xref: /openbmc/linux/mm/ksm.c (revision 885283269275e3c4aa4036ddc3b6b0d96af6d141)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118 
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125 	struct mm_slot slot;
126 	struct ksm_rmap_item *rmap_list;
127 };
128 
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139 	struct ksm_mm_slot *mm_slot;
140 	unsigned long address;
141 	struct ksm_rmap_item **rmap_list;
142 	unsigned long seqnr;
143 };
144 
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158 	union {
159 		struct rb_node node;	/* when node of stable tree */
160 		struct {		/* when listed for migration */
161 			struct list_head *head;
162 			struct {
163 				struct hlist_node hlist_dup;
164 				struct list_head list;
165 			};
166 		};
167 	};
168 	struct hlist_head hlist;
169 	union {
170 		unsigned long kpfn;
171 		unsigned long chain_prune_time;
172 	};
173 	/*
174 	 * STABLE_NODE_CHAIN can be any negative number in
175 	 * rmap_hlist_len negative range, but better not -1 to be able
176 	 * to reliably detect underflows.
177 	 */
178 #define STABLE_NODE_CHAIN -1024
179 	int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 	int nid;
182 #endif
183 };
184 
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198 	struct ksm_rmap_item *rmap_list;
199 	union {
200 		struct anon_vma *anon_vma;	/* when stable */
201 #ifdef CONFIG_NUMA
202 		int nid;		/* when node of unstable tree */
203 #endif
204 	};
205 	struct mm_struct *mm;
206 	unsigned long address;		/* + low bits used for flags below */
207 	unsigned int oldchecksum;	/* when unstable */
208 	union {
209 		struct rb_node node;	/* when node of unstable tree */
210 		struct {		/* when listed from stable tree */
211 			struct ksm_stable_node *head;
212 			struct hlist_node hlist;
213 		};
214 	};
215 };
216 
217 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct ksm_mm_slot ksm_mm_head = {
235 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of pages scanned */
246 static unsigned long ksm_pages_scanned;
247 
248 /* The number of nodes in the stable tree */
249 static unsigned long ksm_pages_shared;
250 
251 /* The number of page slots additionally sharing those nodes */
252 static unsigned long ksm_pages_sharing;
253 
254 /* The number of nodes in the unstable tree */
255 static unsigned long ksm_pages_unshared;
256 
257 /* The number of rmap_items in use: to calculate pages_volatile */
258 static unsigned long ksm_rmap_items;
259 
260 /* The number of stable_node chains */
261 static unsigned long ksm_stable_node_chains;
262 
263 /* The number of stable_node dups linked to the stable_node chains */
264 static unsigned long ksm_stable_node_dups;
265 
266 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
267 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
268 
269 /* Maximum number of page slots sharing a stable node */
270 static int ksm_max_page_sharing = 256;
271 
272 /* Number of pages ksmd should scan in one batch */
273 static unsigned int ksm_thread_pages_to_scan = 100;
274 
275 /* Milliseconds ksmd should sleep between batches */
276 static unsigned int ksm_thread_sleep_millisecs = 20;
277 
278 /* Checksum of an empty (zeroed) page */
279 static unsigned int zero_checksum __read_mostly;
280 
281 /* Whether to merge empty (zeroed) pages with actual zero pages */
282 static bool ksm_use_zero_pages __read_mostly;
283 
284 /* The number of zero pages which is placed by KSM */
285 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
286 
287 #ifdef CONFIG_NUMA
288 /* Zeroed when merging across nodes is not allowed */
289 static unsigned int ksm_merge_across_nodes = 1;
290 static int ksm_nr_node_ids = 1;
291 #else
292 #define ksm_merge_across_nodes	1U
293 #define ksm_nr_node_ids		1
294 #endif
295 
296 #define KSM_RUN_STOP	0
297 #define KSM_RUN_MERGE	1
298 #define KSM_RUN_UNMERGE	2
299 #define KSM_RUN_OFFLINE	4
300 static unsigned long ksm_run = KSM_RUN_STOP;
301 static void wait_while_offlining(void);
302 
303 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
304 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
305 static DEFINE_MUTEX(ksm_thread_mutex);
306 static DEFINE_SPINLOCK(ksm_mmlist_lock);
307 
308 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
309 		sizeof(struct __struct), __alignof__(struct __struct),\
310 		(__flags), NULL)
311 
312 static int __init ksm_slab_init(void)
313 {
314 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
315 	if (!rmap_item_cache)
316 		goto out;
317 
318 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
319 	if (!stable_node_cache)
320 		goto out_free1;
321 
322 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323 	if (!mm_slot_cache)
324 		goto out_free2;
325 
326 	return 0;
327 
328 out_free2:
329 	kmem_cache_destroy(stable_node_cache);
330 out_free1:
331 	kmem_cache_destroy(rmap_item_cache);
332 out:
333 	return -ENOMEM;
334 }
335 
336 static void __init ksm_slab_free(void)
337 {
338 	kmem_cache_destroy(mm_slot_cache);
339 	kmem_cache_destroy(stable_node_cache);
340 	kmem_cache_destroy(rmap_item_cache);
341 	mm_slot_cache = NULL;
342 }
343 
344 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
345 {
346 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
347 }
348 
349 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
350 {
351 	return dup->head == STABLE_NODE_DUP_HEAD;
352 }
353 
354 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
355 					     struct ksm_stable_node *chain)
356 {
357 	VM_BUG_ON(is_stable_node_dup(dup));
358 	dup->head = STABLE_NODE_DUP_HEAD;
359 	VM_BUG_ON(!is_stable_node_chain(chain));
360 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
361 	ksm_stable_node_dups++;
362 }
363 
364 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
365 {
366 	VM_BUG_ON(!is_stable_node_dup(dup));
367 	hlist_del(&dup->hlist_dup);
368 	ksm_stable_node_dups--;
369 }
370 
371 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
372 {
373 	VM_BUG_ON(is_stable_node_chain(dup));
374 	if (is_stable_node_dup(dup))
375 		__stable_node_dup_del(dup);
376 	else
377 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
378 #ifdef CONFIG_DEBUG_VM
379 	dup->head = NULL;
380 #endif
381 }
382 
383 static inline struct ksm_rmap_item *alloc_rmap_item(void)
384 {
385 	struct ksm_rmap_item *rmap_item;
386 
387 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
388 						__GFP_NORETRY | __GFP_NOWARN);
389 	if (rmap_item)
390 		ksm_rmap_items++;
391 	return rmap_item;
392 }
393 
394 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
395 {
396 	ksm_rmap_items--;
397 	rmap_item->mm->ksm_rmap_items--;
398 	rmap_item->mm = NULL;	/* debug safety */
399 	kmem_cache_free(rmap_item_cache, rmap_item);
400 }
401 
402 static inline struct ksm_stable_node *alloc_stable_node(void)
403 {
404 	/*
405 	 * The allocation can take too long with GFP_KERNEL when memory is under
406 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
407 	 * grants access to memory reserves, helping to avoid this problem.
408 	 */
409 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
410 }
411 
412 static inline void free_stable_node(struct ksm_stable_node *stable_node)
413 {
414 	VM_BUG_ON(stable_node->rmap_hlist_len &&
415 		  !is_stable_node_chain(stable_node));
416 	kmem_cache_free(stable_node_cache, stable_node);
417 }
418 
419 /*
420  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
421  * page tables after it has passed through ksm_exit() - which, if necessary,
422  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
423  * a special flag: they can just back out as soon as mm_users goes to zero.
424  * ksm_test_exit() is used throughout to make this test for exit: in some
425  * places for correctness, in some places just to avoid unnecessary work.
426  */
427 static inline bool ksm_test_exit(struct mm_struct *mm)
428 {
429 	return atomic_read(&mm->mm_users) == 0;
430 }
431 
432 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
433 			struct mm_walk *walk)
434 {
435 	struct page *page = NULL;
436 	spinlock_t *ptl;
437 	pte_t *pte;
438 	pte_t ptent;
439 	int ret;
440 
441 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
442 	if (!pte)
443 		return 0;
444 	ptent = ptep_get(pte);
445 	if (pte_present(ptent)) {
446 		page = vm_normal_page(walk->vma, addr, ptent);
447 	} else if (!pte_none(ptent)) {
448 		swp_entry_t entry = pte_to_swp_entry(ptent);
449 
450 		/*
451 		 * As KSM pages remain KSM pages until freed, no need to wait
452 		 * here for migration to end.
453 		 */
454 		if (is_migration_entry(entry))
455 			page = pfn_swap_entry_to_page(entry);
456 	}
457 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
458 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
459 	pte_unmap_unlock(pte, ptl);
460 	return ret;
461 }
462 
463 static const struct mm_walk_ops break_ksm_ops = {
464 	.pmd_entry = break_ksm_pmd_entry,
465 	.walk_lock = PGWALK_RDLOCK,
466 };
467 
468 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
469 	.pmd_entry = break_ksm_pmd_entry,
470 	.walk_lock = PGWALK_WRLOCK,
471 };
472 
473 /*
474  * We use break_ksm to break COW on a ksm page by triggering unsharing,
475  * such that the ksm page will get replaced by an exclusive anonymous page.
476  *
477  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
478  * in case the application has unmapped and remapped mm,addr meanwhile.
479  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
480  * mmap of /dev/mem, where we would not want to touch it.
481  *
482  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
483  * of the process that owns 'vma'.  We also do not want to enforce
484  * protection keys here anyway.
485  */
486 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
487 {
488 	vm_fault_t ret = 0;
489 	const struct mm_walk_ops *ops = lock_vma ?
490 				&break_ksm_lock_vma_ops : &break_ksm_ops;
491 
492 	do {
493 		int ksm_page;
494 
495 		cond_resched();
496 		ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
497 		if (WARN_ON_ONCE(ksm_page < 0))
498 			return ksm_page;
499 		if (!ksm_page)
500 			return 0;
501 		ret = handle_mm_fault(vma, addr,
502 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
503 				      NULL);
504 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
505 	/*
506 	 * We must loop until we no longer find a KSM page because
507 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
508 	 * pte accessed bit gets updated concurrently.
509 	 *
510 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
511 	 * backing file, which also invalidates anonymous pages: that's
512 	 * okay, that truncation will have unmapped the PageKsm for us.
513 	 *
514 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
515 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
516 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
517 	 * to user; and ksmd, having no mm, would never be chosen for that.
518 	 *
519 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
520 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
521 	 * even ksmd can fail in this way - though it's usually breaking ksm
522 	 * just to undo a merge it made a moment before, so unlikely to oom.
523 	 *
524 	 * That's a pity: we might therefore have more kernel pages allocated
525 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
526 	 * will retry to break_cow on each pass, so should recover the page
527 	 * in due course.  The important thing is to not let VM_MERGEABLE
528 	 * be cleared while any such pages might remain in the area.
529 	 */
530 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
531 }
532 
533 static bool vma_ksm_compatible(struct vm_area_struct *vma)
534 {
535 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
536 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
537 			     VM_MIXEDMAP))
538 		return false;		/* just ignore the advice */
539 
540 	if (vma_is_dax(vma))
541 		return false;
542 
543 #ifdef VM_SAO
544 	if (vma->vm_flags & VM_SAO)
545 		return false;
546 #endif
547 #ifdef VM_SPARC_ADI
548 	if (vma->vm_flags & VM_SPARC_ADI)
549 		return false;
550 #endif
551 
552 	return true;
553 }
554 
555 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
556 		unsigned long addr)
557 {
558 	struct vm_area_struct *vma;
559 	if (ksm_test_exit(mm))
560 		return NULL;
561 	vma = vma_lookup(mm, addr);
562 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
563 		return NULL;
564 	return vma;
565 }
566 
567 static void break_cow(struct ksm_rmap_item *rmap_item)
568 {
569 	struct mm_struct *mm = rmap_item->mm;
570 	unsigned long addr = rmap_item->address;
571 	struct vm_area_struct *vma;
572 
573 	/*
574 	 * It is not an accident that whenever we want to break COW
575 	 * to undo, we also need to drop a reference to the anon_vma.
576 	 */
577 	put_anon_vma(rmap_item->anon_vma);
578 
579 	mmap_read_lock(mm);
580 	vma = find_mergeable_vma(mm, addr);
581 	if (vma)
582 		break_ksm(vma, addr, false);
583 	mmap_read_unlock(mm);
584 }
585 
586 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
587 {
588 	struct mm_struct *mm = rmap_item->mm;
589 	unsigned long addr = rmap_item->address;
590 	struct vm_area_struct *vma;
591 	struct page *page;
592 
593 	mmap_read_lock(mm);
594 	vma = find_mergeable_vma(mm, addr);
595 	if (!vma)
596 		goto out;
597 
598 	page = follow_page(vma, addr, FOLL_GET);
599 	if (IS_ERR_OR_NULL(page))
600 		goto out;
601 	if (is_zone_device_page(page))
602 		goto out_putpage;
603 	if (PageAnon(page)) {
604 		flush_anon_page(vma, page, addr);
605 		flush_dcache_page(page);
606 	} else {
607 out_putpage:
608 		put_page(page);
609 out:
610 		page = NULL;
611 	}
612 	mmap_read_unlock(mm);
613 	return page;
614 }
615 
616 /*
617  * This helper is used for getting right index into array of tree roots.
618  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
619  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
620  * every node has its own stable and unstable tree.
621  */
622 static inline int get_kpfn_nid(unsigned long kpfn)
623 {
624 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
625 }
626 
627 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
628 						   struct rb_root *root)
629 {
630 	struct ksm_stable_node *chain = alloc_stable_node();
631 	VM_BUG_ON(is_stable_node_chain(dup));
632 	if (likely(chain)) {
633 		INIT_HLIST_HEAD(&chain->hlist);
634 		chain->chain_prune_time = jiffies;
635 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
636 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
637 		chain->nid = NUMA_NO_NODE; /* debug */
638 #endif
639 		ksm_stable_node_chains++;
640 
641 		/*
642 		 * Put the stable node chain in the first dimension of
643 		 * the stable tree and at the same time remove the old
644 		 * stable node.
645 		 */
646 		rb_replace_node(&dup->node, &chain->node, root);
647 
648 		/*
649 		 * Move the old stable node to the second dimension
650 		 * queued in the hlist_dup. The invariant is that all
651 		 * dup stable_nodes in the chain->hlist point to pages
652 		 * that are write protected and have the exact same
653 		 * content.
654 		 */
655 		stable_node_chain_add_dup(dup, chain);
656 	}
657 	return chain;
658 }
659 
660 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
661 					  struct rb_root *root)
662 {
663 	rb_erase(&chain->node, root);
664 	free_stable_node(chain);
665 	ksm_stable_node_chains--;
666 }
667 
668 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
669 {
670 	struct ksm_rmap_item *rmap_item;
671 
672 	/* check it's not STABLE_NODE_CHAIN or negative */
673 	BUG_ON(stable_node->rmap_hlist_len < 0);
674 
675 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
676 		if (rmap_item->hlist.next) {
677 			ksm_pages_sharing--;
678 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
679 		} else {
680 			ksm_pages_shared--;
681 		}
682 
683 		rmap_item->mm->ksm_merging_pages--;
684 
685 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
686 		stable_node->rmap_hlist_len--;
687 		put_anon_vma(rmap_item->anon_vma);
688 		rmap_item->address &= PAGE_MASK;
689 		cond_resched();
690 	}
691 
692 	/*
693 	 * We need the second aligned pointer of the migrate_nodes
694 	 * list_head to stay clear from the rb_parent_color union
695 	 * (aligned and different than any node) and also different
696 	 * from &migrate_nodes. This will verify that future list.h changes
697 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
698 	 */
699 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
700 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
701 
702 	trace_ksm_remove_ksm_page(stable_node->kpfn);
703 	if (stable_node->head == &migrate_nodes)
704 		list_del(&stable_node->list);
705 	else
706 		stable_node_dup_del(stable_node);
707 	free_stable_node(stable_node);
708 }
709 
710 enum get_ksm_page_flags {
711 	GET_KSM_PAGE_NOLOCK,
712 	GET_KSM_PAGE_LOCK,
713 	GET_KSM_PAGE_TRYLOCK
714 };
715 
716 /*
717  * get_ksm_page: checks if the page indicated by the stable node
718  * is still its ksm page, despite having held no reference to it.
719  * In which case we can trust the content of the page, and it
720  * returns the gotten page; but if the page has now been zapped,
721  * remove the stale node from the stable tree and return NULL.
722  * But beware, the stable node's page might be being migrated.
723  *
724  * You would expect the stable_node to hold a reference to the ksm page.
725  * But if it increments the page's count, swapping out has to wait for
726  * ksmd to come around again before it can free the page, which may take
727  * seconds or even minutes: much too unresponsive.  So instead we use a
728  * "keyhole reference": access to the ksm page from the stable node peeps
729  * out through its keyhole to see if that page still holds the right key,
730  * pointing back to this stable node.  This relies on freeing a PageAnon
731  * page to reset its page->mapping to NULL, and relies on no other use of
732  * a page to put something that might look like our key in page->mapping.
733  * is on its way to being freed; but it is an anomaly to bear in mind.
734  */
735 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
736 				 enum get_ksm_page_flags flags)
737 {
738 	struct page *page;
739 	void *expected_mapping;
740 	unsigned long kpfn;
741 
742 	expected_mapping = (void *)((unsigned long)stable_node |
743 					PAGE_MAPPING_KSM);
744 again:
745 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
746 	page = pfn_to_page(kpfn);
747 	if (READ_ONCE(page->mapping) != expected_mapping)
748 		goto stale;
749 
750 	/*
751 	 * We cannot do anything with the page while its refcount is 0.
752 	 * Usually 0 means free, or tail of a higher-order page: in which
753 	 * case this node is no longer referenced, and should be freed;
754 	 * however, it might mean that the page is under page_ref_freeze().
755 	 * The __remove_mapping() case is easy, again the node is now stale;
756 	 * the same is in reuse_ksm_page() case; but if page is swapcache
757 	 * in folio_migrate_mapping(), it might still be our page,
758 	 * in which case it's essential to keep the node.
759 	 */
760 	while (!get_page_unless_zero(page)) {
761 		/*
762 		 * Another check for page->mapping != expected_mapping would
763 		 * work here too.  We have chosen the !PageSwapCache test to
764 		 * optimize the common case, when the page is or is about to
765 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
766 		 * in the ref_freeze section of __remove_mapping(); but Anon
767 		 * page->mapping reset to NULL later, in free_pages_prepare().
768 		 */
769 		if (!PageSwapCache(page))
770 			goto stale;
771 		cpu_relax();
772 	}
773 
774 	if (READ_ONCE(page->mapping) != expected_mapping) {
775 		put_page(page);
776 		goto stale;
777 	}
778 
779 	if (flags == GET_KSM_PAGE_TRYLOCK) {
780 		if (!trylock_page(page)) {
781 			put_page(page);
782 			return ERR_PTR(-EBUSY);
783 		}
784 	} else if (flags == GET_KSM_PAGE_LOCK)
785 		lock_page(page);
786 
787 	if (flags != GET_KSM_PAGE_NOLOCK) {
788 		if (READ_ONCE(page->mapping) != expected_mapping) {
789 			unlock_page(page);
790 			put_page(page);
791 			goto stale;
792 		}
793 	}
794 	return page;
795 
796 stale:
797 	/*
798 	 * We come here from above when page->mapping or !PageSwapCache
799 	 * suggests that the node is stale; but it might be under migration.
800 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
801 	 * before checking whether node->kpfn has been changed.
802 	 */
803 	smp_rmb();
804 	if (READ_ONCE(stable_node->kpfn) != kpfn)
805 		goto again;
806 	remove_node_from_stable_tree(stable_node);
807 	return NULL;
808 }
809 
810 /*
811  * Removing rmap_item from stable or unstable tree.
812  * This function will clean the information from the stable/unstable tree.
813  */
814 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
815 {
816 	if (rmap_item->address & STABLE_FLAG) {
817 		struct ksm_stable_node *stable_node;
818 		struct page *page;
819 
820 		stable_node = rmap_item->head;
821 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
822 		if (!page)
823 			goto out;
824 
825 		hlist_del(&rmap_item->hlist);
826 		unlock_page(page);
827 		put_page(page);
828 
829 		if (!hlist_empty(&stable_node->hlist))
830 			ksm_pages_sharing--;
831 		else
832 			ksm_pages_shared--;
833 
834 		rmap_item->mm->ksm_merging_pages--;
835 
836 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
837 		stable_node->rmap_hlist_len--;
838 
839 		put_anon_vma(rmap_item->anon_vma);
840 		rmap_item->head = NULL;
841 		rmap_item->address &= PAGE_MASK;
842 
843 	} else if (rmap_item->address & UNSTABLE_FLAG) {
844 		unsigned char age;
845 		/*
846 		 * Usually ksmd can and must skip the rb_erase, because
847 		 * root_unstable_tree was already reset to RB_ROOT.
848 		 * But be careful when an mm is exiting: do the rb_erase
849 		 * if this rmap_item was inserted by this scan, rather
850 		 * than left over from before.
851 		 */
852 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
853 		BUG_ON(age > 1);
854 		if (!age)
855 			rb_erase(&rmap_item->node,
856 				 root_unstable_tree + NUMA(rmap_item->nid));
857 		ksm_pages_unshared--;
858 		rmap_item->address &= PAGE_MASK;
859 	}
860 out:
861 	cond_resched();		/* we're called from many long loops */
862 }
863 
864 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
865 {
866 	while (*rmap_list) {
867 		struct ksm_rmap_item *rmap_item = *rmap_list;
868 		*rmap_list = rmap_item->rmap_list;
869 		remove_rmap_item_from_tree(rmap_item);
870 		free_rmap_item(rmap_item);
871 	}
872 }
873 
874 /*
875  * Though it's very tempting to unmerge rmap_items from stable tree rather
876  * than check every pte of a given vma, the locking doesn't quite work for
877  * that - an rmap_item is assigned to the stable tree after inserting ksm
878  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
879  * rmap_items from parent to child at fork time (so as not to waste time
880  * if exit comes before the next scan reaches it).
881  *
882  * Similarly, although we'd like to remove rmap_items (so updating counts
883  * and freeing memory) when unmerging an area, it's easier to leave that
884  * to the next pass of ksmd - consider, for example, how ksmd might be
885  * in cmp_and_merge_page on one of the rmap_items we would be removing.
886  */
887 static int unmerge_ksm_pages(struct vm_area_struct *vma,
888 			     unsigned long start, unsigned long end, bool lock_vma)
889 {
890 	unsigned long addr;
891 	int err = 0;
892 
893 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
894 		if (ksm_test_exit(vma->vm_mm))
895 			break;
896 		if (signal_pending(current))
897 			err = -ERESTARTSYS;
898 		else
899 			err = break_ksm(vma, addr, lock_vma);
900 	}
901 	return err;
902 }
903 
904 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
905 {
906 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
907 }
908 
909 static inline struct ksm_stable_node *page_stable_node(struct page *page)
910 {
911 	return folio_stable_node(page_folio(page));
912 }
913 
914 static inline void set_page_stable_node(struct page *page,
915 					struct ksm_stable_node *stable_node)
916 {
917 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
918 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
919 }
920 
921 #ifdef CONFIG_SYSFS
922 /*
923  * Only called through the sysfs control interface:
924  */
925 static int remove_stable_node(struct ksm_stable_node *stable_node)
926 {
927 	struct page *page;
928 	int err;
929 
930 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
931 	if (!page) {
932 		/*
933 		 * get_ksm_page did remove_node_from_stable_tree itself.
934 		 */
935 		return 0;
936 	}
937 
938 	/*
939 	 * Page could be still mapped if this races with __mmput() running in
940 	 * between ksm_exit() and exit_mmap(). Just refuse to let
941 	 * merge_across_nodes/max_page_sharing be switched.
942 	 */
943 	err = -EBUSY;
944 	if (!page_mapped(page)) {
945 		/*
946 		 * The stable node did not yet appear stale to get_ksm_page(),
947 		 * since that allows for an unmapped ksm page to be recognized
948 		 * right up until it is freed; but the node is safe to remove.
949 		 * This page might be in an LRU cache waiting to be freed,
950 		 * or it might be PageSwapCache (perhaps under writeback),
951 		 * or it might have been removed from swapcache a moment ago.
952 		 */
953 		set_page_stable_node(page, NULL);
954 		remove_node_from_stable_tree(stable_node);
955 		err = 0;
956 	}
957 
958 	unlock_page(page);
959 	put_page(page);
960 	return err;
961 }
962 
963 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
964 				    struct rb_root *root)
965 {
966 	struct ksm_stable_node *dup;
967 	struct hlist_node *hlist_safe;
968 
969 	if (!is_stable_node_chain(stable_node)) {
970 		VM_BUG_ON(is_stable_node_dup(stable_node));
971 		if (remove_stable_node(stable_node))
972 			return true;
973 		else
974 			return false;
975 	}
976 
977 	hlist_for_each_entry_safe(dup, hlist_safe,
978 				  &stable_node->hlist, hlist_dup) {
979 		VM_BUG_ON(!is_stable_node_dup(dup));
980 		if (remove_stable_node(dup))
981 			return true;
982 	}
983 	BUG_ON(!hlist_empty(&stable_node->hlist));
984 	free_stable_node_chain(stable_node, root);
985 	return false;
986 }
987 
988 static int remove_all_stable_nodes(void)
989 {
990 	struct ksm_stable_node *stable_node, *next;
991 	int nid;
992 	int err = 0;
993 
994 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
995 		while (root_stable_tree[nid].rb_node) {
996 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
997 						struct ksm_stable_node, node);
998 			if (remove_stable_node_chain(stable_node,
999 						     root_stable_tree + nid)) {
1000 				err = -EBUSY;
1001 				break;	/* proceed to next nid */
1002 			}
1003 			cond_resched();
1004 		}
1005 	}
1006 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1007 		if (remove_stable_node(stable_node))
1008 			err = -EBUSY;
1009 		cond_resched();
1010 	}
1011 	return err;
1012 }
1013 
1014 static int unmerge_and_remove_all_rmap_items(void)
1015 {
1016 	struct ksm_mm_slot *mm_slot;
1017 	struct mm_slot *slot;
1018 	struct mm_struct *mm;
1019 	struct vm_area_struct *vma;
1020 	int err = 0;
1021 
1022 	spin_lock(&ksm_mmlist_lock);
1023 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1024 			  struct mm_slot, mm_node);
1025 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1026 	spin_unlock(&ksm_mmlist_lock);
1027 
1028 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1029 	     mm_slot = ksm_scan.mm_slot) {
1030 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1031 
1032 		mm = mm_slot->slot.mm;
1033 		mmap_read_lock(mm);
1034 
1035 		/*
1036 		 * Exit right away if mm is exiting to avoid lockdep issue in
1037 		 * the maple tree
1038 		 */
1039 		if (ksm_test_exit(mm))
1040 			goto mm_exiting;
1041 
1042 		for_each_vma(vmi, vma) {
1043 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1044 				continue;
1045 			err = unmerge_ksm_pages(vma,
1046 						vma->vm_start, vma->vm_end, false);
1047 			if (err)
1048 				goto error;
1049 		}
1050 
1051 mm_exiting:
1052 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1053 		mmap_read_unlock(mm);
1054 
1055 		spin_lock(&ksm_mmlist_lock);
1056 		slot = list_entry(mm_slot->slot.mm_node.next,
1057 				  struct mm_slot, mm_node);
1058 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1059 		if (ksm_test_exit(mm)) {
1060 			hash_del(&mm_slot->slot.hash);
1061 			list_del(&mm_slot->slot.mm_node);
1062 			spin_unlock(&ksm_mmlist_lock);
1063 
1064 			mm_slot_free(mm_slot_cache, mm_slot);
1065 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1066 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1067 			mmdrop(mm);
1068 		} else
1069 			spin_unlock(&ksm_mmlist_lock);
1070 	}
1071 
1072 	/* Clean up stable nodes, but don't worry if some are still busy */
1073 	remove_all_stable_nodes();
1074 	ksm_scan.seqnr = 0;
1075 	return 0;
1076 
1077 error:
1078 	mmap_read_unlock(mm);
1079 	spin_lock(&ksm_mmlist_lock);
1080 	ksm_scan.mm_slot = &ksm_mm_head;
1081 	spin_unlock(&ksm_mmlist_lock);
1082 	return err;
1083 }
1084 #endif /* CONFIG_SYSFS */
1085 
1086 static u32 calc_checksum(struct page *page)
1087 {
1088 	u32 checksum;
1089 	void *addr = kmap_atomic(page);
1090 	checksum = xxhash(addr, PAGE_SIZE, 0);
1091 	kunmap_atomic(addr);
1092 	return checksum;
1093 }
1094 
1095 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1096 			      pte_t *orig_pte)
1097 {
1098 	struct mm_struct *mm = vma->vm_mm;
1099 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1100 	int swapped;
1101 	int err = -EFAULT;
1102 	struct mmu_notifier_range range;
1103 	bool anon_exclusive;
1104 	pte_t entry;
1105 
1106 	pvmw.address = page_address_in_vma(page, vma);
1107 	if (pvmw.address == -EFAULT)
1108 		goto out;
1109 
1110 	BUG_ON(PageTransCompound(page));
1111 
1112 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1113 				pvmw.address + PAGE_SIZE);
1114 	mmu_notifier_invalidate_range_start(&range);
1115 
1116 	if (!page_vma_mapped_walk(&pvmw))
1117 		goto out_mn;
1118 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1119 		goto out_unlock;
1120 
1121 	anon_exclusive = PageAnonExclusive(page);
1122 	entry = ptep_get(pvmw.pte);
1123 	if (pte_write(entry) || pte_dirty(entry) ||
1124 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1125 		swapped = PageSwapCache(page);
1126 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1127 		/*
1128 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1129 		 * take any lock, therefore the check that we are going to make
1130 		 * with the pagecount against the mapcount is racy and
1131 		 * O_DIRECT can happen right after the check.
1132 		 * So we clear the pte and flush the tlb before the check
1133 		 * this assure us that no O_DIRECT can happen after the check
1134 		 * or in the middle of the check.
1135 		 *
1136 		 * No need to notify as we are downgrading page table to read
1137 		 * only not changing it to point to a new page.
1138 		 *
1139 		 * See Documentation/mm/mmu_notifier.rst
1140 		 */
1141 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1142 		/*
1143 		 * Check that no O_DIRECT or similar I/O is in progress on the
1144 		 * page
1145 		 */
1146 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1147 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1148 			goto out_unlock;
1149 		}
1150 
1151 		/* See page_try_share_anon_rmap(): clear PTE first. */
1152 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1153 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1154 			goto out_unlock;
1155 		}
1156 
1157 		if (pte_dirty(entry))
1158 			set_page_dirty(page);
1159 		entry = pte_mkclean(entry);
1160 
1161 		if (pte_write(entry))
1162 			entry = pte_wrprotect(entry);
1163 
1164 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1165 	}
1166 	*orig_pte = entry;
1167 	err = 0;
1168 
1169 out_unlock:
1170 	page_vma_mapped_walk_done(&pvmw);
1171 out_mn:
1172 	mmu_notifier_invalidate_range_end(&range);
1173 out:
1174 	return err;
1175 }
1176 
1177 /**
1178  * replace_page - replace page in vma by new ksm page
1179  * @vma:      vma that holds the pte pointing to page
1180  * @page:     the page we are replacing by kpage
1181  * @kpage:    the ksm page we replace page by
1182  * @orig_pte: the original value of the pte
1183  *
1184  * Returns 0 on success, -EFAULT on failure.
1185  */
1186 static int replace_page(struct vm_area_struct *vma, struct page *page,
1187 			struct page *kpage, pte_t orig_pte)
1188 {
1189 	struct mm_struct *mm = vma->vm_mm;
1190 	struct folio *folio;
1191 	pmd_t *pmd;
1192 	pmd_t pmde;
1193 	pte_t *ptep;
1194 	pte_t newpte;
1195 	spinlock_t *ptl;
1196 	unsigned long addr;
1197 	int err = -EFAULT;
1198 	struct mmu_notifier_range range;
1199 
1200 	addr = page_address_in_vma(page, vma);
1201 	if (addr == -EFAULT)
1202 		goto out;
1203 
1204 	pmd = mm_find_pmd(mm, addr);
1205 	if (!pmd)
1206 		goto out;
1207 	/*
1208 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1209 	 * without holding anon_vma lock for write.  So when looking for a
1210 	 * genuine pmde (in which to find pte), test present and !THP together.
1211 	 */
1212 	pmde = pmdp_get_lockless(pmd);
1213 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1214 		goto out;
1215 
1216 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1217 				addr + PAGE_SIZE);
1218 	mmu_notifier_invalidate_range_start(&range);
1219 
1220 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1221 	if (!ptep)
1222 		goto out_mn;
1223 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1224 		pte_unmap_unlock(ptep, ptl);
1225 		goto out_mn;
1226 	}
1227 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1228 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1229 
1230 	/*
1231 	 * No need to check ksm_use_zero_pages here: we can only have a
1232 	 * zero_page here if ksm_use_zero_pages was enabled already.
1233 	 */
1234 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1235 		get_page(kpage);
1236 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1237 		newpte = mk_pte(kpage, vma->vm_page_prot);
1238 	} else {
1239 		/*
1240 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1241 		 * we can easily track all KSM-placed zero pages by checking if
1242 		 * the dirty bit in zero page's PTE is set.
1243 		 */
1244 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1245 		ksm_map_zero_page(mm);
1246 		/*
1247 		 * We're replacing an anonymous page with a zero page, which is
1248 		 * not anonymous. We need to do proper accounting otherwise we
1249 		 * will get wrong values in /proc, and a BUG message in dmesg
1250 		 * when tearing down the mm.
1251 		 */
1252 		dec_mm_counter(mm, MM_ANONPAGES);
1253 	}
1254 
1255 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1256 	/*
1257 	 * No need to notify as we are replacing a read only page with another
1258 	 * read only page with the same content.
1259 	 *
1260 	 * See Documentation/mm/mmu_notifier.rst
1261 	 */
1262 	ptep_clear_flush(vma, addr, ptep);
1263 	set_pte_at_notify(mm, addr, ptep, newpte);
1264 
1265 	folio = page_folio(page);
1266 	page_remove_rmap(page, vma, false);
1267 	if (!folio_mapped(folio))
1268 		folio_free_swap(folio);
1269 	folio_put(folio);
1270 
1271 	pte_unmap_unlock(ptep, ptl);
1272 	err = 0;
1273 out_mn:
1274 	mmu_notifier_invalidate_range_end(&range);
1275 out:
1276 	return err;
1277 }
1278 
1279 /*
1280  * try_to_merge_one_page - take two pages and merge them into one
1281  * @vma: the vma that holds the pte pointing to page
1282  * @page: the PageAnon page that we want to replace with kpage
1283  * @kpage: the PageKsm page that we want to map instead of page,
1284  *         or NULL the first time when we want to use page as kpage.
1285  *
1286  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1287  */
1288 static int try_to_merge_one_page(struct vm_area_struct *vma,
1289 				 struct page *page, struct page *kpage)
1290 {
1291 	pte_t orig_pte = __pte(0);
1292 	int err = -EFAULT;
1293 
1294 	if (page == kpage)			/* ksm page forked */
1295 		return 0;
1296 
1297 	if (!PageAnon(page))
1298 		goto out;
1299 
1300 	/*
1301 	 * We need the page lock to read a stable PageSwapCache in
1302 	 * write_protect_page().  We use trylock_page() instead of
1303 	 * lock_page() because we don't want to wait here - we
1304 	 * prefer to continue scanning and merging different pages,
1305 	 * then come back to this page when it is unlocked.
1306 	 */
1307 	if (!trylock_page(page))
1308 		goto out;
1309 
1310 	if (PageTransCompound(page)) {
1311 		if (split_huge_page(page))
1312 			goto out_unlock;
1313 	}
1314 
1315 	/*
1316 	 * If this anonymous page is mapped only here, its pte may need
1317 	 * to be write-protected.  If it's mapped elsewhere, all of its
1318 	 * ptes are necessarily already write-protected.  But in either
1319 	 * case, we need to lock and check page_count is not raised.
1320 	 */
1321 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1322 		if (!kpage) {
1323 			/*
1324 			 * While we hold page lock, upgrade page from
1325 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1326 			 * stable_tree_insert() will update stable_node.
1327 			 */
1328 			set_page_stable_node(page, NULL);
1329 			mark_page_accessed(page);
1330 			/*
1331 			 * Page reclaim just frees a clean page with no dirty
1332 			 * ptes: make sure that the ksm page would be swapped.
1333 			 */
1334 			if (!PageDirty(page))
1335 				SetPageDirty(page);
1336 			err = 0;
1337 		} else if (pages_identical(page, kpage))
1338 			err = replace_page(vma, page, kpage, orig_pte);
1339 	}
1340 
1341 out_unlock:
1342 	unlock_page(page);
1343 out:
1344 	return err;
1345 }
1346 
1347 /*
1348  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1349  * but no new kernel page is allocated: kpage must already be a ksm page.
1350  *
1351  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1352  */
1353 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1354 				      struct page *page, struct page *kpage)
1355 {
1356 	struct mm_struct *mm = rmap_item->mm;
1357 	struct vm_area_struct *vma;
1358 	int err = -EFAULT;
1359 
1360 	mmap_read_lock(mm);
1361 	vma = find_mergeable_vma(mm, rmap_item->address);
1362 	if (!vma)
1363 		goto out;
1364 
1365 	err = try_to_merge_one_page(vma, page, kpage);
1366 	if (err)
1367 		goto out;
1368 
1369 	/* Unstable nid is in union with stable anon_vma: remove first */
1370 	remove_rmap_item_from_tree(rmap_item);
1371 
1372 	/* Must get reference to anon_vma while still holding mmap_lock */
1373 	rmap_item->anon_vma = vma->anon_vma;
1374 	get_anon_vma(vma->anon_vma);
1375 out:
1376 	mmap_read_unlock(mm);
1377 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1378 				rmap_item, mm, err);
1379 	return err;
1380 }
1381 
1382 /*
1383  * try_to_merge_two_pages - take two identical pages and prepare them
1384  * to be merged into one page.
1385  *
1386  * This function returns the kpage if we successfully merged two identical
1387  * pages into one ksm page, NULL otherwise.
1388  *
1389  * Note that this function upgrades page to ksm page: if one of the pages
1390  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1391  */
1392 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1393 					   struct page *page,
1394 					   struct ksm_rmap_item *tree_rmap_item,
1395 					   struct page *tree_page)
1396 {
1397 	int err;
1398 
1399 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1400 	if (!err) {
1401 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1402 							tree_page, page);
1403 		/*
1404 		 * If that fails, we have a ksm page with only one pte
1405 		 * pointing to it: so break it.
1406 		 */
1407 		if (err)
1408 			break_cow(rmap_item);
1409 	}
1410 	return err ? NULL : page;
1411 }
1412 
1413 static __always_inline
1414 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1415 {
1416 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1417 	/*
1418 	 * Check that at least one mapping still exists, otherwise
1419 	 * there's no much point to merge and share with this
1420 	 * stable_node, as the underlying tree_page of the other
1421 	 * sharer is going to be freed soon.
1422 	 */
1423 	return stable_node->rmap_hlist_len &&
1424 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1425 }
1426 
1427 static __always_inline
1428 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1429 {
1430 	return __is_page_sharing_candidate(stable_node, 0);
1431 }
1432 
1433 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1434 				    struct ksm_stable_node **_stable_node,
1435 				    struct rb_root *root,
1436 				    bool prune_stale_stable_nodes)
1437 {
1438 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1439 	struct hlist_node *hlist_safe;
1440 	struct page *_tree_page, *tree_page = NULL;
1441 	int nr = 0;
1442 	int found_rmap_hlist_len;
1443 
1444 	if (!prune_stale_stable_nodes ||
1445 	    time_before(jiffies, stable_node->chain_prune_time +
1446 			msecs_to_jiffies(
1447 				ksm_stable_node_chains_prune_millisecs)))
1448 		prune_stale_stable_nodes = false;
1449 	else
1450 		stable_node->chain_prune_time = jiffies;
1451 
1452 	hlist_for_each_entry_safe(dup, hlist_safe,
1453 				  &stable_node->hlist, hlist_dup) {
1454 		cond_resched();
1455 		/*
1456 		 * We must walk all stable_node_dup to prune the stale
1457 		 * stable nodes during lookup.
1458 		 *
1459 		 * get_ksm_page can drop the nodes from the
1460 		 * stable_node->hlist if they point to freed pages
1461 		 * (that's why we do a _safe walk). The "dup"
1462 		 * stable_node parameter itself will be freed from
1463 		 * under us if it returns NULL.
1464 		 */
1465 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1466 		if (!_tree_page)
1467 			continue;
1468 		nr += 1;
1469 		if (is_page_sharing_candidate(dup)) {
1470 			if (!found ||
1471 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1472 				if (found)
1473 					put_page(tree_page);
1474 				found = dup;
1475 				found_rmap_hlist_len = found->rmap_hlist_len;
1476 				tree_page = _tree_page;
1477 
1478 				/* skip put_page for found dup */
1479 				if (!prune_stale_stable_nodes)
1480 					break;
1481 				continue;
1482 			}
1483 		}
1484 		put_page(_tree_page);
1485 	}
1486 
1487 	if (found) {
1488 		/*
1489 		 * nr is counting all dups in the chain only if
1490 		 * prune_stale_stable_nodes is true, otherwise we may
1491 		 * break the loop at nr == 1 even if there are
1492 		 * multiple entries.
1493 		 */
1494 		if (prune_stale_stable_nodes && nr == 1) {
1495 			/*
1496 			 * If there's not just one entry it would
1497 			 * corrupt memory, better BUG_ON. In KSM
1498 			 * context with no lock held it's not even
1499 			 * fatal.
1500 			 */
1501 			BUG_ON(stable_node->hlist.first->next);
1502 
1503 			/*
1504 			 * There's just one entry and it is below the
1505 			 * deduplication limit so drop the chain.
1506 			 */
1507 			rb_replace_node(&stable_node->node, &found->node,
1508 					root);
1509 			free_stable_node(stable_node);
1510 			ksm_stable_node_chains--;
1511 			ksm_stable_node_dups--;
1512 			/*
1513 			 * NOTE: the caller depends on the stable_node
1514 			 * to be equal to stable_node_dup if the chain
1515 			 * was collapsed.
1516 			 */
1517 			*_stable_node = found;
1518 			/*
1519 			 * Just for robustness, as stable_node is
1520 			 * otherwise left as a stable pointer, the
1521 			 * compiler shall optimize it away at build
1522 			 * time.
1523 			 */
1524 			stable_node = NULL;
1525 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1526 			   __is_page_sharing_candidate(found, 1)) {
1527 			/*
1528 			 * If the found stable_node dup can accept one
1529 			 * more future merge (in addition to the one
1530 			 * that is underway) and is not at the head of
1531 			 * the chain, put it there so next search will
1532 			 * be quicker in the !prune_stale_stable_nodes
1533 			 * case.
1534 			 *
1535 			 * NOTE: it would be inaccurate to use nr > 1
1536 			 * instead of checking the hlist.first pointer
1537 			 * directly, because in the
1538 			 * prune_stale_stable_nodes case "nr" isn't
1539 			 * the position of the found dup in the chain,
1540 			 * but the total number of dups in the chain.
1541 			 */
1542 			hlist_del(&found->hlist_dup);
1543 			hlist_add_head(&found->hlist_dup,
1544 				       &stable_node->hlist);
1545 		}
1546 	}
1547 
1548 	*_stable_node_dup = found;
1549 	return tree_page;
1550 }
1551 
1552 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1553 					       struct rb_root *root)
1554 {
1555 	if (!is_stable_node_chain(stable_node))
1556 		return stable_node;
1557 	if (hlist_empty(&stable_node->hlist)) {
1558 		free_stable_node_chain(stable_node, root);
1559 		return NULL;
1560 	}
1561 	return hlist_entry(stable_node->hlist.first,
1562 			   typeof(*stable_node), hlist_dup);
1563 }
1564 
1565 /*
1566  * Like for get_ksm_page, this function can free the *_stable_node and
1567  * *_stable_node_dup if the returned tree_page is NULL.
1568  *
1569  * It can also free and overwrite *_stable_node with the found
1570  * stable_node_dup if the chain is collapsed (in which case
1571  * *_stable_node will be equal to *_stable_node_dup like if the chain
1572  * never existed). It's up to the caller to verify tree_page is not
1573  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1574  *
1575  * *_stable_node_dup is really a second output parameter of this
1576  * function and will be overwritten in all cases, the caller doesn't
1577  * need to initialize it.
1578  */
1579 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1580 					struct ksm_stable_node **_stable_node,
1581 					struct rb_root *root,
1582 					bool prune_stale_stable_nodes)
1583 {
1584 	struct ksm_stable_node *stable_node = *_stable_node;
1585 	if (!is_stable_node_chain(stable_node)) {
1586 		if (is_page_sharing_candidate(stable_node)) {
1587 			*_stable_node_dup = stable_node;
1588 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1589 		}
1590 		/*
1591 		 * _stable_node_dup set to NULL means the stable_node
1592 		 * reached the ksm_max_page_sharing limit.
1593 		 */
1594 		*_stable_node_dup = NULL;
1595 		return NULL;
1596 	}
1597 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1598 			       prune_stale_stable_nodes);
1599 }
1600 
1601 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1602 						struct ksm_stable_node **s_n,
1603 						struct rb_root *root)
1604 {
1605 	return __stable_node_chain(s_n_d, s_n, root, true);
1606 }
1607 
1608 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1609 					  struct ksm_stable_node *s_n,
1610 					  struct rb_root *root)
1611 {
1612 	struct ksm_stable_node *old_stable_node = s_n;
1613 	struct page *tree_page;
1614 
1615 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1616 	/* not pruning dups so s_n cannot have changed */
1617 	VM_BUG_ON(s_n != old_stable_node);
1618 	return tree_page;
1619 }
1620 
1621 /*
1622  * stable_tree_search - search for page inside the stable tree
1623  *
1624  * This function checks if there is a page inside the stable tree
1625  * with identical content to the page that we are scanning right now.
1626  *
1627  * This function returns the stable tree node of identical content if found,
1628  * NULL otherwise.
1629  */
1630 static struct page *stable_tree_search(struct page *page)
1631 {
1632 	int nid;
1633 	struct rb_root *root;
1634 	struct rb_node **new;
1635 	struct rb_node *parent;
1636 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1637 	struct ksm_stable_node *page_node;
1638 
1639 	page_node = page_stable_node(page);
1640 	if (page_node && page_node->head != &migrate_nodes) {
1641 		/* ksm page forked */
1642 		get_page(page);
1643 		return page;
1644 	}
1645 
1646 	nid = get_kpfn_nid(page_to_pfn(page));
1647 	root = root_stable_tree + nid;
1648 again:
1649 	new = &root->rb_node;
1650 	parent = NULL;
1651 
1652 	while (*new) {
1653 		struct page *tree_page;
1654 		int ret;
1655 
1656 		cond_resched();
1657 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1658 		stable_node_any = NULL;
1659 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1660 		/*
1661 		 * NOTE: stable_node may have been freed by
1662 		 * chain_prune() if the returned stable_node_dup is
1663 		 * not NULL. stable_node_dup may have been inserted in
1664 		 * the rbtree instead as a regular stable_node (in
1665 		 * order to collapse the stable_node chain if a single
1666 		 * stable_node dup was found in it). In such case the
1667 		 * stable_node is overwritten by the callee to point
1668 		 * to the stable_node_dup that was collapsed in the
1669 		 * stable rbtree and stable_node will be equal to
1670 		 * stable_node_dup like if the chain never existed.
1671 		 */
1672 		if (!stable_node_dup) {
1673 			/*
1674 			 * Either all stable_node dups were full in
1675 			 * this stable_node chain, or this chain was
1676 			 * empty and should be rb_erased.
1677 			 */
1678 			stable_node_any = stable_node_dup_any(stable_node,
1679 							      root);
1680 			if (!stable_node_any) {
1681 				/* rb_erase just run */
1682 				goto again;
1683 			}
1684 			/*
1685 			 * Take any of the stable_node dups page of
1686 			 * this stable_node chain to let the tree walk
1687 			 * continue. All KSM pages belonging to the
1688 			 * stable_node dups in a stable_node chain
1689 			 * have the same content and they're
1690 			 * write protected at all times. Any will work
1691 			 * fine to continue the walk.
1692 			 */
1693 			tree_page = get_ksm_page(stable_node_any,
1694 						 GET_KSM_PAGE_NOLOCK);
1695 		}
1696 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1697 		if (!tree_page) {
1698 			/*
1699 			 * If we walked over a stale stable_node,
1700 			 * get_ksm_page() will call rb_erase() and it
1701 			 * may rebalance the tree from under us. So
1702 			 * restart the search from scratch. Returning
1703 			 * NULL would be safe too, but we'd generate
1704 			 * false negative insertions just because some
1705 			 * stable_node was stale.
1706 			 */
1707 			goto again;
1708 		}
1709 
1710 		ret = memcmp_pages(page, tree_page);
1711 		put_page(tree_page);
1712 
1713 		parent = *new;
1714 		if (ret < 0)
1715 			new = &parent->rb_left;
1716 		else if (ret > 0)
1717 			new = &parent->rb_right;
1718 		else {
1719 			if (page_node) {
1720 				VM_BUG_ON(page_node->head != &migrate_nodes);
1721 				/*
1722 				 * Test if the migrated page should be merged
1723 				 * into a stable node dup. If the mapcount is
1724 				 * 1 we can migrate it with another KSM page
1725 				 * without adding it to the chain.
1726 				 */
1727 				if (page_mapcount(page) > 1)
1728 					goto chain_append;
1729 			}
1730 
1731 			if (!stable_node_dup) {
1732 				/*
1733 				 * If the stable_node is a chain and
1734 				 * we got a payload match in memcmp
1735 				 * but we cannot merge the scanned
1736 				 * page in any of the existing
1737 				 * stable_node dups because they're
1738 				 * all full, we need to wait the
1739 				 * scanned page to find itself a match
1740 				 * in the unstable tree to create a
1741 				 * brand new KSM page to add later to
1742 				 * the dups of this stable_node.
1743 				 */
1744 				return NULL;
1745 			}
1746 
1747 			/*
1748 			 * Lock and unlock the stable_node's page (which
1749 			 * might already have been migrated) so that page
1750 			 * migration is sure to notice its raised count.
1751 			 * It would be more elegant to return stable_node
1752 			 * than kpage, but that involves more changes.
1753 			 */
1754 			tree_page = get_ksm_page(stable_node_dup,
1755 						 GET_KSM_PAGE_TRYLOCK);
1756 
1757 			if (PTR_ERR(tree_page) == -EBUSY)
1758 				return ERR_PTR(-EBUSY);
1759 
1760 			if (unlikely(!tree_page))
1761 				/*
1762 				 * The tree may have been rebalanced,
1763 				 * so re-evaluate parent and new.
1764 				 */
1765 				goto again;
1766 			unlock_page(tree_page);
1767 
1768 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1769 			    NUMA(stable_node_dup->nid)) {
1770 				put_page(tree_page);
1771 				goto replace;
1772 			}
1773 			return tree_page;
1774 		}
1775 	}
1776 
1777 	if (!page_node)
1778 		return NULL;
1779 
1780 	list_del(&page_node->list);
1781 	DO_NUMA(page_node->nid = nid);
1782 	rb_link_node(&page_node->node, parent, new);
1783 	rb_insert_color(&page_node->node, root);
1784 out:
1785 	if (is_page_sharing_candidate(page_node)) {
1786 		get_page(page);
1787 		return page;
1788 	} else
1789 		return NULL;
1790 
1791 replace:
1792 	/*
1793 	 * If stable_node was a chain and chain_prune collapsed it,
1794 	 * stable_node has been updated to be the new regular
1795 	 * stable_node. A collapse of the chain is indistinguishable
1796 	 * from the case there was no chain in the stable
1797 	 * rbtree. Otherwise stable_node is the chain and
1798 	 * stable_node_dup is the dup to replace.
1799 	 */
1800 	if (stable_node_dup == stable_node) {
1801 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1802 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1803 		/* there is no chain */
1804 		if (page_node) {
1805 			VM_BUG_ON(page_node->head != &migrate_nodes);
1806 			list_del(&page_node->list);
1807 			DO_NUMA(page_node->nid = nid);
1808 			rb_replace_node(&stable_node_dup->node,
1809 					&page_node->node,
1810 					root);
1811 			if (is_page_sharing_candidate(page_node))
1812 				get_page(page);
1813 			else
1814 				page = NULL;
1815 		} else {
1816 			rb_erase(&stable_node_dup->node, root);
1817 			page = NULL;
1818 		}
1819 	} else {
1820 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1821 		__stable_node_dup_del(stable_node_dup);
1822 		if (page_node) {
1823 			VM_BUG_ON(page_node->head != &migrate_nodes);
1824 			list_del(&page_node->list);
1825 			DO_NUMA(page_node->nid = nid);
1826 			stable_node_chain_add_dup(page_node, stable_node);
1827 			if (is_page_sharing_candidate(page_node))
1828 				get_page(page);
1829 			else
1830 				page = NULL;
1831 		} else {
1832 			page = NULL;
1833 		}
1834 	}
1835 	stable_node_dup->head = &migrate_nodes;
1836 	list_add(&stable_node_dup->list, stable_node_dup->head);
1837 	return page;
1838 
1839 chain_append:
1840 	/* stable_node_dup could be null if it reached the limit */
1841 	if (!stable_node_dup)
1842 		stable_node_dup = stable_node_any;
1843 	/*
1844 	 * If stable_node was a chain and chain_prune collapsed it,
1845 	 * stable_node has been updated to be the new regular
1846 	 * stable_node. A collapse of the chain is indistinguishable
1847 	 * from the case there was no chain in the stable
1848 	 * rbtree. Otherwise stable_node is the chain and
1849 	 * stable_node_dup is the dup to replace.
1850 	 */
1851 	if (stable_node_dup == stable_node) {
1852 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1853 		/* chain is missing so create it */
1854 		stable_node = alloc_stable_node_chain(stable_node_dup,
1855 						      root);
1856 		if (!stable_node)
1857 			return NULL;
1858 	}
1859 	/*
1860 	 * Add this stable_node dup that was
1861 	 * migrated to the stable_node chain
1862 	 * of the current nid for this page
1863 	 * content.
1864 	 */
1865 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1866 	VM_BUG_ON(page_node->head != &migrate_nodes);
1867 	list_del(&page_node->list);
1868 	DO_NUMA(page_node->nid = nid);
1869 	stable_node_chain_add_dup(page_node, stable_node);
1870 	goto out;
1871 }
1872 
1873 /*
1874  * stable_tree_insert - insert stable tree node pointing to new ksm page
1875  * into the stable tree.
1876  *
1877  * This function returns the stable tree node just allocated on success,
1878  * NULL otherwise.
1879  */
1880 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1881 {
1882 	int nid;
1883 	unsigned long kpfn;
1884 	struct rb_root *root;
1885 	struct rb_node **new;
1886 	struct rb_node *parent;
1887 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1888 	bool need_chain = false;
1889 
1890 	kpfn = page_to_pfn(kpage);
1891 	nid = get_kpfn_nid(kpfn);
1892 	root = root_stable_tree + nid;
1893 again:
1894 	parent = NULL;
1895 	new = &root->rb_node;
1896 
1897 	while (*new) {
1898 		struct page *tree_page;
1899 		int ret;
1900 
1901 		cond_resched();
1902 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1903 		stable_node_any = NULL;
1904 		tree_page = chain(&stable_node_dup, stable_node, root);
1905 		if (!stable_node_dup) {
1906 			/*
1907 			 * Either all stable_node dups were full in
1908 			 * this stable_node chain, or this chain was
1909 			 * empty and should be rb_erased.
1910 			 */
1911 			stable_node_any = stable_node_dup_any(stable_node,
1912 							      root);
1913 			if (!stable_node_any) {
1914 				/* rb_erase just run */
1915 				goto again;
1916 			}
1917 			/*
1918 			 * Take any of the stable_node dups page of
1919 			 * this stable_node chain to let the tree walk
1920 			 * continue. All KSM pages belonging to the
1921 			 * stable_node dups in a stable_node chain
1922 			 * have the same content and they're
1923 			 * write protected at all times. Any will work
1924 			 * fine to continue the walk.
1925 			 */
1926 			tree_page = get_ksm_page(stable_node_any,
1927 						 GET_KSM_PAGE_NOLOCK);
1928 		}
1929 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1930 		if (!tree_page) {
1931 			/*
1932 			 * If we walked over a stale stable_node,
1933 			 * get_ksm_page() will call rb_erase() and it
1934 			 * may rebalance the tree from under us. So
1935 			 * restart the search from scratch. Returning
1936 			 * NULL would be safe too, but we'd generate
1937 			 * false negative insertions just because some
1938 			 * stable_node was stale.
1939 			 */
1940 			goto again;
1941 		}
1942 
1943 		ret = memcmp_pages(kpage, tree_page);
1944 		put_page(tree_page);
1945 
1946 		parent = *new;
1947 		if (ret < 0)
1948 			new = &parent->rb_left;
1949 		else if (ret > 0)
1950 			new = &parent->rb_right;
1951 		else {
1952 			need_chain = true;
1953 			break;
1954 		}
1955 	}
1956 
1957 	stable_node_dup = alloc_stable_node();
1958 	if (!stable_node_dup)
1959 		return NULL;
1960 
1961 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1962 	stable_node_dup->kpfn = kpfn;
1963 	set_page_stable_node(kpage, stable_node_dup);
1964 	stable_node_dup->rmap_hlist_len = 0;
1965 	DO_NUMA(stable_node_dup->nid = nid);
1966 	if (!need_chain) {
1967 		rb_link_node(&stable_node_dup->node, parent, new);
1968 		rb_insert_color(&stable_node_dup->node, root);
1969 	} else {
1970 		if (!is_stable_node_chain(stable_node)) {
1971 			struct ksm_stable_node *orig = stable_node;
1972 			/* chain is missing so create it */
1973 			stable_node = alloc_stable_node_chain(orig, root);
1974 			if (!stable_node) {
1975 				free_stable_node(stable_node_dup);
1976 				return NULL;
1977 			}
1978 		}
1979 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1980 	}
1981 
1982 	return stable_node_dup;
1983 }
1984 
1985 /*
1986  * unstable_tree_search_insert - search for identical page,
1987  * else insert rmap_item into the unstable tree.
1988  *
1989  * This function searches for a page in the unstable tree identical to the
1990  * page currently being scanned; and if no identical page is found in the
1991  * tree, we insert rmap_item as a new object into the unstable tree.
1992  *
1993  * This function returns pointer to rmap_item found to be identical
1994  * to the currently scanned page, NULL otherwise.
1995  *
1996  * This function does both searching and inserting, because they share
1997  * the same walking algorithm in an rbtree.
1998  */
1999 static
2000 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2001 					      struct page *page,
2002 					      struct page **tree_pagep)
2003 {
2004 	struct rb_node **new;
2005 	struct rb_root *root;
2006 	struct rb_node *parent = NULL;
2007 	int nid;
2008 
2009 	nid = get_kpfn_nid(page_to_pfn(page));
2010 	root = root_unstable_tree + nid;
2011 	new = &root->rb_node;
2012 
2013 	while (*new) {
2014 		struct ksm_rmap_item *tree_rmap_item;
2015 		struct page *tree_page;
2016 		int ret;
2017 
2018 		cond_resched();
2019 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2020 		tree_page = get_mergeable_page(tree_rmap_item);
2021 		if (!tree_page)
2022 			return NULL;
2023 
2024 		/*
2025 		 * Don't substitute a ksm page for a forked page.
2026 		 */
2027 		if (page == tree_page) {
2028 			put_page(tree_page);
2029 			return NULL;
2030 		}
2031 
2032 		ret = memcmp_pages(page, tree_page);
2033 
2034 		parent = *new;
2035 		if (ret < 0) {
2036 			put_page(tree_page);
2037 			new = &parent->rb_left;
2038 		} else if (ret > 0) {
2039 			put_page(tree_page);
2040 			new = &parent->rb_right;
2041 		} else if (!ksm_merge_across_nodes &&
2042 			   page_to_nid(tree_page) != nid) {
2043 			/*
2044 			 * If tree_page has been migrated to another NUMA node,
2045 			 * it will be flushed out and put in the right unstable
2046 			 * tree next time: only merge with it when across_nodes.
2047 			 */
2048 			put_page(tree_page);
2049 			return NULL;
2050 		} else {
2051 			*tree_pagep = tree_page;
2052 			return tree_rmap_item;
2053 		}
2054 	}
2055 
2056 	rmap_item->address |= UNSTABLE_FLAG;
2057 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2058 	DO_NUMA(rmap_item->nid = nid);
2059 	rb_link_node(&rmap_item->node, parent, new);
2060 	rb_insert_color(&rmap_item->node, root);
2061 
2062 	ksm_pages_unshared++;
2063 	return NULL;
2064 }
2065 
2066 /*
2067  * stable_tree_append - add another rmap_item to the linked list of
2068  * rmap_items hanging off a given node of the stable tree, all sharing
2069  * the same ksm page.
2070  */
2071 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2072 			       struct ksm_stable_node *stable_node,
2073 			       bool max_page_sharing_bypass)
2074 {
2075 	/*
2076 	 * rmap won't find this mapping if we don't insert the
2077 	 * rmap_item in the right stable_node
2078 	 * duplicate. page_migration could break later if rmap breaks,
2079 	 * so we can as well crash here. We really need to check for
2080 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2081 	 * for other negative values as an underflow if detected here
2082 	 * for the first time (and not when decreasing rmap_hlist_len)
2083 	 * would be sign of memory corruption in the stable_node.
2084 	 */
2085 	BUG_ON(stable_node->rmap_hlist_len < 0);
2086 
2087 	stable_node->rmap_hlist_len++;
2088 	if (!max_page_sharing_bypass)
2089 		/* possibly non fatal but unexpected overflow, only warn */
2090 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2091 			     ksm_max_page_sharing);
2092 
2093 	rmap_item->head = stable_node;
2094 	rmap_item->address |= STABLE_FLAG;
2095 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2096 
2097 	if (rmap_item->hlist.next)
2098 		ksm_pages_sharing++;
2099 	else
2100 		ksm_pages_shared++;
2101 
2102 	rmap_item->mm->ksm_merging_pages++;
2103 }
2104 
2105 /*
2106  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2107  * if not, compare checksum to previous and if it's the same, see if page can
2108  * be inserted into the unstable tree, or merged with a page already there and
2109  * both transferred to the stable tree.
2110  *
2111  * @page: the page that we are searching identical page to.
2112  * @rmap_item: the reverse mapping into the virtual address of this page
2113  */
2114 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2115 {
2116 	struct mm_struct *mm = rmap_item->mm;
2117 	struct ksm_rmap_item *tree_rmap_item;
2118 	struct page *tree_page = NULL;
2119 	struct ksm_stable_node *stable_node;
2120 	struct page *kpage;
2121 	unsigned int checksum;
2122 	int err;
2123 	bool max_page_sharing_bypass = false;
2124 
2125 	stable_node = page_stable_node(page);
2126 	if (stable_node) {
2127 		if (stable_node->head != &migrate_nodes &&
2128 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2129 		    NUMA(stable_node->nid)) {
2130 			stable_node_dup_del(stable_node);
2131 			stable_node->head = &migrate_nodes;
2132 			list_add(&stable_node->list, stable_node->head);
2133 		}
2134 		if (stable_node->head != &migrate_nodes &&
2135 		    rmap_item->head == stable_node)
2136 			return;
2137 		/*
2138 		 * If it's a KSM fork, allow it to go over the sharing limit
2139 		 * without warnings.
2140 		 */
2141 		if (!is_page_sharing_candidate(stable_node))
2142 			max_page_sharing_bypass = true;
2143 	}
2144 
2145 	/* We first start with searching the page inside the stable tree */
2146 	kpage = stable_tree_search(page);
2147 	if (kpage == page && rmap_item->head == stable_node) {
2148 		put_page(kpage);
2149 		return;
2150 	}
2151 
2152 	remove_rmap_item_from_tree(rmap_item);
2153 
2154 	if (kpage) {
2155 		if (PTR_ERR(kpage) == -EBUSY)
2156 			return;
2157 
2158 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2159 		if (!err) {
2160 			/*
2161 			 * The page was successfully merged:
2162 			 * add its rmap_item to the stable tree.
2163 			 */
2164 			lock_page(kpage);
2165 			stable_tree_append(rmap_item, page_stable_node(kpage),
2166 					   max_page_sharing_bypass);
2167 			unlock_page(kpage);
2168 		}
2169 		put_page(kpage);
2170 		return;
2171 	}
2172 
2173 	/*
2174 	 * If the hash value of the page has changed from the last time
2175 	 * we calculated it, this page is changing frequently: therefore we
2176 	 * don't want to insert it in the unstable tree, and we don't want
2177 	 * to waste our time searching for something identical to it there.
2178 	 */
2179 	checksum = calc_checksum(page);
2180 	if (rmap_item->oldchecksum != checksum) {
2181 		rmap_item->oldchecksum = checksum;
2182 		return;
2183 	}
2184 
2185 	/*
2186 	 * Same checksum as an empty page. We attempt to merge it with the
2187 	 * appropriate zero page if the user enabled this via sysfs.
2188 	 */
2189 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2190 		struct vm_area_struct *vma;
2191 
2192 		mmap_read_lock(mm);
2193 		vma = find_mergeable_vma(mm, rmap_item->address);
2194 		if (vma) {
2195 			err = try_to_merge_one_page(vma, page,
2196 					ZERO_PAGE(rmap_item->address));
2197 			trace_ksm_merge_one_page(
2198 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2199 				rmap_item, mm, err);
2200 		} else {
2201 			/*
2202 			 * If the vma is out of date, we do not need to
2203 			 * continue.
2204 			 */
2205 			err = 0;
2206 		}
2207 		mmap_read_unlock(mm);
2208 		/*
2209 		 * In case of failure, the page was not really empty, so we
2210 		 * need to continue. Otherwise we're done.
2211 		 */
2212 		if (!err)
2213 			return;
2214 	}
2215 	tree_rmap_item =
2216 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2217 	if (tree_rmap_item) {
2218 		bool split;
2219 
2220 		kpage = try_to_merge_two_pages(rmap_item, page,
2221 						tree_rmap_item, tree_page);
2222 		/*
2223 		 * If both pages we tried to merge belong to the same compound
2224 		 * page, then we actually ended up increasing the reference
2225 		 * count of the same compound page twice, and split_huge_page
2226 		 * failed.
2227 		 * Here we set a flag if that happened, and we use it later to
2228 		 * try split_huge_page again. Since we call put_page right
2229 		 * afterwards, the reference count will be correct and
2230 		 * split_huge_page should succeed.
2231 		 */
2232 		split = PageTransCompound(page)
2233 			&& compound_head(page) == compound_head(tree_page);
2234 		put_page(tree_page);
2235 		if (kpage) {
2236 			/*
2237 			 * The pages were successfully merged: insert new
2238 			 * node in the stable tree and add both rmap_items.
2239 			 */
2240 			lock_page(kpage);
2241 			stable_node = stable_tree_insert(kpage);
2242 			if (stable_node) {
2243 				stable_tree_append(tree_rmap_item, stable_node,
2244 						   false);
2245 				stable_tree_append(rmap_item, stable_node,
2246 						   false);
2247 			}
2248 			unlock_page(kpage);
2249 
2250 			/*
2251 			 * If we fail to insert the page into the stable tree,
2252 			 * we will have 2 virtual addresses that are pointing
2253 			 * to a ksm page left outside the stable tree,
2254 			 * in which case we need to break_cow on both.
2255 			 */
2256 			if (!stable_node) {
2257 				break_cow(tree_rmap_item);
2258 				break_cow(rmap_item);
2259 			}
2260 		} else if (split) {
2261 			/*
2262 			 * We are here if we tried to merge two pages and
2263 			 * failed because they both belonged to the same
2264 			 * compound page. We will split the page now, but no
2265 			 * merging will take place.
2266 			 * We do not want to add the cost of a full lock; if
2267 			 * the page is locked, it is better to skip it and
2268 			 * perhaps try again later.
2269 			 */
2270 			if (!trylock_page(page))
2271 				return;
2272 			split_huge_page(page);
2273 			unlock_page(page);
2274 		}
2275 	}
2276 }
2277 
2278 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2279 					    struct ksm_rmap_item **rmap_list,
2280 					    unsigned long addr)
2281 {
2282 	struct ksm_rmap_item *rmap_item;
2283 
2284 	while (*rmap_list) {
2285 		rmap_item = *rmap_list;
2286 		if ((rmap_item->address & PAGE_MASK) == addr)
2287 			return rmap_item;
2288 		if (rmap_item->address > addr)
2289 			break;
2290 		*rmap_list = rmap_item->rmap_list;
2291 		remove_rmap_item_from_tree(rmap_item);
2292 		free_rmap_item(rmap_item);
2293 	}
2294 
2295 	rmap_item = alloc_rmap_item();
2296 	if (rmap_item) {
2297 		/* It has already been zeroed */
2298 		rmap_item->mm = mm_slot->slot.mm;
2299 		rmap_item->mm->ksm_rmap_items++;
2300 		rmap_item->address = addr;
2301 		rmap_item->rmap_list = *rmap_list;
2302 		*rmap_list = rmap_item;
2303 	}
2304 	return rmap_item;
2305 }
2306 
2307 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2308 {
2309 	struct mm_struct *mm;
2310 	struct ksm_mm_slot *mm_slot;
2311 	struct mm_slot *slot;
2312 	struct vm_area_struct *vma;
2313 	struct ksm_rmap_item *rmap_item;
2314 	struct vma_iterator vmi;
2315 	int nid;
2316 
2317 	if (list_empty(&ksm_mm_head.slot.mm_node))
2318 		return NULL;
2319 
2320 	mm_slot = ksm_scan.mm_slot;
2321 	if (mm_slot == &ksm_mm_head) {
2322 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2323 
2324 		/*
2325 		 * A number of pages can hang around indefinitely in per-cpu
2326 		 * LRU cache, raised page count preventing write_protect_page
2327 		 * from merging them.  Though it doesn't really matter much,
2328 		 * it is puzzling to see some stuck in pages_volatile until
2329 		 * other activity jostles them out, and they also prevented
2330 		 * LTP's KSM test from succeeding deterministically; so drain
2331 		 * them here (here rather than on entry to ksm_do_scan(),
2332 		 * so we don't IPI too often when pages_to_scan is set low).
2333 		 */
2334 		lru_add_drain_all();
2335 
2336 		/*
2337 		 * Whereas stale stable_nodes on the stable_tree itself
2338 		 * get pruned in the regular course of stable_tree_search(),
2339 		 * those moved out to the migrate_nodes list can accumulate:
2340 		 * so prune them once before each full scan.
2341 		 */
2342 		if (!ksm_merge_across_nodes) {
2343 			struct ksm_stable_node *stable_node, *next;
2344 			struct page *page;
2345 
2346 			list_for_each_entry_safe(stable_node, next,
2347 						 &migrate_nodes, list) {
2348 				page = get_ksm_page(stable_node,
2349 						    GET_KSM_PAGE_NOLOCK);
2350 				if (page)
2351 					put_page(page);
2352 				cond_resched();
2353 			}
2354 		}
2355 
2356 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2357 			root_unstable_tree[nid] = RB_ROOT;
2358 
2359 		spin_lock(&ksm_mmlist_lock);
2360 		slot = list_entry(mm_slot->slot.mm_node.next,
2361 				  struct mm_slot, mm_node);
2362 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2363 		ksm_scan.mm_slot = mm_slot;
2364 		spin_unlock(&ksm_mmlist_lock);
2365 		/*
2366 		 * Although we tested list_empty() above, a racing __ksm_exit
2367 		 * of the last mm on the list may have removed it since then.
2368 		 */
2369 		if (mm_slot == &ksm_mm_head)
2370 			return NULL;
2371 next_mm:
2372 		ksm_scan.address = 0;
2373 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2374 	}
2375 
2376 	slot = &mm_slot->slot;
2377 	mm = slot->mm;
2378 	vma_iter_init(&vmi, mm, ksm_scan.address);
2379 
2380 	mmap_read_lock(mm);
2381 	if (ksm_test_exit(mm))
2382 		goto no_vmas;
2383 
2384 	for_each_vma(vmi, vma) {
2385 		if (!(vma->vm_flags & VM_MERGEABLE))
2386 			continue;
2387 		if (ksm_scan.address < vma->vm_start)
2388 			ksm_scan.address = vma->vm_start;
2389 		if (!vma->anon_vma)
2390 			ksm_scan.address = vma->vm_end;
2391 
2392 		while (ksm_scan.address < vma->vm_end) {
2393 			if (ksm_test_exit(mm))
2394 				break;
2395 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2396 			if (IS_ERR_OR_NULL(*page)) {
2397 				ksm_scan.address += PAGE_SIZE;
2398 				cond_resched();
2399 				continue;
2400 			}
2401 			if (is_zone_device_page(*page))
2402 				goto next_page;
2403 			if (PageAnon(*page)) {
2404 				flush_anon_page(vma, *page, ksm_scan.address);
2405 				flush_dcache_page(*page);
2406 				rmap_item = get_next_rmap_item(mm_slot,
2407 					ksm_scan.rmap_list, ksm_scan.address);
2408 				if (rmap_item) {
2409 					ksm_scan.rmap_list =
2410 							&rmap_item->rmap_list;
2411 					ksm_scan.address += PAGE_SIZE;
2412 				} else
2413 					put_page(*page);
2414 				mmap_read_unlock(mm);
2415 				return rmap_item;
2416 			}
2417 next_page:
2418 			put_page(*page);
2419 			ksm_scan.address += PAGE_SIZE;
2420 			cond_resched();
2421 		}
2422 	}
2423 
2424 	if (ksm_test_exit(mm)) {
2425 no_vmas:
2426 		ksm_scan.address = 0;
2427 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2428 	}
2429 	/*
2430 	 * Nuke all the rmap_items that are above this current rmap:
2431 	 * because there were no VM_MERGEABLE vmas with such addresses.
2432 	 */
2433 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2434 
2435 	spin_lock(&ksm_mmlist_lock);
2436 	slot = list_entry(mm_slot->slot.mm_node.next,
2437 			  struct mm_slot, mm_node);
2438 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2439 	if (ksm_scan.address == 0) {
2440 		/*
2441 		 * We've completed a full scan of all vmas, holding mmap_lock
2442 		 * throughout, and found no VM_MERGEABLE: so do the same as
2443 		 * __ksm_exit does to remove this mm from all our lists now.
2444 		 * This applies either when cleaning up after __ksm_exit
2445 		 * (but beware: we can reach here even before __ksm_exit),
2446 		 * or when all VM_MERGEABLE areas have been unmapped (and
2447 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2448 		 */
2449 		hash_del(&mm_slot->slot.hash);
2450 		list_del(&mm_slot->slot.mm_node);
2451 		spin_unlock(&ksm_mmlist_lock);
2452 
2453 		mm_slot_free(mm_slot_cache, mm_slot);
2454 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2455 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2456 		mmap_read_unlock(mm);
2457 		mmdrop(mm);
2458 	} else {
2459 		mmap_read_unlock(mm);
2460 		/*
2461 		 * mmap_read_unlock(mm) first because after
2462 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2463 		 * already have been freed under us by __ksm_exit()
2464 		 * because the "mm_slot" is still hashed and
2465 		 * ksm_scan.mm_slot doesn't point to it anymore.
2466 		 */
2467 		spin_unlock(&ksm_mmlist_lock);
2468 	}
2469 
2470 	/* Repeat until we've completed scanning the whole list */
2471 	mm_slot = ksm_scan.mm_slot;
2472 	if (mm_slot != &ksm_mm_head)
2473 		goto next_mm;
2474 
2475 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2476 	ksm_scan.seqnr++;
2477 	return NULL;
2478 }
2479 
2480 /**
2481  * ksm_do_scan  - the ksm scanner main worker function.
2482  * @scan_npages:  number of pages we want to scan before we return.
2483  */
2484 static void ksm_do_scan(unsigned int scan_npages)
2485 {
2486 	struct ksm_rmap_item *rmap_item;
2487 	struct page *page;
2488 
2489 	while (scan_npages-- && likely(!freezing(current))) {
2490 		cond_resched();
2491 		rmap_item = scan_get_next_rmap_item(&page);
2492 		if (!rmap_item)
2493 			return;
2494 		cmp_and_merge_page(page, rmap_item);
2495 		put_page(page);
2496 		ksm_pages_scanned++;
2497 	}
2498 }
2499 
2500 static int ksmd_should_run(void)
2501 {
2502 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2503 }
2504 
2505 static int ksm_scan_thread(void *nothing)
2506 {
2507 	unsigned int sleep_ms;
2508 
2509 	set_freezable();
2510 	set_user_nice(current, 5);
2511 
2512 	while (!kthread_should_stop()) {
2513 		mutex_lock(&ksm_thread_mutex);
2514 		wait_while_offlining();
2515 		if (ksmd_should_run())
2516 			ksm_do_scan(ksm_thread_pages_to_scan);
2517 		mutex_unlock(&ksm_thread_mutex);
2518 
2519 		try_to_freeze();
2520 
2521 		if (ksmd_should_run()) {
2522 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2523 			wait_event_interruptible_timeout(ksm_iter_wait,
2524 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2525 				msecs_to_jiffies(sleep_ms));
2526 		} else {
2527 			wait_event_freezable(ksm_thread_wait,
2528 				ksmd_should_run() || kthread_should_stop());
2529 		}
2530 	}
2531 	return 0;
2532 }
2533 
2534 static void __ksm_add_vma(struct vm_area_struct *vma)
2535 {
2536 	unsigned long vm_flags = vma->vm_flags;
2537 
2538 	if (vm_flags & VM_MERGEABLE)
2539 		return;
2540 
2541 	if (vma_ksm_compatible(vma))
2542 		vm_flags_set(vma, VM_MERGEABLE);
2543 }
2544 
2545 static int __ksm_del_vma(struct vm_area_struct *vma)
2546 {
2547 	int err;
2548 
2549 	if (!(vma->vm_flags & VM_MERGEABLE))
2550 		return 0;
2551 
2552 	if (vma->anon_vma) {
2553 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2554 		if (err)
2555 			return err;
2556 	}
2557 
2558 	vm_flags_clear(vma, VM_MERGEABLE);
2559 	return 0;
2560 }
2561 /**
2562  * ksm_add_vma - Mark vma as mergeable if compatible
2563  *
2564  * @vma:  Pointer to vma
2565  */
2566 void ksm_add_vma(struct vm_area_struct *vma)
2567 {
2568 	struct mm_struct *mm = vma->vm_mm;
2569 
2570 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2571 		__ksm_add_vma(vma);
2572 }
2573 
2574 static void ksm_add_vmas(struct mm_struct *mm)
2575 {
2576 	struct vm_area_struct *vma;
2577 
2578 	VMA_ITERATOR(vmi, mm, 0);
2579 	for_each_vma(vmi, vma)
2580 		__ksm_add_vma(vma);
2581 }
2582 
2583 static int ksm_del_vmas(struct mm_struct *mm)
2584 {
2585 	struct vm_area_struct *vma;
2586 	int err;
2587 
2588 	VMA_ITERATOR(vmi, mm, 0);
2589 	for_each_vma(vmi, vma) {
2590 		err = __ksm_del_vma(vma);
2591 		if (err)
2592 			return err;
2593 	}
2594 	return 0;
2595 }
2596 
2597 /**
2598  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2599  *                        compatible VMA's
2600  *
2601  * @mm:  Pointer to mm
2602  *
2603  * Returns 0 on success, otherwise error code
2604  */
2605 int ksm_enable_merge_any(struct mm_struct *mm)
2606 {
2607 	int err;
2608 
2609 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2610 		return 0;
2611 
2612 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2613 		err = __ksm_enter(mm);
2614 		if (err)
2615 			return err;
2616 	}
2617 
2618 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2619 	ksm_add_vmas(mm);
2620 
2621 	return 0;
2622 }
2623 
2624 /**
2625  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2626  *			   previously enabled via ksm_enable_merge_any().
2627  *
2628  * Disabling merging implies unmerging any merged pages, like setting
2629  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2630  * merging on all compatible VMA's remains enabled.
2631  *
2632  * @mm: Pointer to mm
2633  *
2634  * Returns 0 on success, otherwise error code
2635  */
2636 int ksm_disable_merge_any(struct mm_struct *mm)
2637 {
2638 	int err;
2639 
2640 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2641 		return 0;
2642 
2643 	err = ksm_del_vmas(mm);
2644 	if (err) {
2645 		ksm_add_vmas(mm);
2646 		return err;
2647 	}
2648 
2649 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2650 	return 0;
2651 }
2652 
2653 int ksm_disable(struct mm_struct *mm)
2654 {
2655 	mmap_assert_write_locked(mm);
2656 
2657 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2658 		return 0;
2659 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2660 		return ksm_disable_merge_any(mm);
2661 	return ksm_del_vmas(mm);
2662 }
2663 
2664 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2665 		unsigned long end, int advice, unsigned long *vm_flags)
2666 {
2667 	struct mm_struct *mm = vma->vm_mm;
2668 	int err;
2669 
2670 	switch (advice) {
2671 	case MADV_MERGEABLE:
2672 		if (vma->vm_flags & VM_MERGEABLE)
2673 			return 0;
2674 		if (!vma_ksm_compatible(vma))
2675 			return 0;
2676 
2677 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2678 			err = __ksm_enter(mm);
2679 			if (err)
2680 				return err;
2681 		}
2682 
2683 		*vm_flags |= VM_MERGEABLE;
2684 		break;
2685 
2686 	case MADV_UNMERGEABLE:
2687 		if (!(*vm_flags & VM_MERGEABLE))
2688 			return 0;		/* just ignore the advice */
2689 
2690 		if (vma->anon_vma) {
2691 			err = unmerge_ksm_pages(vma, start, end, true);
2692 			if (err)
2693 				return err;
2694 		}
2695 
2696 		*vm_flags &= ~VM_MERGEABLE;
2697 		break;
2698 	}
2699 
2700 	return 0;
2701 }
2702 EXPORT_SYMBOL_GPL(ksm_madvise);
2703 
2704 int __ksm_enter(struct mm_struct *mm)
2705 {
2706 	struct ksm_mm_slot *mm_slot;
2707 	struct mm_slot *slot;
2708 	int needs_wakeup;
2709 
2710 	mm_slot = mm_slot_alloc(mm_slot_cache);
2711 	if (!mm_slot)
2712 		return -ENOMEM;
2713 
2714 	slot = &mm_slot->slot;
2715 
2716 	/* Check ksm_run too?  Would need tighter locking */
2717 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2718 
2719 	spin_lock(&ksm_mmlist_lock);
2720 	mm_slot_insert(mm_slots_hash, mm, slot);
2721 	/*
2722 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2723 	 * insert just behind the scanning cursor, to let the area settle
2724 	 * down a little; when fork is followed by immediate exec, we don't
2725 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2726 	 *
2727 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2728 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2729 	 * missed: then we might as well insert at the end of the list.
2730 	 */
2731 	if (ksm_run & KSM_RUN_UNMERGE)
2732 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2733 	else
2734 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2735 	spin_unlock(&ksm_mmlist_lock);
2736 
2737 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2738 	mmgrab(mm);
2739 
2740 	if (needs_wakeup)
2741 		wake_up_interruptible(&ksm_thread_wait);
2742 
2743 	trace_ksm_enter(mm);
2744 	return 0;
2745 }
2746 
2747 void __ksm_exit(struct mm_struct *mm)
2748 {
2749 	struct ksm_mm_slot *mm_slot;
2750 	struct mm_slot *slot;
2751 	int easy_to_free = 0;
2752 
2753 	/*
2754 	 * This process is exiting: if it's straightforward (as is the
2755 	 * case when ksmd was never running), free mm_slot immediately.
2756 	 * But if it's at the cursor or has rmap_items linked to it, use
2757 	 * mmap_lock to synchronize with any break_cows before pagetables
2758 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2759 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2760 	 */
2761 
2762 	spin_lock(&ksm_mmlist_lock);
2763 	slot = mm_slot_lookup(mm_slots_hash, mm);
2764 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2765 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2766 		if (!mm_slot->rmap_list) {
2767 			hash_del(&slot->hash);
2768 			list_del(&slot->mm_node);
2769 			easy_to_free = 1;
2770 		} else {
2771 			list_move(&slot->mm_node,
2772 				  &ksm_scan.mm_slot->slot.mm_node);
2773 		}
2774 	}
2775 	spin_unlock(&ksm_mmlist_lock);
2776 
2777 	if (easy_to_free) {
2778 		mm_slot_free(mm_slot_cache, mm_slot);
2779 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2780 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2781 		mmdrop(mm);
2782 	} else if (mm_slot) {
2783 		mmap_write_lock(mm);
2784 		mmap_write_unlock(mm);
2785 	}
2786 
2787 	trace_ksm_exit(mm);
2788 }
2789 
2790 struct page *ksm_might_need_to_copy(struct page *page,
2791 			struct vm_area_struct *vma, unsigned long address)
2792 {
2793 	struct folio *folio = page_folio(page);
2794 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2795 	struct page *new_page;
2796 
2797 	if (PageKsm(page)) {
2798 		if (page_stable_node(page) &&
2799 		    !(ksm_run & KSM_RUN_UNMERGE))
2800 			return page;	/* no need to copy it */
2801 	} else if (!anon_vma) {
2802 		return page;		/* no need to copy it */
2803 	} else if (page->index == linear_page_index(vma, address) &&
2804 			anon_vma->root == vma->anon_vma->root) {
2805 		return page;		/* still no need to copy it */
2806 	}
2807 	if (PageHWPoison(page))
2808 		return ERR_PTR(-EHWPOISON);
2809 	if (!PageUptodate(page))
2810 		return page;		/* let do_swap_page report the error */
2811 
2812 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2813 	if (new_page &&
2814 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2815 		put_page(new_page);
2816 		new_page = NULL;
2817 	}
2818 	if (new_page) {
2819 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2820 			put_page(new_page);
2821 			memory_failure_queue(page_to_pfn(page), 0);
2822 			return ERR_PTR(-EHWPOISON);
2823 		}
2824 		SetPageDirty(new_page);
2825 		__SetPageUptodate(new_page);
2826 		__SetPageLocked(new_page);
2827 #ifdef CONFIG_SWAP
2828 		count_vm_event(KSM_SWPIN_COPY);
2829 #endif
2830 	}
2831 
2832 	return new_page;
2833 }
2834 
2835 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2836 {
2837 	struct ksm_stable_node *stable_node;
2838 	struct ksm_rmap_item *rmap_item;
2839 	int search_new_forks = 0;
2840 
2841 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2842 
2843 	/*
2844 	 * Rely on the page lock to protect against concurrent modifications
2845 	 * to that page's node of the stable tree.
2846 	 */
2847 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2848 
2849 	stable_node = folio_stable_node(folio);
2850 	if (!stable_node)
2851 		return;
2852 again:
2853 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2854 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2855 		struct anon_vma_chain *vmac;
2856 		struct vm_area_struct *vma;
2857 
2858 		cond_resched();
2859 		if (!anon_vma_trylock_read(anon_vma)) {
2860 			if (rwc->try_lock) {
2861 				rwc->contended = true;
2862 				return;
2863 			}
2864 			anon_vma_lock_read(anon_vma);
2865 		}
2866 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2867 					       0, ULONG_MAX) {
2868 			unsigned long addr;
2869 
2870 			cond_resched();
2871 			vma = vmac->vma;
2872 
2873 			/* Ignore the stable/unstable/sqnr flags */
2874 			addr = rmap_item->address & PAGE_MASK;
2875 
2876 			if (addr < vma->vm_start || addr >= vma->vm_end)
2877 				continue;
2878 			/*
2879 			 * Initially we examine only the vma which covers this
2880 			 * rmap_item; but later, if there is still work to do,
2881 			 * we examine covering vmas in other mms: in case they
2882 			 * were forked from the original since ksmd passed.
2883 			 */
2884 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2885 				continue;
2886 
2887 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2888 				continue;
2889 
2890 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2891 				anon_vma_unlock_read(anon_vma);
2892 				return;
2893 			}
2894 			if (rwc->done && rwc->done(folio)) {
2895 				anon_vma_unlock_read(anon_vma);
2896 				return;
2897 			}
2898 		}
2899 		anon_vma_unlock_read(anon_vma);
2900 	}
2901 	if (!search_new_forks++)
2902 		goto again;
2903 }
2904 
2905 #ifdef CONFIG_MEMORY_FAILURE
2906 /*
2907  * Collect processes when the error hit an ksm page.
2908  */
2909 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2910 		       int force_early)
2911 {
2912 	struct ksm_stable_node *stable_node;
2913 	struct ksm_rmap_item *rmap_item;
2914 	struct folio *folio = page_folio(page);
2915 	struct vm_area_struct *vma;
2916 	struct task_struct *tsk;
2917 
2918 	stable_node = folio_stable_node(folio);
2919 	if (!stable_node)
2920 		return;
2921 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2922 		struct anon_vma *av = rmap_item->anon_vma;
2923 
2924 		anon_vma_lock_read(av);
2925 		rcu_read_lock();
2926 		for_each_process(tsk) {
2927 			struct anon_vma_chain *vmac;
2928 			unsigned long addr;
2929 			struct task_struct *t =
2930 				task_early_kill(tsk, force_early);
2931 			if (!t)
2932 				continue;
2933 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2934 						       ULONG_MAX)
2935 			{
2936 				vma = vmac->vma;
2937 				if (vma->vm_mm == t->mm) {
2938 					addr = rmap_item->address & PAGE_MASK;
2939 					add_to_kill_ksm(t, page, vma, to_kill,
2940 							addr);
2941 				}
2942 			}
2943 		}
2944 		rcu_read_unlock();
2945 		anon_vma_unlock_read(av);
2946 	}
2947 }
2948 #endif
2949 
2950 #ifdef CONFIG_MIGRATION
2951 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2952 {
2953 	struct ksm_stable_node *stable_node;
2954 
2955 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2956 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2957 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2958 
2959 	stable_node = folio_stable_node(folio);
2960 	if (stable_node) {
2961 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2962 		stable_node->kpfn = folio_pfn(newfolio);
2963 		/*
2964 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2965 		 * to make sure that the new stable_node->kpfn is visible
2966 		 * to get_ksm_page() before it can see that folio->mapping
2967 		 * has gone stale (or that folio_test_swapcache has been cleared).
2968 		 */
2969 		smp_wmb();
2970 		set_page_stable_node(&folio->page, NULL);
2971 	}
2972 }
2973 #endif /* CONFIG_MIGRATION */
2974 
2975 #ifdef CONFIG_MEMORY_HOTREMOVE
2976 static void wait_while_offlining(void)
2977 {
2978 	while (ksm_run & KSM_RUN_OFFLINE) {
2979 		mutex_unlock(&ksm_thread_mutex);
2980 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2981 			    TASK_UNINTERRUPTIBLE);
2982 		mutex_lock(&ksm_thread_mutex);
2983 	}
2984 }
2985 
2986 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2987 					 unsigned long start_pfn,
2988 					 unsigned long end_pfn)
2989 {
2990 	if (stable_node->kpfn >= start_pfn &&
2991 	    stable_node->kpfn < end_pfn) {
2992 		/*
2993 		 * Don't get_ksm_page, page has already gone:
2994 		 * which is why we keep kpfn instead of page*
2995 		 */
2996 		remove_node_from_stable_tree(stable_node);
2997 		return true;
2998 	}
2999 	return false;
3000 }
3001 
3002 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3003 					   unsigned long start_pfn,
3004 					   unsigned long end_pfn,
3005 					   struct rb_root *root)
3006 {
3007 	struct ksm_stable_node *dup;
3008 	struct hlist_node *hlist_safe;
3009 
3010 	if (!is_stable_node_chain(stable_node)) {
3011 		VM_BUG_ON(is_stable_node_dup(stable_node));
3012 		return stable_node_dup_remove_range(stable_node, start_pfn,
3013 						    end_pfn);
3014 	}
3015 
3016 	hlist_for_each_entry_safe(dup, hlist_safe,
3017 				  &stable_node->hlist, hlist_dup) {
3018 		VM_BUG_ON(!is_stable_node_dup(dup));
3019 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3020 	}
3021 	if (hlist_empty(&stable_node->hlist)) {
3022 		free_stable_node_chain(stable_node, root);
3023 		return true; /* notify caller that tree was rebalanced */
3024 	} else
3025 		return false;
3026 }
3027 
3028 static void ksm_check_stable_tree(unsigned long start_pfn,
3029 				  unsigned long end_pfn)
3030 {
3031 	struct ksm_stable_node *stable_node, *next;
3032 	struct rb_node *node;
3033 	int nid;
3034 
3035 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3036 		node = rb_first(root_stable_tree + nid);
3037 		while (node) {
3038 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3039 			if (stable_node_chain_remove_range(stable_node,
3040 							   start_pfn, end_pfn,
3041 							   root_stable_tree +
3042 							   nid))
3043 				node = rb_first(root_stable_tree + nid);
3044 			else
3045 				node = rb_next(node);
3046 			cond_resched();
3047 		}
3048 	}
3049 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3050 		if (stable_node->kpfn >= start_pfn &&
3051 		    stable_node->kpfn < end_pfn)
3052 			remove_node_from_stable_tree(stable_node);
3053 		cond_resched();
3054 	}
3055 }
3056 
3057 static int ksm_memory_callback(struct notifier_block *self,
3058 			       unsigned long action, void *arg)
3059 {
3060 	struct memory_notify *mn = arg;
3061 
3062 	switch (action) {
3063 	case MEM_GOING_OFFLINE:
3064 		/*
3065 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3066 		 * and remove_all_stable_nodes() while memory is going offline:
3067 		 * it is unsafe for them to touch the stable tree at this time.
3068 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3069 		 * which do not need the ksm_thread_mutex are all safe.
3070 		 */
3071 		mutex_lock(&ksm_thread_mutex);
3072 		ksm_run |= KSM_RUN_OFFLINE;
3073 		mutex_unlock(&ksm_thread_mutex);
3074 		break;
3075 
3076 	case MEM_OFFLINE:
3077 		/*
3078 		 * Most of the work is done by page migration; but there might
3079 		 * be a few stable_nodes left over, still pointing to struct
3080 		 * pages which have been offlined: prune those from the tree,
3081 		 * otherwise get_ksm_page() might later try to access a
3082 		 * non-existent struct page.
3083 		 */
3084 		ksm_check_stable_tree(mn->start_pfn,
3085 				      mn->start_pfn + mn->nr_pages);
3086 		fallthrough;
3087 	case MEM_CANCEL_OFFLINE:
3088 		mutex_lock(&ksm_thread_mutex);
3089 		ksm_run &= ~KSM_RUN_OFFLINE;
3090 		mutex_unlock(&ksm_thread_mutex);
3091 
3092 		smp_mb();	/* wake_up_bit advises this */
3093 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3094 		break;
3095 	}
3096 	return NOTIFY_OK;
3097 }
3098 #else
3099 static void wait_while_offlining(void)
3100 {
3101 }
3102 #endif /* CONFIG_MEMORY_HOTREMOVE */
3103 
3104 #ifdef CONFIG_PROC_FS
3105 long ksm_process_profit(struct mm_struct *mm)
3106 {
3107 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3108 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3109 }
3110 #endif /* CONFIG_PROC_FS */
3111 
3112 #ifdef CONFIG_SYSFS
3113 /*
3114  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3115  */
3116 
3117 #define KSM_ATTR_RO(_name) \
3118 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3119 #define KSM_ATTR(_name) \
3120 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3121 
3122 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3123 				    struct kobj_attribute *attr, char *buf)
3124 {
3125 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3126 }
3127 
3128 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3129 				     struct kobj_attribute *attr,
3130 				     const char *buf, size_t count)
3131 {
3132 	unsigned int msecs;
3133 	int err;
3134 
3135 	err = kstrtouint(buf, 10, &msecs);
3136 	if (err)
3137 		return -EINVAL;
3138 
3139 	ksm_thread_sleep_millisecs = msecs;
3140 	wake_up_interruptible(&ksm_iter_wait);
3141 
3142 	return count;
3143 }
3144 KSM_ATTR(sleep_millisecs);
3145 
3146 static ssize_t pages_to_scan_show(struct kobject *kobj,
3147 				  struct kobj_attribute *attr, char *buf)
3148 {
3149 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3150 }
3151 
3152 static ssize_t pages_to_scan_store(struct kobject *kobj,
3153 				   struct kobj_attribute *attr,
3154 				   const char *buf, size_t count)
3155 {
3156 	unsigned int nr_pages;
3157 	int err;
3158 
3159 	err = kstrtouint(buf, 10, &nr_pages);
3160 	if (err)
3161 		return -EINVAL;
3162 
3163 	ksm_thread_pages_to_scan = nr_pages;
3164 
3165 	return count;
3166 }
3167 KSM_ATTR(pages_to_scan);
3168 
3169 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3170 			char *buf)
3171 {
3172 	return sysfs_emit(buf, "%lu\n", ksm_run);
3173 }
3174 
3175 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3176 			 const char *buf, size_t count)
3177 {
3178 	unsigned int flags;
3179 	int err;
3180 
3181 	err = kstrtouint(buf, 10, &flags);
3182 	if (err)
3183 		return -EINVAL;
3184 	if (flags > KSM_RUN_UNMERGE)
3185 		return -EINVAL;
3186 
3187 	/*
3188 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3189 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3190 	 * breaking COW to free the pages_shared (but leaves mm_slots
3191 	 * on the list for when ksmd may be set running again).
3192 	 */
3193 
3194 	mutex_lock(&ksm_thread_mutex);
3195 	wait_while_offlining();
3196 	if (ksm_run != flags) {
3197 		ksm_run = flags;
3198 		if (flags & KSM_RUN_UNMERGE) {
3199 			set_current_oom_origin();
3200 			err = unmerge_and_remove_all_rmap_items();
3201 			clear_current_oom_origin();
3202 			if (err) {
3203 				ksm_run = KSM_RUN_STOP;
3204 				count = err;
3205 			}
3206 		}
3207 	}
3208 	mutex_unlock(&ksm_thread_mutex);
3209 
3210 	if (flags & KSM_RUN_MERGE)
3211 		wake_up_interruptible(&ksm_thread_wait);
3212 
3213 	return count;
3214 }
3215 KSM_ATTR(run);
3216 
3217 #ifdef CONFIG_NUMA
3218 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3219 				       struct kobj_attribute *attr, char *buf)
3220 {
3221 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3222 }
3223 
3224 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3225 				   struct kobj_attribute *attr,
3226 				   const char *buf, size_t count)
3227 {
3228 	int err;
3229 	unsigned long knob;
3230 
3231 	err = kstrtoul(buf, 10, &knob);
3232 	if (err)
3233 		return err;
3234 	if (knob > 1)
3235 		return -EINVAL;
3236 
3237 	mutex_lock(&ksm_thread_mutex);
3238 	wait_while_offlining();
3239 	if (ksm_merge_across_nodes != knob) {
3240 		if (ksm_pages_shared || remove_all_stable_nodes())
3241 			err = -EBUSY;
3242 		else if (root_stable_tree == one_stable_tree) {
3243 			struct rb_root *buf;
3244 			/*
3245 			 * This is the first time that we switch away from the
3246 			 * default of merging across nodes: must now allocate
3247 			 * a buffer to hold as many roots as may be needed.
3248 			 * Allocate stable and unstable together:
3249 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3250 			 */
3251 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3252 				      GFP_KERNEL);
3253 			/* Let us assume that RB_ROOT is NULL is zero */
3254 			if (!buf)
3255 				err = -ENOMEM;
3256 			else {
3257 				root_stable_tree = buf;
3258 				root_unstable_tree = buf + nr_node_ids;
3259 				/* Stable tree is empty but not the unstable */
3260 				root_unstable_tree[0] = one_unstable_tree[0];
3261 			}
3262 		}
3263 		if (!err) {
3264 			ksm_merge_across_nodes = knob;
3265 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3266 		}
3267 	}
3268 	mutex_unlock(&ksm_thread_mutex);
3269 
3270 	return err ? err : count;
3271 }
3272 KSM_ATTR(merge_across_nodes);
3273 #endif
3274 
3275 static ssize_t use_zero_pages_show(struct kobject *kobj,
3276 				   struct kobj_attribute *attr, char *buf)
3277 {
3278 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3279 }
3280 static ssize_t use_zero_pages_store(struct kobject *kobj,
3281 				   struct kobj_attribute *attr,
3282 				   const char *buf, size_t count)
3283 {
3284 	int err;
3285 	bool value;
3286 
3287 	err = kstrtobool(buf, &value);
3288 	if (err)
3289 		return -EINVAL;
3290 
3291 	ksm_use_zero_pages = value;
3292 
3293 	return count;
3294 }
3295 KSM_ATTR(use_zero_pages);
3296 
3297 static ssize_t max_page_sharing_show(struct kobject *kobj,
3298 				     struct kobj_attribute *attr, char *buf)
3299 {
3300 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3301 }
3302 
3303 static ssize_t max_page_sharing_store(struct kobject *kobj,
3304 				      struct kobj_attribute *attr,
3305 				      const char *buf, size_t count)
3306 {
3307 	int err;
3308 	int knob;
3309 
3310 	err = kstrtoint(buf, 10, &knob);
3311 	if (err)
3312 		return err;
3313 	/*
3314 	 * When a KSM page is created it is shared by 2 mappings. This
3315 	 * being a signed comparison, it implicitly verifies it's not
3316 	 * negative.
3317 	 */
3318 	if (knob < 2)
3319 		return -EINVAL;
3320 
3321 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3322 		return count;
3323 
3324 	mutex_lock(&ksm_thread_mutex);
3325 	wait_while_offlining();
3326 	if (ksm_max_page_sharing != knob) {
3327 		if (ksm_pages_shared || remove_all_stable_nodes())
3328 			err = -EBUSY;
3329 		else
3330 			ksm_max_page_sharing = knob;
3331 	}
3332 	mutex_unlock(&ksm_thread_mutex);
3333 
3334 	return err ? err : count;
3335 }
3336 KSM_ATTR(max_page_sharing);
3337 
3338 static ssize_t pages_scanned_show(struct kobject *kobj,
3339 				  struct kobj_attribute *attr, char *buf)
3340 {
3341 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3342 }
3343 KSM_ATTR_RO(pages_scanned);
3344 
3345 static ssize_t pages_shared_show(struct kobject *kobj,
3346 				 struct kobj_attribute *attr, char *buf)
3347 {
3348 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3349 }
3350 KSM_ATTR_RO(pages_shared);
3351 
3352 static ssize_t pages_sharing_show(struct kobject *kobj,
3353 				  struct kobj_attribute *attr, char *buf)
3354 {
3355 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3356 }
3357 KSM_ATTR_RO(pages_sharing);
3358 
3359 static ssize_t pages_unshared_show(struct kobject *kobj,
3360 				   struct kobj_attribute *attr, char *buf)
3361 {
3362 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3363 }
3364 KSM_ATTR_RO(pages_unshared);
3365 
3366 static ssize_t pages_volatile_show(struct kobject *kobj,
3367 				   struct kobj_attribute *attr, char *buf)
3368 {
3369 	long ksm_pages_volatile;
3370 
3371 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3372 				- ksm_pages_sharing - ksm_pages_unshared;
3373 	/*
3374 	 * It was not worth any locking to calculate that statistic,
3375 	 * but it might therefore sometimes be negative: conceal that.
3376 	 */
3377 	if (ksm_pages_volatile < 0)
3378 		ksm_pages_volatile = 0;
3379 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3380 }
3381 KSM_ATTR_RO(pages_volatile);
3382 
3383 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3384 				struct kobj_attribute *attr, char *buf)
3385 {
3386 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3387 }
3388 KSM_ATTR_RO(ksm_zero_pages);
3389 
3390 static ssize_t general_profit_show(struct kobject *kobj,
3391 				   struct kobj_attribute *attr, char *buf)
3392 {
3393 	long general_profit;
3394 
3395 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3396 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3397 
3398 	return sysfs_emit(buf, "%ld\n", general_profit);
3399 }
3400 KSM_ATTR_RO(general_profit);
3401 
3402 static ssize_t stable_node_dups_show(struct kobject *kobj,
3403 				     struct kobj_attribute *attr, char *buf)
3404 {
3405 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3406 }
3407 KSM_ATTR_RO(stable_node_dups);
3408 
3409 static ssize_t stable_node_chains_show(struct kobject *kobj,
3410 				       struct kobj_attribute *attr, char *buf)
3411 {
3412 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3413 }
3414 KSM_ATTR_RO(stable_node_chains);
3415 
3416 static ssize_t
3417 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3418 					struct kobj_attribute *attr,
3419 					char *buf)
3420 {
3421 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3422 }
3423 
3424 static ssize_t
3425 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3426 					 struct kobj_attribute *attr,
3427 					 const char *buf, size_t count)
3428 {
3429 	unsigned int msecs;
3430 	int err;
3431 
3432 	err = kstrtouint(buf, 10, &msecs);
3433 	if (err)
3434 		return -EINVAL;
3435 
3436 	ksm_stable_node_chains_prune_millisecs = msecs;
3437 
3438 	return count;
3439 }
3440 KSM_ATTR(stable_node_chains_prune_millisecs);
3441 
3442 static ssize_t full_scans_show(struct kobject *kobj,
3443 			       struct kobj_attribute *attr, char *buf)
3444 {
3445 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3446 }
3447 KSM_ATTR_RO(full_scans);
3448 
3449 static struct attribute *ksm_attrs[] = {
3450 	&sleep_millisecs_attr.attr,
3451 	&pages_to_scan_attr.attr,
3452 	&run_attr.attr,
3453 	&pages_scanned_attr.attr,
3454 	&pages_shared_attr.attr,
3455 	&pages_sharing_attr.attr,
3456 	&pages_unshared_attr.attr,
3457 	&pages_volatile_attr.attr,
3458 	&ksm_zero_pages_attr.attr,
3459 	&full_scans_attr.attr,
3460 #ifdef CONFIG_NUMA
3461 	&merge_across_nodes_attr.attr,
3462 #endif
3463 	&max_page_sharing_attr.attr,
3464 	&stable_node_chains_attr.attr,
3465 	&stable_node_dups_attr.attr,
3466 	&stable_node_chains_prune_millisecs_attr.attr,
3467 	&use_zero_pages_attr.attr,
3468 	&general_profit_attr.attr,
3469 	NULL,
3470 };
3471 
3472 static const struct attribute_group ksm_attr_group = {
3473 	.attrs = ksm_attrs,
3474 	.name = "ksm",
3475 };
3476 #endif /* CONFIG_SYSFS */
3477 
3478 static int __init ksm_init(void)
3479 {
3480 	struct task_struct *ksm_thread;
3481 	int err;
3482 
3483 	/* The correct value depends on page size and endianness */
3484 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3485 	/* Default to false for backwards compatibility */
3486 	ksm_use_zero_pages = false;
3487 
3488 	err = ksm_slab_init();
3489 	if (err)
3490 		goto out;
3491 
3492 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3493 	if (IS_ERR(ksm_thread)) {
3494 		pr_err("ksm: creating kthread failed\n");
3495 		err = PTR_ERR(ksm_thread);
3496 		goto out_free;
3497 	}
3498 
3499 #ifdef CONFIG_SYSFS
3500 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3501 	if (err) {
3502 		pr_err("ksm: register sysfs failed\n");
3503 		kthread_stop(ksm_thread);
3504 		goto out_free;
3505 	}
3506 #else
3507 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3508 
3509 #endif /* CONFIG_SYSFS */
3510 
3511 #ifdef CONFIG_MEMORY_HOTREMOVE
3512 	/* There is no significance to this priority 100 */
3513 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3514 #endif
3515 	return 0;
3516 
3517 out_free:
3518 	ksm_slab_free();
3519 out:
3520 	return err;
3521 }
3522 subsys_initcall(ksm_init);
3523