1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "swap.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* Whether the swap controller is active */ 92 #ifdef CONFIG_MEMCG_SWAP 93 static bool cgroup_memory_noswap __ro_after_init; 94 #else 95 #define cgroup_memory_noswap 1 96 #endif 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 /* Whether legacy memory+swap accounting is active */ 103 static bool do_memsw_account(void) 104 { 105 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 106 } 107 108 #define THRESHOLDS_EVENTS_TARGET 128 109 #define SOFTLIMIT_EVENTS_TARGET 1024 110 111 /* 112 * Cgroups above their limits are maintained in a RB-Tree, independent of 113 * their hierarchy representation 114 */ 115 116 struct mem_cgroup_tree_per_node { 117 struct rb_root rb_root; 118 struct rb_node *rb_rightmost; 119 spinlock_t lock; 120 }; 121 122 struct mem_cgroup_tree { 123 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 124 }; 125 126 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 127 128 /* for OOM */ 129 struct mem_cgroup_eventfd_list { 130 struct list_head list; 131 struct eventfd_ctx *eventfd; 132 }; 133 134 /* 135 * cgroup_event represents events which userspace want to receive. 136 */ 137 struct mem_cgroup_event { 138 /* 139 * memcg which the event belongs to. 140 */ 141 struct mem_cgroup *memcg; 142 /* 143 * eventfd to signal userspace about the event. 144 */ 145 struct eventfd_ctx *eventfd; 146 /* 147 * Each of these stored in a list by the cgroup. 148 */ 149 struct list_head list; 150 /* 151 * register_event() callback will be used to add new userspace 152 * waiter for changes related to this event. Use eventfd_signal() 153 * on eventfd to send notification to userspace. 154 */ 155 int (*register_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd, const char *args); 157 /* 158 * unregister_event() callback will be called when userspace closes 159 * the eventfd or on cgroup removing. This callback must be set, 160 * if you want provide notification functionality. 161 */ 162 void (*unregister_event)(struct mem_cgroup *memcg, 163 struct eventfd_ctx *eventfd); 164 /* 165 * All fields below needed to unregister event when 166 * userspace closes eventfd. 167 */ 168 poll_table pt; 169 wait_queue_head_t *wqh; 170 wait_queue_entry_t wait; 171 struct work_struct remove; 172 }; 173 174 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 176 177 /* Stuffs for move charges at task migration. */ 178 /* 179 * Types of charges to be moved. 180 */ 181 #define MOVE_ANON 0x1U 182 #define MOVE_FILE 0x2U 183 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 184 185 /* "mc" and its members are protected by cgroup_mutex */ 186 static struct move_charge_struct { 187 spinlock_t lock; /* for from, to */ 188 struct mm_struct *mm; 189 struct mem_cgroup *from; 190 struct mem_cgroup *to; 191 unsigned long flags; 192 unsigned long precharge; 193 unsigned long moved_charge; 194 unsigned long moved_swap; 195 struct task_struct *moving_task; /* a task moving charges */ 196 wait_queue_head_t waitq; /* a waitq for other context */ 197 } mc = { 198 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 199 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 200 }; 201 202 /* 203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 204 * limit reclaim to prevent infinite loops, if they ever occur. 205 */ 206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 208 209 /* for encoding cft->private value on file */ 210 enum res_type { 211 _MEM, 212 _MEMSWAP, 213 _KMEM, 214 _TCP, 215 }; 216 217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 219 #define MEMFILE_ATTR(val) ((val) & 0xffff) 220 221 /* 222 * Iteration constructs for visiting all cgroups (under a tree). If 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must 224 * be used for reference counting. 225 */ 226 #define for_each_mem_cgroup_tree(iter, root) \ 227 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 228 iter != NULL; \ 229 iter = mem_cgroup_iter(root, iter, NULL)) 230 231 #define for_each_mem_cgroup(iter) \ 232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 233 iter != NULL; \ 234 iter = mem_cgroup_iter(NULL, iter, NULL)) 235 236 static inline bool task_is_dying(void) 237 { 238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 239 (current->flags & PF_EXITING); 240 } 241 242 /* Some nice accessors for the vmpressure. */ 243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 244 { 245 if (!memcg) 246 memcg = root_mem_cgroup; 247 return &memcg->vmpressure; 248 } 249 250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 251 { 252 return container_of(vmpr, struct mem_cgroup, vmpressure); 253 } 254 255 #ifdef CONFIG_MEMCG_KMEM 256 static DEFINE_SPINLOCK(objcg_lock); 257 258 bool mem_cgroup_kmem_disabled(void) 259 { 260 return cgroup_memory_nokmem; 261 } 262 263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 264 unsigned int nr_pages); 265 266 static void obj_cgroup_release(struct percpu_ref *ref) 267 { 268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 269 unsigned int nr_bytes; 270 unsigned int nr_pages; 271 unsigned long flags; 272 273 /* 274 * At this point all allocated objects are freed, and 275 * objcg->nr_charged_bytes can't have an arbitrary byte value. 276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 277 * 278 * The following sequence can lead to it: 279 * 1) CPU0: objcg == stock->cached_objcg 280 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 281 * PAGE_SIZE bytes are charged 282 * 3) CPU1: a process from another memcg is allocating something, 283 * the stock if flushed, 284 * objcg->nr_charged_bytes = PAGE_SIZE - 92 285 * 5) CPU0: we do release this object, 286 * 92 bytes are added to stock->nr_bytes 287 * 6) CPU0: stock is flushed, 288 * 92 bytes are added to objcg->nr_charged_bytes 289 * 290 * In the result, nr_charged_bytes == PAGE_SIZE. 291 * This page will be uncharged in obj_cgroup_release(). 292 */ 293 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 295 nr_pages = nr_bytes >> PAGE_SHIFT; 296 297 if (nr_pages) 298 obj_cgroup_uncharge_pages(objcg, nr_pages); 299 300 spin_lock_irqsave(&objcg_lock, flags); 301 list_del(&objcg->list); 302 spin_unlock_irqrestore(&objcg_lock, flags); 303 304 percpu_ref_exit(ref); 305 kfree_rcu(objcg, rcu); 306 } 307 308 static struct obj_cgroup *obj_cgroup_alloc(void) 309 { 310 struct obj_cgroup *objcg; 311 int ret; 312 313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 314 if (!objcg) 315 return NULL; 316 317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 318 GFP_KERNEL); 319 if (ret) { 320 kfree(objcg); 321 return NULL; 322 } 323 INIT_LIST_HEAD(&objcg->list); 324 return objcg; 325 } 326 327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 328 struct mem_cgroup *parent) 329 { 330 struct obj_cgroup *objcg, *iter; 331 332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 333 334 spin_lock_irq(&objcg_lock); 335 336 /* 1) Ready to reparent active objcg. */ 337 list_add(&objcg->list, &memcg->objcg_list); 338 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 339 list_for_each_entry(iter, &memcg->objcg_list, list) 340 WRITE_ONCE(iter->memcg, parent); 341 /* 3) Move already reparented objcgs to the parent's list */ 342 list_splice(&memcg->objcg_list, &parent->objcg_list); 343 344 spin_unlock_irq(&objcg_lock); 345 346 percpu_ref_kill(&objcg->refcnt); 347 } 348 349 /* 350 * A lot of the calls to the cache allocation functions are expected to be 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 352 * conditional to this static branch, we'll have to allow modules that does 353 * kmem_cache_alloc and the such to see this symbol as well 354 */ 355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 356 EXPORT_SYMBOL(memcg_kmem_enabled_key); 357 #endif 358 359 /** 360 * mem_cgroup_css_from_page - css of the memcg associated with a page 361 * @page: page of interest 362 * 363 * If memcg is bound to the default hierarchy, css of the memcg associated 364 * with @page is returned. The returned css remains associated with @page 365 * until it is released. 366 * 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 368 * is returned. 369 */ 370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 371 { 372 struct mem_cgroup *memcg; 373 374 memcg = page_memcg(page); 375 376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 377 memcg = root_mem_cgroup; 378 379 return &memcg->css; 380 } 381 382 /** 383 * page_cgroup_ino - return inode number of the memcg a page is charged to 384 * @page: the page 385 * 386 * Look up the closest online ancestor of the memory cgroup @page is charged to 387 * and return its inode number or 0 if @page is not charged to any cgroup. It 388 * is safe to call this function without holding a reference to @page. 389 * 390 * Note, this function is inherently racy, because there is nothing to prevent 391 * the cgroup inode from getting torn down and potentially reallocated a moment 392 * after page_cgroup_ino() returns, so it only should be used by callers that 393 * do not care (such as procfs interfaces). 394 */ 395 ino_t page_cgroup_ino(struct page *page) 396 { 397 struct mem_cgroup *memcg; 398 unsigned long ino = 0; 399 400 rcu_read_lock(); 401 memcg = page_memcg_check(page); 402 403 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 404 memcg = parent_mem_cgroup(memcg); 405 if (memcg) 406 ino = cgroup_ino(memcg->css.cgroup); 407 rcu_read_unlock(); 408 return ino; 409 } 410 411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 412 struct mem_cgroup_tree_per_node *mctz, 413 unsigned long new_usage_in_excess) 414 { 415 struct rb_node **p = &mctz->rb_root.rb_node; 416 struct rb_node *parent = NULL; 417 struct mem_cgroup_per_node *mz_node; 418 bool rightmost = true; 419 420 if (mz->on_tree) 421 return; 422 423 mz->usage_in_excess = new_usage_in_excess; 424 if (!mz->usage_in_excess) 425 return; 426 while (*p) { 427 parent = *p; 428 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 429 tree_node); 430 if (mz->usage_in_excess < mz_node->usage_in_excess) { 431 p = &(*p)->rb_left; 432 rightmost = false; 433 } else { 434 p = &(*p)->rb_right; 435 } 436 } 437 438 if (rightmost) 439 mctz->rb_rightmost = &mz->tree_node; 440 441 rb_link_node(&mz->tree_node, parent, p); 442 rb_insert_color(&mz->tree_node, &mctz->rb_root); 443 mz->on_tree = true; 444 } 445 446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 447 struct mem_cgroup_tree_per_node *mctz) 448 { 449 if (!mz->on_tree) 450 return; 451 452 if (&mz->tree_node == mctz->rb_rightmost) 453 mctz->rb_rightmost = rb_prev(&mz->tree_node); 454 455 rb_erase(&mz->tree_node, &mctz->rb_root); 456 mz->on_tree = false; 457 } 458 459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 460 struct mem_cgroup_tree_per_node *mctz) 461 { 462 unsigned long flags; 463 464 spin_lock_irqsave(&mctz->lock, flags); 465 __mem_cgroup_remove_exceeded(mz, mctz); 466 spin_unlock_irqrestore(&mctz->lock, flags); 467 } 468 469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 470 { 471 unsigned long nr_pages = page_counter_read(&memcg->memory); 472 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 473 unsigned long excess = 0; 474 475 if (nr_pages > soft_limit) 476 excess = nr_pages - soft_limit; 477 478 return excess; 479 } 480 481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 482 { 483 unsigned long excess; 484 struct mem_cgroup_per_node *mz; 485 struct mem_cgroup_tree_per_node *mctz; 486 487 mctz = soft_limit_tree.rb_tree_per_node[nid]; 488 if (!mctz) 489 return; 490 /* 491 * Necessary to update all ancestors when hierarchy is used. 492 * because their event counter is not touched. 493 */ 494 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 495 mz = memcg->nodeinfo[nid]; 496 excess = soft_limit_excess(memcg); 497 /* 498 * We have to update the tree if mz is on RB-tree or 499 * mem is over its softlimit. 500 */ 501 if (excess || mz->on_tree) { 502 unsigned long flags; 503 504 spin_lock_irqsave(&mctz->lock, flags); 505 /* if on-tree, remove it */ 506 if (mz->on_tree) 507 __mem_cgroup_remove_exceeded(mz, mctz); 508 /* 509 * Insert again. mz->usage_in_excess will be updated. 510 * If excess is 0, no tree ops. 511 */ 512 __mem_cgroup_insert_exceeded(mz, mctz, excess); 513 spin_unlock_irqrestore(&mctz->lock, flags); 514 } 515 } 516 } 517 518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 519 { 520 struct mem_cgroup_tree_per_node *mctz; 521 struct mem_cgroup_per_node *mz; 522 int nid; 523 524 for_each_node(nid) { 525 mz = memcg->nodeinfo[nid]; 526 mctz = soft_limit_tree.rb_tree_per_node[nid]; 527 if (mctz) 528 mem_cgroup_remove_exceeded(mz, mctz); 529 } 530 } 531 532 static struct mem_cgroup_per_node * 533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 534 { 535 struct mem_cgroup_per_node *mz; 536 537 retry: 538 mz = NULL; 539 if (!mctz->rb_rightmost) 540 goto done; /* Nothing to reclaim from */ 541 542 mz = rb_entry(mctz->rb_rightmost, 543 struct mem_cgroup_per_node, tree_node); 544 /* 545 * Remove the node now but someone else can add it back, 546 * we will to add it back at the end of reclaim to its correct 547 * position in the tree. 548 */ 549 __mem_cgroup_remove_exceeded(mz, mctz); 550 if (!soft_limit_excess(mz->memcg) || 551 !css_tryget(&mz->memcg->css)) 552 goto retry; 553 done: 554 return mz; 555 } 556 557 static struct mem_cgroup_per_node * 558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 559 { 560 struct mem_cgroup_per_node *mz; 561 562 spin_lock_irq(&mctz->lock); 563 mz = __mem_cgroup_largest_soft_limit_node(mctz); 564 spin_unlock_irq(&mctz->lock); 565 return mz; 566 } 567 568 /* 569 * memcg and lruvec stats flushing 570 * 571 * Many codepaths leading to stats update or read are performance sensitive and 572 * adding stats flushing in such codepaths is not desirable. So, to optimize the 573 * flushing the kernel does: 574 * 575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 576 * rstat update tree grow unbounded. 577 * 578 * 2) Flush the stats synchronously on reader side only when there are more than 579 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 580 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 581 * only for 2 seconds due to (1). 582 */ 583 static void flush_memcg_stats_dwork(struct work_struct *w); 584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 585 static DEFINE_SPINLOCK(stats_flush_lock); 586 static DEFINE_PER_CPU(unsigned int, stats_updates); 587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 588 static u64 flush_next_time; 589 590 #define FLUSH_TIME (2UL*HZ) 591 592 /* 593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 594 * not rely on this as part of an acquired spinlock_t lock. These functions are 595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 596 * is sufficient. 597 */ 598 static void memcg_stats_lock(void) 599 { 600 #ifdef CONFIG_PREEMPT_RT 601 preempt_disable(); 602 #else 603 VM_BUG_ON(!irqs_disabled()); 604 #endif 605 } 606 607 static void __memcg_stats_lock(void) 608 { 609 #ifdef CONFIG_PREEMPT_RT 610 preempt_disable(); 611 #endif 612 } 613 614 static void memcg_stats_unlock(void) 615 { 616 #ifdef CONFIG_PREEMPT_RT 617 preempt_enable(); 618 #endif 619 } 620 621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 622 { 623 unsigned int x; 624 625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 626 627 x = __this_cpu_add_return(stats_updates, abs(val)); 628 if (x > MEMCG_CHARGE_BATCH) { 629 /* 630 * If stats_flush_threshold exceeds the threshold 631 * (>num_online_cpus()), cgroup stats update will be triggered 632 * in __mem_cgroup_flush_stats(). Increasing this var further 633 * is redundant and simply adds overhead in atomic update. 634 */ 635 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 636 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 637 __this_cpu_write(stats_updates, 0); 638 } 639 } 640 641 static void __mem_cgroup_flush_stats(void) 642 { 643 unsigned long flag; 644 645 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 646 return; 647 648 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 649 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 650 atomic_set(&stats_flush_threshold, 0); 651 spin_unlock_irqrestore(&stats_flush_lock, flag); 652 } 653 654 void mem_cgroup_flush_stats(void) 655 { 656 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 657 __mem_cgroup_flush_stats(); 658 } 659 660 void mem_cgroup_flush_stats_delayed(void) 661 { 662 if (time_after64(jiffies_64, flush_next_time)) 663 mem_cgroup_flush_stats(); 664 } 665 666 static void flush_memcg_stats_dwork(struct work_struct *w) 667 { 668 __mem_cgroup_flush_stats(); 669 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 670 } 671 672 /** 673 * __mod_memcg_state - update cgroup memory statistics 674 * @memcg: the memory cgroup 675 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 676 * @val: delta to add to the counter, can be negative 677 */ 678 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 679 { 680 if (mem_cgroup_disabled()) 681 return; 682 683 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 684 memcg_rstat_updated(memcg, val); 685 } 686 687 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 688 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 689 { 690 long x = 0; 691 int cpu; 692 693 for_each_possible_cpu(cpu) 694 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 695 #ifdef CONFIG_SMP 696 if (x < 0) 697 x = 0; 698 #endif 699 return x; 700 } 701 702 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 703 int val) 704 { 705 struct mem_cgroup_per_node *pn; 706 struct mem_cgroup *memcg; 707 708 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 709 memcg = pn->memcg; 710 711 /* 712 * The caller from rmap relay on disabled preemption becase they never 713 * update their counter from in-interrupt context. For these two 714 * counters we check that the update is never performed from an 715 * interrupt context while other caller need to have disabled interrupt. 716 */ 717 __memcg_stats_lock(); 718 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) { 719 switch (idx) { 720 case NR_ANON_MAPPED: 721 case NR_FILE_MAPPED: 722 case NR_ANON_THPS: 723 case NR_SHMEM_PMDMAPPED: 724 case NR_FILE_PMDMAPPED: 725 WARN_ON_ONCE(!in_task()); 726 break; 727 default: 728 WARN_ON_ONCE(!irqs_disabled()); 729 } 730 } 731 732 /* Update memcg */ 733 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 734 735 /* Update lruvec */ 736 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 737 738 memcg_rstat_updated(memcg, val); 739 memcg_stats_unlock(); 740 } 741 742 /** 743 * __mod_lruvec_state - update lruvec memory statistics 744 * @lruvec: the lruvec 745 * @idx: the stat item 746 * @val: delta to add to the counter, can be negative 747 * 748 * The lruvec is the intersection of the NUMA node and a cgroup. This 749 * function updates the all three counters that are affected by a 750 * change of state at this level: per-node, per-cgroup, per-lruvec. 751 */ 752 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 753 int val) 754 { 755 /* Update node */ 756 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 757 758 /* Update memcg and lruvec */ 759 if (!mem_cgroup_disabled()) 760 __mod_memcg_lruvec_state(lruvec, idx, val); 761 } 762 763 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 764 int val) 765 { 766 struct page *head = compound_head(page); /* rmap on tail pages */ 767 struct mem_cgroup *memcg; 768 pg_data_t *pgdat = page_pgdat(page); 769 struct lruvec *lruvec; 770 771 rcu_read_lock(); 772 memcg = page_memcg(head); 773 /* Untracked pages have no memcg, no lruvec. Update only the node */ 774 if (!memcg) { 775 rcu_read_unlock(); 776 __mod_node_page_state(pgdat, idx, val); 777 return; 778 } 779 780 lruvec = mem_cgroup_lruvec(memcg, pgdat); 781 __mod_lruvec_state(lruvec, idx, val); 782 rcu_read_unlock(); 783 } 784 EXPORT_SYMBOL(__mod_lruvec_page_state); 785 786 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 787 { 788 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 789 struct mem_cgroup *memcg; 790 struct lruvec *lruvec; 791 792 rcu_read_lock(); 793 memcg = mem_cgroup_from_slab_obj(p); 794 795 /* 796 * Untracked pages have no memcg, no lruvec. Update only the 797 * node. If we reparent the slab objects to the root memcg, 798 * when we free the slab object, we need to update the per-memcg 799 * vmstats to keep it correct for the root memcg. 800 */ 801 if (!memcg) { 802 __mod_node_page_state(pgdat, idx, val); 803 } else { 804 lruvec = mem_cgroup_lruvec(memcg, pgdat); 805 __mod_lruvec_state(lruvec, idx, val); 806 } 807 rcu_read_unlock(); 808 } 809 810 /** 811 * __count_memcg_events - account VM events in a cgroup 812 * @memcg: the memory cgroup 813 * @idx: the event item 814 * @count: the number of events that occurred 815 */ 816 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 817 unsigned long count) 818 { 819 if (mem_cgroup_disabled()) 820 return; 821 822 memcg_stats_lock(); 823 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 824 memcg_rstat_updated(memcg, count); 825 memcg_stats_unlock(); 826 } 827 828 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 829 { 830 return READ_ONCE(memcg->vmstats.events[event]); 831 } 832 833 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 834 { 835 long x = 0; 836 int cpu; 837 838 for_each_possible_cpu(cpu) 839 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 840 return x; 841 } 842 843 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 844 int nr_pages) 845 { 846 /* pagein of a big page is an event. So, ignore page size */ 847 if (nr_pages > 0) 848 __count_memcg_events(memcg, PGPGIN, 1); 849 else { 850 __count_memcg_events(memcg, PGPGOUT, 1); 851 nr_pages = -nr_pages; /* for event */ 852 } 853 854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 855 } 856 857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 858 enum mem_cgroup_events_target target) 859 { 860 unsigned long val, next; 861 862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 864 /* from time_after() in jiffies.h */ 865 if ((long)(next - val) < 0) { 866 switch (target) { 867 case MEM_CGROUP_TARGET_THRESH: 868 next = val + THRESHOLDS_EVENTS_TARGET; 869 break; 870 case MEM_CGROUP_TARGET_SOFTLIMIT: 871 next = val + SOFTLIMIT_EVENTS_TARGET; 872 break; 873 default: 874 break; 875 } 876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 877 return true; 878 } 879 return false; 880 } 881 882 /* 883 * Check events in order. 884 * 885 */ 886 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 887 { 888 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 889 return; 890 891 /* threshold event is triggered in finer grain than soft limit */ 892 if (unlikely(mem_cgroup_event_ratelimit(memcg, 893 MEM_CGROUP_TARGET_THRESH))) { 894 bool do_softlimit; 895 896 do_softlimit = mem_cgroup_event_ratelimit(memcg, 897 MEM_CGROUP_TARGET_SOFTLIMIT); 898 mem_cgroup_threshold(memcg); 899 if (unlikely(do_softlimit)) 900 mem_cgroup_update_tree(memcg, nid); 901 } 902 } 903 904 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 905 { 906 /* 907 * mm_update_next_owner() may clear mm->owner to NULL 908 * if it races with swapoff, page migration, etc. 909 * So this can be called with p == NULL. 910 */ 911 if (unlikely(!p)) 912 return NULL; 913 914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 915 } 916 EXPORT_SYMBOL(mem_cgroup_from_task); 917 918 static __always_inline struct mem_cgroup *active_memcg(void) 919 { 920 if (!in_task()) 921 return this_cpu_read(int_active_memcg); 922 else 923 return current->active_memcg; 924 } 925 926 /** 927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 928 * @mm: mm from which memcg should be extracted. It can be NULL. 929 * 930 * Obtain a reference on mm->memcg and returns it if successful. If mm 931 * is NULL, then the memcg is chosen as follows: 932 * 1) The active memcg, if set. 933 * 2) current->mm->memcg, if available 934 * 3) root memcg 935 * If mem_cgroup is disabled, NULL is returned. 936 */ 937 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 938 { 939 struct mem_cgroup *memcg; 940 941 if (mem_cgroup_disabled()) 942 return NULL; 943 944 /* 945 * Page cache insertions can happen without an 946 * actual mm context, e.g. during disk probing 947 * on boot, loopback IO, acct() writes etc. 948 * 949 * No need to css_get on root memcg as the reference 950 * counting is disabled on the root level in the 951 * cgroup core. See CSS_NO_REF. 952 */ 953 if (unlikely(!mm)) { 954 memcg = active_memcg(); 955 if (unlikely(memcg)) { 956 /* remote memcg must hold a ref */ 957 css_get(&memcg->css); 958 return memcg; 959 } 960 mm = current->mm; 961 if (unlikely(!mm)) 962 return root_mem_cgroup; 963 } 964 965 rcu_read_lock(); 966 do { 967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 968 if (unlikely(!memcg)) 969 memcg = root_mem_cgroup; 970 } while (!css_tryget(&memcg->css)); 971 rcu_read_unlock(); 972 return memcg; 973 } 974 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 975 976 static __always_inline bool memcg_kmem_bypass(void) 977 { 978 /* Allow remote memcg charging from any context. */ 979 if (unlikely(active_memcg())) 980 return false; 981 982 /* Memcg to charge can't be determined. */ 983 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 984 return true; 985 986 return false; 987 } 988 989 /** 990 * mem_cgroup_iter - iterate over memory cgroup hierarchy 991 * @root: hierarchy root 992 * @prev: previously returned memcg, NULL on first invocation 993 * @reclaim: cookie for shared reclaim walks, NULL for full walks 994 * 995 * Returns references to children of the hierarchy below @root, or 996 * @root itself, or %NULL after a full round-trip. 997 * 998 * Caller must pass the return value in @prev on subsequent 999 * invocations for reference counting, or use mem_cgroup_iter_break() 1000 * to cancel a hierarchy walk before the round-trip is complete. 1001 * 1002 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1003 * in the hierarchy among all concurrent reclaimers operating on the 1004 * same node. 1005 */ 1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1007 struct mem_cgroup *prev, 1008 struct mem_cgroup_reclaim_cookie *reclaim) 1009 { 1010 struct mem_cgroup_reclaim_iter *iter; 1011 struct cgroup_subsys_state *css = NULL; 1012 struct mem_cgroup *memcg = NULL; 1013 struct mem_cgroup *pos = NULL; 1014 1015 if (mem_cgroup_disabled()) 1016 return NULL; 1017 1018 if (!root) 1019 root = root_mem_cgroup; 1020 1021 rcu_read_lock(); 1022 1023 if (reclaim) { 1024 struct mem_cgroup_per_node *mz; 1025 1026 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1027 iter = &mz->iter; 1028 1029 /* 1030 * On start, join the current reclaim iteration cycle. 1031 * Exit when a concurrent walker completes it. 1032 */ 1033 if (!prev) 1034 reclaim->generation = iter->generation; 1035 else if (reclaim->generation != iter->generation) 1036 goto out_unlock; 1037 1038 while (1) { 1039 pos = READ_ONCE(iter->position); 1040 if (!pos || css_tryget(&pos->css)) 1041 break; 1042 /* 1043 * css reference reached zero, so iter->position will 1044 * be cleared by ->css_released. However, we should not 1045 * rely on this happening soon, because ->css_released 1046 * is called from a work queue, and by busy-waiting we 1047 * might block it. So we clear iter->position right 1048 * away. 1049 */ 1050 (void)cmpxchg(&iter->position, pos, NULL); 1051 } 1052 } else if (prev) { 1053 pos = prev; 1054 } 1055 1056 if (pos) 1057 css = &pos->css; 1058 1059 for (;;) { 1060 css = css_next_descendant_pre(css, &root->css); 1061 if (!css) { 1062 /* 1063 * Reclaimers share the hierarchy walk, and a 1064 * new one might jump in right at the end of 1065 * the hierarchy - make sure they see at least 1066 * one group and restart from the beginning. 1067 */ 1068 if (!prev) 1069 continue; 1070 break; 1071 } 1072 1073 /* 1074 * Verify the css and acquire a reference. The root 1075 * is provided by the caller, so we know it's alive 1076 * and kicking, and don't take an extra reference. 1077 */ 1078 if (css == &root->css || css_tryget(css)) { 1079 memcg = mem_cgroup_from_css(css); 1080 break; 1081 } 1082 } 1083 1084 if (reclaim) { 1085 /* 1086 * The position could have already been updated by a competing 1087 * thread, so check that the value hasn't changed since we read 1088 * it to avoid reclaiming from the same cgroup twice. 1089 */ 1090 (void)cmpxchg(&iter->position, pos, memcg); 1091 1092 if (pos) 1093 css_put(&pos->css); 1094 1095 if (!memcg) 1096 iter->generation++; 1097 } 1098 1099 out_unlock: 1100 rcu_read_unlock(); 1101 if (prev && prev != root) 1102 css_put(&prev->css); 1103 1104 return memcg; 1105 } 1106 1107 /** 1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1109 * @root: hierarchy root 1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1111 */ 1112 void mem_cgroup_iter_break(struct mem_cgroup *root, 1113 struct mem_cgroup *prev) 1114 { 1115 if (!root) 1116 root = root_mem_cgroup; 1117 if (prev && prev != root) 1118 css_put(&prev->css); 1119 } 1120 1121 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1122 struct mem_cgroup *dead_memcg) 1123 { 1124 struct mem_cgroup_reclaim_iter *iter; 1125 struct mem_cgroup_per_node *mz; 1126 int nid; 1127 1128 for_each_node(nid) { 1129 mz = from->nodeinfo[nid]; 1130 iter = &mz->iter; 1131 cmpxchg(&iter->position, dead_memcg, NULL); 1132 } 1133 } 1134 1135 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1136 { 1137 struct mem_cgroup *memcg = dead_memcg; 1138 struct mem_cgroup *last; 1139 1140 do { 1141 __invalidate_reclaim_iterators(memcg, dead_memcg); 1142 last = memcg; 1143 } while ((memcg = parent_mem_cgroup(memcg))); 1144 1145 /* 1146 * When cgroup1 non-hierarchy mode is used, 1147 * parent_mem_cgroup() does not walk all the way up to the 1148 * cgroup root (root_mem_cgroup). So we have to handle 1149 * dead_memcg from cgroup root separately. 1150 */ 1151 if (last != root_mem_cgroup) 1152 __invalidate_reclaim_iterators(root_mem_cgroup, 1153 dead_memcg); 1154 } 1155 1156 /** 1157 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1158 * @memcg: hierarchy root 1159 * @fn: function to call for each task 1160 * @arg: argument passed to @fn 1161 * 1162 * This function iterates over tasks attached to @memcg or to any of its 1163 * descendants and calls @fn for each task. If @fn returns a non-zero 1164 * value, the function breaks the iteration loop and returns the value. 1165 * Otherwise, it will iterate over all tasks and return 0. 1166 * 1167 * This function must not be called for the root memory cgroup. 1168 */ 1169 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1170 int (*fn)(struct task_struct *, void *), void *arg) 1171 { 1172 struct mem_cgroup *iter; 1173 int ret = 0; 1174 1175 BUG_ON(memcg == root_mem_cgroup); 1176 1177 for_each_mem_cgroup_tree(iter, memcg) { 1178 struct css_task_iter it; 1179 struct task_struct *task; 1180 1181 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1182 while (!ret && (task = css_task_iter_next(&it))) 1183 ret = fn(task, arg); 1184 css_task_iter_end(&it); 1185 if (ret) { 1186 mem_cgroup_iter_break(memcg, iter); 1187 break; 1188 } 1189 } 1190 return ret; 1191 } 1192 1193 #ifdef CONFIG_DEBUG_VM 1194 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1195 { 1196 struct mem_cgroup *memcg; 1197 1198 if (mem_cgroup_disabled()) 1199 return; 1200 1201 memcg = folio_memcg(folio); 1202 1203 if (!memcg) 1204 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1205 else 1206 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1207 } 1208 #endif 1209 1210 /** 1211 * folio_lruvec_lock - Lock the lruvec for a folio. 1212 * @folio: Pointer to the folio. 1213 * 1214 * These functions are safe to use under any of the following conditions: 1215 * - folio locked 1216 * - folio_test_lru false 1217 * - folio_memcg_lock() 1218 * - folio frozen (refcount of 0) 1219 * 1220 * Return: The lruvec this folio is on with its lock held. 1221 */ 1222 struct lruvec *folio_lruvec_lock(struct folio *folio) 1223 { 1224 struct lruvec *lruvec = folio_lruvec(folio); 1225 1226 spin_lock(&lruvec->lru_lock); 1227 lruvec_memcg_debug(lruvec, folio); 1228 1229 return lruvec; 1230 } 1231 1232 /** 1233 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1234 * @folio: Pointer to the folio. 1235 * 1236 * These functions are safe to use under any of the following conditions: 1237 * - folio locked 1238 * - folio_test_lru false 1239 * - folio_memcg_lock() 1240 * - folio frozen (refcount of 0) 1241 * 1242 * Return: The lruvec this folio is on with its lock held and interrupts 1243 * disabled. 1244 */ 1245 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1246 { 1247 struct lruvec *lruvec = folio_lruvec(folio); 1248 1249 spin_lock_irq(&lruvec->lru_lock); 1250 lruvec_memcg_debug(lruvec, folio); 1251 1252 return lruvec; 1253 } 1254 1255 /** 1256 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1257 * @folio: Pointer to the folio. 1258 * @flags: Pointer to irqsave flags. 1259 * 1260 * These functions are safe to use under any of the following conditions: 1261 * - folio locked 1262 * - folio_test_lru false 1263 * - folio_memcg_lock() 1264 * - folio frozen (refcount of 0) 1265 * 1266 * Return: The lruvec this folio is on with its lock held and interrupts 1267 * disabled. 1268 */ 1269 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1270 unsigned long *flags) 1271 { 1272 struct lruvec *lruvec = folio_lruvec(folio); 1273 1274 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1275 lruvec_memcg_debug(lruvec, folio); 1276 1277 return lruvec; 1278 } 1279 1280 /** 1281 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1282 * @lruvec: mem_cgroup per zone lru vector 1283 * @lru: index of lru list the page is sitting on 1284 * @zid: zone id of the accounted pages 1285 * @nr_pages: positive when adding or negative when removing 1286 * 1287 * This function must be called under lru_lock, just before a page is added 1288 * to or just after a page is removed from an lru list. 1289 */ 1290 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1291 int zid, int nr_pages) 1292 { 1293 struct mem_cgroup_per_node *mz; 1294 unsigned long *lru_size; 1295 long size; 1296 1297 if (mem_cgroup_disabled()) 1298 return; 1299 1300 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1301 lru_size = &mz->lru_zone_size[zid][lru]; 1302 1303 if (nr_pages < 0) 1304 *lru_size += nr_pages; 1305 1306 size = *lru_size; 1307 if (WARN_ONCE(size < 0, 1308 "%s(%p, %d, %d): lru_size %ld\n", 1309 __func__, lruvec, lru, nr_pages, size)) { 1310 VM_BUG_ON(1); 1311 *lru_size = 0; 1312 } 1313 1314 if (nr_pages > 0) 1315 *lru_size += nr_pages; 1316 } 1317 1318 /** 1319 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1320 * @memcg: the memory cgroup 1321 * 1322 * Returns the maximum amount of memory @mem can be charged with, in 1323 * pages. 1324 */ 1325 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1326 { 1327 unsigned long margin = 0; 1328 unsigned long count; 1329 unsigned long limit; 1330 1331 count = page_counter_read(&memcg->memory); 1332 limit = READ_ONCE(memcg->memory.max); 1333 if (count < limit) 1334 margin = limit - count; 1335 1336 if (do_memsw_account()) { 1337 count = page_counter_read(&memcg->memsw); 1338 limit = READ_ONCE(memcg->memsw.max); 1339 if (count < limit) 1340 margin = min(margin, limit - count); 1341 else 1342 margin = 0; 1343 } 1344 1345 return margin; 1346 } 1347 1348 /* 1349 * A routine for checking "mem" is under move_account() or not. 1350 * 1351 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1352 * moving cgroups. This is for waiting at high-memory pressure 1353 * caused by "move". 1354 */ 1355 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1356 { 1357 struct mem_cgroup *from; 1358 struct mem_cgroup *to; 1359 bool ret = false; 1360 /* 1361 * Unlike task_move routines, we access mc.to, mc.from not under 1362 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1363 */ 1364 spin_lock(&mc.lock); 1365 from = mc.from; 1366 to = mc.to; 1367 if (!from) 1368 goto unlock; 1369 1370 ret = mem_cgroup_is_descendant(from, memcg) || 1371 mem_cgroup_is_descendant(to, memcg); 1372 unlock: 1373 spin_unlock(&mc.lock); 1374 return ret; 1375 } 1376 1377 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1378 { 1379 if (mc.moving_task && current != mc.moving_task) { 1380 if (mem_cgroup_under_move(memcg)) { 1381 DEFINE_WAIT(wait); 1382 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1383 /* moving charge context might have finished. */ 1384 if (mc.moving_task) 1385 schedule(); 1386 finish_wait(&mc.waitq, &wait); 1387 return true; 1388 } 1389 } 1390 return false; 1391 } 1392 1393 struct memory_stat { 1394 const char *name; 1395 unsigned int idx; 1396 }; 1397 1398 static const struct memory_stat memory_stats[] = { 1399 { "anon", NR_ANON_MAPPED }, 1400 { "file", NR_FILE_PAGES }, 1401 { "kernel", MEMCG_KMEM }, 1402 { "kernel_stack", NR_KERNEL_STACK_KB }, 1403 { "pagetables", NR_PAGETABLE }, 1404 { "percpu", MEMCG_PERCPU_B }, 1405 { "sock", MEMCG_SOCK }, 1406 { "vmalloc", MEMCG_VMALLOC }, 1407 { "shmem", NR_SHMEM }, 1408 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1409 { "zswap", MEMCG_ZSWAP_B }, 1410 { "zswapped", MEMCG_ZSWAPPED }, 1411 #endif 1412 { "file_mapped", NR_FILE_MAPPED }, 1413 { "file_dirty", NR_FILE_DIRTY }, 1414 { "file_writeback", NR_WRITEBACK }, 1415 #ifdef CONFIG_SWAP 1416 { "swapcached", NR_SWAPCACHE }, 1417 #endif 1418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1419 { "anon_thp", NR_ANON_THPS }, 1420 { "file_thp", NR_FILE_THPS }, 1421 { "shmem_thp", NR_SHMEM_THPS }, 1422 #endif 1423 { "inactive_anon", NR_INACTIVE_ANON }, 1424 { "active_anon", NR_ACTIVE_ANON }, 1425 { "inactive_file", NR_INACTIVE_FILE }, 1426 { "active_file", NR_ACTIVE_FILE }, 1427 { "unevictable", NR_UNEVICTABLE }, 1428 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1429 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1430 1431 /* The memory events */ 1432 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1433 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1434 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1435 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1436 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1437 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1438 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1439 }; 1440 1441 /* Translate stat items to the correct unit for memory.stat output */ 1442 static int memcg_page_state_unit(int item) 1443 { 1444 switch (item) { 1445 case MEMCG_PERCPU_B: 1446 case MEMCG_ZSWAP_B: 1447 case NR_SLAB_RECLAIMABLE_B: 1448 case NR_SLAB_UNRECLAIMABLE_B: 1449 case WORKINGSET_REFAULT_ANON: 1450 case WORKINGSET_REFAULT_FILE: 1451 case WORKINGSET_ACTIVATE_ANON: 1452 case WORKINGSET_ACTIVATE_FILE: 1453 case WORKINGSET_RESTORE_ANON: 1454 case WORKINGSET_RESTORE_FILE: 1455 case WORKINGSET_NODERECLAIM: 1456 return 1; 1457 case NR_KERNEL_STACK_KB: 1458 return SZ_1K; 1459 default: 1460 return PAGE_SIZE; 1461 } 1462 } 1463 1464 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1465 int item) 1466 { 1467 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1468 } 1469 1470 /* Subset of vm_event_item to report for memcg event stats */ 1471 static const unsigned int memcg_vm_event_stat[] = { 1472 PGSCAN_KSWAPD, 1473 PGSCAN_DIRECT, 1474 PGSTEAL_KSWAPD, 1475 PGSTEAL_DIRECT, 1476 PGFAULT, 1477 PGMAJFAULT, 1478 PGREFILL, 1479 PGACTIVATE, 1480 PGDEACTIVATE, 1481 PGLAZYFREE, 1482 PGLAZYFREED, 1483 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1484 ZSWPIN, 1485 ZSWPOUT, 1486 #endif 1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1488 THP_FAULT_ALLOC, 1489 THP_COLLAPSE_ALLOC, 1490 #endif 1491 }; 1492 1493 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize) 1494 { 1495 struct seq_buf s; 1496 int i; 1497 1498 seq_buf_init(&s, buf, bufsize); 1499 1500 /* 1501 * Provide statistics on the state of the memory subsystem as 1502 * well as cumulative event counters that show past behavior. 1503 * 1504 * This list is ordered following a combination of these gradients: 1505 * 1) generic big picture -> specifics and details 1506 * 2) reflecting userspace activity -> reflecting kernel heuristics 1507 * 1508 * Current memory state: 1509 */ 1510 mem_cgroup_flush_stats(); 1511 1512 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1513 u64 size; 1514 1515 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1516 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1517 1518 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1519 size += memcg_page_state_output(memcg, 1520 NR_SLAB_RECLAIMABLE_B); 1521 seq_buf_printf(&s, "slab %llu\n", size); 1522 } 1523 } 1524 1525 /* Accumulated memory events */ 1526 seq_buf_printf(&s, "pgscan %lu\n", 1527 memcg_events(memcg, PGSCAN_KSWAPD) + 1528 memcg_events(memcg, PGSCAN_DIRECT)); 1529 seq_buf_printf(&s, "pgsteal %lu\n", 1530 memcg_events(memcg, PGSTEAL_KSWAPD) + 1531 memcg_events(memcg, PGSTEAL_DIRECT)); 1532 1533 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) 1534 seq_buf_printf(&s, "%s %lu\n", 1535 vm_event_name(memcg_vm_event_stat[i]), 1536 memcg_events(memcg, memcg_vm_event_stat[i])); 1537 1538 /* The above should easily fit into one page */ 1539 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1540 } 1541 1542 #define K(x) ((x) << (PAGE_SHIFT-10)) 1543 /** 1544 * mem_cgroup_print_oom_context: Print OOM information relevant to 1545 * memory controller. 1546 * @memcg: The memory cgroup that went over limit 1547 * @p: Task that is going to be killed 1548 * 1549 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1550 * enabled 1551 */ 1552 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1553 { 1554 rcu_read_lock(); 1555 1556 if (memcg) { 1557 pr_cont(",oom_memcg="); 1558 pr_cont_cgroup_path(memcg->css.cgroup); 1559 } else 1560 pr_cont(",global_oom"); 1561 if (p) { 1562 pr_cont(",task_memcg="); 1563 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1564 } 1565 rcu_read_unlock(); 1566 } 1567 1568 /** 1569 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1570 * memory controller. 1571 * @memcg: The memory cgroup that went over limit 1572 */ 1573 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1574 { 1575 /* Use static buffer, for the caller is holding oom_lock. */ 1576 static char buf[PAGE_SIZE]; 1577 1578 lockdep_assert_held(&oom_lock); 1579 1580 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1581 K((u64)page_counter_read(&memcg->memory)), 1582 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1583 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1584 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1585 K((u64)page_counter_read(&memcg->swap)), 1586 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1587 else { 1588 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1589 K((u64)page_counter_read(&memcg->memsw)), 1590 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1591 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1592 K((u64)page_counter_read(&memcg->kmem)), 1593 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1594 } 1595 1596 pr_info("Memory cgroup stats for "); 1597 pr_cont_cgroup_path(memcg->css.cgroup); 1598 pr_cont(":"); 1599 memory_stat_format(memcg, buf, sizeof(buf)); 1600 pr_info("%s", buf); 1601 } 1602 1603 /* 1604 * Return the memory (and swap, if configured) limit for a memcg. 1605 */ 1606 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1607 { 1608 unsigned long max = READ_ONCE(memcg->memory.max); 1609 1610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1611 if (mem_cgroup_swappiness(memcg)) 1612 max += min(READ_ONCE(memcg->swap.max), 1613 (unsigned long)total_swap_pages); 1614 } else { /* v1 */ 1615 if (mem_cgroup_swappiness(memcg)) { 1616 /* Calculate swap excess capacity from memsw limit */ 1617 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1618 1619 max += min(swap, (unsigned long)total_swap_pages); 1620 } 1621 } 1622 return max; 1623 } 1624 1625 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1626 { 1627 return page_counter_read(&memcg->memory); 1628 } 1629 1630 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1631 int order) 1632 { 1633 struct oom_control oc = { 1634 .zonelist = NULL, 1635 .nodemask = NULL, 1636 .memcg = memcg, 1637 .gfp_mask = gfp_mask, 1638 .order = order, 1639 }; 1640 bool ret = true; 1641 1642 if (mutex_lock_killable(&oom_lock)) 1643 return true; 1644 1645 if (mem_cgroup_margin(memcg) >= (1 << order)) 1646 goto unlock; 1647 1648 /* 1649 * A few threads which were not waiting at mutex_lock_killable() can 1650 * fail to bail out. Therefore, check again after holding oom_lock. 1651 */ 1652 ret = task_is_dying() || out_of_memory(&oc); 1653 1654 unlock: 1655 mutex_unlock(&oom_lock); 1656 return ret; 1657 } 1658 1659 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1660 pg_data_t *pgdat, 1661 gfp_t gfp_mask, 1662 unsigned long *total_scanned) 1663 { 1664 struct mem_cgroup *victim = NULL; 1665 int total = 0; 1666 int loop = 0; 1667 unsigned long excess; 1668 unsigned long nr_scanned; 1669 struct mem_cgroup_reclaim_cookie reclaim = { 1670 .pgdat = pgdat, 1671 }; 1672 1673 excess = soft_limit_excess(root_memcg); 1674 1675 while (1) { 1676 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1677 if (!victim) { 1678 loop++; 1679 if (loop >= 2) { 1680 /* 1681 * If we have not been able to reclaim 1682 * anything, it might because there are 1683 * no reclaimable pages under this hierarchy 1684 */ 1685 if (!total) 1686 break; 1687 /* 1688 * We want to do more targeted reclaim. 1689 * excess >> 2 is not to excessive so as to 1690 * reclaim too much, nor too less that we keep 1691 * coming back to reclaim from this cgroup 1692 */ 1693 if (total >= (excess >> 2) || 1694 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1695 break; 1696 } 1697 continue; 1698 } 1699 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1700 pgdat, &nr_scanned); 1701 *total_scanned += nr_scanned; 1702 if (!soft_limit_excess(root_memcg)) 1703 break; 1704 } 1705 mem_cgroup_iter_break(root_memcg, victim); 1706 return total; 1707 } 1708 1709 #ifdef CONFIG_LOCKDEP 1710 static struct lockdep_map memcg_oom_lock_dep_map = { 1711 .name = "memcg_oom_lock", 1712 }; 1713 #endif 1714 1715 static DEFINE_SPINLOCK(memcg_oom_lock); 1716 1717 /* 1718 * Check OOM-Killer is already running under our hierarchy. 1719 * If someone is running, return false. 1720 */ 1721 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1722 { 1723 struct mem_cgroup *iter, *failed = NULL; 1724 1725 spin_lock(&memcg_oom_lock); 1726 1727 for_each_mem_cgroup_tree(iter, memcg) { 1728 if (iter->oom_lock) { 1729 /* 1730 * this subtree of our hierarchy is already locked 1731 * so we cannot give a lock. 1732 */ 1733 failed = iter; 1734 mem_cgroup_iter_break(memcg, iter); 1735 break; 1736 } else 1737 iter->oom_lock = true; 1738 } 1739 1740 if (failed) { 1741 /* 1742 * OK, we failed to lock the whole subtree so we have 1743 * to clean up what we set up to the failing subtree 1744 */ 1745 for_each_mem_cgroup_tree(iter, memcg) { 1746 if (iter == failed) { 1747 mem_cgroup_iter_break(memcg, iter); 1748 break; 1749 } 1750 iter->oom_lock = false; 1751 } 1752 } else 1753 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1754 1755 spin_unlock(&memcg_oom_lock); 1756 1757 return !failed; 1758 } 1759 1760 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1761 { 1762 struct mem_cgroup *iter; 1763 1764 spin_lock(&memcg_oom_lock); 1765 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1766 for_each_mem_cgroup_tree(iter, memcg) 1767 iter->oom_lock = false; 1768 spin_unlock(&memcg_oom_lock); 1769 } 1770 1771 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1772 { 1773 struct mem_cgroup *iter; 1774 1775 spin_lock(&memcg_oom_lock); 1776 for_each_mem_cgroup_tree(iter, memcg) 1777 iter->under_oom++; 1778 spin_unlock(&memcg_oom_lock); 1779 } 1780 1781 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1782 { 1783 struct mem_cgroup *iter; 1784 1785 /* 1786 * Be careful about under_oom underflows because a child memcg 1787 * could have been added after mem_cgroup_mark_under_oom. 1788 */ 1789 spin_lock(&memcg_oom_lock); 1790 for_each_mem_cgroup_tree(iter, memcg) 1791 if (iter->under_oom > 0) 1792 iter->under_oom--; 1793 spin_unlock(&memcg_oom_lock); 1794 } 1795 1796 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1797 1798 struct oom_wait_info { 1799 struct mem_cgroup *memcg; 1800 wait_queue_entry_t wait; 1801 }; 1802 1803 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1804 unsigned mode, int sync, void *arg) 1805 { 1806 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1807 struct mem_cgroup *oom_wait_memcg; 1808 struct oom_wait_info *oom_wait_info; 1809 1810 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1811 oom_wait_memcg = oom_wait_info->memcg; 1812 1813 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1814 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1815 return 0; 1816 return autoremove_wake_function(wait, mode, sync, arg); 1817 } 1818 1819 static void memcg_oom_recover(struct mem_cgroup *memcg) 1820 { 1821 /* 1822 * For the following lockless ->under_oom test, the only required 1823 * guarantee is that it must see the state asserted by an OOM when 1824 * this function is called as a result of userland actions 1825 * triggered by the notification of the OOM. This is trivially 1826 * achieved by invoking mem_cgroup_mark_under_oom() before 1827 * triggering notification. 1828 */ 1829 if (memcg && memcg->under_oom) 1830 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1831 } 1832 1833 /* 1834 * Returns true if successfully killed one or more processes. Though in some 1835 * corner cases it can return true even without killing any process. 1836 */ 1837 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1838 { 1839 bool locked, ret; 1840 1841 if (order > PAGE_ALLOC_COSTLY_ORDER) 1842 return false; 1843 1844 memcg_memory_event(memcg, MEMCG_OOM); 1845 1846 /* 1847 * We are in the middle of the charge context here, so we 1848 * don't want to block when potentially sitting on a callstack 1849 * that holds all kinds of filesystem and mm locks. 1850 * 1851 * cgroup1 allows disabling the OOM killer and waiting for outside 1852 * handling until the charge can succeed; remember the context and put 1853 * the task to sleep at the end of the page fault when all locks are 1854 * released. 1855 * 1856 * On the other hand, in-kernel OOM killer allows for an async victim 1857 * memory reclaim (oom_reaper) and that means that we are not solely 1858 * relying on the oom victim to make a forward progress and we can 1859 * invoke the oom killer here. 1860 * 1861 * Please note that mem_cgroup_out_of_memory might fail to find a 1862 * victim and then we have to bail out from the charge path. 1863 */ 1864 if (memcg->oom_kill_disable) { 1865 if (current->in_user_fault) { 1866 css_get(&memcg->css); 1867 current->memcg_in_oom = memcg; 1868 current->memcg_oom_gfp_mask = mask; 1869 current->memcg_oom_order = order; 1870 } 1871 return false; 1872 } 1873 1874 mem_cgroup_mark_under_oom(memcg); 1875 1876 locked = mem_cgroup_oom_trylock(memcg); 1877 1878 if (locked) 1879 mem_cgroup_oom_notify(memcg); 1880 1881 mem_cgroup_unmark_under_oom(memcg); 1882 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1883 1884 if (locked) 1885 mem_cgroup_oom_unlock(memcg); 1886 1887 return ret; 1888 } 1889 1890 /** 1891 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1892 * @handle: actually kill/wait or just clean up the OOM state 1893 * 1894 * This has to be called at the end of a page fault if the memcg OOM 1895 * handler was enabled. 1896 * 1897 * Memcg supports userspace OOM handling where failed allocations must 1898 * sleep on a waitqueue until the userspace task resolves the 1899 * situation. Sleeping directly in the charge context with all kinds 1900 * of locks held is not a good idea, instead we remember an OOM state 1901 * in the task and mem_cgroup_oom_synchronize() has to be called at 1902 * the end of the page fault to complete the OOM handling. 1903 * 1904 * Returns %true if an ongoing memcg OOM situation was detected and 1905 * completed, %false otherwise. 1906 */ 1907 bool mem_cgroup_oom_synchronize(bool handle) 1908 { 1909 struct mem_cgroup *memcg = current->memcg_in_oom; 1910 struct oom_wait_info owait; 1911 bool locked; 1912 1913 /* OOM is global, do not handle */ 1914 if (!memcg) 1915 return false; 1916 1917 if (!handle) 1918 goto cleanup; 1919 1920 owait.memcg = memcg; 1921 owait.wait.flags = 0; 1922 owait.wait.func = memcg_oom_wake_function; 1923 owait.wait.private = current; 1924 INIT_LIST_HEAD(&owait.wait.entry); 1925 1926 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1927 mem_cgroup_mark_under_oom(memcg); 1928 1929 locked = mem_cgroup_oom_trylock(memcg); 1930 1931 if (locked) 1932 mem_cgroup_oom_notify(memcg); 1933 1934 if (locked && !memcg->oom_kill_disable) { 1935 mem_cgroup_unmark_under_oom(memcg); 1936 finish_wait(&memcg_oom_waitq, &owait.wait); 1937 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1938 current->memcg_oom_order); 1939 } else { 1940 schedule(); 1941 mem_cgroup_unmark_under_oom(memcg); 1942 finish_wait(&memcg_oom_waitq, &owait.wait); 1943 } 1944 1945 if (locked) { 1946 mem_cgroup_oom_unlock(memcg); 1947 /* 1948 * There is no guarantee that an OOM-lock contender 1949 * sees the wakeups triggered by the OOM kill 1950 * uncharges. Wake any sleepers explicitly. 1951 */ 1952 memcg_oom_recover(memcg); 1953 } 1954 cleanup: 1955 current->memcg_in_oom = NULL; 1956 css_put(&memcg->css); 1957 return true; 1958 } 1959 1960 /** 1961 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1962 * @victim: task to be killed by the OOM killer 1963 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1964 * 1965 * Returns a pointer to a memory cgroup, which has to be cleaned up 1966 * by killing all belonging OOM-killable tasks. 1967 * 1968 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1969 */ 1970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1971 struct mem_cgroup *oom_domain) 1972 { 1973 struct mem_cgroup *oom_group = NULL; 1974 struct mem_cgroup *memcg; 1975 1976 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1977 return NULL; 1978 1979 if (!oom_domain) 1980 oom_domain = root_mem_cgroup; 1981 1982 rcu_read_lock(); 1983 1984 memcg = mem_cgroup_from_task(victim); 1985 if (memcg == root_mem_cgroup) 1986 goto out; 1987 1988 /* 1989 * If the victim task has been asynchronously moved to a different 1990 * memory cgroup, we might end up killing tasks outside oom_domain. 1991 * In this case it's better to ignore memory.group.oom. 1992 */ 1993 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1994 goto out; 1995 1996 /* 1997 * Traverse the memory cgroup hierarchy from the victim task's 1998 * cgroup up to the OOMing cgroup (or root) to find the 1999 * highest-level memory cgroup with oom.group set. 2000 */ 2001 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2002 if (memcg->oom_group) 2003 oom_group = memcg; 2004 2005 if (memcg == oom_domain) 2006 break; 2007 } 2008 2009 if (oom_group) 2010 css_get(&oom_group->css); 2011 out: 2012 rcu_read_unlock(); 2013 2014 return oom_group; 2015 } 2016 2017 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2018 { 2019 pr_info("Tasks in "); 2020 pr_cont_cgroup_path(memcg->css.cgroup); 2021 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2022 } 2023 2024 /** 2025 * folio_memcg_lock - Bind a folio to its memcg. 2026 * @folio: The folio. 2027 * 2028 * This function prevents unlocked LRU folios from being moved to 2029 * another cgroup. 2030 * 2031 * It ensures lifetime of the bound memcg. The caller is responsible 2032 * for the lifetime of the folio. 2033 */ 2034 void folio_memcg_lock(struct folio *folio) 2035 { 2036 struct mem_cgroup *memcg; 2037 unsigned long flags; 2038 2039 /* 2040 * The RCU lock is held throughout the transaction. The fast 2041 * path can get away without acquiring the memcg->move_lock 2042 * because page moving starts with an RCU grace period. 2043 */ 2044 rcu_read_lock(); 2045 2046 if (mem_cgroup_disabled()) 2047 return; 2048 again: 2049 memcg = folio_memcg(folio); 2050 if (unlikely(!memcg)) 2051 return; 2052 2053 #ifdef CONFIG_PROVE_LOCKING 2054 local_irq_save(flags); 2055 might_lock(&memcg->move_lock); 2056 local_irq_restore(flags); 2057 #endif 2058 2059 if (atomic_read(&memcg->moving_account) <= 0) 2060 return; 2061 2062 spin_lock_irqsave(&memcg->move_lock, flags); 2063 if (memcg != folio_memcg(folio)) { 2064 spin_unlock_irqrestore(&memcg->move_lock, flags); 2065 goto again; 2066 } 2067 2068 /* 2069 * When charge migration first begins, we can have multiple 2070 * critical sections holding the fast-path RCU lock and one 2071 * holding the slowpath move_lock. Track the task who has the 2072 * move_lock for unlock_page_memcg(). 2073 */ 2074 memcg->move_lock_task = current; 2075 memcg->move_lock_flags = flags; 2076 } 2077 2078 void lock_page_memcg(struct page *page) 2079 { 2080 folio_memcg_lock(page_folio(page)); 2081 } 2082 2083 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2084 { 2085 if (memcg && memcg->move_lock_task == current) { 2086 unsigned long flags = memcg->move_lock_flags; 2087 2088 memcg->move_lock_task = NULL; 2089 memcg->move_lock_flags = 0; 2090 2091 spin_unlock_irqrestore(&memcg->move_lock, flags); 2092 } 2093 2094 rcu_read_unlock(); 2095 } 2096 2097 /** 2098 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2099 * @folio: The folio. 2100 * 2101 * This releases the binding created by folio_memcg_lock(). This does 2102 * not change the accounting of this folio to its memcg, but it does 2103 * permit others to change it. 2104 */ 2105 void folio_memcg_unlock(struct folio *folio) 2106 { 2107 __folio_memcg_unlock(folio_memcg(folio)); 2108 } 2109 2110 void unlock_page_memcg(struct page *page) 2111 { 2112 folio_memcg_unlock(page_folio(page)); 2113 } 2114 2115 struct memcg_stock_pcp { 2116 local_lock_t stock_lock; 2117 struct mem_cgroup *cached; /* this never be root cgroup */ 2118 unsigned int nr_pages; 2119 2120 #ifdef CONFIG_MEMCG_KMEM 2121 struct obj_cgroup *cached_objcg; 2122 struct pglist_data *cached_pgdat; 2123 unsigned int nr_bytes; 2124 int nr_slab_reclaimable_b; 2125 int nr_slab_unreclaimable_b; 2126 #endif 2127 2128 struct work_struct work; 2129 unsigned long flags; 2130 #define FLUSHING_CACHED_CHARGE 0 2131 }; 2132 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2133 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2134 }; 2135 static DEFINE_MUTEX(percpu_charge_mutex); 2136 2137 #ifdef CONFIG_MEMCG_KMEM 2138 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2139 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2140 struct mem_cgroup *root_memcg); 2141 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2142 2143 #else 2144 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2145 { 2146 return NULL; 2147 } 2148 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2149 struct mem_cgroup *root_memcg) 2150 { 2151 return false; 2152 } 2153 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2154 { 2155 } 2156 #endif 2157 2158 /** 2159 * consume_stock: Try to consume stocked charge on this cpu. 2160 * @memcg: memcg to consume from. 2161 * @nr_pages: how many pages to charge. 2162 * 2163 * The charges will only happen if @memcg matches the current cpu's memcg 2164 * stock, and at least @nr_pages are available in that stock. Failure to 2165 * service an allocation will refill the stock. 2166 * 2167 * returns true if successful, false otherwise. 2168 */ 2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2170 { 2171 struct memcg_stock_pcp *stock; 2172 unsigned long flags; 2173 bool ret = false; 2174 2175 if (nr_pages > MEMCG_CHARGE_BATCH) 2176 return ret; 2177 2178 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2179 2180 stock = this_cpu_ptr(&memcg_stock); 2181 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2182 stock->nr_pages -= nr_pages; 2183 ret = true; 2184 } 2185 2186 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2187 2188 return ret; 2189 } 2190 2191 /* 2192 * Returns stocks cached in percpu and reset cached information. 2193 */ 2194 static void drain_stock(struct memcg_stock_pcp *stock) 2195 { 2196 struct mem_cgroup *old = stock->cached; 2197 2198 if (!old) 2199 return; 2200 2201 if (stock->nr_pages) { 2202 page_counter_uncharge(&old->memory, stock->nr_pages); 2203 if (do_memsw_account()) 2204 page_counter_uncharge(&old->memsw, stock->nr_pages); 2205 stock->nr_pages = 0; 2206 } 2207 2208 css_put(&old->css); 2209 stock->cached = NULL; 2210 } 2211 2212 static void drain_local_stock(struct work_struct *dummy) 2213 { 2214 struct memcg_stock_pcp *stock; 2215 struct obj_cgroup *old = NULL; 2216 unsigned long flags; 2217 2218 /* 2219 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2220 * drain_stock races is that we always operate on local CPU stock 2221 * here with IRQ disabled 2222 */ 2223 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2224 2225 stock = this_cpu_ptr(&memcg_stock); 2226 old = drain_obj_stock(stock); 2227 drain_stock(stock); 2228 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2229 2230 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2231 if (old) 2232 obj_cgroup_put(old); 2233 } 2234 2235 /* 2236 * Cache charges(val) to local per_cpu area. 2237 * This will be consumed by consume_stock() function, later. 2238 */ 2239 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2240 { 2241 struct memcg_stock_pcp *stock; 2242 2243 stock = this_cpu_ptr(&memcg_stock); 2244 if (stock->cached != memcg) { /* reset if necessary */ 2245 drain_stock(stock); 2246 css_get(&memcg->css); 2247 stock->cached = memcg; 2248 } 2249 stock->nr_pages += nr_pages; 2250 2251 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2252 drain_stock(stock); 2253 } 2254 2255 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2256 { 2257 unsigned long flags; 2258 2259 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2260 __refill_stock(memcg, nr_pages); 2261 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2262 } 2263 2264 /* 2265 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2266 * of the hierarchy under it. 2267 */ 2268 static void drain_all_stock(struct mem_cgroup *root_memcg) 2269 { 2270 int cpu, curcpu; 2271 2272 /* If someone's already draining, avoid adding running more workers. */ 2273 if (!mutex_trylock(&percpu_charge_mutex)) 2274 return; 2275 /* 2276 * Notify other cpus that system-wide "drain" is running 2277 * We do not care about races with the cpu hotplug because cpu down 2278 * as well as workers from this path always operate on the local 2279 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2280 */ 2281 migrate_disable(); 2282 curcpu = smp_processor_id(); 2283 for_each_online_cpu(cpu) { 2284 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2285 struct mem_cgroup *memcg; 2286 bool flush = false; 2287 2288 rcu_read_lock(); 2289 memcg = stock->cached; 2290 if (memcg && stock->nr_pages && 2291 mem_cgroup_is_descendant(memcg, root_memcg)) 2292 flush = true; 2293 else if (obj_stock_flush_required(stock, root_memcg)) 2294 flush = true; 2295 rcu_read_unlock(); 2296 2297 if (flush && 2298 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2299 if (cpu == curcpu) 2300 drain_local_stock(&stock->work); 2301 else 2302 schedule_work_on(cpu, &stock->work); 2303 } 2304 } 2305 migrate_enable(); 2306 mutex_unlock(&percpu_charge_mutex); 2307 } 2308 2309 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2310 { 2311 struct memcg_stock_pcp *stock; 2312 2313 stock = &per_cpu(memcg_stock, cpu); 2314 drain_stock(stock); 2315 2316 return 0; 2317 } 2318 2319 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2320 unsigned int nr_pages, 2321 gfp_t gfp_mask) 2322 { 2323 unsigned long nr_reclaimed = 0; 2324 2325 do { 2326 unsigned long pflags; 2327 2328 if (page_counter_read(&memcg->memory) <= 2329 READ_ONCE(memcg->memory.high)) 2330 continue; 2331 2332 memcg_memory_event(memcg, MEMCG_HIGH); 2333 2334 psi_memstall_enter(&pflags); 2335 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2336 gfp_mask, 2337 MEMCG_RECLAIM_MAY_SWAP); 2338 psi_memstall_leave(&pflags); 2339 } while ((memcg = parent_mem_cgroup(memcg)) && 2340 !mem_cgroup_is_root(memcg)); 2341 2342 return nr_reclaimed; 2343 } 2344 2345 static void high_work_func(struct work_struct *work) 2346 { 2347 struct mem_cgroup *memcg; 2348 2349 memcg = container_of(work, struct mem_cgroup, high_work); 2350 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2351 } 2352 2353 /* 2354 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2355 * enough to still cause a significant slowdown in most cases, while still 2356 * allowing diagnostics and tracing to proceed without becoming stuck. 2357 */ 2358 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2359 2360 /* 2361 * When calculating the delay, we use these either side of the exponentiation to 2362 * maintain precision and scale to a reasonable number of jiffies (see the table 2363 * below. 2364 * 2365 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2366 * overage ratio to a delay. 2367 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2368 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2369 * to produce a reasonable delay curve. 2370 * 2371 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2372 * reasonable delay curve compared to precision-adjusted overage, not 2373 * penalising heavily at first, but still making sure that growth beyond the 2374 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2375 * example, with a high of 100 megabytes: 2376 * 2377 * +-------+------------------------+ 2378 * | usage | time to allocate in ms | 2379 * +-------+------------------------+ 2380 * | 100M | 0 | 2381 * | 101M | 6 | 2382 * | 102M | 25 | 2383 * | 103M | 57 | 2384 * | 104M | 102 | 2385 * | 105M | 159 | 2386 * | 106M | 230 | 2387 * | 107M | 313 | 2388 * | 108M | 409 | 2389 * | 109M | 518 | 2390 * | 110M | 639 | 2391 * | 111M | 774 | 2392 * | 112M | 921 | 2393 * | 113M | 1081 | 2394 * | 114M | 1254 | 2395 * | 115M | 1439 | 2396 * | 116M | 1638 | 2397 * | 117M | 1849 | 2398 * | 118M | 2000 | 2399 * | 119M | 2000 | 2400 * | 120M | 2000 | 2401 * +-------+------------------------+ 2402 */ 2403 #define MEMCG_DELAY_PRECISION_SHIFT 20 2404 #define MEMCG_DELAY_SCALING_SHIFT 14 2405 2406 static u64 calculate_overage(unsigned long usage, unsigned long high) 2407 { 2408 u64 overage; 2409 2410 if (usage <= high) 2411 return 0; 2412 2413 /* 2414 * Prevent division by 0 in overage calculation by acting as if 2415 * it was a threshold of 1 page 2416 */ 2417 high = max(high, 1UL); 2418 2419 overage = usage - high; 2420 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2421 return div64_u64(overage, high); 2422 } 2423 2424 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2425 { 2426 u64 overage, max_overage = 0; 2427 2428 do { 2429 overage = calculate_overage(page_counter_read(&memcg->memory), 2430 READ_ONCE(memcg->memory.high)); 2431 max_overage = max(overage, max_overage); 2432 } while ((memcg = parent_mem_cgroup(memcg)) && 2433 !mem_cgroup_is_root(memcg)); 2434 2435 return max_overage; 2436 } 2437 2438 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2439 { 2440 u64 overage, max_overage = 0; 2441 2442 do { 2443 overage = calculate_overage(page_counter_read(&memcg->swap), 2444 READ_ONCE(memcg->swap.high)); 2445 if (overage) 2446 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2447 max_overage = max(overage, max_overage); 2448 } while ((memcg = parent_mem_cgroup(memcg)) && 2449 !mem_cgroup_is_root(memcg)); 2450 2451 return max_overage; 2452 } 2453 2454 /* 2455 * Get the number of jiffies that we should penalise a mischievous cgroup which 2456 * is exceeding its memory.high by checking both it and its ancestors. 2457 */ 2458 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2459 unsigned int nr_pages, 2460 u64 max_overage) 2461 { 2462 unsigned long penalty_jiffies; 2463 2464 if (!max_overage) 2465 return 0; 2466 2467 /* 2468 * We use overage compared to memory.high to calculate the number of 2469 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2470 * fairly lenient on small overages, and increasingly harsh when the 2471 * memcg in question makes it clear that it has no intention of stopping 2472 * its crazy behaviour, so we exponentially increase the delay based on 2473 * overage amount. 2474 */ 2475 penalty_jiffies = max_overage * max_overage * HZ; 2476 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2477 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2478 2479 /* 2480 * Factor in the task's own contribution to the overage, such that four 2481 * N-sized allocations are throttled approximately the same as one 2482 * 4N-sized allocation. 2483 * 2484 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2485 * larger the current charge patch is than that. 2486 */ 2487 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2488 } 2489 2490 /* 2491 * Scheduled by try_charge() to be executed from the userland return path 2492 * and reclaims memory over the high limit. 2493 */ 2494 void mem_cgroup_handle_over_high(void) 2495 { 2496 unsigned long penalty_jiffies; 2497 unsigned long pflags; 2498 unsigned long nr_reclaimed; 2499 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2500 int nr_retries = MAX_RECLAIM_RETRIES; 2501 struct mem_cgroup *memcg; 2502 bool in_retry = false; 2503 2504 if (likely(!nr_pages)) 2505 return; 2506 2507 memcg = get_mem_cgroup_from_mm(current->mm); 2508 current->memcg_nr_pages_over_high = 0; 2509 2510 retry_reclaim: 2511 /* 2512 * The allocating task should reclaim at least the batch size, but for 2513 * subsequent retries we only want to do what's necessary to prevent oom 2514 * or breaching resource isolation. 2515 * 2516 * This is distinct from memory.max or page allocator behaviour because 2517 * memory.high is currently batched, whereas memory.max and the page 2518 * allocator run every time an allocation is made. 2519 */ 2520 nr_reclaimed = reclaim_high(memcg, 2521 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2522 GFP_KERNEL); 2523 2524 /* 2525 * memory.high is breached and reclaim is unable to keep up. Throttle 2526 * allocators proactively to slow down excessive growth. 2527 */ 2528 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2529 mem_find_max_overage(memcg)); 2530 2531 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2532 swap_find_max_overage(memcg)); 2533 2534 /* 2535 * Clamp the max delay per usermode return so as to still keep the 2536 * application moving forwards and also permit diagnostics, albeit 2537 * extremely slowly. 2538 */ 2539 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2540 2541 /* 2542 * Don't sleep if the amount of jiffies this memcg owes us is so low 2543 * that it's not even worth doing, in an attempt to be nice to those who 2544 * go only a small amount over their memory.high value and maybe haven't 2545 * been aggressively reclaimed enough yet. 2546 */ 2547 if (penalty_jiffies <= HZ / 100) 2548 goto out; 2549 2550 /* 2551 * If reclaim is making forward progress but we're still over 2552 * memory.high, we want to encourage that rather than doing allocator 2553 * throttling. 2554 */ 2555 if (nr_reclaimed || nr_retries--) { 2556 in_retry = true; 2557 goto retry_reclaim; 2558 } 2559 2560 /* 2561 * If we exit early, we're guaranteed to die (since 2562 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2563 * need to account for any ill-begotten jiffies to pay them off later. 2564 */ 2565 psi_memstall_enter(&pflags); 2566 schedule_timeout_killable(penalty_jiffies); 2567 psi_memstall_leave(&pflags); 2568 2569 out: 2570 css_put(&memcg->css); 2571 } 2572 2573 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2574 unsigned int nr_pages) 2575 { 2576 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2577 int nr_retries = MAX_RECLAIM_RETRIES; 2578 struct mem_cgroup *mem_over_limit; 2579 struct page_counter *counter; 2580 unsigned long nr_reclaimed; 2581 bool passed_oom = false; 2582 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2583 bool drained = false; 2584 bool raised_max_event = false; 2585 unsigned long pflags; 2586 2587 retry: 2588 if (consume_stock(memcg, nr_pages)) 2589 return 0; 2590 2591 if (!do_memsw_account() || 2592 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2593 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2594 goto done_restock; 2595 if (do_memsw_account()) 2596 page_counter_uncharge(&memcg->memsw, batch); 2597 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2598 } else { 2599 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2600 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2601 } 2602 2603 if (batch > nr_pages) { 2604 batch = nr_pages; 2605 goto retry; 2606 } 2607 2608 /* 2609 * Prevent unbounded recursion when reclaim operations need to 2610 * allocate memory. This might exceed the limits temporarily, 2611 * but we prefer facilitating memory reclaim and getting back 2612 * under the limit over triggering OOM kills in these cases. 2613 */ 2614 if (unlikely(current->flags & PF_MEMALLOC)) 2615 goto force; 2616 2617 if (unlikely(task_in_memcg_oom(current))) 2618 goto nomem; 2619 2620 if (!gfpflags_allow_blocking(gfp_mask)) 2621 goto nomem; 2622 2623 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2624 raised_max_event = true; 2625 2626 psi_memstall_enter(&pflags); 2627 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2628 gfp_mask, reclaim_options); 2629 psi_memstall_leave(&pflags); 2630 2631 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2632 goto retry; 2633 2634 if (!drained) { 2635 drain_all_stock(mem_over_limit); 2636 drained = true; 2637 goto retry; 2638 } 2639 2640 if (gfp_mask & __GFP_NORETRY) 2641 goto nomem; 2642 /* 2643 * Even though the limit is exceeded at this point, reclaim 2644 * may have been able to free some pages. Retry the charge 2645 * before killing the task. 2646 * 2647 * Only for regular pages, though: huge pages are rather 2648 * unlikely to succeed so close to the limit, and we fall back 2649 * to regular pages anyway in case of failure. 2650 */ 2651 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2652 goto retry; 2653 /* 2654 * At task move, charge accounts can be doubly counted. So, it's 2655 * better to wait until the end of task_move if something is going on. 2656 */ 2657 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2658 goto retry; 2659 2660 if (nr_retries--) 2661 goto retry; 2662 2663 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2664 goto nomem; 2665 2666 /* Avoid endless loop for tasks bypassed by the oom killer */ 2667 if (passed_oom && task_is_dying()) 2668 goto nomem; 2669 2670 /* 2671 * keep retrying as long as the memcg oom killer is able to make 2672 * a forward progress or bypass the charge if the oom killer 2673 * couldn't make any progress. 2674 */ 2675 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2676 get_order(nr_pages * PAGE_SIZE))) { 2677 passed_oom = true; 2678 nr_retries = MAX_RECLAIM_RETRIES; 2679 goto retry; 2680 } 2681 nomem: 2682 /* 2683 * Memcg doesn't have a dedicated reserve for atomic 2684 * allocations. But like the global atomic pool, we need to 2685 * put the burden of reclaim on regular allocation requests 2686 * and let these go through as privileged allocations. 2687 */ 2688 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2689 return -ENOMEM; 2690 force: 2691 /* 2692 * If the allocation has to be enforced, don't forget to raise 2693 * a MEMCG_MAX event. 2694 */ 2695 if (!raised_max_event) 2696 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2697 2698 /* 2699 * The allocation either can't fail or will lead to more memory 2700 * being freed very soon. Allow memory usage go over the limit 2701 * temporarily by force charging it. 2702 */ 2703 page_counter_charge(&memcg->memory, nr_pages); 2704 if (do_memsw_account()) 2705 page_counter_charge(&memcg->memsw, nr_pages); 2706 2707 return 0; 2708 2709 done_restock: 2710 if (batch > nr_pages) 2711 refill_stock(memcg, batch - nr_pages); 2712 2713 /* 2714 * If the hierarchy is above the normal consumption range, schedule 2715 * reclaim on returning to userland. We can perform reclaim here 2716 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2717 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2718 * not recorded as it most likely matches current's and won't 2719 * change in the meantime. As high limit is checked again before 2720 * reclaim, the cost of mismatch is negligible. 2721 */ 2722 do { 2723 bool mem_high, swap_high; 2724 2725 mem_high = page_counter_read(&memcg->memory) > 2726 READ_ONCE(memcg->memory.high); 2727 swap_high = page_counter_read(&memcg->swap) > 2728 READ_ONCE(memcg->swap.high); 2729 2730 /* Don't bother a random interrupted task */ 2731 if (!in_task()) { 2732 if (mem_high) { 2733 schedule_work(&memcg->high_work); 2734 break; 2735 } 2736 continue; 2737 } 2738 2739 if (mem_high || swap_high) { 2740 /* 2741 * The allocating tasks in this cgroup will need to do 2742 * reclaim or be throttled to prevent further growth 2743 * of the memory or swap footprints. 2744 * 2745 * Target some best-effort fairness between the tasks, 2746 * and distribute reclaim work and delay penalties 2747 * based on how much each task is actually allocating. 2748 */ 2749 current->memcg_nr_pages_over_high += batch; 2750 set_notify_resume(current); 2751 break; 2752 } 2753 } while ((memcg = parent_mem_cgroup(memcg))); 2754 2755 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2756 !(current->flags & PF_MEMALLOC) && 2757 gfpflags_allow_blocking(gfp_mask)) { 2758 mem_cgroup_handle_over_high(); 2759 } 2760 return 0; 2761 } 2762 2763 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2764 unsigned int nr_pages) 2765 { 2766 if (mem_cgroup_is_root(memcg)) 2767 return 0; 2768 2769 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2770 } 2771 2772 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2773 { 2774 if (mem_cgroup_is_root(memcg)) 2775 return; 2776 2777 page_counter_uncharge(&memcg->memory, nr_pages); 2778 if (do_memsw_account()) 2779 page_counter_uncharge(&memcg->memsw, nr_pages); 2780 } 2781 2782 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2783 { 2784 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2785 /* 2786 * Any of the following ensures page's memcg stability: 2787 * 2788 * - the page lock 2789 * - LRU isolation 2790 * - lock_page_memcg() 2791 * - exclusive reference 2792 * - mem_cgroup_trylock_pages() 2793 */ 2794 folio->memcg_data = (unsigned long)memcg; 2795 } 2796 2797 #ifdef CONFIG_MEMCG_KMEM 2798 /* 2799 * The allocated objcg pointers array is not accounted directly. 2800 * Moreover, it should not come from DMA buffer and is not readily 2801 * reclaimable. So those GFP bits should be masked off. 2802 */ 2803 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2804 2805 /* 2806 * mod_objcg_mlstate() may be called with irq enabled, so 2807 * mod_memcg_lruvec_state() should be used. 2808 */ 2809 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2810 struct pglist_data *pgdat, 2811 enum node_stat_item idx, int nr) 2812 { 2813 struct mem_cgroup *memcg; 2814 struct lruvec *lruvec; 2815 2816 rcu_read_lock(); 2817 memcg = obj_cgroup_memcg(objcg); 2818 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2819 mod_memcg_lruvec_state(lruvec, idx, nr); 2820 rcu_read_unlock(); 2821 } 2822 2823 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2824 gfp_t gfp, bool new_slab) 2825 { 2826 unsigned int objects = objs_per_slab(s, slab); 2827 unsigned long memcg_data; 2828 void *vec; 2829 2830 gfp &= ~OBJCGS_CLEAR_MASK; 2831 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2832 slab_nid(slab)); 2833 if (!vec) 2834 return -ENOMEM; 2835 2836 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2837 if (new_slab) { 2838 /* 2839 * If the slab is brand new and nobody can yet access its 2840 * memcg_data, no synchronization is required and memcg_data can 2841 * be simply assigned. 2842 */ 2843 slab->memcg_data = memcg_data; 2844 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2845 /* 2846 * If the slab is already in use, somebody can allocate and 2847 * assign obj_cgroups in parallel. In this case the existing 2848 * objcg vector should be reused. 2849 */ 2850 kfree(vec); 2851 return 0; 2852 } 2853 2854 kmemleak_not_leak(vec); 2855 return 0; 2856 } 2857 2858 static __always_inline 2859 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2860 { 2861 /* 2862 * Slab objects are accounted individually, not per-page. 2863 * Memcg membership data for each individual object is saved in 2864 * slab->memcg_data. 2865 */ 2866 if (folio_test_slab(folio)) { 2867 struct obj_cgroup **objcgs; 2868 struct slab *slab; 2869 unsigned int off; 2870 2871 slab = folio_slab(folio); 2872 objcgs = slab_objcgs(slab); 2873 if (!objcgs) 2874 return NULL; 2875 2876 off = obj_to_index(slab->slab_cache, slab, p); 2877 if (objcgs[off]) 2878 return obj_cgroup_memcg(objcgs[off]); 2879 2880 return NULL; 2881 } 2882 2883 /* 2884 * page_memcg_check() is used here, because in theory we can encounter 2885 * a folio where the slab flag has been cleared already, but 2886 * slab->memcg_data has not been freed yet 2887 * page_memcg_check(page) will guarantee that a proper memory 2888 * cgroup pointer or NULL will be returned. 2889 */ 2890 return page_memcg_check(folio_page(folio, 0)); 2891 } 2892 2893 /* 2894 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2895 * 2896 * A passed kernel object can be a slab object, vmalloc object or a generic 2897 * kernel page, so different mechanisms for getting the memory cgroup pointer 2898 * should be used. 2899 * 2900 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2901 * can not know for sure how the kernel object is implemented. 2902 * mem_cgroup_from_obj() can be safely used in such cases. 2903 * 2904 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2905 * cgroup_mutex, etc. 2906 */ 2907 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2908 { 2909 struct folio *folio; 2910 2911 if (mem_cgroup_disabled()) 2912 return NULL; 2913 2914 if (unlikely(is_vmalloc_addr(p))) 2915 folio = page_folio(vmalloc_to_page(p)); 2916 else 2917 folio = virt_to_folio(p); 2918 2919 return mem_cgroup_from_obj_folio(folio, p); 2920 } 2921 2922 /* 2923 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2924 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2925 * allocated using vmalloc(). 2926 * 2927 * A passed kernel object must be a slab object or a generic kernel page. 2928 * 2929 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2930 * cgroup_mutex, etc. 2931 */ 2932 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2933 { 2934 if (mem_cgroup_disabled()) 2935 return NULL; 2936 2937 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2938 } 2939 2940 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2941 { 2942 struct obj_cgroup *objcg = NULL; 2943 2944 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2945 objcg = rcu_dereference(memcg->objcg); 2946 if (objcg && obj_cgroup_tryget(objcg)) 2947 break; 2948 objcg = NULL; 2949 } 2950 return objcg; 2951 } 2952 2953 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2954 { 2955 struct obj_cgroup *objcg = NULL; 2956 struct mem_cgroup *memcg; 2957 2958 if (memcg_kmem_bypass()) 2959 return NULL; 2960 2961 rcu_read_lock(); 2962 if (unlikely(active_memcg())) 2963 memcg = active_memcg(); 2964 else 2965 memcg = mem_cgroup_from_task(current); 2966 objcg = __get_obj_cgroup_from_memcg(memcg); 2967 rcu_read_unlock(); 2968 return objcg; 2969 } 2970 2971 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 2972 { 2973 struct obj_cgroup *objcg; 2974 2975 if (!memcg_kmem_enabled() || memcg_kmem_bypass()) 2976 return NULL; 2977 2978 if (PageMemcgKmem(page)) { 2979 objcg = __folio_objcg(page_folio(page)); 2980 obj_cgroup_get(objcg); 2981 } else { 2982 struct mem_cgroup *memcg; 2983 2984 rcu_read_lock(); 2985 memcg = __folio_memcg(page_folio(page)); 2986 if (memcg) 2987 objcg = __get_obj_cgroup_from_memcg(memcg); 2988 else 2989 objcg = NULL; 2990 rcu_read_unlock(); 2991 } 2992 return objcg; 2993 } 2994 2995 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2996 { 2997 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2998 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 2999 if (nr_pages > 0) 3000 page_counter_charge(&memcg->kmem, nr_pages); 3001 else 3002 page_counter_uncharge(&memcg->kmem, -nr_pages); 3003 } 3004 } 3005 3006 3007 /* 3008 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3009 * @objcg: object cgroup to uncharge 3010 * @nr_pages: number of pages to uncharge 3011 */ 3012 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3013 unsigned int nr_pages) 3014 { 3015 struct mem_cgroup *memcg; 3016 3017 memcg = get_mem_cgroup_from_objcg(objcg); 3018 3019 memcg_account_kmem(memcg, -nr_pages); 3020 refill_stock(memcg, nr_pages); 3021 3022 css_put(&memcg->css); 3023 } 3024 3025 /* 3026 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3027 * @objcg: object cgroup to charge 3028 * @gfp: reclaim mode 3029 * @nr_pages: number of pages to charge 3030 * 3031 * Returns 0 on success, an error code on failure. 3032 */ 3033 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3034 unsigned int nr_pages) 3035 { 3036 struct mem_cgroup *memcg; 3037 int ret; 3038 3039 memcg = get_mem_cgroup_from_objcg(objcg); 3040 3041 ret = try_charge_memcg(memcg, gfp, nr_pages); 3042 if (ret) 3043 goto out; 3044 3045 memcg_account_kmem(memcg, nr_pages); 3046 out: 3047 css_put(&memcg->css); 3048 3049 return ret; 3050 } 3051 3052 /** 3053 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3054 * @page: page to charge 3055 * @gfp: reclaim mode 3056 * @order: allocation order 3057 * 3058 * Returns 0 on success, an error code on failure. 3059 */ 3060 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3061 { 3062 struct obj_cgroup *objcg; 3063 int ret = 0; 3064 3065 objcg = get_obj_cgroup_from_current(); 3066 if (objcg) { 3067 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3068 if (!ret) { 3069 page->memcg_data = (unsigned long)objcg | 3070 MEMCG_DATA_KMEM; 3071 return 0; 3072 } 3073 obj_cgroup_put(objcg); 3074 } 3075 return ret; 3076 } 3077 3078 /** 3079 * __memcg_kmem_uncharge_page: uncharge a kmem page 3080 * @page: page to uncharge 3081 * @order: allocation order 3082 */ 3083 void __memcg_kmem_uncharge_page(struct page *page, int order) 3084 { 3085 struct folio *folio = page_folio(page); 3086 struct obj_cgroup *objcg; 3087 unsigned int nr_pages = 1 << order; 3088 3089 if (!folio_memcg_kmem(folio)) 3090 return; 3091 3092 objcg = __folio_objcg(folio); 3093 obj_cgroup_uncharge_pages(objcg, nr_pages); 3094 folio->memcg_data = 0; 3095 obj_cgroup_put(objcg); 3096 } 3097 3098 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3099 enum node_stat_item idx, int nr) 3100 { 3101 struct memcg_stock_pcp *stock; 3102 struct obj_cgroup *old = NULL; 3103 unsigned long flags; 3104 int *bytes; 3105 3106 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3107 stock = this_cpu_ptr(&memcg_stock); 3108 3109 /* 3110 * Save vmstat data in stock and skip vmstat array update unless 3111 * accumulating over a page of vmstat data or when pgdat or idx 3112 * changes. 3113 */ 3114 if (stock->cached_objcg != objcg) { 3115 old = drain_obj_stock(stock); 3116 obj_cgroup_get(objcg); 3117 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3118 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3119 stock->cached_objcg = objcg; 3120 stock->cached_pgdat = pgdat; 3121 } else if (stock->cached_pgdat != pgdat) { 3122 /* Flush the existing cached vmstat data */ 3123 struct pglist_data *oldpg = stock->cached_pgdat; 3124 3125 if (stock->nr_slab_reclaimable_b) { 3126 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3127 stock->nr_slab_reclaimable_b); 3128 stock->nr_slab_reclaimable_b = 0; 3129 } 3130 if (stock->nr_slab_unreclaimable_b) { 3131 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3132 stock->nr_slab_unreclaimable_b); 3133 stock->nr_slab_unreclaimable_b = 0; 3134 } 3135 stock->cached_pgdat = pgdat; 3136 } 3137 3138 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3139 : &stock->nr_slab_unreclaimable_b; 3140 /* 3141 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3142 * cached locally at least once before pushing it out. 3143 */ 3144 if (!*bytes) { 3145 *bytes = nr; 3146 nr = 0; 3147 } else { 3148 *bytes += nr; 3149 if (abs(*bytes) > PAGE_SIZE) { 3150 nr = *bytes; 3151 *bytes = 0; 3152 } else { 3153 nr = 0; 3154 } 3155 } 3156 if (nr) 3157 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3158 3159 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3160 if (old) 3161 obj_cgroup_put(old); 3162 } 3163 3164 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3165 { 3166 struct memcg_stock_pcp *stock; 3167 unsigned long flags; 3168 bool ret = false; 3169 3170 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3171 3172 stock = this_cpu_ptr(&memcg_stock); 3173 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3174 stock->nr_bytes -= nr_bytes; 3175 ret = true; 3176 } 3177 3178 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3179 3180 return ret; 3181 } 3182 3183 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3184 { 3185 struct obj_cgroup *old = stock->cached_objcg; 3186 3187 if (!old) 3188 return NULL; 3189 3190 if (stock->nr_bytes) { 3191 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3192 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3193 3194 if (nr_pages) { 3195 struct mem_cgroup *memcg; 3196 3197 memcg = get_mem_cgroup_from_objcg(old); 3198 3199 memcg_account_kmem(memcg, -nr_pages); 3200 __refill_stock(memcg, nr_pages); 3201 3202 css_put(&memcg->css); 3203 } 3204 3205 /* 3206 * The leftover is flushed to the centralized per-memcg value. 3207 * On the next attempt to refill obj stock it will be moved 3208 * to a per-cpu stock (probably, on an other CPU), see 3209 * refill_obj_stock(). 3210 * 3211 * How often it's flushed is a trade-off between the memory 3212 * limit enforcement accuracy and potential CPU contention, 3213 * so it might be changed in the future. 3214 */ 3215 atomic_add(nr_bytes, &old->nr_charged_bytes); 3216 stock->nr_bytes = 0; 3217 } 3218 3219 /* 3220 * Flush the vmstat data in current stock 3221 */ 3222 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3223 if (stock->nr_slab_reclaimable_b) { 3224 mod_objcg_mlstate(old, stock->cached_pgdat, 3225 NR_SLAB_RECLAIMABLE_B, 3226 stock->nr_slab_reclaimable_b); 3227 stock->nr_slab_reclaimable_b = 0; 3228 } 3229 if (stock->nr_slab_unreclaimable_b) { 3230 mod_objcg_mlstate(old, stock->cached_pgdat, 3231 NR_SLAB_UNRECLAIMABLE_B, 3232 stock->nr_slab_unreclaimable_b); 3233 stock->nr_slab_unreclaimable_b = 0; 3234 } 3235 stock->cached_pgdat = NULL; 3236 } 3237 3238 stock->cached_objcg = NULL; 3239 /* 3240 * The `old' objects needs to be released by the caller via 3241 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3242 */ 3243 return old; 3244 } 3245 3246 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3247 struct mem_cgroup *root_memcg) 3248 { 3249 struct mem_cgroup *memcg; 3250 3251 if (stock->cached_objcg) { 3252 memcg = obj_cgroup_memcg(stock->cached_objcg); 3253 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3254 return true; 3255 } 3256 3257 return false; 3258 } 3259 3260 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3261 bool allow_uncharge) 3262 { 3263 struct memcg_stock_pcp *stock; 3264 struct obj_cgroup *old = NULL; 3265 unsigned long flags; 3266 unsigned int nr_pages = 0; 3267 3268 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3269 3270 stock = this_cpu_ptr(&memcg_stock); 3271 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3272 old = drain_obj_stock(stock); 3273 obj_cgroup_get(objcg); 3274 stock->cached_objcg = objcg; 3275 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3276 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3277 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3278 } 3279 stock->nr_bytes += nr_bytes; 3280 3281 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3282 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3283 stock->nr_bytes &= (PAGE_SIZE - 1); 3284 } 3285 3286 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3287 if (old) 3288 obj_cgroup_put(old); 3289 3290 if (nr_pages) 3291 obj_cgroup_uncharge_pages(objcg, nr_pages); 3292 } 3293 3294 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3295 { 3296 unsigned int nr_pages, nr_bytes; 3297 int ret; 3298 3299 if (consume_obj_stock(objcg, size)) 3300 return 0; 3301 3302 /* 3303 * In theory, objcg->nr_charged_bytes can have enough 3304 * pre-charged bytes to satisfy the allocation. However, 3305 * flushing objcg->nr_charged_bytes requires two atomic 3306 * operations, and objcg->nr_charged_bytes can't be big. 3307 * The shared objcg->nr_charged_bytes can also become a 3308 * performance bottleneck if all tasks of the same memcg are 3309 * trying to update it. So it's better to ignore it and try 3310 * grab some new pages. The stock's nr_bytes will be flushed to 3311 * objcg->nr_charged_bytes later on when objcg changes. 3312 * 3313 * The stock's nr_bytes may contain enough pre-charged bytes 3314 * to allow one less page from being charged, but we can't rely 3315 * on the pre-charged bytes not being changed outside of 3316 * consume_obj_stock() or refill_obj_stock(). So ignore those 3317 * pre-charged bytes as well when charging pages. To avoid a 3318 * page uncharge right after a page charge, we set the 3319 * allow_uncharge flag to false when calling refill_obj_stock() 3320 * to temporarily allow the pre-charged bytes to exceed the page 3321 * size limit. The maximum reachable value of the pre-charged 3322 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3323 * race. 3324 */ 3325 nr_pages = size >> PAGE_SHIFT; 3326 nr_bytes = size & (PAGE_SIZE - 1); 3327 3328 if (nr_bytes) 3329 nr_pages += 1; 3330 3331 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3332 if (!ret && nr_bytes) 3333 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3334 3335 return ret; 3336 } 3337 3338 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3339 { 3340 refill_obj_stock(objcg, size, true); 3341 } 3342 3343 #endif /* CONFIG_MEMCG_KMEM */ 3344 3345 /* 3346 * Because page_memcg(head) is not set on tails, set it now. 3347 */ 3348 void split_page_memcg(struct page *head, unsigned int nr) 3349 { 3350 struct folio *folio = page_folio(head); 3351 struct mem_cgroup *memcg = folio_memcg(folio); 3352 int i; 3353 3354 if (mem_cgroup_disabled() || !memcg) 3355 return; 3356 3357 for (i = 1; i < nr; i++) 3358 folio_page(folio, i)->memcg_data = folio->memcg_data; 3359 3360 if (folio_memcg_kmem(folio)) 3361 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3362 else 3363 css_get_many(&memcg->css, nr - 1); 3364 } 3365 3366 #ifdef CONFIG_MEMCG_SWAP 3367 /** 3368 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3369 * @entry: swap entry to be moved 3370 * @from: mem_cgroup which the entry is moved from 3371 * @to: mem_cgroup which the entry is moved to 3372 * 3373 * It succeeds only when the swap_cgroup's record for this entry is the same 3374 * as the mem_cgroup's id of @from. 3375 * 3376 * Returns 0 on success, -EINVAL on failure. 3377 * 3378 * The caller must have charged to @to, IOW, called page_counter_charge() about 3379 * both res and memsw, and called css_get(). 3380 */ 3381 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3382 struct mem_cgroup *from, struct mem_cgroup *to) 3383 { 3384 unsigned short old_id, new_id; 3385 3386 old_id = mem_cgroup_id(from); 3387 new_id = mem_cgroup_id(to); 3388 3389 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3390 mod_memcg_state(from, MEMCG_SWAP, -1); 3391 mod_memcg_state(to, MEMCG_SWAP, 1); 3392 return 0; 3393 } 3394 return -EINVAL; 3395 } 3396 #else 3397 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3398 struct mem_cgroup *from, struct mem_cgroup *to) 3399 { 3400 return -EINVAL; 3401 } 3402 #endif 3403 3404 static DEFINE_MUTEX(memcg_max_mutex); 3405 3406 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3407 unsigned long max, bool memsw) 3408 { 3409 bool enlarge = false; 3410 bool drained = false; 3411 int ret; 3412 bool limits_invariant; 3413 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3414 3415 do { 3416 if (signal_pending(current)) { 3417 ret = -EINTR; 3418 break; 3419 } 3420 3421 mutex_lock(&memcg_max_mutex); 3422 /* 3423 * Make sure that the new limit (memsw or memory limit) doesn't 3424 * break our basic invariant rule memory.max <= memsw.max. 3425 */ 3426 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3427 max <= memcg->memsw.max; 3428 if (!limits_invariant) { 3429 mutex_unlock(&memcg_max_mutex); 3430 ret = -EINVAL; 3431 break; 3432 } 3433 if (max > counter->max) 3434 enlarge = true; 3435 ret = page_counter_set_max(counter, max); 3436 mutex_unlock(&memcg_max_mutex); 3437 3438 if (!ret) 3439 break; 3440 3441 if (!drained) { 3442 drain_all_stock(memcg); 3443 drained = true; 3444 continue; 3445 } 3446 3447 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3448 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3449 ret = -EBUSY; 3450 break; 3451 } 3452 } while (true); 3453 3454 if (!ret && enlarge) 3455 memcg_oom_recover(memcg); 3456 3457 return ret; 3458 } 3459 3460 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3461 gfp_t gfp_mask, 3462 unsigned long *total_scanned) 3463 { 3464 unsigned long nr_reclaimed = 0; 3465 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3466 unsigned long reclaimed; 3467 int loop = 0; 3468 struct mem_cgroup_tree_per_node *mctz; 3469 unsigned long excess; 3470 3471 if (order > 0) 3472 return 0; 3473 3474 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3475 3476 /* 3477 * Do not even bother to check the largest node if the root 3478 * is empty. Do it lockless to prevent lock bouncing. Races 3479 * are acceptable as soft limit is best effort anyway. 3480 */ 3481 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3482 return 0; 3483 3484 /* 3485 * This loop can run a while, specially if mem_cgroup's continuously 3486 * keep exceeding their soft limit and putting the system under 3487 * pressure 3488 */ 3489 do { 3490 if (next_mz) 3491 mz = next_mz; 3492 else 3493 mz = mem_cgroup_largest_soft_limit_node(mctz); 3494 if (!mz) 3495 break; 3496 3497 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3498 gfp_mask, total_scanned); 3499 nr_reclaimed += reclaimed; 3500 spin_lock_irq(&mctz->lock); 3501 3502 /* 3503 * If we failed to reclaim anything from this memory cgroup 3504 * it is time to move on to the next cgroup 3505 */ 3506 next_mz = NULL; 3507 if (!reclaimed) 3508 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3509 3510 excess = soft_limit_excess(mz->memcg); 3511 /* 3512 * One school of thought says that we should not add 3513 * back the node to the tree if reclaim returns 0. 3514 * But our reclaim could return 0, simply because due 3515 * to priority we are exposing a smaller subset of 3516 * memory to reclaim from. Consider this as a longer 3517 * term TODO. 3518 */ 3519 /* If excess == 0, no tree ops */ 3520 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3521 spin_unlock_irq(&mctz->lock); 3522 css_put(&mz->memcg->css); 3523 loop++; 3524 /* 3525 * Could not reclaim anything and there are no more 3526 * mem cgroups to try or we seem to be looping without 3527 * reclaiming anything. 3528 */ 3529 if (!nr_reclaimed && 3530 (next_mz == NULL || 3531 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3532 break; 3533 } while (!nr_reclaimed); 3534 if (next_mz) 3535 css_put(&next_mz->memcg->css); 3536 return nr_reclaimed; 3537 } 3538 3539 /* 3540 * Reclaims as many pages from the given memcg as possible. 3541 * 3542 * Caller is responsible for holding css reference for memcg. 3543 */ 3544 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3545 { 3546 int nr_retries = MAX_RECLAIM_RETRIES; 3547 3548 /* we call try-to-free pages for make this cgroup empty */ 3549 lru_add_drain_all(); 3550 3551 drain_all_stock(memcg); 3552 3553 /* try to free all pages in this cgroup */ 3554 while (nr_retries && page_counter_read(&memcg->memory)) { 3555 if (signal_pending(current)) 3556 return -EINTR; 3557 3558 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3559 MEMCG_RECLAIM_MAY_SWAP)) 3560 nr_retries--; 3561 } 3562 3563 return 0; 3564 } 3565 3566 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3567 char *buf, size_t nbytes, 3568 loff_t off) 3569 { 3570 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3571 3572 if (mem_cgroup_is_root(memcg)) 3573 return -EINVAL; 3574 return mem_cgroup_force_empty(memcg) ?: nbytes; 3575 } 3576 3577 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3578 struct cftype *cft) 3579 { 3580 return 1; 3581 } 3582 3583 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3584 struct cftype *cft, u64 val) 3585 { 3586 if (val == 1) 3587 return 0; 3588 3589 pr_warn_once("Non-hierarchical mode is deprecated. " 3590 "Please report your usecase to linux-mm@kvack.org if you " 3591 "depend on this functionality.\n"); 3592 3593 return -EINVAL; 3594 } 3595 3596 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3597 { 3598 unsigned long val; 3599 3600 if (mem_cgroup_is_root(memcg)) { 3601 mem_cgroup_flush_stats(); 3602 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3603 memcg_page_state(memcg, NR_ANON_MAPPED); 3604 if (swap) 3605 val += memcg_page_state(memcg, MEMCG_SWAP); 3606 } else { 3607 if (!swap) 3608 val = page_counter_read(&memcg->memory); 3609 else 3610 val = page_counter_read(&memcg->memsw); 3611 } 3612 return val; 3613 } 3614 3615 enum { 3616 RES_USAGE, 3617 RES_LIMIT, 3618 RES_MAX_USAGE, 3619 RES_FAILCNT, 3620 RES_SOFT_LIMIT, 3621 }; 3622 3623 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3624 struct cftype *cft) 3625 { 3626 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3627 struct page_counter *counter; 3628 3629 switch (MEMFILE_TYPE(cft->private)) { 3630 case _MEM: 3631 counter = &memcg->memory; 3632 break; 3633 case _MEMSWAP: 3634 counter = &memcg->memsw; 3635 break; 3636 case _KMEM: 3637 counter = &memcg->kmem; 3638 break; 3639 case _TCP: 3640 counter = &memcg->tcpmem; 3641 break; 3642 default: 3643 BUG(); 3644 } 3645 3646 switch (MEMFILE_ATTR(cft->private)) { 3647 case RES_USAGE: 3648 if (counter == &memcg->memory) 3649 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3650 if (counter == &memcg->memsw) 3651 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3652 return (u64)page_counter_read(counter) * PAGE_SIZE; 3653 case RES_LIMIT: 3654 return (u64)counter->max * PAGE_SIZE; 3655 case RES_MAX_USAGE: 3656 return (u64)counter->watermark * PAGE_SIZE; 3657 case RES_FAILCNT: 3658 return counter->failcnt; 3659 case RES_SOFT_LIMIT: 3660 return (u64)memcg->soft_limit * PAGE_SIZE; 3661 default: 3662 BUG(); 3663 } 3664 } 3665 3666 #ifdef CONFIG_MEMCG_KMEM 3667 static int memcg_online_kmem(struct mem_cgroup *memcg) 3668 { 3669 struct obj_cgroup *objcg; 3670 3671 if (mem_cgroup_kmem_disabled()) 3672 return 0; 3673 3674 if (unlikely(mem_cgroup_is_root(memcg))) 3675 return 0; 3676 3677 objcg = obj_cgroup_alloc(); 3678 if (!objcg) 3679 return -ENOMEM; 3680 3681 objcg->memcg = memcg; 3682 rcu_assign_pointer(memcg->objcg, objcg); 3683 3684 static_branch_enable(&memcg_kmem_enabled_key); 3685 3686 memcg->kmemcg_id = memcg->id.id; 3687 3688 return 0; 3689 } 3690 3691 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3692 { 3693 struct mem_cgroup *parent; 3694 3695 if (mem_cgroup_kmem_disabled()) 3696 return; 3697 3698 if (unlikely(mem_cgroup_is_root(memcg))) 3699 return; 3700 3701 parent = parent_mem_cgroup(memcg); 3702 if (!parent) 3703 parent = root_mem_cgroup; 3704 3705 memcg_reparent_objcgs(memcg, parent); 3706 3707 /* 3708 * After we have finished memcg_reparent_objcgs(), all list_lrus 3709 * corresponding to this cgroup are guaranteed to remain empty. 3710 * The ordering is imposed by list_lru_node->lock taken by 3711 * memcg_reparent_list_lrus(). 3712 */ 3713 memcg_reparent_list_lrus(memcg, parent); 3714 } 3715 #else 3716 static int memcg_online_kmem(struct mem_cgroup *memcg) 3717 { 3718 return 0; 3719 } 3720 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3721 { 3722 } 3723 #endif /* CONFIG_MEMCG_KMEM */ 3724 3725 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3726 { 3727 int ret; 3728 3729 mutex_lock(&memcg_max_mutex); 3730 3731 ret = page_counter_set_max(&memcg->tcpmem, max); 3732 if (ret) 3733 goto out; 3734 3735 if (!memcg->tcpmem_active) { 3736 /* 3737 * The active flag needs to be written after the static_key 3738 * update. This is what guarantees that the socket activation 3739 * function is the last one to run. See mem_cgroup_sk_alloc() 3740 * for details, and note that we don't mark any socket as 3741 * belonging to this memcg until that flag is up. 3742 * 3743 * We need to do this, because static_keys will span multiple 3744 * sites, but we can't control their order. If we mark a socket 3745 * as accounted, but the accounting functions are not patched in 3746 * yet, we'll lose accounting. 3747 * 3748 * We never race with the readers in mem_cgroup_sk_alloc(), 3749 * because when this value change, the code to process it is not 3750 * patched in yet. 3751 */ 3752 static_branch_inc(&memcg_sockets_enabled_key); 3753 memcg->tcpmem_active = true; 3754 } 3755 out: 3756 mutex_unlock(&memcg_max_mutex); 3757 return ret; 3758 } 3759 3760 /* 3761 * The user of this function is... 3762 * RES_LIMIT. 3763 */ 3764 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3765 char *buf, size_t nbytes, loff_t off) 3766 { 3767 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3768 unsigned long nr_pages; 3769 int ret; 3770 3771 buf = strstrip(buf); 3772 ret = page_counter_memparse(buf, "-1", &nr_pages); 3773 if (ret) 3774 return ret; 3775 3776 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3777 case RES_LIMIT: 3778 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3779 ret = -EINVAL; 3780 break; 3781 } 3782 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3783 case _MEM: 3784 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3785 break; 3786 case _MEMSWAP: 3787 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3788 break; 3789 case _KMEM: 3790 /* kmem.limit_in_bytes is deprecated. */ 3791 ret = -EOPNOTSUPP; 3792 break; 3793 case _TCP: 3794 ret = memcg_update_tcp_max(memcg, nr_pages); 3795 break; 3796 } 3797 break; 3798 case RES_SOFT_LIMIT: 3799 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3800 ret = -EOPNOTSUPP; 3801 } else { 3802 memcg->soft_limit = nr_pages; 3803 ret = 0; 3804 } 3805 break; 3806 } 3807 return ret ?: nbytes; 3808 } 3809 3810 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3811 size_t nbytes, loff_t off) 3812 { 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3814 struct page_counter *counter; 3815 3816 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3817 case _MEM: 3818 counter = &memcg->memory; 3819 break; 3820 case _MEMSWAP: 3821 counter = &memcg->memsw; 3822 break; 3823 case _KMEM: 3824 counter = &memcg->kmem; 3825 break; 3826 case _TCP: 3827 counter = &memcg->tcpmem; 3828 break; 3829 default: 3830 BUG(); 3831 } 3832 3833 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3834 case RES_MAX_USAGE: 3835 page_counter_reset_watermark(counter); 3836 break; 3837 case RES_FAILCNT: 3838 counter->failcnt = 0; 3839 break; 3840 default: 3841 BUG(); 3842 } 3843 3844 return nbytes; 3845 } 3846 3847 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3848 struct cftype *cft) 3849 { 3850 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3851 } 3852 3853 #ifdef CONFIG_MMU 3854 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3855 struct cftype *cft, u64 val) 3856 { 3857 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3858 3859 if (val & ~MOVE_MASK) 3860 return -EINVAL; 3861 3862 /* 3863 * No kind of locking is needed in here, because ->can_attach() will 3864 * check this value once in the beginning of the process, and then carry 3865 * on with stale data. This means that changes to this value will only 3866 * affect task migrations starting after the change. 3867 */ 3868 memcg->move_charge_at_immigrate = val; 3869 return 0; 3870 } 3871 #else 3872 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3873 struct cftype *cft, u64 val) 3874 { 3875 return -ENOSYS; 3876 } 3877 #endif 3878 3879 #ifdef CONFIG_NUMA 3880 3881 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3882 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3883 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3884 3885 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3886 int nid, unsigned int lru_mask, bool tree) 3887 { 3888 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3889 unsigned long nr = 0; 3890 enum lru_list lru; 3891 3892 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3893 3894 for_each_lru(lru) { 3895 if (!(BIT(lru) & lru_mask)) 3896 continue; 3897 if (tree) 3898 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3899 else 3900 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3901 } 3902 return nr; 3903 } 3904 3905 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3906 unsigned int lru_mask, 3907 bool tree) 3908 { 3909 unsigned long nr = 0; 3910 enum lru_list lru; 3911 3912 for_each_lru(lru) { 3913 if (!(BIT(lru) & lru_mask)) 3914 continue; 3915 if (tree) 3916 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3917 else 3918 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3919 } 3920 return nr; 3921 } 3922 3923 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3924 { 3925 struct numa_stat { 3926 const char *name; 3927 unsigned int lru_mask; 3928 }; 3929 3930 static const struct numa_stat stats[] = { 3931 { "total", LRU_ALL }, 3932 { "file", LRU_ALL_FILE }, 3933 { "anon", LRU_ALL_ANON }, 3934 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3935 }; 3936 const struct numa_stat *stat; 3937 int nid; 3938 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3939 3940 mem_cgroup_flush_stats(); 3941 3942 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3943 seq_printf(m, "%s=%lu", stat->name, 3944 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3945 false)); 3946 for_each_node_state(nid, N_MEMORY) 3947 seq_printf(m, " N%d=%lu", nid, 3948 mem_cgroup_node_nr_lru_pages(memcg, nid, 3949 stat->lru_mask, false)); 3950 seq_putc(m, '\n'); 3951 } 3952 3953 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3954 3955 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3956 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3957 true)); 3958 for_each_node_state(nid, N_MEMORY) 3959 seq_printf(m, " N%d=%lu", nid, 3960 mem_cgroup_node_nr_lru_pages(memcg, nid, 3961 stat->lru_mask, true)); 3962 seq_putc(m, '\n'); 3963 } 3964 3965 return 0; 3966 } 3967 #endif /* CONFIG_NUMA */ 3968 3969 static const unsigned int memcg1_stats[] = { 3970 NR_FILE_PAGES, 3971 NR_ANON_MAPPED, 3972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3973 NR_ANON_THPS, 3974 #endif 3975 NR_SHMEM, 3976 NR_FILE_MAPPED, 3977 NR_FILE_DIRTY, 3978 NR_WRITEBACK, 3979 WORKINGSET_REFAULT_ANON, 3980 WORKINGSET_REFAULT_FILE, 3981 MEMCG_SWAP, 3982 }; 3983 3984 static const char *const memcg1_stat_names[] = { 3985 "cache", 3986 "rss", 3987 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3988 "rss_huge", 3989 #endif 3990 "shmem", 3991 "mapped_file", 3992 "dirty", 3993 "writeback", 3994 "workingset_refault_anon", 3995 "workingset_refault_file", 3996 "swap", 3997 }; 3998 3999 /* Universal VM events cgroup1 shows, original sort order */ 4000 static const unsigned int memcg1_events[] = { 4001 PGPGIN, 4002 PGPGOUT, 4003 PGFAULT, 4004 PGMAJFAULT, 4005 }; 4006 4007 static int memcg_stat_show(struct seq_file *m, void *v) 4008 { 4009 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4010 unsigned long memory, memsw; 4011 struct mem_cgroup *mi; 4012 unsigned int i; 4013 4014 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4015 4016 mem_cgroup_flush_stats(); 4017 4018 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4019 unsigned long nr; 4020 4021 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4022 continue; 4023 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4024 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 4025 nr * memcg_page_state_unit(memcg1_stats[i])); 4026 } 4027 4028 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4029 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4030 memcg_events_local(memcg, memcg1_events[i])); 4031 4032 for (i = 0; i < NR_LRU_LISTS; i++) 4033 seq_printf(m, "%s %lu\n", lru_list_name(i), 4034 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4035 PAGE_SIZE); 4036 4037 /* Hierarchical information */ 4038 memory = memsw = PAGE_COUNTER_MAX; 4039 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4040 memory = min(memory, READ_ONCE(mi->memory.max)); 4041 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4042 } 4043 seq_printf(m, "hierarchical_memory_limit %llu\n", 4044 (u64)memory * PAGE_SIZE); 4045 if (do_memsw_account()) 4046 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4047 (u64)memsw * PAGE_SIZE); 4048 4049 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4050 unsigned long nr; 4051 4052 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4053 continue; 4054 nr = memcg_page_state(memcg, memcg1_stats[i]); 4055 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4056 (u64)nr * memcg_page_state_unit(memcg1_stats[i])); 4057 } 4058 4059 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4060 seq_printf(m, "total_%s %llu\n", 4061 vm_event_name(memcg1_events[i]), 4062 (u64)memcg_events(memcg, memcg1_events[i])); 4063 4064 for (i = 0; i < NR_LRU_LISTS; i++) 4065 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4066 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4067 PAGE_SIZE); 4068 4069 #ifdef CONFIG_DEBUG_VM 4070 { 4071 pg_data_t *pgdat; 4072 struct mem_cgroup_per_node *mz; 4073 unsigned long anon_cost = 0; 4074 unsigned long file_cost = 0; 4075 4076 for_each_online_pgdat(pgdat) { 4077 mz = memcg->nodeinfo[pgdat->node_id]; 4078 4079 anon_cost += mz->lruvec.anon_cost; 4080 file_cost += mz->lruvec.file_cost; 4081 } 4082 seq_printf(m, "anon_cost %lu\n", anon_cost); 4083 seq_printf(m, "file_cost %lu\n", file_cost); 4084 } 4085 #endif 4086 4087 return 0; 4088 } 4089 4090 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4091 struct cftype *cft) 4092 { 4093 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4094 4095 return mem_cgroup_swappiness(memcg); 4096 } 4097 4098 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4099 struct cftype *cft, u64 val) 4100 { 4101 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4102 4103 if (val > 200) 4104 return -EINVAL; 4105 4106 if (!mem_cgroup_is_root(memcg)) 4107 memcg->swappiness = val; 4108 else 4109 vm_swappiness = val; 4110 4111 return 0; 4112 } 4113 4114 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4115 { 4116 struct mem_cgroup_threshold_ary *t; 4117 unsigned long usage; 4118 int i; 4119 4120 rcu_read_lock(); 4121 if (!swap) 4122 t = rcu_dereference(memcg->thresholds.primary); 4123 else 4124 t = rcu_dereference(memcg->memsw_thresholds.primary); 4125 4126 if (!t) 4127 goto unlock; 4128 4129 usage = mem_cgroup_usage(memcg, swap); 4130 4131 /* 4132 * current_threshold points to threshold just below or equal to usage. 4133 * If it's not true, a threshold was crossed after last 4134 * call of __mem_cgroup_threshold(). 4135 */ 4136 i = t->current_threshold; 4137 4138 /* 4139 * Iterate backward over array of thresholds starting from 4140 * current_threshold and check if a threshold is crossed. 4141 * If none of thresholds below usage is crossed, we read 4142 * only one element of the array here. 4143 */ 4144 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4145 eventfd_signal(t->entries[i].eventfd, 1); 4146 4147 /* i = current_threshold + 1 */ 4148 i++; 4149 4150 /* 4151 * Iterate forward over array of thresholds starting from 4152 * current_threshold+1 and check if a threshold is crossed. 4153 * If none of thresholds above usage is crossed, we read 4154 * only one element of the array here. 4155 */ 4156 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4157 eventfd_signal(t->entries[i].eventfd, 1); 4158 4159 /* Update current_threshold */ 4160 t->current_threshold = i - 1; 4161 unlock: 4162 rcu_read_unlock(); 4163 } 4164 4165 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4166 { 4167 while (memcg) { 4168 __mem_cgroup_threshold(memcg, false); 4169 if (do_memsw_account()) 4170 __mem_cgroup_threshold(memcg, true); 4171 4172 memcg = parent_mem_cgroup(memcg); 4173 } 4174 } 4175 4176 static int compare_thresholds(const void *a, const void *b) 4177 { 4178 const struct mem_cgroup_threshold *_a = a; 4179 const struct mem_cgroup_threshold *_b = b; 4180 4181 if (_a->threshold > _b->threshold) 4182 return 1; 4183 4184 if (_a->threshold < _b->threshold) 4185 return -1; 4186 4187 return 0; 4188 } 4189 4190 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4191 { 4192 struct mem_cgroup_eventfd_list *ev; 4193 4194 spin_lock(&memcg_oom_lock); 4195 4196 list_for_each_entry(ev, &memcg->oom_notify, list) 4197 eventfd_signal(ev->eventfd, 1); 4198 4199 spin_unlock(&memcg_oom_lock); 4200 return 0; 4201 } 4202 4203 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4204 { 4205 struct mem_cgroup *iter; 4206 4207 for_each_mem_cgroup_tree(iter, memcg) 4208 mem_cgroup_oom_notify_cb(iter); 4209 } 4210 4211 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4212 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4213 { 4214 struct mem_cgroup_thresholds *thresholds; 4215 struct mem_cgroup_threshold_ary *new; 4216 unsigned long threshold; 4217 unsigned long usage; 4218 int i, size, ret; 4219 4220 ret = page_counter_memparse(args, "-1", &threshold); 4221 if (ret) 4222 return ret; 4223 4224 mutex_lock(&memcg->thresholds_lock); 4225 4226 if (type == _MEM) { 4227 thresholds = &memcg->thresholds; 4228 usage = mem_cgroup_usage(memcg, false); 4229 } else if (type == _MEMSWAP) { 4230 thresholds = &memcg->memsw_thresholds; 4231 usage = mem_cgroup_usage(memcg, true); 4232 } else 4233 BUG(); 4234 4235 /* Check if a threshold crossed before adding a new one */ 4236 if (thresholds->primary) 4237 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4238 4239 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4240 4241 /* Allocate memory for new array of thresholds */ 4242 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4243 if (!new) { 4244 ret = -ENOMEM; 4245 goto unlock; 4246 } 4247 new->size = size; 4248 4249 /* Copy thresholds (if any) to new array */ 4250 if (thresholds->primary) 4251 memcpy(new->entries, thresholds->primary->entries, 4252 flex_array_size(new, entries, size - 1)); 4253 4254 /* Add new threshold */ 4255 new->entries[size - 1].eventfd = eventfd; 4256 new->entries[size - 1].threshold = threshold; 4257 4258 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4259 sort(new->entries, size, sizeof(*new->entries), 4260 compare_thresholds, NULL); 4261 4262 /* Find current threshold */ 4263 new->current_threshold = -1; 4264 for (i = 0; i < size; i++) { 4265 if (new->entries[i].threshold <= usage) { 4266 /* 4267 * new->current_threshold will not be used until 4268 * rcu_assign_pointer(), so it's safe to increment 4269 * it here. 4270 */ 4271 ++new->current_threshold; 4272 } else 4273 break; 4274 } 4275 4276 /* Free old spare buffer and save old primary buffer as spare */ 4277 kfree(thresholds->spare); 4278 thresholds->spare = thresholds->primary; 4279 4280 rcu_assign_pointer(thresholds->primary, new); 4281 4282 /* To be sure that nobody uses thresholds */ 4283 synchronize_rcu(); 4284 4285 unlock: 4286 mutex_unlock(&memcg->thresholds_lock); 4287 4288 return ret; 4289 } 4290 4291 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4292 struct eventfd_ctx *eventfd, const char *args) 4293 { 4294 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4295 } 4296 4297 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4298 struct eventfd_ctx *eventfd, const char *args) 4299 { 4300 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4301 } 4302 4303 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4304 struct eventfd_ctx *eventfd, enum res_type type) 4305 { 4306 struct mem_cgroup_thresholds *thresholds; 4307 struct mem_cgroup_threshold_ary *new; 4308 unsigned long usage; 4309 int i, j, size, entries; 4310 4311 mutex_lock(&memcg->thresholds_lock); 4312 4313 if (type == _MEM) { 4314 thresholds = &memcg->thresholds; 4315 usage = mem_cgroup_usage(memcg, false); 4316 } else if (type == _MEMSWAP) { 4317 thresholds = &memcg->memsw_thresholds; 4318 usage = mem_cgroup_usage(memcg, true); 4319 } else 4320 BUG(); 4321 4322 if (!thresholds->primary) 4323 goto unlock; 4324 4325 /* Check if a threshold crossed before removing */ 4326 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4327 4328 /* Calculate new number of threshold */ 4329 size = entries = 0; 4330 for (i = 0; i < thresholds->primary->size; i++) { 4331 if (thresholds->primary->entries[i].eventfd != eventfd) 4332 size++; 4333 else 4334 entries++; 4335 } 4336 4337 new = thresholds->spare; 4338 4339 /* If no items related to eventfd have been cleared, nothing to do */ 4340 if (!entries) 4341 goto unlock; 4342 4343 /* Set thresholds array to NULL if we don't have thresholds */ 4344 if (!size) { 4345 kfree(new); 4346 new = NULL; 4347 goto swap_buffers; 4348 } 4349 4350 new->size = size; 4351 4352 /* Copy thresholds and find current threshold */ 4353 new->current_threshold = -1; 4354 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4355 if (thresholds->primary->entries[i].eventfd == eventfd) 4356 continue; 4357 4358 new->entries[j] = thresholds->primary->entries[i]; 4359 if (new->entries[j].threshold <= usage) { 4360 /* 4361 * new->current_threshold will not be used 4362 * until rcu_assign_pointer(), so it's safe to increment 4363 * it here. 4364 */ 4365 ++new->current_threshold; 4366 } 4367 j++; 4368 } 4369 4370 swap_buffers: 4371 /* Swap primary and spare array */ 4372 thresholds->spare = thresholds->primary; 4373 4374 rcu_assign_pointer(thresholds->primary, new); 4375 4376 /* To be sure that nobody uses thresholds */ 4377 synchronize_rcu(); 4378 4379 /* If all events are unregistered, free the spare array */ 4380 if (!new) { 4381 kfree(thresholds->spare); 4382 thresholds->spare = NULL; 4383 } 4384 unlock: 4385 mutex_unlock(&memcg->thresholds_lock); 4386 } 4387 4388 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4389 struct eventfd_ctx *eventfd) 4390 { 4391 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4392 } 4393 4394 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4395 struct eventfd_ctx *eventfd) 4396 { 4397 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4398 } 4399 4400 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4401 struct eventfd_ctx *eventfd, const char *args) 4402 { 4403 struct mem_cgroup_eventfd_list *event; 4404 4405 event = kmalloc(sizeof(*event), GFP_KERNEL); 4406 if (!event) 4407 return -ENOMEM; 4408 4409 spin_lock(&memcg_oom_lock); 4410 4411 event->eventfd = eventfd; 4412 list_add(&event->list, &memcg->oom_notify); 4413 4414 /* already in OOM ? */ 4415 if (memcg->under_oom) 4416 eventfd_signal(eventfd, 1); 4417 spin_unlock(&memcg_oom_lock); 4418 4419 return 0; 4420 } 4421 4422 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4423 struct eventfd_ctx *eventfd) 4424 { 4425 struct mem_cgroup_eventfd_list *ev, *tmp; 4426 4427 spin_lock(&memcg_oom_lock); 4428 4429 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4430 if (ev->eventfd == eventfd) { 4431 list_del(&ev->list); 4432 kfree(ev); 4433 } 4434 } 4435 4436 spin_unlock(&memcg_oom_lock); 4437 } 4438 4439 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4440 { 4441 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4442 4443 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4444 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4445 seq_printf(sf, "oom_kill %lu\n", 4446 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4447 return 0; 4448 } 4449 4450 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4451 struct cftype *cft, u64 val) 4452 { 4453 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4454 4455 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4456 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4457 return -EINVAL; 4458 4459 memcg->oom_kill_disable = val; 4460 if (!val) 4461 memcg_oom_recover(memcg); 4462 4463 return 0; 4464 } 4465 4466 #ifdef CONFIG_CGROUP_WRITEBACK 4467 4468 #include <trace/events/writeback.h> 4469 4470 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4471 { 4472 return wb_domain_init(&memcg->cgwb_domain, gfp); 4473 } 4474 4475 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4476 { 4477 wb_domain_exit(&memcg->cgwb_domain); 4478 } 4479 4480 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4481 { 4482 wb_domain_size_changed(&memcg->cgwb_domain); 4483 } 4484 4485 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4486 { 4487 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4488 4489 if (!memcg->css.parent) 4490 return NULL; 4491 4492 return &memcg->cgwb_domain; 4493 } 4494 4495 /** 4496 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4497 * @wb: bdi_writeback in question 4498 * @pfilepages: out parameter for number of file pages 4499 * @pheadroom: out parameter for number of allocatable pages according to memcg 4500 * @pdirty: out parameter for number of dirty pages 4501 * @pwriteback: out parameter for number of pages under writeback 4502 * 4503 * Determine the numbers of file, headroom, dirty, and writeback pages in 4504 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4505 * is a bit more involved. 4506 * 4507 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4508 * headroom is calculated as the lowest headroom of itself and the 4509 * ancestors. Note that this doesn't consider the actual amount of 4510 * available memory in the system. The caller should further cap 4511 * *@pheadroom accordingly. 4512 */ 4513 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4514 unsigned long *pheadroom, unsigned long *pdirty, 4515 unsigned long *pwriteback) 4516 { 4517 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4518 struct mem_cgroup *parent; 4519 4520 mem_cgroup_flush_stats(); 4521 4522 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4523 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4524 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4525 memcg_page_state(memcg, NR_ACTIVE_FILE); 4526 4527 *pheadroom = PAGE_COUNTER_MAX; 4528 while ((parent = parent_mem_cgroup(memcg))) { 4529 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4530 READ_ONCE(memcg->memory.high)); 4531 unsigned long used = page_counter_read(&memcg->memory); 4532 4533 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4534 memcg = parent; 4535 } 4536 } 4537 4538 /* 4539 * Foreign dirty flushing 4540 * 4541 * There's an inherent mismatch between memcg and writeback. The former 4542 * tracks ownership per-page while the latter per-inode. This was a 4543 * deliberate design decision because honoring per-page ownership in the 4544 * writeback path is complicated, may lead to higher CPU and IO overheads 4545 * and deemed unnecessary given that write-sharing an inode across 4546 * different cgroups isn't a common use-case. 4547 * 4548 * Combined with inode majority-writer ownership switching, this works well 4549 * enough in most cases but there are some pathological cases. For 4550 * example, let's say there are two cgroups A and B which keep writing to 4551 * different but confined parts of the same inode. B owns the inode and 4552 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4553 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4554 * triggering background writeback. A will be slowed down without a way to 4555 * make writeback of the dirty pages happen. 4556 * 4557 * Conditions like the above can lead to a cgroup getting repeatedly and 4558 * severely throttled after making some progress after each 4559 * dirty_expire_interval while the underlying IO device is almost 4560 * completely idle. 4561 * 4562 * Solving this problem completely requires matching the ownership tracking 4563 * granularities between memcg and writeback in either direction. However, 4564 * the more egregious behaviors can be avoided by simply remembering the 4565 * most recent foreign dirtying events and initiating remote flushes on 4566 * them when local writeback isn't enough to keep the memory clean enough. 4567 * 4568 * The following two functions implement such mechanism. When a foreign 4569 * page - a page whose memcg and writeback ownerships don't match - is 4570 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4571 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4572 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4573 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4574 * foreign bdi_writebacks which haven't expired. Both the numbers of 4575 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4576 * limited to MEMCG_CGWB_FRN_CNT. 4577 * 4578 * The mechanism only remembers IDs and doesn't hold any object references. 4579 * As being wrong occasionally doesn't matter, updates and accesses to the 4580 * records are lockless and racy. 4581 */ 4582 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4583 struct bdi_writeback *wb) 4584 { 4585 struct mem_cgroup *memcg = folio_memcg(folio); 4586 struct memcg_cgwb_frn *frn; 4587 u64 now = get_jiffies_64(); 4588 u64 oldest_at = now; 4589 int oldest = -1; 4590 int i; 4591 4592 trace_track_foreign_dirty(folio, wb); 4593 4594 /* 4595 * Pick the slot to use. If there is already a slot for @wb, keep 4596 * using it. If not replace the oldest one which isn't being 4597 * written out. 4598 */ 4599 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4600 frn = &memcg->cgwb_frn[i]; 4601 if (frn->bdi_id == wb->bdi->id && 4602 frn->memcg_id == wb->memcg_css->id) 4603 break; 4604 if (time_before64(frn->at, oldest_at) && 4605 atomic_read(&frn->done.cnt) == 1) { 4606 oldest = i; 4607 oldest_at = frn->at; 4608 } 4609 } 4610 4611 if (i < MEMCG_CGWB_FRN_CNT) { 4612 /* 4613 * Re-using an existing one. Update timestamp lazily to 4614 * avoid making the cacheline hot. We want them to be 4615 * reasonably up-to-date and significantly shorter than 4616 * dirty_expire_interval as that's what expires the record. 4617 * Use the shorter of 1s and dirty_expire_interval / 8. 4618 */ 4619 unsigned long update_intv = 4620 min_t(unsigned long, HZ, 4621 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4622 4623 if (time_before64(frn->at, now - update_intv)) 4624 frn->at = now; 4625 } else if (oldest >= 0) { 4626 /* replace the oldest free one */ 4627 frn = &memcg->cgwb_frn[oldest]; 4628 frn->bdi_id = wb->bdi->id; 4629 frn->memcg_id = wb->memcg_css->id; 4630 frn->at = now; 4631 } 4632 } 4633 4634 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4635 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4636 { 4637 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4638 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4639 u64 now = jiffies_64; 4640 int i; 4641 4642 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4643 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4644 4645 /* 4646 * If the record is older than dirty_expire_interval, 4647 * writeback on it has already started. No need to kick it 4648 * off again. Also, don't start a new one if there's 4649 * already one in flight. 4650 */ 4651 if (time_after64(frn->at, now - intv) && 4652 atomic_read(&frn->done.cnt) == 1) { 4653 frn->at = 0; 4654 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4655 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4656 WB_REASON_FOREIGN_FLUSH, 4657 &frn->done); 4658 } 4659 } 4660 } 4661 4662 #else /* CONFIG_CGROUP_WRITEBACK */ 4663 4664 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4665 { 4666 return 0; 4667 } 4668 4669 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4670 { 4671 } 4672 4673 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4674 { 4675 } 4676 4677 #endif /* CONFIG_CGROUP_WRITEBACK */ 4678 4679 /* 4680 * DO NOT USE IN NEW FILES. 4681 * 4682 * "cgroup.event_control" implementation. 4683 * 4684 * This is way over-engineered. It tries to support fully configurable 4685 * events for each user. Such level of flexibility is completely 4686 * unnecessary especially in the light of the planned unified hierarchy. 4687 * 4688 * Please deprecate this and replace with something simpler if at all 4689 * possible. 4690 */ 4691 4692 /* 4693 * Unregister event and free resources. 4694 * 4695 * Gets called from workqueue. 4696 */ 4697 static void memcg_event_remove(struct work_struct *work) 4698 { 4699 struct mem_cgroup_event *event = 4700 container_of(work, struct mem_cgroup_event, remove); 4701 struct mem_cgroup *memcg = event->memcg; 4702 4703 remove_wait_queue(event->wqh, &event->wait); 4704 4705 event->unregister_event(memcg, event->eventfd); 4706 4707 /* Notify userspace the event is going away. */ 4708 eventfd_signal(event->eventfd, 1); 4709 4710 eventfd_ctx_put(event->eventfd); 4711 kfree(event); 4712 css_put(&memcg->css); 4713 } 4714 4715 /* 4716 * Gets called on EPOLLHUP on eventfd when user closes it. 4717 * 4718 * Called with wqh->lock held and interrupts disabled. 4719 */ 4720 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4721 int sync, void *key) 4722 { 4723 struct mem_cgroup_event *event = 4724 container_of(wait, struct mem_cgroup_event, wait); 4725 struct mem_cgroup *memcg = event->memcg; 4726 __poll_t flags = key_to_poll(key); 4727 4728 if (flags & EPOLLHUP) { 4729 /* 4730 * If the event has been detached at cgroup removal, we 4731 * can simply return knowing the other side will cleanup 4732 * for us. 4733 * 4734 * We can't race against event freeing since the other 4735 * side will require wqh->lock via remove_wait_queue(), 4736 * which we hold. 4737 */ 4738 spin_lock(&memcg->event_list_lock); 4739 if (!list_empty(&event->list)) { 4740 list_del_init(&event->list); 4741 /* 4742 * We are in atomic context, but cgroup_event_remove() 4743 * may sleep, so we have to call it in workqueue. 4744 */ 4745 schedule_work(&event->remove); 4746 } 4747 spin_unlock(&memcg->event_list_lock); 4748 } 4749 4750 return 0; 4751 } 4752 4753 static void memcg_event_ptable_queue_proc(struct file *file, 4754 wait_queue_head_t *wqh, poll_table *pt) 4755 { 4756 struct mem_cgroup_event *event = 4757 container_of(pt, struct mem_cgroup_event, pt); 4758 4759 event->wqh = wqh; 4760 add_wait_queue(wqh, &event->wait); 4761 } 4762 4763 /* 4764 * DO NOT USE IN NEW FILES. 4765 * 4766 * Parse input and register new cgroup event handler. 4767 * 4768 * Input must be in format '<event_fd> <control_fd> <args>'. 4769 * Interpretation of args is defined by control file implementation. 4770 */ 4771 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4772 char *buf, size_t nbytes, loff_t off) 4773 { 4774 struct cgroup_subsys_state *css = of_css(of); 4775 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4776 struct mem_cgroup_event *event; 4777 struct cgroup_subsys_state *cfile_css; 4778 unsigned int efd, cfd; 4779 struct fd efile; 4780 struct fd cfile; 4781 const char *name; 4782 char *endp; 4783 int ret; 4784 4785 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4786 return -EOPNOTSUPP; 4787 4788 buf = strstrip(buf); 4789 4790 efd = simple_strtoul(buf, &endp, 10); 4791 if (*endp != ' ') 4792 return -EINVAL; 4793 buf = endp + 1; 4794 4795 cfd = simple_strtoul(buf, &endp, 10); 4796 if ((*endp != ' ') && (*endp != '\0')) 4797 return -EINVAL; 4798 buf = endp + 1; 4799 4800 event = kzalloc(sizeof(*event), GFP_KERNEL); 4801 if (!event) 4802 return -ENOMEM; 4803 4804 event->memcg = memcg; 4805 INIT_LIST_HEAD(&event->list); 4806 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4807 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4808 INIT_WORK(&event->remove, memcg_event_remove); 4809 4810 efile = fdget(efd); 4811 if (!efile.file) { 4812 ret = -EBADF; 4813 goto out_kfree; 4814 } 4815 4816 event->eventfd = eventfd_ctx_fileget(efile.file); 4817 if (IS_ERR(event->eventfd)) { 4818 ret = PTR_ERR(event->eventfd); 4819 goto out_put_efile; 4820 } 4821 4822 cfile = fdget(cfd); 4823 if (!cfile.file) { 4824 ret = -EBADF; 4825 goto out_put_eventfd; 4826 } 4827 4828 /* the process need read permission on control file */ 4829 /* AV: shouldn't we check that it's been opened for read instead? */ 4830 ret = file_permission(cfile.file, MAY_READ); 4831 if (ret < 0) 4832 goto out_put_cfile; 4833 4834 /* 4835 * Determine the event callbacks and set them in @event. This used 4836 * to be done via struct cftype but cgroup core no longer knows 4837 * about these events. The following is crude but the whole thing 4838 * is for compatibility anyway. 4839 * 4840 * DO NOT ADD NEW FILES. 4841 */ 4842 name = cfile.file->f_path.dentry->d_name.name; 4843 4844 if (!strcmp(name, "memory.usage_in_bytes")) { 4845 event->register_event = mem_cgroup_usage_register_event; 4846 event->unregister_event = mem_cgroup_usage_unregister_event; 4847 } else if (!strcmp(name, "memory.oom_control")) { 4848 event->register_event = mem_cgroup_oom_register_event; 4849 event->unregister_event = mem_cgroup_oom_unregister_event; 4850 } else if (!strcmp(name, "memory.pressure_level")) { 4851 event->register_event = vmpressure_register_event; 4852 event->unregister_event = vmpressure_unregister_event; 4853 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4854 event->register_event = memsw_cgroup_usage_register_event; 4855 event->unregister_event = memsw_cgroup_usage_unregister_event; 4856 } else { 4857 ret = -EINVAL; 4858 goto out_put_cfile; 4859 } 4860 4861 /* 4862 * Verify @cfile should belong to @css. Also, remaining events are 4863 * automatically removed on cgroup destruction but the removal is 4864 * asynchronous, so take an extra ref on @css. 4865 */ 4866 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4867 &memory_cgrp_subsys); 4868 ret = -EINVAL; 4869 if (IS_ERR(cfile_css)) 4870 goto out_put_cfile; 4871 if (cfile_css != css) { 4872 css_put(cfile_css); 4873 goto out_put_cfile; 4874 } 4875 4876 ret = event->register_event(memcg, event->eventfd, buf); 4877 if (ret) 4878 goto out_put_css; 4879 4880 vfs_poll(efile.file, &event->pt); 4881 4882 spin_lock_irq(&memcg->event_list_lock); 4883 list_add(&event->list, &memcg->event_list); 4884 spin_unlock_irq(&memcg->event_list_lock); 4885 4886 fdput(cfile); 4887 fdput(efile); 4888 4889 return nbytes; 4890 4891 out_put_css: 4892 css_put(css); 4893 out_put_cfile: 4894 fdput(cfile); 4895 out_put_eventfd: 4896 eventfd_ctx_put(event->eventfd); 4897 out_put_efile: 4898 fdput(efile); 4899 out_kfree: 4900 kfree(event); 4901 4902 return ret; 4903 } 4904 4905 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4906 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4907 { 4908 /* 4909 * Deprecated. 4910 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 4911 */ 4912 return 0; 4913 } 4914 #endif 4915 4916 static struct cftype mem_cgroup_legacy_files[] = { 4917 { 4918 .name = "usage_in_bytes", 4919 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4920 .read_u64 = mem_cgroup_read_u64, 4921 }, 4922 { 4923 .name = "max_usage_in_bytes", 4924 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4925 .write = mem_cgroup_reset, 4926 .read_u64 = mem_cgroup_read_u64, 4927 }, 4928 { 4929 .name = "limit_in_bytes", 4930 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4931 .write = mem_cgroup_write, 4932 .read_u64 = mem_cgroup_read_u64, 4933 }, 4934 { 4935 .name = "soft_limit_in_bytes", 4936 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4937 .write = mem_cgroup_write, 4938 .read_u64 = mem_cgroup_read_u64, 4939 }, 4940 { 4941 .name = "failcnt", 4942 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4943 .write = mem_cgroup_reset, 4944 .read_u64 = mem_cgroup_read_u64, 4945 }, 4946 { 4947 .name = "stat", 4948 .seq_show = memcg_stat_show, 4949 }, 4950 { 4951 .name = "force_empty", 4952 .write = mem_cgroup_force_empty_write, 4953 }, 4954 { 4955 .name = "use_hierarchy", 4956 .write_u64 = mem_cgroup_hierarchy_write, 4957 .read_u64 = mem_cgroup_hierarchy_read, 4958 }, 4959 { 4960 .name = "cgroup.event_control", /* XXX: for compat */ 4961 .write = memcg_write_event_control, 4962 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4963 }, 4964 { 4965 .name = "swappiness", 4966 .read_u64 = mem_cgroup_swappiness_read, 4967 .write_u64 = mem_cgroup_swappiness_write, 4968 }, 4969 { 4970 .name = "move_charge_at_immigrate", 4971 .read_u64 = mem_cgroup_move_charge_read, 4972 .write_u64 = mem_cgroup_move_charge_write, 4973 }, 4974 { 4975 .name = "oom_control", 4976 .seq_show = mem_cgroup_oom_control_read, 4977 .write_u64 = mem_cgroup_oom_control_write, 4978 }, 4979 { 4980 .name = "pressure_level", 4981 }, 4982 #ifdef CONFIG_NUMA 4983 { 4984 .name = "numa_stat", 4985 .seq_show = memcg_numa_stat_show, 4986 }, 4987 #endif 4988 { 4989 .name = "kmem.limit_in_bytes", 4990 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4991 .write = mem_cgroup_write, 4992 .read_u64 = mem_cgroup_read_u64, 4993 }, 4994 { 4995 .name = "kmem.usage_in_bytes", 4996 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4997 .read_u64 = mem_cgroup_read_u64, 4998 }, 4999 { 5000 .name = "kmem.failcnt", 5001 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5002 .write = mem_cgroup_reset, 5003 .read_u64 = mem_cgroup_read_u64, 5004 }, 5005 { 5006 .name = "kmem.max_usage_in_bytes", 5007 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5008 .write = mem_cgroup_reset, 5009 .read_u64 = mem_cgroup_read_u64, 5010 }, 5011 #if defined(CONFIG_MEMCG_KMEM) && \ 5012 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5013 { 5014 .name = "kmem.slabinfo", 5015 .seq_show = mem_cgroup_slab_show, 5016 }, 5017 #endif 5018 { 5019 .name = "kmem.tcp.limit_in_bytes", 5020 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5021 .write = mem_cgroup_write, 5022 .read_u64 = mem_cgroup_read_u64, 5023 }, 5024 { 5025 .name = "kmem.tcp.usage_in_bytes", 5026 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5027 .read_u64 = mem_cgroup_read_u64, 5028 }, 5029 { 5030 .name = "kmem.tcp.failcnt", 5031 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5032 .write = mem_cgroup_reset, 5033 .read_u64 = mem_cgroup_read_u64, 5034 }, 5035 { 5036 .name = "kmem.tcp.max_usage_in_bytes", 5037 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5038 .write = mem_cgroup_reset, 5039 .read_u64 = mem_cgroup_read_u64, 5040 }, 5041 { }, /* terminate */ 5042 }; 5043 5044 /* 5045 * Private memory cgroup IDR 5046 * 5047 * Swap-out records and page cache shadow entries need to store memcg 5048 * references in constrained space, so we maintain an ID space that is 5049 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5050 * memory-controlled cgroups to 64k. 5051 * 5052 * However, there usually are many references to the offline CSS after 5053 * the cgroup has been destroyed, such as page cache or reclaimable 5054 * slab objects, that don't need to hang on to the ID. We want to keep 5055 * those dead CSS from occupying IDs, or we might quickly exhaust the 5056 * relatively small ID space and prevent the creation of new cgroups 5057 * even when there are much fewer than 64k cgroups - possibly none. 5058 * 5059 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5060 * be freed and recycled when it's no longer needed, which is usually 5061 * when the CSS is offlined. 5062 * 5063 * The only exception to that are records of swapped out tmpfs/shmem 5064 * pages that need to be attributed to live ancestors on swapin. But 5065 * those references are manageable from userspace. 5066 */ 5067 5068 static DEFINE_IDR(mem_cgroup_idr); 5069 5070 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5071 { 5072 if (memcg->id.id > 0) { 5073 idr_remove(&mem_cgroup_idr, memcg->id.id); 5074 memcg->id.id = 0; 5075 } 5076 } 5077 5078 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5079 unsigned int n) 5080 { 5081 refcount_add(n, &memcg->id.ref); 5082 } 5083 5084 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5085 { 5086 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5087 mem_cgroup_id_remove(memcg); 5088 5089 /* Memcg ID pins CSS */ 5090 css_put(&memcg->css); 5091 } 5092 } 5093 5094 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5095 { 5096 mem_cgroup_id_put_many(memcg, 1); 5097 } 5098 5099 /** 5100 * mem_cgroup_from_id - look up a memcg from a memcg id 5101 * @id: the memcg id to look up 5102 * 5103 * Caller must hold rcu_read_lock(). 5104 */ 5105 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5106 { 5107 WARN_ON_ONCE(!rcu_read_lock_held()); 5108 return idr_find(&mem_cgroup_idr, id); 5109 } 5110 5111 #ifdef CONFIG_SHRINKER_DEBUG 5112 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5113 { 5114 struct cgroup *cgrp; 5115 struct cgroup_subsys_state *css; 5116 struct mem_cgroup *memcg; 5117 5118 cgrp = cgroup_get_from_id(ino); 5119 if (!cgrp) 5120 return ERR_PTR(-ENOENT); 5121 5122 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5123 if (css) 5124 memcg = container_of(css, struct mem_cgroup, css); 5125 else 5126 memcg = ERR_PTR(-ENOENT); 5127 5128 cgroup_put(cgrp); 5129 5130 return memcg; 5131 } 5132 #endif 5133 5134 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5135 { 5136 struct mem_cgroup_per_node *pn; 5137 5138 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5139 if (!pn) 5140 return 1; 5141 5142 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5143 GFP_KERNEL_ACCOUNT); 5144 if (!pn->lruvec_stats_percpu) { 5145 kfree(pn); 5146 return 1; 5147 } 5148 5149 lruvec_init(&pn->lruvec); 5150 pn->memcg = memcg; 5151 5152 memcg->nodeinfo[node] = pn; 5153 return 0; 5154 } 5155 5156 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5157 { 5158 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5159 5160 if (!pn) 5161 return; 5162 5163 free_percpu(pn->lruvec_stats_percpu); 5164 kfree(pn); 5165 } 5166 5167 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5168 { 5169 int node; 5170 5171 for_each_node(node) 5172 free_mem_cgroup_per_node_info(memcg, node); 5173 free_percpu(memcg->vmstats_percpu); 5174 kfree(memcg); 5175 } 5176 5177 static void mem_cgroup_free(struct mem_cgroup *memcg) 5178 { 5179 lru_gen_exit_memcg(memcg); 5180 memcg_wb_domain_exit(memcg); 5181 __mem_cgroup_free(memcg); 5182 } 5183 5184 static struct mem_cgroup *mem_cgroup_alloc(void) 5185 { 5186 struct mem_cgroup *memcg; 5187 int node; 5188 int __maybe_unused i; 5189 long error = -ENOMEM; 5190 5191 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5192 if (!memcg) 5193 return ERR_PTR(error); 5194 5195 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5196 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5197 if (memcg->id.id < 0) { 5198 error = memcg->id.id; 5199 goto fail; 5200 } 5201 5202 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5203 GFP_KERNEL_ACCOUNT); 5204 if (!memcg->vmstats_percpu) 5205 goto fail; 5206 5207 for_each_node(node) 5208 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5209 goto fail; 5210 5211 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5212 goto fail; 5213 5214 INIT_WORK(&memcg->high_work, high_work_func); 5215 INIT_LIST_HEAD(&memcg->oom_notify); 5216 mutex_init(&memcg->thresholds_lock); 5217 spin_lock_init(&memcg->move_lock); 5218 vmpressure_init(&memcg->vmpressure); 5219 INIT_LIST_HEAD(&memcg->event_list); 5220 spin_lock_init(&memcg->event_list_lock); 5221 memcg->socket_pressure = jiffies; 5222 #ifdef CONFIG_MEMCG_KMEM 5223 memcg->kmemcg_id = -1; 5224 INIT_LIST_HEAD(&memcg->objcg_list); 5225 #endif 5226 #ifdef CONFIG_CGROUP_WRITEBACK 5227 INIT_LIST_HEAD(&memcg->cgwb_list); 5228 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5229 memcg->cgwb_frn[i].done = 5230 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5231 #endif 5232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5233 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5234 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5235 memcg->deferred_split_queue.split_queue_len = 0; 5236 #endif 5237 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5238 lru_gen_init_memcg(memcg); 5239 return memcg; 5240 fail: 5241 mem_cgroup_id_remove(memcg); 5242 __mem_cgroup_free(memcg); 5243 return ERR_PTR(error); 5244 } 5245 5246 static struct cgroup_subsys_state * __ref 5247 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5248 { 5249 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5250 struct mem_cgroup *memcg, *old_memcg; 5251 5252 old_memcg = set_active_memcg(parent); 5253 memcg = mem_cgroup_alloc(); 5254 set_active_memcg(old_memcg); 5255 if (IS_ERR(memcg)) 5256 return ERR_CAST(memcg); 5257 5258 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5259 memcg->soft_limit = PAGE_COUNTER_MAX; 5260 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5261 memcg->zswap_max = PAGE_COUNTER_MAX; 5262 #endif 5263 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5264 if (parent) { 5265 memcg->swappiness = mem_cgroup_swappiness(parent); 5266 memcg->oom_kill_disable = parent->oom_kill_disable; 5267 5268 page_counter_init(&memcg->memory, &parent->memory); 5269 page_counter_init(&memcg->swap, &parent->swap); 5270 page_counter_init(&memcg->kmem, &parent->kmem); 5271 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5272 } else { 5273 page_counter_init(&memcg->memory, NULL); 5274 page_counter_init(&memcg->swap, NULL); 5275 page_counter_init(&memcg->kmem, NULL); 5276 page_counter_init(&memcg->tcpmem, NULL); 5277 5278 root_mem_cgroup = memcg; 5279 return &memcg->css; 5280 } 5281 5282 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5283 static_branch_inc(&memcg_sockets_enabled_key); 5284 5285 return &memcg->css; 5286 } 5287 5288 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5289 { 5290 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5291 5292 if (memcg_online_kmem(memcg)) 5293 goto remove_id; 5294 5295 /* 5296 * A memcg must be visible for expand_shrinker_info() 5297 * by the time the maps are allocated. So, we allocate maps 5298 * here, when for_each_mem_cgroup() can't skip it. 5299 */ 5300 if (alloc_shrinker_info(memcg)) 5301 goto offline_kmem; 5302 5303 /* Online state pins memcg ID, memcg ID pins CSS */ 5304 refcount_set(&memcg->id.ref, 1); 5305 css_get(css); 5306 5307 if (unlikely(mem_cgroup_is_root(memcg))) 5308 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5309 2UL*HZ); 5310 return 0; 5311 offline_kmem: 5312 memcg_offline_kmem(memcg); 5313 remove_id: 5314 mem_cgroup_id_remove(memcg); 5315 return -ENOMEM; 5316 } 5317 5318 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5319 { 5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5321 struct mem_cgroup_event *event, *tmp; 5322 5323 /* 5324 * Unregister events and notify userspace. 5325 * Notify userspace about cgroup removing only after rmdir of cgroup 5326 * directory to avoid race between userspace and kernelspace. 5327 */ 5328 spin_lock_irq(&memcg->event_list_lock); 5329 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5330 list_del_init(&event->list); 5331 schedule_work(&event->remove); 5332 } 5333 spin_unlock_irq(&memcg->event_list_lock); 5334 5335 page_counter_set_min(&memcg->memory, 0); 5336 page_counter_set_low(&memcg->memory, 0); 5337 5338 memcg_offline_kmem(memcg); 5339 reparent_shrinker_deferred(memcg); 5340 wb_memcg_offline(memcg); 5341 5342 drain_all_stock(memcg); 5343 5344 mem_cgroup_id_put(memcg); 5345 } 5346 5347 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5348 { 5349 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5350 5351 invalidate_reclaim_iterators(memcg); 5352 } 5353 5354 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5355 { 5356 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5357 int __maybe_unused i; 5358 5359 #ifdef CONFIG_CGROUP_WRITEBACK 5360 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5361 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5362 #endif 5363 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5364 static_branch_dec(&memcg_sockets_enabled_key); 5365 5366 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5367 static_branch_dec(&memcg_sockets_enabled_key); 5368 5369 vmpressure_cleanup(&memcg->vmpressure); 5370 cancel_work_sync(&memcg->high_work); 5371 mem_cgroup_remove_from_trees(memcg); 5372 free_shrinker_info(memcg); 5373 mem_cgroup_free(memcg); 5374 } 5375 5376 /** 5377 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5378 * @css: the target css 5379 * 5380 * Reset the states of the mem_cgroup associated with @css. This is 5381 * invoked when the userland requests disabling on the default hierarchy 5382 * but the memcg is pinned through dependency. The memcg should stop 5383 * applying policies and should revert to the vanilla state as it may be 5384 * made visible again. 5385 * 5386 * The current implementation only resets the essential configurations. 5387 * This needs to be expanded to cover all the visible parts. 5388 */ 5389 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5390 { 5391 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5392 5393 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5394 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5395 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5396 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5397 page_counter_set_min(&memcg->memory, 0); 5398 page_counter_set_low(&memcg->memory, 0); 5399 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5400 memcg->soft_limit = PAGE_COUNTER_MAX; 5401 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5402 memcg_wb_domain_size_changed(memcg); 5403 } 5404 5405 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5406 { 5407 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5408 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5409 struct memcg_vmstats_percpu *statc; 5410 long delta, v; 5411 int i, nid; 5412 5413 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5414 5415 for (i = 0; i < MEMCG_NR_STAT; i++) { 5416 /* 5417 * Collect the aggregated propagation counts of groups 5418 * below us. We're in a per-cpu loop here and this is 5419 * a global counter, so the first cycle will get them. 5420 */ 5421 delta = memcg->vmstats.state_pending[i]; 5422 if (delta) 5423 memcg->vmstats.state_pending[i] = 0; 5424 5425 /* Add CPU changes on this level since the last flush */ 5426 v = READ_ONCE(statc->state[i]); 5427 if (v != statc->state_prev[i]) { 5428 delta += v - statc->state_prev[i]; 5429 statc->state_prev[i] = v; 5430 } 5431 5432 if (!delta) 5433 continue; 5434 5435 /* Aggregate counts on this level and propagate upwards */ 5436 memcg->vmstats.state[i] += delta; 5437 if (parent) 5438 parent->vmstats.state_pending[i] += delta; 5439 } 5440 5441 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5442 delta = memcg->vmstats.events_pending[i]; 5443 if (delta) 5444 memcg->vmstats.events_pending[i] = 0; 5445 5446 v = READ_ONCE(statc->events[i]); 5447 if (v != statc->events_prev[i]) { 5448 delta += v - statc->events_prev[i]; 5449 statc->events_prev[i] = v; 5450 } 5451 5452 if (!delta) 5453 continue; 5454 5455 memcg->vmstats.events[i] += delta; 5456 if (parent) 5457 parent->vmstats.events_pending[i] += delta; 5458 } 5459 5460 for_each_node_state(nid, N_MEMORY) { 5461 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5462 struct mem_cgroup_per_node *ppn = NULL; 5463 struct lruvec_stats_percpu *lstatc; 5464 5465 if (parent) 5466 ppn = parent->nodeinfo[nid]; 5467 5468 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5469 5470 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5471 delta = pn->lruvec_stats.state_pending[i]; 5472 if (delta) 5473 pn->lruvec_stats.state_pending[i] = 0; 5474 5475 v = READ_ONCE(lstatc->state[i]); 5476 if (v != lstatc->state_prev[i]) { 5477 delta += v - lstatc->state_prev[i]; 5478 lstatc->state_prev[i] = v; 5479 } 5480 5481 if (!delta) 5482 continue; 5483 5484 pn->lruvec_stats.state[i] += delta; 5485 if (ppn) 5486 ppn->lruvec_stats.state_pending[i] += delta; 5487 } 5488 } 5489 } 5490 5491 #ifdef CONFIG_MMU 5492 /* Handlers for move charge at task migration. */ 5493 static int mem_cgroup_do_precharge(unsigned long count) 5494 { 5495 int ret; 5496 5497 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5498 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5499 if (!ret) { 5500 mc.precharge += count; 5501 return ret; 5502 } 5503 5504 /* Try charges one by one with reclaim, but do not retry */ 5505 while (count--) { 5506 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5507 if (ret) 5508 return ret; 5509 mc.precharge++; 5510 cond_resched(); 5511 } 5512 return 0; 5513 } 5514 5515 union mc_target { 5516 struct page *page; 5517 swp_entry_t ent; 5518 }; 5519 5520 enum mc_target_type { 5521 MC_TARGET_NONE = 0, 5522 MC_TARGET_PAGE, 5523 MC_TARGET_SWAP, 5524 MC_TARGET_DEVICE, 5525 }; 5526 5527 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5528 unsigned long addr, pte_t ptent) 5529 { 5530 struct page *page = vm_normal_page(vma, addr, ptent); 5531 5532 if (!page || !page_mapped(page)) 5533 return NULL; 5534 if (PageAnon(page)) { 5535 if (!(mc.flags & MOVE_ANON)) 5536 return NULL; 5537 } else { 5538 if (!(mc.flags & MOVE_FILE)) 5539 return NULL; 5540 } 5541 if (!get_page_unless_zero(page)) 5542 return NULL; 5543 5544 return page; 5545 } 5546 5547 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5548 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5549 pte_t ptent, swp_entry_t *entry) 5550 { 5551 struct page *page = NULL; 5552 swp_entry_t ent = pte_to_swp_entry(ptent); 5553 5554 if (!(mc.flags & MOVE_ANON)) 5555 return NULL; 5556 5557 /* 5558 * Handle device private pages that are not accessible by the CPU, but 5559 * stored as special swap entries in the page table. 5560 */ 5561 if (is_device_private_entry(ent)) { 5562 page = pfn_swap_entry_to_page(ent); 5563 if (!get_page_unless_zero(page)) 5564 return NULL; 5565 return page; 5566 } 5567 5568 if (non_swap_entry(ent)) 5569 return NULL; 5570 5571 /* 5572 * Because lookup_swap_cache() updates some statistics counter, 5573 * we call find_get_page() with swapper_space directly. 5574 */ 5575 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5576 entry->val = ent.val; 5577 5578 return page; 5579 } 5580 #else 5581 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5582 pte_t ptent, swp_entry_t *entry) 5583 { 5584 return NULL; 5585 } 5586 #endif 5587 5588 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5589 unsigned long addr, pte_t ptent) 5590 { 5591 if (!vma->vm_file) /* anonymous vma */ 5592 return NULL; 5593 if (!(mc.flags & MOVE_FILE)) 5594 return NULL; 5595 5596 /* page is moved even if it's not RSS of this task(page-faulted). */ 5597 /* shmem/tmpfs may report page out on swap: account for that too. */ 5598 return find_get_incore_page(vma->vm_file->f_mapping, 5599 linear_page_index(vma, addr)); 5600 } 5601 5602 /** 5603 * mem_cgroup_move_account - move account of the page 5604 * @page: the page 5605 * @compound: charge the page as compound or small page 5606 * @from: mem_cgroup which the page is moved from. 5607 * @to: mem_cgroup which the page is moved to. @from != @to. 5608 * 5609 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5610 * 5611 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5612 * from old cgroup. 5613 */ 5614 static int mem_cgroup_move_account(struct page *page, 5615 bool compound, 5616 struct mem_cgroup *from, 5617 struct mem_cgroup *to) 5618 { 5619 struct folio *folio = page_folio(page); 5620 struct lruvec *from_vec, *to_vec; 5621 struct pglist_data *pgdat; 5622 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5623 int nid, ret; 5624 5625 VM_BUG_ON(from == to); 5626 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5627 VM_BUG_ON(compound && !folio_test_large(folio)); 5628 5629 /* 5630 * Prevent mem_cgroup_migrate() from looking at 5631 * page's memory cgroup of its source page while we change it. 5632 */ 5633 ret = -EBUSY; 5634 if (!folio_trylock(folio)) 5635 goto out; 5636 5637 ret = -EINVAL; 5638 if (folio_memcg(folio) != from) 5639 goto out_unlock; 5640 5641 pgdat = folio_pgdat(folio); 5642 from_vec = mem_cgroup_lruvec(from, pgdat); 5643 to_vec = mem_cgroup_lruvec(to, pgdat); 5644 5645 folio_memcg_lock(folio); 5646 5647 if (folio_test_anon(folio)) { 5648 if (folio_mapped(folio)) { 5649 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5650 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5651 if (folio_test_transhuge(folio)) { 5652 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5653 -nr_pages); 5654 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5655 nr_pages); 5656 } 5657 } 5658 } else { 5659 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5660 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5661 5662 if (folio_test_swapbacked(folio)) { 5663 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5664 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5665 } 5666 5667 if (folio_mapped(folio)) { 5668 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5669 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5670 } 5671 5672 if (folio_test_dirty(folio)) { 5673 struct address_space *mapping = folio_mapping(folio); 5674 5675 if (mapping_can_writeback(mapping)) { 5676 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5677 -nr_pages); 5678 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5679 nr_pages); 5680 } 5681 } 5682 } 5683 5684 if (folio_test_writeback(folio)) { 5685 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5686 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5687 } 5688 5689 /* 5690 * All state has been migrated, let's switch to the new memcg. 5691 * 5692 * It is safe to change page's memcg here because the page 5693 * is referenced, charged, isolated, and locked: we can't race 5694 * with (un)charging, migration, LRU putback, or anything else 5695 * that would rely on a stable page's memory cgroup. 5696 * 5697 * Note that lock_page_memcg is a memcg lock, not a page lock, 5698 * to save space. As soon as we switch page's memory cgroup to a 5699 * new memcg that isn't locked, the above state can change 5700 * concurrently again. Make sure we're truly done with it. 5701 */ 5702 smp_mb(); 5703 5704 css_get(&to->css); 5705 css_put(&from->css); 5706 5707 folio->memcg_data = (unsigned long)to; 5708 5709 __folio_memcg_unlock(from); 5710 5711 ret = 0; 5712 nid = folio_nid(folio); 5713 5714 local_irq_disable(); 5715 mem_cgroup_charge_statistics(to, nr_pages); 5716 memcg_check_events(to, nid); 5717 mem_cgroup_charge_statistics(from, -nr_pages); 5718 memcg_check_events(from, nid); 5719 local_irq_enable(); 5720 out_unlock: 5721 folio_unlock(folio); 5722 out: 5723 return ret; 5724 } 5725 5726 /** 5727 * get_mctgt_type - get target type of moving charge 5728 * @vma: the vma the pte to be checked belongs 5729 * @addr: the address corresponding to the pte to be checked 5730 * @ptent: the pte to be checked 5731 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5732 * 5733 * Returns 5734 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5735 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5736 * move charge. if @target is not NULL, the page is stored in target->page 5737 * with extra refcnt got(Callers should handle it). 5738 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5739 * target for charge migration. if @target is not NULL, the entry is stored 5740 * in target->ent. 5741 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5742 * thus not on the lru. 5743 * For now we such page is charge like a regular page would be as for all 5744 * intent and purposes it is just special memory taking the place of a 5745 * regular page. 5746 * 5747 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5748 * 5749 * Called with pte lock held. 5750 */ 5751 5752 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5753 unsigned long addr, pte_t ptent, union mc_target *target) 5754 { 5755 struct page *page = NULL; 5756 enum mc_target_type ret = MC_TARGET_NONE; 5757 swp_entry_t ent = { .val = 0 }; 5758 5759 if (pte_present(ptent)) 5760 page = mc_handle_present_pte(vma, addr, ptent); 5761 else if (pte_none_mostly(ptent)) 5762 /* 5763 * PTE markers should be treated as a none pte here, separated 5764 * from other swap handling below. 5765 */ 5766 page = mc_handle_file_pte(vma, addr, ptent); 5767 else if (is_swap_pte(ptent)) 5768 page = mc_handle_swap_pte(vma, ptent, &ent); 5769 5770 if (!page && !ent.val) 5771 return ret; 5772 if (page) { 5773 /* 5774 * Do only loose check w/o serialization. 5775 * mem_cgroup_move_account() checks the page is valid or 5776 * not under LRU exclusion. 5777 */ 5778 if (page_memcg(page) == mc.from) { 5779 ret = MC_TARGET_PAGE; 5780 if (is_device_private_page(page) || 5781 is_device_coherent_page(page)) 5782 ret = MC_TARGET_DEVICE; 5783 if (target) 5784 target->page = page; 5785 } 5786 if (!ret || !target) 5787 put_page(page); 5788 } 5789 /* 5790 * There is a swap entry and a page doesn't exist or isn't charged. 5791 * But we cannot move a tail-page in a THP. 5792 */ 5793 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5794 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5795 ret = MC_TARGET_SWAP; 5796 if (target) 5797 target->ent = ent; 5798 } 5799 return ret; 5800 } 5801 5802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5803 /* 5804 * We don't consider PMD mapped swapping or file mapped pages because THP does 5805 * not support them for now. 5806 * Caller should make sure that pmd_trans_huge(pmd) is true. 5807 */ 5808 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5809 unsigned long addr, pmd_t pmd, union mc_target *target) 5810 { 5811 struct page *page = NULL; 5812 enum mc_target_type ret = MC_TARGET_NONE; 5813 5814 if (unlikely(is_swap_pmd(pmd))) { 5815 VM_BUG_ON(thp_migration_supported() && 5816 !is_pmd_migration_entry(pmd)); 5817 return ret; 5818 } 5819 page = pmd_page(pmd); 5820 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5821 if (!(mc.flags & MOVE_ANON)) 5822 return ret; 5823 if (page_memcg(page) == mc.from) { 5824 ret = MC_TARGET_PAGE; 5825 if (target) { 5826 get_page(page); 5827 target->page = page; 5828 } 5829 } 5830 return ret; 5831 } 5832 #else 5833 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5834 unsigned long addr, pmd_t pmd, union mc_target *target) 5835 { 5836 return MC_TARGET_NONE; 5837 } 5838 #endif 5839 5840 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5841 unsigned long addr, unsigned long end, 5842 struct mm_walk *walk) 5843 { 5844 struct vm_area_struct *vma = walk->vma; 5845 pte_t *pte; 5846 spinlock_t *ptl; 5847 5848 ptl = pmd_trans_huge_lock(pmd, vma); 5849 if (ptl) { 5850 /* 5851 * Note their can not be MC_TARGET_DEVICE for now as we do not 5852 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5853 * this might change. 5854 */ 5855 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5856 mc.precharge += HPAGE_PMD_NR; 5857 spin_unlock(ptl); 5858 return 0; 5859 } 5860 5861 if (pmd_trans_unstable(pmd)) 5862 return 0; 5863 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5864 for (; addr != end; pte++, addr += PAGE_SIZE) 5865 if (get_mctgt_type(vma, addr, *pte, NULL)) 5866 mc.precharge++; /* increment precharge temporarily */ 5867 pte_unmap_unlock(pte - 1, ptl); 5868 cond_resched(); 5869 5870 return 0; 5871 } 5872 5873 static const struct mm_walk_ops precharge_walk_ops = { 5874 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5875 }; 5876 5877 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5878 { 5879 unsigned long precharge; 5880 5881 mmap_read_lock(mm); 5882 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5883 mmap_read_unlock(mm); 5884 5885 precharge = mc.precharge; 5886 mc.precharge = 0; 5887 5888 return precharge; 5889 } 5890 5891 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5892 { 5893 unsigned long precharge = mem_cgroup_count_precharge(mm); 5894 5895 VM_BUG_ON(mc.moving_task); 5896 mc.moving_task = current; 5897 return mem_cgroup_do_precharge(precharge); 5898 } 5899 5900 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5901 static void __mem_cgroup_clear_mc(void) 5902 { 5903 struct mem_cgroup *from = mc.from; 5904 struct mem_cgroup *to = mc.to; 5905 5906 /* we must uncharge all the leftover precharges from mc.to */ 5907 if (mc.precharge) { 5908 cancel_charge(mc.to, mc.precharge); 5909 mc.precharge = 0; 5910 } 5911 /* 5912 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5913 * we must uncharge here. 5914 */ 5915 if (mc.moved_charge) { 5916 cancel_charge(mc.from, mc.moved_charge); 5917 mc.moved_charge = 0; 5918 } 5919 /* we must fixup refcnts and charges */ 5920 if (mc.moved_swap) { 5921 /* uncharge swap account from the old cgroup */ 5922 if (!mem_cgroup_is_root(mc.from)) 5923 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5924 5925 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5926 5927 /* 5928 * we charged both to->memory and to->memsw, so we 5929 * should uncharge to->memory. 5930 */ 5931 if (!mem_cgroup_is_root(mc.to)) 5932 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5933 5934 mc.moved_swap = 0; 5935 } 5936 memcg_oom_recover(from); 5937 memcg_oom_recover(to); 5938 wake_up_all(&mc.waitq); 5939 } 5940 5941 static void mem_cgroup_clear_mc(void) 5942 { 5943 struct mm_struct *mm = mc.mm; 5944 5945 /* 5946 * we must clear moving_task before waking up waiters at the end of 5947 * task migration. 5948 */ 5949 mc.moving_task = NULL; 5950 __mem_cgroup_clear_mc(); 5951 spin_lock(&mc.lock); 5952 mc.from = NULL; 5953 mc.to = NULL; 5954 mc.mm = NULL; 5955 spin_unlock(&mc.lock); 5956 5957 mmput(mm); 5958 } 5959 5960 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5961 { 5962 struct cgroup_subsys_state *css; 5963 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5964 struct mem_cgroup *from; 5965 struct task_struct *leader, *p; 5966 struct mm_struct *mm; 5967 unsigned long move_flags; 5968 int ret = 0; 5969 5970 /* charge immigration isn't supported on the default hierarchy */ 5971 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5972 return 0; 5973 5974 /* 5975 * Multi-process migrations only happen on the default hierarchy 5976 * where charge immigration is not used. Perform charge 5977 * immigration if @tset contains a leader and whine if there are 5978 * multiple. 5979 */ 5980 p = NULL; 5981 cgroup_taskset_for_each_leader(leader, css, tset) { 5982 WARN_ON_ONCE(p); 5983 p = leader; 5984 memcg = mem_cgroup_from_css(css); 5985 } 5986 if (!p) 5987 return 0; 5988 5989 /* 5990 * We are now committed to this value whatever it is. Changes in this 5991 * tunable will only affect upcoming migrations, not the current one. 5992 * So we need to save it, and keep it going. 5993 */ 5994 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5995 if (!move_flags) 5996 return 0; 5997 5998 from = mem_cgroup_from_task(p); 5999 6000 VM_BUG_ON(from == memcg); 6001 6002 mm = get_task_mm(p); 6003 if (!mm) 6004 return 0; 6005 /* We move charges only when we move a owner of the mm */ 6006 if (mm->owner == p) { 6007 VM_BUG_ON(mc.from); 6008 VM_BUG_ON(mc.to); 6009 VM_BUG_ON(mc.precharge); 6010 VM_BUG_ON(mc.moved_charge); 6011 VM_BUG_ON(mc.moved_swap); 6012 6013 spin_lock(&mc.lock); 6014 mc.mm = mm; 6015 mc.from = from; 6016 mc.to = memcg; 6017 mc.flags = move_flags; 6018 spin_unlock(&mc.lock); 6019 /* We set mc.moving_task later */ 6020 6021 ret = mem_cgroup_precharge_mc(mm); 6022 if (ret) 6023 mem_cgroup_clear_mc(); 6024 } else { 6025 mmput(mm); 6026 } 6027 return ret; 6028 } 6029 6030 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6031 { 6032 if (mc.to) 6033 mem_cgroup_clear_mc(); 6034 } 6035 6036 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6037 unsigned long addr, unsigned long end, 6038 struct mm_walk *walk) 6039 { 6040 int ret = 0; 6041 struct vm_area_struct *vma = walk->vma; 6042 pte_t *pte; 6043 spinlock_t *ptl; 6044 enum mc_target_type target_type; 6045 union mc_target target; 6046 struct page *page; 6047 6048 ptl = pmd_trans_huge_lock(pmd, vma); 6049 if (ptl) { 6050 if (mc.precharge < HPAGE_PMD_NR) { 6051 spin_unlock(ptl); 6052 return 0; 6053 } 6054 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6055 if (target_type == MC_TARGET_PAGE) { 6056 page = target.page; 6057 if (!isolate_lru_page(page)) { 6058 if (!mem_cgroup_move_account(page, true, 6059 mc.from, mc.to)) { 6060 mc.precharge -= HPAGE_PMD_NR; 6061 mc.moved_charge += HPAGE_PMD_NR; 6062 } 6063 putback_lru_page(page); 6064 } 6065 put_page(page); 6066 } else if (target_type == MC_TARGET_DEVICE) { 6067 page = target.page; 6068 if (!mem_cgroup_move_account(page, true, 6069 mc.from, mc.to)) { 6070 mc.precharge -= HPAGE_PMD_NR; 6071 mc.moved_charge += HPAGE_PMD_NR; 6072 } 6073 put_page(page); 6074 } 6075 spin_unlock(ptl); 6076 return 0; 6077 } 6078 6079 if (pmd_trans_unstable(pmd)) 6080 return 0; 6081 retry: 6082 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6083 for (; addr != end; addr += PAGE_SIZE) { 6084 pte_t ptent = *(pte++); 6085 bool device = false; 6086 swp_entry_t ent; 6087 6088 if (!mc.precharge) 6089 break; 6090 6091 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6092 case MC_TARGET_DEVICE: 6093 device = true; 6094 fallthrough; 6095 case MC_TARGET_PAGE: 6096 page = target.page; 6097 /* 6098 * We can have a part of the split pmd here. Moving it 6099 * can be done but it would be too convoluted so simply 6100 * ignore such a partial THP and keep it in original 6101 * memcg. There should be somebody mapping the head. 6102 */ 6103 if (PageTransCompound(page)) 6104 goto put; 6105 if (!device && isolate_lru_page(page)) 6106 goto put; 6107 if (!mem_cgroup_move_account(page, false, 6108 mc.from, mc.to)) { 6109 mc.precharge--; 6110 /* we uncharge from mc.from later. */ 6111 mc.moved_charge++; 6112 } 6113 if (!device) 6114 putback_lru_page(page); 6115 put: /* get_mctgt_type() gets the page */ 6116 put_page(page); 6117 break; 6118 case MC_TARGET_SWAP: 6119 ent = target.ent; 6120 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6121 mc.precharge--; 6122 mem_cgroup_id_get_many(mc.to, 1); 6123 /* we fixup other refcnts and charges later. */ 6124 mc.moved_swap++; 6125 } 6126 break; 6127 default: 6128 break; 6129 } 6130 } 6131 pte_unmap_unlock(pte - 1, ptl); 6132 cond_resched(); 6133 6134 if (addr != end) { 6135 /* 6136 * We have consumed all precharges we got in can_attach(). 6137 * We try charge one by one, but don't do any additional 6138 * charges to mc.to if we have failed in charge once in attach() 6139 * phase. 6140 */ 6141 ret = mem_cgroup_do_precharge(1); 6142 if (!ret) 6143 goto retry; 6144 } 6145 6146 return ret; 6147 } 6148 6149 static const struct mm_walk_ops charge_walk_ops = { 6150 .pmd_entry = mem_cgroup_move_charge_pte_range, 6151 }; 6152 6153 static void mem_cgroup_move_charge(void) 6154 { 6155 lru_add_drain_all(); 6156 /* 6157 * Signal lock_page_memcg() to take the memcg's move_lock 6158 * while we're moving its pages to another memcg. Then wait 6159 * for already started RCU-only updates to finish. 6160 */ 6161 atomic_inc(&mc.from->moving_account); 6162 synchronize_rcu(); 6163 retry: 6164 if (unlikely(!mmap_read_trylock(mc.mm))) { 6165 /* 6166 * Someone who are holding the mmap_lock might be waiting in 6167 * waitq. So we cancel all extra charges, wake up all waiters, 6168 * and retry. Because we cancel precharges, we might not be able 6169 * to move enough charges, but moving charge is a best-effort 6170 * feature anyway, so it wouldn't be a big problem. 6171 */ 6172 __mem_cgroup_clear_mc(); 6173 cond_resched(); 6174 goto retry; 6175 } 6176 /* 6177 * When we have consumed all precharges and failed in doing 6178 * additional charge, the page walk just aborts. 6179 */ 6180 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6181 NULL); 6182 6183 mmap_read_unlock(mc.mm); 6184 atomic_dec(&mc.from->moving_account); 6185 } 6186 6187 static void mem_cgroup_move_task(void) 6188 { 6189 if (mc.to) { 6190 mem_cgroup_move_charge(); 6191 mem_cgroup_clear_mc(); 6192 } 6193 } 6194 #else /* !CONFIG_MMU */ 6195 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6196 { 6197 return 0; 6198 } 6199 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6200 { 6201 } 6202 static void mem_cgroup_move_task(void) 6203 { 6204 } 6205 #endif 6206 6207 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6208 { 6209 if (value == PAGE_COUNTER_MAX) 6210 seq_puts(m, "max\n"); 6211 else 6212 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6213 6214 return 0; 6215 } 6216 6217 static u64 memory_current_read(struct cgroup_subsys_state *css, 6218 struct cftype *cft) 6219 { 6220 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6221 6222 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6223 } 6224 6225 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6226 struct cftype *cft) 6227 { 6228 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6229 6230 return (u64)memcg->memory.watermark * PAGE_SIZE; 6231 } 6232 6233 static int memory_min_show(struct seq_file *m, void *v) 6234 { 6235 return seq_puts_memcg_tunable(m, 6236 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6237 } 6238 6239 static ssize_t memory_min_write(struct kernfs_open_file *of, 6240 char *buf, size_t nbytes, loff_t off) 6241 { 6242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6243 unsigned long min; 6244 int err; 6245 6246 buf = strstrip(buf); 6247 err = page_counter_memparse(buf, "max", &min); 6248 if (err) 6249 return err; 6250 6251 page_counter_set_min(&memcg->memory, min); 6252 6253 return nbytes; 6254 } 6255 6256 static int memory_low_show(struct seq_file *m, void *v) 6257 { 6258 return seq_puts_memcg_tunable(m, 6259 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6260 } 6261 6262 static ssize_t memory_low_write(struct kernfs_open_file *of, 6263 char *buf, size_t nbytes, loff_t off) 6264 { 6265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6266 unsigned long low; 6267 int err; 6268 6269 buf = strstrip(buf); 6270 err = page_counter_memparse(buf, "max", &low); 6271 if (err) 6272 return err; 6273 6274 page_counter_set_low(&memcg->memory, low); 6275 6276 return nbytes; 6277 } 6278 6279 static int memory_high_show(struct seq_file *m, void *v) 6280 { 6281 return seq_puts_memcg_tunable(m, 6282 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6283 } 6284 6285 static ssize_t memory_high_write(struct kernfs_open_file *of, 6286 char *buf, size_t nbytes, loff_t off) 6287 { 6288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6289 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6290 bool drained = false; 6291 unsigned long high; 6292 int err; 6293 6294 buf = strstrip(buf); 6295 err = page_counter_memparse(buf, "max", &high); 6296 if (err) 6297 return err; 6298 6299 page_counter_set_high(&memcg->memory, high); 6300 6301 for (;;) { 6302 unsigned long nr_pages = page_counter_read(&memcg->memory); 6303 unsigned long reclaimed; 6304 6305 if (nr_pages <= high) 6306 break; 6307 6308 if (signal_pending(current)) 6309 break; 6310 6311 if (!drained) { 6312 drain_all_stock(memcg); 6313 drained = true; 6314 continue; 6315 } 6316 6317 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6318 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6319 6320 if (!reclaimed && !nr_retries--) 6321 break; 6322 } 6323 6324 memcg_wb_domain_size_changed(memcg); 6325 return nbytes; 6326 } 6327 6328 static int memory_max_show(struct seq_file *m, void *v) 6329 { 6330 return seq_puts_memcg_tunable(m, 6331 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6332 } 6333 6334 static ssize_t memory_max_write(struct kernfs_open_file *of, 6335 char *buf, size_t nbytes, loff_t off) 6336 { 6337 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6338 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6339 bool drained = false; 6340 unsigned long max; 6341 int err; 6342 6343 buf = strstrip(buf); 6344 err = page_counter_memparse(buf, "max", &max); 6345 if (err) 6346 return err; 6347 6348 xchg(&memcg->memory.max, max); 6349 6350 for (;;) { 6351 unsigned long nr_pages = page_counter_read(&memcg->memory); 6352 6353 if (nr_pages <= max) 6354 break; 6355 6356 if (signal_pending(current)) 6357 break; 6358 6359 if (!drained) { 6360 drain_all_stock(memcg); 6361 drained = true; 6362 continue; 6363 } 6364 6365 if (nr_reclaims) { 6366 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6367 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6368 nr_reclaims--; 6369 continue; 6370 } 6371 6372 memcg_memory_event(memcg, MEMCG_OOM); 6373 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6374 break; 6375 } 6376 6377 memcg_wb_domain_size_changed(memcg); 6378 return nbytes; 6379 } 6380 6381 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6382 { 6383 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6384 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6385 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6386 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6387 seq_printf(m, "oom_kill %lu\n", 6388 atomic_long_read(&events[MEMCG_OOM_KILL])); 6389 seq_printf(m, "oom_group_kill %lu\n", 6390 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6391 } 6392 6393 static int memory_events_show(struct seq_file *m, void *v) 6394 { 6395 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6396 6397 __memory_events_show(m, memcg->memory_events); 6398 return 0; 6399 } 6400 6401 static int memory_events_local_show(struct seq_file *m, void *v) 6402 { 6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6404 6405 __memory_events_show(m, memcg->memory_events_local); 6406 return 0; 6407 } 6408 6409 static int memory_stat_show(struct seq_file *m, void *v) 6410 { 6411 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6412 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6413 6414 if (!buf) 6415 return -ENOMEM; 6416 memory_stat_format(memcg, buf, PAGE_SIZE); 6417 seq_puts(m, buf); 6418 kfree(buf); 6419 return 0; 6420 } 6421 6422 #ifdef CONFIG_NUMA 6423 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6424 int item) 6425 { 6426 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6427 } 6428 6429 static int memory_numa_stat_show(struct seq_file *m, void *v) 6430 { 6431 int i; 6432 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6433 6434 mem_cgroup_flush_stats(); 6435 6436 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6437 int nid; 6438 6439 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6440 continue; 6441 6442 seq_printf(m, "%s", memory_stats[i].name); 6443 for_each_node_state(nid, N_MEMORY) { 6444 u64 size; 6445 struct lruvec *lruvec; 6446 6447 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6448 size = lruvec_page_state_output(lruvec, 6449 memory_stats[i].idx); 6450 seq_printf(m, " N%d=%llu", nid, size); 6451 } 6452 seq_putc(m, '\n'); 6453 } 6454 6455 return 0; 6456 } 6457 #endif 6458 6459 static int memory_oom_group_show(struct seq_file *m, void *v) 6460 { 6461 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6462 6463 seq_printf(m, "%d\n", memcg->oom_group); 6464 6465 return 0; 6466 } 6467 6468 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6469 char *buf, size_t nbytes, loff_t off) 6470 { 6471 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6472 int ret, oom_group; 6473 6474 buf = strstrip(buf); 6475 if (!buf) 6476 return -EINVAL; 6477 6478 ret = kstrtoint(buf, 0, &oom_group); 6479 if (ret) 6480 return ret; 6481 6482 if (oom_group != 0 && oom_group != 1) 6483 return -EINVAL; 6484 6485 memcg->oom_group = oom_group; 6486 6487 return nbytes; 6488 } 6489 6490 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6491 size_t nbytes, loff_t off) 6492 { 6493 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6494 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6495 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6496 unsigned int reclaim_options; 6497 int err; 6498 6499 buf = strstrip(buf); 6500 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6501 if (err) 6502 return err; 6503 6504 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6505 while (nr_reclaimed < nr_to_reclaim) { 6506 unsigned long reclaimed; 6507 6508 if (signal_pending(current)) 6509 return -EINTR; 6510 6511 /* 6512 * This is the final attempt, drain percpu lru caches in the 6513 * hope of introducing more evictable pages for 6514 * try_to_free_mem_cgroup_pages(). 6515 */ 6516 if (!nr_retries) 6517 lru_add_drain_all(); 6518 6519 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6520 nr_to_reclaim - nr_reclaimed, 6521 GFP_KERNEL, reclaim_options); 6522 6523 if (!reclaimed && !nr_retries--) 6524 return -EAGAIN; 6525 6526 nr_reclaimed += reclaimed; 6527 } 6528 6529 return nbytes; 6530 } 6531 6532 static struct cftype memory_files[] = { 6533 { 6534 .name = "current", 6535 .flags = CFTYPE_NOT_ON_ROOT, 6536 .read_u64 = memory_current_read, 6537 }, 6538 { 6539 .name = "peak", 6540 .flags = CFTYPE_NOT_ON_ROOT, 6541 .read_u64 = memory_peak_read, 6542 }, 6543 { 6544 .name = "min", 6545 .flags = CFTYPE_NOT_ON_ROOT, 6546 .seq_show = memory_min_show, 6547 .write = memory_min_write, 6548 }, 6549 { 6550 .name = "low", 6551 .flags = CFTYPE_NOT_ON_ROOT, 6552 .seq_show = memory_low_show, 6553 .write = memory_low_write, 6554 }, 6555 { 6556 .name = "high", 6557 .flags = CFTYPE_NOT_ON_ROOT, 6558 .seq_show = memory_high_show, 6559 .write = memory_high_write, 6560 }, 6561 { 6562 .name = "max", 6563 .flags = CFTYPE_NOT_ON_ROOT, 6564 .seq_show = memory_max_show, 6565 .write = memory_max_write, 6566 }, 6567 { 6568 .name = "events", 6569 .flags = CFTYPE_NOT_ON_ROOT, 6570 .file_offset = offsetof(struct mem_cgroup, events_file), 6571 .seq_show = memory_events_show, 6572 }, 6573 { 6574 .name = "events.local", 6575 .flags = CFTYPE_NOT_ON_ROOT, 6576 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6577 .seq_show = memory_events_local_show, 6578 }, 6579 { 6580 .name = "stat", 6581 .seq_show = memory_stat_show, 6582 }, 6583 #ifdef CONFIG_NUMA 6584 { 6585 .name = "numa_stat", 6586 .seq_show = memory_numa_stat_show, 6587 }, 6588 #endif 6589 { 6590 .name = "oom.group", 6591 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6592 .seq_show = memory_oom_group_show, 6593 .write = memory_oom_group_write, 6594 }, 6595 { 6596 .name = "reclaim", 6597 .flags = CFTYPE_NS_DELEGATABLE, 6598 .write = memory_reclaim, 6599 }, 6600 { } /* terminate */ 6601 }; 6602 6603 struct cgroup_subsys memory_cgrp_subsys = { 6604 .css_alloc = mem_cgroup_css_alloc, 6605 .css_online = mem_cgroup_css_online, 6606 .css_offline = mem_cgroup_css_offline, 6607 .css_released = mem_cgroup_css_released, 6608 .css_free = mem_cgroup_css_free, 6609 .css_reset = mem_cgroup_css_reset, 6610 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6611 .can_attach = mem_cgroup_can_attach, 6612 .cancel_attach = mem_cgroup_cancel_attach, 6613 .post_attach = mem_cgroup_move_task, 6614 .dfl_cftypes = memory_files, 6615 .legacy_cftypes = mem_cgroup_legacy_files, 6616 .early_init = 0, 6617 }; 6618 6619 /* 6620 * This function calculates an individual cgroup's effective 6621 * protection which is derived from its own memory.min/low, its 6622 * parent's and siblings' settings, as well as the actual memory 6623 * distribution in the tree. 6624 * 6625 * The following rules apply to the effective protection values: 6626 * 6627 * 1. At the first level of reclaim, effective protection is equal to 6628 * the declared protection in memory.min and memory.low. 6629 * 6630 * 2. To enable safe delegation of the protection configuration, at 6631 * subsequent levels the effective protection is capped to the 6632 * parent's effective protection. 6633 * 6634 * 3. To make complex and dynamic subtrees easier to configure, the 6635 * user is allowed to overcommit the declared protection at a given 6636 * level. If that is the case, the parent's effective protection is 6637 * distributed to the children in proportion to how much protection 6638 * they have declared and how much of it they are utilizing. 6639 * 6640 * This makes distribution proportional, but also work-conserving: 6641 * if one cgroup claims much more protection than it uses memory, 6642 * the unused remainder is available to its siblings. 6643 * 6644 * 4. Conversely, when the declared protection is undercommitted at a 6645 * given level, the distribution of the larger parental protection 6646 * budget is NOT proportional. A cgroup's protection from a sibling 6647 * is capped to its own memory.min/low setting. 6648 * 6649 * 5. However, to allow protecting recursive subtrees from each other 6650 * without having to declare each individual cgroup's fixed share 6651 * of the ancestor's claim to protection, any unutilized - 6652 * "floating" - protection from up the tree is distributed in 6653 * proportion to each cgroup's *usage*. This makes the protection 6654 * neutral wrt sibling cgroups and lets them compete freely over 6655 * the shared parental protection budget, but it protects the 6656 * subtree as a whole from neighboring subtrees. 6657 * 6658 * Note that 4. and 5. are not in conflict: 4. is about protecting 6659 * against immediate siblings whereas 5. is about protecting against 6660 * neighboring subtrees. 6661 */ 6662 static unsigned long effective_protection(unsigned long usage, 6663 unsigned long parent_usage, 6664 unsigned long setting, 6665 unsigned long parent_effective, 6666 unsigned long siblings_protected) 6667 { 6668 unsigned long protected; 6669 unsigned long ep; 6670 6671 protected = min(usage, setting); 6672 /* 6673 * If all cgroups at this level combined claim and use more 6674 * protection then what the parent affords them, distribute 6675 * shares in proportion to utilization. 6676 * 6677 * We are using actual utilization rather than the statically 6678 * claimed protection in order to be work-conserving: claimed 6679 * but unused protection is available to siblings that would 6680 * otherwise get a smaller chunk than what they claimed. 6681 */ 6682 if (siblings_protected > parent_effective) 6683 return protected * parent_effective / siblings_protected; 6684 6685 /* 6686 * Ok, utilized protection of all children is within what the 6687 * parent affords them, so we know whatever this child claims 6688 * and utilizes is effectively protected. 6689 * 6690 * If there is unprotected usage beyond this value, reclaim 6691 * will apply pressure in proportion to that amount. 6692 * 6693 * If there is unutilized protection, the cgroup will be fully 6694 * shielded from reclaim, but we do return a smaller value for 6695 * protection than what the group could enjoy in theory. This 6696 * is okay. With the overcommit distribution above, effective 6697 * protection is always dependent on how memory is actually 6698 * consumed among the siblings anyway. 6699 */ 6700 ep = protected; 6701 6702 /* 6703 * If the children aren't claiming (all of) the protection 6704 * afforded to them by the parent, distribute the remainder in 6705 * proportion to the (unprotected) memory of each cgroup. That 6706 * way, cgroups that aren't explicitly prioritized wrt each 6707 * other compete freely over the allowance, but they are 6708 * collectively protected from neighboring trees. 6709 * 6710 * We're using unprotected memory for the weight so that if 6711 * some cgroups DO claim explicit protection, we don't protect 6712 * the same bytes twice. 6713 * 6714 * Check both usage and parent_usage against the respective 6715 * protected values. One should imply the other, but they 6716 * aren't read atomically - make sure the division is sane. 6717 */ 6718 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6719 return ep; 6720 if (parent_effective > siblings_protected && 6721 parent_usage > siblings_protected && 6722 usage > protected) { 6723 unsigned long unclaimed; 6724 6725 unclaimed = parent_effective - siblings_protected; 6726 unclaimed *= usage - protected; 6727 unclaimed /= parent_usage - siblings_protected; 6728 6729 ep += unclaimed; 6730 } 6731 6732 return ep; 6733 } 6734 6735 /** 6736 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6737 * @root: the top ancestor of the sub-tree being checked 6738 * @memcg: the memory cgroup to check 6739 * 6740 * WARNING: This function is not stateless! It can only be used as part 6741 * of a top-down tree iteration, not for isolated queries. 6742 */ 6743 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6744 struct mem_cgroup *memcg) 6745 { 6746 unsigned long usage, parent_usage; 6747 struct mem_cgroup *parent; 6748 6749 if (mem_cgroup_disabled()) 6750 return; 6751 6752 if (!root) 6753 root = root_mem_cgroup; 6754 6755 /* 6756 * Effective values of the reclaim targets are ignored so they 6757 * can be stale. Have a look at mem_cgroup_protection for more 6758 * details. 6759 * TODO: calculation should be more robust so that we do not need 6760 * that special casing. 6761 */ 6762 if (memcg == root) 6763 return; 6764 6765 usage = page_counter_read(&memcg->memory); 6766 if (!usage) 6767 return; 6768 6769 parent = parent_mem_cgroup(memcg); 6770 6771 if (parent == root) { 6772 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6773 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6774 return; 6775 } 6776 6777 parent_usage = page_counter_read(&parent->memory); 6778 6779 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6780 READ_ONCE(memcg->memory.min), 6781 READ_ONCE(parent->memory.emin), 6782 atomic_long_read(&parent->memory.children_min_usage))); 6783 6784 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6785 READ_ONCE(memcg->memory.low), 6786 READ_ONCE(parent->memory.elow), 6787 atomic_long_read(&parent->memory.children_low_usage))); 6788 } 6789 6790 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6791 gfp_t gfp) 6792 { 6793 long nr_pages = folio_nr_pages(folio); 6794 int ret; 6795 6796 ret = try_charge(memcg, gfp, nr_pages); 6797 if (ret) 6798 goto out; 6799 6800 css_get(&memcg->css); 6801 commit_charge(folio, memcg); 6802 6803 local_irq_disable(); 6804 mem_cgroup_charge_statistics(memcg, nr_pages); 6805 memcg_check_events(memcg, folio_nid(folio)); 6806 local_irq_enable(); 6807 out: 6808 return ret; 6809 } 6810 6811 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6812 { 6813 struct mem_cgroup *memcg; 6814 int ret; 6815 6816 memcg = get_mem_cgroup_from_mm(mm); 6817 ret = charge_memcg(folio, memcg, gfp); 6818 css_put(&memcg->css); 6819 6820 return ret; 6821 } 6822 6823 /** 6824 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6825 * @page: page to charge 6826 * @mm: mm context of the victim 6827 * @gfp: reclaim mode 6828 * @entry: swap entry for which the page is allocated 6829 * 6830 * This function charges a page allocated for swapin. Please call this before 6831 * adding the page to the swapcache. 6832 * 6833 * Returns 0 on success. Otherwise, an error code is returned. 6834 */ 6835 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6836 gfp_t gfp, swp_entry_t entry) 6837 { 6838 struct folio *folio = page_folio(page); 6839 struct mem_cgroup *memcg; 6840 unsigned short id; 6841 int ret; 6842 6843 if (mem_cgroup_disabled()) 6844 return 0; 6845 6846 id = lookup_swap_cgroup_id(entry); 6847 rcu_read_lock(); 6848 memcg = mem_cgroup_from_id(id); 6849 if (!memcg || !css_tryget_online(&memcg->css)) 6850 memcg = get_mem_cgroup_from_mm(mm); 6851 rcu_read_unlock(); 6852 6853 ret = charge_memcg(folio, memcg, gfp); 6854 6855 css_put(&memcg->css); 6856 return ret; 6857 } 6858 6859 /* 6860 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6861 * @entry: swap entry for which the page is charged 6862 * 6863 * Call this function after successfully adding the charged page to swapcache. 6864 * 6865 * Note: This function assumes the page for which swap slot is being uncharged 6866 * is order 0 page. 6867 */ 6868 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6869 { 6870 /* 6871 * Cgroup1's unified memory+swap counter has been charged with the 6872 * new swapcache page, finish the transfer by uncharging the swap 6873 * slot. The swap slot would also get uncharged when it dies, but 6874 * it can stick around indefinitely and we'd count the page twice 6875 * the entire time. 6876 * 6877 * Cgroup2 has separate resource counters for memory and swap, 6878 * so this is a non-issue here. Memory and swap charge lifetimes 6879 * correspond 1:1 to page and swap slot lifetimes: we charge the 6880 * page to memory here, and uncharge swap when the slot is freed. 6881 */ 6882 if (!mem_cgroup_disabled() && do_memsw_account()) { 6883 /* 6884 * The swap entry might not get freed for a long time, 6885 * let's not wait for it. The page already received a 6886 * memory+swap charge, drop the swap entry duplicate. 6887 */ 6888 mem_cgroup_uncharge_swap(entry, 1); 6889 } 6890 } 6891 6892 struct uncharge_gather { 6893 struct mem_cgroup *memcg; 6894 unsigned long nr_memory; 6895 unsigned long pgpgout; 6896 unsigned long nr_kmem; 6897 int nid; 6898 }; 6899 6900 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6901 { 6902 memset(ug, 0, sizeof(*ug)); 6903 } 6904 6905 static void uncharge_batch(const struct uncharge_gather *ug) 6906 { 6907 unsigned long flags; 6908 6909 if (ug->nr_memory) { 6910 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6911 if (do_memsw_account()) 6912 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6913 if (ug->nr_kmem) 6914 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 6915 memcg_oom_recover(ug->memcg); 6916 } 6917 6918 local_irq_save(flags); 6919 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6920 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6921 memcg_check_events(ug->memcg, ug->nid); 6922 local_irq_restore(flags); 6923 6924 /* drop reference from uncharge_folio */ 6925 css_put(&ug->memcg->css); 6926 } 6927 6928 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6929 { 6930 long nr_pages; 6931 struct mem_cgroup *memcg; 6932 struct obj_cgroup *objcg; 6933 6934 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6935 6936 /* 6937 * Nobody should be changing or seriously looking at 6938 * folio memcg or objcg at this point, we have fully 6939 * exclusive access to the folio. 6940 */ 6941 if (folio_memcg_kmem(folio)) { 6942 objcg = __folio_objcg(folio); 6943 /* 6944 * This get matches the put at the end of the function and 6945 * kmem pages do not hold memcg references anymore. 6946 */ 6947 memcg = get_mem_cgroup_from_objcg(objcg); 6948 } else { 6949 memcg = __folio_memcg(folio); 6950 } 6951 6952 if (!memcg) 6953 return; 6954 6955 if (ug->memcg != memcg) { 6956 if (ug->memcg) { 6957 uncharge_batch(ug); 6958 uncharge_gather_clear(ug); 6959 } 6960 ug->memcg = memcg; 6961 ug->nid = folio_nid(folio); 6962 6963 /* pairs with css_put in uncharge_batch */ 6964 css_get(&memcg->css); 6965 } 6966 6967 nr_pages = folio_nr_pages(folio); 6968 6969 if (folio_memcg_kmem(folio)) { 6970 ug->nr_memory += nr_pages; 6971 ug->nr_kmem += nr_pages; 6972 6973 folio->memcg_data = 0; 6974 obj_cgroup_put(objcg); 6975 } else { 6976 /* LRU pages aren't accounted at the root level */ 6977 if (!mem_cgroup_is_root(memcg)) 6978 ug->nr_memory += nr_pages; 6979 ug->pgpgout++; 6980 6981 folio->memcg_data = 0; 6982 } 6983 6984 css_put(&memcg->css); 6985 } 6986 6987 void __mem_cgroup_uncharge(struct folio *folio) 6988 { 6989 struct uncharge_gather ug; 6990 6991 /* Don't touch folio->lru of any random page, pre-check: */ 6992 if (!folio_memcg(folio)) 6993 return; 6994 6995 uncharge_gather_clear(&ug); 6996 uncharge_folio(folio, &ug); 6997 uncharge_batch(&ug); 6998 } 6999 7000 /** 7001 * __mem_cgroup_uncharge_list - uncharge a list of page 7002 * @page_list: list of pages to uncharge 7003 * 7004 * Uncharge a list of pages previously charged with 7005 * __mem_cgroup_charge(). 7006 */ 7007 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7008 { 7009 struct uncharge_gather ug; 7010 struct folio *folio; 7011 7012 uncharge_gather_clear(&ug); 7013 list_for_each_entry(folio, page_list, lru) 7014 uncharge_folio(folio, &ug); 7015 if (ug.memcg) 7016 uncharge_batch(&ug); 7017 } 7018 7019 /** 7020 * mem_cgroup_migrate - Charge a folio's replacement. 7021 * @old: Currently circulating folio. 7022 * @new: Replacement folio. 7023 * 7024 * Charge @new as a replacement folio for @old. @old will 7025 * be uncharged upon free. 7026 * 7027 * Both folios must be locked, @new->mapping must be set up. 7028 */ 7029 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7030 { 7031 struct mem_cgroup *memcg; 7032 long nr_pages = folio_nr_pages(new); 7033 unsigned long flags; 7034 7035 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7036 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7037 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7038 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7039 7040 if (mem_cgroup_disabled()) 7041 return; 7042 7043 /* Page cache replacement: new folio already charged? */ 7044 if (folio_memcg(new)) 7045 return; 7046 7047 memcg = folio_memcg(old); 7048 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7049 if (!memcg) 7050 return; 7051 7052 /* Force-charge the new page. The old one will be freed soon */ 7053 if (!mem_cgroup_is_root(memcg)) { 7054 page_counter_charge(&memcg->memory, nr_pages); 7055 if (do_memsw_account()) 7056 page_counter_charge(&memcg->memsw, nr_pages); 7057 } 7058 7059 css_get(&memcg->css); 7060 commit_charge(new, memcg); 7061 7062 local_irq_save(flags); 7063 mem_cgroup_charge_statistics(memcg, nr_pages); 7064 memcg_check_events(memcg, folio_nid(new)); 7065 local_irq_restore(flags); 7066 } 7067 7068 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7069 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7070 7071 void mem_cgroup_sk_alloc(struct sock *sk) 7072 { 7073 struct mem_cgroup *memcg; 7074 7075 if (!mem_cgroup_sockets_enabled) 7076 return; 7077 7078 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7079 if (!in_task()) 7080 return; 7081 7082 rcu_read_lock(); 7083 memcg = mem_cgroup_from_task(current); 7084 if (memcg == root_mem_cgroup) 7085 goto out; 7086 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7087 goto out; 7088 if (css_tryget(&memcg->css)) 7089 sk->sk_memcg = memcg; 7090 out: 7091 rcu_read_unlock(); 7092 } 7093 7094 void mem_cgroup_sk_free(struct sock *sk) 7095 { 7096 if (sk->sk_memcg) 7097 css_put(&sk->sk_memcg->css); 7098 } 7099 7100 /** 7101 * mem_cgroup_charge_skmem - charge socket memory 7102 * @memcg: memcg to charge 7103 * @nr_pages: number of pages to charge 7104 * @gfp_mask: reclaim mode 7105 * 7106 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7107 * @memcg's configured limit, %false if it doesn't. 7108 */ 7109 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7110 gfp_t gfp_mask) 7111 { 7112 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7113 struct page_counter *fail; 7114 7115 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7116 memcg->tcpmem_pressure = 0; 7117 return true; 7118 } 7119 memcg->tcpmem_pressure = 1; 7120 if (gfp_mask & __GFP_NOFAIL) { 7121 page_counter_charge(&memcg->tcpmem, nr_pages); 7122 return true; 7123 } 7124 return false; 7125 } 7126 7127 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7128 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7129 return true; 7130 } 7131 7132 return false; 7133 } 7134 7135 /** 7136 * mem_cgroup_uncharge_skmem - uncharge socket memory 7137 * @memcg: memcg to uncharge 7138 * @nr_pages: number of pages to uncharge 7139 */ 7140 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7141 { 7142 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7143 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7144 return; 7145 } 7146 7147 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7148 7149 refill_stock(memcg, nr_pages); 7150 } 7151 7152 static int __init cgroup_memory(char *s) 7153 { 7154 char *token; 7155 7156 while ((token = strsep(&s, ",")) != NULL) { 7157 if (!*token) 7158 continue; 7159 if (!strcmp(token, "nosocket")) 7160 cgroup_memory_nosocket = true; 7161 if (!strcmp(token, "nokmem")) 7162 cgroup_memory_nokmem = true; 7163 } 7164 return 1; 7165 } 7166 __setup("cgroup.memory=", cgroup_memory); 7167 7168 /* 7169 * subsys_initcall() for memory controller. 7170 * 7171 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7172 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7173 * basically everything that doesn't depend on a specific mem_cgroup structure 7174 * should be initialized from here. 7175 */ 7176 static int __init mem_cgroup_init(void) 7177 { 7178 int cpu, node; 7179 7180 /* 7181 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7182 * used for per-memcg-per-cpu caching of per-node statistics. In order 7183 * to work fine, we should make sure that the overfill threshold can't 7184 * exceed S32_MAX / PAGE_SIZE. 7185 */ 7186 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7187 7188 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7189 memcg_hotplug_cpu_dead); 7190 7191 for_each_possible_cpu(cpu) 7192 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7193 drain_local_stock); 7194 7195 for_each_node(node) { 7196 struct mem_cgroup_tree_per_node *rtpn; 7197 7198 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7199 node_online(node) ? node : NUMA_NO_NODE); 7200 7201 rtpn->rb_root = RB_ROOT; 7202 rtpn->rb_rightmost = NULL; 7203 spin_lock_init(&rtpn->lock); 7204 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7205 } 7206 7207 return 0; 7208 } 7209 subsys_initcall(mem_cgroup_init); 7210 7211 #ifdef CONFIG_MEMCG_SWAP 7212 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7213 { 7214 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7215 /* 7216 * The root cgroup cannot be destroyed, so it's refcount must 7217 * always be >= 1. 7218 */ 7219 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7220 VM_BUG_ON(1); 7221 break; 7222 } 7223 memcg = parent_mem_cgroup(memcg); 7224 if (!memcg) 7225 memcg = root_mem_cgroup; 7226 } 7227 return memcg; 7228 } 7229 7230 /** 7231 * mem_cgroup_swapout - transfer a memsw charge to swap 7232 * @folio: folio whose memsw charge to transfer 7233 * @entry: swap entry to move the charge to 7234 * 7235 * Transfer the memsw charge of @folio to @entry. 7236 */ 7237 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7238 { 7239 struct mem_cgroup *memcg, *swap_memcg; 7240 unsigned int nr_entries; 7241 unsigned short oldid; 7242 7243 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7244 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7245 7246 if (mem_cgroup_disabled()) 7247 return; 7248 7249 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7250 return; 7251 7252 memcg = folio_memcg(folio); 7253 7254 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7255 if (!memcg) 7256 return; 7257 7258 /* 7259 * In case the memcg owning these pages has been offlined and doesn't 7260 * have an ID allocated to it anymore, charge the closest online 7261 * ancestor for the swap instead and transfer the memory+swap charge. 7262 */ 7263 swap_memcg = mem_cgroup_id_get_online(memcg); 7264 nr_entries = folio_nr_pages(folio); 7265 /* Get references for the tail pages, too */ 7266 if (nr_entries > 1) 7267 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7268 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7269 nr_entries); 7270 VM_BUG_ON_FOLIO(oldid, folio); 7271 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7272 7273 folio->memcg_data = 0; 7274 7275 if (!mem_cgroup_is_root(memcg)) 7276 page_counter_uncharge(&memcg->memory, nr_entries); 7277 7278 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7279 if (!mem_cgroup_is_root(swap_memcg)) 7280 page_counter_charge(&swap_memcg->memsw, nr_entries); 7281 page_counter_uncharge(&memcg->memsw, nr_entries); 7282 } 7283 7284 /* 7285 * Interrupts should be disabled here because the caller holds the 7286 * i_pages lock which is taken with interrupts-off. It is 7287 * important here to have the interrupts disabled because it is the 7288 * only synchronisation we have for updating the per-CPU variables. 7289 */ 7290 memcg_stats_lock(); 7291 mem_cgroup_charge_statistics(memcg, -nr_entries); 7292 memcg_stats_unlock(); 7293 memcg_check_events(memcg, folio_nid(folio)); 7294 7295 css_put(&memcg->css); 7296 } 7297 7298 /** 7299 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7300 * @folio: folio being added to swap 7301 * @entry: swap entry to charge 7302 * 7303 * Try to charge @folio's memcg for the swap space at @entry. 7304 * 7305 * Returns 0 on success, -ENOMEM on failure. 7306 */ 7307 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7308 { 7309 unsigned int nr_pages = folio_nr_pages(folio); 7310 struct page_counter *counter; 7311 struct mem_cgroup *memcg; 7312 unsigned short oldid; 7313 7314 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7315 return 0; 7316 7317 memcg = folio_memcg(folio); 7318 7319 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7320 if (!memcg) 7321 return 0; 7322 7323 if (!entry.val) { 7324 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7325 return 0; 7326 } 7327 7328 memcg = mem_cgroup_id_get_online(memcg); 7329 7330 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7331 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7332 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7333 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7334 mem_cgroup_id_put(memcg); 7335 return -ENOMEM; 7336 } 7337 7338 /* Get references for the tail pages, too */ 7339 if (nr_pages > 1) 7340 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7341 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7342 VM_BUG_ON_FOLIO(oldid, folio); 7343 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7344 7345 return 0; 7346 } 7347 7348 /** 7349 * __mem_cgroup_uncharge_swap - uncharge swap space 7350 * @entry: swap entry to uncharge 7351 * @nr_pages: the amount of swap space to uncharge 7352 */ 7353 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7354 { 7355 struct mem_cgroup *memcg; 7356 unsigned short id; 7357 7358 id = swap_cgroup_record(entry, 0, nr_pages); 7359 rcu_read_lock(); 7360 memcg = mem_cgroup_from_id(id); 7361 if (memcg) { 7362 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7363 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7364 page_counter_uncharge(&memcg->swap, nr_pages); 7365 else 7366 page_counter_uncharge(&memcg->memsw, nr_pages); 7367 } 7368 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7369 mem_cgroup_id_put_many(memcg, nr_pages); 7370 } 7371 rcu_read_unlock(); 7372 } 7373 7374 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7375 { 7376 long nr_swap_pages = get_nr_swap_pages(); 7377 7378 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7379 return nr_swap_pages; 7380 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7381 nr_swap_pages = min_t(long, nr_swap_pages, 7382 READ_ONCE(memcg->swap.max) - 7383 page_counter_read(&memcg->swap)); 7384 return nr_swap_pages; 7385 } 7386 7387 bool mem_cgroup_swap_full(struct page *page) 7388 { 7389 struct mem_cgroup *memcg; 7390 7391 VM_BUG_ON_PAGE(!PageLocked(page), page); 7392 7393 if (vm_swap_full()) 7394 return true; 7395 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7396 return false; 7397 7398 memcg = page_memcg(page); 7399 if (!memcg) 7400 return false; 7401 7402 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7403 unsigned long usage = page_counter_read(&memcg->swap); 7404 7405 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7406 usage * 2 >= READ_ONCE(memcg->swap.max)) 7407 return true; 7408 } 7409 7410 return false; 7411 } 7412 7413 static int __init setup_swap_account(char *s) 7414 { 7415 if (!strcmp(s, "1")) 7416 cgroup_memory_noswap = false; 7417 else if (!strcmp(s, "0")) 7418 cgroup_memory_noswap = true; 7419 return 1; 7420 } 7421 __setup("swapaccount=", setup_swap_account); 7422 7423 static u64 swap_current_read(struct cgroup_subsys_state *css, 7424 struct cftype *cft) 7425 { 7426 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7427 7428 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7429 } 7430 7431 static int swap_high_show(struct seq_file *m, void *v) 7432 { 7433 return seq_puts_memcg_tunable(m, 7434 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7435 } 7436 7437 static ssize_t swap_high_write(struct kernfs_open_file *of, 7438 char *buf, size_t nbytes, loff_t off) 7439 { 7440 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7441 unsigned long high; 7442 int err; 7443 7444 buf = strstrip(buf); 7445 err = page_counter_memparse(buf, "max", &high); 7446 if (err) 7447 return err; 7448 7449 page_counter_set_high(&memcg->swap, high); 7450 7451 return nbytes; 7452 } 7453 7454 static int swap_max_show(struct seq_file *m, void *v) 7455 { 7456 return seq_puts_memcg_tunable(m, 7457 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7458 } 7459 7460 static ssize_t swap_max_write(struct kernfs_open_file *of, 7461 char *buf, size_t nbytes, loff_t off) 7462 { 7463 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7464 unsigned long max; 7465 int err; 7466 7467 buf = strstrip(buf); 7468 err = page_counter_memparse(buf, "max", &max); 7469 if (err) 7470 return err; 7471 7472 xchg(&memcg->swap.max, max); 7473 7474 return nbytes; 7475 } 7476 7477 static int swap_events_show(struct seq_file *m, void *v) 7478 { 7479 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7480 7481 seq_printf(m, "high %lu\n", 7482 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7483 seq_printf(m, "max %lu\n", 7484 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7485 seq_printf(m, "fail %lu\n", 7486 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7487 7488 return 0; 7489 } 7490 7491 static struct cftype swap_files[] = { 7492 { 7493 .name = "swap.current", 7494 .flags = CFTYPE_NOT_ON_ROOT, 7495 .read_u64 = swap_current_read, 7496 }, 7497 { 7498 .name = "swap.high", 7499 .flags = CFTYPE_NOT_ON_ROOT, 7500 .seq_show = swap_high_show, 7501 .write = swap_high_write, 7502 }, 7503 { 7504 .name = "swap.max", 7505 .flags = CFTYPE_NOT_ON_ROOT, 7506 .seq_show = swap_max_show, 7507 .write = swap_max_write, 7508 }, 7509 { 7510 .name = "swap.events", 7511 .flags = CFTYPE_NOT_ON_ROOT, 7512 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7513 .seq_show = swap_events_show, 7514 }, 7515 { } /* terminate */ 7516 }; 7517 7518 static struct cftype memsw_files[] = { 7519 { 7520 .name = "memsw.usage_in_bytes", 7521 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7522 .read_u64 = mem_cgroup_read_u64, 7523 }, 7524 { 7525 .name = "memsw.max_usage_in_bytes", 7526 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7527 .write = mem_cgroup_reset, 7528 .read_u64 = mem_cgroup_read_u64, 7529 }, 7530 { 7531 .name = "memsw.limit_in_bytes", 7532 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7533 .write = mem_cgroup_write, 7534 .read_u64 = mem_cgroup_read_u64, 7535 }, 7536 { 7537 .name = "memsw.failcnt", 7538 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7539 .write = mem_cgroup_reset, 7540 .read_u64 = mem_cgroup_read_u64, 7541 }, 7542 { }, /* terminate */ 7543 }; 7544 7545 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7546 /** 7547 * obj_cgroup_may_zswap - check if this cgroup can zswap 7548 * @objcg: the object cgroup 7549 * 7550 * Check if the hierarchical zswap limit has been reached. 7551 * 7552 * This doesn't check for specific headroom, and it is not atomic 7553 * either. But with zswap, the size of the allocation is only known 7554 * once compression has occured, and this optimistic pre-check avoids 7555 * spending cycles on compression when there is already no room left 7556 * or zswap is disabled altogether somewhere in the hierarchy. 7557 */ 7558 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7559 { 7560 struct mem_cgroup *memcg, *original_memcg; 7561 bool ret = true; 7562 7563 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7564 return true; 7565 7566 original_memcg = get_mem_cgroup_from_objcg(objcg); 7567 for (memcg = original_memcg; memcg != root_mem_cgroup; 7568 memcg = parent_mem_cgroup(memcg)) { 7569 unsigned long max = READ_ONCE(memcg->zswap_max); 7570 unsigned long pages; 7571 7572 if (max == PAGE_COUNTER_MAX) 7573 continue; 7574 if (max == 0) { 7575 ret = false; 7576 break; 7577 } 7578 7579 cgroup_rstat_flush(memcg->css.cgroup); 7580 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7581 if (pages < max) 7582 continue; 7583 ret = false; 7584 break; 7585 } 7586 mem_cgroup_put(original_memcg); 7587 return ret; 7588 } 7589 7590 /** 7591 * obj_cgroup_charge_zswap - charge compression backend memory 7592 * @objcg: the object cgroup 7593 * @size: size of compressed object 7594 * 7595 * This forces the charge after obj_cgroup_may_swap() allowed 7596 * compression and storage in zwap for this cgroup to go ahead. 7597 */ 7598 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7599 { 7600 struct mem_cgroup *memcg; 7601 7602 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7603 return; 7604 7605 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7606 7607 /* PF_MEMALLOC context, charging must succeed */ 7608 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7609 VM_WARN_ON_ONCE(1); 7610 7611 rcu_read_lock(); 7612 memcg = obj_cgroup_memcg(objcg); 7613 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7614 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7615 rcu_read_unlock(); 7616 } 7617 7618 /** 7619 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7620 * @objcg: the object cgroup 7621 * @size: size of compressed object 7622 * 7623 * Uncharges zswap memory on page in. 7624 */ 7625 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7626 { 7627 struct mem_cgroup *memcg; 7628 7629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7630 return; 7631 7632 obj_cgroup_uncharge(objcg, size); 7633 7634 rcu_read_lock(); 7635 memcg = obj_cgroup_memcg(objcg); 7636 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7637 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7638 rcu_read_unlock(); 7639 } 7640 7641 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7642 struct cftype *cft) 7643 { 7644 cgroup_rstat_flush(css->cgroup); 7645 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7646 } 7647 7648 static int zswap_max_show(struct seq_file *m, void *v) 7649 { 7650 return seq_puts_memcg_tunable(m, 7651 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7652 } 7653 7654 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7655 char *buf, size_t nbytes, loff_t off) 7656 { 7657 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7658 unsigned long max; 7659 int err; 7660 7661 buf = strstrip(buf); 7662 err = page_counter_memparse(buf, "max", &max); 7663 if (err) 7664 return err; 7665 7666 xchg(&memcg->zswap_max, max); 7667 7668 return nbytes; 7669 } 7670 7671 static struct cftype zswap_files[] = { 7672 { 7673 .name = "zswap.current", 7674 .flags = CFTYPE_NOT_ON_ROOT, 7675 .read_u64 = zswap_current_read, 7676 }, 7677 { 7678 .name = "zswap.max", 7679 .flags = CFTYPE_NOT_ON_ROOT, 7680 .seq_show = zswap_max_show, 7681 .write = zswap_max_write, 7682 }, 7683 { } /* terminate */ 7684 }; 7685 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7686 7687 /* 7688 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7689 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7690 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7691 * boot parameter. This may result in premature OOPS inside 7692 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7693 */ 7694 static int __init mem_cgroup_swap_init(void) 7695 { 7696 /* No memory control -> no swap control */ 7697 if (mem_cgroup_disabled()) 7698 cgroup_memory_noswap = true; 7699 7700 if (cgroup_memory_noswap) 7701 return 0; 7702 7703 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7704 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7705 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7706 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7707 #endif 7708 return 0; 7709 } 7710 core_initcall(mem_cgroup_swap_init); 7711 7712 #endif /* CONFIG_MEMCG_SWAP */ 7713