xref: /openbmc/linux/mm/madvise.c (revision d09e8ca6cb93bb4b97517a18fbbf7eccb0e9ff43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_sem held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	pgoff_t pgoff;
145 
146 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
147 		*prev = vma;
148 		return 0;
149 	}
150 
151 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
152 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
153 			  vma->vm_file, pgoff, vma_policy(vma),
154 			  vma->vm_userfaultfd_ctx, anon_name);
155 	if (*prev) {
156 		vma = *prev;
157 		goto success;
158 	}
159 
160 	*prev = vma;
161 
162 	if (start != vma->vm_start) {
163 		if (unlikely(mm->map_count >= sysctl_max_map_count))
164 			return -ENOMEM;
165 		error = __split_vma(mm, vma, start, 1);
166 		if (error)
167 			return error;
168 	}
169 
170 	if (end != vma->vm_end) {
171 		if (unlikely(mm->map_count >= sysctl_max_map_count))
172 			return -ENOMEM;
173 		error = __split_vma(mm, vma, end, 0);
174 		if (error)
175 			return error;
176 	}
177 
178 success:
179 	/*
180 	 * vm_flags is protected by the mmap_lock held in write mode.
181 	 */
182 	vma->vm_flags = new_flags;
183 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
184 		error = replace_anon_vma_name(vma, anon_name);
185 		if (error)
186 			return error;
187 	}
188 
189 	return 0;
190 }
191 
192 #ifdef CONFIG_SWAP
193 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
194 	unsigned long end, struct mm_walk *walk)
195 {
196 	struct vm_area_struct *vma = walk->private;
197 	unsigned long index;
198 	struct swap_iocb *splug = NULL;
199 
200 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
201 		return 0;
202 
203 	for (index = start; index != end; index += PAGE_SIZE) {
204 		pte_t pte;
205 		swp_entry_t entry;
206 		struct page *page;
207 		spinlock_t *ptl;
208 		pte_t *ptep;
209 
210 		ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
211 		pte = *ptep;
212 		pte_unmap_unlock(ptep, ptl);
213 
214 		if (!is_swap_pte(pte))
215 			continue;
216 		entry = pte_to_swp_entry(pte);
217 		if (unlikely(non_swap_entry(entry)))
218 			continue;
219 
220 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
221 					     vma, index, false, &splug);
222 		if (page)
223 			put_page(page);
224 	}
225 	swap_read_unplug(splug);
226 
227 	return 0;
228 }
229 
230 static const struct mm_walk_ops swapin_walk_ops = {
231 	.pmd_entry		= swapin_walk_pmd_entry,
232 };
233 
234 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
235 		unsigned long start, unsigned long end,
236 		struct address_space *mapping)
237 {
238 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
239 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
240 	struct page *page;
241 	struct swap_iocb *splug = NULL;
242 
243 	rcu_read_lock();
244 	xas_for_each(&xas, page, end_index) {
245 		swp_entry_t swap;
246 
247 		if (!xa_is_value(page))
248 			continue;
249 		swap = radix_to_swp_entry(page);
250 		/* There might be swapin error entries in shmem mapping. */
251 		if (non_swap_entry(swap))
252 			continue;
253 		xas_pause(&xas);
254 		rcu_read_unlock();
255 
256 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
257 					     NULL, 0, false, &splug);
258 		if (page)
259 			put_page(page);
260 
261 		rcu_read_lock();
262 	}
263 	rcu_read_unlock();
264 	swap_read_unplug(splug);
265 
266 	lru_add_drain();	/* Push any new pages onto the LRU now */
267 }
268 #endif		/* CONFIG_SWAP */
269 
270 /*
271  * Schedule all required I/O operations.  Do not wait for completion.
272  */
273 static long madvise_willneed(struct vm_area_struct *vma,
274 			     struct vm_area_struct **prev,
275 			     unsigned long start, unsigned long end)
276 {
277 	struct mm_struct *mm = vma->vm_mm;
278 	struct file *file = vma->vm_file;
279 	loff_t offset;
280 
281 	*prev = vma;
282 #ifdef CONFIG_SWAP
283 	if (!file) {
284 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
285 		lru_add_drain(); /* Push any new pages onto the LRU now */
286 		return 0;
287 	}
288 
289 	if (shmem_mapping(file->f_mapping)) {
290 		force_shm_swapin_readahead(vma, start, end,
291 					file->f_mapping);
292 		return 0;
293 	}
294 #else
295 	if (!file)
296 		return -EBADF;
297 #endif
298 
299 	if (IS_DAX(file_inode(file))) {
300 		/* no bad return value, but ignore advice */
301 		return 0;
302 	}
303 
304 	/*
305 	 * Filesystem's fadvise may need to take various locks.  We need to
306 	 * explicitly grab a reference because the vma (and hence the
307 	 * vma's reference to the file) can go away as soon as we drop
308 	 * mmap_lock.
309 	 */
310 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
311 	get_file(file);
312 	offset = (loff_t)(start - vma->vm_start)
313 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
314 	mmap_read_unlock(mm);
315 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
316 	fput(file);
317 	mmap_read_lock(mm);
318 	return 0;
319 }
320 
321 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
322 				unsigned long addr, unsigned long end,
323 				struct mm_walk *walk)
324 {
325 	struct madvise_walk_private *private = walk->private;
326 	struct mmu_gather *tlb = private->tlb;
327 	bool pageout = private->pageout;
328 	struct mm_struct *mm = tlb->mm;
329 	struct vm_area_struct *vma = walk->vma;
330 	pte_t *orig_pte, *pte, ptent;
331 	spinlock_t *ptl;
332 	struct page *page = NULL;
333 	LIST_HEAD(page_list);
334 
335 	if (fatal_signal_pending(current))
336 		return -EINTR;
337 
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 	if (pmd_trans_huge(*pmd)) {
340 		pmd_t orig_pmd;
341 		unsigned long next = pmd_addr_end(addr, end);
342 
343 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
344 		ptl = pmd_trans_huge_lock(pmd, vma);
345 		if (!ptl)
346 			return 0;
347 
348 		orig_pmd = *pmd;
349 		if (is_huge_zero_pmd(orig_pmd))
350 			goto huge_unlock;
351 
352 		if (unlikely(!pmd_present(orig_pmd))) {
353 			VM_BUG_ON(thp_migration_supported() &&
354 					!is_pmd_migration_entry(orig_pmd));
355 			goto huge_unlock;
356 		}
357 
358 		page = pmd_page(orig_pmd);
359 
360 		/* Do not interfere with other mappings of this page */
361 		if (page_mapcount(page) != 1)
362 			goto huge_unlock;
363 
364 		if (next - addr != HPAGE_PMD_SIZE) {
365 			int err;
366 
367 			get_page(page);
368 			spin_unlock(ptl);
369 			lock_page(page);
370 			err = split_huge_page(page);
371 			unlock_page(page);
372 			put_page(page);
373 			if (!err)
374 				goto regular_page;
375 			return 0;
376 		}
377 
378 		if (pmd_young(orig_pmd)) {
379 			pmdp_invalidate(vma, addr, pmd);
380 			orig_pmd = pmd_mkold(orig_pmd);
381 
382 			set_pmd_at(mm, addr, pmd, orig_pmd);
383 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
384 		}
385 
386 		ClearPageReferenced(page);
387 		test_and_clear_page_young(page);
388 		if (pageout) {
389 			if (!isolate_lru_page(page)) {
390 				if (PageUnevictable(page))
391 					putback_lru_page(page);
392 				else
393 					list_add(&page->lru, &page_list);
394 			}
395 		} else
396 			deactivate_page(page);
397 huge_unlock:
398 		spin_unlock(ptl);
399 		if (pageout)
400 			reclaim_pages(&page_list);
401 		return 0;
402 	}
403 
404 regular_page:
405 	if (pmd_trans_unstable(pmd))
406 		return 0;
407 #endif
408 	tlb_change_page_size(tlb, PAGE_SIZE);
409 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
410 	flush_tlb_batched_pending(mm);
411 	arch_enter_lazy_mmu_mode();
412 	for (; addr < end; pte++, addr += PAGE_SIZE) {
413 		ptent = *pte;
414 
415 		if (pte_none(ptent))
416 			continue;
417 
418 		if (!pte_present(ptent))
419 			continue;
420 
421 		page = vm_normal_page(vma, addr, ptent);
422 		if (!page || is_zone_device_page(page))
423 			continue;
424 
425 		/*
426 		 * Creating a THP page is expensive so split it only if we
427 		 * are sure it's worth. Split it if we are only owner.
428 		 */
429 		if (PageTransCompound(page)) {
430 			if (page_mapcount(page) != 1)
431 				break;
432 			get_page(page);
433 			if (!trylock_page(page)) {
434 				put_page(page);
435 				break;
436 			}
437 			pte_unmap_unlock(orig_pte, ptl);
438 			if (split_huge_page(page)) {
439 				unlock_page(page);
440 				put_page(page);
441 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
442 				break;
443 			}
444 			unlock_page(page);
445 			put_page(page);
446 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
447 			pte--;
448 			addr -= PAGE_SIZE;
449 			continue;
450 		}
451 
452 		/*
453 		 * Do not interfere with other mappings of this page and
454 		 * non-LRU page.
455 		 */
456 		if (!PageLRU(page) || page_mapcount(page) != 1)
457 			continue;
458 
459 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
460 
461 		if (pte_young(ptent)) {
462 			ptent = ptep_get_and_clear_full(mm, addr, pte,
463 							tlb->fullmm);
464 			ptent = pte_mkold(ptent);
465 			set_pte_at(mm, addr, pte, ptent);
466 			tlb_remove_tlb_entry(tlb, pte, addr);
467 		}
468 
469 		/*
470 		 * We are deactivating a page for accelerating reclaiming.
471 		 * VM couldn't reclaim the page unless we clear PG_young.
472 		 * As a side effect, it makes confuse idle-page tracking
473 		 * because they will miss recent referenced history.
474 		 */
475 		ClearPageReferenced(page);
476 		test_and_clear_page_young(page);
477 		if (pageout) {
478 			if (!isolate_lru_page(page)) {
479 				if (PageUnevictable(page))
480 					putback_lru_page(page);
481 				else
482 					list_add(&page->lru, &page_list);
483 			}
484 		} else
485 			deactivate_page(page);
486 	}
487 
488 	arch_leave_lazy_mmu_mode();
489 	pte_unmap_unlock(orig_pte, ptl);
490 	if (pageout)
491 		reclaim_pages(&page_list);
492 	cond_resched();
493 
494 	return 0;
495 }
496 
497 static const struct mm_walk_ops cold_walk_ops = {
498 	.pmd_entry = madvise_cold_or_pageout_pte_range,
499 };
500 
501 static void madvise_cold_page_range(struct mmu_gather *tlb,
502 			     struct vm_area_struct *vma,
503 			     unsigned long addr, unsigned long end)
504 {
505 	struct madvise_walk_private walk_private = {
506 		.pageout = false,
507 		.tlb = tlb,
508 	};
509 
510 	tlb_start_vma(tlb, vma);
511 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
512 	tlb_end_vma(tlb, vma);
513 }
514 
515 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
516 {
517 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
518 }
519 
520 static long madvise_cold(struct vm_area_struct *vma,
521 			struct vm_area_struct **prev,
522 			unsigned long start_addr, unsigned long end_addr)
523 {
524 	struct mm_struct *mm = vma->vm_mm;
525 	struct mmu_gather tlb;
526 
527 	*prev = vma;
528 	if (!can_madv_lru_vma(vma))
529 		return -EINVAL;
530 
531 	lru_add_drain();
532 	tlb_gather_mmu(&tlb, mm);
533 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
534 	tlb_finish_mmu(&tlb);
535 
536 	return 0;
537 }
538 
539 static void madvise_pageout_page_range(struct mmu_gather *tlb,
540 			     struct vm_area_struct *vma,
541 			     unsigned long addr, unsigned long end)
542 {
543 	struct madvise_walk_private walk_private = {
544 		.pageout = true,
545 		.tlb = tlb,
546 	};
547 
548 	tlb_start_vma(tlb, vma);
549 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
550 	tlb_end_vma(tlb, vma);
551 }
552 
553 static inline bool can_do_pageout(struct vm_area_struct *vma)
554 {
555 	if (vma_is_anonymous(vma))
556 		return true;
557 	if (!vma->vm_file)
558 		return false;
559 	/*
560 	 * paging out pagecache only for non-anonymous mappings that correspond
561 	 * to the files the calling process could (if tried) open for writing;
562 	 * otherwise we'd be including shared non-exclusive mappings, which
563 	 * opens a side channel.
564 	 */
565 	return inode_owner_or_capable(&init_user_ns,
566 				      file_inode(vma->vm_file)) ||
567 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
568 }
569 
570 static long madvise_pageout(struct vm_area_struct *vma,
571 			struct vm_area_struct **prev,
572 			unsigned long start_addr, unsigned long end_addr)
573 {
574 	struct mm_struct *mm = vma->vm_mm;
575 	struct mmu_gather tlb;
576 
577 	*prev = vma;
578 	if (!can_madv_lru_vma(vma))
579 		return -EINVAL;
580 
581 	if (!can_do_pageout(vma))
582 		return 0;
583 
584 	lru_add_drain();
585 	tlb_gather_mmu(&tlb, mm);
586 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
587 	tlb_finish_mmu(&tlb);
588 
589 	return 0;
590 }
591 
592 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
593 				unsigned long end, struct mm_walk *walk)
594 
595 {
596 	struct mmu_gather *tlb = walk->private;
597 	struct mm_struct *mm = tlb->mm;
598 	struct vm_area_struct *vma = walk->vma;
599 	spinlock_t *ptl;
600 	pte_t *orig_pte, *pte, ptent;
601 	struct folio *folio;
602 	struct page *page;
603 	int nr_swap = 0;
604 	unsigned long next;
605 
606 	next = pmd_addr_end(addr, end);
607 	if (pmd_trans_huge(*pmd))
608 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
609 			goto next;
610 
611 	if (pmd_trans_unstable(pmd))
612 		return 0;
613 
614 	tlb_change_page_size(tlb, PAGE_SIZE);
615 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
616 	flush_tlb_batched_pending(mm);
617 	arch_enter_lazy_mmu_mode();
618 	for (; addr != end; pte++, addr += PAGE_SIZE) {
619 		ptent = *pte;
620 
621 		if (pte_none(ptent))
622 			continue;
623 		/*
624 		 * If the pte has swp_entry, just clear page table to
625 		 * prevent swap-in which is more expensive rather than
626 		 * (page allocation + zeroing).
627 		 */
628 		if (!pte_present(ptent)) {
629 			swp_entry_t entry;
630 
631 			entry = pte_to_swp_entry(ptent);
632 			if (!non_swap_entry(entry)) {
633 				nr_swap--;
634 				free_swap_and_cache(entry);
635 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
636 			} else if (is_hwpoison_entry(entry) ||
637 				   is_swapin_error_entry(entry)) {
638 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
639 			}
640 			continue;
641 		}
642 
643 		page = vm_normal_page(vma, addr, ptent);
644 		if (!page || is_zone_device_page(page))
645 			continue;
646 		folio = page_folio(page);
647 
648 		/*
649 		 * If pmd isn't transhuge but the folio is large and
650 		 * is owned by only this process, split it and
651 		 * deactivate all pages.
652 		 */
653 		if (folio_test_large(folio)) {
654 			if (folio_mapcount(folio) != 1)
655 				goto out;
656 			folio_get(folio);
657 			if (!folio_trylock(folio)) {
658 				folio_put(folio);
659 				goto out;
660 			}
661 			pte_unmap_unlock(orig_pte, ptl);
662 			if (split_folio(folio)) {
663 				folio_unlock(folio);
664 				folio_put(folio);
665 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
666 				goto out;
667 			}
668 			folio_unlock(folio);
669 			folio_put(folio);
670 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
671 			pte--;
672 			addr -= PAGE_SIZE;
673 			continue;
674 		}
675 
676 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
677 			if (!folio_trylock(folio))
678 				continue;
679 			/*
680 			 * If folio is shared with others, we mustn't clear
681 			 * the folio's dirty flag.
682 			 */
683 			if (folio_mapcount(folio) != 1) {
684 				folio_unlock(folio);
685 				continue;
686 			}
687 
688 			if (folio_test_swapcache(folio) &&
689 			    !folio_free_swap(folio)) {
690 				folio_unlock(folio);
691 				continue;
692 			}
693 
694 			folio_clear_dirty(folio);
695 			folio_unlock(folio);
696 		}
697 
698 		if (pte_young(ptent) || pte_dirty(ptent)) {
699 			/*
700 			 * Some of architecture(ex, PPC) don't update TLB
701 			 * with set_pte_at and tlb_remove_tlb_entry so for
702 			 * the portability, remap the pte with old|clean
703 			 * after pte clearing.
704 			 */
705 			ptent = ptep_get_and_clear_full(mm, addr, pte,
706 							tlb->fullmm);
707 
708 			ptent = pte_mkold(ptent);
709 			ptent = pte_mkclean(ptent);
710 			set_pte_at(mm, addr, pte, ptent);
711 			tlb_remove_tlb_entry(tlb, pte, addr);
712 		}
713 		mark_page_lazyfree(&folio->page);
714 	}
715 out:
716 	if (nr_swap) {
717 		if (current->mm == mm)
718 			sync_mm_rss(mm);
719 
720 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
721 	}
722 	arch_leave_lazy_mmu_mode();
723 	pte_unmap_unlock(orig_pte, ptl);
724 	cond_resched();
725 next:
726 	return 0;
727 }
728 
729 static const struct mm_walk_ops madvise_free_walk_ops = {
730 	.pmd_entry		= madvise_free_pte_range,
731 };
732 
733 static int madvise_free_single_vma(struct vm_area_struct *vma,
734 			unsigned long start_addr, unsigned long end_addr)
735 {
736 	struct mm_struct *mm = vma->vm_mm;
737 	struct mmu_notifier_range range;
738 	struct mmu_gather tlb;
739 
740 	/* MADV_FREE works for only anon vma at the moment */
741 	if (!vma_is_anonymous(vma))
742 		return -EINVAL;
743 
744 	range.start = max(vma->vm_start, start_addr);
745 	if (range.start >= vma->vm_end)
746 		return -EINVAL;
747 	range.end = min(vma->vm_end, end_addr);
748 	if (range.end <= vma->vm_start)
749 		return -EINVAL;
750 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
751 				range.start, range.end);
752 
753 	lru_add_drain();
754 	tlb_gather_mmu(&tlb, mm);
755 	update_hiwater_rss(mm);
756 
757 	mmu_notifier_invalidate_range_start(&range);
758 	tlb_start_vma(&tlb, vma);
759 	walk_page_range(vma->vm_mm, range.start, range.end,
760 			&madvise_free_walk_ops, &tlb);
761 	tlb_end_vma(&tlb, vma);
762 	mmu_notifier_invalidate_range_end(&range);
763 	tlb_finish_mmu(&tlb);
764 
765 	return 0;
766 }
767 
768 /*
769  * Application no longer needs these pages.  If the pages are dirty,
770  * it's OK to just throw them away.  The app will be more careful about
771  * data it wants to keep.  Be sure to free swap resources too.  The
772  * zap_page_range_single call sets things up for shrink_active_list to actually
773  * free these pages later if no one else has touched them in the meantime,
774  * although we could add these pages to a global reuse list for
775  * shrink_active_list to pick up before reclaiming other pages.
776  *
777  * NB: This interface discards data rather than pushes it out to swap,
778  * as some implementations do.  This has performance implications for
779  * applications like large transactional databases which want to discard
780  * pages in anonymous maps after committing to backing store the data
781  * that was kept in them.  There is no reason to write this data out to
782  * the swap area if the application is discarding it.
783  *
784  * An interface that causes the system to free clean pages and flush
785  * dirty pages is already available as msync(MS_INVALIDATE).
786  */
787 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
788 					unsigned long start, unsigned long end)
789 {
790 	zap_page_range_single(vma, start, end - start, NULL);
791 	return 0;
792 }
793 
794 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
795 					    unsigned long start,
796 					    unsigned long *end,
797 					    int behavior)
798 {
799 	if (!is_vm_hugetlb_page(vma)) {
800 		unsigned int forbidden = VM_PFNMAP;
801 
802 		if (behavior != MADV_DONTNEED_LOCKED)
803 			forbidden |= VM_LOCKED;
804 
805 		return !(vma->vm_flags & forbidden);
806 	}
807 
808 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
809 		return false;
810 	if (start & ~huge_page_mask(hstate_vma(vma)))
811 		return false;
812 
813 	/*
814 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
815 	 * boundaries, and may be unaware that this VMA uses huge pages.
816 	 * Avoid unexpected data loss by rounding down the number of
817 	 * huge pages freed.
818 	 */
819 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
820 
821 	return true;
822 }
823 
824 static long madvise_dontneed_free(struct vm_area_struct *vma,
825 				  struct vm_area_struct **prev,
826 				  unsigned long start, unsigned long end,
827 				  int behavior)
828 {
829 	struct mm_struct *mm = vma->vm_mm;
830 
831 	*prev = vma;
832 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
833 		return -EINVAL;
834 
835 	if (start == end)
836 		return 0;
837 
838 	if (!userfaultfd_remove(vma, start, end)) {
839 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
840 
841 		mmap_read_lock(mm);
842 		vma = find_vma(mm, start);
843 		if (!vma)
844 			return -ENOMEM;
845 		if (start < vma->vm_start) {
846 			/*
847 			 * This "vma" under revalidation is the one
848 			 * with the lowest vma->vm_start where start
849 			 * is also < vma->vm_end. If start <
850 			 * vma->vm_start it means an hole materialized
851 			 * in the user address space within the
852 			 * virtual range passed to MADV_DONTNEED
853 			 * or MADV_FREE.
854 			 */
855 			return -ENOMEM;
856 		}
857 		/*
858 		 * Potential end adjustment for hugetlb vma is OK as
859 		 * the check below keeps end within vma.
860 		 */
861 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
862 						     behavior))
863 			return -EINVAL;
864 		if (end > vma->vm_end) {
865 			/*
866 			 * Don't fail if end > vma->vm_end. If the old
867 			 * vma was split while the mmap_lock was
868 			 * released the effect of the concurrent
869 			 * operation may not cause madvise() to
870 			 * have an undefined result. There may be an
871 			 * adjacent next vma that we'll walk
872 			 * next. userfaultfd_remove() will generate an
873 			 * UFFD_EVENT_REMOVE repetition on the
874 			 * end-vma->vm_end range, but the manager can
875 			 * handle a repetition fine.
876 			 */
877 			end = vma->vm_end;
878 		}
879 		VM_WARN_ON(start >= end);
880 	}
881 
882 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
883 		return madvise_dontneed_single_vma(vma, start, end);
884 	else if (behavior == MADV_FREE)
885 		return madvise_free_single_vma(vma, start, end);
886 	else
887 		return -EINVAL;
888 }
889 
890 static long madvise_populate(struct vm_area_struct *vma,
891 			     struct vm_area_struct **prev,
892 			     unsigned long start, unsigned long end,
893 			     int behavior)
894 {
895 	const bool write = behavior == MADV_POPULATE_WRITE;
896 	struct mm_struct *mm = vma->vm_mm;
897 	unsigned long tmp_end;
898 	int locked = 1;
899 	long pages;
900 
901 	*prev = vma;
902 
903 	while (start < end) {
904 		/*
905 		 * We might have temporarily dropped the lock. For example,
906 		 * our VMA might have been split.
907 		 */
908 		if (!vma || start >= vma->vm_end) {
909 			vma = vma_lookup(mm, start);
910 			if (!vma)
911 				return -ENOMEM;
912 		}
913 
914 		tmp_end = min_t(unsigned long, end, vma->vm_end);
915 		/* Populate (prefault) page tables readable/writable. */
916 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
917 					       &locked);
918 		if (!locked) {
919 			mmap_read_lock(mm);
920 			locked = 1;
921 			*prev = NULL;
922 			vma = NULL;
923 		}
924 		if (pages < 0) {
925 			switch (pages) {
926 			case -EINTR:
927 				return -EINTR;
928 			case -EINVAL: /* Incompatible mappings / permissions. */
929 				return -EINVAL;
930 			case -EHWPOISON:
931 				return -EHWPOISON;
932 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
933 				return -EFAULT;
934 			default:
935 				pr_warn_once("%s: unhandled return value: %ld\n",
936 					     __func__, pages);
937 				fallthrough;
938 			case -ENOMEM:
939 				return -ENOMEM;
940 			}
941 		}
942 		start += pages * PAGE_SIZE;
943 	}
944 	return 0;
945 }
946 
947 /*
948  * Application wants to free up the pages and associated backing store.
949  * This is effectively punching a hole into the middle of a file.
950  */
951 static long madvise_remove(struct vm_area_struct *vma,
952 				struct vm_area_struct **prev,
953 				unsigned long start, unsigned long end)
954 {
955 	loff_t offset;
956 	int error;
957 	struct file *f;
958 	struct mm_struct *mm = vma->vm_mm;
959 
960 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
961 
962 	if (vma->vm_flags & VM_LOCKED)
963 		return -EINVAL;
964 
965 	f = vma->vm_file;
966 
967 	if (!f || !f->f_mapping || !f->f_mapping->host) {
968 			return -EINVAL;
969 	}
970 
971 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
972 		return -EACCES;
973 
974 	offset = (loff_t)(start - vma->vm_start)
975 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
976 
977 	/*
978 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
979 	 * explicitly grab a reference because the vma (and hence the
980 	 * vma's reference to the file) can go away as soon as we drop
981 	 * mmap_lock.
982 	 */
983 	get_file(f);
984 	if (userfaultfd_remove(vma, start, end)) {
985 		/* mmap_lock was not released by userfaultfd_remove() */
986 		mmap_read_unlock(mm);
987 	}
988 	error = vfs_fallocate(f,
989 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
990 				offset, end - start);
991 	fput(f);
992 	mmap_read_lock(mm);
993 	return error;
994 }
995 
996 /*
997  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
998  * will handle splitting a vm area into separate areas, each area with its own
999  * behavior.
1000  */
1001 static int madvise_vma_behavior(struct vm_area_struct *vma,
1002 				struct vm_area_struct **prev,
1003 				unsigned long start, unsigned long end,
1004 				unsigned long behavior)
1005 {
1006 	int error;
1007 	struct anon_vma_name *anon_name;
1008 	unsigned long new_flags = vma->vm_flags;
1009 
1010 	switch (behavior) {
1011 	case MADV_REMOVE:
1012 		return madvise_remove(vma, prev, start, end);
1013 	case MADV_WILLNEED:
1014 		return madvise_willneed(vma, prev, start, end);
1015 	case MADV_COLD:
1016 		return madvise_cold(vma, prev, start, end);
1017 	case MADV_PAGEOUT:
1018 		return madvise_pageout(vma, prev, start, end);
1019 	case MADV_FREE:
1020 	case MADV_DONTNEED:
1021 	case MADV_DONTNEED_LOCKED:
1022 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1023 	case MADV_POPULATE_READ:
1024 	case MADV_POPULATE_WRITE:
1025 		return madvise_populate(vma, prev, start, end, behavior);
1026 	case MADV_NORMAL:
1027 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1028 		break;
1029 	case MADV_SEQUENTIAL:
1030 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1031 		break;
1032 	case MADV_RANDOM:
1033 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1034 		break;
1035 	case MADV_DONTFORK:
1036 		new_flags |= VM_DONTCOPY;
1037 		break;
1038 	case MADV_DOFORK:
1039 		if (vma->vm_flags & VM_IO)
1040 			return -EINVAL;
1041 		new_flags &= ~VM_DONTCOPY;
1042 		break;
1043 	case MADV_WIPEONFORK:
1044 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1045 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1046 			return -EINVAL;
1047 		new_flags |= VM_WIPEONFORK;
1048 		break;
1049 	case MADV_KEEPONFORK:
1050 		new_flags &= ~VM_WIPEONFORK;
1051 		break;
1052 	case MADV_DONTDUMP:
1053 		new_flags |= VM_DONTDUMP;
1054 		break;
1055 	case MADV_DODUMP:
1056 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1057 			return -EINVAL;
1058 		new_flags &= ~VM_DONTDUMP;
1059 		break;
1060 	case MADV_MERGEABLE:
1061 	case MADV_UNMERGEABLE:
1062 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1063 		if (error)
1064 			goto out;
1065 		break;
1066 	case MADV_HUGEPAGE:
1067 	case MADV_NOHUGEPAGE:
1068 		error = hugepage_madvise(vma, &new_flags, behavior);
1069 		if (error)
1070 			goto out;
1071 		break;
1072 	case MADV_COLLAPSE:
1073 		return madvise_collapse(vma, prev, start, end);
1074 	}
1075 
1076 	anon_name = anon_vma_name(vma);
1077 	anon_vma_name_get(anon_name);
1078 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1079 				   anon_name);
1080 	anon_vma_name_put(anon_name);
1081 
1082 out:
1083 	/*
1084 	 * madvise() returns EAGAIN if kernel resources, such as
1085 	 * slab, are temporarily unavailable.
1086 	 */
1087 	if (error == -ENOMEM)
1088 		error = -EAGAIN;
1089 	return error;
1090 }
1091 
1092 #ifdef CONFIG_MEMORY_FAILURE
1093 /*
1094  * Error injection support for memory error handling.
1095  */
1096 static int madvise_inject_error(int behavior,
1097 		unsigned long start, unsigned long end)
1098 {
1099 	unsigned long size;
1100 
1101 	if (!capable(CAP_SYS_ADMIN))
1102 		return -EPERM;
1103 
1104 
1105 	for (; start < end; start += size) {
1106 		unsigned long pfn;
1107 		struct page *page;
1108 		int ret;
1109 
1110 		ret = get_user_pages_fast(start, 1, 0, &page);
1111 		if (ret != 1)
1112 			return ret;
1113 		pfn = page_to_pfn(page);
1114 
1115 		/*
1116 		 * When soft offlining hugepages, after migrating the page
1117 		 * we dissolve it, therefore in the second loop "page" will
1118 		 * no longer be a compound page.
1119 		 */
1120 		size = page_size(compound_head(page));
1121 
1122 		if (behavior == MADV_SOFT_OFFLINE) {
1123 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1124 				 pfn, start);
1125 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1126 		} else {
1127 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1128 				 pfn, start);
1129 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1130 			if (ret == -EOPNOTSUPP)
1131 				ret = 0;
1132 		}
1133 
1134 		if (ret)
1135 			return ret;
1136 	}
1137 
1138 	return 0;
1139 }
1140 #endif
1141 
1142 static bool
1143 madvise_behavior_valid(int behavior)
1144 {
1145 	switch (behavior) {
1146 	case MADV_DOFORK:
1147 	case MADV_DONTFORK:
1148 	case MADV_NORMAL:
1149 	case MADV_SEQUENTIAL:
1150 	case MADV_RANDOM:
1151 	case MADV_REMOVE:
1152 	case MADV_WILLNEED:
1153 	case MADV_DONTNEED:
1154 	case MADV_DONTNEED_LOCKED:
1155 	case MADV_FREE:
1156 	case MADV_COLD:
1157 	case MADV_PAGEOUT:
1158 	case MADV_POPULATE_READ:
1159 	case MADV_POPULATE_WRITE:
1160 #ifdef CONFIG_KSM
1161 	case MADV_MERGEABLE:
1162 	case MADV_UNMERGEABLE:
1163 #endif
1164 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1165 	case MADV_HUGEPAGE:
1166 	case MADV_NOHUGEPAGE:
1167 	case MADV_COLLAPSE:
1168 #endif
1169 	case MADV_DONTDUMP:
1170 	case MADV_DODUMP:
1171 	case MADV_WIPEONFORK:
1172 	case MADV_KEEPONFORK:
1173 #ifdef CONFIG_MEMORY_FAILURE
1174 	case MADV_SOFT_OFFLINE:
1175 	case MADV_HWPOISON:
1176 #endif
1177 		return true;
1178 
1179 	default:
1180 		return false;
1181 	}
1182 }
1183 
1184 static bool process_madvise_behavior_valid(int behavior)
1185 {
1186 	switch (behavior) {
1187 	case MADV_COLD:
1188 	case MADV_PAGEOUT:
1189 	case MADV_WILLNEED:
1190 	case MADV_COLLAPSE:
1191 		return true;
1192 	default:
1193 		return false;
1194 	}
1195 }
1196 
1197 /*
1198  * Walk the vmas in range [start,end), and call the visit function on each one.
1199  * The visit function will get start and end parameters that cover the overlap
1200  * between the current vma and the original range.  Any unmapped regions in the
1201  * original range will result in this function returning -ENOMEM while still
1202  * calling the visit function on all of the existing vmas in the range.
1203  * Must be called with the mmap_lock held for reading or writing.
1204  */
1205 static
1206 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1207 		      unsigned long end, unsigned long arg,
1208 		      int (*visit)(struct vm_area_struct *vma,
1209 				   struct vm_area_struct **prev, unsigned long start,
1210 				   unsigned long end, unsigned long arg))
1211 {
1212 	struct vm_area_struct *vma;
1213 	struct vm_area_struct *prev;
1214 	unsigned long tmp;
1215 	int unmapped_error = 0;
1216 
1217 	/*
1218 	 * If the interval [start,end) covers some unmapped address
1219 	 * ranges, just ignore them, but return -ENOMEM at the end.
1220 	 * - different from the way of handling in mlock etc.
1221 	 */
1222 	vma = find_vma_prev(mm, start, &prev);
1223 	if (vma && start > vma->vm_start)
1224 		prev = vma;
1225 
1226 	for (;;) {
1227 		int error;
1228 
1229 		/* Still start < end. */
1230 		if (!vma)
1231 			return -ENOMEM;
1232 
1233 		/* Here start < (end|vma->vm_end). */
1234 		if (start < vma->vm_start) {
1235 			unmapped_error = -ENOMEM;
1236 			start = vma->vm_start;
1237 			if (start >= end)
1238 				break;
1239 		}
1240 
1241 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1242 		tmp = vma->vm_end;
1243 		if (end < tmp)
1244 			tmp = end;
1245 
1246 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1247 		error = visit(vma, &prev, start, tmp, arg);
1248 		if (error)
1249 			return error;
1250 		start = tmp;
1251 		if (prev && start < prev->vm_end)
1252 			start = prev->vm_end;
1253 		if (start >= end)
1254 			break;
1255 		if (prev)
1256 			vma = find_vma(mm, prev->vm_end);
1257 		else	/* madvise_remove dropped mmap_lock */
1258 			vma = find_vma(mm, start);
1259 	}
1260 
1261 	return unmapped_error;
1262 }
1263 
1264 #ifdef CONFIG_ANON_VMA_NAME
1265 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1266 				 struct vm_area_struct **prev,
1267 				 unsigned long start, unsigned long end,
1268 				 unsigned long anon_name)
1269 {
1270 	int error;
1271 
1272 	/* Only anonymous mappings can be named */
1273 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1274 		return -EBADF;
1275 
1276 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1277 				   (struct anon_vma_name *)anon_name);
1278 
1279 	/*
1280 	 * madvise() returns EAGAIN if kernel resources, such as
1281 	 * slab, are temporarily unavailable.
1282 	 */
1283 	if (error == -ENOMEM)
1284 		error = -EAGAIN;
1285 	return error;
1286 }
1287 
1288 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1289 			  unsigned long len_in, struct anon_vma_name *anon_name)
1290 {
1291 	unsigned long end;
1292 	unsigned long len;
1293 
1294 	if (start & ~PAGE_MASK)
1295 		return -EINVAL;
1296 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1297 
1298 	/* Check to see whether len was rounded up from small -ve to zero */
1299 	if (len_in && !len)
1300 		return -EINVAL;
1301 
1302 	end = start + len;
1303 	if (end < start)
1304 		return -EINVAL;
1305 
1306 	if (end == start)
1307 		return 0;
1308 
1309 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1310 				 madvise_vma_anon_name);
1311 }
1312 #endif /* CONFIG_ANON_VMA_NAME */
1313 /*
1314  * The madvise(2) system call.
1315  *
1316  * Applications can use madvise() to advise the kernel how it should
1317  * handle paging I/O in this VM area.  The idea is to help the kernel
1318  * use appropriate read-ahead and caching techniques.  The information
1319  * provided is advisory only, and can be safely disregarded by the
1320  * kernel without affecting the correct operation of the application.
1321  *
1322  * behavior values:
1323  *  MADV_NORMAL - the default behavior is to read clusters.  This
1324  *		results in some read-ahead and read-behind.
1325  *  MADV_RANDOM - the system should read the minimum amount of data
1326  *		on any access, since it is unlikely that the appli-
1327  *		cation will need more than what it asks for.
1328  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1329  *		once, so they can be aggressively read ahead, and
1330  *		can be freed soon after they are accessed.
1331  *  MADV_WILLNEED - the application is notifying the system to read
1332  *		some pages ahead.
1333  *  MADV_DONTNEED - the application is finished with the given range,
1334  *		so the kernel can free resources associated with it.
1335  *  MADV_FREE - the application marks pages in the given range as lazy free,
1336  *		where actual purges are postponed until memory pressure happens.
1337  *  MADV_REMOVE - the application wants to free up the given range of
1338  *		pages and associated backing store.
1339  *  MADV_DONTFORK - omit this area from child's address space when forking:
1340  *		typically, to avoid COWing pages pinned by get_user_pages().
1341  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1342  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1343  *              range after a fork.
1344  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1345  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1346  *		were corrupted by unrecoverable hardware memory failure.
1347  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1348  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1349  *		this area with pages of identical content from other such areas.
1350  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1351  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1352  *		huge pages in the future. Existing pages might be coalesced and
1353  *		new pages might be allocated as THP.
1354  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1355  *		transparent huge pages so the existing pages will not be
1356  *		coalesced into THP and new pages will not be allocated as THP.
1357  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1358  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1359  *		from being included in its core dump.
1360  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1361  *  MADV_COLD - the application is not expected to use this memory soon,
1362  *		deactivate pages in this range so that they can be reclaimed
1363  *		easily if memory pressure happens.
1364  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1365  *		page out the pages in this range immediately.
1366  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1367  *		triggering read faults if required
1368  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1369  *		triggering write faults if required
1370  *
1371  * return values:
1372  *  zero    - success
1373  *  -EINVAL - start + len < 0, start is not page-aligned,
1374  *		"behavior" is not a valid value, or application
1375  *		is attempting to release locked or shared pages,
1376  *		or the specified address range includes file, Huge TLB,
1377  *		MAP_SHARED or VMPFNMAP range.
1378  *  -ENOMEM - addresses in the specified range are not currently
1379  *		mapped, or are outside the AS of the process.
1380  *  -EIO    - an I/O error occurred while paging in data.
1381  *  -EBADF  - map exists, but area maps something that isn't a file.
1382  *  -EAGAIN - a kernel resource was temporarily unavailable.
1383  */
1384 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1385 {
1386 	unsigned long end;
1387 	int error;
1388 	int write;
1389 	size_t len;
1390 	struct blk_plug plug;
1391 
1392 	start = untagged_addr(start);
1393 
1394 	if (!madvise_behavior_valid(behavior))
1395 		return -EINVAL;
1396 
1397 	if (!PAGE_ALIGNED(start))
1398 		return -EINVAL;
1399 	len = PAGE_ALIGN(len_in);
1400 
1401 	/* Check to see whether len was rounded up from small -ve to zero */
1402 	if (len_in && !len)
1403 		return -EINVAL;
1404 
1405 	end = start + len;
1406 	if (end < start)
1407 		return -EINVAL;
1408 
1409 	if (end == start)
1410 		return 0;
1411 
1412 #ifdef CONFIG_MEMORY_FAILURE
1413 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1414 		return madvise_inject_error(behavior, start, start + len_in);
1415 #endif
1416 
1417 	write = madvise_need_mmap_write(behavior);
1418 	if (write) {
1419 		if (mmap_write_lock_killable(mm))
1420 			return -EINTR;
1421 	} else {
1422 		mmap_read_lock(mm);
1423 	}
1424 
1425 	blk_start_plug(&plug);
1426 	error = madvise_walk_vmas(mm, start, end, behavior,
1427 			madvise_vma_behavior);
1428 	blk_finish_plug(&plug);
1429 	if (write)
1430 		mmap_write_unlock(mm);
1431 	else
1432 		mmap_read_unlock(mm);
1433 
1434 	return error;
1435 }
1436 
1437 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1438 {
1439 	return do_madvise(current->mm, start, len_in, behavior);
1440 }
1441 
1442 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1443 		size_t, vlen, int, behavior, unsigned int, flags)
1444 {
1445 	ssize_t ret;
1446 	struct iovec iovstack[UIO_FASTIOV], iovec;
1447 	struct iovec *iov = iovstack;
1448 	struct iov_iter iter;
1449 	struct task_struct *task;
1450 	struct mm_struct *mm;
1451 	size_t total_len;
1452 	unsigned int f_flags;
1453 
1454 	if (flags != 0) {
1455 		ret = -EINVAL;
1456 		goto out;
1457 	}
1458 
1459 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1460 	if (ret < 0)
1461 		goto out;
1462 
1463 	task = pidfd_get_task(pidfd, &f_flags);
1464 	if (IS_ERR(task)) {
1465 		ret = PTR_ERR(task);
1466 		goto free_iov;
1467 	}
1468 
1469 	if (!process_madvise_behavior_valid(behavior)) {
1470 		ret = -EINVAL;
1471 		goto release_task;
1472 	}
1473 
1474 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1475 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1476 	if (IS_ERR_OR_NULL(mm)) {
1477 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1478 		goto release_task;
1479 	}
1480 
1481 	/*
1482 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1483 	 * only non-destructive hints are currently supported.
1484 	 */
1485 	if (!capable(CAP_SYS_NICE)) {
1486 		ret = -EPERM;
1487 		goto release_mm;
1488 	}
1489 
1490 	total_len = iov_iter_count(&iter);
1491 
1492 	while (iov_iter_count(&iter)) {
1493 		iovec = iov_iter_iovec(&iter);
1494 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1495 					iovec.iov_len, behavior);
1496 		if (ret < 0)
1497 			break;
1498 		iov_iter_advance(&iter, iovec.iov_len);
1499 	}
1500 
1501 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1502 
1503 release_mm:
1504 	mmput(mm);
1505 release_task:
1506 	put_task_struct(task);
1507 free_iov:
1508 	kfree(iov);
1509 out:
1510 	return ret;
1511 }
1512