xref: /openbmc/linux/mm/madvise.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 		return 0;
63 	default:
64 		/* be safe, default to 1. list exceptions explicitly */
65 		return 1;
66 	}
67 }
68 
69 #ifdef CONFIG_ANON_VMA_NAME
70 struct anon_vma_name *anon_vma_name_alloc(const char *name)
71 {
72 	struct anon_vma_name *anon_name;
73 	size_t count;
74 
75 	/* Add 1 for NUL terminator at the end of the anon_name->name */
76 	count = strlen(name) + 1;
77 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
78 	if (anon_name) {
79 		kref_init(&anon_name->kref);
80 		memcpy(anon_name->name, name, count);
81 	}
82 
83 	return anon_name;
84 }
85 
86 void anon_vma_name_free(struct kref *kref)
87 {
88 	struct anon_vma_name *anon_name =
89 			container_of(kref, struct anon_vma_name, kref);
90 	kfree(anon_name);
91 }
92 
93 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
94 {
95 	mmap_assert_locked(vma->vm_mm);
96 
97 	if (vma->vm_file)
98 		return NULL;
99 
100 	return vma->anon_name;
101 }
102 
103 /* mmap_lock should be write-locked */
104 static int replace_anon_vma_name(struct vm_area_struct *vma,
105 				 struct anon_vma_name *anon_name)
106 {
107 	struct anon_vma_name *orig_name = anon_vma_name(vma);
108 
109 	if (!anon_name) {
110 		vma->anon_name = NULL;
111 		anon_vma_name_put(orig_name);
112 		return 0;
113 	}
114 
115 	if (anon_vma_name_eq(orig_name, anon_name))
116 		return 0;
117 
118 	vma->anon_name = anon_vma_name_reuse(anon_name);
119 	anon_vma_name_put(orig_name);
120 
121 	return 0;
122 }
123 #else /* CONFIG_ANON_VMA_NAME */
124 static int replace_anon_vma_name(struct vm_area_struct *vma,
125 				 struct anon_vma_name *anon_name)
126 {
127 	if (anon_name)
128 		return -EINVAL;
129 
130 	return 0;
131 }
132 #endif /* CONFIG_ANON_VMA_NAME */
133 /*
134  * Update the vm_flags on region of a vma, splitting it or merging it as
135  * necessary.  Must be called with mmap_sem held for writing;
136  * Caller should ensure anon_name stability by raising its refcount even when
137  * anon_name belongs to a valid vma because this function might free that vma.
138  */
139 static int madvise_update_vma(struct vm_area_struct *vma,
140 			      struct vm_area_struct **prev, unsigned long start,
141 			      unsigned long end, unsigned long new_flags,
142 			      struct anon_vma_name *anon_name)
143 {
144 	struct mm_struct *mm = vma->vm_mm;
145 	int error;
146 	pgoff_t pgoff;
147 
148 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
149 		*prev = vma;
150 		return 0;
151 	}
152 
153 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
154 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
155 			  vma->vm_file, pgoff, vma_policy(vma),
156 			  vma->vm_userfaultfd_ctx, anon_name);
157 	if (*prev) {
158 		vma = *prev;
159 		goto success;
160 	}
161 
162 	*prev = vma;
163 
164 	if (start != vma->vm_start) {
165 		if (unlikely(mm->map_count >= sysctl_max_map_count))
166 			return -ENOMEM;
167 		error = __split_vma(mm, vma, start, 1);
168 		if (error)
169 			return error;
170 	}
171 
172 	if (end != vma->vm_end) {
173 		if (unlikely(mm->map_count >= sysctl_max_map_count))
174 			return -ENOMEM;
175 		error = __split_vma(mm, vma, end, 0);
176 		if (error)
177 			return error;
178 	}
179 
180 success:
181 	/*
182 	 * vm_flags is protected by the mmap_lock held in write mode.
183 	 */
184 	vma->vm_flags = new_flags;
185 	if (!vma->vm_file) {
186 		error = replace_anon_vma_name(vma, anon_name);
187 		if (error)
188 			return error;
189 	}
190 
191 	return 0;
192 }
193 
194 #ifdef CONFIG_SWAP
195 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
196 	unsigned long end, struct mm_walk *walk)
197 {
198 	struct vm_area_struct *vma = walk->private;
199 	unsigned long index;
200 	struct swap_iocb *splug = NULL;
201 
202 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
203 		return 0;
204 
205 	for (index = start; index != end; index += PAGE_SIZE) {
206 		pte_t pte;
207 		swp_entry_t entry;
208 		struct page *page;
209 		spinlock_t *ptl;
210 		pte_t *ptep;
211 
212 		ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
213 		pte = *ptep;
214 		pte_unmap_unlock(ptep, ptl);
215 
216 		if (!is_swap_pte(pte))
217 			continue;
218 		entry = pte_to_swp_entry(pte);
219 		if (unlikely(non_swap_entry(entry)))
220 			continue;
221 
222 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
223 					     vma, index, false, &splug);
224 		if (page)
225 			put_page(page);
226 	}
227 	swap_read_unplug(splug);
228 
229 	return 0;
230 }
231 
232 static const struct mm_walk_ops swapin_walk_ops = {
233 	.pmd_entry		= swapin_walk_pmd_entry,
234 };
235 
236 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
237 		unsigned long start, unsigned long end,
238 		struct address_space *mapping)
239 {
240 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
241 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
242 	struct page *page;
243 	struct swap_iocb *splug = NULL;
244 
245 	rcu_read_lock();
246 	xas_for_each(&xas, page, end_index) {
247 		swp_entry_t swap;
248 
249 		if (!xa_is_value(page))
250 			continue;
251 		swap = radix_to_swp_entry(page);
252 		/* There might be swapin error entries in shmem mapping. */
253 		if (non_swap_entry(swap))
254 			continue;
255 		xas_pause(&xas);
256 		rcu_read_unlock();
257 
258 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
259 					     NULL, 0, false, &splug);
260 		if (page)
261 			put_page(page);
262 
263 		rcu_read_lock();
264 	}
265 	rcu_read_unlock();
266 	swap_read_unplug(splug);
267 
268 	lru_add_drain();	/* Push any new pages onto the LRU now */
269 }
270 #endif		/* CONFIG_SWAP */
271 
272 /*
273  * Schedule all required I/O operations.  Do not wait for completion.
274  */
275 static long madvise_willneed(struct vm_area_struct *vma,
276 			     struct vm_area_struct **prev,
277 			     unsigned long start, unsigned long end)
278 {
279 	struct mm_struct *mm = vma->vm_mm;
280 	struct file *file = vma->vm_file;
281 	loff_t offset;
282 
283 	*prev = vma;
284 #ifdef CONFIG_SWAP
285 	if (!file) {
286 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
287 		lru_add_drain(); /* Push any new pages onto the LRU now */
288 		return 0;
289 	}
290 
291 	if (shmem_mapping(file->f_mapping)) {
292 		force_shm_swapin_readahead(vma, start, end,
293 					file->f_mapping);
294 		return 0;
295 	}
296 #else
297 	if (!file)
298 		return -EBADF;
299 #endif
300 
301 	if (IS_DAX(file_inode(file))) {
302 		/* no bad return value, but ignore advice */
303 		return 0;
304 	}
305 
306 	/*
307 	 * Filesystem's fadvise may need to take various locks.  We need to
308 	 * explicitly grab a reference because the vma (and hence the
309 	 * vma's reference to the file) can go away as soon as we drop
310 	 * mmap_lock.
311 	 */
312 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
313 	get_file(file);
314 	offset = (loff_t)(start - vma->vm_start)
315 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
316 	mmap_read_unlock(mm);
317 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
318 	fput(file);
319 	mmap_read_lock(mm);
320 	return 0;
321 }
322 
323 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
324 				unsigned long addr, unsigned long end,
325 				struct mm_walk *walk)
326 {
327 	struct madvise_walk_private *private = walk->private;
328 	struct mmu_gather *tlb = private->tlb;
329 	bool pageout = private->pageout;
330 	struct mm_struct *mm = tlb->mm;
331 	struct vm_area_struct *vma = walk->vma;
332 	pte_t *orig_pte, *pte, ptent;
333 	spinlock_t *ptl;
334 	struct page *page = NULL;
335 	LIST_HEAD(page_list);
336 
337 	if (fatal_signal_pending(current))
338 		return -EINTR;
339 
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 	if (pmd_trans_huge(*pmd)) {
342 		pmd_t orig_pmd;
343 		unsigned long next = pmd_addr_end(addr, end);
344 
345 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
346 		ptl = pmd_trans_huge_lock(pmd, vma);
347 		if (!ptl)
348 			return 0;
349 
350 		orig_pmd = *pmd;
351 		if (is_huge_zero_pmd(orig_pmd))
352 			goto huge_unlock;
353 
354 		if (unlikely(!pmd_present(orig_pmd))) {
355 			VM_BUG_ON(thp_migration_supported() &&
356 					!is_pmd_migration_entry(orig_pmd));
357 			goto huge_unlock;
358 		}
359 
360 		page = pmd_page(orig_pmd);
361 
362 		/* Do not interfere with other mappings of this page */
363 		if (page_mapcount(page) != 1)
364 			goto huge_unlock;
365 
366 		if (next - addr != HPAGE_PMD_SIZE) {
367 			int err;
368 
369 			get_page(page);
370 			spin_unlock(ptl);
371 			lock_page(page);
372 			err = split_huge_page(page);
373 			unlock_page(page);
374 			put_page(page);
375 			if (!err)
376 				goto regular_page;
377 			return 0;
378 		}
379 
380 		if (pmd_young(orig_pmd)) {
381 			pmdp_invalidate(vma, addr, pmd);
382 			orig_pmd = pmd_mkold(orig_pmd);
383 
384 			set_pmd_at(mm, addr, pmd, orig_pmd);
385 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
386 		}
387 
388 		ClearPageReferenced(page);
389 		test_and_clear_page_young(page);
390 		if (pageout) {
391 			if (!isolate_lru_page(page)) {
392 				if (PageUnevictable(page))
393 					putback_lru_page(page);
394 				else
395 					list_add(&page->lru, &page_list);
396 			}
397 		} else
398 			deactivate_page(page);
399 huge_unlock:
400 		spin_unlock(ptl);
401 		if (pageout)
402 			reclaim_pages(&page_list);
403 		return 0;
404 	}
405 
406 regular_page:
407 	if (pmd_trans_unstable(pmd))
408 		return 0;
409 #endif
410 	tlb_change_page_size(tlb, PAGE_SIZE);
411 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
412 	flush_tlb_batched_pending(mm);
413 	arch_enter_lazy_mmu_mode();
414 	for (; addr < end; pte++, addr += PAGE_SIZE) {
415 		ptent = *pte;
416 
417 		if (pte_none(ptent))
418 			continue;
419 
420 		if (!pte_present(ptent))
421 			continue;
422 
423 		page = vm_normal_page(vma, addr, ptent);
424 		if (!page || is_zone_device_page(page))
425 			continue;
426 
427 		/*
428 		 * Creating a THP page is expensive so split it only if we
429 		 * are sure it's worth. Split it if we are only owner.
430 		 */
431 		if (PageTransCompound(page)) {
432 			if (page_mapcount(page) != 1)
433 				break;
434 			get_page(page);
435 			if (!trylock_page(page)) {
436 				put_page(page);
437 				break;
438 			}
439 			pte_unmap_unlock(orig_pte, ptl);
440 			if (split_huge_page(page)) {
441 				unlock_page(page);
442 				put_page(page);
443 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
444 				break;
445 			}
446 			unlock_page(page);
447 			put_page(page);
448 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
449 			pte--;
450 			addr -= PAGE_SIZE;
451 			continue;
452 		}
453 
454 		/*
455 		 * Do not interfere with other mappings of this page and
456 		 * non-LRU page.
457 		 */
458 		if (!PageLRU(page) || page_mapcount(page) != 1)
459 			continue;
460 
461 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
462 
463 		if (pte_young(ptent)) {
464 			ptent = ptep_get_and_clear_full(mm, addr, pte,
465 							tlb->fullmm);
466 			ptent = pte_mkold(ptent);
467 			set_pte_at(mm, addr, pte, ptent);
468 			tlb_remove_tlb_entry(tlb, pte, addr);
469 		}
470 
471 		/*
472 		 * We are deactivating a page for accelerating reclaiming.
473 		 * VM couldn't reclaim the page unless we clear PG_young.
474 		 * As a side effect, it makes confuse idle-page tracking
475 		 * because they will miss recent referenced history.
476 		 */
477 		ClearPageReferenced(page);
478 		test_and_clear_page_young(page);
479 		if (pageout) {
480 			if (!isolate_lru_page(page)) {
481 				if (PageUnevictable(page))
482 					putback_lru_page(page);
483 				else
484 					list_add(&page->lru, &page_list);
485 			}
486 		} else
487 			deactivate_page(page);
488 	}
489 
490 	arch_leave_lazy_mmu_mode();
491 	pte_unmap_unlock(orig_pte, ptl);
492 	if (pageout)
493 		reclaim_pages(&page_list);
494 	cond_resched();
495 
496 	return 0;
497 }
498 
499 static const struct mm_walk_ops cold_walk_ops = {
500 	.pmd_entry = madvise_cold_or_pageout_pte_range,
501 };
502 
503 static void madvise_cold_page_range(struct mmu_gather *tlb,
504 			     struct vm_area_struct *vma,
505 			     unsigned long addr, unsigned long end)
506 {
507 	struct madvise_walk_private walk_private = {
508 		.pageout = false,
509 		.tlb = tlb,
510 	};
511 
512 	tlb_start_vma(tlb, vma);
513 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
514 	tlb_end_vma(tlb, vma);
515 }
516 
517 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
518 {
519 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
520 }
521 
522 static long madvise_cold(struct vm_area_struct *vma,
523 			struct vm_area_struct **prev,
524 			unsigned long start_addr, unsigned long end_addr)
525 {
526 	struct mm_struct *mm = vma->vm_mm;
527 	struct mmu_gather tlb;
528 
529 	*prev = vma;
530 	if (!can_madv_lru_vma(vma))
531 		return -EINVAL;
532 
533 	lru_add_drain();
534 	tlb_gather_mmu(&tlb, mm);
535 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
536 	tlb_finish_mmu(&tlb);
537 
538 	return 0;
539 }
540 
541 static void madvise_pageout_page_range(struct mmu_gather *tlb,
542 			     struct vm_area_struct *vma,
543 			     unsigned long addr, unsigned long end)
544 {
545 	struct madvise_walk_private walk_private = {
546 		.pageout = true,
547 		.tlb = tlb,
548 	};
549 
550 	tlb_start_vma(tlb, vma);
551 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
552 	tlb_end_vma(tlb, vma);
553 }
554 
555 static inline bool can_do_pageout(struct vm_area_struct *vma)
556 {
557 	if (vma_is_anonymous(vma))
558 		return true;
559 	if (!vma->vm_file)
560 		return false;
561 	/*
562 	 * paging out pagecache only for non-anonymous mappings that correspond
563 	 * to the files the calling process could (if tried) open for writing;
564 	 * otherwise we'd be including shared non-exclusive mappings, which
565 	 * opens a side channel.
566 	 */
567 	return inode_owner_or_capable(&init_user_ns,
568 				      file_inode(vma->vm_file)) ||
569 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
570 }
571 
572 static long madvise_pageout(struct vm_area_struct *vma,
573 			struct vm_area_struct **prev,
574 			unsigned long start_addr, unsigned long end_addr)
575 {
576 	struct mm_struct *mm = vma->vm_mm;
577 	struct mmu_gather tlb;
578 
579 	*prev = vma;
580 	if (!can_madv_lru_vma(vma))
581 		return -EINVAL;
582 
583 	if (!can_do_pageout(vma))
584 		return 0;
585 
586 	lru_add_drain();
587 	tlb_gather_mmu(&tlb, mm);
588 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
589 	tlb_finish_mmu(&tlb);
590 
591 	return 0;
592 }
593 
594 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
595 				unsigned long end, struct mm_walk *walk)
596 
597 {
598 	struct mmu_gather *tlb = walk->private;
599 	struct mm_struct *mm = tlb->mm;
600 	struct vm_area_struct *vma = walk->vma;
601 	spinlock_t *ptl;
602 	pte_t *orig_pte, *pte, ptent;
603 	struct page *page;
604 	int nr_swap = 0;
605 	unsigned long next;
606 
607 	next = pmd_addr_end(addr, end);
608 	if (pmd_trans_huge(*pmd))
609 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
610 			goto next;
611 
612 	if (pmd_trans_unstable(pmd))
613 		return 0;
614 
615 	tlb_change_page_size(tlb, PAGE_SIZE);
616 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
617 	flush_tlb_batched_pending(mm);
618 	arch_enter_lazy_mmu_mode();
619 	for (; addr != end; pte++, addr += PAGE_SIZE) {
620 		ptent = *pte;
621 
622 		if (pte_none(ptent))
623 			continue;
624 		/*
625 		 * If the pte has swp_entry, just clear page table to
626 		 * prevent swap-in which is more expensive rather than
627 		 * (page allocation + zeroing).
628 		 */
629 		if (!pte_present(ptent)) {
630 			swp_entry_t entry;
631 
632 			entry = pte_to_swp_entry(ptent);
633 			if (!non_swap_entry(entry)) {
634 				nr_swap--;
635 				free_swap_and_cache(entry);
636 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
637 			} else if (is_hwpoison_entry(entry) ||
638 				   is_swapin_error_entry(entry)) {
639 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
640 			}
641 			continue;
642 		}
643 
644 		page = vm_normal_page(vma, addr, ptent);
645 		if (!page || is_zone_device_page(page))
646 			continue;
647 
648 		/*
649 		 * If pmd isn't transhuge but the page is THP and
650 		 * is owned by only this process, split it and
651 		 * deactivate all pages.
652 		 */
653 		if (PageTransCompound(page)) {
654 			if (page_mapcount(page) != 1)
655 				goto out;
656 			get_page(page);
657 			if (!trylock_page(page)) {
658 				put_page(page);
659 				goto out;
660 			}
661 			pte_unmap_unlock(orig_pte, ptl);
662 			if (split_huge_page(page)) {
663 				unlock_page(page);
664 				put_page(page);
665 				orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
666 				goto out;
667 			}
668 			unlock_page(page);
669 			put_page(page);
670 			orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
671 			pte--;
672 			addr -= PAGE_SIZE;
673 			continue;
674 		}
675 
676 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
677 
678 		if (PageSwapCache(page) || PageDirty(page)) {
679 			if (!trylock_page(page))
680 				continue;
681 			/*
682 			 * If page is shared with others, we couldn't clear
683 			 * PG_dirty of the page.
684 			 */
685 			if (page_mapcount(page) != 1) {
686 				unlock_page(page);
687 				continue;
688 			}
689 
690 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
691 				unlock_page(page);
692 				continue;
693 			}
694 
695 			ClearPageDirty(page);
696 			unlock_page(page);
697 		}
698 
699 		if (pte_young(ptent) || pte_dirty(ptent)) {
700 			/*
701 			 * Some of architecture(ex, PPC) don't update TLB
702 			 * with set_pte_at and tlb_remove_tlb_entry so for
703 			 * the portability, remap the pte with old|clean
704 			 * after pte clearing.
705 			 */
706 			ptent = ptep_get_and_clear_full(mm, addr, pte,
707 							tlb->fullmm);
708 
709 			ptent = pte_mkold(ptent);
710 			ptent = pte_mkclean(ptent);
711 			set_pte_at(mm, addr, pte, ptent);
712 			tlb_remove_tlb_entry(tlb, pte, addr);
713 		}
714 		mark_page_lazyfree(page);
715 	}
716 out:
717 	if (nr_swap) {
718 		if (current->mm == mm)
719 			sync_mm_rss(mm);
720 
721 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
722 	}
723 	arch_leave_lazy_mmu_mode();
724 	pte_unmap_unlock(orig_pte, ptl);
725 	cond_resched();
726 next:
727 	return 0;
728 }
729 
730 static const struct mm_walk_ops madvise_free_walk_ops = {
731 	.pmd_entry		= madvise_free_pte_range,
732 };
733 
734 static int madvise_free_single_vma(struct vm_area_struct *vma,
735 			unsigned long start_addr, unsigned long end_addr)
736 {
737 	struct mm_struct *mm = vma->vm_mm;
738 	struct mmu_notifier_range range;
739 	struct mmu_gather tlb;
740 
741 	/* MADV_FREE works for only anon vma at the moment */
742 	if (!vma_is_anonymous(vma))
743 		return -EINVAL;
744 
745 	range.start = max(vma->vm_start, start_addr);
746 	if (range.start >= vma->vm_end)
747 		return -EINVAL;
748 	range.end = min(vma->vm_end, end_addr);
749 	if (range.end <= vma->vm_start)
750 		return -EINVAL;
751 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
752 				range.start, range.end);
753 
754 	lru_add_drain();
755 	tlb_gather_mmu(&tlb, mm);
756 	update_hiwater_rss(mm);
757 
758 	mmu_notifier_invalidate_range_start(&range);
759 	tlb_start_vma(&tlb, vma);
760 	walk_page_range(vma->vm_mm, range.start, range.end,
761 			&madvise_free_walk_ops, &tlb);
762 	tlb_end_vma(&tlb, vma);
763 	mmu_notifier_invalidate_range_end(&range);
764 	tlb_finish_mmu(&tlb);
765 
766 	return 0;
767 }
768 
769 /*
770  * Application no longer needs these pages.  If the pages are dirty,
771  * it's OK to just throw them away.  The app will be more careful about
772  * data it wants to keep.  Be sure to free swap resources too.  The
773  * zap_page_range call sets things up for shrink_active_list to actually free
774  * these pages later if no one else has touched them in the meantime,
775  * although we could add these pages to a global reuse list for
776  * shrink_active_list to pick up before reclaiming other pages.
777  *
778  * NB: This interface discards data rather than pushes it out to swap,
779  * as some implementations do.  This has performance implications for
780  * applications like large transactional databases which want to discard
781  * pages in anonymous maps after committing to backing store the data
782  * that was kept in them.  There is no reason to write this data out to
783  * the swap area if the application is discarding it.
784  *
785  * An interface that causes the system to free clean pages and flush
786  * dirty pages is already available as msync(MS_INVALIDATE).
787  */
788 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
789 					unsigned long start, unsigned long end)
790 {
791 	zap_page_range(vma, start, end - start);
792 	return 0;
793 }
794 
795 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
796 					    unsigned long start,
797 					    unsigned long *end,
798 					    int behavior)
799 {
800 	if (!is_vm_hugetlb_page(vma)) {
801 		unsigned int forbidden = VM_PFNMAP;
802 
803 		if (behavior != MADV_DONTNEED_LOCKED)
804 			forbidden |= VM_LOCKED;
805 
806 		return !(vma->vm_flags & forbidden);
807 	}
808 
809 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
810 		return false;
811 	if (start & ~huge_page_mask(hstate_vma(vma)))
812 		return false;
813 
814 	*end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
815 	return true;
816 }
817 
818 static long madvise_dontneed_free(struct vm_area_struct *vma,
819 				  struct vm_area_struct **prev,
820 				  unsigned long start, unsigned long end,
821 				  int behavior)
822 {
823 	struct mm_struct *mm = vma->vm_mm;
824 
825 	*prev = vma;
826 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
827 		return -EINVAL;
828 
829 	if (!userfaultfd_remove(vma, start, end)) {
830 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
831 
832 		mmap_read_lock(mm);
833 		vma = find_vma(mm, start);
834 		if (!vma)
835 			return -ENOMEM;
836 		if (start < vma->vm_start) {
837 			/*
838 			 * This "vma" under revalidation is the one
839 			 * with the lowest vma->vm_start where start
840 			 * is also < vma->vm_end. If start <
841 			 * vma->vm_start it means an hole materialized
842 			 * in the user address space within the
843 			 * virtual range passed to MADV_DONTNEED
844 			 * or MADV_FREE.
845 			 */
846 			return -ENOMEM;
847 		}
848 		/*
849 		 * Potential end adjustment for hugetlb vma is OK as
850 		 * the check below keeps end within vma.
851 		 */
852 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
853 						     behavior))
854 			return -EINVAL;
855 		if (end > vma->vm_end) {
856 			/*
857 			 * Don't fail if end > vma->vm_end. If the old
858 			 * vma was split while the mmap_lock was
859 			 * released the effect of the concurrent
860 			 * operation may not cause madvise() to
861 			 * have an undefined result. There may be an
862 			 * adjacent next vma that we'll walk
863 			 * next. userfaultfd_remove() will generate an
864 			 * UFFD_EVENT_REMOVE repetition on the
865 			 * end-vma->vm_end range, but the manager can
866 			 * handle a repetition fine.
867 			 */
868 			end = vma->vm_end;
869 		}
870 		VM_WARN_ON(start >= end);
871 	}
872 
873 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
874 		return madvise_dontneed_single_vma(vma, start, end);
875 	else if (behavior == MADV_FREE)
876 		return madvise_free_single_vma(vma, start, end);
877 	else
878 		return -EINVAL;
879 }
880 
881 static long madvise_populate(struct vm_area_struct *vma,
882 			     struct vm_area_struct **prev,
883 			     unsigned long start, unsigned long end,
884 			     int behavior)
885 {
886 	const bool write = behavior == MADV_POPULATE_WRITE;
887 	struct mm_struct *mm = vma->vm_mm;
888 	unsigned long tmp_end;
889 	int locked = 1;
890 	long pages;
891 
892 	*prev = vma;
893 
894 	while (start < end) {
895 		/*
896 		 * We might have temporarily dropped the lock. For example,
897 		 * our VMA might have been split.
898 		 */
899 		if (!vma || start >= vma->vm_end) {
900 			vma = vma_lookup(mm, start);
901 			if (!vma)
902 				return -ENOMEM;
903 		}
904 
905 		tmp_end = min_t(unsigned long, end, vma->vm_end);
906 		/* Populate (prefault) page tables readable/writable. */
907 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
908 					       &locked);
909 		if (!locked) {
910 			mmap_read_lock(mm);
911 			locked = 1;
912 			*prev = NULL;
913 			vma = NULL;
914 		}
915 		if (pages < 0) {
916 			switch (pages) {
917 			case -EINTR:
918 				return -EINTR;
919 			case -EINVAL: /* Incompatible mappings / permissions. */
920 				return -EINVAL;
921 			case -EHWPOISON:
922 				return -EHWPOISON;
923 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
924 				return -EFAULT;
925 			default:
926 				pr_warn_once("%s: unhandled return value: %ld\n",
927 					     __func__, pages);
928 				fallthrough;
929 			case -ENOMEM:
930 				return -ENOMEM;
931 			}
932 		}
933 		start += pages * PAGE_SIZE;
934 	}
935 	return 0;
936 }
937 
938 /*
939  * Application wants to free up the pages and associated backing store.
940  * This is effectively punching a hole into the middle of a file.
941  */
942 static long madvise_remove(struct vm_area_struct *vma,
943 				struct vm_area_struct **prev,
944 				unsigned long start, unsigned long end)
945 {
946 	loff_t offset;
947 	int error;
948 	struct file *f;
949 	struct mm_struct *mm = vma->vm_mm;
950 
951 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
952 
953 	if (vma->vm_flags & VM_LOCKED)
954 		return -EINVAL;
955 
956 	f = vma->vm_file;
957 
958 	if (!f || !f->f_mapping || !f->f_mapping->host) {
959 			return -EINVAL;
960 	}
961 
962 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
963 		return -EACCES;
964 
965 	offset = (loff_t)(start - vma->vm_start)
966 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
967 
968 	/*
969 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
970 	 * explicitly grab a reference because the vma (and hence the
971 	 * vma's reference to the file) can go away as soon as we drop
972 	 * mmap_lock.
973 	 */
974 	get_file(f);
975 	if (userfaultfd_remove(vma, start, end)) {
976 		/* mmap_lock was not released by userfaultfd_remove() */
977 		mmap_read_unlock(mm);
978 	}
979 	error = vfs_fallocate(f,
980 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
981 				offset, end - start);
982 	fput(f);
983 	mmap_read_lock(mm);
984 	return error;
985 }
986 
987 /*
988  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
989  * will handle splitting a vm area into separate areas, each area with its own
990  * behavior.
991  */
992 static int madvise_vma_behavior(struct vm_area_struct *vma,
993 				struct vm_area_struct **prev,
994 				unsigned long start, unsigned long end,
995 				unsigned long behavior)
996 {
997 	int error;
998 	struct anon_vma_name *anon_name;
999 	unsigned long new_flags = vma->vm_flags;
1000 
1001 	switch (behavior) {
1002 	case MADV_REMOVE:
1003 		return madvise_remove(vma, prev, start, end);
1004 	case MADV_WILLNEED:
1005 		return madvise_willneed(vma, prev, start, end);
1006 	case MADV_COLD:
1007 		return madvise_cold(vma, prev, start, end);
1008 	case MADV_PAGEOUT:
1009 		return madvise_pageout(vma, prev, start, end);
1010 	case MADV_FREE:
1011 	case MADV_DONTNEED:
1012 	case MADV_DONTNEED_LOCKED:
1013 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1014 	case MADV_POPULATE_READ:
1015 	case MADV_POPULATE_WRITE:
1016 		return madvise_populate(vma, prev, start, end, behavior);
1017 	case MADV_NORMAL:
1018 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1019 		break;
1020 	case MADV_SEQUENTIAL:
1021 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1022 		break;
1023 	case MADV_RANDOM:
1024 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1025 		break;
1026 	case MADV_DONTFORK:
1027 		new_flags |= VM_DONTCOPY;
1028 		break;
1029 	case MADV_DOFORK:
1030 		if (vma->vm_flags & VM_IO)
1031 			return -EINVAL;
1032 		new_flags &= ~VM_DONTCOPY;
1033 		break;
1034 	case MADV_WIPEONFORK:
1035 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1036 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1037 			return -EINVAL;
1038 		new_flags |= VM_WIPEONFORK;
1039 		break;
1040 	case MADV_KEEPONFORK:
1041 		new_flags &= ~VM_WIPEONFORK;
1042 		break;
1043 	case MADV_DONTDUMP:
1044 		new_flags |= VM_DONTDUMP;
1045 		break;
1046 	case MADV_DODUMP:
1047 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1048 			return -EINVAL;
1049 		new_flags &= ~VM_DONTDUMP;
1050 		break;
1051 	case MADV_MERGEABLE:
1052 	case MADV_UNMERGEABLE:
1053 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1054 		if (error)
1055 			goto out;
1056 		break;
1057 	case MADV_HUGEPAGE:
1058 	case MADV_NOHUGEPAGE:
1059 		error = hugepage_madvise(vma, &new_flags, behavior);
1060 		if (error)
1061 			goto out;
1062 		break;
1063 	}
1064 
1065 	anon_name = anon_vma_name(vma);
1066 	anon_vma_name_get(anon_name);
1067 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1068 				   anon_name);
1069 	anon_vma_name_put(anon_name);
1070 
1071 out:
1072 	/*
1073 	 * madvise() returns EAGAIN if kernel resources, such as
1074 	 * slab, are temporarily unavailable.
1075 	 */
1076 	if (error == -ENOMEM)
1077 		error = -EAGAIN;
1078 	return error;
1079 }
1080 
1081 #ifdef CONFIG_MEMORY_FAILURE
1082 /*
1083  * Error injection support for memory error handling.
1084  */
1085 static int madvise_inject_error(int behavior,
1086 		unsigned long start, unsigned long end)
1087 {
1088 	unsigned long size;
1089 
1090 	if (!capable(CAP_SYS_ADMIN))
1091 		return -EPERM;
1092 
1093 
1094 	for (; start < end; start += size) {
1095 		unsigned long pfn;
1096 		struct page *page;
1097 		int ret;
1098 
1099 		ret = get_user_pages_fast(start, 1, 0, &page);
1100 		if (ret != 1)
1101 			return ret;
1102 		pfn = page_to_pfn(page);
1103 
1104 		/*
1105 		 * When soft offlining hugepages, after migrating the page
1106 		 * we dissolve it, therefore in the second loop "page" will
1107 		 * no longer be a compound page.
1108 		 */
1109 		size = page_size(compound_head(page));
1110 
1111 		if (behavior == MADV_SOFT_OFFLINE) {
1112 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1113 				 pfn, start);
1114 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1115 		} else {
1116 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1117 				 pfn, start);
1118 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1119 			if (ret == -EOPNOTSUPP)
1120 				ret = 0;
1121 		}
1122 
1123 		if (ret)
1124 			return ret;
1125 	}
1126 
1127 	return 0;
1128 }
1129 #endif
1130 
1131 static bool
1132 madvise_behavior_valid(int behavior)
1133 {
1134 	switch (behavior) {
1135 	case MADV_DOFORK:
1136 	case MADV_DONTFORK:
1137 	case MADV_NORMAL:
1138 	case MADV_SEQUENTIAL:
1139 	case MADV_RANDOM:
1140 	case MADV_REMOVE:
1141 	case MADV_WILLNEED:
1142 	case MADV_DONTNEED:
1143 	case MADV_DONTNEED_LOCKED:
1144 	case MADV_FREE:
1145 	case MADV_COLD:
1146 	case MADV_PAGEOUT:
1147 	case MADV_POPULATE_READ:
1148 	case MADV_POPULATE_WRITE:
1149 #ifdef CONFIG_KSM
1150 	case MADV_MERGEABLE:
1151 	case MADV_UNMERGEABLE:
1152 #endif
1153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1154 	case MADV_HUGEPAGE:
1155 	case MADV_NOHUGEPAGE:
1156 #endif
1157 	case MADV_DONTDUMP:
1158 	case MADV_DODUMP:
1159 	case MADV_WIPEONFORK:
1160 	case MADV_KEEPONFORK:
1161 #ifdef CONFIG_MEMORY_FAILURE
1162 	case MADV_SOFT_OFFLINE:
1163 	case MADV_HWPOISON:
1164 #endif
1165 		return true;
1166 
1167 	default:
1168 		return false;
1169 	}
1170 }
1171 
1172 static bool
1173 process_madvise_behavior_valid(int behavior)
1174 {
1175 	switch (behavior) {
1176 	case MADV_COLD:
1177 	case MADV_PAGEOUT:
1178 	case MADV_WILLNEED:
1179 		return true;
1180 	default:
1181 		return false;
1182 	}
1183 }
1184 
1185 /*
1186  * Walk the vmas in range [start,end), and call the visit function on each one.
1187  * The visit function will get start and end parameters that cover the overlap
1188  * between the current vma and the original range.  Any unmapped regions in the
1189  * original range will result in this function returning -ENOMEM while still
1190  * calling the visit function on all of the existing vmas in the range.
1191  * Must be called with the mmap_lock held for reading or writing.
1192  */
1193 static
1194 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1195 		      unsigned long end, unsigned long arg,
1196 		      int (*visit)(struct vm_area_struct *vma,
1197 				   struct vm_area_struct **prev, unsigned long start,
1198 				   unsigned long end, unsigned long arg))
1199 {
1200 	struct vm_area_struct *vma;
1201 	struct vm_area_struct *prev;
1202 	unsigned long tmp;
1203 	int unmapped_error = 0;
1204 
1205 	/*
1206 	 * If the interval [start,end) covers some unmapped address
1207 	 * ranges, just ignore them, but return -ENOMEM at the end.
1208 	 * - different from the way of handling in mlock etc.
1209 	 */
1210 	vma = find_vma_prev(mm, start, &prev);
1211 	if (vma && start > vma->vm_start)
1212 		prev = vma;
1213 
1214 	for (;;) {
1215 		int error;
1216 
1217 		/* Still start < end. */
1218 		if (!vma)
1219 			return -ENOMEM;
1220 
1221 		/* Here start < (end|vma->vm_end). */
1222 		if (start < vma->vm_start) {
1223 			unmapped_error = -ENOMEM;
1224 			start = vma->vm_start;
1225 			if (start >= end)
1226 				break;
1227 		}
1228 
1229 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1230 		tmp = vma->vm_end;
1231 		if (end < tmp)
1232 			tmp = end;
1233 
1234 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1235 		error = visit(vma, &prev, start, tmp, arg);
1236 		if (error)
1237 			return error;
1238 		start = tmp;
1239 		if (prev && start < prev->vm_end)
1240 			start = prev->vm_end;
1241 		if (start >= end)
1242 			break;
1243 		if (prev)
1244 			vma = prev->vm_next;
1245 		else	/* madvise_remove dropped mmap_lock */
1246 			vma = find_vma(mm, start);
1247 	}
1248 
1249 	return unmapped_error;
1250 }
1251 
1252 #ifdef CONFIG_ANON_VMA_NAME
1253 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1254 				 struct vm_area_struct **prev,
1255 				 unsigned long start, unsigned long end,
1256 				 unsigned long anon_name)
1257 {
1258 	int error;
1259 
1260 	/* Only anonymous mappings can be named */
1261 	if (vma->vm_file)
1262 		return -EBADF;
1263 
1264 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1265 				   (struct anon_vma_name *)anon_name);
1266 
1267 	/*
1268 	 * madvise() returns EAGAIN if kernel resources, such as
1269 	 * slab, are temporarily unavailable.
1270 	 */
1271 	if (error == -ENOMEM)
1272 		error = -EAGAIN;
1273 	return error;
1274 }
1275 
1276 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1277 			  unsigned long len_in, struct anon_vma_name *anon_name)
1278 {
1279 	unsigned long end;
1280 	unsigned long len;
1281 
1282 	if (start & ~PAGE_MASK)
1283 		return -EINVAL;
1284 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1285 
1286 	/* Check to see whether len was rounded up from small -ve to zero */
1287 	if (len_in && !len)
1288 		return -EINVAL;
1289 
1290 	end = start + len;
1291 	if (end < start)
1292 		return -EINVAL;
1293 
1294 	if (end == start)
1295 		return 0;
1296 
1297 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1298 				 madvise_vma_anon_name);
1299 }
1300 #endif /* CONFIG_ANON_VMA_NAME */
1301 /*
1302  * The madvise(2) system call.
1303  *
1304  * Applications can use madvise() to advise the kernel how it should
1305  * handle paging I/O in this VM area.  The idea is to help the kernel
1306  * use appropriate read-ahead and caching techniques.  The information
1307  * provided is advisory only, and can be safely disregarded by the
1308  * kernel without affecting the correct operation of the application.
1309  *
1310  * behavior values:
1311  *  MADV_NORMAL - the default behavior is to read clusters.  This
1312  *		results in some read-ahead and read-behind.
1313  *  MADV_RANDOM - the system should read the minimum amount of data
1314  *		on any access, since it is unlikely that the appli-
1315  *		cation will need more than what it asks for.
1316  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1317  *		once, so they can be aggressively read ahead, and
1318  *		can be freed soon after they are accessed.
1319  *  MADV_WILLNEED - the application is notifying the system to read
1320  *		some pages ahead.
1321  *  MADV_DONTNEED - the application is finished with the given range,
1322  *		so the kernel can free resources associated with it.
1323  *  MADV_FREE - the application marks pages in the given range as lazy free,
1324  *		where actual purges are postponed until memory pressure happens.
1325  *  MADV_REMOVE - the application wants to free up the given range of
1326  *		pages and associated backing store.
1327  *  MADV_DONTFORK - omit this area from child's address space when forking:
1328  *		typically, to avoid COWing pages pinned by get_user_pages().
1329  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1330  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1331  *              range after a fork.
1332  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1333  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1334  *		were corrupted by unrecoverable hardware memory failure.
1335  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1336  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1337  *		this area with pages of identical content from other such areas.
1338  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1339  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1340  *		huge pages in the future. Existing pages might be coalesced and
1341  *		new pages might be allocated as THP.
1342  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1343  *		transparent huge pages so the existing pages will not be
1344  *		coalesced into THP and new pages will not be allocated as THP.
1345  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1346  *		from being included in its core dump.
1347  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1348  *  MADV_COLD - the application is not expected to use this memory soon,
1349  *		deactivate pages in this range so that they can be reclaimed
1350  *		easily if memory pressure happens.
1351  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1352  *		page out the pages in this range immediately.
1353  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1354  *		triggering read faults if required
1355  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1356  *		triggering write faults if required
1357  *
1358  * return values:
1359  *  zero    - success
1360  *  -EINVAL - start + len < 0, start is not page-aligned,
1361  *		"behavior" is not a valid value, or application
1362  *		is attempting to release locked or shared pages,
1363  *		or the specified address range includes file, Huge TLB,
1364  *		MAP_SHARED or VMPFNMAP range.
1365  *  -ENOMEM - addresses in the specified range are not currently
1366  *		mapped, or are outside the AS of the process.
1367  *  -EIO    - an I/O error occurred while paging in data.
1368  *  -EBADF  - map exists, but area maps something that isn't a file.
1369  *  -EAGAIN - a kernel resource was temporarily unavailable.
1370  */
1371 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1372 {
1373 	unsigned long end;
1374 	int error;
1375 	int write;
1376 	size_t len;
1377 	struct blk_plug plug;
1378 
1379 	start = untagged_addr(start);
1380 
1381 	if (!madvise_behavior_valid(behavior))
1382 		return -EINVAL;
1383 
1384 	if (!PAGE_ALIGNED(start))
1385 		return -EINVAL;
1386 	len = PAGE_ALIGN(len_in);
1387 
1388 	/* Check to see whether len was rounded up from small -ve to zero */
1389 	if (len_in && !len)
1390 		return -EINVAL;
1391 
1392 	end = start + len;
1393 	if (end < start)
1394 		return -EINVAL;
1395 
1396 	if (end == start)
1397 		return 0;
1398 
1399 #ifdef CONFIG_MEMORY_FAILURE
1400 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1401 		return madvise_inject_error(behavior, start, start + len_in);
1402 #endif
1403 
1404 	write = madvise_need_mmap_write(behavior);
1405 	if (write) {
1406 		if (mmap_write_lock_killable(mm))
1407 			return -EINTR;
1408 	} else {
1409 		mmap_read_lock(mm);
1410 	}
1411 
1412 	blk_start_plug(&plug);
1413 	error = madvise_walk_vmas(mm, start, end, behavior,
1414 			madvise_vma_behavior);
1415 	blk_finish_plug(&plug);
1416 	if (write)
1417 		mmap_write_unlock(mm);
1418 	else
1419 		mmap_read_unlock(mm);
1420 
1421 	return error;
1422 }
1423 
1424 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1425 {
1426 	return do_madvise(current->mm, start, len_in, behavior);
1427 }
1428 
1429 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1430 		size_t, vlen, int, behavior, unsigned int, flags)
1431 {
1432 	ssize_t ret;
1433 	struct iovec iovstack[UIO_FASTIOV], iovec;
1434 	struct iovec *iov = iovstack;
1435 	struct iov_iter iter;
1436 	struct task_struct *task;
1437 	struct mm_struct *mm;
1438 	size_t total_len;
1439 	unsigned int f_flags;
1440 
1441 	if (flags != 0) {
1442 		ret = -EINVAL;
1443 		goto out;
1444 	}
1445 
1446 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1447 	if (ret < 0)
1448 		goto out;
1449 
1450 	task = pidfd_get_task(pidfd, &f_flags);
1451 	if (IS_ERR(task)) {
1452 		ret = PTR_ERR(task);
1453 		goto free_iov;
1454 	}
1455 
1456 	if (!process_madvise_behavior_valid(behavior)) {
1457 		ret = -EINVAL;
1458 		goto release_task;
1459 	}
1460 
1461 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1462 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1463 	if (IS_ERR_OR_NULL(mm)) {
1464 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1465 		goto release_task;
1466 	}
1467 
1468 	/*
1469 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1470 	 * only non-destructive hints are currently supported.
1471 	 */
1472 	if (!capable(CAP_SYS_NICE)) {
1473 		ret = -EPERM;
1474 		goto release_mm;
1475 	}
1476 
1477 	total_len = iov_iter_count(&iter);
1478 
1479 	while (iov_iter_count(&iter)) {
1480 		iovec = iov_iter_iovec(&iter);
1481 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1482 					iovec.iov_len, behavior);
1483 		if (ret < 0)
1484 			break;
1485 		iov_iter_advance(&iter, iovec.iov_len);
1486 	}
1487 
1488 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1489 
1490 release_mm:
1491 	mmput(mm);
1492 release_task:
1493 	put_task_struct(task);
1494 free_iov:
1495 	kfree(iov);
1496 out:
1497 	return ret;
1498 }
1499