1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_zone { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree_per_node { 141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 142 }; 143 144 struct mem_cgroup_tree { 145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 146 }; 147 148 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 149 150 /* for OOM */ 151 struct mem_cgroup_eventfd_list { 152 struct list_head list; 153 struct eventfd_ctx *eventfd; 154 }; 155 156 /* 157 * cgroup_event represents events which userspace want to receive. 158 */ 159 struct mem_cgroup_event { 160 /* 161 * memcg which the event belongs to. 162 */ 163 struct mem_cgroup *memcg; 164 /* 165 * eventfd to signal userspace about the event. 166 */ 167 struct eventfd_ctx *eventfd; 168 /* 169 * Each of these stored in a list by the cgroup. 170 */ 171 struct list_head list; 172 /* 173 * register_event() callback will be used to add new userspace 174 * waiter for changes related to this event. Use eventfd_signal() 175 * on eventfd to send notification to userspace. 176 */ 177 int (*register_event)(struct mem_cgroup *memcg, 178 struct eventfd_ctx *eventfd, const char *args); 179 /* 180 * unregister_event() callback will be called when userspace closes 181 * the eventfd or on cgroup removing. This callback must be set, 182 * if you want provide notification functionality. 183 */ 184 void (*unregister_event)(struct mem_cgroup *memcg, 185 struct eventfd_ctx *eventfd); 186 /* 187 * All fields below needed to unregister event when 188 * userspace closes eventfd. 189 */ 190 poll_table pt; 191 wait_queue_head_t *wqh; 192 wait_queue_t wait; 193 struct work_struct remove; 194 }; 195 196 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 198 199 /* Stuffs for move charges at task migration. */ 200 /* 201 * Types of charges to be moved. 202 */ 203 #define MOVE_ANON 0x1U 204 #define MOVE_FILE 0x2U 205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 206 207 /* "mc" and its members are protected by cgroup_mutex */ 208 static struct move_charge_struct { 209 spinlock_t lock; /* for from, to */ 210 struct mm_struct *mm; 211 struct mem_cgroup *from; 212 struct mem_cgroup *to; 213 unsigned long flags; 214 unsigned long precharge; 215 unsigned long moved_charge; 216 unsigned long moved_swap; 217 struct task_struct *moving_task; /* a task moving charges */ 218 wait_queue_head_t waitq; /* a waitq for other context */ 219 } mc = { 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 222 }; 223 224 /* 225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 226 * limit reclaim to prevent infinite loops, if they ever occur. 227 */ 228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 230 231 enum charge_type { 232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 233 MEM_CGROUP_CHARGE_TYPE_ANON, 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 236 NR_CHARGE_TYPE, 237 }; 238 239 /* for encoding cft->private value on file */ 240 enum res_type { 241 _MEM, 242 _MEMSWAP, 243 _OOM_TYPE, 244 _KMEM, 245 _TCP, 246 }; 247 248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 250 #define MEMFILE_ATTR(val) ((val) & 0xffff) 251 /* Used for OOM nofiier */ 252 #define OOM_CONTROL (0) 253 254 /* Some nice accessors for the vmpressure. */ 255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 256 { 257 if (!memcg) 258 memcg = root_mem_cgroup; 259 return &memcg->vmpressure; 260 } 261 262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 263 { 264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 265 } 266 267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 268 { 269 return (memcg == root_mem_cgroup); 270 } 271 272 #ifndef CONFIG_SLOB 273 /* 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 275 * The main reason for not using cgroup id for this: 276 * this works better in sparse environments, where we have a lot of memcgs, 277 * but only a few kmem-limited. Or also, if we have, for instance, 200 278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 279 * 200 entry array for that. 280 * 281 * The current size of the caches array is stored in memcg_nr_cache_ids. It 282 * will double each time we have to increase it. 283 */ 284 static DEFINE_IDA(memcg_cache_ida); 285 int memcg_nr_cache_ids; 286 287 /* Protects memcg_nr_cache_ids */ 288 static DECLARE_RWSEM(memcg_cache_ids_sem); 289 290 void memcg_get_cache_ids(void) 291 { 292 down_read(&memcg_cache_ids_sem); 293 } 294 295 void memcg_put_cache_ids(void) 296 { 297 up_read(&memcg_cache_ids_sem); 298 } 299 300 /* 301 * MIN_SIZE is different than 1, because we would like to avoid going through 302 * the alloc/free process all the time. In a small machine, 4 kmem-limited 303 * cgroups is a reasonable guess. In the future, it could be a parameter or 304 * tunable, but that is strictly not necessary. 305 * 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 307 * this constant directly from cgroup, but it is understandable that this is 308 * better kept as an internal representation in cgroup.c. In any case, the 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily 310 * increase ours as well if it increases. 311 */ 312 #define MEMCG_CACHES_MIN_SIZE 4 313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 314 315 /* 316 * A lot of the calls to the cache allocation functions are expected to be 317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 318 * conditional to this static branch, we'll have to allow modules that does 319 * kmem_cache_alloc and the such to see this symbol as well 320 */ 321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 322 EXPORT_SYMBOL(memcg_kmem_enabled_key); 323 324 #endif /* !CONFIG_SLOB */ 325 326 /** 327 * mem_cgroup_css_from_page - css of the memcg associated with a page 328 * @page: page of interest 329 * 330 * If memcg is bound to the default hierarchy, css of the memcg associated 331 * with @page is returned. The returned css remains associated with @page 332 * until it is released. 333 * 334 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 335 * is returned. 336 */ 337 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 338 { 339 struct mem_cgroup *memcg; 340 341 memcg = page->mem_cgroup; 342 343 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 344 memcg = root_mem_cgroup; 345 346 return &memcg->css; 347 } 348 349 /** 350 * page_cgroup_ino - return inode number of the memcg a page is charged to 351 * @page: the page 352 * 353 * Look up the closest online ancestor of the memory cgroup @page is charged to 354 * and return its inode number or 0 if @page is not charged to any cgroup. It 355 * is safe to call this function without holding a reference to @page. 356 * 357 * Note, this function is inherently racy, because there is nothing to prevent 358 * the cgroup inode from getting torn down and potentially reallocated a moment 359 * after page_cgroup_ino() returns, so it only should be used by callers that 360 * do not care (such as procfs interfaces). 361 */ 362 ino_t page_cgroup_ino(struct page *page) 363 { 364 struct mem_cgroup *memcg; 365 unsigned long ino = 0; 366 367 rcu_read_lock(); 368 memcg = READ_ONCE(page->mem_cgroup); 369 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 370 memcg = parent_mem_cgroup(memcg); 371 if (memcg) 372 ino = cgroup_ino(memcg->css.cgroup); 373 rcu_read_unlock(); 374 return ino; 375 } 376 377 static struct mem_cgroup_per_zone * 378 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 379 { 380 int nid = page_to_nid(page); 381 int zid = page_zonenum(page); 382 383 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 384 } 385 386 static struct mem_cgroup_tree_per_zone * 387 soft_limit_tree_node_zone(int nid, int zid) 388 { 389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 390 } 391 392 static struct mem_cgroup_tree_per_zone * 393 soft_limit_tree_from_page(struct page *page) 394 { 395 int nid = page_to_nid(page); 396 int zid = page_zonenum(page); 397 398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 399 } 400 401 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 402 struct mem_cgroup_tree_per_zone *mctz, 403 unsigned long new_usage_in_excess) 404 { 405 struct rb_node **p = &mctz->rb_root.rb_node; 406 struct rb_node *parent = NULL; 407 struct mem_cgroup_per_zone *mz_node; 408 409 if (mz->on_tree) 410 return; 411 412 mz->usage_in_excess = new_usage_in_excess; 413 if (!mz->usage_in_excess) 414 return; 415 while (*p) { 416 parent = *p; 417 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 418 tree_node); 419 if (mz->usage_in_excess < mz_node->usage_in_excess) 420 p = &(*p)->rb_left; 421 /* 422 * We can't avoid mem cgroups that are over their soft 423 * limit by the same amount 424 */ 425 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 426 p = &(*p)->rb_right; 427 } 428 rb_link_node(&mz->tree_node, parent, p); 429 rb_insert_color(&mz->tree_node, &mctz->rb_root); 430 mz->on_tree = true; 431 } 432 433 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 434 struct mem_cgroup_tree_per_zone *mctz) 435 { 436 if (!mz->on_tree) 437 return; 438 rb_erase(&mz->tree_node, &mctz->rb_root); 439 mz->on_tree = false; 440 } 441 442 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 443 struct mem_cgroup_tree_per_zone *mctz) 444 { 445 unsigned long flags; 446 447 spin_lock_irqsave(&mctz->lock, flags); 448 __mem_cgroup_remove_exceeded(mz, mctz); 449 spin_unlock_irqrestore(&mctz->lock, flags); 450 } 451 452 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 453 { 454 unsigned long nr_pages = page_counter_read(&memcg->memory); 455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 456 unsigned long excess = 0; 457 458 if (nr_pages > soft_limit) 459 excess = nr_pages - soft_limit; 460 461 return excess; 462 } 463 464 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 465 { 466 unsigned long excess; 467 struct mem_cgroup_per_zone *mz; 468 struct mem_cgroup_tree_per_zone *mctz; 469 470 mctz = soft_limit_tree_from_page(page); 471 /* 472 * Necessary to update all ancestors when hierarchy is used. 473 * because their event counter is not touched. 474 */ 475 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 476 mz = mem_cgroup_page_zoneinfo(memcg, page); 477 excess = soft_limit_excess(memcg); 478 /* 479 * We have to update the tree if mz is on RB-tree or 480 * mem is over its softlimit. 481 */ 482 if (excess || mz->on_tree) { 483 unsigned long flags; 484 485 spin_lock_irqsave(&mctz->lock, flags); 486 /* if on-tree, remove it */ 487 if (mz->on_tree) 488 __mem_cgroup_remove_exceeded(mz, mctz); 489 /* 490 * Insert again. mz->usage_in_excess will be updated. 491 * If excess is 0, no tree ops. 492 */ 493 __mem_cgroup_insert_exceeded(mz, mctz, excess); 494 spin_unlock_irqrestore(&mctz->lock, flags); 495 } 496 } 497 } 498 499 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 500 { 501 struct mem_cgroup_tree_per_zone *mctz; 502 struct mem_cgroup_per_zone *mz; 503 int nid, zid; 504 505 for_each_node(nid) { 506 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 507 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 508 mctz = soft_limit_tree_node_zone(nid, zid); 509 mem_cgroup_remove_exceeded(mz, mctz); 510 } 511 } 512 } 513 514 static struct mem_cgroup_per_zone * 515 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 516 { 517 struct rb_node *rightmost = NULL; 518 struct mem_cgroup_per_zone *mz; 519 520 retry: 521 mz = NULL; 522 rightmost = rb_last(&mctz->rb_root); 523 if (!rightmost) 524 goto done; /* Nothing to reclaim from */ 525 526 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 527 /* 528 * Remove the node now but someone else can add it back, 529 * we will to add it back at the end of reclaim to its correct 530 * position in the tree. 531 */ 532 __mem_cgroup_remove_exceeded(mz, mctz); 533 if (!soft_limit_excess(mz->memcg) || 534 !css_tryget_online(&mz->memcg->css)) 535 goto retry; 536 done: 537 return mz; 538 } 539 540 static struct mem_cgroup_per_zone * 541 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 542 { 543 struct mem_cgroup_per_zone *mz; 544 545 spin_lock_irq(&mctz->lock); 546 mz = __mem_cgroup_largest_soft_limit_node(mctz); 547 spin_unlock_irq(&mctz->lock); 548 return mz; 549 } 550 551 /* 552 * Return page count for single (non recursive) @memcg. 553 * 554 * Implementation Note: reading percpu statistics for memcg. 555 * 556 * Both of vmstat[] and percpu_counter has threshold and do periodic 557 * synchronization to implement "quick" read. There are trade-off between 558 * reading cost and precision of value. Then, we may have a chance to implement 559 * a periodic synchronization of counter in memcg's counter. 560 * 561 * But this _read() function is used for user interface now. The user accounts 562 * memory usage by memory cgroup and he _always_ requires exact value because 563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 564 * have to visit all online cpus and make sum. So, for now, unnecessary 565 * synchronization is not implemented. (just implemented for cpu hotplug) 566 * 567 * If there are kernel internal actions which can make use of some not-exact 568 * value, and reading all cpu value can be performance bottleneck in some 569 * common workload, threshold and synchronization as vmstat[] should be 570 * implemented. 571 */ 572 static unsigned long 573 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 574 { 575 long val = 0; 576 int cpu; 577 578 /* Per-cpu values can be negative, use a signed accumulator */ 579 for_each_possible_cpu(cpu) 580 val += per_cpu(memcg->stat->count[idx], cpu); 581 /* 582 * Summing races with updates, so val may be negative. Avoid exposing 583 * transient negative values. 584 */ 585 if (val < 0) 586 val = 0; 587 return val; 588 } 589 590 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 591 enum mem_cgroup_events_index idx) 592 { 593 unsigned long val = 0; 594 int cpu; 595 596 for_each_possible_cpu(cpu) 597 val += per_cpu(memcg->stat->events[idx], cpu); 598 return val; 599 } 600 601 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 602 struct page *page, 603 bool compound, int nr_pages) 604 { 605 /* 606 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 607 * counted as CACHE even if it's on ANON LRU. 608 */ 609 if (PageAnon(page)) 610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 611 nr_pages); 612 else 613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 614 nr_pages); 615 616 if (compound) { 617 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 619 nr_pages); 620 } 621 622 /* pagein of a big page is an event. So, ignore page size */ 623 if (nr_pages > 0) 624 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 625 else { 626 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 627 nr_pages = -nr_pages; /* for event */ 628 } 629 630 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 631 } 632 633 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 634 int nid, unsigned int lru_mask) 635 { 636 unsigned long nr = 0; 637 int zid; 638 639 VM_BUG_ON((unsigned)nid >= nr_node_ids); 640 641 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 642 struct mem_cgroup_per_zone *mz; 643 enum lru_list lru; 644 645 for_each_lru(lru) { 646 if (!(BIT(lru) & lru_mask)) 647 continue; 648 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 649 nr += mz->lru_size[lru]; 650 } 651 } 652 return nr; 653 } 654 655 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 656 unsigned int lru_mask) 657 { 658 unsigned long nr = 0; 659 int nid; 660 661 for_each_node_state(nid, N_MEMORY) 662 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 663 return nr; 664 } 665 666 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 667 enum mem_cgroup_events_target target) 668 { 669 unsigned long val, next; 670 671 val = __this_cpu_read(memcg->stat->nr_page_events); 672 next = __this_cpu_read(memcg->stat->targets[target]); 673 /* from time_after() in jiffies.h */ 674 if ((long)next - (long)val < 0) { 675 switch (target) { 676 case MEM_CGROUP_TARGET_THRESH: 677 next = val + THRESHOLDS_EVENTS_TARGET; 678 break; 679 case MEM_CGROUP_TARGET_SOFTLIMIT: 680 next = val + SOFTLIMIT_EVENTS_TARGET; 681 break; 682 case MEM_CGROUP_TARGET_NUMAINFO: 683 next = val + NUMAINFO_EVENTS_TARGET; 684 break; 685 default: 686 break; 687 } 688 __this_cpu_write(memcg->stat->targets[target], next); 689 return true; 690 } 691 return false; 692 } 693 694 /* 695 * Check events in order. 696 * 697 */ 698 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 699 { 700 /* threshold event is triggered in finer grain than soft limit */ 701 if (unlikely(mem_cgroup_event_ratelimit(memcg, 702 MEM_CGROUP_TARGET_THRESH))) { 703 bool do_softlimit; 704 bool do_numainfo __maybe_unused; 705 706 do_softlimit = mem_cgroup_event_ratelimit(memcg, 707 MEM_CGROUP_TARGET_SOFTLIMIT); 708 #if MAX_NUMNODES > 1 709 do_numainfo = mem_cgroup_event_ratelimit(memcg, 710 MEM_CGROUP_TARGET_NUMAINFO); 711 #endif 712 mem_cgroup_threshold(memcg); 713 if (unlikely(do_softlimit)) 714 mem_cgroup_update_tree(memcg, page); 715 #if MAX_NUMNODES > 1 716 if (unlikely(do_numainfo)) 717 atomic_inc(&memcg->numainfo_events); 718 #endif 719 } 720 } 721 722 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 723 { 724 /* 725 * mm_update_next_owner() may clear mm->owner to NULL 726 * if it races with swapoff, page migration, etc. 727 * So this can be called with p == NULL. 728 */ 729 if (unlikely(!p)) 730 return NULL; 731 732 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 733 } 734 EXPORT_SYMBOL(mem_cgroup_from_task); 735 736 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 737 { 738 struct mem_cgroup *memcg = NULL; 739 740 rcu_read_lock(); 741 do { 742 /* 743 * Page cache insertions can happen withou an 744 * actual mm context, e.g. during disk probing 745 * on boot, loopback IO, acct() writes etc. 746 */ 747 if (unlikely(!mm)) 748 memcg = root_mem_cgroup; 749 else { 750 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 751 if (unlikely(!memcg)) 752 memcg = root_mem_cgroup; 753 } 754 } while (!css_tryget_online(&memcg->css)); 755 rcu_read_unlock(); 756 return memcg; 757 } 758 759 /** 760 * mem_cgroup_iter - iterate over memory cgroup hierarchy 761 * @root: hierarchy root 762 * @prev: previously returned memcg, NULL on first invocation 763 * @reclaim: cookie for shared reclaim walks, NULL for full walks 764 * 765 * Returns references to children of the hierarchy below @root, or 766 * @root itself, or %NULL after a full round-trip. 767 * 768 * Caller must pass the return value in @prev on subsequent 769 * invocations for reference counting, or use mem_cgroup_iter_break() 770 * to cancel a hierarchy walk before the round-trip is complete. 771 * 772 * Reclaimers can specify a zone and a priority level in @reclaim to 773 * divide up the memcgs in the hierarchy among all concurrent 774 * reclaimers operating on the same zone and priority. 775 */ 776 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 777 struct mem_cgroup *prev, 778 struct mem_cgroup_reclaim_cookie *reclaim) 779 { 780 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 781 struct cgroup_subsys_state *css = NULL; 782 struct mem_cgroup *memcg = NULL; 783 struct mem_cgroup *pos = NULL; 784 785 if (mem_cgroup_disabled()) 786 return NULL; 787 788 if (!root) 789 root = root_mem_cgroup; 790 791 if (prev && !reclaim) 792 pos = prev; 793 794 if (!root->use_hierarchy && root != root_mem_cgroup) { 795 if (prev) 796 goto out; 797 return root; 798 } 799 800 rcu_read_lock(); 801 802 if (reclaim) { 803 struct mem_cgroup_per_zone *mz; 804 805 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 806 iter = &mz->iter[reclaim->priority]; 807 808 if (prev && reclaim->generation != iter->generation) 809 goto out_unlock; 810 811 while (1) { 812 pos = READ_ONCE(iter->position); 813 if (!pos || css_tryget(&pos->css)) 814 break; 815 /* 816 * css reference reached zero, so iter->position will 817 * be cleared by ->css_released. However, we should not 818 * rely on this happening soon, because ->css_released 819 * is called from a work queue, and by busy-waiting we 820 * might block it. So we clear iter->position right 821 * away. 822 */ 823 (void)cmpxchg(&iter->position, pos, NULL); 824 } 825 } 826 827 if (pos) 828 css = &pos->css; 829 830 for (;;) { 831 css = css_next_descendant_pre(css, &root->css); 832 if (!css) { 833 /* 834 * Reclaimers share the hierarchy walk, and a 835 * new one might jump in right at the end of 836 * the hierarchy - make sure they see at least 837 * one group and restart from the beginning. 838 */ 839 if (!prev) 840 continue; 841 break; 842 } 843 844 /* 845 * Verify the css and acquire a reference. The root 846 * is provided by the caller, so we know it's alive 847 * and kicking, and don't take an extra reference. 848 */ 849 memcg = mem_cgroup_from_css(css); 850 851 if (css == &root->css) 852 break; 853 854 if (css_tryget(css)) 855 break; 856 857 memcg = NULL; 858 } 859 860 if (reclaim) { 861 /* 862 * The position could have already been updated by a competing 863 * thread, so check that the value hasn't changed since we read 864 * it to avoid reclaiming from the same cgroup twice. 865 */ 866 (void)cmpxchg(&iter->position, pos, memcg); 867 868 if (pos) 869 css_put(&pos->css); 870 871 if (!memcg) 872 iter->generation++; 873 else if (!prev) 874 reclaim->generation = iter->generation; 875 } 876 877 out_unlock: 878 rcu_read_unlock(); 879 out: 880 if (prev && prev != root) 881 css_put(&prev->css); 882 883 return memcg; 884 } 885 886 /** 887 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 888 * @root: hierarchy root 889 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 890 */ 891 void mem_cgroup_iter_break(struct mem_cgroup *root, 892 struct mem_cgroup *prev) 893 { 894 if (!root) 895 root = root_mem_cgroup; 896 if (prev && prev != root) 897 css_put(&prev->css); 898 } 899 900 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 901 { 902 struct mem_cgroup *memcg = dead_memcg; 903 struct mem_cgroup_reclaim_iter *iter; 904 struct mem_cgroup_per_zone *mz; 905 int nid, zid; 906 int i; 907 908 while ((memcg = parent_mem_cgroup(memcg))) { 909 for_each_node(nid) { 910 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 911 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 912 for (i = 0; i <= DEF_PRIORITY; i++) { 913 iter = &mz->iter[i]; 914 cmpxchg(&iter->position, 915 dead_memcg, NULL); 916 } 917 } 918 } 919 } 920 } 921 922 /* 923 * Iteration constructs for visiting all cgroups (under a tree). If 924 * loops are exited prematurely (break), mem_cgroup_iter_break() must 925 * be used for reference counting. 926 */ 927 #define for_each_mem_cgroup_tree(iter, root) \ 928 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 929 iter != NULL; \ 930 iter = mem_cgroup_iter(root, iter, NULL)) 931 932 #define for_each_mem_cgroup(iter) \ 933 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 934 iter != NULL; \ 935 iter = mem_cgroup_iter(NULL, iter, NULL)) 936 937 /** 938 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 939 * @page: the page 940 * @zone: zone of the page 941 * 942 * This function is only safe when following the LRU page isolation 943 * and putback protocol: the LRU lock must be held, and the page must 944 * either be PageLRU() or the caller must have isolated/allocated it. 945 */ 946 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 947 { 948 struct mem_cgroup_per_zone *mz; 949 struct mem_cgroup *memcg; 950 struct lruvec *lruvec; 951 952 if (mem_cgroup_disabled()) { 953 lruvec = &pgdat->lruvec; 954 goto out; 955 } 956 957 memcg = page->mem_cgroup; 958 /* 959 * Swapcache readahead pages are added to the LRU - and 960 * possibly migrated - before they are charged. 961 */ 962 if (!memcg) 963 memcg = root_mem_cgroup; 964 965 mz = mem_cgroup_page_zoneinfo(memcg, page); 966 lruvec = &mz->lruvec; 967 out: 968 /* 969 * Since a node can be onlined after the mem_cgroup was created, 970 * we have to be prepared to initialize lruvec->zone here; 971 * and if offlined then reonlined, we need to reinitialize it. 972 */ 973 if (unlikely(lruvec->pgdat != pgdat)) 974 lruvec->pgdat = pgdat; 975 return lruvec; 976 } 977 978 /** 979 * mem_cgroup_update_lru_size - account for adding or removing an lru page 980 * @lruvec: mem_cgroup per zone lru vector 981 * @lru: index of lru list the page is sitting on 982 * @zid: Zone ID of the zone pages have been added to 983 * @nr_pages: positive when adding or negative when removing 984 * 985 * This function must be called under lru_lock, just before a page is added 986 * to or just after a page is removed from an lru list (that ordering being 987 * so as to allow it to check that lru_size 0 is consistent with list_empty). 988 */ 989 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 990 enum zone_type zid, int nr_pages) 991 { 992 struct mem_cgroup_per_zone *mz; 993 unsigned long *lru_size; 994 long size; 995 bool empty; 996 997 __update_lru_size(lruvec, lru, zid, nr_pages); 998 999 if (mem_cgroup_disabled()) 1000 return; 1001 1002 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1003 lru_size = mz->lru_size + lru; 1004 empty = list_empty(lruvec->lists + lru); 1005 1006 if (nr_pages < 0) 1007 *lru_size += nr_pages; 1008 1009 size = *lru_size; 1010 if (WARN_ONCE(size < 0 || empty != !size, 1011 "%s(%p, %d, %d): lru_size %ld but %sempty\n", 1012 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { 1013 VM_BUG_ON(1); 1014 *lru_size = 0; 1015 } 1016 1017 if (nr_pages > 0) 1018 *lru_size += nr_pages; 1019 } 1020 1021 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1022 { 1023 struct mem_cgroup *task_memcg; 1024 struct task_struct *p; 1025 bool ret; 1026 1027 p = find_lock_task_mm(task); 1028 if (p) { 1029 task_memcg = get_mem_cgroup_from_mm(p->mm); 1030 task_unlock(p); 1031 } else { 1032 /* 1033 * All threads may have already detached their mm's, but the oom 1034 * killer still needs to detect if they have already been oom 1035 * killed to prevent needlessly killing additional tasks. 1036 */ 1037 rcu_read_lock(); 1038 task_memcg = mem_cgroup_from_task(task); 1039 css_get(&task_memcg->css); 1040 rcu_read_unlock(); 1041 } 1042 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1043 css_put(&task_memcg->css); 1044 return ret; 1045 } 1046 1047 /** 1048 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1049 * @memcg: the memory cgroup 1050 * 1051 * Returns the maximum amount of memory @mem can be charged with, in 1052 * pages. 1053 */ 1054 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1055 { 1056 unsigned long margin = 0; 1057 unsigned long count; 1058 unsigned long limit; 1059 1060 count = page_counter_read(&memcg->memory); 1061 limit = READ_ONCE(memcg->memory.limit); 1062 if (count < limit) 1063 margin = limit - count; 1064 1065 if (do_memsw_account()) { 1066 count = page_counter_read(&memcg->memsw); 1067 limit = READ_ONCE(memcg->memsw.limit); 1068 if (count <= limit) 1069 margin = min(margin, limit - count); 1070 else 1071 margin = 0; 1072 } 1073 1074 return margin; 1075 } 1076 1077 /* 1078 * A routine for checking "mem" is under move_account() or not. 1079 * 1080 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1081 * moving cgroups. This is for waiting at high-memory pressure 1082 * caused by "move". 1083 */ 1084 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1085 { 1086 struct mem_cgroup *from; 1087 struct mem_cgroup *to; 1088 bool ret = false; 1089 /* 1090 * Unlike task_move routines, we access mc.to, mc.from not under 1091 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1092 */ 1093 spin_lock(&mc.lock); 1094 from = mc.from; 1095 to = mc.to; 1096 if (!from) 1097 goto unlock; 1098 1099 ret = mem_cgroup_is_descendant(from, memcg) || 1100 mem_cgroup_is_descendant(to, memcg); 1101 unlock: 1102 spin_unlock(&mc.lock); 1103 return ret; 1104 } 1105 1106 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1107 { 1108 if (mc.moving_task && current != mc.moving_task) { 1109 if (mem_cgroup_under_move(memcg)) { 1110 DEFINE_WAIT(wait); 1111 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1112 /* moving charge context might have finished. */ 1113 if (mc.moving_task) 1114 schedule(); 1115 finish_wait(&mc.waitq, &wait); 1116 return true; 1117 } 1118 } 1119 return false; 1120 } 1121 1122 #define K(x) ((x) << (PAGE_SHIFT-10)) 1123 /** 1124 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1125 * @memcg: The memory cgroup that went over limit 1126 * @p: Task that is going to be killed 1127 * 1128 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1129 * enabled 1130 */ 1131 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1132 { 1133 struct mem_cgroup *iter; 1134 unsigned int i; 1135 1136 rcu_read_lock(); 1137 1138 if (p) { 1139 pr_info("Task in "); 1140 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1141 pr_cont(" killed as a result of limit of "); 1142 } else { 1143 pr_info("Memory limit reached of cgroup "); 1144 } 1145 1146 pr_cont_cgroup_path(memcg->css.cgroup); 1147 pr_cont("\n"); 1148 1149 rcu_read_unlock(); 1150 1151 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1152 K((u64)page_counter_read(&memcg->memory)), 1153 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1154 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1155 K((u64)page_counter_read(&memcg->memsw)), 1156 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1157 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1158 K((u64)page_counter_read(&memcg->kmem)), 1159 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1160 1161 for_each_mem_cgroup_tree(iter, memcg) { 1162 pr_info("Memory cgroup stats for "); 1163 pr_cont_cgroup_path(iter->css.cgroup); 1164 pr_cont(":"); 1165 1166 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1167 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1168 continue; 1169 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1170 K(mem_cgroup_read_stat(iter, i))); 1171 } 1172 1173 for (i = 0; i < NR_LRU_LISTS; i++) 1174 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1175 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1176 1177 pr_cont("\n"); 1178 } 1179 } 1180 1181 /* 1182 * This function returns the number of memcg under hierarchy tree. Returns 1183 * 1(self count) if no children. 1184 */ 1185 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1186 { 1187 int num = 0; 1188 struct mem_cgroup *iter; 1189 1190 for_each_mem_cgroup_tree(iter, memcg) 1191 num++; 1192 return num; 1193 } 1194 1195 /* 1196 * Return the memory (and swap, if configured) limit for a memcg. 1197 */ 1198 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1199 { 1200 unsigned long limit; 1201 1202 limit = memcg->memory.limit; 1203 if (mem_cgroup_swappiness(memcg)) { 1204 unsigned long memsw_limit; 1205 unsigned long swap_limit; 1206 1207 memsw_limit = memcg->memsw.limit; 1208 swap_limit = memcg->swap.limit; 1209 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1210 limit = min(limit + swap_limit, memsw_limit); 1211 } 1212 return limit; 1213 } 1214 1215 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1216 int order) 1217 { 1218 struct oom_control oc = { 1219 .zonelist = NULL, 1220 .nodemask = NULL, 1221 .memcg = memcg, 1222 .gfp_mask = gfp_mask, 1223 .order = order, 1224 }; 1225 struct mem_cgroup *iter; 1226 unsigned long chosen_points = 0; 1227 unsigned long totalpages; 1228 unsigned int points = 0; 1229 struct task_struct *chosen = NULL; 1230 1231 mutex_lock(&oom_lock); 1232 1233 /* 1234 * If current has a pending SIGKILL or is exiting, then automatically 1235 * select it. The goal is to allow it to allocate so that it may 1236 * quickly exit and free its memory. 1237 */ 1238 if (task_will_free_mem(current)) { 1239 mark_oom_victim(current); 1240 wake_oom_reaper(current); 1241 goto unlock; 1242 } 1243 1244 check_panic_on_oom(&oc, CONSTRAINT_MEMCG); 1245 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1246 for_each_mem_cgroup_tree(iter, memcg) { 1247 struct css_task_iter it; 1248 struct task_struct *task; 1249 1250 css_task_iter_start(&iter->css, &it); 1251 while ((task = css_task_iter_next(&it))) { 1252 switch (oom_scan_process_thread(&oc, task)) { 1253 case OOM_SCAN_SELECT: 1254 if (chosen) 1255 put_task_struct(chosen); 1256 chosen = task; 1257 chosen_points = ULONG_MAX; 1258 get_task_struct(chosen); 1259 /* fall through */ 1260 case OOM_SCAN_CONTINUE: 1261 continue; 1262 case OOM_SCAN_ABORT: 1263 css_task_iter_end(&it); 1264 mem_cgroup_iter_break(memcg, iter); 1265 if (chosen) 1266 put_task_struct(chosen); 1267 /* Set a dummy value to return "true". */ 1268 chosen = (void *) 1; 1269 goto unlock; 1270 case OOM_SCAN_OK: 1271 break; 1272 }; 1273 points = oom_badness(task, memcg, NULL, totalpages); 1274 if (!points || points < chosen_points) 1275 continue; 1276 /* Prefer thread group leaders for display purposes */ 1277 if (points == chosen_points && 1278 thread_group_leader(chosen)) 1279 continue; 1280 1281 if (chosen) 1282 put_task_struct(chosen); 1283 chosen = task; 1284 chosen_points = points; 1285 get_task_struct(chosen); 1286 } 1287 css_task_iter_end(&it); 1288 } 1289 1290 if (chosen) { 1291 points = chosen_points * 1000 / totalpages; 1292 oom_kill_process(&oc, chosen, points, totalpages, 1293 "Memory cgroup out of memory"); 1294 } 1295 unlock: 1296 mutex_unlock(&oom_lock); 1297 return chosen; 1298 } 1299 1300 #if MAX_NUMNODES > 1 1301 1302 /** 1303 * test_mem_cgroup_node_reclaimable 1304 * @memcg: the target memcg 1305 * @nid: the node ID to be checked. 1306 * @noswap : specify true here if the user wants flle only information. 1307 * 1308 * This function returns whether the specified memcg contains any 1309 * reclaimable pages on a node. Returns true if there are any reclaimable 1310 * pages in the node. 1311 */ 1312 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1313 int nid, bool noswap) 1314 { 1315 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1316 return true; 1317 if (noswap || !total_swap_pages) 1318 return false; 1319 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1320 return true; 1321 return false; 1322 1323 } 1324 1325 /* 1326 * Always updating the nodemask is not very good - even if we have an empty 1327 * list or the wrong list here, we can start from some node and traverse all 1328 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1329 * 1330 */ 1331 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1332 { 1333 int nid; 1334 /* 1335 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1336 * pagein/pageout changes since the last update. 1337 */ 1338 if (!atomic_read(&memcg->numainfo_events)) 1339 return; 1340 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1341 return; 1342 1343 /* make a nodemask where this memcg uses memory from */ 1344 memcg->scan_nodes = node_states[N_MEMORY]; 1345 1346 for_each_node_mask(nid, node_states[N_MEMORY]) { 1347 1348 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1349 node_clear(nid, memcg->scan_nodes); 1350 } 1351 1352 atomic_set(&memcg->numainfo_events, 0); 1353 atomic_set(&memcg->numainfo_updating, 0); 1354 } 1355 1356 /* 1357 * Selecting a node where we start reclaim from. Because what we need is just 1358 * reducing usage counter, start from anywhere is O,K. Considering 1359 * memory reclaim from current node, there are pros. and cons. 1360 * 1361 * Freeing memory from current node means freeing memory from a node which 1362 * we'll use or we've used. So, it may make LRU bad. And if several threads 1363 * hit limits, it will see a contention on a node. But freeing from remote 1364 * node means more costs for memory reclaim because of memory latency. 1365 * 1366 * Now, we use round-robin. Better algorithm is welcomed. 1367 */ 1368 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1369 { 1370 int node; 1371 1372 mem_cgroup_may_update_nodemask(memcg); 1373 node = memcg->last_scanned_node; 1374 1375 node = next_node_in(node, memcg->scan_nodes); 1376 /* 1377 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1378 * last time it really checked all the LRUs due to rate limiting. 1379 * Fallback to the current node in that case for simplicity. 1380 */ 1381 if (unlikely(node == MAX_NUMNODES)) 1382 node = numa_node_id(); 1383 1384 memcg->last_scanned_node = node; 1385 return node; 1386 } 1387 #else 1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1389 { 1390 return 0; 1391 } 1392 #endif 1393 1394 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1395 struct zone *zone, 1396 gfp_t gfp_mask, 1397 unsigned long *total_scanned) 1398 { 1399 struct mem_cgroup *victim = NULL; 1400 int total = 0; 1401 int loop = 0; 1402 unsigned long excess; 1403 unsigned long nr_scanned; 1404 struct mem_cgroup_reclaim_cookie reclaim = { 1405 .zone = zone, 1406 .priority = 0, 1407 }; 1408 1409 excess = soft_limit_excess(root_memcg); 1410 1411 while (1) { 1412 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1413 if (!victim) { 1414 loop++; 1415 if (loop >= 2) { 1416 /* 1417 * If we have not been able to reclaim 1418 * anything, it might because there are 1419 * no reclaimable pages under this hierarchy 1420 */ 1421 if (!total) 1422 break; 1423 /* 1424 * We want to do more targeted reclaim. 1425 * excess >> 2 is not to excessive so as to 1426 * reclaim too much, nor too less that we keep 1427 * coming back to reclaim from this cgroup 1428 */ 1429 if (total >= (excess >> 2) || 1430 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1431 break; 1432 } 1433 continue; 1434 } 1435 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1436 zone, &nr_scanned); 1437 *total_scanned += nr_scanned; 1438 if (!soft_limit_excess(root_memcg)) 1439 break; 1440 } 1441 mem_cgroup_iter_break(root_memcg, victim); 1442 return total; 1443 } 1444 1445 #ifdef CONFIG_LOCKDEP 1446 static struct lockdep_map memcg_oom_lock_dep_map = { 1447 .name = "memcg_oom_lock", 1448 }; 1449 #endif 1450 1451 static DEFINE_SPINLOCK(memcg_oom_lock); 1452 1453 /* 1454 * Check OOM-Killer is already running under our hierarchy. 1455 * If someone is running, return false. 1456 */ 1457 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1458 { 1459 struct mem_cgroup *iter, *failed = NULL; 1460 1461 spin_lock(&memcg_oom_lock); 1462 1463 for_each_mem_cgroup_tree(iter, memcg) { 1464 if (iter->oom_lock) { 1465 /* 1466 * this subtree of our hierarchy is already locked 1467 * so we cannot give a lock. 1468 */ 1469 failed = iter; 1470 mem_cgroup_iter_break(memcg, iter); 1471 break; 1472 } else 1473 iter->oom_lock = true; 1474 } 1475 1476 if (failed) { 1477 /* 1478 * OK, we failed to lock the whole subtree so we have 1479 * to clean up what we set up to the failing subtree 1480 */ 1481 for_each_mem_cgroup_tree(iter, memcg) { 1482 if (iter == failed) { 1483 mem_cgroup_iter_break(memcg, iter); 1484 break; 1485 } 1486 iter->oom_lock = false; 1487 } 1488 } else 1489 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1490 1491 spin_unlock(&memcg_oom_lock); 1492 1493 return !failed; 1494 } 1495 1496 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1497 { 1498 struct mem_cgroup *iter; 1499 1500 spin_lock(&memcg_oom_lock); 1501 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1502 for_each_mem_cgroup_tree(iter, memcg) 1503 iter->oom_lock = false; 1504 spin_unlock(&memcg_oom_lock); 1505 } 1506 1507 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1508 { 1509 struct mem_cgroup *iter; 1510 1511 spin_lock(&memcg_oom_lock); 1512 for_each_mem_cgroup_tree(iter, memcg) 1513 iter->under_oom++; 1514 spin_unlock(&memcg_oom_lock); 1515 } 1516 1517 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1518 { 1519 struct mem_cgroup *iter; 1520 1521 /* 1522 * When a new child is created while the hierarchy is under oom, 1523 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1524 */ 1525 spin_lock(&memcg_oom_lock); 1526 for_each_mem_cgroup_tree(iter, memcg) 1527 if (iter->under_oom > 0) 1528 iter->under_oom--; 1529 spin_unlock(&memcg_oom_lock); 1530 } 1531 1532 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1533 1534 struct oom_wait_info { 1535 struct mem_cgroup *memcg; 1536 wait_queue_t wait; 1537 }; 1538 1539 static int memcg_oom_wake_function(wait_queue_t *wait, 1540 unsigned mode, int sync, void *arg) 1541 { 1542 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1543 struct mem_cgroup *oom_wait_memcg; 1544 struct oom_wait_info *oom_wait_info; 1545 1546 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1547 oom_wait_memcg = oom_wait_info->memcg; 1548 1549 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1550 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1551 return 0; 1552 return autoremove_wake_function(wait, mode, sync, arg); 1553 } 1554 1555 static void memcg_oom_recover(struct mem_cgroup *memcg) 1556 { 1557 /* 1558 * For the following lockless ->under_oom test, the only required 1559 * guarantee is that it must see the state asserted by an OOM when 1560 * this function is called as a result of userland actions 1561 * triggered by the notification of the OOM. This is trivially 1562 * achieved by invoking mem_cgroup_mark_under_oom() before 1563 * triggering notification. 1564 */ 1565 if (memcg && memcg->under_oom) 1566 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1567 } 1568 1569 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1570 { 1571 if (!current->memcg_may_oom) 1572 return; 1573 /* 1574 * We are in the middle of the charge context here, so we 1575 * don't want to block when potentially sitting on a callstack 1576 * that holds all kinds of filesystem and mm locks. 1577 * 1578 * Also, the caller may handle a failed allocation gracefully 1579 * (like optional page cache readahead) and so an OOM killer 1580 * invocation might not even be necessary. 1581 * 1582 * That's why we don't do anything here except remember the 1583 * OOM context and then deal with it at the end of the page 1584 * fault when the stack is unwound, the locks are released, 1585 * and when we know whether the fault was overall successful. 1586 */ 1587 css_get(&memcg->css); 1588 current->memcg_in_oom = memcg; 1589 current->memcg_oom_gfp_mask = mask; 1590 current->memcg_oom_order = order; 1591 } 1592 1593 /** 1594 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1595 * @handle: actually kill/wait or just clean up the OOM state 1596 * 1597 * This has to be called at the end of a page fault if the memcg OOM 1598 * handler was enabled. 1599 * 1600 * Memcg supports userspace OOM handling where failed allocations must 1601 * sleep on a waitqueue until the userspace task resolves the 1602 * situation. Sleeping directly in the charge context with all kinds 1603 * of locks held is not a good idea, instead we remember an OOM state 1604 * in the task and mem_cgroup_oom_synchronize() has to be called at 1605 * the end of the page fault to complete the OOM handling. 1606 * 1607 * Returns %true if an ongoing memcg OOM situation was detected and 1608 * completed, %false otherwise. 1609 */ 1610 bool mem_cgroup_oom_synchronize(bool handle) 1611 { 1612 struct mem_cgroup *memcg = current->memcg_in_oom; 1613 struct oom_wait_info owait; 1614 bool locked; 1615 1616 /* OOM is global, do not handle */ 1617 if (!memcg) 1618 return false; 1619 1620 if (!handle || oom_killer_disabled) 1621 goto cleanup; 1622 1623 owait.memcg = memcg; 1624 owait.wait.flags = 0; 1625 owait.wait.func = memcg_oom_wake_function; 1626 owait.wait.private = current; 1627 INIT_LIST_HEAD(&owait.wait.task_list); 1628 1629 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1630 mem_cgroup_mark_under_oom(memcg); 1631 1632 locked = mem_cgroup_oom_trylock(memcg); 1633 1634 if (locked) 1635 mem_cgroup_oom_notify(memcg); 1636 1637 if (locked && !memcg->oom_kill_disable) { 1638 mem_cgroup_unmark_under_oom(memcg); 1639 finish_wait(&memcg_oom_waitq, &owait.wait); 1640 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1641 current->memcg_oom_order); 1642 } else { 1643 schedule(); 1644 mem_cgroup_unmark_under_oom(memcg); 1645 finish_wait(&memcg_oom_waitq, &owait.wait); 1646 } 1647 1648 if (locked) { 1649 mem_cgroup_oom_unlock(memcg); 1650 /* 1651 * There is no guarantee that an OOM-lock contender 1652 * sees the wakeups triggered by the OOM kill 1653 * uncharges. Wake any sleepers explicitely. 1654 */ 1655 memcg_oom_recover(memcg); 1656 } 1657 cleanup: 1658 current->memcg_in_oom = NULL; 1659 css_put(&memcg->css); 1660 return true; 1661 } 1662 1663 /** 1664 * lock_page_memcg - lock a page->mem_cgroup binding 1665 * @page: the page 1666 * 1667 * This function protects unlocked LRU pages from being moved to 1668 * another cgroup and stabilizes their page->mem_cgroup binding. 1669 */ 1670 void lock_page_memcg(struct page *page) 1671 { 1672 struct mem_cgroup *memcg; 1673 unsigned long flags; 1674 1675 /* 1676 * The RCU lock is held throughout the transaction. The fast 1677 * path can get away without acquiring the memcg->move_lock 1678 * because page moving starts with an RCU grace period. 1679 */ 1680 rcu_read_lock(); 1681 1682 if (mem_cgroup_disabled()) 1683 return; 1684 again: 1685 memcg = page->mem_cgroup; 1686 if (unlikely(!memcg)) 1687 return; 1688 1689 if (atomic_read(&memcg->moving_account) <= 0) 1690 return; 1691 1692 spin_lock_irqsave(&memcg->move_lock, flags); 1693 if (memcg != page->mem_cgroup) { 1694 spin_unlock_irqrestore(&memcg->move_lock, flags); 1695 goto again; 1696 } 1697 1698 /* 1699 * When charge migration first begins, we can have locked and 1700 * unlocked page stat updates happening concurrently. Track 1701 * the task who has the lock for unlock_page_memcg(). 1702 */ 1703 memcg->move_lock_task = current; 1704 memcg->move_lock_flags = flags; 1705 1706 return; 1707 } 1708 EXPORT_SYMBOL(lock_page_memcg); 1709 1710 /** 1711 * unlock_page_memcg - unlock a page->mem_cgroup binding 1712 * @page: the page 1713 */ 1714 void unlock_page_memcg(struct page *page) 1715 { 1716 struct mem_cgroup *memcg = page->mem_cgroup; 1717 1718 if (memcg && memcg->move_lock_task == current) { 1719 unsigned long flags = memcg->move_lock_flags; 1720 1721 memcg->move_lock_task = NULL; 1722 memcg->move_lock_flags = 0; 1723 1724 spin_unlock_irqrestore(&memcg->move_lock, flags); 1725 } 1726 1727 rcu_read_unlock(); 1728 } 1729 EXPORT_SYMBOL(unlock_page_memcg); 1730 1731 /* 1732 * size of first charge trial. "32" comes from vmscan.c's magic value. 1733 * TODO: maybe necessary to use big numbers in big irons. 1734 */ 1735 #define CHARGE_BATCH 32U 1736 struct memcg_stock_pcp { 1737 struct mem_cgroup *cached; /* this never be root cgroup */ 1738 unsigned int nr_pages; 1739 struct work_struct work; 1740 unsigned long flags; 1741 #define FLUSHING_CACHED_CHARGE 0 1742 }; 1743 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1744 static DEFINE_MUTEX(percpu_charge_mutex); 1745 1746 /** 1747 * consume_stock: Try to consume stocked charge on this cpu. 1748 * @memcg: memcg to consume from. 1749 * @nr_pages: how many pages to charge. 1750 * 1751 * The charges will only happen if @memcg matches the current cpu's memcg 1752 * stock, and at least @nr_pages are available in that stock. Failure to 1753 * service an allocation will refill the stock. 1754 * 1755 * returns true if successful, false otherwise. 1756 */ 1757 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1758 { 1759 struct memcg_stock_pcp *stock; 1760 bool ret = false; 1761 1762 if (nr_pages > CHARGE_BATCH) 1763 return ret; 1764 1765 stock = &get_cpu_var(memcg_stock); 1766 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1767 stock->nr_pages -= nr_pages; 1768 ret = true; 1769 } 1770 put_cpu_var(memcg_stock); 1771 return ret; 1772 } 1773 1774 /* 1775 * Returns stocks cached in percpu and reset cached information. 1776 */ 1777 static void drain_stock(struct memcg_stock_pcp *stock) 1778 { 1779 struct mem_cgroup *old = stock->cached; 1780 1781 if (stock->nr_pages) { 1782 page_counter_uncharge(&old->memory, stock->nr_pages); 1783 if (do_memsw_account()) 1784 page_counter_uncharge(&old->memsw, stock->nr_pages); 1785 css_put_many(&old->css, stock->nr_pages); 1786 stock->nr_pages = 0; 1787 } 1788 stock->cached = NULL; 1789 } 1790 1791 /* 1792 * This must be called under preempt disabled or must be called by 1793 * a thread which is pinned to local cpu. 1794 */ 1795 static void drain_local_stock(struct work_struct *dummy) 1796 { 1797 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1798 drain_stock(stock); 1799 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1800 } 1801 1802 /* 1803 * Cache charges(val) to local per_cpu area. 1804 * This will be consumed by consume_stock() function, later. 1805 */ 1806 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1807 { 1808 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1809 1810 if (stock->cached != memcg) { /* reset if necessary */ 1811 drain_stock(stock); 1812 stock->cached = memcg; 1813 } 1814 stock->nr_pages += nr_pages; 1815 put_cpu_var(memcg_stock); 1816 } 1817 1818 /* 1819 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1820 * of the hierarchy under it. 1821 */ 1822 static void drain_all_stock(struct mem_cgroup *root_memcg) 1823 { 1824 int cpu, curcpu; 1825 1826 /* If someone's already draining, avoid adding running more workers. */ 1827 if (!mutex_trylock(&percpu_charge_mutex)) 1828 return; 1829 /* Notify other cpus that system-wide "drain" is running */ 1830 get_online_cpus(); 1831 curcpu = get_cpu(); 1832 for_each_online_cpu(cpu) { 1833 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1834 struct mem_cgroup *memcg; 1835 1836 memcg = stock->cached; 1837 if (!memcg || !stock->nr_pages) 1838 continue; 1839 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1840 continue; 1841 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1842 if (cpu == curcpu) 1843 drain_local_stock(&stock->work); 1844 else 1845 schedule_work_on(cpu, &stock->work); 1846 } 1847 } 1848 put_cpu(); 1849 put_online_cpus(); 1850 mutex_unlock(&percpu_charge_mutex); 1851 } 1852 1853 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1854 unsigned long action, 1855 void *hcpu) 1856 { 1857 int cpu = (unsigned long)hcpu; 1858 struct memcg_stock_pcp *stock; 1859 1860 if (action == CPU_ONLINE) 1861 return NOTIFY_OK; 1862 1863 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1864 return NOTIFY_OK; 1865 1866 stock = &per_cpu(memcg_stock, cpu); 1867 drain_stock(stock); 1868 return NOTIFY_OK; 1869 } 1870 1871 static void reclaim_high(struct mem_cgroup *memcg, 1872 unsigned int nr_pages, 1873 gfp_t gfp_mask) 1874 { 1875 do { 1876 if (page_counter_read(&memcg->memory) <= memcg->high) 1877 continue; 1878 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1879 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1880 } while ((memcg = parent_mem_cgroup(memcg))); 1881 } 1882 1883 static void high_work_func(struct work_struct *work) 1884 { 1885 struct mem_cgroup *memcg; 1886 1887 memcg = container_of(work, struct mem_cgroup, high_work); 1888 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1889 } 1890 1891 /* 1892 * Scheduled by try_charge() to be executed from the userland return path 1893 * and reclaims memory over the high limit. 1894 */ 1895 void mem_cgroup_handle_over_high(void) 1896 { 1897 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1898 struct mem_cgroup *memcg; 1899 1900 if (likely(!nr_pages)) 1901 return; 1902 1903 memcg = get_mem_cgroup_from_mm(current->mm); 1904 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1905 css_put(&memcg->css); 1906 current->memcg_nr_pages_over_high = 0; 1907 } 1908 1909 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1910 unsigned int nr_pages) 1911 { 1912 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1913 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1914 struct mem_cgroup *mem_over_limit; 1915 struct page_counter *counter; 1916 unsigned long nr_reclaimed; 1917 bool may_swap = true; 1918 bool drained = false; 1919 1920 if (mem_cgroup_is_root(memcg)) 1921 return 0; 1922 retry: 1923 if (consume_stock(memcg, nr_pages)) 1924 return 0; 1925 1926 if (!do_memsw_account() || 1927 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1928 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1929 goto done_restock; 1930 if (do_memsw_account()) 1931 page_counter_uncharge(&memcg->memsw, batch); 1932 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1933 } else { 1934 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1935 may_swap = false; 1936 } 1937 1938 if (batch > nr_pages) { 1939 batch = nr_pages; 1940 goto retry; 1941 } 1942 1943 /* 1944 * Unlike in global OOM situations, memcg is not in a physical 1945 * memory shortage. Allow dying and OOM-killed tasks to 1946 * bypass the last charges so that they can exit quickly and 1947 * free their memory. 1948 */ 1949 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1950 fatal_signal_pending(current) || 1951 current->flags & PF_EXITING)) 1952 goto force; 1953 1954 if (unlikely(task_in_memcg_oom(current))) 1955 goto nomem; 1956 1957 if (!gfpflags_allow_blocking(gfp_mask)) 1958 goto nomem; 1959 1960 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1961 1962 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1963 gfp_mask, may_swap); 1964 1965 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1966 goto retry; 1967 1968 if (!drained) { 1969 drain_all_stock(mem_over_limit); 1970 drained = true; 1971 goto retry; 1972 } 1973 1974 if (gfp_mask & __GFP_NORETRY) 1975 goto nomem; 1976 /* 1977 * Even though the limit is exceeded at this point, reclaim 1978 * may have been able to free some pages. Retry the charge 1979 * before killing the task. 1980 * 1981 * Only for regular pages, though: huge pages are rather 1982 * unlikely to succeed so close to the limit, and we fall back 1983 * to regular pages anyway in case of failure. 1984 */ 1985 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1986 goto retry; 1987 /* 1988 * At task move, charge accounts can be doubly counted. So, it's 1989 * better to wait until the end of task_move if something is going on. 1990 */ 1991 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1992 goto retry; 1993 1994 if (nr_retries--) 1995 goto retry; 1996 1997 if (gfp_mask & __GFP_NOFAIL) 1998 goto force; 1999 2000 if (fatal_signal_pending(current)) 2001 goto force; 2002 2003 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 2004 2005 mem_cgroup_oom(mem_over_limit, gfp_mask, 2006 get_order(nr_pages * PAGE_SIZE)); 2007 nomem: 2008 if (!(gfp_mask & __GFP_NOFAIL)) 2009 return -ENOMEM; 2010 force: 2011 /* 2012 * The allocation either can't fail or will lead to more memory 2013 * being freed very soon. Allow memory usage go over the limit 2014 * temporarily by force charging it. 2015 */ 2016 page_counter_charge(&memcg->memory, nr_pages); 2017 if (do_memsw_account()) 2018 page_counter_charge(&memcg->memsw, nr_pages); 2019 css_get_many(&memcg->css, nr_pages); 2020 2021 return 0; 2022 2023 done_restock: 2024 css_get_many(&memcg->css, batch); 2025 if (batch > nr_pages) 2026 refill_stock(memcg, batch - nr_pages); 2027 2028 /* 2029 * If the hierarchy is above the normal consumption range, schedule 2030 * reclaim on returning to userland. We can perform reclaim here 2031 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2032 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2033 * not recorded as it most likely matches current's and won't 2034 * change in the meantime. As high limit is checked again before 2035 * reclaim, the cost of mismatch is negligible. 2036 */ 2037 do { 2038 if (page_counter_read(&memcg->memory) > memcg->high) { 2039 /* Don't bother a random interrupted task */ 2040 if (in_interrupt()) { 2041 schedule_work(&memcg->high_work); 2042 break; 2043 } 2044 current->memcg_nr_pages_over_high += batch; 2045 set_notify_resume(current); 2046 break; 2047 } 2048 } while ((memcg = parent_mem_cgroup(memcg))); 2049 2050 return 0; 2051 } 2052 2053 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2054 { 2055 if (mem_cgroup_is_root(memcg)) 2056 return; 2057 2058 page_counter_uncharge(&memcg->memory, nr_pages); 2059 if (do_memsw_account()) 2060 page_counter_uncharge(&memcg->memsw, nr_pages); 2061 2062 css_put_many(&memcg->css, nr_pages); 2063 } 2064 2065 static void lock_page_lru(struct page *page, int *isolated) 2066 { 2067 struct zone *zone = page_zone(page); 2068 2069 spin_lock_irq(zone_lru_lock(zone)); 2070 if (PageLRU(page)) { 2071 struct lruvec *lruvec; 2072 2073 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2074 ClearPageLRU(page); 2075 del_page_from_lru_list(page, lruvec, page_lru(page)); 2076 *isolated = 1; 2077 } else 2078 *isolated = 0; 2079 } 2080 2081 static void unlock_page_lru(struct page *page, int isolated) 2082 { 2083 struct zone *zone = page_zone(page); 2084 2085 if (isolated) { 2086 struct lruvec *lruvec; 2087 2088 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2089 VM_BUG_ON_PAGE(PageLRU(page), page); 2090 SetPageLRU(page); 2091 add_page_to_lru_list(page, lruvec, page_lru(page)); 2092 } 2093 spin_unlock_irq(zone_lru_lock(zone)); 2094 } 2095 2096 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2097 bool lrucare) 2098 { 2099 int isolated; 2100 2101 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2102 2103 /* 2104 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2105 * may already be on some other mem_cgroup's LRU. Take care of it. 2106 */ 2107 if (lrucare) 2108 lock_page_lru(page, &isolated); 2109 2110 /* 2111 * Nobody should be changing or seriously looking at 2112 * page->mem_cgroup at this point: 2113 * 2114 * - the page is uncharged 2115 * 2116 * - the page is off-LRU 2117 * 2118 * - an anonymous fault has exclusive page access, except for 2119 * a locked page table 2120 * 2121 * - a page cache insertion, a swapin fault, or a migration 2122 * have the page locked 2123 */ 2124 page->mem_cgroup = memcg; 2125 2126 if (lrucare) 2127 unlock_page_lru(page, isolated); 2128 } 2129 2130 #ifndef CONFIG_SLOB 2131 static int memcg_alloc_cache_id(void) 2132 { 2133 int id, size; 2134 int err; 2135 2136 id = ida_simple_get(&memcg_cache_ida, 2137 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2138 if (id < 0) 2139 return id; 2140 2141 if (id < memcg_nr_cache_ids) 2142 return id; 2143 2144 /* 2145 * There's no space for the new id in memcg_caches arrays, 2146 * so we have to grow them. 2147 */ 2148 down_write(&memcg_cache_ids_sem); 2149 2150 size = 2 * (id + 1); 2151 if (size < MEMCG_CACHES_MIN_SIZE) 2152 size = MEMCG_CACHES_MIN_SIZE; 2153 else if (size > MEMCG_CACHES_MAX_SIZE) 2154 size = MEMCG_CACHES_MAX_SIZE; 2155 2156 err = memcg_update_all_caches(size); 2157 if (!err) 2158 err = memcg_update_all_list_lrus(size); 2159 if (!err) 2160 memcg_nr_cache_ids = size; 2161 2162 up_write(&memcg_cache_ids_sem); 2163 2164 if (err) { 2165 ida_simple_remove(&memcg_cache_ida, id); 2166 return err; 2167 } 2168 return id; 2169 } 2170 2171 static void memcg_free_cache_id(int id) 2172 { 2173 ida_simple_remove(&memcg_cache_ida, id); 2174 } 2175 2176 struct memcg_kmem_cache_create_work { 2177 struct mem_cgroup *memcg; 2178 struct kmem_cache *cachep; 2179 struct work_struct work; 2180 }; 2181 2182 static void memcg_kmem_cache_create_func(struct work_struct *w) 2183 { 2184 struct memcg_kmem_cache_create_work *cw = 2185 container_of(w, struct memcg_kmem_cache_create_work, work); 2186 struct mem_cgroup *memcg = cw->memcg; 2187 struct kmem_cache *cachep = cw->cachep; 2188 2189 memcg_create_kmem_cache(memcg, cachep); 2190 2191 css_put(&memcg->css); 2192 kfree(cw); 2193 } 2194 2195 /* 2196 * Enqueue the creation of a per-memcg kmem_cache. 2197 */ 2198 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2199 struct kmem_cache *cachep) 2200 { 2201 struct memcg_kmem_cache_create_work *cw; 2202 2203 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2204 if (!cw) 2205 return; 2206 2207 css_get(&memcg->css); 2208 2209 cw->memcg = memcg; 2210 cw->cachep = cachep; 2211 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2212 2213 schedule_work(&cw->work); 2214 } 2215 2216 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2217 struct kmem_cache *cachep) 2218 { 2219 /* 2220 * We need to stop accounting when we kmalloc, because if the 2221 * corresponding kmalloc cache is not yet created, the first allocation 2222 * in __memcg_schedule_kmem_cache_create will recurse. 2223 * 2224 * However, it is better to enclose the whole function. Depending on 2225 * the debugging options enabled, INIT_WORK(), for instance, can 2226 * trigger an allocation. This too, will make us recurse. Because at 2227 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2228 * the safest choice is to do it like this, wrapping the whole function. 2229 */ 2230 current->memcg_kmem_skip_account = 1; 2231 __memcg_schedule_kmem_cache_create(memcg, cachep); 2232 current->memcg_kmem_skip_account = 0; 2233 } 2234 2235 static inline bool memcg_kmem_bypass(void) 2236 { 2237 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2238 return true; 2239 return false; 2240 } 2241 2242 /** 2243 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2244 * @cachep: the original global kmem cache 2245 * 2246 * Return the kmem_cache we're supposed to use for a slab allocation. 2247 * We try to use the current memcg's version of the cache. 2248 * 2249 * If the cache does not exist yet, if we are the first user of it, we 2250 * create it asynchronously in a workqueue and let the current allocation 2251 * go through with the original cache. 2252 * 2253 * This function takes a reference to the cache it returns to assure it 2254 * won't get destroyed while we are working with it. Once the caller is 2255 * done with it, memcg_kmem_put_cache() must be called to release the 2256 * reference. 2257 */ 2258 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2259 { 2260 struct mem_cgroup *memcg; 2261 struct kmem_cache *memcg_cachep; 2262 int kmemcg_id; 2263 2264 VM_BUG_ON(!is_root_cache(cachep)); 2265 2266 if (memcg_kmem_bypass()) 2267 return cachep; 2268 2269 if (current->memcg_kmem_skip_account) 2270 return cachep; 2271 2272 memcg = get_mem_cgroup_from_mm(current->mm); 2273 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2274 if (kmemcg_id < 0) 2275 goto out; 2276 2277 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2278 if (likely(memcg_cachep)) 2279 return memcg_cachep; 2280 2281 /* 2282 * If we are in a safe context (can wait, and not in interrupt 2283 * context), we could be be predictable and return right away. 2284 * This would guarantee that the allocation being performed 2285 * already belongs in the new cache. 2286 * 2287 * However, there are some clashes that can arrive from locking. 2288 * For instance, because we acquire the slab_mutex while doing 2289 * memcg_create_kmem_cache, this means no further allocation 2290 * could happen with the slab_mutex held. So it's better to 2291 * defer everything. 2292 */ 2293 memcg_schedule_kmem_cache_create(memcg, cachep); 2294 out: 2295 css_put(&memcg->css); 2296 return cachep; 2297 } 2298 2299 /** 2300 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2301 * @cachep: the cache returned by memcg_kmem_get_cache 2302 */ 2303 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2304 { 2305 if (!is_root_cache(cachep)) 2306 css_put(&cachep->memcg_params.memcg->css); 2307 } 2308 2309 /** 2310 * memcg_kmem_charge: charge a kmem page 2311 * @page: page to charge 2312 * @gfp: reclaim mode 2313 * @order: allocation order 2314 * @memcg: memory cgroup to charge 2315 * 2316 * Returns 0 on success, an error code on failure. 2317 */ 2318 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2319 struct mem_cgroup *memcg) 2320 { 2321 unsigned int nr_pages = 1 << order; 2322 struct page_counter *counter; 2323 int ret; 2324 2325 ret = try_charge(memcg, gfp, nr_pages); 2326 if (ret) 2327 return ret; 2328 2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2331 cancel_charge(memcg, nr_pages); 2332 return -ENOMEM; 2333 } 2334 2335 page->mem_cgroup = memcg; 2336 2337 return 0; 2338 } 2339 2340 /** 2341 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2342 * @page: page to charge 2343 * @gfp: reclaim mode 2344 * @order: allocation order 2345 * 2346 * Returns 0 on success, an error code on failure. 2347 */ 2348 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2349 { 2350 struct mem_cgroup *memcg; 2351 int ret = 0; 2352 2353 if (memcg_kmem_bypass()) 2354 return 0; 2355 2356 memcg = get_mem_cgroup_from_mm(current->mm); 2357 if (!mem_cgroup_is_root(memcg)) 2358 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2359 css_put(&memcg->css); 2360 return ret; 2361 } 2362 /** 2363 * memcg_kmem_uncharge: uncharge a kmem page 2364 * @page: page to uncharge 2365 * @order: allocation order 2366 */ 2367 void memcg_kmem_uncharge(struct page *page, int order) 2368 { 2369 struct mem_cgroup *memcg = page->mem_cgroup; 2370 unsigned int nr_pages = 1 << order; 2371 2372 if (!memcg) 2373 return; 2374 2375 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2376 2377 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2378 page_counter_uncharge(&memcg->kmem, nr_pages); 2379 2380 page_counter_uncharge(&memcg->memory, nr_pages); 2381 if (do_memsw_account()) 2382 page_counter_uncharge(&memcg->memsw, nr_pages); 2383 2384 page->mem_cgroup = NULL; 2385 css_put_many(&memcg->css, nr_pages); 2386 } 2387 #endif /* !CONFIG_SLOB */ 2388 2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2390 2391 /* 2392 * Because tail pages are not marked as "used", set it. We're under 2393 * zone_lru_lock and migration entries setup in all page mappings. 2394 */ 2395 void mem_cgroup_split_huge_fixup(struct page *head) 2396 { 2397 int i; 2398 2399 if (mem_cgroup_disabled()) 2400 return; 2401 2402 for (i = 1; i < HPAGE_PMD_NR; i++) 2403 head[i].mem_cgroup = head->mem_cgroup; 2404 2405 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2406 HPAGE_PMD_NR); 2407 } 2408 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2409 2410 #ifdef CONFIG_MEMCG_SWAP 2411 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2412 bool charge) 2413 { 2414 int val = (charge) ? 1 : -1; 2415 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2416 } 2417 2418 /** 2419 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2420 * @entry: swap entry to be moved 2421 * @from: mem_cgroup which the entry is moved from 2422 * @to: mem_cgroup which the entry is moved to 2423 * 2424 * It succeeds only when the swap_cgroup's record for this entry is the same 2425 * as the mem_cgroup's id of @from. 2426 * 2427 * Returns 0 on success, -EINVAL on failure. 2428 * 2429 * The caller must have charged to @to, IOW, called page_counter_charge() about 2430 * both res and memsw, and called css_get(). 2431 */ 2432 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2433 struct mem_cgroup *from, struct mem_cgroup *to) 2434 { 2435 unsigned short old_id, new_id; 2436 2437 old_id = mem_cgroup_id(from); 2438 new_id = mem_cgroup_id(to); 2439 2440 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2441 mem_cgroup_swap_statistics(from, false); 2442 mem_cgroup_swap_statistics(to, true); 2443 return 0; 2444 } 2445 return -EINVAL; 2446 } 2447 #else 2448 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2449 struct mem_cgroup *from, struct mem_cgroup *to) 2450 { 2451 return -EINVAL; 2452 } 2453 #endif 2454 2455 static DEFINE_MUTEX(memcg_limit_mutex); 2456 2457 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2458 unsigned long limit) 2459 { 2460 unsigned long curusage; 2461 unsigned long oldusage; 2462 bool enlarge = false; 2463 int retry_count; 2464 int ret; 2465 2466 /* 2467 * For keeping hierarchical_reclaim simple, how long we should retry 2468 * is depends on callers. We set our retry-count to be function 2469 * of # of children which we should visit in this loop. 2470 */ 2471 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2472 mem_cgroup_count_children(memcg); 2473 2474 oldusage = page_counter_read(&memcg->memory); 2475 2476 do { 2477 if (signal_pending(current)) { 2478 ret = -EINTR; 2479 break; 2480 } 2481 2482 mutex_lock(&memcg_limit_mutex); 2483 if (limit > memcg->memsw.limit) { 2484 mutex_unlock(&memcg_limit_mutex); 2485 ret = -EINVAL; 2486 break; 2487 } 2488 if (limit > memcg->memory.limit) 2489 enlarge = true; 2490 ret = page_counter_limit(&memcg->memory, limit); 2491 mutex_unlock(&memcg_limit_mutex); 2492 2493 if (!ret) 2494 break; 2495 2496 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2497 2498 curusage = page_counter_read(&memcg->memory); 2499 /* Usage is reduced ? */ 2500 if (curusage >= oldusage) 2501 retry_count--; 2502 else 2503 oldusage = curusage; 2504 } while (retry_count); 2505 2506 if (!ret && enlarge) 2507 memcg_oom_recover(memcg); 2508 2509 return ret; 2510 } 2511 2512 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2513 unsigned long limit) 2514 { 2515 unsigned long curusage; 2516 unsigned long oldusage; 2517 bool enlarge = false; 2518 int retry_count; 2519 int ret; 2520 2521 /* see mem_cgroup_resize_res_limit */ 2522 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2523 mem_cgroup_count_children(memcg); 2524 2525 oldusage = page_counter_read(&memcg->memsw); 2526 2527 do { 2528 if (signal_pending(current)) { 2529 ret = -EINTR; 2530 break; 2531 } 2532 2533 mutex_lock(&memcg_limit_mutex); 2534 if (limit < memcg->memory.limit) { 2535 mutex_unlock(&memcg_limit_mutex); 2536 ret = -EINVAL; 2537 break; 2538 } 2539 if (limit > memcg->memsw.limit) 2540 enlarge = true; 2541 ret = page_counter_limit(&memcg->memsw, limit); 2542 mutex_unlock(&memcg_limit_mutex); 2543 2544 if (!ret) 2545 break; 2546 2547 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2548 2549 curusage = page_counter_read(&memcg->memsw); 2550 /* Usage is reduced ? */ 2551 if (curusage >= oldusage) 2552 retry_count--; 2553 else 2554 oldusage = curusage; 2555 } while (retry_count); 2556 2557 if (!ret && enlarge) 2558 memcg_oom_recover(memcg); 2559 2560 return ret; 2561 } 2562 2563 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2564 gfp_t gfp_mask, 2565 unsigned long *total_scanned) 2566 { 2567 unsigned long nr_reclaimed = 0; 2568 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2569 unsigned long reclaimed; 2570 int loop = 0; 2571 struct mem_cgroup_tree_per_zone *mctz; 2572 unsigned long excess; 2573 unsigned long nr_scanned; 2574 2575 if (order > 0) 2576 return 0; 2577 2578 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 2579 /* 2580 * This loop can run a while, specially if mem_cgroup's continuously 2581 * keep exceeding their soft limit and putting the system under 2582 * pressure 2583 */ 2584 do { 2585 if (next_mz) 2586 mz = next_mz; 2587 else 2588 mz = mem_cgroup_largest_soft_limit_node(mctz); 2589 if (!mz) 2590 break; 2591 2592 nr_scanned = 0; 2593 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 2594 gfp_mask, &nr_scanned); 2595 nr_reclaimed += reclaimed; 2596 *total_scanned += nr_scanned; 2597 spin_lock_irq(&mctz->lock); 2598 __mem_cgroup_remove_exceeded(mz, mctz); 2599 2600 /* 2601 * If we failed to reclaim anything from this memory cgroup 2602 * it is time to move on to the next cgroup 2603 */ 2604 next_mz = NULL; 2605 if (!reclaimed) 2606 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2607 2608 excess = soft_limit_excess(mz->memcg); 2609 /* 2610 * One school of thought says that we should not add 2611 * back the node to the tree if reclaim returns 0. 2612 * But our reclaim could return 0, simply because due 2613 * to priority we are exposing a smaller subset of 2614 * memory to reclaim from. Consider this as a longer 2615 * term TODO. 2616 */ 2617 /* If excess == 0, no tree ops */ 2618 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2619 spin_unlock_irq(&mctz->lock); 2620 css_put(&mz->memcg->css); 2621 loop++; 2622 /* 2623 * Could not reclaim anything and there are no more 2624 * mem cgroups to try or we seem to be looping without 2625 * reclaiming anything. 2626 */ 2627 if (!nr_reclaimed && 2628 (next_mz == NULL || 2629 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2630 break; 2631 } while (!nr_reclaimed); 2632 if (next_mz) 2633 css_put(&next_mz->memcg->css); 2634 return nr_reclaimed; 2635 } 2636 2637 /* 2638 * Test whether @memcg has children, dead or alive. Note that this 2639 * function doesn't care whether @memcg has use_hierarchy enabled and 2640 * returns %true if there are child csses according to the cgroup 2641 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2642 */ 2643 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2644 { 2645 bool ret; 2646 2647 rcu_read_lock(); 2648 ret = css_next_child(NULL, &memcg->css); 2649 rcu_read_unlock(); 2650 return ret; 2651 } 2652 2653 /* 2654 * Reclaims as many pages from the given memcg as possible. 2655 * 2656 * Caller is responsible for holding css reference for memcg. 2657 */ 2658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2659 { 2660 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2661 2662 /* we call try-to-free pages for make this cgroup empty */ 2663 lru_add_drain_all(); 2664 /* try to free all pages in this cgroup */ 2665 while (nr_retries && page_counter_read(&memcg->memory)) { 2666 int progress; 2667 2668 if (signal_pending(current)) 2669 return -EINTR; 2670 2671 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2672 GFP_KERNEL, true); 2673 if (!progress) { 2674 nr_retries--; 2675 /* maybe some writeback is necessary */ 2676 congestion_wait(BLK_RW_ASYNC, HZ/10); 2677 } 2678 2679 } 2680 2681 return 0; 2682 } 2683 2684 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2685 char *buf, size_t nbytes, 2686 loff_t off) 2687 { 2688 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2689 2690 if (mem_cgroup_is_root(memcg)) 2691 return -EINVAL; 2692 return mem_cgroup_force_empty(memcg) ?: nbytes; 2693 } 2694 2695 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2696 struct cftype *cft) 2697 { 2698 return mem_cgroup_from_css(css)->use_hierarchy; 2699 } 2700 2701 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2702 struct cftype *cft, u64 val) 2703 { 2704 int retval = 0; 2705 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2706 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2707 2708 if (memcg->use_hierarchy == val) 2709 return 0; 2710 2711 /* 2712 * If parent's use_hierarchy is set, we can't make any modifications 2713 * in the child subtrees. If it is unset, then the change can 2714 * occur, provided the current cgroup has no children. 2715 * 2716 * For the root cgroup, parent_mem is NULL, we allow value to be 2717 * set if there are no children. 2718 */ 2719 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2720 (val == 1 || val == 0)) { 2721 if (!memcg_has_children(memcg)) 2722 memcg->use_hierarchy = val; 2723 else 2724 retval = -EBUSY; 2725 } else 2726 retval = -EINVAL; 2727 2728 return retval; 2729 } 2730 2731 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2732 { 2733 struct mem_cgroup *iter; 2734 int i; 2735 2736 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2737 2738 for_each_mem_cgroup_tree(iter, memcg) { 2739 for (i = 0; i < MEMCG_NR_STAT; i++) 2740 stat[i] += mem_cgroup_read_stat(iter, i); 2741 } 2742 } 2743 2744 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2745 { 2746 struct mem_cgroup *iter; 2747 int i; 2748 2749 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2750 2751 for_each_mem_cgroup_tree(iter, memcg) { 2752 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2753 events[i] += mem_cgroup_read_events(iter, i); 2754 } 2755 } 2756 2757 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2758 { 2759 unsigned long val = 0; 2760 2761 if (mem_cgroup_is_root(memcg)) { 2762 struct mem_cgroup *iter; 2763 2764 for_each_mem_cgroup_tree(iter, memcg) { 2765 val += mem_cgroup_read_stat(iter, 2766 MEM_CGROUP_STAT_CACHE); 2767 val += mem_cgroup_read_stat(iter, 2768 MEM_CGROUP_STAT_RSS); 2769 if (swap) 2770 val += mem_cgroup_read_stat(iter, 2771 MEM_CGROUP_STAT_SWAP); 2772 } 2773 } else { 2774 if (!swap) 2775 val = page_counter_read(&memcg->memory); 2776 else 2777 val = page_counter_read(&memcg->memsw); 2778 } 2779 return val; 2780 } 2781 2782 enum { 2783 RES_USAGE, 2784 RES_LIMIT, 2785 RES_MAX_USAGE, 2786 RES_FAILCNT, 2787 RES_SOFT_LIMIT, 2788 }; 2789 2790 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2791 struct cftype *cft) 2792 { 2793 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2794 struct page_counter *counter; 2795 2796 switch (MEMFILE_TYPE(cft->private)) { 2797 case _MEM: 2798 counter = &memcg->memory; 2799 break; 2800 case _MEMSWAP: 2801 counter = &memcg->memsw; 2802 break; 2803 case _KMEM: 2804 counter = &memcg->kmem; 2805 break; 2806 case _TCP: 2807 counter = &memcg->tcpmem; 2808 break; 2809 default: 2810 BUG(); 2811 } 2812 2813 switch (MEMFILE_ATTR(cft->private)) { 2814 case RES_USAGE: 2815 if (counter == &memcg->memory) 2816 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2817 if (counter == &memcg->memsw) 2818 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2819 return (u64)page_counter_read(counter) * PAGE_SIZE; 2820 case RES_LIMIT: 2821 return (u64)counter->limit * PAGE_SIZE; 2822 case RES_MAX_USAGE: 2823 return (u64)counter->watermark * PAGE_SIZE; 2824 case RES_FAILCNT: 2825 return counter->failcnt; 2826 case RES_SOFT_LIMIT: 2827 return (u64)memcg->soft_limit * PAGE_SIZE; 2828 default: 2829 BUG(); 2830 } 2831 } 2832 2833 #ifndef CONFIG_SLOB 2834 static int memcg_online_kmem(struct mem_cgroup *memcg) 2835 { 2836 int memcg_id; 2837 2838 if (cgroup_memory_nokmem) 2839 return 0; 2840 2841 BUG_ON(memcg->kmemcg_id >= 0); 2842 BUG_ON(memcg->kmem_state); 2843 2844 memcg_id = memcg_alloc_cache_id(); 2845 if (memcg_id < 0) 2846 return memcg_id; 2847 2848 static_branch_inc(&memcg_kmem_enabled_key); 2849 /* 2850 * A memory cgroup is considered kmem-online as soon as it gets 2851 * kmemcg_id. Setting the id after enabling static branching will 2852 * guarantee no one starts accounting before all call sites are 2853 * patched. 2854 */ 2855 memcg->kmemcg_id = memcg_id; 2856 memcg->kmem_state = KMEM_ONLINE; 2857 2858 return 0; 2859 } 2860 2861 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2862 { 2863 struct cgroup_subsys_state *css; 2864 struct mem_cgroup *parent, *child; 2865 int kmemcg_id; 2866 2867 if (memcg->kmem_state != KMEM_ONLINE) 2868 return; 2869 /* 2870 * Clear the online state before clearing memcg_caches array 2871 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2872 * guarantees that no cache will be created for this cgroup 2873 * after we are done (see memcg_create_kmem_cache()). 2874 */ 2875 memcg->kmem_state = KMEM_ALLOCATED; 2876 2877 memcg_deactivate_kmem_caches(memcg); 2878 2879 kmemcg_id = memcg->kmemcg_id; 2880 BUG_ON(kmemcg_id < 0); 2881 2882 parent = parent_mem_cgroup(memcg); 2883 if (!parent) 2884 parent = root_mem_cgroup; 2885 2886 /* 2887 * Change kmemcg_id of this cgroup and all its descendants to the 2888 * parent's id, and then move all entries from this cgroup's list_lrus 2889 * to ones of the parent. After we have finished, all list_lrus 2890 * corresponding to this cgroup are guaranteed to remain empty. The 2891 * ordering is imposed by list_lru_node->lock taken by 2892 * memcg_drain_all_list_lrus(). 2893 */ 2894 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2895 css_for_each_descendant_pre(css, &memcg->css) { 2896 child = mem_cgroup_from_css(css); 2897 BUG_ON(child->kmemcg_id != kmemcg_id); 2898 child->kmemcg_id = parent->kmemcg_id; 2899 if (!memcg->use_hierarchy) 2900 break; 2901 } 2902 rcu_read_unlock(); 2903 2904 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2905 2906 memcg_free_cache_id(kmemcg_id); 2907 } 2908 2909 static void memcg_free_kmem(struct mem_cgroup *memcg) 2910 { 2911 /* css_alloc() failed, offlining didn't happen */ 2912 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2913 memcg_offline_kmem(memcg); 2914 2915 if (memcg->kmem_state == KMEM_ALLOCATED) { 2916 memcg_destroy_kmem_caches(memcg); 2917 static_branch_dec(&memcg_kmem_enabled_key); 2918 WARN_ON(page_counter_read(&memcg->kmem)); 2919 } 2920 } 2921 #else 2922 static int memcg_online_kmem(struct mem_cgroup *memcg) 2923 { 2924 return 0; 2925 } 2926 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2927 { 2928 } 2929 static void memcg_free_kmem(struct mem_cgroup *memcg) 2930 { 2931 } 2932 #endif /* !CONFIG_SLOB */ 2933 2934 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2935 unsigned long limit) 2936 { 2937 int ret; 2938 2939 mutex_lock(&memcg_limit_mutex); 2940 ret = page_counter_limit(&memcg->kmem, limit); 2941 mutex_unlock(&memcg_limit_mutex); 2942 return ret; 2943 } 2944 2945 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2946 { 2947 int ret; 2948 2949 mutex_lock(&memcg_limit_mutex); 2950 2951 ret = page_counter_limit(&memcg->tcpmem, limit); 2952 if (ret) 2953 goto out; 2954 2955 if (!memcg->tcpmem_active) { 2956 /* 2957 * The active flag needs to be written after the static_key 2958 * update. This is what guarantees that the socket activation 2959 * function is the last one to run. See sock_update_memcg() for 2960 * details, and note that we don't mark any socket as belonging 2961 * to this memcg until that flag is up. 2962 * 2963 * We need to do this, because static_keys will span multiple 2964 * sites, but we can't control their order. If we mark a socket 2965 * as accounted, but the accounting functions are not patched in 2966 * yet, we'll lose accounting. 2967 * 2968 * We never race with the readers in sock_update_memcg(), 2969 * because when this value change, the code to process it is not 2970 * patched in yet. 2971 */ 2972 static_branch_inc(&memcg_sockets_enabled_key); 2973 memcg->tcpmem_active = true; 2974 } 2975 out: 2976 mutex_unlock(&memcg_limit_mutex); 2977 return ret; 2978 } 2979 2980 /* 2981 * The user of this function is... 2982 * RES_LIMIT. 2983 */ 2984 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2985 char *buf, size_t nbytes, loff_t off) 2986 { 2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2988 unsigned long nr_pages; 2989 int ret; 2990 2991 buf = strstrip(buf); 2992 ret = page_counter_memparse(buf, "-1", &nr_pages); 2993 if (ret) 2994 return ret; 2995 2996 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2997 case RES_LIMIT: 2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2999 ret = -EINVAL; 3000 break; 3001 } 3002 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3003 case _MEM: 3004 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3005 break; 3006 case _MEMSWAP: 3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3008 break; 3009 case _KMEM: 3010 ret = memcg_update_kmem_limit(memcg, nr_pages); 3011 break; 3012 case _TCP: 3013 ret = memcg_update_tcp_limit(memcg, nr_pages); 3014 break; 3015 } 3016 break; 3017 case RES_SOFT_LIMIT: 3018 memcg->soft_limit = nr_pages; 3019 ret = 0; 3020 break; 3021 } 3022 return ret ?: nbytes; 3023 } 3024 3025 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3026 size_t nbytes, loff_t off) 3027 { 3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3029 struct page_counter *counter; 3030 3031 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3032 case _MEM: 3033 counter = &memcg->memory; 3034 break; 3035 case _MEMSWAP: 3036 counter = &memcg->memsw; 3037 break; 3038 case _KMEM: 3039 counter = &memcg->kmem; 3040 break; 3041 case _TCP: 3042 counter = &memcg->tcpmem; 3043 break; 3044 default: 3045 BUG(); 3046 } 3047 3048 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3049 case RES_MAX_USAGE: 3050 page_counter_reset_watermark(counter); 3051 break; 3052 case RES_FAILCNT: 3053 counter->failcnt = 0; 3054 break; 3055 default: 3056 BUG(); 3057 } 3058 3059 return nbytes; 3060 } 3061 3062 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3063 struct cftype *cft) 3064 { 3065 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3066 } 3067 3068 #ifdef CONFIG_MMU 3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3070 struct cftype *cft, u64 val) 3071 { 3072 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3073 3074 if (val & ~MOVE_MASK) 3075 return -EINVAL; 3076 3077 /* 3078 * No kind of locking is needed in here, because ->can_attach() will 3079 * check this value once in the beginning of the process, and then carry 3080 * on with stale data. This means that changes to this value will only 3081 * affect task migrations starting after the change. 3082 */ 3083 memcg->move_charge_at_immigrate = val; 3084 return 0; 3085 } 3086 #else 3087 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3088 struct cftype *cft, u64 val) 3089 { 3090 return -ENOSYS; 3091 } 3092 #endif 3093 3094 #ifdef CONFIG_NUMA 3095 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3096 { 3097 struct numa_stat { 3098 const char *name; 3099 unsigned int lru_mask; 3100 }; 3101 3102 static const struct numa_stat stats[] = { 3103 { "total", LRU_ALL }, 3104 { "file", LRU_ALL_FILE }, 3105 { "anon", LRU_ALL_ANON }, 3106 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3107 }; 3108 const struct numa_stat *stat; 3109 int nid; 3110 unsigned long nr; 3111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3112 3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3114 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3115 seq_printf(m, "%s=%lu", stat->name, nr); 3116 for_each_node_state(nid, N_MEMORY) { 3117 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3118 stat->lru_mask); 3119 seq_printf(m, " N%d=%lu", nid, nr); 3120 } 3121 seq_putc(m, '\n'); 3122 } 3123 3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3125 struct mem_cgroup *iter; 3126 3127 nr = 0; 3128 for_each_mem_cgroup_tree(iter, memcg) 3129 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3130 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3131 for_each_node_state(nid, N_MEMORY) { 3132 nr = 0; 3133 for_each_mem_cgroup_tree(iter, memcg) 3134 nr += mem_cgroup_node_nr_lru_pages( 3135 iter, nid, stat->lru_mask); 3136 seq_printf(m, " N%d=%lu", nid, nr); 3137 } 3138 seq_putc(m, '\n'); 3139 } 3140 3141 return 0; 3142 } 3143 #endif /* CONFIG_NUMA */ 3144 3145 static int memcg_stat_show(struct seq_file *m, void *v) 3146 { 3147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3148 unsigned long memory, memsw; 3149 struct mem_cgroup *mi; 3150 unsigned int i; 3151 3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3153 MEM_CGROUP_STAT_NSTATS); 3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3155 MEM_CGROUP_EVENTS_NSTATS); 3156 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3157 3158 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3159 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3160 continue; 3161 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3162 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3163 } 3164 3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3166 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3167 mem_cgroup_read_events(memcg, i)); 3168 3169 for (i = 0; i < NR_LRU_LISTS; i++) 3170 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3171 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3172 3173 /* Hierarchical information */ 3174 memory = memsw = PAGE_COUNTER_MAX; 3175 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3176 memory = min(memory, mi->memory.limit); 3177 memsw = min(memsw, mi->memsw.limit); 3178 } 3179 seq_printf(m, "hierarchical_memory_limit %llu\n", 3180 (u64)memory * PAGE_SIZE); 3181 if (do_memsw_account()) 3182 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3183 (u64)memsw * PAGE_SIZE); 3184 3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3186 unsigned long long val = 0; 3187 3188 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3189 continue; 3190 for_each_mem_cgroup_tree(mi, memcg) 3191 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3193 } 3194 3195 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3196 unsigned long long val = 0; 3197 3198 for_each_mem_cgroup_tree(mi, memcg) 3199 val += mem_cgroup_read_events(mi, i); 3200 seq_printf(m, "total_%s %llu\n", 3201 mem_cgroup_events_names[i], val); 3202 } 3203 3204 for (i = 0; i < NR_LRU_LISTS; i++) { 3205 unsigned long long val = 0; 3206 3207 for_each_mem_cgroup_tree(mi, memcg) 3208 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3210 } 3211 3212 #ifdef CONFIG_DEBUG_VM 3213 { 3214 int nid, zid; 3215 struct mem_cgroup_per_zone *mz; 3216 struct zone_reclaim_stat *rstat; 3217 unsigned long recent_rotated[2] = {0, 0}; 3218 unsigned long recent_scanned[2] = {0, 0}; 3219 3220 for_each_online_node(nid) 3221 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3222 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 3223 rstat = &mz->lruvec.reclaim_stat; 3224 3225 recent_rotated[0] += rstat->recent_rotated[0]; 3226 recent_rotated[1] += rstat->recent_rotated[1]; 3227 recent_scanned[0] += rstat->recent_scanned[0]; 3228 recent_scanned[1] += rstat->recent_scanned[1]; 3229 } 3230 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3231 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3232 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3233 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3234 } 3235 #endif 3236 3237 return 0; 3238 } 3239 3240 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3241 struct cftype *cft) 3242 { 3243 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3244 3245 return mem_cgroup_swappiness(memcg); 3246 } 3247 3248 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3249 struct cftype *cft, u64 val) 3250 { 3251 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3252 3253 if (val > 100) 3254 return -EINVAL; 3255 3256 if (css->parent) 3257 memcg->swappiness = val; 3258 else 3259 vm_swappiness = val; 3260 3261 return 0; 3262 } 3263 3264 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3265 { 3266 struct mem_cgroup_threshold_ary *t; 3267 unsigned long usage; 3268 int i; 3269 3270 rcu_read_lock(); 3271 if (!swap) 3272 t = rcu_dereference(memcg->thresholds.primary); 3273 else 3274 t = rcu_dereference(memcg->memsw_thresholds.primary); 3275 3276 if (!t) 3277 goto unlock; 3278 3279 usage = mem_cgroup_usage(memcg, swap); 3280 3281 /* 3282 * current_threshold points to threshold just below or equal to usage. 3283 * If it's not true, a threshold was crossed after last 3284 * call of __mem_cgroup_threshold(). 3285 */ 3286 i = t->current_threshold; 3287 3288 /* 3289 * Iterate backward over array of thresholds starting from 3290 * current_threshold and check if a threshold is crossed. 3291 * If none of thresholds below usage is crossed, we read 3292 * only one element of the array here. 3293 */ 3294 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3295 eventfd_signal(t->entries[i].eventfd, 1); 3296 3297 /* i = current_threshold + 1 */ 3298 i++; 3299 3300 /* 3301 * Iterate forward over array of thresholds starting from 3302 * current_threshold+1 and check if a threshold is crossed. 3303 * If none of thresholds above usage is crossed, we read 3304 * only one element of the array here. 3305 */ 3306 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3307 eventfd_signal(t->entries[i].eventfd, 1); 3308 3309 /* Update current_threshold */ 3310 t->current_threshold = i - 1; 3311 unlock: 3312 rcu_read_unlock(); 3313 } 3314 3315 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3316 { 3317 while (memcg) { 3318 __mem_cgroup_threshold(memcg, false); 3319 if (do_memsw_account()) 3320 __mem_cgroup_threshold(memcg, true); 3321 3322 memcg = parent_mem_cgroup(memcg); 3323 } 3324 } 3325 3326 static int compare_thresholds(const void *a, const void *b) 3327 { 3328 const struct mem_cgroup_threshold *_a = a; 3329 const struct mem_cgroup_threshold *_b = b; 3330 3331 if (_a->threshold > _b->threshold) 3332 return 1; 3333 3334 if (_a->threshold < _b->threshold) 3335 return -1; 3336 3337 return 0; 3338 } 3339 3340 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3341 { 3342 struct mem_cgroup_eventfd_list *ev; 3343 3344 spin_lock(&memcg_oom_lock); 3345 3346 list_for_each_entry(ev, &memcg->oom_notify, list) 3347 eventfd_signal(ev->eventfd, 1); 3348 3349 spin_unlock(&memcg_oom_lock); 3350 return 0; 3351 } 3352 3353 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3354 { 3355 struct mem_cgroup *iter; 3356 3357 for_each_mem_cgroup_tree(iter, memcg) 3358 mem_cgroup_oom_notify_cb(iter); 3359 } 3360 3361 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3362 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3363 { 3364 struct mem_cgroup_thresholds *thresholds; 3365 struct mem_cgroup_threshold_ary *new; 3366 unsigned long threshold; 3367 unsigned long usage; 3368 int i, size, ret; 3369 3370 ret = page_counter_memparse(args, "-1", &threshold); 3371 if (ret) 3372 return ret; 3373 3374 mutex_lock(&memcg->thresholds_lock); 3375 3376 if (type == _MEM) { 3377 thresholds = &memcg->thresholds; 3378 usage = mem_cgroup_usage(memcg, false); 3379 } else if (type == _MEMSWAP) { 3380 thresholds = &memcg->memsw_thresholds; 3381 usage = mem_cgroup_usage(memcg, true); 3382 } else 3383 BUG(); 3384 3385 /* Check if a threshold crossed before adding a new one */ 3386 if (thresholds->primary) 3387 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3388 3389 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3390 3391 /* Allocate memory for new array of thresholds */ 3392 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3393 GFP_KERNEL); 3394 if (!new) { 3395 ret = -ENOMEM; 3396 goto unlock; 3397 } 3398 new->size = size; 3399 3400 /* Copy thresholds (if any) to new array */ 3401 if (thresholds->primary) { 3402 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3403 sizeof(struct mem_cgroup_threshold)); 3404 } 3405 3406 /* Add new threshold */ 3407 new->entries[size - 1].eventfd = eventfd; 3408 new->entries[size - 1].threshold = threshold; 3409 3410 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3411 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3412 compare_thresholds, NULL); 3413 3414 /* Find current threshold */ 3415 new->current_threshold = -1; 3416 for (i = 0; i < size; i++) { 3417 if (new->entries[i].threshold <= usage) { 3418 /* 3419 * new->current_threshold will not be used until 3420 * rcu_assign_pointer(), so it's safe to increment 3421 * it here. 3422 */ 3423 ++new->current_threshold; 3424 } else 3425 break; 3426 } 3427 3428 /* Free old spare buffer and save old primary buffer as spare */ 3429 kfree(thresholds->spare); 3430 thresholds->spare = thresholds->primary; 3431 3432 rcu_assign_pointer(thresholds->primary, new); 3433 3434 /* To be sure that nobody uses thresholds */ 3435 synchronize_rcu(); 3436 3437 unlock: 3438 mutex_unlock(&memcg->thresholds_lock); 3439 3440 return ret; 3441 } 3442 3443 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3444 struct eventfd_ctx *eventfd, const char *args) 3445 { 3446 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3447 } 3448 3449 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3450 struct eventfd_ctx *eventfd, const char *args) 3451 { 3452 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3453 } 3454 3455 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3456 struct eventfd_ctx *eventfd, enum res_type type) 3457 { 3458 struct mem_cgroup_thresholds *thresholds; 3459 struct mem_cgroup_threshold_ary *new; 3460 unsigned long usage; 3461 int i, j, size; 3462 3463 mutex_lock(&memcg->thresholds_lock); 3464 3465 if (type == _MEM) { 3466 thresholds = &memcg->thresholds; 3467 usage = mem_cgroup_usage(memcg, false); 3468 } else if (type == _MEMSWAP) { 3469 thresholds = &memcg->memsw_thresholds; 3470 usage = mem_cgroup_usage(memcg, true); 3471 } else 3472 BUG(); 3473 3474 if (!thresholds->primary) 3475 goto unlock; 3476 3477 /* Check if a threshold crossed before removing */ 3478 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3479 3480 /* Calculate new number of threshold */ 3481 size = 0; 3482 for (i = 0; i < thresholds->primary->size; i++) { 3483 if (thresholds->primary->entries[i].eventfd != eventfd) 3484 size++; 3485 } 3486 3487 new = thresholds->spare; 3488 3489 /* Set thresholds array to NULL if we don't have thresholds */ 3490 if (!size) { 3491 kfree(new); 3492 new = NULL; 3493 goto swap_buffers; 3494 } 3495 3496 new->size = size; 3497 3498 /* Copy thresholds and find current threshold */ 3499 new->current_threshold = -1; 3500 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3501 if (thresholds->primary->entries[i].eventfd == eventfd) 3502 continue; 3503 3504 new->entries[j] = thresholds->primary->entries[i]; 3505 if (new->entries[j].threshold <= usage) { 3506 /* 3507 * new->current_threshold will not be used 3508 * until rcu_assign_pointer(), so it's safe to increment 3509 * it here. 3510 */ 3511 ++new->current_threshold; 3512 } 3513 j++; 3514 } 3515 3516 swap_buffers: 3517 /* Swap primary and spare array */ 3518 thresholds->spare = thresholds->primary; 3519 3520 rcu_assign_pointer(thresholds->primary, new); 3521 3522 /* To be sure that nobody uses thresholds */ 3523 synchronize_rcu(); 3524 3525 /* If all events are unregistered, free the spare array */ 3526 if (!new) { 3527 kfree(thresholds->spare); 3528 thresholds->spare = NULL; 3529 } 3530 unlock: 3531 mutex_unlock(&memcg->thresholds_lock); 3532 } 3533 3534 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3535 struct eventfd_ctx *eventfd) 3536 { 3537 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3538 } 3539 3540 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3541 struct eventfd_ctx *eventfd) 3542 { 3543 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3544 } 3545 3546 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3547 struct eventfd_ctx *eventfd, const char *args) 3548 { 3549 struct mem_cgroup_eventfd_list *event; 3550 3551 event = kmalloc(sizeof(*event), GFP_KERNEL); 3552 if (!event) 3553 return -ENOMEM; 3554 3555 spin_lock(&memcg_oom_lock); 3556 3557 event->eventfd = eventfd; 3558 list_add(&event->list, &memcg->oom_notify); 3559 3560 /* already in OOM ? */ 3561 if (memcg->under_oom) 3562 eventfd_signal(eventfd, 1); 3563 spin_unlock(&memcg_oom_lock); 3564 3565 return 0; 3566 } 3567 3568 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3569 struct eventfd_ctx *eventfd) 3570 { 3571 struct mem_cgroup_eventfd_list *ev, *tmp; 3572 3573 spin_lock(&memcg_oom_lock); 3574 3575 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3576 if (ev->eventfd == eventfd) { 3577 list_del(&ev->list); 3578 kfree(ev); 3579 } 3580 } 3581 3582 spin_unlock(&memcg_oom_lock); 3583 } 3584 3585 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3586 { 3587 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3588 3589 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3590 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3591 return 0; 3592 } 3593 3594 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3595 struct cftype *cft, u64 val) 3596 { 3597 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3598 3599 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3600 if (!css->parent || !((val == 0) || (val == 1))) 3601 return -EINVAL; 3602 3603 memcg->oom_kill_disable = val; 3604 if (!val) 3605 memcg_oom_recover(memcg); 3606 3607 return 0; 3608 } 3609 3610 #ifdef CONFIG_CGROUP_WRITEBACK 3611 3612 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3613 { 3614 return &memcg->cgwb_list; 3615 } 3616 3617 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3618 { 3619 return wb_domain_init(&memcg->cgwb_domain, gfp); 3620 } 3621 3622 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3623 { 3624 wb_domain_exit(&memcg->cgwb_domain); 3625 } 3626 3627 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3628 { 3629 wb_domain_size_changed(&memcg->cgwb_domain); 3630 } 3631 3632 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3633 { 3634 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3635 3636 if (!memcg->css.parent) 3637 return NULL; 3638 3639 return &memcg->cgwb_domain; 3640 } 3641 3642 /** 3643 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3644 * @wb: bdi_writeback in question 3645 * @pfilepages: out parameter for number of file pages 3646 * @pheadroom: out parameter for number of allocatable pages according to memcg 3647 * @pdirty: out parameter for number of dirty pages 3648 * @pwriteback: out parameter for number of pages under writeback 3649 * 3650 * Determine the numbers of file, headroom, dirty, and writeback pages in 3651 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3652 * is a bit more involved. 3653 * 3654 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3655 * headroom is calculated as the lowest headroom of itself and the 3656 * ancestors. Note that this doesn't consider the actual amount of 3657 * available memory in the system. The caller should further cap 3658 * *@pheadroom accordingly. 3659 */ 3660 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3661 unsigned long *pheadroom, unsigned long *pdirty, 3662 unsigned long *pwriteback) 3663 { 3664 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3665 struct mem_cgroup *parent; 3666 3667 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3668 3669 /* this should eventually include NR_UNSTABLE_NFS */ 3670 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3671 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3672 (1 << LRU_ACTIVE_FILE)); 3673 *pheadroom = PAGE_COUNTER_MAX; 3674 3675 while ((parent = parent_mem_cgroup(memcg))) { 3676 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3677 unsigned long used = page_counter_read(&memcg->memory); 3678 3679 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3680 memcg = parent; 3681 } 3682 } 3683 3684 #else /* CONFIG_CGROUP_WRITEBACK */ 3685 3686 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3687 { 3688 return 0; 3689 } 3690 3691 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3692 { 3693 } 3694 3695 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3696 { 3697 } 3698 3699 #endif /* CONFIG_CGROUP_WRITEBACK */ 3700 3701 /* 3702 * DO NOT USE IN NEW FILES. 3703 * 3704 * "cgroup.event_control" implementation. 3705 * 3706 * This is way over-engineered. It tries to support fully configurable 3707 * events for each user. Such level of flexibility is completely 3708 * unnecessary especially in the light of the planned unified hierarchy. 3709 * 3710 * Please deprecate this and replace with something simpler if at all 3711 * possible. 3712 */ 3713 3714 /* 3715 * Unregister event and free resources. 3716 * 3717 * Gets called from workqueue. 3718 */ 3719 static void memcg_event_remove(struct work_struct *work) 3720 { 3721 struct mem_cgroup_event *event = 3722 container_of(work, struct mem_cgroup_event, remove); 3723 struct mem_cgroup *memcg = event->memcg; 3724 3725 remove_wait_queue(event->wqh, &event->wait); 3726 3727 event->unregister_event(memcg, event->eventfd); 3728 3729 /* Notify userspace the event is going away. */ 3730 eventfd_signal(event->eventfd, 1); 3731 3732 eventfd_ctx_put(event->eventfd); 3733 kfree(event); 3734 css_put(&memcg->css); 3735 } 3736 3737 /* 3738 * Gets called on POLLHUP on eventfd when user closes it. 3739 * 3740 * Called with wqh->lock held and interrupts disabled. 3741 */ 3742 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3743 int sync, void *key) 3744 { 3745 struct mem_cgroup_event *event = 3746 container_of(wait, struct mem_cgroup_event, wait); 3747 struct mem_cgroup *memcg = event->memcg; 3748 unsigned long flags = (unsigned long)key; 3749 3750 if (flags & POLLHUP) { 3751 /* 3752 * If the event has been detached at cgroup removal, we 3753 * can simply return knowing the other side will cleanup 3754 * for us. 3755 * 3756 * We can't race against event freeing since the other 3757 * side will require wqh->lock via remove_wait_queue(), 3758 * which we hold. 3759 */ 3760 spin_lock(&memcg->event_list_lock); 3761 if (!list_empty(&event->list)) { 3762 list_del_init(&event->list); 3763 /* 3764 * We are in atomic context, but cgroup_event_remove() 3765 * may sleep, so we have to call it in workqueue. 3766 */ 3767 schedule_work(&event->remove); 3768 } 3769 spin_unlock(&memcg->event_list_lock); 3770 } 3771 3772 return 0; 3773 } 3774 3775 static void memcg_event_ptable_queue_proc(struct file *file, 3776 wait_queue_head_t *wqh, poll_table *pt) 3777 { 3778 struct mem_cgroup_event *event = 3779 container_of(pt, struct mem_cgroup_event, pt); 3780 3781 event->wqh = wqh; 3782 add_wait_queue(wqh, &event->wait); 3783 } 3784 3785 /* 3786 * DO NOT USE IN NEW FILES. 3787 * 3788 * Parse input and register new cgroup event handler. 3789 * 3790 * Input must be in format '<event_fd> <control_fd> <args>'. 3791 * Interpretation of args is defined by control file implementation. 3792 */ 3793 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3794 char *buf, size_t nbytes, loff_t off) 3795 { 3796 struct cgroup_subsys_state *css = of_css(of); 3797 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3798 struct mem_cgroup_event *event; 3799 struct cgroup_subsys_state *cfile_css; 3800 unsigned int efd, cfd; 3801 struct fd efile; 3802 struct fd cfile; 3803 const char *name; 3804 char *endp; 3805 int ret; 3806 3807 buf = strstrip(buf); 3808 3809 efd = simple_strtoul(buf, &endp, 10); 3810 if (*endp != ' ') 3811 return -EINVAL; 3812 buf = endp + 1; 3813 3814 cfd = simple_strtoul(buf, &endp, 10); 3815 if ((*endp != ' ') && (*endp != '\0')) 3816 return -EINVAL; 3817 buf = endp + 1; 3818 3819 event = kzalloc(sizeof(*event), GFP_KERNEL); 3820 if (!event) 3821 return -ENOMEM; 3822 3823 event->memcg = memcg; 3824 INIT_LIST_HEAD(&event->list); 3825 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3826 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3827 INIT_WORK(&event->remove, memcg_event_remove); 3828 3829 efile = fdget(efd); 3830 if (!efile.file) { 3831 ret = -EBADF; 3832 goto out_kfree; 3833 } 3834 3835 event->eventfd = eventfd_ctx_fileget(efile.file); 3836 if (IS_ERR(event->eventfd)) { 3837 ret = PTR_ERR(event->eventfd); 3838 goto out_put_efile; 3839 } 3840 3841 cfile = fdget(cfd); 3842 if (!cfile.file) { 3843 ret = -EBADF; 3844 goto out_put_eventfd; 3845 } 3846 3847 /* the process need read permission on control file */ 3848 /* AV: shouldn't we check that it's been opened for read instead? */ 3849 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3850 if (ret < 0) 3851 goto out_put_cfile; 3852 3853 /* 3854 * Determine the event callbacks and set them in @event. This used 3855 * to be done via struct cftype but cgroup core no longer knows 3856 * about these events. The following is crude but the whole thing 3857 * is for compatibility anyway. 3858 * 3859 * DO NOT ADD NEW FILES. 3860 */ 3861 name = cfile.file->f_path.dentry->d_name.name; 3862 3863 if (!strcmp(name, "memory.usage_in_bytes")) { 3864 event->register_event = mem_cgroup_usage_register_event; 3865 event->unregister_event = mem_cgroup_usage_unregister_event; 3866 } else if (!strcmp(name, "memory.oom_control")) { 3867 event->register_event = mem_cgroup_oom_register_event; 3868 event->unregister_event = mem_cgroup_oom_unregister_event; 3869 } else if (!strcmp(name, "memory.pressure_level")) { 3870 event->register_event = vmpressure_register_event; 3871 event->unregister_event = vmpressure_unregister_event; 3872 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3873 event->register_event = memsw_cgroup_usage_register_event; 3874 event->unregister_event = memsw_cgroup_usage_unregister_event; 3875 } else { 3876 ret = -EINVAL; 3877 goto out_put_cfile; 3878 } 3879 3880 /* 3881 * Verify @cfile should belong to @css. Also, remaining events are 3882 * automatically removed on cgroup destruction but the removal is 3883 * asynchronous, so take an extra ref on @css. 3884 */ 3885 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3886 &memory_cgrp_subsys); 3887 ret = -EINVAL; 3888 if (IS_ERR(cfile_css)) 3889 goto out_put_cfile; 3890 if (cfile_css != css) { 3891 css_put(cfile_css); 3892 goto out_put_cfile; 3893 } 3894 3895 ret = event->register_event(memcg, event->eventfd, buf); 3896 if (ret) 3897 goto out_put_css; 3898 3899 efile.file->f_op->poll(efile.file, &event->pt); 3900 3901 spin_lock(&memcg->event_list_lock); 3902 list_add(&event->list, &memcg->event_list); 3903 spin_unlock(&memcg->event_list_lock); 3904 3905 fdput(cfile); 3906 fdput(efile); 3907 3908 return nbytes; 3909 3910 out_put_css: 3911 css_put(css); 3912 out_put_cfile: 3913 fdput(cfile); 3914 out_put_eventfd: 3915 eventfd_ctx_put(event->eventfd); 3916 out_put_efile: 3917 fdput(efile); 3918 out_kfree: 3919 kfree(event); 3920 3921 return ret; 3922 } 3923 3924 static struct cftype mem_cgroup_legacy_files[] = { 3925 { 3926 .name = "usage_in_bytes", 3927 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3928 .read_u64 = mem_cgroup_read_u64, 3929 }, 3930 { 3931 .name = "max_usage_in_bytes", 3932 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3933 .write = mem_cgroup_reset, 3934 .read_u64 = mem_cgroup_read_u64, 3935 }, 3936 { 3937 .name = "limit_in_bytes", 3938 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3939 .write = mem_cgroup_write, 3940 .read_u64 = mem_cgroup_read_u64, 3941 }, 3942 { 3943 .name = "soft_limit_in_bytes", 3944 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3945 .write = mem_cgroup_write, 3946 .read_u64 = mem_cgroup_read_u64, 3947 }, 3948 { 3949 .name = "failcnt", 3950 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3951 .write = mem_cgroup_reset, 3952 .read_u64 = mem_cgroup_read_u64, 3953 }, 3954 { 3955 .name = "stat", 3956 .seq_show = memcg_stat_show, 3957 }, 3958 { 3959 .name = "force_empty", 3960 .write = mem_cgroup_force_empty_write, 3961 }, 3962 { 3963 .name = "use_hierarchy", 3964 .write_u64 = mem_cgroup_hierarchy_write, 3965 .read_u64 = mem_cgroup_hierarchy_read, 3966 }, 3967 { 3968 .name = "cgroup.event_control", /* XXX: for compat */ 3969 .write = memcg_write_event_control, 3970 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3971 }, 3972 { 3973 .name = "swappiness", 3974 .read_u64 = mem_cgroup_swappiness_read, 3975 .write_u64 = mem_cgroup_swappiness_write, 3976 }, 3977 { 3978 .name = "move_charge_at_immigrate", 3979 .read_u64 = mem_cgroup_move_charge_read, 3980 .write_u64 = mem_cgroup_move_charge_write, 3981 }, 3982 { 3983 .name = "oom_control", 3984 .seq_show = mem_cgroup_oom_control_read, 3985 .write_u64 = mem_cgroup_oom_control_write, 3986 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3987 }, 3988 { 3989 .name = "pressure_level", 3990 }, 3991 #ifdef CONFIG_NUMA 3992 { 3993 .name = "numa_stat", 3994 .seq_show = memcg_numa_stat_show, 3995 }, 3996 #endif 3997 { 3998 .name = "kmem.limit_in_bytes", 3999 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4000 .write = mem_cgroup_write, 4001 .read_u64 = mem_cgroup_read_u64, 4002 }, 4003 { 4004 .name = "kmem.usage_in_bytes", 4005 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4006 .read_u64 = mem_cgroup_read_u64, 4007 }, 4008 { 4009 .name = "kmem.failcnt", 4010 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4011 .write = mem_cgroup_reset, 4012 .read_u64 = mem_cgroup_read_u64, 4013 }, 4014 { 4015 .name = "kmem.max_usage_in_bytes", 4016 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4017 .write = mem_cgroup_reset, 4018 .read_u64 = mem_cgroup_read_u64, 4019 }, 4020 #ifdef CONFIG_SLABINFO 4021 { 4022 .name = "kmem.slabinfo", 4023 .seq_start = slab_start, 4024 .seq_next = slab_next, 4025 .seq_stop = slab_stop, 4026 .seq_show = memcg_slab_show, 4027 }, 4028 #endif 4029 { 4030 .name = "kmem.tcp.limit_in_bytes", 4031 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4032 .write = mem_cgroup_write, 4033 .read_u64 = mem_cgroup_read_u64, 4034 }, 4035 { 4036 .name = "kmem.tcp.usage_in_bytes", 4037 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4038 .read_u64 = mem_cgroup_read_u64, 4039 }, 4040 { 4041 .name = "kmem.tcp.failcnt", 4042 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4043 .write = mem_cgroup_reset, 4044 .read_u64 = mem_cgroup_read_u64, 4045 }, 4046 { 4047 .name = "kmem.tcp.max_usage_in_bytes", 4048 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4049 .write = mem_cgroup_reset, 4050 .read_u64 = mem_cgroup_read_u64, 4051 }, 4052 { }, /* terminate */ 4053 }; 4054 4055 /* 4056 * Private memory cgroup IDR 4057 * 4058 * Swap-out records and page cache shadow entries need to store memcg 4059 * references in constrained space, so we maintain an ID space that is 4060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4061 * memory-controlled cgroups to 64k. 4062 * 4063 * However, there usually are many references to the oflline CSS after 4064 * the cgroup has been destroyed, such as page cache or reclaimable 4065 * slab objects, that don't need to hang on to the ID. We want to keep 4066 * those dead CSS from occupying IDs, or we might quickly exhaust the 4067 * relatively small ID space and prevent the creation of new cgroups 4068 * even when there are much fewer than 64k cgroups - possibly none. 4069 * 4070 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4071 * be freed and recycled when it's no longer needed, which is usually 4072 * when the CSS is offlined. 4073 * 4074 * The only exception to that are records of swapped out tmpfs/shmem 4075 * pages that need to be attributed to live ancestors on swapin. But 4076 * those references are manageable from userspace. 4077 */ 4078 4079 static DEFINE_IDR(mem_cgroup_idr); 4080 4081 static void mem_cgroup_id_get(struct mem_cgroup *memcg) 4082 { 4083 atomic_inc(&memcg->id.ref); 4084 } 4085 4086 static void mem_cgroup_id_put(struct mem_cgroup *memcg) 4087 { 4088 if (atomic_dec_and_test(&memcg->id.ref)) { 4089 idr_remove(&mem_cgroup_idr, memcg->id.id); 4090 memcg->id.id = 0; 4091 4092 /* Memcg ID pins CSS */ 4093 css_put(&memcg->css); 4094 } 4095 } 4096 4097 /** 4098 * mem_cgroup_from_id - look up a memcg from a memcg id 4099 * @id: the memcg id to look up 4100 * 4101 * Caller must hold rcu_read_lock(). 4102 */ 4103 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4104 { 4105 WARN_ON_ONCE(!rcu_read_lock_held()); 4106 return idr_find(&mem_cgroup_idr, id); 4107 } 4108 4109 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4110 { 4111 struct mem_cgroup_per_node *pn; 4112 struct mem_cgroup_per_zone *mz; 4113 int zone, tmp = node; 4114 /* 4115 * This routine is called against possible nodes. 4116 * But it's BUG to call kmalloc() against offline node. 4117 * 4118 * TODO: this routine can waste much memory for nodes which will 4119 * never be onlined. It's better to use memory hotplug callback 4120 * function. 4121 */ 4122 if (!node_state(node, N_NORMAL_MEMORY)) 4123 tmp = -1; 4124 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4125 if (!pn) 4126 return 1; 4127 4128 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4129 mz = &pn->zoneinfo[zone]; 4130 lruvec_init(&mz->lruvec); 4131 mz->usage_in_excess = 0; 4132 mz->on_tree = false; 4133 mz->memcg = memcg; 4134 } 4135 memcg->nodeinfo[node] = pn; 4136 return 0; 4137 } 4138 4139 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4140 { 4141 kfree(memcg->nodeinfo[node]); 4142 } 4143 4144 static void mem_cgroup_free(struct mem_cgroup *memcg) 4145 { 4146 int node; 4147 4148 memcg_wb_domain_exit(memcg); 4149 for_each_node(node) 4150 free_mem_cgroup_per_zone_info(memcg, node); 4151 free_percpu(memcg->stat); 4152 kfree(memcg); 4153 } 4154 4155 static struct mem_cgroup *mem_cgroup_alloc(void) 4156 { 4157 struct mem_cgroup *memcg; 4158 size_t size; 4159 int node; 4160 4161 size = sizeof(struct mem_cgroup); 4162 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4163 4164 memcg = kzalloc(size, GFP_KERNEL); 4165 if (!memcg) 4166 return NULL; 4167 4168 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4169 1, MEM_CGROUP_ID_MAX, 4170 GFP_KERNEL); 4171 if (memcg->id.id < 0) 4172 goto fail; 4173 4174 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4175 if (!memcg->stat) 4176 goto fail; 4177 4178 for_each_node(node) 4179 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4180 goto fail; 4181 4182 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4183 goto fail; 4184 4185 INIT_WORK(&memcg->high_work, high_work_func); 4186 memcg->last_scanned_node = MAX_NUMNODES; 4187 INIT_LIST_HEAD(&memcg->oom_notify); 4188 mutex_init(&memcg->thresholds_lock); 4189 spin_lock_init(&memcg->move_lock); 4190 vmpressure_init(&memcg->vmpressure); 4191 INIT_LIST_HEAD(&memcg->event_list); 4192 spin_lock_init(&memcg->event_list_lock); 4193 memcg->socket_pressure = jiffies; 4194 #ifndef CONFIG_SLOB 4195 memcg->kmemcg_id = -1; 4196 #endif 4197 #ifdef CONFIG_CGROUP_WRITEBACK 4198 INIT_LIST_HEAD(&memcg->cgwb_list); 4199 #endif 4200 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4201 return memcg; 4202 fail: 4203 if (memcg->id.id > 0) 4204 idr_remove(&mem_cgroup_idr, memcg->id.id); 4205 mem_cgroup_free(memcg); 4206 return NULL; 4207 } 4208 4209 static struct cgroup_subsys_state * __ref 4210 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4211 { 4212 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4213 struct mem_cgroup *memcg; 4214 long error = -ENOMEM; 4215 4216 memcg = mem_cgroup_alloc(); 4217 if (!memcg) 4218 return ERR_PTR(error); 4219 4220 memcg->high = PAGE_COUNTER_MAX; 4221 memcg->soft_limit = PAGE_COUNTER_MAX; 4222 if (parent) { 4223 memcg->swappiness = mem_cgroup_swappiness(parent); 4224 memcg->oom_kill_disable = parent->oom_kill_disable; 4225 } 4226 if (parent && parent->use_hierarchy) { 4227 memcg->use_hierarchy = true; 4228 page_counter_init(&memcg->memory, &parent->memory); 4229 page_counter_init(&memcg->swap, &parent->swap); 4230 page_counter_init(&memcg->memsw, &parent->memsw); 4231 page_counter_init(&memcg->kmem, &parent->kmem); 4232 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4233 } else { 4234 page_counter_init(&memcg->memory, NULL); 4235 page_counter_init(&memcg->swap, NULL); 4236 page_counter_init(&memcg->memsw, NULL); 4237 page_counter_init(&memcg->kmem, NULL); 4238 page_counter_init(&memcg->tcpmem, NULL); 4239 /* 4240 * Deeper hierachy with use_hierarchy == false doesn't make 4241 * much sense so let cgroup subsystem know about this 4242 * unfortunate state in our controller. 4243 */ 4244 if (parent != root_mem_cgroup) 4245 memory_cgrp_subsys.broken_hierarchy = true; 4246 } 4247 4248 /* The following stuff does not apply to the root */ 4249 if (!parent) { 4250 root_mem_cgroup = memcg; 4251 return &memcg->css; 4252 } 4253 4254 error = memcg_online_kmem(memcg); 4255 if (error) 4256 goto fail; 4257 4258 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4259 static_branch_inc(&memcg_sockets_enabled_key); 4260 4261 return &memcg->css; 4262 fail: 4263 mem_cgroup_free(memcg); 4264 return ERR_PTR(-ENOMEM); 4265 } 4266 4267 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4268 { 4269 /* Online state pins memcg ID, memcg ID pins CSS */ 4270 mem_cgroup_id_get(mem_cgroup_from_css(css)); 4271 css_get(css); 4272 return 0; 4273 } 4274 4275 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4276 { 4277 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4278 struct mem_cgroup_event *event, *tmp; 4279 4280 /* 4281 * Unregister events and notify userspace. 4282 * Notify userspace about cgroup removing only after rmdir of cgroup 4283 * directory to avoid race between userspace and kernelspace. 4284 */ 4285 spin_lock(&memcg->event_list_lock); 4286 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4287 list_del_init(&event->list); 4288 schedule_work(&event->remove); 4289 } 4290 spin_unlock(&memcg->event_list_lock); 4291 4292 memcg_offline_kmem(memcg); 4293 wb_memcg_offline(memcg); 4294 4295 mem_cgroup_id_put(memcg); 4296 } 4297 4298 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4299 { 4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4301 4302 invalidate_reclaim_iterators(memcg); 4303 } 4304 4305 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4306 { 4307 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4308 4309 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4310 static_branch_dec(&memcg_sockets_enabled_key); 4311 4312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4313 static_branch_dec(&memcg_sockets_enabled_key); 4314 4315 vmpressure_cleanup(&memcg->vmpressure); 4316 cancel_work_sync(&memcg->high_work); 4317 mem_cgroup_remove_from_trees(memcg); 4318 memcg_free_kmem(memcg); 4319 mem_cgroup_free(memcg); 4320 } 4321 4322 /** 4323 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4324 * @css: the target css 4325 * 4326 * Reset the states of the mem_cgroup associated with @css. This is 4327 * invoked when the userland requests disabling on the default hierarchy 4328 * but the memcg is pinned through dependency. The memcg should stop 4329 * applying policies and should revert to the vanilla state as it may be 4330 * made visible again. 4331 * 4332 * The current implementation only resets the essential configurations. 4333 * This needs to be expanded to cover all the visible parts. 4334 */ 4335 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4336 { 4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4338 4339 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4340 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4341 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4342 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4343 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4344 memcg->low = 0; 4345 memcg->high = PAGE_COUNTER_MAX; 4346 memcg->soft_limit = PAGE_COUNTER_MAX; 4347 memcg_wb_domain_size_changed(memcg); 4348 } 4349 4350 #ifdef CONFIG_MMU 4351 /* Handlers for move charge at task migration. */ 4352 static int mem_cgroup_do_precharge(unsigned long count) 4353 { 4354 int ret; 4355 4356 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4357 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4358 if (!ret) { 4359 mc.precharge += count; 4360 return ret; 4361 } 4362 4363 /* Try charges one by one with reclaim */ 4364 while (count--) { 4365 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4366 if (ret) 4367 return ret; 4368 mc.precharge++; 4369 cond_resched(); 4370 } 4371 return 0; 4372 } 4373 4374 union mc_target { 4375 struct page *page; 4376 swp_entry_t ent; 4377 }; 4378 4379 enum mc_target_type { 4380 MC_TARGET_NONE = 0, 4381 MC_TARGET_PAGE, 4382 MC_TARGET_SWAP, 4383 }; 4384 4385 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4386 unsigned long addr, pte_t ptent) 4387 { 4388 struct page *page = vm_normal_page(vma, addr, ptent); 4389 4390 if (!page || !page_mapped(page)) 4391 return NULL; 4392 if (PageAnon(page)) { 4393 if (!(mc.flags & MOVE_ANON)) 4394 return NULL; 4395 } else { 4396 if (!(mc.flags & MOVE_FILE)) 4397 return NULL; 4398 } 4399 if (!get_page_unless_zero(page)) 4400 return NULL; 4401 4402 return page; 4403 } 4404 4405 #ifdef CONFIG_SWAP 4406 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4407 pte_t ptent, swp_entry_t *entry) 4408 { 4409 struct page *page = NULL; 4410 swp_entry_t ent = pte_to_swp_entry(ptent); 4411 4412 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4413 return NULL; 4414 /* 4415 * Because lookup_swap_cache() updates some statistics counter, 4416 * we call find_get_page() with swapper_space directly. 4417 */ 4418 page = find_get_page(swap_address_space(ent), ent.val); 4419 if (do_memsw_account()) 4420 entry->val = ent.val; 4421 4422 return page; 4423 } 4424 #else 4425 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4426 pte_t ptent, swp_entry_t *entry) 4427 { 4428 return NULL; 4429 } 4430 #endif 4431 4432 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4433 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4434 { 4435 struct page *page = NULL; 4436 struct address_space *mapping; 4437 pgoff_t pgoff; 4438 4439 if (!vma->vm_file) /* anonymous vma */ 4440 return NULL; 4441 if (!(mc.flags & MOVE_FILE)) 4442 return NULL; 4443 4444 mapping = vma->vm_file->f_mapping; 4445 pgoff = linear_page_index(vma, addr); 4446 4447 /* page is moved even if it's not RSS of this task(page-faulted). */ 4448 #ifdef CONFIG_SWAP 4449 /* shmem/tmpfs may report page out on swap: account for that too. */ 4450 if (shmem_mapping(mapping)) { 4451 page = find_get_entry(mapping, pgoff); 4452 if (radix_tree_exceptional_entry(page)) { 4453 swp_entry_t swp = radix_to_swp_entry(page); 4454 if (do_memsw_account()) 4455 *entry = swp; 4456 page = find_get_page(swap_address_space(swp), swp.val); 4457 } 4458 } else 4459 page = find_get_page(mapping, pgoff); 4460 #else 4461 page = find_get_page(mapping, pgoff); 4462 #endif 4463 return page; 4464 } 4465 4466 /** 4467 * mem_cgroup_move_account - move account of the page 4468 * @page: the page 4469 * @compound: charge the page as compound or small page 4470 * @from: mem_cgroup which the page is moved from. 4471 * @to: mem_cgroup which the page is moved to. @from != @to. 4472 * 4473 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4474 * 4475 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4476 * from old cgroup. 4477 */ 4478 static int mem_cgroup_move_account(struct page *page, 4479 bool compound, 4480 struct mem_cgroup *from, 4481 struct mem_cgroup *to) 4482 { 4483 unsigned long flags; 4484 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4485 int ret; 4486 bool anon; 4487 4488 VM_BUG_ON(from == to); 4489 VM_BUG_ON_PAGE(PageLRU(page), page); 4490 VM_BUG_ON(compound && !PageTransHuge(page)); 4491 4492 /* 4493 * Prevent mem_cgroup_migrate() from looking at 4494 * page->mem_cgroup of its source page while we change it. 4495 */ 4496 ret = -EBUSY; 4497 if (!trylock_page(page)) 4498 goto out; 4499 4500 ret = -EINVAL; 4501 if (page->mem_cgroup != from) 4502 goto out_unlock; 4503 4504 anon = PageAnon(page); 4505 4506 spin_lock_irqsave(&from->move_lock, flags); 4507 4508 if (!anon && page_mapped(page)) { 4509 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4510 nr_pages); 4511 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4512 nr_pages); 4513 } 4514 4515 /* 4516 * move_lock grabbed above and caller set from->moving_account, so 4517 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4518 * So mapping should be stable for dirty pages. 4519 */ 4520 if (!anon && PageDirty(page)) { 4521 struct address_space *mapping = page_mapping(page); 4522 4523 if (mapping_cap_account_dirty(mapping)) { 4524 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4525 nr_pages); 4526 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4527 nr_pages); 4528 } 4529 } 4530 4531 if (PageWriteback(page)) { 4532 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4533 nr_pages); 4534 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4535 nr_pages); 4536 } 4537 4538 /* 4539 * It is safe to change page->mem_cgroup here because the page 4540 * is referenced, charged, and isolated - we can't race with 4541 * uncharging, charging, migration, or LRU putback. 4542 */ 4543 4544 /* caller should have done css_get */ 4545 page->mem_cgroup = to; 4546 spin_unlock_irqrestore(&from->move_lock, flags); 4547 4548 ret = 0; 4549 4550 local_irq_disable(); 4551 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4552 memcg_check_events(to, page); 4553 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4554 memcg_check_events(from, page); 4555 local_irq_enable(); 4556 out_unlock: 4557 unlock_page(page); 4558 out: 4559 return ret; 4560 } 4561 4562 /** 4563 * get_mctgt_type - get target type of moving charge 4564 * @vma: the vma the pte to be checked belongs 4565 * @addr: the address corresponding to the pte to be checked 4566 * @ptent: the pte to be checked 4567 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4568 * 4569 * Returns 4570 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4571 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4572 * move charge. if @target is not NULL, the page is stored in target->page 4573 * with extra refcnt got(Callers should handle it). 4574 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4575 * target for charge migration. if @target is not NULL, the entry is stored 4576 * in target->ent. 4577 * 4578 * Called with pte lock held. 4579 */ 4580 4581 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4582 unsigned long addr, pte_t ptent, union mc_target *target) 4583 { 4584 struct page *page = NULL; 4585 enum mc_target_type ret = MC_TARGET_NONE; 4586 swp_entry_t ent = { .val = 0 }; 4587 4588 if (pte_present(ptent)) 4589 page = mc_handle_present_pte(vma, addr, ptent); 4590 else if (is_swap_pte(ptent)) 4591 page = mc_handle_swap_pte(vma, ptent, &ent); 4592 else if (pte_none(ptent)) 4593 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4594 4595 if (!page && !ent.val) 4596 return ret; 4597 if (page) { 4598 /* 4599 * Do only loose check w/o serialization. 4600 * mem_cgroup_move_account() checks the page is valid or 4601 * not under LRU exclusion. 4602 */ 4603 if (page->mem_cgroup == mc.from) { 4604 ret = MC_TARGET_PAGE; 4605 if (target) 4606 target->page = page; 4607 } 4608 if (!ret || !target) 4609 put_page(page); 4610 } 4611 /* There is a swap entry and a page doesn't exist or isn't charged */ 4612 if (ent.val && !ret && 4613 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4614 ret = MC_TARGET_SWAP; 4615 if (target) 4616 target->ent = ent; 4617 } 4618 return ret; 4619 } 4620 4621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4622 /* 4623 * We don't consider swapping or file mapped pages because THP does not 4624 * support them for now. 4625 * Caller should make sure that pmd_trans_huge(pmd) is true. 4626 */ 4627 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4628 unsigned long addr, pmd_t pmd, union mc_target *target) 4629 { 4630 struct page *page = NULL; 4631 enum mc_target_type ret = MC_TARGET_NONE; 4632 4633 page = pmd_page(pmd); 4634 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4635 if (!(mc.flags & MOVE_ANON)) 4636 return ret; 4637 if (page->mem_cgroup == mc.from) { 4638 ret = MC_TARGET_PAGE; 4639 if (target) { 4640 get_page(page); 4641 target->page = page; 4642 } 4643 } 4644 return ret; 4645 } 4646 #else 4647 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4648 unsigned long addr, pmd_t pmd, union mc_target *target) 4649 { 4650 return MC_TARGET_NONE; 4651 } 4652 #endif 4653 4654 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4655 unsigned long addr, unsigned long end, 4656 struct mm_walk *walk) 4657 { 4658 struct vm_area_struct *vma = walk->vma; 4659 pte_t *pte; 4660 spinlock_t *ptl; 4661 4662 ptl = pmd_trans_huge_lock(pmd, vma); 4663 if (ptl) { 4664 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4665 mc.precharge += HPAGE_PMD_NR; 4666 spin_unlock(ptl); 4667 return 0; 4668 } 4669 4670 if (pmd_trans_unstable(pmd)) 4671 return 0; 4672 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4673 for (; addr != end; pte++, addr += PAGE_SIZE) 4674 if (get_mctgt_type(vma, addr, *pte, NULL)) 4675 mc.precharge++; /* increment precharge temporarily */ 4676 pte_unmap_unlock(pte - 1, ptl); 4677 cond_resched(); 4678 4679 return 0; 4680 } 4681 4682 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4683 { 4684 unsigned long precharge; 4685 4686 struct mm_walk mem_cgroup_count_precharge_walk = { 4687 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4688 .mm = mm, 4689 }; 4690 down_read(&mm->mmap_sem); 4691 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4692 up_read(&mm->mmap_sem); 4693 4694 precharge = mc.precharge; 4695 mc.precharge = 0; 4696 4697 return precharge; 4698 } 4699 4700 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4701 { 4702 unsigned long precharge = mem_cgroup_count_precharge(mm); 4703 4704 VM_BUG_ON(mc.moving_task); 4705 mc.moving_task = current; 4706 return mem_cgroup_do_precharge(precharge); 4707 } 4708 4709 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4710 static void __mem_cgroup_clear_mc(void) 4711 { 4712 struct mem_cgroup *from = mc.from; 4713 struct mem_cgroup *to = mc.to; 4714 4715 /* we must uncharge all the leftover precharges from mc.to */ 4716 if (mc.precharge) { 4717 cancel_charge(mc.to, mc.precharge); 4718 mc.precharge = 0; 4719 } 4720 /* 4721 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4722 * we must uncharge here. 4723 */ 4724 if (mc.moved_charge) { 4725 cancel_charge(mc.from, mc.moved_charge); 4726 mc.moved_charge = 0; 4727 } 4728 /* we must fixup refcnts and charges */ 4729 if (mc.moved_swap) { 4730 /* uncharge swap account from the old cgroup */ 4731 if (!mem_cgroup_is_root(mc.from)) 4732 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4733 4734 /* 4735 * we charged both to->memory and to->memsw, so we 4736 * should uncharge to->memory. 4737 */ 4738 if (!mem_cgroup_is_root(mc.to)) 4739 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4740 4741 css_put_many(&mc.from->css, mc.moved_swap); 4742 4743 /* we've already done css_get(mc.to) */ 4744 mc.moved_swap = 0; 4745 } 4746 memcg_oom_recover(from); 4747 memcg_oom_recover(to); 4748 wake_up_all(&mc.waitq); 4749 } 4750 4751 static void mem_cgroup_clear_mc(void) 4752 { 4753 struct mm_struct *mm = mc.mm; 4754 4755 /* 4756 * we must clear moving_task before waking up waiters at the end of 4757 * task migration. 4758 */ 4759 mc.moving_task = NULL; 4760 __mem_cgroup_clear_mc(); 4761 spin_lock(&mc.lock); 4762 mc.from = NULL; 4763 mc.to = NULL; 4764 mc.mm = NULL; 4765 spin_unlock(&mc.lock); 4766 4767 mmput(mm); 4768 } 4769 4770 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4771 { 4772 struct cgroup_subsys_state *css; 4773 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4774 struct mem_cgroup *from; 4775 struct task_struct *leader, *p; 4776 struct mm_struct *mm; 4777 unsigned long move_flags; 4778 int ret = 0; 4779 4780 /* charge immigration isn't supported on the default hierarchy */ 4781 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4782 return 0; 4783 4784 /* 4785 * Multi-process migrations only happen on the default hierarchy 4786 * where charge immigration is not used. Perform charge 4787 * immigration if @tset contains a leader and whine if there are 4788 * multiple. 4789 */ 4790 p = NULL; 4791 cgroup_taskset_for_each_leader(leader, css, tset) { 4792 WARN_ON_ONCE(p); 4793 p = leader; 4794 memcg = mem_cgroup_from_css(css); 4795 } 4796 if (!p) 4797 return 0; 4798 4799 /* 4800 * We are now commited to this value whatever it is. Changes in this 4801 * tunable will only affect upcoming migrations, not the current one. 4802 * So we need to save it, and keep it going. 4803 */ 4804 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4805 if (!move_flags) 4806 return 0; 4807 4808 from = mem_cgroup_from_task(p); 4809 4810 VM_BUG_ON(from == memcg); 4811 4812 mm = get_task_mm(p); 4813 if (!mm) 4814 return 0; 4815 /* We move charges only when we move a owner of the mm */ 4816 if (mm->owner == p) { 4817 VM_BUG_ON(mc.from); 4818 VM_BUG_ON(mc.to); 4819 VM_BUG_ON(mc.precharge); 4820 VM_BUG_ON(mc.moved_charge); 4821 VM_BUG_ON(mc.moved_swap); 4822 4823 spin_lock(&mc.lock); 4824 mc.mm = mm; 4825 mc.from = from; 4826 mc.to = memcg; 4827 mc.flags = move_flags; 4828 spin_unlock(&mc.lock); 4829 /* We set mc.moving_task later */ 4830 4831 ret = mem_cgroup_precharge_mc(mm); 4832 if (ret) 4833 mem_cgroup_clear_mc(); 4834 } else { 4835 mmput(mm); 4836 } 4837 return ret; 4838 } 4839 4840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4841 { 4842 if (mc.to) 4843 mem_cgroup_clear_mc(); 4844 } 4845 4846 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4847 unsigned long addr, unsigned long end, 4848 struct mm_walk *walk) 4849 { 4850 int ret = 0; 4851 struct vm_area_struct *vma = walk->vma; 4852 pte_t *pte; 4853 spinlock_t *ptl; 4854 enum mc_target_type target_type; 4855 union mc_target target; 4856 struct page *page; 4857 4858 ptl = pmd_trans_huge_lock(pmd, vma); 4859 if (ptl) { 4860 if (mc.precharge < HPAGE_PMD_NR) { 4861 spin_unlock(ptl); 4862 return 0; 4863 } 4864 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4865 if (target_type == MC_TARGET_PAGE) { 4866 page = target.page; 4867 if (!isolate_lru_page(page)) { 4868 if (!mem_cgroup_move_account(page, true, 4869 mc.from, mc.to)) { 4870 mc.precharge -= HPAGE_PMD_NR; 4871 mc.moved_charge += HPAGE_PMD_NR; 4872 } 4873 putback_lru_page(page); 4874 } 4875 put_page(page); 4876 } 4877 spin_unlock(ptl); 4878 return 0; 4879 } 4880 4881 if (pmd_trans_unstable(pmd)) 4882 return 0; 4883 retry: 4884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4885 for (; addr != end; addr += PAGE_SIZE) { 4886 pte_t ptent = *(pte++); 4887 swp_entry_t ent; 4888 4889 if (!mc.precharge) 4890 break; 4891 4892 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4893 case MC_TARGET_PAGE: 4894 page = target.page; 4895 /* 4896 * We can have a part of the split pmd here. Moving it 4897 * can be done but it would be too convoluted so simply 4898 * ignore such a partial THP and keep it in original 4899 * memcg. There should be somebody mapping the head. 4900 */ 4901 if (PageTransCompound(page)) 4902 goto put; 4903 if (isolate_lru_page(page)) 4904 goto put; 4905 if (!mem_cgroup_move_account(page, false, 4906 mc.from, mc.to)) { 4907 mc.precharge--; 4908 /* we uncharge from mc.from later. */ 4909 mc.moved_charge++; 4910 } 4911 putback_lru_page(page); 4912 put: /* get_mctgt_type() gets the page */ 4913 put_page(page); 4914 break; 4915 case MC_TARGET_SWAP: 4916 ent = target.ent; 4917 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4918 mc.precharge--; 4919 /* we fixup refcnts and charges later. */ 4920 mc.moved_swap++; 4921 } 4922 break; 4923 default: 4924 break; 4925 } 4926 } 4927 pte_unmap_unlock(pte - 1, ptl); 4928 cond_resched(); 4929 4930 if (addr != end) { 4931 /* 4932 * We have consumed all precharges we got in can_attach(). 4933 * We try charge one by one, but don't do any additional 4934 * charges to mc.to if we have failed in charge once in attach() 4935 * phase. 4936 */ 4937 ret = mem_cgroup_do_precharge(1); 4938 if (!ret) 4939 goto retry; 4940 } 4941 4942 return ret; 4943 } 4944 4945 static void mem_cgroup_move_charge(void) 4946 { 4947 struct mm_walk mem_cgroup_move_charge_walk = { 4948 .pmd_entry = mem_cgroup_move_charge_pte_range, 4949 .mm = mc.mm, 4950 }; 4951 4952 lru_add_drain_all(); 4953 /* 4954 * Signal lock_page_memcg() to take the memcg's move_lock 4955 * while we're moving its pages to another memcg. Then wait 4956 * for already started RCU-only updates to finish. 4957 */ 4958 atomic_inc(&mc.from->moving_account); 4959 synchronize_rcu(); 4960 retry: 4961 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4962 /* 4963 * Someone who are holding the mmap_sem might be waiting in 4964 * waitq. So we cancel all extra charges, wake up all waiters, 4965 * and retry. Because we cancel precharges, we might not be able 4966 * to move enough charges, but moving charge is a best-effort 4967 * feature anyway, so it wouldn't be a big problem. 4968 */ 4969 __mem_cgroup_clear_mc(); 4970 cond_resched(); 4971 goto retry; 4972 } 4973 /* 4974 * When we have consumed all precharges and failed in doing 4975 * additional charge, the page walk just aborts. 4976 */ 4977 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4978 up_read(&mc.mm->mmap_sem); 4979 atomic_dec(&mc.from->moving_account); 4980 } 4981 4982 static void mem_cgroup_move_task(void) 4983 { 4984 if (mc.to) { 4985 mem_cgroup_move_charge(); 4986 mem_cgroup_clear_mc(); 4987 } 4988 } 4989 #else /* !CONFIG_MMU */ 4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4991 { 4992 return 0; 4993 } 4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4995 { 4996 } 4997 static void mem_cgroup_move_task(void) 4998 { 4999 } 5000 #endif 5001 5002 /* 5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5004 * to verify whether we're attached to the default hierarchy on each mount 5005 * attempt. 5006 */ 5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5008 { 5009 /* 5010 * use_hierarchy is forced on the default hierarchy. cgroup core 5011 * guarantees that @root doesn't have any children, so turning it 5012 * on for the root memcg is enough. 5013 */ 5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5015 root_mem_cgroup->use_hierarchy = true; 5016 else 5017 root_mem_cgroup->use_hierarchy = false; 5018 } 5019 5020 static u64 memory_current_read(struct cgroup_subsys_state *css, 5021 struct cftype *cft) 5022 { 5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5024 5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5026 } 5027 5028 static int memory_low_show(struct seq_file *m, void *v) 5029 { 5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5031 unsigned long low = READ_ONCE(memcg->low); 5032 5033 if (low == PAGE_COUNTER_MAX) 5034 seq_puts(m, "max\n"); 5035 else 5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5037 5038 return 0; 5039 } 5040 5041 static ssize_t memory_low_write(struct kernfs_open_file *of, 5042 char *buf, size_t nbytes, loff_t off) 5043 { 5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5045 unsigned long low; 5046 int err; 5047 5048 buf = strstrip(buf); 5049 err = page_counter_memparse(buf, "max", &low); 5050 if (err) 5051 return err; 5052 5053 memcg->low = low; 5054 5055 return nbytes; 5056 } 5057 5058 static int memory_high_show(struct seq_file *m, void *v) 5059 { 5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5061 unsigned long high = READ_ONCE(memcg->high); 5062 5063 if (high == PAGE_COUNTER_MAX) 5064 seq_puts(m, "max\n"); 5065 else 5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5067 5068 return 0; 5069 } 5070 5071 static ssize_t memory_high_write(struct kernfs_open_file *of, 5072 char *buf, size_t nbytes, loff_t off) 5073 { 5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5075 unsigned long nr_pages; 5076 unsigned long high; 5077 int err; 5078 5079 buf = strstrip(buf); 5080 err = page_counter_memparse(buf, "max", &high); 5081 if (err) 5082 return err; 5083 5084 memcg->high = high; 5085 5086 nr_pages = page_counter_read(&memcg->memory); 5087 if (nr_pages > high) 5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5089 GFP_KERNEL, true); 5090 5091 memcg_wb_domain_size_changed(memcg); 5092 return nbytes; 5093 } 5094 5095 static int memory_max_show(struct seq_file *m, void *v) 5096 { 5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5098 unsigned long max = READ_ONCE(memcg->memory.limit); 5099 5100 if (max == PAGE_COUNTER_MAX) 5101 seq_puts(m, "max\n"); 5102 else 5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5104 5105 return 0; 5106 } 5107 5108 static ssize_t memory_max_write(struct kernfs_open_file *of, 5109 char *buf, size_t nbytes, loff_t off) 5110 { 5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5113 bool drained = false; 5114 unsigned long max; 5115 int err; 5116 5117 buf = strstrip(buf); 5118 err = page_counter_memparse(buf, "max", &max); 5119 if (err) 5120 return err; 5121 5122 xchg(&memcg->memory.limit, max); 5123 5124 for (;;) { 5125 unsigned long nr_pages = page_counter_read(&memcg->memory); 5126 5127 if (nr_pages <= max) 5128 break; 5129 5130 if (signal_pending(current)) { 5131 err = -EINTR; 5132 break; 5133 } 5134 5135 if (!drained) { 5136 drain_all_stock(memcg); 5137 drained = true; 5138 continue; 5139 } 5140 5141 if (nr_reclaims) { 5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5143 GFP_KERNEL, true)) 5144 nr_reclaims--; 5145 continue; 5146 } 5147 5148 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5150 break; 5151 } 5152 5153 memcg_wb_domain_size_changed(memcg); 5154 return nbytes; 5155 } 5156 5157 static int memory_events_show(struct seq_file *m, void *v) 5158 { 5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5160 5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5165 5166 return 0; 5167 } 5168 5169 static int memory_stat_show(struct seq_file *m, void *v) 5170 { 5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5172 unsigned long stat[MEMCG_NR_STAT]; 5173 unsigned long events[MEMCG_NR_EVENTS]; 5174 int i; 5175 5176 /* 5177 * Provide statistics on the state of the memory subsystem as 5178 * well as cumulative event counters that show past behavior. 5179 * 5180 * This list is ordered following a combination of these gradients: 5181 * 1) generic big picture -> specifics and details 5182 * 2) reflecting userspace activity -> reflecting kernel heuristics 5183 * 5184 * Current memory state: 5185 */ 5186 5187 tree_stat(memcg, stat); 5188 tree_events(memcg, events); 5189 5190 seq_printf(m, "anon %llu\n", 5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5192 seq_printf(m, "file %llu\n", 5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5194 seq_printf(m, "kernel_stack %llu\n", 5195 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE); 5196 seq_printf(m, "slab %llu\n", 5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5199 seq_printf(m, "sock %llu\n", 5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5201 5202 seq_printf(m, "file_mapped %llu\n", 5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5204 seq_printf(m, "file_dirty %llu\n", 5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5206 seq_printf(m, "file_writeback %llu\n", 5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5208 5209 for (i = 0; i < NR_LRU_LISTS; i++) { 5210 struct mem_cgroup *mi; 5211 unsigned long val = 0; 5212 5213 for_each_mem_cgroup_tree(mi, memcg) 5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5215 seq_printf(m, "%s %llu\n", 5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5217 } 5218 5219 seq_printf(m, "slab_reclaimable %llu\n", 5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5221 seq_printf(m, "slab_unreclaimable %llu\n", 5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5223 5224 /* Accumulated memory events */ 5225 5226 seq_printf(m, "pgfault %lu\n", 5227 events[MEM_CGROUP_EVENTS_PGFAULT]); 5228 seq_printf(m, "pgmajfault %lu\n", 5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5230 5231 return 0; 5232 } 5233 5234 static struct cftype memory_files[] = { 5235 { 5236 .name = "current", 5237 .flags = CFTYPE_NOT_ON_ROOT, 5238 .read_u64 = memory_current_read, 5239 }, 5240 { 5241 .name = "low", 5242 .flags = CFTYPE_NOT_ON_ROOT, 5243 .seq_show = memory_low_show, 5244 .write = memory_low_write, 5245 }, 5246 { 5247 .name = "high", 5248 .flags = CFTYPE_NOT_ON_ROOT, 5249 .seq_show = memory_high_show, 5250 .write = memory_high_write, 5251 }, 5252 { 5253 .name = "max", 5254 .flags = CFTYPE_NOT_ON_ROOT, 5255 .seq_show = memory_max_show, 5256 .write = memory_max_write, 5257 }, 5258 { 5259 .name = "events", 5260 .flags = CFTYPE_NOT_ON_ROOT, 5261 .file_offset = offsetof(struct mem_cgroup, events_file), 5262 .seq_show = memory_events_show, 5263 }, 5264 { 5265 .name = "stat", 5266 .flags = CFTYPE_NOT_ON_ROOT, 5267 .seq_show = memory_stat_show, 5268 }, 5269 { } /* terminate */ 5270 }; 5271 5272 struct cgroup_subsys memory_cgrp_subsys = { 5273 .css_alloc = mem_cgroup_css_alloc, 5274 .css_online = mem_cgroup_css_online, 5275 .css_offline = mem_cgroup_css_offline, 5276 .css_released = mem_cgroup_css_released, 5277 .css_free = mem_cgroup_css_free, 5278 .css_reset = mem_cgroup_css_reset, 5279 .can_attach = mem_cgroup_can_attach, 5280 .cancel_attach = mem_cgroup_cancel_attach, 5281 .post_attach = mem_cgroup_move_task, 5282 .bind = mem_cgroup_bind, 5283 .dfl_cftypes = memory_files, 5284 .legacy_cftypes = mem_cgroup_legacy_files, 5285 .early_init = 0, 5286 }; 5287 5288 /** 5289 * mem_cgroup_low - check if memory consumption is below the normal range 5290 * @root: the highest ancestor to consider 5291 * @memcg: the memory cgroup to check 5292 * 5293 * Returns %true if memory consumption of @memcg, and that of all 5294 * configurable ancestors up to @root, is below the normal range. 5295 */ 5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5297 { 5298 if (mem_cgroup_disabled()) 5299 return false; 5300 5301 /* 5302 * The toplevel group doesn't have a configurable range, so 5303 * it's never low when looked at directly, and it is not 5304 * considered an ancestor when assessing the hierarchy. 5305 */ 5306 5307 if (memcg == root_mem_cgroup) 5308 return false; 5309 5310 if (page_counter_read(&memcg->memory) >= memcg->low) 5311 return false; 5312 5313 while (memcg != root) { 5314 memcg = parent_mem_cgroup(memcg); 5315 5316 if (memcg == root_mem_cgroup) 5317 break; 5318 5319 if (page_counter_read(&memcg->memory) >= memcg->low) 5320 return false; 5321 } 5322 return true; 5323 } 5324 5325 /** 5326 * mem_cgroup_try_charge - try charging a page 5327 * @page: page to charge 5328 * @mm: mm context of the victim 5329 * @gfp_mask: reclaim mode 5330 * @memcgp: charged memcg return 5331 * @compound: charge the page as compound or small page 5332 * 5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5334 * pages according to @gfp_mask if necessary. 5335 * 5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5337 * Otherwise, an error code is returned. 5338 * 5339 * After page->mapping has been set up, the caller must finalize the 5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5341 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5342 */ 5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5344 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5345 bool compound) 5346 { 5347 struct mem_cgroup *memcg = NULL; 5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5349 int ret = 0; 5350 5351 if (mem_cgroup_disabled()) 5352 goto out; 5353 5354 if (PageSwapCache(page)) { 5355 /* 5356 * Every swap fault against a single page tries to charge the 5357 * page, bail as early as possible. shmem_unuse() encounters 5358 * already charged pages, too. The USED bit is protected by 5359 * the page lock, which serializes swap cache removal, which 5360 * in turn serializes uncharging. 5361 */ 5362 VM_BUG_ON_PAGE(!PageLocked(page), page); 5363 if (page->mem_cgroup) 5364 goto out; 5365 5366 if (do_swap_account) { 5367 swp_entry_t ent = { .val = page_private(page), }; 5368 unsigned short id = lookup_swap_cgroup_id(ent); 5369 5370 rcu_read_lock(); 5371 memcg = mem_cgroup_from_id(id); 5372 if (memcg && !css_tryget_online(&memcg->css)) 5373 memcg = NULL; 5374 rcu_read_unlock(); 5375 } 5376 } 5377 5378 if (!memcg) 5379 memcg = get_mem_cgroup_from_mm(mm); 5380 5381 ret = try_charge(memcg, gfp_mask, nr_pages); 5382 5383 css_put(&memcg->css); 5384 out: 5385 *memcgp = memcg; 5386 return ret; 5387 } 5388 5389 /** 5390 * mem_cgroup_commit_charge - commit a page charge 5391 * @page: page to charge 5392 * @memcg: memcg to charge the page to 5393 * @lrucare: page might be on LRU already 5394 * @compound: charge the page as compound or small page 5395 * 5396 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5397 * after page->mapping has been set up. This must happen atomically 5398 * as part of the page instantiation, i.e. under the page table lock 5399 * for anonymous pages, under the page lock for page and swap cache. 5400 * 5401 * In addition, the page must not be on the LRU during the commit, to 5402 * prevent racing with task migration. If it might be, use @lrucare. 5403 * 5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5405 */ 5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5407 bool lrucare, bool compound) 5408 { 5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5410 5411 VM_BUG_ON_PAGE(!page->mapping, page); 5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5413 5414 if (mem_cgroup_disabled()) 5415 return; 5416 /* 5417 * Swap faults will attempt to charge the same page multiple 5418 * times. But reuse_swap_page() might have removed the page 5419 * from swapcache already, so we can't check PageSwapCache(). 5420 */ 5421 if (!memcg) 5422 return; 5423 5424 commit_charge(page, memcg, lrucare); 5425 5426 local_irq_disable(); 5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5428 memcg_check_events(memcg, page); 5429 local_irq_enable(); 5430 5431 if (do_memsw_account() && PageSwapCache(page)) { 5432 swp_entry_t entry = { .val = page_private(page) }; 5433 /* 5434 * The swap entry might not get freed for a long time, 5435 * let's not wait for it. The page already received a 5436 * memory+swap charge, drop the swap entry duplicate. 5437 */ 5438 mem_cgroup_uncharge_swap(entry); 5439 } 5440 } 5441 5442 /** 5443 * mem_cgroup_cancel_charge - cancel a page charge 5444 * @page: page to charge 5445 * @memcg: memcg to charge the page to 5446 * @compound: charge the page as compound or small page 5447 * 5448 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5449 */ 5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5451 bool compound) 5452 { 5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5454 5455 if (mem_cgroup_disabled()) 5456 return; 5457 /* 5458 * Swap faults will attempt to charge the same page multiple 5459 * times. But reuse_swap_page() might have removed the page 5460 * from swapcache already, so we can't check PageSwapCache(). 5461 */ 5462 if (!memcg) 5463 return; 5464 5465 cancel_charge(memcg, nr_pages); 5466 } 5467 5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5469 unsigned long nr_anon, unsigned long nr_file, 5470 unsigned long nr_huge, unsigned long nr_kmem, 5471 struct page *dummy_page) 5472 { 5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem; 5474 unsigned long flags; 5475 5476 if (!mem_cgroup_is_root(memcg)) { 5477 page_counter_uncharge(&memcg->memory, nr_pages); 5478 if (do_memsw_account()) 5479 page_counter_uncharge(&memcg->memsw, nr_pages); 5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) 5481 page_counter_uncharge(&memcg->kmem, nr_kmem); 5482 memcg_oom_recover(memcg); 5483 } 5484 5485 local_irq_save(flags); 5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5491 memcg_check_events(memcg, dummy_page); 5492 local_irq_restore(flags); 5493 5494 if (!mem_cgroup_is_root(memcg)) 5495 css_put_many(&memcg->css, nr_pages); 5496 } 5497 5498 static void uncharge_list(struct list_head *page_list) 5499 { 5500 struct mem_cgroup *memcg = NULL; 5501 unsigned long nr_anon = 0; 5502 unsigned long nr_file = 0; 5503 unsigned long nr_huge = 0; 5504 unsigned long nr_kmem = 0; 5505 unsigned long pgpgout = 0; 5506 struct list_head *next; 5507 struct page *page; 5508 5509 /* 5510 * Note that the list can be a single page->lru; hence the 5511 * do-while loop instead of a simple list_for_each_entry(). 5512 */ 5513 next = page_list->next; 5514 do { 5515 page = list_entry(next, struct page, lru); 5516 next = page->lru.next; 5517 5518 VM_BUG_ON_PAGE(PageLRU(page), page); 5519 VM_BUG_ON_PAGE(page_count(page), page); 5520 5521 if (!page->mem_cgroup) 5522 continue; 5523 5524 /* 5525 * Nobody should be changing or seriously looking at 5526 * page->mem_cgroup at this point, we have fully 5527 * exclusive access to the page. 5528 */ 5529 5530 if (memcg != page->mem_cgroup) { 5531 if (memcg) { 5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5533 nr_huge, nr_kmem, page); 5534 pgpgout = nr_anon = nr_file = 5535 nr_huge = nr_kmem = 0; 5536 } 5537 memcg = page->mem_cgroup; 5538 } 5539 5540 if (!PageKmemcg(page)) { 5541 unsigned int nr_pages = 1; 5542 5543 if (PageTransHuge(page)) { 5544 nr_pages <<= compound_order(page); 5545 nr_huge += nr_pages; 5546 } 5547 if (PageAnon(page)) 5548 nr_anon += nr_pages; 5549 else 5550 nr_file += nr_pages; 5551 pgpgout++; 5552 } else 5553 nr_kmem += 1 << compound_order(page); 5554 5555 page->mem_cgroup = NULL; 5556 } while (next != page_list); 5557 5558 if (memcg) 5559 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5560 nr_huge, nr_kmem, page); 5561 } 5562 5563 /** 5564 * mem_cgroup_uncharge - uncharge a page 5565 * @page: page to uncharge 5566 * 5567 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5568 * mem_cgroup_commit_charge(). 5569 */ 5570 void mem_cgroup_uncharge(struct page *page) 5571 { 5572 if (mem_cgroup_disabled()) 5573 return; 5574 5575 /* Don't touch page->lru of any random page, pre-check: */ 5576 if (!page->mem_cgroup) 5577 return; 5578 5579 INIT_LIST_HEAD(&page->lru); 5580 uncharge_list(&page->lru); 5581 } 5582 5583 /** 5584 * mem_cgroup_uncharge_list - uncharge a list of page 5585 * @page_list: list of pages to uncharge 5586 * 5587 * Uncharge a list of pages previously charged with 5588 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5589 */ 5590 void mem_cgroup_uncharge_list(struct list_head *page_list) 5591 { 5592 if (mem_cgroup_disabled()) 5593 return; 5594 5595 if (!list_empty(page_list)) 5596 uncharge_list(page_list); 5597 } 5598 5599 /** 5600 * mem_cgroup_migrate - charge a page's replacement 5601 * @oldpage: currently circulating page 5602 * @newpage: replacement page 5603 * 5604 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5605 * be uncharged upon free. 5606 * 5607 * Both pages must be locked, @newpage->mapping must be set up. 5608 */ 5609 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5610 { 5611 struct mem_cgroup *memcg; 5612 unsigned int nr_pages; 5613 bool compound; 5614 unsigned long flags; 5615 5616 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5617 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5618 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5619 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5620 newpage); 5621 5622 if (mem_cgroup_disabled()) 5623 return; 5624 5625 /* Page cache replacement: new page already charged? */ 5626 if (newpage->mem_cgroup) 5627 return; 5628 5629 /* Swapcache readahead pages can get replaced before being charged */ 5630 memcg = oldpage->mem_cgroup; 5631 if (!memcg) 5632 return; 5633 5634 /* Force-charge the new page. The old one will be freed soon */ 5635 compound = PageTransHuge(newpage); 5636 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5637 5638 page_counter_charge(&memcg->memory, nr_pages); 5639 if (do_memsw_account()) 5640 page_counter_charge(&memcg->memsw, nr_pages); 5641 css_get_many(&memcg->css, nr_pages); 5642 5643 commit_charge(newpage, memcg, false); 5644 5645 local_irq_save(flags); 5646 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5647 memcg_check_events(memcg, newpage); 5648 local_irq_restore(flags); 5649 } 5650 5651 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5652 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5653 5654 void sock_update_memcg(struct sock *sk) 5655 { 5656 struct mem_cgroup *memcg; 5657 5658 /* Socket cloning can throw us here with sk_cgrp already 5659 * filled. It won't however, necessarily happen from 5660 * process context. So the test for root memcg given 5661 * the current task's memcg won't help us in this case. 5662 * 5663 * Respecting the original socket's memcg is a better 5664 * decision in this case. 5665 */ 5666 if (sk->sk_memcg) { 5667 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5668 css_get(&sk->sk_memcg->css); 5669 return; 5670 } 5671 5672 rcu_read_lock(); 5673 memcg = mem_cgroup_from_task(current); 5674 if (memcg == root_mem_cgroup) 5675 goto out; 5676 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5677 goto out; 5678 if (css_tryget_online(&memcg->css)) 5679 sk->sk_memcg = memcg; 5680 out: 5681 rcu_read_unlock(); 5682 } 5683 EXPORT_SYMBOL(sock_update_memcg); 5684 5685 void sock_release_memcg(struct sock *sk) 5686 { 5687 WARN_ON(!sk->sk_memcg); 5688 css_put(&sk->sk_memcg->css); 5689 } 5690 5691 /** 5692 * mem_cgroup_charge_skmem - charge socket memory 5693 * @memcg: memcg to charge 5694 * @nr_pages: number of pages to charge 5695 * 5696 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5697 * @memcg's configured limit, %false if the charge had to be forced. 5698 */ 5699 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5700 { 5701 gfp_t gfp_mask = GFP_KERNEL; 5702 5703 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5704 struct page_counter *fail; 5705 5706 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5707 memcg->tcpmem_pressure = 0; 5708 return true; 5709 } 5710 page_counter_charge(&memcg->tcpmem, nr_pages); 5711 memcg->tcpmem_pressure = 1; 5712 return false; 5713 } 5714 5715 /* Don't block in the packet receive path */ 5716 if (in_softirq()) 5717 gfp_mask = GFP_NOWAIT; 5718 5719 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5720 5721 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5722 return true; 5723 5724 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5725 return false; 5726 } 5727 5728 /** 5729 * mem_cgroup_uncharge_skmem - uncharge socket memory 5730 * @memcg - memcg to uncharge 5731 * @nr_pages - number of pages to uncharge 5732 */ 5733 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5734 { 5735 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5736 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5737 return; 5738 } 5739 5740 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5741 5742 page_counter_uncharge(&memcg->memory, nr_pages); 5743 css_put_many(&memcg->css, nr_pages); 5744 } 5745 5746 static int __init cgroup_memory(char *s) 5747 { 5748 char *token; 5749 5750 while ((token = strsep(&s, ",")) != NULL) { 5751 if (!*token) 5752 continue; 5753 if (!strcmp(token, "nosocket")) 5754 cgroup_memory_nosocket = true; 5755 if (!strcmp(token, "nokmem")) 5756 cgroup_memory_nokmem = true; 5757 } 5758 return 0; 5759 } 5760 __setup("cgroup.memory=", cgroup_memory); 5761 5762 /* 5763 * subsys_initcall() for memory controller. 5764 * 5765 * Some parts like hotcpu_notifier() have to be initialized from this context 5766 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5767 * everything that doesn't depend on a specific mem_cgroup structure should 5768 * be initialized from here. 5769 */ 5770 static int __init mem_cgroup_init(void) 5771 { 5772 int cpu, node; 5773 5774 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5775 5776 for_each_possible_cpu(cpu) 5777 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5778 drain_local_stock); 5779 5780 for_each_node(node) { 5781 struct mem_cgroup_tree_per_node *rtpn; 5782 int zone; 5783 5784 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5785 node_online(node) ? node : NUMA_NO_NODE); 5786 5787 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5788 struct mem_cgroup_tree_per_zone *rtpz; 5789 5790 rtpz = &rtpn->rb_tree_per_zone[zone]; 5791 rtpz->rb_root = RB_ROOT; 5792 spin_lock_init(&rtpz->lock); 5793 } 5794 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5795 } 5796 5797 return 0; 5798 } 5799 subsys_initcall(mem_cgroup_init); 5800 5801 #ifdef CONFIG_MEMCG_SWAP 5802 /** 5803 * mem_cgroup_swapout - transfer a memsw charge to swap 5804 * @page: page whose memsw charge to transfer 5805 * @entry: swap entry to move the charge to 5806 * 5807 * Transfer the memsw charge of @page to @entry. 5808 */ 5809 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5810 { 5811 struct mem_cgroup *memcg; 5812 unsigned short oldid; 5813 5814 VM_BUG_ON_PAGE(PageLRU(page), page); 5815 VM_BUG_ON_PAGE(page_count(page), page); 5816 5817 if (!do_memsw_account()) 5818 return; 5819 5820 memcg = page->mem_cgroup; 5821 5822 /* Readahead page, never charged */ 5823 if (!memcg) 5824 return; 5825 5826 mem_cgroup_id_get(memcg); 5827 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5828 VM_BUG_ON_PAGE(oldid, page); 5829 mem_cgroup_swap_statistics(memcg, true); 5830 5831 page->mem_cgroup = NULL; 5832 5833 if (!mem_cgroup_is_root(memcg)) 5834 page_counter_uncharge(&memcg->memory, 1); 5835 5836 /* 5837 * Interrupts should be disabled here because the caller holds the 5838 * mapping->tree_lock lock which is taken with interrupts-off. It is 5839 * important here to have the interrupts disabled because it is the 5840 * only synchronisation we have for udpating the per-CPU variables. 5841 */ 5842 VM_BUG_ON(!irqs_disabled()); 5843 mem_cgroup_charge_statistics(memcg, page, false, -1); 5844 memcg_check_events(memcg, page); 5845 5846 if (!mem_cgroup_is_root(memcg)) 5847 css_put(&memcg->css); 5848 } 5849 5850 /* 5851 * mem_cgroup_try_charge_swap - try charging a swap entry 5852 * @page: page being added to swap 5853 * @entry: swap entry to charge 5854 * 5855 * Try to charge @entry to the memcg that @page belongs to. 5856 * 5857 * Returns 0 on success, -ENOMEM on failure. 5858 */ 5859 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5860 { 5861 struct mem_cgroup *memcg; 5862 struct page_counter *counter; 5863 unsigned short oldid; 5864 5865 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5866 return 0; 5867 5868 memcg = page->mem_cgroup; 5869 5870 /* Readahead page, never charged */ 5871 if (!memcg) 5872 return 0; 5873 5874 if (!mem_cgroup_is_root(memcg) && 5875 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5876 return -ENOMEM; 5877 5878 mem_cgroup_id_get(memcg); 5879 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5880 VM_BUG_ON_PAGE(oldid, page); 5881 mem_cgroup_swap_statistics(memcg, true); 5882 5883 return 0; 5884 } 5885 5886 /** 5887 * mem_cgroup_uncharge_swap - uncharge a swap entry 5888 * @entry: swap entry to uncharge 5889 * 5890 * Drop the swap charge associated with @entry. 5891 */ 5892 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5893 { 5894 struct mem_cgroup *memcg; 5895 unsigned short id; 5896 5897 if (!do_swap_account) 5898 return; 5899 5900 id = swap_cgroup_record(entry, 0); 5901 rcu_read_lock(); 5902 memcg = mem_cgroup_from_id(id); 5903 if (memcg) { 5904 if (!mem_cgroup_is_root(memcg)) { 5905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5906 page_counter_uncharge(&memcg->swap, 1); 5907 else 5908 page_counter_uncharge(&memcg->memsw, 1); 5909 } 5910 mem_cgroup_swap_statistics(memcg, false); 5911 mem_cgroup_id_put(memcg); 5912 } 5913 rcu_read_unlock(); 5914 } 5915 5916 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5917 { 5918 long nr_swap_pages = get_nr_swap_pages(); 5919 5920 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5921 return nr_swap_pages; 5922 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5923 nr_swap_pages = min_t(long, nr_swap_pages, 5924 READ_ONCE(memcg->swap.limit) - 5925 page_counter_read(&memcg->swap)); 5926 return nr_swap_pages; 5927 } 5928 5929 bool mem_cgroup_swap_full(struct page *page) 5930 { 5931 struct mem_cgroup *memcg; 5932 5933 VM_BUG_ON_PAGE(!PageLocked(page), page); 5934 5935 if (vm_swap_full()) 5936 return true; 5937 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5938 return false; 5939 5940 memcg = page->mem_cgroup; 5941 if (!memcg) 5942 return false; 5943 5944 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5945 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5946 return true; 5947 5948 return false; 5949 } 5950 5951 /* for remember boot option*/ 5952 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5953 static int really_do_swap_account __initdata = 1; 5954 #else 5955 static int really_do_swap_account __initdata; 5956 #endif 5957 5958 static int __init enable_swap_account(char *s) 5959 { 5960 if (!strcmp(s, "1")) 5961 really_do_swap_account = 1; 5962 else if (!strcmp(s, "0")) 5963 really_do_swap_account = 0; 5964 return 1; 5965 } 5966 __setup("swapaccount=", enable_swap_account); 5967 5968 static u64 swap_current_read(struct cgroup_subsys_state *css, 5969 struct cftype *cft) 5970 { 5971 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5972 5973 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5974 } 5975 5976 static int swap_max_show(struct seq_file *m, void *v) 5977 { 5978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5979 unsigned long max = READ_ONCE(memcg->swap.limit); 5980 5981 if (max == PAGE_COUNTER_MAX) 5982 seq_puts(m, "max\n"); 5983 else 5984 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5985 5986 return 0; 5987 } 5988 5989 static ssize_t swap_max_write(struct kernfs_open_file *of, 5990 char *buf, size_t nbytes, loff_t off) 5991 { 5992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5993 unsigned long max; 5994 int err; 5995 5996 buf = strstrip(buf); 5997 err = page_counter_memparse(buf, "max", &max); 5998 if (err) 5999 return err; 6000 6001 mutex_lock(&memcg_limit_mutex); 6002 err = page_counter_limit(&memcg->swap, max); 6003 mutex_unlock(&memcg_limit_mutex); 6004 if (err) 6005 return err; 6006 6007 return nbytes; 6008 } 6009 6010 static struct cftype swap_files[] = { 6011 { 6012 .name = "swap.current", 6013 .flags = CFTYPE_NOT_ON_ROOT, 6014 .read_u64 = swap_current_read, 6015 }, 6016 { 6017 .name = "swap.max", 6018 .flags = CFTYPE_NOT_ON_ROOT, 6019 .seq_show = swap_max_show, 6020 .write = swap_max_write, 6021 }, 6022 { } /* terminate */ 6023 }; 6024 6025 static struct cftype memsw_cgroup_files[] = { 6026 { 6027 .name = "memsw.usage_in_bytes", 6028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6029 .read_u64 = mem_cgroup_read_u64, 6030 }, 6031 { 6032 .name = "memsw.max_usage_in_bytes", 6033 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6034 .write = mem_cgroup_reset, 6035 .read_u64 = mem_cgroup_read_u64, 6036 }, 6037 { 6038 .name = "memsw.limit_in_bytes", 6039 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6040 .write = mem_cgroup_write, 6041 .read_u64 = mem_cgroup_read_u64, 6042 }, 6043 { 6044 .name = "memsw.failcnt", 6045 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6046 .write = mem_cgroup_reset, 6047 .read_u64 = mem_cgroup_read_u64, 6048 }, 6049 { }, /* terminate */ 6050 }; 6051 6052 static int __init mem_cgroup_swap_init(void) 6053 { 6054 if (!mem_cgroup_disabled() && really_do_swap_account) { 6055 do_swap_account = 1; 6056 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6057 swap_files)); 6058 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6059 memsw_cgroup_files)); 6060 } 6061 return 0; 6062 } 6063 subsys_initcall(mem_cgroup_swap_init); 6064 6065 #endif /* CONFIG_MEMCG_SWAP */ 6066