memcg->move_charge_at_immigrate = val;
3084 	return 0;
3085 }
3086 #else
3087 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 					struct cftype *cft, u64 val)
3089 {
3090 	return -ENOSYS;
3091 }
3092 #endif
3093 
3094 #ifdef CONFIG_NUMA
3095 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096 {
3097 	struct numa_stat {
3098 		const char *name;
3099 		unsigned int lru_mask;
3100 	};
3101 
3102 	static const struct numa_stat stats[] = {
3103 		{ "total", LRU_ALL },
3104 		{ "file", LRU_ALL_FILE },
3105 		{ "anon", LRU_ALL_ANON },
3106 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3107 	};
3108 	const struct numa_stat *stat;
3109 	int nid;
3110 	unsigned long nr;
3111 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112 
3113 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115 		seq_printf(m, "%s=%lu", stat->name, nr);
3116 		for_each_node_state(nid, N_MEMORY) {
3117 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118 							  stat->lru_mask);
3119 			seq_printf(m, " N%d=%lu", nid, nr);
3120 		}
3121 		seq_putc(m, '\n');
3122 	}
3123 
3124 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 		struct mem_cgroup *iter;
3126 
3127 		nr = 0;
3128 		for_each_mem_cgroup_tree(iter, memcg)
3129 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131 		for_each_node_state(nid, N_MEMORY) {
3132 			nr = 0;
3133 			for_each_mem_cgroup_tree(iter, memcg)
3134 				nr += mem_cgroup_node_nr_lru_pages(
3135 					iter, nid, stat->lru_mask);
3136 			seq_printf(m, " N%d=%lu", nid, nr);
3137 		}
3138 		seq_putc(m, '\n');
3139 	}
3140 
3141 	return 0;
3142 }
3143 #endif /* CONFIG_NUMA */
3144 
3145 static int memcg_stat_show(struct seq_file *m, void *v)
3146 {
3147 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148 	unsigned long memory, memsw;
3149 	struct mem_cgroup *mi;
3150 	unsigned int i;
3151 
3152 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153 		     MEM_CGROUP_STAT_NSTATS);
3154 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155 		     MEM_CGROUP_EVENTS_NSTATS);
3156 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157 
3158 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160 			continue;
3161 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163 	}
3164 
3165 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167 			   mem_cgroup_read_events(memcg, i));
3168 
3169 	for (i = 0; i < NR_LRU_LISTS; i++)
3170 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172 
3173 	/* Hierarchical information */
3174 	memory = memsw = PAGE_COUNTER_MAX;
3175 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176 		memory = min(memory, mi->memory.limit);
3177 		memsw = min(memsw, mi->memsw.limit);
3178 	}
3179 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3180 		   (u64)memory * PAGE_SIZE);
3181 	if (do_memsw_account())
3182 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183 			   (u64)memsw * PAGE_SIZE);
3184 
3185 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186 		unsigned long long val = 0;
3187 
3188 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189 			continue;
3190 		for_each_mem_cgroup_tree(mi, memcg)
3191 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193 	}
3194 
3195 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196 		unsigned long long val = 0;
3197 
3198 		for_each_mem_cgroup_tree(mi, memcg)
3199 			val += mem_cgroup_read_events(mi, i);
3200 		seq_printf(m, "total_%s %llu\n",
3201 			   mem_cgroup_events_names[i], val);
3202 	}
3203 
3204 	for (i = 0; i < NR_LRU_LISTS; i++) {
3205 		unsigned long long val = 0;
3206 
3207 		for_each_mem_cgroup_tree(mi, memcg)
3208 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210 	}
3211 
3212 #ifdef CONFIG_DEBUG_VM
3213 	{
3214 		int nid, zid;
3215 		struct mem_cgroup_per_zone *mz;
3216 		struct zone_reclaim_stat *rstat;
3217 		unsigned long recent_rotated[2] = {0, 0};
3218 		unsigned long recent_scanned[2] = {0, 0};
3219 
3220 		for_each_online_node(nid)
3221 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3222 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3223 				rstat = &mz->lruvec.reclaim_stat;
3224 
3225 				recent_rotated[0] += rstat->recent_rotated[0];
3226 				recent_rotated[1] += rstat->recent_rotated[1];
3227 				recent_scanned[0] += rstat->recent_scanned[0];
3228 				recent_scanned[1] += rstat->recent_scanned[1];
3229 			}
3230 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3231 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3232 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3233 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3234 	}
3235 #endif
3236 
3237 	return 0;
3238 }
3239 
3240 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3241 				      struct cftype *cft)
3242 {
3243 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3244 
3245 	return mem_cgroup_swappiness(memcg);
3246 }
3247 
3248 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3249 				       struct cftype *cft, u64 val)
3250 {
3251 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3252 
3253 	if (val > 100)
3254 		return -EINVAL;
3255 
3256 	if (css->parent)
3257 		memcg->swappiness = val;
3258 	else
3259 		vm_swappiness = val;
3260 
3261 	return 0;
3262 }
3263 
3264 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3265 {
3266 	struct mem_cgroup_threshold_ary *t;
3267 	unsigned long usage;
3268 	int i;
3269 
3270 	rcu_read_lock();
3271 	if (!swap)
3272 		t = rcu_dereference(memcg->thresholds.primary);
3273 	else
3274 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3275 
3276 	if (!t)
3277 		goto unlock;
3278 
3279 	usage = mem_cgroup_usage(memcg, swap);
3280 
3281 	/*
3282 	 * current_threshold points to threshold just below or equal to usage.
3283 	 * If it's not true, a threshold was crossed after last
3284 	 * call of __mem_cgroup_threshold().
3285 	 */
3286 	i = t->current_threshold;
3287 
3288 	/*
3289 	 * Iterate backward over array of thresholds starting from
3290 	 * current_threshold and check if a threshold is crossed.
3291 	 * If none of thresholds below usage is crossed, we read
3292 	 * only one element of the array here.
3293 	 */
3294 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3295 		eventfd_signal(t->entries[i].eventfd, 1);
3296 
3297 	/* i = current_threshold + 1 */
3298 	i++;
3299 
3300 	/*
3301 	 * Iterate forward over array of thresholds starting from
3302 	 * current_threshold+1 and check if a threshold is crossed.
3303 	 * If none of thresholds above usage is crossed, we read
3304 	 * only one element of the array here.
3305 	 */
3306 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3307 		eventfd_signal(t->entries[i].eventfd, 1);
3308 
3309 	/* Update current_threshold */
3310 	t->current_threshold = i - 1;
3311 unlock:
3312 	rcu_read_unlock();
3313 }
3314 
3315 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3316 {
3317 	while (memcg) {
3318 		__mem_cgroup_threshold(memcg, false);
3319 		if (do_memsw_account())
3320 			__mem_cgroup_threshold(memcg, true);
3321 
3322 		memcg = parent_mem_cgroup(memcg);
3323 	}
3324 }
3325 
3326 static int compare_thresholds(const void *a, const void *b)
3327 {
3328 	const struct mem_cgroup_threshold *_a = a;
3329 	const struct mem_cgroup_threshold *_b = b;
3330 
3331 	if (_a->threshold > _b->threshold)
3332 		return 1;
3333 
3334 	if (_a->threshold < _b->threshold)
3335 		return -1;
3336 
3337 	return 0;
3338 }
3339 
3340 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3341 {
3342 	struct mem_cgroup_eventfd_list *ev;
3343 
3344 	spin_lock(&memcg_oom_lock);
3345 
3346 	list_for_each_entry(ev, &memcg->oom_notify, list)
3347 		eventfd_signal(ev->eventfd, 1);
3348 
3349 	spin_unlock(&memcg_oom_lock);
3350 	return 0;
3351 }
3352 
3353 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3354 {
3355 	struct mem_cgroup *iter;
3356 
3357 	for_each_mem_cgroup_tree(iter, memcg)
3358 		mem_cgroup_oom_notify_cb(iter);
3359 }
3360 
3361 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3362 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3363 {
3364 	struct mem_cgroup_thresholds *thresholds;
3365 	struct mem_cgroup_threshold_ary *new;
3366 	unsigned long threshold;
3367 	unsigned long usage;
3368 	int i, size, ret;
3369 
3370 	ret = page_counter_memparse(args, "-1", &threshold);
3371 	if (ret)
3372 		return ret;
3373 
3374 	mutex_lock(&memcg->thresholds_lock);
3375 
3376 	if (type == _MEM) {
3377 		thresholds = &memcg->thresholds;
3378 		usage = mem_cgroup_usage(memcg, false);
3379 	} else if (type == _MEMSWAP) {
3380 		thresholds = &memcg->memsw_thresholds;
3381 		usage = mem_cgroup_usage(memcg, true);
3382 	} else
3383 		BUG();
3384 
3385 	/* Check if a threshold crossed before adding a new one */
3386 	if (thresholds->primary)
3387 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3388 
3389 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3390 
3391 	/* Allocate memory for new array of thresholds */
3392 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3393 			GFP_KERNEL);
3394 	if (!new) {
3395 		ret = -ENOMEM;
3396 		goto unlock;
3397 	}
3398 	new->size = size;
3399 
3400 	/* Copy thresholds (if any) to new array */
3401 	if (thresholds->primary) {
3402 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3403 				sizeof(struct mem_cgroup_threshold));
3404 	}
3405 
3406 	/* Add new threshold */
3407 	new->entries[size - 1].eventfd = eventfd;
3408 	new->entries[size - 1].threshold = threshold;
3409 
3410 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3411 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3412 			compare_thresholds, NULL);
3413 
3414 	/* Find current threshold */
3415 	new->current_threshold = -1;
3416 	for (i = 0; i < size; i++) {
3417 		if (new->entries[i].threshold <= usage) {
3418 			/*
3419 			 * new->current_threshold will not be used until
3420 			 * rcu_assign_pointer(), so it's safe to increment
3421 			 * it here.
3422 			 */
3423 			++new->current_threshold;
3424 		} else
3425 			break;
3426 	}
3427 
3428 	/* Free old spare buffer and save old primary buffer as spare */
3429 	kfree(thresholds->spare);
3430 	thresholds->spare = thresholds->primary;
3431 
3432 	rcu_assign_pointer(thresholds->primary, new);
3433 
3434 	/* To be sure that nobody uses thresholds */
3435 	synchronize_rcu();
3436 
3437 unlock:
3438 	mutex_unlock(&memcg->thresholds_lock);
3439 
3440 	return ret;
3441 }
3442 
3443 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3444 	struct eventfd_ctx *eventfd, const char *args)
3445 {
3446 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3447 }
3448 
3449 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3450 	struct eventfd_ctx *eventfd, const char *args)
3451 {
3452 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3453 }
3454 
3455 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3456 	struct eventfd_ctx *eventfd, enum res_type type)
3457 {
3458 	struct mem_cgroup_thresholds *thresholds;
3459 	struct mem_cgroup_threshold_ary *new;
3460 	unsigned long usage;
3461 	int i, j, size;
3462 
3463 	mutex_lock(&memcg->thresholds_lock);
3464 
3465 	if (type == _MEM) {
3466 		thresholds = &memcg->thresholds;
3467 		usage = mem_cgroup_usage(memcg, false);
3468 	} else if (type == _MEMSWAP) {
3469 		thresholds = &memcg->memsw_thresholds;
3470 		usage = mem_cgroup_usage(memcg, true);
3471 	} else
3472 		BUG();
3473 
3474 	if (!thresholds->primary)
3475 		goto unlock;
3476 
3477 	/* Check if a threshold crossed before removing */
3478 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3479 
3480 	/* Calculate new number of threshold */
3481 	size = 0;
3482 	for (i = 0; i < thresholds->primary->size; i++) {
3483 		if (thresholds->primary->entries[i].eventfd != eventfd)
3484 			size++;
3485 	}
3486 
3487 	new = thresholds->spare;
3488 
3489 	/* Set thresholds array to NULL if we don't have thresholds */
3490 	if (!size) {
3491 		kfree(new);
3492 		new = NULL;
3493 		goto swap_buffers;
3494 	}
3495 
3496 	new->size = size;
3497 
3498 	/* Copy thresholds and find current threshold */
3499 	new->current_threshold = -1;
3500 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3501 		if (thresholds->primary->entries[i].eventfd == eventfd)
3502 			continue;
3503 
3504 		new->entries[j] = thresholds->primary->entries[i];
3505 		if (new->entries[j].threshold <= usage) {
3506 			/*
3507 			 * new->current_threshold will not be used
3508 			 * until rcu_assign_pointer(), so it's safe to increment
3509 			 * it here.
3510 			 */
3511 			++new->current_threshold;
3512 		}
3513 		j++;
3514 	}
3515 
3516 swap_buffers:
3517 	/* Swap primary and spare array */
3518 	thresholds->spare = thresholds->primary;
3519 
3520 	rcu_assign_pointer(thresholds->primary, new);
3521 
3522 	/* To be sure that nobody uses thresholds */
3523 	synchronize_rcu();
3524 
3525 	/* If all events are unregistered, free the spare array */
3526 	if (!new) {
3527 		kfree(thresholds->spare);
3528 		thresholds->spare = NULL;
3529 	}
3530 unlock:
3531 	mutex_unlock(&memcg->thresholds_lock);
3532 }
3533 
3534 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3535 	struct eventfd_ctx *eventfd)
3536 {
3537 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3538 }
3539 
3540 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3541 	struct eventfd_ctx *eventfd)
3542 {
3543 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3544 }
3545 
3546 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3547 	struct eventfd_ctx *eventfd, const char *args)
3548 {
3549 	struct mem_cgroup_eventfd_list *event;
3550 
3551 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3552 	if (!event)
3553 		return -ENOMEM;
3554 
3555 	spin_lock(&memcg_oom_lock);
3556 
3557 	event->eventfd = eventfd;
3558 	list_add(&event->list, &memcg->oom_notify);
3559 
3560 	/* already in OOM ? */
3561 	if (memcg->under_oom)
3562 		eventfd_signal(eventfd, 1);
3563 	spin_unlock(&memcg_oom_lock);
3564 
3565 	return 0;
3566 }
3567 
3568 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3569 	struct eventfd_ctx *eventfd)
3570 {
3571 	struct mem_cgroup_eventfd_list *ev, *tmp;
3572 
3573 	spin_lock(&memcg_oom_lock);
3574 
3575 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3576 		if (ev->eventfd == eventfd) {
3577 			list_del(&ev->list);
3578 			kfree(ev);
3579 		}
3580 	}
3581 
3582 	spin_unlock(&memcg_oom_lock);
3583 }
3584 
3585 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3586 {
3587 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3588 
3589 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3590 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3591 	return 0;
3592 }
3593 
3594 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3595 	struct cftype *cft, u64 val)
3596 {
3597 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3598 
3599 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3600 	if (!css->parent || !((val == 0) || (val == 1)))
3601 		return -EINVAL;
3602 
3603 	memcg->oom_kill_disable = val;
3604 	if (!val)
3605 		memcg_oom_recover(memcg);
3606 
3607 	return 0;
3608 }
3609 
3610 #ifdef CONFIG_CGROUP_WRITEBACK
3611 
3612 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3613 {
3614 	return &memcg->cgwb_list;
3615 }
3616 
3617 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3618 {
3619 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3620 }
3621 
3622 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3623 {
3624 	wb_domain_exit(&memcg->cgwb_domain);
3625 }
3626 
3627 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3628 {
3629 	wb_domain_size_changed(&memcg->cgwb_domain);
3630 }
3631 
3632 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3633 {
3634 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3635 
3636 	if (!memcg->css.parent)
3637 		return NULL;
3638 
3639 	return &memcg->cgwb_domain;
3640 }
3641 
3642 /**
3643  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3644  * @wb: bdi_writeback in question
3645  * @pfilepages: out parameter for number of file pages
3646  * @pheadroom: out parameter for number of allocatable pages according to memcg
3647  * @pdirty: out parameter for number of dirty pages
3648  * @pwriteback: out parameter for number of pages under writeback
3649  *
3650  * Determine the numbers of file, headroom, dirty, and writeback pages in
3651  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3652  * is a bit more involved.
3653  *
3654  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3655  * headroom is calculated as the lowest headroom of itself and the
3656  * ancestors.  Note that this doesn't consider the actual amount of
3657  * available memory in the system.  The caller should further cap
3658  * *@pheadroom accordingly.
3659  */
3660 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3661 			 unsigned long *pheadroom, unsigned long *pdirty,
3662 			 unsigned long *pwriteback)
3663 {
3664 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3665 	struct mem_cgroup *parent;
3666 
3667 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3668 
3669 	/* this should eventually include NR_UNSTABLE_NFS */
3670 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3671 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3672 						     (1 << LRU_ACTIVE_FILE));
3673 	*pheadroom = PAGE_COUNTER_MAX;
3674 
3675 	while ((parent = parent_mem_cgroup(memcg))) {
3676 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3677 		unsigned long used = page_counter_read(&memcg->memory);
3678 
3679 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3680 		memcg = parent;
3681 	}
3682 }
3683 
3684 #else	/* CONFIG_CGROUP_WRITEBACK */
3685 
3686 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3687 {
3688 	return 0;
3689 }
3690 
3691 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3692 {
3693 }
3694 
3695 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3696 {
3697 }
3698 
3699 #endif	/* CONFIG_CGROUP_WRITEBACK */
3700 
3701 /*
3702  * DO NOT USE IN NEW FILES.
3703  *
3704  * "cgroup.event_control" implementation.
3705  *
3706  * This is way over-engineered.  It tries to support fully configurable
3707  * events for each user.  Such level of flexibility is completely
3708  * unnecessary especially in the light of the planned unified hierarchy.
3709  *
3710  * Please deprecate this and replace with something simpler if at all
3711  * possible.
3712  */
3713 
3714 /*
3715  * Unregister event and free resources.
3716  *
3717  * Gets called from workqueue.
3718  */
3719 static void memcg_event_remove(struct work_struct *work)
3720 {
3721 	struct mem_cgroup_event *event =
3722 		container_of(work, struct mem_cgroup_event, remove);
3723 	struct mem_cgroup *memcg = event->memcg;
3724 
3725 	remove_wait_queue(event->wqh, &event->wait);
3726 
3727 	event->unregister_event(memcg, event->eventfd);
3728 
3729 	/* Notify userspace the event is going away. */
3730 	eventfd_signal(event->eventfd, 1);
3731 
3732 	eventfd_ctx_put(event->eventfd);
3733 	kfree(event);
3734 	css_put(&memcg->css);
3735 }
3736 
3737 /*
3738  * Gets called on POLLHUP on eventfd when user closes it.
3739  *
3740  * Called with wqh->lock held and interrupts disabled.
3741  */
3742 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3743 			    int sync, void *key)
3744 {
3745 	struct mem_cgroup_event *event =
3746 		container_of(wait, struct mem_cgroup_event, wait);
3747 	struct mem_cgroup *memcg = event->memcg;
3748 	unsigned long flags = (unsigned long)key;
3749 
3750 	if (flags & POLLHUP) {
3751 		/*
3752 		 * If the event has been detached at cgroup removal, we
3753 		 * can simply return knowing the other side will cleanup
3754 		 * for us.
3755 		 *
3756 		 * We can't race against event freeing since the other
3757 		 * side will require wqh->lock via remove_wait_queue(),
3758 		 * which we hold.
3759 		 */
3760 		spin_lock(&memcg->event_list_lock);
3761 		if (!list_empty(&event->list)) {
3762 			list_del_init(&event->list);
3763 			/*
3764 			 * We are in atomic context, but cgroup_event_remove()
3765 			 * may sleep, so we have to call it in workqueue.
3766 			 */
3767 			schedule_work(&event->remove);
3768 		}
3769 		spin_unlock(&memcg->event_list_lock);
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 static void memcg_event_ptable_queue_proc(struct file *file,
3776 		wait_queue_head_t *wqh, poll_table *pt)
3777 {
3778 	struct mem_cgroup_event *event =
3779 		container_of(pt, struct mem_cgroup_event, pt);
3780 
3781 	event->wqh = wqh;
3782 	add_wait_queue(wqh, &event->wait);
3783 }
3784 
3785 /*
3786  * DO NOT USE IN NEW FILES.
3787  *
3788  * Parse input and register new cgroup event handler.
3789  *
3790  * Input must be in format '<event_fd> <control_fd> <args>'.
3791  * Interpretation of args is defined by control file implementation.
3792  */
3793 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3794 					 char *buf, size_t nbytes, loff_t off)
3795 {
3796 	struct cgroup_subsys_state *css = of_css(of);
3797 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3798 	struct mem_cgroup_event *event;
3799 	struct cgroup_subsys_state *cfile_css;
3800 	unsigned int efd, cfd;
3801 	struct fd efile;
3802 	struct fd cfile;
3803 	const char *name;
3804 	char *endp;
3805 	int ret;
3806 
3807 	buf = strstrip(buf);
3808 
3809 	efd = simple_strtoul(buf, &endp, 10);
3810 	if (*endp != ' ')
3811 		return -EINVAL;
3812 	buf = endp + 1;
3813 
3814 	cfd = simple_strtoul(buf, &endp, 10);
3815 	if ((*endp != ' ') && (*endp != '\0'))
3816 		return -EINVAL;
3817 	buf = endp + 1;
3818 
3819 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3820 	if (!event)
3821 		return -ENOMEM;
3822 
3823 	event->memcg = memcg;
3824 	INIT_LIST_HEAD(&event->list);
3825 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3826 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3827 	INIT_WORK(&event->remove, memcg_event_remove);
3828 
3829 	efile = fdget(efd);
3830 	if (!efile.file) {
3831 		ret = -EBADF;
3832 		goto out_kfree;
3833 	}
3834 
3835 	event->eventfd = eventfd_ctx_fileget(efile.file);
3836 	if (IS_ERR(event->eventfd)) {
3837 		ret = PTR_ERR(event->eventfd);
3838 		goto out_put_efile;
3839 	}
3840 
3841 	cfile = fdget(cfd);
3842 	if (!cfile.file) {
3843 		ret = -EBADF;
3844 		goto out_put_eventfd;
3845 	}
3846 
3847 	/* the process need read permission on control file */
3848 	/* AV: shouldn't we check that it's been opened for read instead? */
3849 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3850 	if (ret < 0)
3851 		goto out_put_cfile;
3852 
3853 	/*
3854 	 * Determine the event callbacks and set them in @event.  This used
3855 	 * to be done via struct cftype but cgroup core no longer knows
3856 	 * about these events.  The following is crude but the whole thing
3857 	 * is for compatibility anyway.
3858 	 *
3859 	 * DO NOT ADD NEW FILES.
3860 	 */
3861 	name = cfile.file->f_path.dentry->d_name.name;
3862 
3863 	if (!strcmp(name, "memory.usage_in_bytes")) {
3864 		event->register_event = mem_cgroup_usage_register_event;
3865 		event->unregister_event = mem_cgroup_usage_unregister_event;
3866 	} else if (!strcmp(name, "memory.oom_control")) {
3867 		event->register_event = mem_cgroup_oom_register_event;
3868 		event->unregister_event = mem_cgroup_oom_unregister_event;
3869 	} else if (!strcmp(name, "memory.pressure_level")) {
3870 		event->register_event = vmpressure_register_event;
3871 		event->unregister_event = vmpressure_unregister_event;
3872 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3873 		event->register_event = memsw_cgroup_usage_register_event;
3874 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3875 	} else {
3876 		ret = -EINVAL;
3877 		goto out_put_cfile;
3878 	}
3879 
3880 	/*
3881 	 * Verify @cfile should belong to @css.  Also, remaining events are
3882 	 * automatically removed on cgroup destruction but the removal is
3883 	 * asynchronous, so take an extra ref on @css.
3884 	 */
3885 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3886 					       &memory_cgrp_subsys);
3887 	ret = -EINVAL;
3888 	if (IS_ERR(cfile_css))
3889 		goto out_put_cfile;
3890 	if (cfile_css != css) {
3891 		css_put(cfile_css);
3892 		goto out_put_cfile;
3893 	}
3894 
3895 	ret = event->register_event(memcg, event->eventfd, buf);
3896 	if (ret)
3897 		goto out_put_css;
3898 
3899 	efile.file->f_op->poll(efile.file, &event->pt);
3900 
3901 	spin_lock(&memcg->event_list_lock);
3902 	list_add(&event->list, &memcg->event_list);
3903 	spin_unlock(&memcg->event_list_lock);
3904 
3905 	fdput(cfile);
3906 	fdput(efile);
3907 
3908 	return nbytes;
3909 
3910 out_put_css:
3911 	css_put(css);
3912 out_put_cfile:
3913 	fdput(cfile);
3914 out_put_eventfd:
3915 	eventfd_ctx_put(event->eventfd);
3916 out_put_efile:
3917 	fdput(efile);
3918 out_kfree:
3919 	kfree(event);
3920 
3921 	return ret;
3922 }
3923 
3924 static struct cftype mem_cgroup_legacy_files[] = {
3925 	{
3926 		.name = "usage_in_bytes",
3927 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3928 		.read_u64 = mem_cgroup_read_u64,
3929 	},
3930 	{
3931 		.name = "max_usage_in_bytes",
3932 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3933 		.write = mem_cgroup_reset,
3934 		.read_u64 = mem_cgroup_read_u64,
3935 	},
3936 	{
3937 		.name = "limit_in_bytes",
3938 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3939 		.write = mem_cgroup_write,
3940 		.read_u64 = mem_cgroup_read_u64,
3941 	},
3942 	{
3943 		.name = "soft_limit_in_bytes",
3944 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3945 		.write = mem_cgroup_write,
3946 		.read_u64 = mem_cgroup_read_u64,
3947 	},
3948 	{
3949 		.name = "failcnt",
3950 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3951 		.write = mem_cgroup_reset,
3952 		.read_u64 = mem_cgroup_read_u64,
3953 	},
3954 	{
3955 		.name = "stat",
3956 		.seq_show = memcg_stat_show,
3957 	},
3958 	{
3959 		.name = "force_empty",
3960 		.write = mem_cgroup_force_empty_write,
3961 	},
3962 	{
3963 		.name = "use_hierarchy",
3964 		.write_u64 = mem_cgroup_hierarchy_write,
3965 		.read_u64 = mem_cgroup_hierarchy_read,
3966 	},
3967 	{
3968 		.name = "cgroup.event_control",		/* XXX: for compat */
3969 		.write = memcg_write_event_control,
3970 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3971 	},
3972 	{
3973 		.name = "swappiness",
3974 		.read_u64 = mem_cgroup_swappiness_read,
3975 		.write_u64 = mem_cgroup_swappiness_write,
3976 	},
3977 	{
3978 		.name = "move_charge_at_immigrate",
3979 		.read_u64 = mem_cgroup_move_charge_read,
3980 		.write_u64 = mem_cgroup_move_charge_write,
3981 	},
3982 	{
3983 		.name = "oom_control",
3984 		.seq_show = mem_cgroup_oom_control_read,
3985 		.write_u64 = mem_cgroup_oom_control_write,
3986 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3987 	},
3988 	{
3989 		.name = "pressure_level",
3990 	},
3991 #ifdef CONFIG_NUMA
3992 	{
3993 		.name = "numa_stat",
3994 		.seq_show = memcg_numa_stat_show,
3995 	},
3996 #endif
3997 	{
3998 		.name = "kmem.limit_in_bytes",
3999 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4000 		.write = mem_cgroup_write,
4001 		.read_u64 = mem_cgroup_read_u64,
4002 	},
4003 	{
4004 		.name = "kmem.usage_in_bytes",
4005 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4006 		.read_u64 = mem_cgroup_read_u64,
4007 	},
4008 	{
4009 		.name = "kmem.failcnt",
4010 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4011 		.write = mem_cgroup_reset,
4012 		.read_u64 = mem_cgroup_read_u64,
4013 	},
4014 	{
4015 		.name = "kmem.max_usage_in_bytes",
4016 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4017 		.write = mem_cgroup_reset,
4018 		.read_u64 = mem_cgroup_read_u64,
4019 	},
4020 #ifdef CONFIG_SLABINFO
4021 	{
4022 		.name = "kmem.slabinfo",
4023 		.seq_start = slab_start,
4024 		.seq_next = slab_next,
4025 		.seq_stop = slab_stop,
4026 		.seq_show = memcg_slab_show,
4027 	},
4028 #endif
4029 	{
4030 		.name = "kmem.tcp.limit_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4032 		.write = mem_cgroup_write,
4033 		.read_u64 = mem_cgroup_read_u64,
4034 	},
4035 	{
4036 		.name = "kmem.tcp.usage_in_bytes",
4037 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4038 		.read_u64 = mem_cgroup_read_u64,
4039 	},
4040 	{
4041 		.name = "kmem.tcp.failcnt",
4042 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4043 		.write = mem_cgroup_reset,
4044 		.read_u64 = mem_cgroup_read_u64,
4045 	},
4046 	{
4047 		.name = "kmem.tcp.max_usage_in_bytes",
4048 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4049 		.write = mem_cgroup_reset,
4050 		.read_u64 = mem_cgroup_read_u64,
4051 	},
4052 	{ },	/* terminate */
4053 };
4054 
4055 /*
4056  * Private memory cgroup IDR
4057  *
4058  * Swap-out records and page cache shadow entries need to store memcg
4059  * references in constrained space, so we maintain an ID space that is
4060  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4061  * memory-controlled cgroups to 64k.
4062  *
4063  * However, there usually are many references to the oflline CSS after
4064  * the cgroup has been destroyed, such as page cache or reclaimable
4065  * slab objects, that don't need to hang on to the ID. We want to keep
4066  * those dead CSS from occupying IDs, or we might quickly exhaust the
4067  * relatively small ID space and prevent the creation of new cgroups
4068  * even when there are much fewer than 64k cgroups - possibly none.
4069  *
4070  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4071  * be freed and recycled when it's no longer needed, which is usually
4072  * when the CSS is offlined.
4073  *
4074  * The only exception to that are records of swapped out tmpfs/shmem
4075  * pages that need to be attributed to live ancestors on swapin. But
4076  * those references are manageable from userspace.
4077  */
4078 
4079 static DEFINE_IDR(mem_cgroup_idr);
4080 
4081 static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082 {
4083 	atomic_inc(&memcg->id.ref);
4084 }
4085 
4086 static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087 {
4088 	if (atomic_dec_and_test(&memcg->id.ref)) {
4089 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4090 		memcg->id.id = 0;
4091 
4092 		/* Memcg ID pins CSS */
4093 		css_put(&memcg->css);
4094 	}
4095 }
4096 
4097 /**
4098  * mem_cgroup_from_id - look up a memcg from a memcg id
4099  * @id: the memcg id to look up
4100  *
4101  * Caller must hold rcu_read_lock().
4102  */
4103 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4104 {
4105 	WARN_ON_ONCE(!rcu_read_lock_held());
4106 	return idr_find(&mem_cgroup_idr, id);
4107 }
4108 
4109 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4110 {
4111 	struct mem_cgroup_per_node *pn;
4112 	struct mem_cgroup_per_zone *mz;
4113 	int zone, tmp = node;
4114 	/*
4115 	 * This routine is called against possible nodes.
4116 	 * But it's BUG to call kmalloc() against offline node.
4117 	 *
4118 	 * TODO: this routine can waste much memory for nodes which will
4119 	 *       never be onlined. It's better to use memory hotplug callback
4120 	 *       function.
4121 	 */
4122 	if (!node_state(node, N_NORMAL_MEMORY))
4123 		tmp = -1;
4124 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4125 	if (!pn)
4126 		return 1;
4127 
4128 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4129 		mz = &pn->zoneinfo[zone];
4130 		lruvec_init(&mz->lruvec);
4131 		mz->usage_in_excess = 0;
4132 		mz->on_tree = false;
4133 		mz->memcg = memcg;
4134 	}
4135 	memcg->nodeinfo[node] = pn;
4136 	return 0;
4137 }
4138 
4139 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4140 {
4141 	kfree(memcg->nodeinfo[node]);
4142 }
4143 
4144 static void mem_cgroup_free(struct mem_cgroup *memcg)
4145 {
4146 	int node;
4147 
4148 	memcg_wb_domain_exit(memcg);
4149 	for_each_node(node)
4150 		free_mem_cgroup_per_zone_info(memcg, node);
4151 	free_percpu(memcg->stat);
4152 	kfree(memcg);
4153 }
4154 
4155 static struct mem_cgroup *mem_cgroup_alloc(void)
4156 {
4157 	struct mem_cgroup *memcg;
4158 	size_t size;
4159 	int node;
4160 
4161 	size = sizeof(struct mem_cgroup);
4162 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163 
4164 	memcg = kzalloc(size, GFP_KERNEL);
4165 	if (!memcg)
4166 		return NULL;
4167 
4168 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4169 				 1, MEM_CGROUP_ID_MAX,
4170 				 GFP_KERNEL);
4171 	if (memcg->id.id < 0)
4172 		goto fail;
4173 
4174 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 	if (!memcg->stat)
4176 		goto fail;
4177 
4178 	for_each_node(node)
4179 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4180 			goto fail;
4181 
4182 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4183 		goto fail;
4184 
4185 	INIT_WORK(&memcg->high_work, high_work_func);
4186 	memcg->last_scanned_node = MAX_NUMNODES;
4187 	INIT_LIST_HEAD(&memcg->oom_notify);
4188 	mutex_init(&memcg->thresholds_lock);
4189 	spin_lock_init(&memcg->move_lock);
4190 	vmpressure_init(&memcg->vmpressure);
4191 	INIT_LIST_HEAD(&memcg->event_list);
4192 	spin_lock_init(&memcg->event_list_lock);
4193 	memcg->socket_pressure = jiffies;
4194 #ifndef CONFIG_SLOB
4195 	memcg->kmemcg_id = -1;
4196 #endif
4197 #ifdef CONFIG_CGROUP_WRITEBACK
4198 	INIT_LIST_HEAD(&memcg->cgwb_list);
4199 #endif
4200 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4201 	return memcg;
4202 fail:
4203 	if (memcg->id.id > 0)
4204 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4205 	mem_cgroup_free(memcg);
4206 	return NULL;
4207 }
4208 
4209 static struct cgroup_subsys_state * __ref
4210 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4211 {
4212 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4213 	struct mem_cgroup *memcg;
4214 	long error = -ENOMEM;
4215 
4216 	memcg = mem_cgroup_alloc();
4217 	if (!memcg)
4218 		return ERR_PTR(error);
4219 
4220 	memcg->high = PAGE_COUNTER_MAX;
4221 	memcg->soft_limit = PAGE_COUNTER_MAX;
4222 	if (parent) {
4223 		memcg->swappiness = mem_cgroup_swappiness(parent);
4224 		memcg->oom_kill_disable = parent->oom_kill_disable;
4225 	}
4226 	if (parent && parent->use_hierarchy) {
4227 		memcg->use_hierarchy = true;
4228 		page_counter_init(&memcg->memory, &parent->memory);
4229 		page_counter_init(&memcg->swap, &parent->swap);
4230 		page_counter_init(&memcg->memsw, &parent->memsw);
4231 		page_counter_init(&memcg->kmem, &parent->kmem);
4232 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4233 	} else {
4234 		page_counter_init(&memcg->memory, NULL);
4235 		page_counter_init(&memcg->swap, NULL);
4236 		page_counter_init(&memcg->memsw, NULL);
4237 		page_counter_init(&memcg->kmem, NULL);
4238 		page_counter_init(&memcg->tcpmem, NULL);
4239 		/*
4240 		 * Deeper hierachy with use_hierarchy == false doesn't make
4241 		 * much sense so let cgroup subsystem know about this
4242 		 * unfortunate state in our controller.
4243 		 */
4244 		if (parent != root_mem_cgroup)
4245 			memory_cgrp_subsys.broken_hierarchy = true;
4246 	}
4247 
4248 	/* The following stuff does not apply to the root */
4249 	if (!parent) {
4250 		root_mem_cgroup = memcg;
4251 		return &memcg->css;
4252 	}
4253 
4254 	error = memcg_online_kmem(memcg);
4255 	if (error)
4256 		goto fail;
4257 
4258 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4259 		static_branch_inc(&memcg_sockets_enabled_key);
4260 
4261 	return &memcg->css;
4262 fail:
4263 	mem_cgroup_free(memcg);
4264 	return ERR_PTR(-ENOMEM);
4265 }
4266 
4267 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4268 {
4269 	/* Online state pins memcg ID, memcg ID pins CSS */
4270 	mem_cgroup_id_get(mem_cgroup_from_css(css));
4271 	css_get(css);
4272 	return 0;
4273 }
4274 
4275 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4276 {
4277 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4278 	struct mem_cgroup_event *event, *tmp;
4279 
4280 	/*
4281 	 * Unregister events and notify userspace.
4282 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4283 	 * directory to avoid race between userspace and kernelspace.
4284 	 */
4285 	spin_lock(&memcg->event_list_lock);
4286 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4287 		list_del_init(&event->list);
4288 		schedule_work(&event->remove);
4289 	}
4290 	spin_unlock(&memcg->event_list_lock);
4291 
4292 	memcg_offline_kmem(memcg);
4293 	wb_memcg_offline(memcg);
4294 
4295 	mem_cgroup_id_put(memcg);
4296 }
4297 
4298 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4299 {
4300 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301 
4302 	invalidate_reclaim_iterators(memcg);
4303 }
4304 
4305 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4306 {
4307 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4308 
4309 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4310 		static_branch_dec(&memcg_sockets_enabled_key);
4311 
4312 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4313 		static_branch_dec(&memcg_sockets_enabled_key);
4314 
4315 	vmpressure_cleanup(&memcg->vmpressure);
4316 	cancel_work_sync(&memcg->high_work);
4317 	mem_cgroup_remove_from_trees(memcg);
4318 	memcg_free_kmem(memcg);
4319 	mem_cgroup_free(memcg);
4320 }
4321 
4322 /**
4323  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4324  * @css: the target css
4325  *
4326  * Reset the states of the mem_cgroup associated with @css.  This is
4327  * invoked when the userland requests disabling on the default hierarchy
4328  * but the memcg is pinned through dependency.  The memcg should stop
4329  * applying policies and should revert to the vanilla state as it may be
4330  * made visible again.
4331  *
4332  * The current implementation only resets the essential configurations.
4333  * This needs to be expanded to cover all the visible parts.
4334  */
4335 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4336 {
4337 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338 
4339 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4340 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4341 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4342 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4343 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4344 	memcg->low = 0;
4345 	memcg->high = PAGE_COUNTER_MAX;
4346 	memcg->soft_limit = PAGE_COUNTER_MAX;
4347 	memcg_wb_domain_size_changed(memcg);
4348 }
4349 
4350 #ifdef CONFIG_MMU
4351 /* Handlers for move charge at task migration. */
4352 static int mem_cgroup_do_precharge(unsigned long count)
4353 {
4354 	int ret;
4355 
4356 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4357 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4358 	if (!ret) {
4359 		mc.precharge += count;
4360 		return ret;
4361 	}
4362 
4363 	/* Try charges one by one with reclaim */
4364 	while (count--) {
4365 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4366 		if (ret)
4367 			return ret;
4368 		mc.precharge++;
4369 		cond_resched();
4370 	}
4371 	return 0;
4372 }
4373 
4374 union mc_target {
4375 	struct page	*page;
4376 	swp_entry_t	ent;
4377 };
4378 
4379 enum mc_target_type {
4380 	MC_TARGET_NONE = 0,
4381 	MC_TARGET_PAGE,
4382 	MC_TARGET_SWAP,
4383 };
4384 
4385 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4386 						unsigned long addr, pte_t ptent)
4387 {
4388 	struct page *page = vm_normal_page(vma, addr, ptent);
4389 
4390 	if (!page || !page_mapped(page))
4391 		return NULL;
4392 	if (PageAnon(page)) {
4393 		if (!(mc.flags & MOVE_ANON))
4394 			return NULL;
4395 	} else {
4396 		if (!(mc.flags & MOVE_FILE))
4397 			return NULL;
4398 	}
4399 	if (!get_page_unless_zero(page))
4400 		return NULL;
4401 
4402 	return page;
4403 }
4404 
4405 #ifdef CONFIG_SWAP
4406 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4407 			pte_t ptent, swp_entry_t *entry)
4408 {
4409 	struct page *page = NULL;
4410 	swp_entry_t ent = pte_to_swp_entry(ptent);
4411 
4412 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4413 		return NULL;
4414 	/*
4415 	 * Because lookup_swap_cache() updates some statistics counter,
4416 	 * we call find_get_page() with swapper_space directly.
4417 	 */
4418 	page = find_get_page(swap_address_space(ent), ent.val);
4419 	if (do_memsw_account())
4420 		entry->val = ent.val;
4421 
4422 	return page;
4423 }
4424 #else
4425 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4426 			pte_t ptent, swp_entry_t *entry)
4427 {
4428 	return NULL;
4429 }
4430 #endif
4431 
4432 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4433 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4434 {
4435 	struct page *page = NULL;
4436 	struct address_space *mapping;
4437 	pgoff_t pgoff;
4438 
4439 	if (!vma->vm_file) /* anonymous vma */
4440 		return NULL;
4441 	if (!(mc.flags & MOVE_FILE))
4442 		return NULL;
4443 
4444 	mapping = vma->vm_file->f_mapping;
4445 	pgoff = linear_page_index(vma, addr);
4446 
4447 	/* page is moved even if it's not RSS of this task(page-faulted). */
4448 #ifdef CONFIG_SWAP
4449 	/* shmem/tmpfs may report page out on swap: account for that too. */
4450 	if (shmem_mapping(mapping)) {
4451 		page = find_get_entry(mapping, pgoff);
4452 		if (radix_tree_exceptional_entry(page)) {
4453 			swp_entry_t swp = radix_to_swp_entry(page);
4454 			if (do_memsw_account())
4455 				*entry = swp;
4456 			page = find_get_page(swap_address_space(swp), swp.val);
4457 		}
4458 	} else
4459 		page = find_get_page(mapping, pgoff);
4460 #else
4461 	page = find_get_page(mapping, pgoff);
4462 #endif
4463 	return page;
4464 }
4465 
4466 /**
4467  * mem_cgroup_move_account - move account of the page
4468  * @page: the page
4469  * @compound: charge the page as compound or small page
4470  * @from: mem_cgroup which the page is moved from.
4471  * @to:	mem_cgroup which the page is moved to. @from != @to.
4472  *
4473  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4474  *
4475  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4476  * from old cgroup.
4477  */
4478 static int mem_cgroup_move_account(struct page *page,
4479 				   bool compound,
4480 				   struct mem_cgroup *from,
4481 				   struct mem_cgroup *to)
4482 {
4483 	unsigned long flags;
4484 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4485 	int ret;
4486 	bool anon;
4487 
4488 	VM_BUG_ON(from == to);
4489 	VM_BUG_ON_PAGE(PageLRU(page), page);
4490 	VM_BUG_ON(compound && !PageTransHuge(page));
4491 
4492 	/*
4493 	 * Prevent mem_cgroup_migrate() from looking at
4494 	 * page->mem_cgroup of its source page while we change it.
4495 	 */
4496 	ret = -EBUSY;
4497 	if (!trylock_page(page))
4498 		goto out;
4499 
4500 	ret = -EINVAL;
4501 	if (page->mem_cgroup != from)
4502 		goto out_unlock;
4503 
4504 	anon = PageAnon(page);
4505 
4506 	spin_lock_irqsave(&from->move_lock, flags);
4507 
4508 	if (!anon && page_mapped(page)) {
4509 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4510 			       nr_pages);
4511 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4512 			       nr_pages);
4513 	}
4514 
4515 	/*
4516 	 * move_lock grabbed above and caller set from->moving_account, so
4517 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4518 	 * So mapping should be stable for dirty pages.
4519 	 */
4520 	if (!anon && PageDirty(page)) {
4521 		struct address_space *mapping = page_mapping(page);
4522 
4523 		if (mapping_cap_account_dirty(mapping)) {
4524 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4525 				       nr_pages);
4526 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4527 				       nr_pages);
4528 		}
4529 	}
4530 
4531 	if (PageWriteback(page)) {
4532 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4533 			       nr_pages);
4534 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4535 			       nr_pages);
4536 	}
4537 
4538 	/*
4539 	 * It is safe to change page->mem_cgroup here because the page
4540 	 * is referenced, charged, and isolated - we can't race with
4541 	 * uncharging, charging, migration, or LRU putback.
4542 	 */
4543 
4544 	/* caller should have done css_get */
4545 	page->mem_cgroup = to;
4546 	spin_unlock_irqrestore(&from->move_lock, flags);
4547 
4548 	ret = 0;
4549 
4550 	local_irq_disable();
4551 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4552 	memcg_check_events(to, page);
4553 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4554 	memcg_check_events(from, page);
4555 	local_irq_enable();
4556 out_unlock:
4557 	unlock_page(page);
4558 out:
4559 	return ret;
4560 }
4561 
4562 /**
4563  * get_mctgt_type - get target type of moving charge
4564  * @vma: the vma the pte to be checked belongs
4565  * @addr: the address corresponding to the pte to be checked
4566  * @ptent: the pte to be checked
4567  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4568  *
4569  * Returns
4570  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4571  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4572  *     move charge. if @target is not NULL, the page is stored in target->page
4573  *     with extra refcnt got(Callers should handle it).
4574  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4575  *     target for charge migration. if @target is not NULL, the entry is stored
4576  *     in target->ent.
4577  *
4578  * Called with pte lock held.
4579  */
4580 
4581 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4582 		unsigned long addr, pte_t ptent, union mc_target *target)
4583 {
4584 	struct page *page = NULL;
4585 	enum mc_target_type ret = MC_TARGET_NONE;
4586 	swp_entry_t ent = { .val = 0 };
4587 
4588 	if (pte_present(ptent))
4589 		page = mc_handle_present_pte(vma, addr, ptent);
4590 	else if (is_swap_pte(ptent))
4591 		page = mc_handle_swap_pte(vma, ptent, &ent);
4592 	else if (pte_none(ptent))
4593 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4594 
4595 	if (!page && !ent.val)
4596 		return ret;
4597 	if (page) {
4598 		/*
4599 		 * Do only loose check w/o serialization.
4600 		 * mem_cgroup_move_account() checks the page is valid or
4601 		 * not under LRU exclusion.
4602 		 */
4603 		if (page->mem_cgroup == mc.from) {
4604 			ret = MC_TARGET_PAGE;
4605 			if (target)
4606 				target->page = page;
4607 		}
4608 		if (!ret || !target)
4609 			put_page(page);
4610 	}
4611 	/* There is a swap entry and a page doesn't exist or isn't charged */
4612 	if (ent.val && !ret &&
4613 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4614 		ret = MC_TARGET_SWAP;
4615 		if (target)
4616 			target->ent = ent;
4617 	}
4618 	return ret;
4619 }
4620 
4621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4622 /*
4623  * We don't consider swapping or file mapped pages because THP does not
4624  * support them for now.
4625  * Caller should make sure that pmd_trans_huge(pmd) is true.
4626  */
4627 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4628 		unsigned long addr, pmd_t pmd, union mc_target *target)
4629 {
4630 	struct page *page = NULL;
4631 	enum mc_target_type ret = MC_TARGET_NONE;
4632 
4633 	page = pmd_page(pmd);
4634 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4635 	if (!(mc.flags & MOVE_ANON))
4636 		return ret;
4637 	if (page->mem_cgroup == mc.from) {
4638 		ret = MC_TARGET_PAGE;
4639 		if (target) {
4640 			get_page(page);
4641 			target->page = page;
4642 		}
4643 	}
4644 	return ret;
4645 }
4646 #else
4647 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4648 		unsigned long addr, pmd_t pmd, union mc_target *target)
4649 {
4650 	return MC_TARGET_NONE;
4651 }
4652 #endif
4653 
4654 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4655 					unsigned long addr, unsigned long end,
4656 					struct mm_walk *walk)
4657 {
4658 	struct vm_area_struct *vma = walk->vma;
4659 	pte_t *pte;
4660 	spinlock_t *ptl;
4661 
4662 	ptl = pmd_trans_huge_lock(pmd, vma);
4663 	if (ptl) {
4664 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4665 			mc.precharge += HPAGE_PMD_NR;
4666 		spin_unlock(ptl);
4667 		return 0;
4668 	}
4669 
4670 	if (pmd_trans_unstable(pmd))
4671 		return 0;
4672 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4673 	for (; addr != end; pte++, addr += PAGE_SIZE)
4674 		if (get_mctgt_type(vma, addr, *pte, NULL))
4675 			mc.precharge++;	/* increment precharge temporarily */
4676 	pte_unmap_unlock(pte - 1, ptl);
4677 	cond_resched();
4678 
4679 	return 0;
4680 }
4681 
4682 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4683 {
4684 	unsigned long precharge;
4685 
4686 	struct mm_walk mem_cgroup_count_precharge_walk = {
4687 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4688 		.mm = mm,
4689 	};
4690 	down_read(&mm->mmap_sem);
4691 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4692 	up_read(&mm->mmap_sem);
4693 
4694 	precharge = mc.precharge;
4695 	mc.precharge = 0;
4696 
4697 	return precharge;
4698 }
4699 
4700 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701 {
4702 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4703 
4704 	VM_BUG_ON(mc.moving_task);
4705 	mc.moving_task = current;
4706 	return mem_cgroup_do_precharge(precharge);
4707 }
4708 
4709 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710 static void __mem_cgroup_clear_mc(void)
4711 {
4712 	struct mem_cgroup *from = mc.from;
4713 	struct mem_cgroup *to = mc.to;
4714 
4715 	/* we must uncharge all the leftover precharges from mc.to */
4716 	if (mc.precharge) {
4717 		cancel_charge(mc.to, mc.precharge);
4718 		mc.precharge = 0;
4719 	}
4720 	/*
4721 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722 	 * we must uncharge here.
4723 	 */
4724 	if (mc.moved_charge) {
4725 		cancel_charge(mc.from, mc.moved_charge);
4726 		mc.moved_charge = 0;
4727 	}
4728 	/* we must fixup refcnts and charges */
4729 	if (mc.moved_swap) {
4730 		/* uncharge swap account from the old cgroup */
4731 		if (!mem_cgroup_is_root(mc.from))
4732 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4733 
4734 		/*
4735 		 * we charged both to->memory and to->memsw, so we
4736 		 * should uncharge to->memory.
4737 		 */
4738 		if (!mem_cgroup_is_root(mc.to))
4739 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4740 
4741 		css_put_many(&mc.from->css, mc.moved_swap);
4742 
4743 		/* we've already done css_get(mc.to) */
4744 		mc.moved_swap = 0;
4745 	}
4746 	memcg_oom_recover(from);
4747 	memcg_oom_recover(to);
4748 	wake_up_all(&mc.waitq);
4749 }
4750 
4751 static void mem_cgroup_clear_mc(void)
4752 {
4753 	struct mm_struct *mm = mc.mm;
4754 
4755 	/*
4756 	 * we must clear moving_task before waking up waiters at the end of
4757 	 * task migration.
4758 	 */
4759 	mc.moving_task = NULL;
4760 	__mem_cgroup_clear_mc();
4761 	spin_lock(&mc.lock);
4762 	mc.from = NULL;
4763 	mc.to = NULL;
4764 	mc.mm = NULL;
4765 	spin_unlock(&mc.lock);
4766 
4767 	mmput(mm);
4768 }
4769 
4770 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4771 {
4772 	struct cgroup_subsys_state *css;
4773 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4774 	struct mem_cgroup *from;
4775 	struct task_struct *leader, *p;
4776 	struct mm_struct *mm;
4777 	unsigned long move_flags;
4778 	int ret = 0;
4779 
4780 	/* charge immigration isn't supported on the default hierarchy */
4781 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4782 		return 0;
4783 
4784 	/*
4785 	 * Multi-process migrations only happen on the default hierarchy
4786 	 * where charge immigration is not used.  Perform charge
4787 	 * immigration if @tset contains a leader and whine if there are
4788 	 * multiple.
4789 	 */
4790 	p = NULL;
4791 	cgroup_taskset_for_each_leader(leader, css, tset) {
4792 		WARN_ON_ONCE(p);
4793 		p = leader;
4794 		memcg = mem_cgroup_from_css(css);
4795 	}
4796 	if (!p)
4797 		return 0;
4798 
4799 	/*
4800 	 * We are now commited to this value whatever it is. Changes in this
4801 	 * tunable will only affect upcoming migrations, not the current one.
4802 	 * So we need to save it, and keep it going.
4803 	 */
4804 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4805 	if (!move_flags)
4806 		return 0;
4807 
4808 	from = mem_cgroup_from_task(p);
4809 
4810 	VM_BUG_ON(from == memcg);
4811 
4812 	mm = get_task_mm(p);
4813 	if (!mm)
4814 		return 0;
4815 	/* We move charges only when we move a owner of the mm */
4816 	if (mm->owner == p) {
4817 		VM_BUG_ON(mc.from);
4818 		VM_BUG_ON(mc.to);
4819 		VM_BUG_ON(mc.precharge);
4820 		VM_BUG_ON(mc.moved_charge);
4821 		VM_BUG_ON(mc.moved_swap);
4822 
4823 		spin_lock(&mc.lock);
4824 		mc.mm = mm;
4825 		mc.from = from;
4826 		mc.to = memcg;
4827 		mc.flags = move_flags;
4828 		spin_unlock(&mc.lock);
4829 		/* We set mc.moving_task later */
4830 
4831 		ret = mem_cgroup_precharge_mc(mm);
4832 		if (ret)
4833 			mem_cgroup_clear_mc();
4834 	} else {
4835 		mmput(mm);
4836 	}
4837 	return ret;
4838 }
4839 
4840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4841 {
4842 	if (mc.to)
4843 		mem_cgroup_clear_mc();
4844 }
4845 
4846 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4847 				unsigned long addr, unsigned long end,
4848 				struct mm_walk *walk)
4849 {
4850 	int ret = 0;
4851 	struct vm_area_struct *vma = walk->vma;
4852 	pte_t *pte;
4853 	spinlock_t *ptl;
4854 	enum mc_target_type target_type;
4855 	union mc_target target;
4856 	struct page *page;
4857 
4858 	ptl = pmd_trans_huge_lock(pmd, vma);
4859 	if (ptl) {
4860 		if (mc.precharge < HPAGE_PMD_NR) {
4861 			spin_unlock(ptl);
4862 			return 0;
4863 		}
4864 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4865 		if (target_type == MC_TARGET_PAGE) {
4866 			page = target.page;
4867 			if (!isolate_lru_page(page)) {
4868 				if (!mem_cgroup_move_account(page, true,
4869 							     mc.from, mc.to)) {
4870 					mc.precharge -= HPAGE_PMD_NR;
4871 					mc.moved_charge += HPAGE_PMD_NR;
4872 				}
4873 				putback_lru_page(page);
4874 			}
4875 			put_page(page);
4876 		}
4877 		spin_unlock(ptl);
4878 		return 0;
4879 	}
4880 
4881 	if (pmd_trans_unstable(pmd))
4882 		return 0;
4883 retry:
4884 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4885 	for (; addr != end; addr += PAGE_SIZE) {
4886 		pte_t ptent = *(pte++);
4887 		swp_entry_t ent;
4888 
4889 		if (!mc.precharge)
4890 			break;
4891 
4892 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4893 		case MC_TARGET_PAGE:
4894 			page = target.page;
4895 			/*
4896 			 * We can have a part of the split pmd here. Moving it
4897 			 * can be done but it would be too convoluted so simply
4898 			 * ignore such a partial THP and keep it in original
4899 			 * memcg. There should be somebody mapping the head.
4900 			 */
4901 			if (PageTransCompound(page))
4902 				goto put;
4903 			if (isolate_lru_page(page))
4904 				goto put;
4905 			if (!mem_cgroup_move_account(page, false,
4906 						mc.from, mc.to)) {
4907 				mc.precharge--;
4908 				/* we uncharge from mc.from later. */
4909 				mc.moved_charge++;
4910 			}
4911 			putback_lru_page(page);
4912 put:			/* get_mctgt_type() gets the page */
4913 			put_page(page);
4914 			break;
4915 		case MC_TARGET_SWAP:
4916 			ent = target.ent;
4917 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4918 				mc.precharge--;
4919 				/* we fixup refcnts and charges later. */
4920 				mc.moved_swap++;
4921 			}
4922 			break;
4923 		default:
4924 			break;
4925 		}
4926 	}
4927 	pte_unmap_unlock(pte - 1, ptl);
4928 	cond_resched();
4929 
4930 	if (addr != end) {
4931 		/*
4932 		 * We have consumed all precharges we got in can_attach().
4933 		 * We try charge one by one, but don't do any additional
4934 		 * charges to mc.to if we have failed in charge once in attach()
4935 		 * phase.
4936 		 */
4937 		ret = mem_cgroup_do_precharge(1);
4938 		if (!ret)
4939 			goto retry;
4940 	}
4941 
4942 	return ret;
4943 }
4944 
4945 static void mem_cgroup_move_charge(void)
4946 {
4947 	struct mm_walk mem_cgroup_move_charge_walk = {
4948 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4949 		.mm = mc.mm,
4950 	};
4951 
4952 	lru_add_drain_all();
4953 	/*
4954 	 * Signal lock_page_memcg() to take the memcg's move_lock
4955 	 * while we're moving its pages to another memcg. Then wait
4956 	 * for already started RCU-only updates to finish.
4957 	 */
4958 	atomic_inc(&mc.from->moving_account);
4959 	synchronize_rcu();
4960 retry:
4961 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4962 		/*
4963 		 * Someone who are holding the mmap_sem might be waiting in
4964 		 * waitq. So we cancel all extra charges, wake up all waiters,
4965 		 * and retry. Because we cancel precharges, we might not be able
4966 		 * to move enough charges, but moving charge is a best-effort
4967 		 * feature anyway, so it wouldn't be a big problem.
4968 		 */
4969 		__mem_cgroup_clear_mc();
4970 		cond_resched();
4971 		goto retry;
4972 	}
4973 	/*
4974 	 * When we have consumed all precharges and failed in doing
4975 	 * additional charge, the page walk just aborts.
4976 	 */
4977 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4978 	up_read(&mc.mm->mmap_sem);
4979 	atomic_dec(&mc.from->moving_account);
4980 }
4981 
4982 static void mem_cgroup_move_task(void)
4983 {
4984 	if (mc.to) {
4985 		mem_cgroup_move_charge();
4986 		mem_cgroup_clear_mc();
4987 	}
4988 }
4989 #else	/* !CONFIG_MMU */
4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 {
4992 	return 0;
4993 }
4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 {
4996 }
4997 static void mem_cgroup_move_task(void)
4998 {
4999 }
5000 #endif
5001 
5002 /*
5003  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004  * to verify whether we're attached to the default hierarchy on each mount
5005  * attempt.
5006  */
5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 {
5009 	/*
5010 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5011 	 * guarantees that @root doesn't have any children, so turning it
5012 	 * on for the root memcg is enough.
5013 	 */
5014 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 		root_mem_cgroup->use_hierarchy = true;
5016 	else
5017 		root_mem_cgroup->use_hierarchy = false;
5018 }
5019 
5020 static u64 memory_current_read(struct cgroup_subsys_state *css,
5021 			       struct cftype *cft)
5022 {
5023 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024 
5025 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 }
5027 
5028 static int memory_low_show(struct seq_file *m, void *v)
5029 {
5030 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 	unsigned long low = READ_ONCE(memcg->low);
5032 
5033 	if (low == PAGE_COUNTER_MAX)
5034 		seq_puts(m, "max\n");
5035 	else
5036 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5037 
5038 	return 0;
5039 }
5040 
5041 static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 				char *buf, size_t nbytes, loff_t off)
5043 {
5044 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 	unsigned long low;
5046 	int err;
5047 
5048 	buf = strstrip(buf);
5049 	err = page_counter_memparse(buf, "max", &low);
5050 	if (err)
5051 		return err;
5052 
5053 	memcg->low = low;
5054 
5055 	return nbytes;
5056 }
5057 
5058 static int memory_high_show(struct seq_file *m, void *v)
5059 {
5060 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061 	unsigned long high = READ_ONCE(memcg->high);
5062 
5063 	if (high == PAGE_COUNTER_MAX)
5064 		seq_puts(m, "max\n");
5065 	else
5066 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5067 
5068 	return 0;
5069 }
5070 
5071 static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 				 char *buf, size_t nbytes, loff_t off)
5073 {
5074 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075 	unsigned long nr_pages;
5076 	unsigned long high;
5077 	int err;
5078 
5079 	buf = strstrip(buf);
5080 	err = page_counter_memparse(buf, "max", &high);
5081 	if (err)
5082 		return err;
5083 
5084 	memcg->high = high;
5085 
5086 	nr_pages = page_counter_read(&memcg->memory);
5087 	if (nr_pages > high)
5088 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5089 					     GFP_KERNEL, true);
5090 
5091 	memcg_wb_domain_size_changed(memcg);
5092 	return nbytes;
5093 }
5094 
5095 static int memory_max_show(struct seq_file *m, void *v)
5096 {
5097 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 	unsigned long max = READ_ONCE(memcg->memory.limit);
5099 
5100 	if (max == PAGE_COUNTER_MAX)
5101 		seq_puts(m, "max\n");
5102 	else
5103 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104 
5105 	return 0;
5106 }
5107 
5108 static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 				char *buf, size_t nbytes, loff_t off)
5110 {
5111 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 	bool drained = false;
5114 	unsigned long max;
5115 	int err;
5116 
5117 	buf = strstrip(buf);
5118 	err = page_counter_memparse(buf, "max", &max);
5119 	if (err)
5120 		return err;
5121 
5122 	xchg(&memcg->memory.limit, max);
5123 
5124 	for (;;) {
5125 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5126 
5127 		if (nr_pages <= max)
5128 			break;
5129 
5130 		if (signal_pending(current)) {
5131 			err = -EINTR;
5132 			break;
5133 		}
5134 
5135 		if (!drained) {
5136 			drain_all_stock(memcg);
5137 			drained = true;
5138 			continue;
5139 		}
5140 
5141 		if (nr_reclaims) {
5142 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5143 							  GFP_KERNEL, true))
5144 				nr_reclaims--;
5145 			continue;
5146 		}
5147 
5148 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5150 			break;
5151 	}
5152 
5153 	memcg_wb_domain_size_changed(memcg);
5154 	return nbytes;
5155 }
5156 
5157 static int memory_events_show(struct seq_file *m, void *v)
5158 {
5159 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160 
5161 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5165 
5166 	return 0;
5167 }
5168 
5169 static int memory_stat_show(struct seq_file *m, void *v)
5170 {
5171 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 	unsigned long stat[MEMCG_NR_STAT];
5173 	unsigned long events[MEMCG_NR_EVENTS];
5174 	int i;
5175 
5176 	/*
5177 	 * Provide statistics on the state of the memory subsystem as
5178 	 * well as cumulative event counters that show past behavior.
5179 	 *
5180 	 * This list is ordered following a combination of these gradients:
5181 	 * 1) generic big picture -> specifics and details
5182 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5183 	 *
5184 	 * Current memory state:
5185 	 */
5186 
5187 	tree_stat(memcg, stat);
5188 	tree_events(memcg, events);
5189 
5190 	seq_printf(m, "anon %llu\n",
5191 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192 	seq_printf(m, "file %llu\n",
5193 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194 	seq_printf(m, "kernel_stack %llu\n",
5195 		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5196 	seq_printf(m, "slab %llu\n",
5197 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199 	seq_printf(m, "sock %llu\n",
5200 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201 
5202 	seq_printf(m, "file_mapped %llu\n",
5203 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204 	seq_printf(m, "file_dirty %llu\n",
5205 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206 	seq_printf(m, "file_writeback %llu\n",
5207 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208 
5209 	for (i = 0; i < NR_LRU_LISTS; i++) {
5210 		struct mem_cgroup *mi;
5211 		unsigned long val = 0;
5212 
5213 		for_each_mem_cgroup_tree(mi, memcg)
5214 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 		seq_printf(m, "%s %llu\n",
5216 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5217 	}
5218 
5219 	seq_printf(m, "slab_reclaimable %llu\n",
5220 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 	seq_printf(m, "slab_unreclaimable %llu\n",
5222 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5223 
5224 	/* Accumulated memory events */
5225 
5226 	seq_printf(m, "pgfault %lu\n",
5227 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5228 	seq_printf(m, "pgmajfault %lu\n",
5229 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230 
5231 	return 0;
5232 }
5233 
5234 static struct cftype memory_files[] = {
5235 	{
5236 		.name = "current",
5237 		.flags = CFTYPE_NOT_ON_ROOT,
5238 		.read_u64 = memory_current_read,
5239 	},
5240 	{
5241 		.name = "low",
5242 		.flags = CFTYPE_NOT_ON_ROOT,
5243 		.seq_show = memory_low_show,
5244 		.write = memory_low_write,
5245 	},
5246 	{
5247 		.name = "high",
5248 		.flags = CFTYPE_NOT_ON_ROOT,
5249 		.seq_show = memory_high_show,
5250 		.write = memory_high_write,
5251 	},
5252 	{
5253 		.name = "max",
5254 		.flags = CFTYPE_NOT_ON_ROOT,
5255 		.seq_show = memory_max_show,
5256 		.write = memory_max_write,
5257 	},
5258 	{
5259 		.name = "events",
5260 		.flags = CFTYPE_NOT_ON_ROOT,
5261 		.file_offset = offsetof(struct mem_cgroup, events_file),
5262 		.seq_show = memory_events_show,
5263 	},
5264 	{
5265 		.name = "stat",
5266 		.flags = CFTYPE_NOT_ON_ROOT,
5267 		.seq_show = memory_stat_show,
5268 	},
5269 	{ }	/* terminate */
5270 };
5271 
5272 struct cgroup_subsys memory_cgrp_subsys = {
5273 	.css_alloc = mem_cgroup_css_alloc,
5274 	.css_online = mem_cgroup_css_online,
5275 	.css_offline = mem_cgroup_css_offline,
5276 	.css_released = mem_cgroup_css_released,
5277 	.css_free = mem_cgroup_css_free,
5278 	.css_reset = mem_cgroup_css_reset,
5279 	.can_attach = mem_cgroup_can_attach,
5280 	.cancel_attach = mem_cgroup_cancel_attach,
5281 	.post_attach = mem_cgroup_move_task,
5282 	.bind = mem_cgroup_bind,
5283 	.dfl_cftypes = memory_files,
5284 	.legacy_cftypes = mem_cgroup_legacy_files,
5285 	.early_init = 0,
5286 };
5287 
5288 /**
5289  * mem_cgroup_low - check if memory consumption is below the normal range
5290  * @root: the highest ancestor to consider
5291  * @memcg: the memory cgroup to check
5292  *
5293  * Returns %true if memory consumption of @memcg, and that of all
5294  * configurable ancestors up to @root, is below the normal range.
5295  */
5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5297 {
5298 	if (mem_cgroup_disabled())
5299 		return false;
5300 
5301 	/*
5302 	 * The toplevel group doesn't have a configurable range, so
5303 	 * it's never low when looked at directly, and it is not
5304 	 * considered an ancestor when assessing the hierarchy.
5305 	 */
5306 
5307 	if (memcg == root_mem_cgroup)
5308 		return false;
5309 
5310 	if (page_counter_read(&memcg->memory) >= memcg->low)
5311 		return false;
5312 
5313 	while (memcg != root) {
5314 		memcg = parent_mem_cgroup(memcg);
5315 
5316 		if (memcg == root_mem_cgroup)
5317 			break;
5318 
5319 		if (page_counter_read(&memcg->memory) >= memcg->low)
5320 			return false;
5321 	}
5322 	return true;
5323 }
5324 
5325 /**
5326  * mem_cgroup_try_charge - try charging a page
5327  * @page: page to charge
5328  * @mm: mm context of the victim
5329  * @gfp_mask: reclaim mode
5330  * @memcgp: charged memcg return
5331  * @compound: charge the page as compound or small page
5332  *
5333  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334  * pages according to @gfp_mask if necessary.
5335  *
5336  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337  * Otherwise, an error code is returned.
5338  *
5339  * After page->mapping has been set up, the caller must finalize the
5340  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5341  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5342  */
5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5345 			  bool compound)
5346 {
5347 	struct mem_cgroup *memcg = NULL;
5348 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 	int ret = 0;
5350 
5351 	if (mem_cgroup_disabled())
5352 		goto out;
5353 
5354 	if (PageSwapCache(page)) {
5355 		/*
5356 		 * Every swap fault against a single page tries to charge the
5357 		 * page, bail as early as possible.  shmem_unuse() encounters
5358 		 * already charged pages, too.  The USED bit is protected by
5359 		 * the page lock, which serializes swap cache removal, which
5360 		 * in turn serializes uncharging.
5361 		 */
5362 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5363 		if (page->mem_cgroup)
5364 			goto out;
5365 
5366 		if (do_swap_account) {
5367 			swp_entry_t ent = { .val = page_private(page), };
5368 			unsigned short id = lookup_swap_cgroup_id(ent);
5369 
5370 			rcu_read_lock();
5371 			memcg = mem_cgroup_from_id(id);
5372 			if (memcg && !css_tryget_online(&memcg->css))
5373 				memcg = NULL;
5374 			rcu_read_unlock();
5375 		}
5376 	}
5377 
5378 	if (!memcg)
5379 		memcg = get_mem_cgroup_from_mm(mm);
5380 
5381 	ret = try_charge(memcg, gfp_mask, nr_pages);
5382 
5383 	css_put(&memcg->css);
5384 out:
5385 	*memcgp = memcg;
5386 	return ret;
5387 }
5388 
5389 /**
5390  * mem_cgroup_commit_charge - commit a page charge
5391  * @page: page to charge
5392  * @memcg: memcg to charge the page to
5393  * @lrucare: page might be on LRU already
5394  * @compound: charge the page as compound or small page
5395  *
5396  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397  * after page->mapping has been set up.  This must happen atomically
5398  * as part of the page instantiation, i.e. under the page table lock
5399  * for anonymous pages, under the page lock for page and swap cache.
5400  *
5401  * In addition, the page must not be on the LRU during the commit, to
5402  * prevent racing with task migration.  If it might be, use @lrucare.
5403  *
5404  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5405  */
5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407 			      bool lrucare, bool compound)
5408 {
5409 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410 
5411 	VM_BUG_ON_PAGE(!page->mapping, page);
5412 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5413 
5414 	if (mem_cgroup_disabled())
5415 		return;
5416 	/*
5417 	 * Swap faults will attempt to charge the same page multiple
5418 	 * times.  But reuse_swap_page() might have removed the page
5419 	 * from swapcache already, so we can't check PageSwapCache().
5420 	 */
5421 	if (!memcg)
5422 		return;
5423 
5424 	commit_charge(page, memcg, lrucare);
5425 
5426 	local_irq_disable();
5427 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 	memcg_check_events(memcg, page);
5429 	local_irq_enable();
5430 
5431 	if (do_memsw_account() && PageSwapCache(page)) {
5432 		swp_entry_t entry = { .val = page_private(page) };
5433 		/*
5434 		 * The swap entry might not get freed for a long time,
5435 		 * let's not wait for it.  The page already received a
5436 		 * memory+swap charge, drop the swap entry duplicate.
5437 		 */
5438 		mem_cgroup_uncharge_swap(entry);
5439 	}
5440 }
5441 
5442 /**
5443  * mem_cgroup_cancel_charge - cancel a page charge
5444  * @page: page to charge
5445  * @memcg: memcg to charge the page to
5446  * @compound: charge the page as compound or small page
5447  *
5448  * Cancel a charge transaction started by mem_cgroup_try_charge().
5449  */
5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5451 		bool compound)
5452 {
5453 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454 
5455 	if (mem_cgroup_disabled())
5456 		return;
5457 	/*
5458 	 * Swap faults will attempt to charge the same page multiple
5459 	 * times.  But reuse_swap_page() might have removed the page
5460 	 * from swapcache already, so we can't check PageSwapCache().
5461 	 */
5462 	if (!memcg)
5463 		return;
5464 
5465 	cancel_charge(memcg, nr_pages);
5466 }
5467 
5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5469 			   unsigned long nr_anon, unsigned long nr_file,
5470 			   unsigned long nr_huge, unsigned long nr_kmem,
5471 			   struct page *dummy_page)
5472 {
5473 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 	unsigned long flags;
5475 
5476 	if (!mem_cgroup_is_root(memcg)) {
5477 		page_counter_uncharge(&memcg->memory, nr_pages);
5478 		if (do_memsw_account())
5479 			page_counter_uncharge(&memcg->memsw, nr_pages);
5480 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 		memcg_oom_recover(memcg);
5483 	}
5484 
5485 	local_irq_save(flags);
5486 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 	memcg_check_events(memcg, dummy_page);
5492 	local_irq_restore(flags);
5493 
5494 	if (!mem_cgroup_is_root(memcg))
5495 		css_put_many(&memcg->css, nr_pages);
5496 }
5497 
5498 static void uncharge_list(struct list_head *page_list)
5499 {
5500 	struct mem_cgroup *memcg = NULL;
5501 	unsigned long nr_anon = 0;
5502 	unsigned long nr_file = 0;
5503 	unsigned long nr_huge = 0;
5504 	unsigned long nr_kmem = 0;
5505 	unsigned long pgpgout = 0;
5506 	struct list_head *next;
5507 	struct page *page;
5508 
5509 	/*
5510 	 * Note that the list can be a single page->lru; hence the
5511 	 * do-while loop instead of a simple list_for_each_entry().
5512 	 */
5513 	next = page_list->next;
5514 	do {
5515 		page = list_entry(next, struct page, lru);
5516 		next = page->lru.next;
5517 
5518 		VM_BUG_ON_PAGE(PageLRU(page), page);
5519 		VM_BUG_ON_PAGE(page_count(page), page);
5520 
5521 		if (!page->mem_cgroup)
5522 			continue;
5523 
5524 		/*
5525 		 * Nobody should be changing or seriously looking at
5526 		 * page->mem_cgroup at this point, we have fully
5527 		 * exclusive access to the page.
5528 		 */
5529 
5530 		if (memcg != page->mem_cgroup) {
5531 			if (memcg) {
5532 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 					       nr_huge, nr_kmem, page);
5534 				pgpgout = nr_anon = nr_file =
5535 					nr_huge = nr_kmem = 0;
5536 			}
5537 			memcg = page->mem_cgroup;
5538 		}
5539 
5540 		if (!PageKmemcg(page)) {
5541 			unsigned int nr_pages = 1;
5542 
5543 			if (PageTransHuge(page)) {
5544 				nr_pages <<= compound_order(page);
5545 				nr_huge += nr_pages;
5546 			}
5547 			if (PageAnon(page))
5548 				nr_anon += nr_pages;
5549 			else
5550 				nr_file += nr_pages;
5551 			pgpgout++;
5552 		} else
5553 			nr_kmem += 1 << compound_order(page);
5554 
5555 		page->mem_cgroup = NULL;
5556 	} while (next != page_list);
5557 
5558 	if (memcg)
5559 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5560 			       nr_huge, nr_kmem, page);
5561 }
5562 
5563 /**
5564  * mem_cgroup_uncharge - uncharge a page
5565  * @page: page to uncharge
5566  *
5567  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5568  * mem_cgroup_commit_charge().
5569  */
5570 void mem_cgroup_uncharge(struct page *page)
5571 {
5572 	if (mem_cgroup_disabled())
5573 		return;
5574 
5575 	/* Don't touch page->lru of any random page, pre-check: */
5576 	if (!page->mem_cgroup)
5577 		return;
5578 
5579 	INIT_LIST_HEAD(&page->lru);
5580 	uncharge_list(&page->lru);
5581 }
5582 
5583 /**
5584  * mem_cgroup_uncharge_list - uncharge a list of page
5585  * @page_list: list of pages to uncharge
5586  *
5587  * Uncharge a list of pages previously charged with
5588  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5589  */
5590 void mem_cgroup_uncharge_list(struct list_head *page_list)
5591 {
5592 	if (mem_cgroup_disabled())
5593 		return;
5594 
5595 	if (!list_empty(page_list))
5596 		uncharge_list(page_list);
5597 }
5598 
5599 /**
5600  * mem_cgroup_migrate - charge a page's replacement
5601  * @oldpage: currently circulating page
5602  * @newpage: replacement page
5603  *
5604  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5605  * be uncharged upon free.
5606  *
5607  * Both pages must be locked, @newpage->mapping must be set up.
5608  */
5609 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5610 {
5611 	struct mem_cgroup *memcg;
5612 	unsigned int nr_pages;
5613 	bool compound;
5614 	unsigned long flags;
5615 
5616 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5617 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5618 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5619 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5620 		       newpage);
5621 
5622 	if (mem_cgroup_disabled())
5623 		return;
5624 
5625 	/* Page cache replacement: new page already charged? */
5626 	if (newpage->mem_cgroup)
5627 		return;
5628 
5629 	/* Swapcache readahead pages can get replaced before being charged */
5630 	memcg = oldpage->mem_cgroup;
5631 	if (!memcg)
5632 		return;
5633 
5634 	/* Force-charge the new page. The old one will be freed soon */
5635 	compound = PageTransHuge(newpage);
5636 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5637 
5638 	page_counter_charge(&memcg->memory, nr_pages);
5639 	if (do_memsw_account())
5640 		page_counter_charge(&memcg->memsw, nr_pages);
5641 	css_get_many(&memcg->css, nr_pages);
5642 
5643 	commit_charge(newpage, memcg, false);
5644 
5645 	local_irq_save(flags);
5646 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5647 	memcg_check_events(memcg, newpage);
5648 	local_irq_restore(flags);
5649 }
5650 
5651 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5652 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5653 
5654 void sock_update_memcg(struct sock *sk)
5655 {
5656 	struct mem_cgroup *memcg;
5657 
5658 	/* Socket cloning can throw us here with sk_cgrp already
5659 	 * filled. It won't however, necessarily happen from
5660 	 * process context. So the test for root memcg given
5661 	 * the current task's memcg won't help us in this case.
5662 	 *
5663 	 * Respecting the original socket's memcg is a better
5664 	 * decision in this case.
5665 	 */
5666 	if (sk->sk_memcg) {
5667 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5668 		css_get(&sk->sk_memcg->css);
5669 		return;
5670 	}
5671 
5672 	rcu_read_lock();
5673 	memcg = mem_cgroup_from_task(current);
5674 	if (memcg == root_mem_cgroup)
5675 		goto out;
5676 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5677 		goto out;
5678 	if (css_tryget_online(&memcg->css))
5679 		sk->sk_memcg = memcg;
5680 out:
5681 	rcu_read_unlock();
5682 }
5683 EXPORT_SYMBOL(sock_update_memcg);
5684 
5685 void sock_release_memcg(struct sock *sk)
5686 {
5687 	WARN_ON(!sk->sk_memcg);
5688 	css_put(&sk->sk_memcg->css);
5689 }
5690 
5691 /**
5692  * mem_cgroup_charge_skmem - charge socket memory
5693  * @memcg: memcg to charge
5694  * @nr_pages: number of pages to charge
5695  *
5696  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5697  * @memcg's configured limit, %false if the charge had to be forced.
5698  */
5699 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5700 {
5701 	gfp_t gfp_mask = GFP_KERNEL;
5702 
5703 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5704 		struct page_counter *fail;
5705 
5706 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5707 			memcg->tcpmem_pressure = 0;
5708 			return true;
5709 		}
5710 		page_counter_charge(&memcg->tcpmem, nr_pages);
5711 		memcg->tcpmem_pressure = 1;
5712 		return false;
5713 	}
5714 
5715 	/* Don't block in the packet receive path */
5716 	if (in_softirq())
5717 		gfp_mask = GFP_NOWAIT;
5718 
5719 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5720 
5721 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5722 		return true;
5723 
5724 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5725 	return false;
5726 }
5727 
5728 /**
5729  * mem_cgroup_uncharge_skmem - uncharge socket memory
5730  * @memcg - memcg to uncharge
5731  * @nr_pages - number of pages to uncharge
5732  */
5733 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5734 {
5735 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5736 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5737 		return;
5738 	}
5739 
5740 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5741 
5742 	page_counter_uncharge(&memcg->memory, nr_pages);
5743 	css_put_many(&memcg->css, nr_pages);
5744 }
5745 
5746 static int __init cgroup_memory(char *s)
5747 {
5748 	char *token;
5749 
5750 	while ((token = strsep(&s, ",")) != NULL) {
5751 		if (!*token)
5752 			continue;
5753 		if (!strcmp(token, "nosocket"))
5754 			cgroup_memory_nosocket = true;
5755 		if (!strcmp(token, "nokmem"))
5756 			cgroup_memory_nokmem = true;
5757 	}
5758 	return 0;
5759 }
5760 __setup("cgroup.memory=", cgroup_memory);
5761 
5762 /*
5763  * subsys_initcall() for memory controller.
5764  *
5765  * Some parts like hotcpu_notifier() have to be initialized from this context
5766  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5767  * everything that doesn't depend on a specific mem_cgroup structure should
5768  * be initialized from here.
5769  */
5770 static int __init mem_cgroup_init(void)
5771 {
5772 	int cpu, node;
5773 
5774 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5775 
5776 	for_each_possible_cpu(cpu)
5777 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5778 			  drain_local_stock);
5779 
5780 	for_each_node(node) {
5781 		struct mem_cgroup_tree_per_node *rtpn;
5782 		int zone;
5783 
5784 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5785 				    node_online(node) ? node : NUMA_NO_NODE);
5786 
5787 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5788 			struct mem_cgroup_tree_per_zone *rtpz;
5789 
5790 			rtpz = &rtpn->rb_tree_per_zone[zone];
5791 			rtpz->rb_root = RB_ROOT;
5792 			spin_lock_init(&rtpz->lock);
5793 		}
5794 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5795 	}
5796 
5797 	return 0;
5798 }
5799 subsys_initcall(mem_cgroup_init);
5800 
5801 #ifdef CONFIG_MEMCG_SWAP
5802 /**
5803  * mem_cgroup_swapout - transfer a memsw charge to swap
5804  * @page: page whose memsw charge to transfer
5805  * @entry: swap entry to move the charge to
5806  *
5807  * Transfer the memsw charge of @page to @entry.
5808  */
5809 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5810 {
5811 	struct mem_cgroup *memcg;
5812 	unsigned short oldid;
5813 
5814 	VM_BUG_ON_PAGE(PageLRU(page), page);
5815 	VM_BUG_ON_PAGE(page_count(page), page);
5816 
5817 	if (!do_memsw_account())
5818 		return;
5819 
5820 	memcg = page->mem_cgroup;
5821 
5822 	/* Readahead page, never charged */
5823 	if (!memcg)
5824 		return;
5825 
5826 	mem_cgroup_id_get(memcg);
5827 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5828 	VM_BUG_ON_PAGE(oldid, page);
5829 	mem_cgroup_swap_statistics(memcg, true);
5830 
5831 	page->mem_cgroup = NULL;
5832 
5833 	if (!mem_cgroup_is_root(memcg))
5834 		page_counter_uncharge(&memcg->memory, 1);
5835 
5836 	/*
5837 	 * Interrupts should be disabled here because the caller holds the
5838 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5839 	 * important here to have the interrupts disabled because it is the
5840 	 * only synchronisation we have for udpating the per-CPU variables.
5841 	 */
5842 	VM_BUG_ON(!irqs_disabled());
5843 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5844 	memcg_check_events(memcg, page);
5845 
5846 	if (!mem_cgroup_is_root(memcg))
5847 		css_put(&memcg->css);
5848 }
5849 
5850 /*
5851  * mem_cgroup_try_charge_swap - try charging a swap entry
5852  * @page: page being added to swap
5853  * @entry: swap entry to charge
5854  *
5855  * Try to charge @entry to the memcg that @page belongs to.
5856  *
5857  * Returns 0 on success, -ENOMEM on failure.
5858  */
5859 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5860 {
5861 	struct mem_cgroup *memcg;
5862 	struct page_counter *counter;
5863 	unsigned short oldid;
5864 
5865 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5866 		return 0;
5867 
5868 	memcg = page->mem_cgroup;
5869 
5870 	/* Readahead page, never charged */
5871 	if (!memcg)
5872 		return 0;
5873 
5874 	if (!mem_cgroup_is_root(memcg) &&
5875 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5876 		return -ENOMEM;
5877 
5878 	mem_cgroup_id_get(memcg);
5879 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5880 	VM_BUG_ON_PAGE(oldid, page);
5881 	mem_cgroup_swap_statistics(memcg, true);
5882 
5883 	return 0;
5884 }
5885 
5886 /**
5887  * mem_cgroup_uncharge_swap - uncharge a swap entry
5888  * @entry: swap entry to uncharge
5889  *
5890  * Drop the swap charge associated with @entry.
5891  */
5892 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5893 {
5894 	struct mem_cgroup *memcg;
5895 	unsigned short id;
5896 
5897 	if (!do_swap_account)
5898 		return;
5899 
5900 	id = swap_cgroup_record(entry, 0);
5901 	rcu_read_lock();
5902 	memcg = mem_cgroup_from_id(id);
5903 	if (memcg) {
5904 		if (!mem_cgroup_is_root(memcg)) {
5905 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5906 				page_counter_uncharge(&memcg->swap, 1);
5907 			else
5908 				page_counter_uncharge(&memcg->memsw, 1);
5909 		}
5910 		mem_cgroup_swap_statistics(memcg, false);
5911 		mem_cgroup_id_put(memcg);
5912 	}
5913 	rcu_read_unlock();
5914 }
5915 
5916 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5917 {
5918 	long nr_swap_pages = get_nr_swap_pages();
5919 
5920 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5921 		return nr_swap_pages;
5922 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5923 		nr_swap_pages = min_t(long, nr_swap_pages,
5924 				      READ_ONCE(memcg->swap.limit) -
5925 				      page_counter_read(&memcg->swap));
5926 	return nr_swap_pages;
5927 }
5928 
5929 bool mem_cgroup_swap_full(struct page *page)
5930 {
5931 	struct mem_cgroup *memcg;
5932 
5933 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5934 
5935 	if (vm_swap_full())
5936 		return true;
5937 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5938 		return false;
5939 
5940 	memcg = page->mem_cgroup;
5941 	if (!memcg)
5942 		return false;
5943 
5944 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5945 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5946 			return true;
5947 
5948 	return false;
5949 }
5950 
5951 /* for remember boot option*/
5952 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5953 static int really_do_swap_account __initdata = 1;
5954 #else
5955 static int really_do_swap_account __initdata;
5956 #endif
5957 
5958 static int __init enable_swap_account(char *s)
5959 {
5960 	if (!strcmp(s, "1"))
5961 		really_do_swap_account = 1;
5962 	else if (!strcmp(s, "0"))
5963 		really_do_swap_account = 0;
5964 	return 1;
5965 }
5966 __setup("swapaccount=", enable_swap_account);
5967 
5968 static u64 swap_current_read(struct cgroup_subsys_state *css,
5969 			     struct cftype *cft)
5970 {
5971 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5972 
5973 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5974 }
5975 
5976 static int swap_max_show(struct seq_file *m, void *v)
5977 {
5978 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5979 	unsigned long max = READ_ONCE(memcg->swap.limit);
5980 
5981 	if (max == PAGE_COUNTER_MAX)
5982 		seq_puts(m, "max\n");
5983 	else
5984 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5985 
5986 	return 0;
5987 }
5988 
5989 static ssize_t swap_max_write(struct kernfs_open_file *of,
5990 			      char *buf, size_t nbytes, loff_t off)
5991 {
5992 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5993 	unsigned long max;
5994 	int err;
5995 
5996 	buf = strstrip(buf);
5997 	err = page_counter_memparse(buf, "max", &max);
5998 	if (err)
5999 		return err;
6000 
6001 	mutex_lock(&memcg_limit_mutex);
6002 	err = page_counter_limit(&memcg->swap, max);
6003 	mutex_unlock(&memcg_limit_mutex);
6004 	if (err)
6005 		return err;
6006 
6007 	return nbytes;
6008 }
6009 
6010 static struct cftype swap_files[] = {
6011 	{
6012 		.name = "swap.current",
6013 		.flags = CFTYPE_NOT_ON_ROOT,
6014 		.read_u64 = swap_current_read,
6015 	},
6016 	{
6017 		.name = "swap.max",
6018 		.flags = CFTYPE_NOT_ON_ROOT,
6019 		.seq_show = swap_max_show,
6020 		.write = swap_max_write,
6021 	},
6022 	{ }	/* terminate */
6023 };
6024 
6025 static struct cftype memsw_cgroup_files[] = {
6026 	{
6027 		.name = "memsw.usage_in_bytes",
6028 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6029 		.read_u64 = mem_cgroup_read_u64,
6030 	},
6031 	{
6032 		.name = "memsw.max_usage_in_bytes",
6033 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6034 		.write = mem_cgroup_reset,
6035 		.read_u64 = mem_cgroup_read_u64,
6036 	},
6037 	{
6038 		.name = "memsw.limit_in_bytes",
6039 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6040 		.write = mem_cgroup_write,
6041 		.read_u64 = mem_cgroup_read_u64,
6042 	},
6043 	{
6044 		.name = "memsw.failcnt",
6045 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6046 		.write = mem_cgroup_reset,
6047 		.read_u64 = mem_cgroup_read_u64,
6048 	},
6049 	{ },	/* terminate */
6050 };
6051 
6052 static int __init mem_cgroup_swap_init(void)
6053 {
6054 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6055 		do_swap_account = 1;
6056 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6057 					       swap_files));
6058 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6059 						  memsw_cgroup_files));
6060 	}
6061 	return 0;
6062 }
6063 subsys_initcall(mem_cgroup_swap_init);
6064 
6065 #endif /* CONFIG_MEMCG_SWAP */
6066