xref: /openbmc/linux/mm/kmemleak.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104 
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE		16	/* stack trace length */
109 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
110 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
111 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
113 
114 #define BYTES_PER_POINTER	sizeof(void *)
115 
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 				 __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 	struct hlist_node node;
124 	unsigned long start;
125 	size_t size;
126 };
127 
128 #define KMEMLEAK_GREY	0
129 #define KMEMLEAK_BLACK	-1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140 	spinlock_t lock;
141 	unsigned long flags;		/* object status flags */
142 	struct list_head object_list;
143 	struct list_head gray_list;
144 	struct rb_node rb_node;
145 	struct rcu_head rcu;		/* object_list lockless traversal */
146 	/* object usage count; object freed when use_count == 0 */
147 	atomic_t use_count;
148 	unsigned long pointer;
149 	size_t size;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE		16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE		1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII		1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES		2
180 
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* search tree for object boundaries */
186 static struct rb_root object_tree_root = RB_ROOT;
187 /* rw_lock protecting the access to object_list and object_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189 
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193 
194 /* set if tracing memory operations is enabled */
195 static int kmemleak_enabled;
196 /* set in the late_initcall if there were no errors */
197 static int kmemleak_initialized;
198 /* enables or disables early logging of the memory operations */
199 static int kmemleak_early_log = 1;
200 /* set if a kmemleak warning was issued */
201 static int kmemleak_warning;
202 /* set if a fatal kmemleak error has occurred */
203 static int kmemleak_error;
204 
205 /* minimum and maximum address that may be valid pointers */
206 static unsigned long min_addr = ULONG_MAX;
207 static unsigned long max_addr;
208 
209 static struct task_struct *scan_thread;
210 /* used to avoid reporting of recently allocated objects */
211 static unsigned long jiffies_min_age;
212 static unsigned long jiffies_last_scan;
213 /* delay between automatic memory scannings */
214 static signed long jiffies_scan_wait;
215 /* enables or disables the task stacks scanning */
216 static int kmemleak_stack_scan = 1;
217 /* protects the memory scanning, parameters and debug/kmemleak file access */
218 static DEFINE_MUTEX(scan_mutex);
219 /* setting kmemleak=on, will set this var, skipping the disable */
220 static int kmemleak_skip_disable;
221 /* If there are leaks that can be reported */
222 static bool kmemleak_found_leaks;
223 
224 /*
225  * Early object allocation/freeing logging. Kmemleak is initialized after the
226  * kernel allocator. However, both the kernel allocator and kmemleak may
227  * allocate memory blocks which need to be tracked. Kmemleak defines an
228  * arbitrary buffer to hold the allocation/freeing information before it is
229  * fully initialized.
230  */
231 
232 /* kmemleak operation type for early logging */
233 enum {
234 	KMEMLEAK_ALLOC,
235 	KMEMLEAK_ALLOC_PERCPU,
236 	KMEMLEAK_FREE,
237 	KMEMLEAK_FREE_PART,
238 	KMEMLEAK_FREE_PERCPU,
239 	KMEMLEAK_NOT_LEAK,
240 	KMEMLEAK_IGNORE,
241 	KMEMLEAK_SCAN_AREA,
242 	KMEMLEAK_NO_SCAN
243 };
244 
245 /*
246  * Structure holding the information passed to kmemleak callbacks during the
247  * early logging.
248  */
249 struct early_log {
250 	int op_type;			/* kmemleak operation type */
251 	const void *ptr;		/* allocated/freed memory block */
252 	size_t size;			/* memory block size */
253 	int min_count;			/* minimum reference count */
254 	unsigned long trace[MAX_TRACE];	/* stack trace */
255 	unsigned int trace_len;		/* stack trace length */
256 };
257 
258 /* early logging buffer and current position */
259 static struct early_log
260 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
261 static int crt_early_log __initdata;
262 
263 static void kmemleak_disable(void);
264 
265 /*
266  * Print a warning and dump the stack trace.
267  */
268 #define kmemleak_warn(x...)	do {		\
269 	pr_warning(x);				\
270 	dump_stack();				\
271 	kmemleak_warning = 1;			\
272 } while (0)
273 
274 /*
275  * Macro invoked when a serious kmemleak condition occurred and cannot be
276  * recovered from. Kmemleak will be disabled and further allocation/freeing
277  * tracing no longer available.
278  */
279 #define kmemleak_stop(x...)	do {	\
280 	kmemleak_warn(x);		\
281 	kmemleak_disable();		\
282 } while (0)
283 
284 /*
285  * Printing of the objects hex dump to the seq file. The number of lines to be
286  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
287  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
288  * with the object->lock held.
289  */
290 static void hex_dump_object(struct seq_file *seq,
291 			    struct kmemleak_object *object)
292 {
293 	const u8 *ptr = (const u8 *)object->pointer;
294 	int i, len, remaining;
295 	unsigned char linebuf[HEX_ROW_SIZE * 5];
296 
297 	/* limit the number of lines to HEX_MAX_LINES */
298 	remaining = len =
299 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
300 
301 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
302 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
303 		int linelen = min(remaining, HEX_ROW_SIZE);
304 
305 		remaining -= HEX_ROW_SIZE;
306 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
307 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
308 				   HEX_ASCII);
309 		seq_printf(seq, "    %s\n", linebuf);
310 	}
311 }
312 
313 /*
314  * Object colors, encoded with count and min_count:
315  * - white - orphan object, not enough references to it (count < min_count)
316  * - gray  - not orphan, not marked as false positive (min_count == 0) or
317  *		sufficient references to it (count >= min_count)
318  * - black - ignore, it doesn't contain references (e.g. text section)
319  *		(min_count == -1). No function defined for this color.
320  * Newly created objects don't have any color assigned (object->count == -1)
321  * before the next memory scan when they become white.
322  */
323 static bool color_white(const struct kmemleak_object *object)
324 {
325 	return object->count != KMEMLEAK_BLACK &&
326 		object->count < object->min_count;
327 }
328 
329 static bool color_gray(const struct kmemleak_object *object)
330 {
331 	return object->min_count != KMEMLEAK_BLACK &&
332 		object->count >= object->min_count;
333 }
334 
335 /*
336  * Objects are considered unreferenced only if their color is white, they have
337  * not be deleted and have a minimum age to avoid false positives caused by
338  * pointers temporarily stored in CPU registers.
339  */
340 static bool unreferenced_object(struct kmemleak_object *object)
341 {
342 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
343 		time_before_eq(object->jiffies + jiffies_min_age,
344 			       jiffies_last_scan);
345 }
346 
347 /*
348  * Printing of the unreferenced objects information to the seq file. The
349  * print_unreferenced function must be called with the object->lock held.
350  */
351 static void print_unreferenced(struct seq_file *seq,
352 			       struct kmemleak_object *object)
353 {
354 	int i;
355 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
356 
357 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
358 		   object->pointer, object->size);
359 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
360 		   object->comm, object->pid, object->jiffies,
361 		   msecs_age / 1000, msecs_age % 1000);
362 	hex_dump_object(seq, object);
363 	seq_printf(seq, "  backtrace:\n");
364 
365 	for (i = 0; i < object->trace_len; i++) {
366 		void *ptr = (void *)object->trace[i];
367 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
368 	}
369 }
370 
371 /*
372  * Print the kmemleak_object information. This function is used mainly for
373  * debugging special cases when kmemleak operations. It must be called with
374  * the object->lock held.
375  */
376 static void dump_object_info(struct kmemleak_object *object)
377 {
378 	struct stack_trace trace;
379 
380 	trace.nr_entries = object->trace_len;
381 	trace.entries = object->trace;
382 
383 	pr_notice("Object 0x%08lx (size %zu):\n",
384 		  object->pointer, object->size);
385 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
386 		  object->comm, object->pid, object->jiffies);
387 	pr_notice("  min_count = %d\n", object->min_count);
388 	pr_notice("  count = %d\n", object->count);
389 	pr_notice("  flags = 0x%lx\n", object->flags);
390 	pr_notice("  checksum = %u\n", object->checksum);
391 	pr_notice("  backtrace:\n");
392 	print_stack_trace(&trace, 4);
393 }
394 
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
402 {
403 	struct rb_node *rb = object_tree_root.rb_node;
404 
405 	while (rb) {
406 		struct kmemleak_object *object =
407 			rb_entry(rb, struct kmemleak_object, rb_node);
408 		if (ptr < object->pointer)
409 			rb = object->rb_node.rb_left;
410 		else if (object->pointer + object->size <= ptr)
411 			rb = object->rb_node.rb_right;
412 		else if (object->pointer == ptr || alias)
413 			return object;
414 		else {
415 			kmemleak_warn("Found object by alias at 0x%08lx\n",
416 				      ptr);
417 			dump_object_info(object);
418 			break;
419 		}
420 	}
421 	return NULL;
422 }
423 
424 /*
425  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
426  * that once an object's use_count reached 0, the RCU freeing was already
427  * registered and the object should no longer be used. This function must be
428  * called under the protection of rcu_read_lock().
429  */
430 static int get_object(struct kmemleak_object *object)
431 {
432 	return atomic_inc_not_zero(&object->use_count);
433 }
434 
435 /*
436  * RCU callback to free a kmemleak_object.
437  */
438 static void free_object_rcu(struct rcu_head *rcu)
439 {
440 	struct hlist_node *tmp;
441 	struct kmemleak_scan_area *area;
442 	struct kmemleak_object *object =
443 		container_of(rcu, struct kmemleak_object, rcu);
444 
445 	/*
446 	 * Once use_count is 0 (guaranteed by put_object), there is no other
447 	 * code accessing this object, hence no need for locking.
448 	 */
449 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
450 		hlist_del(&area->node);
451 		kmem_cache_free(scan_area_cache, area);
452 	}
453 	kmem_cache_free(object_cache, object);
454 }
455 
456 /*
457  * Decrement the object use_count. Once the count is 0, free the object using
458  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
459  * delete_object() path, the delayed RCU freeing ensures that there is no
460  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
461  * is also possible.
462  */
463 static void put_object(struct kmemleak_object *object)
464 {
465 	if (!atomic_dec_and_test(&object->use_count))
466 		return;
467 
468 	/* should only get here after delete_object was called */
469 	WARN_ON(object->flags & OBJECT_ALLOCATED);
470 
471 	call_rcu(&object->rcu, free_object_rcu);
472 }
473 
474 /*
475  * Look up an object in the object search tree and increase its use_count.
476  */
477 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
478 {
479 	unsigned long flags;
480 	struct kmemleak_object *object = NULL;
481 
482 	rcu_read_lock();
483 	read_lock_irqsave(&kmemleak_lock, flags);
484 	if (ptr >= min_addr && ptr < max_addr)
485 		object = lookup_object(ptr, alias);
486 	read_unlock_irqrestore(&kmemleak_lock, flags);
487 
488 	/* check whether the object is still available */
489 	if (object && !get_object(object))
490 		object = NULL;
491 	rcu_read_unlock();
492 
493 	return object;
494 }
495 
496 /*
497  * Save stack trace to the given array of MAX_TRACE size.
498  */
499 static int __save_stack_trace(unsigned long *trace)
500 {
501 	struct stack_trace stack_trace;
502 
503 	stack_trace.max_entries = MAX_TRACE;
504 	stack_trace.nr_entries = 0;
505 	stack_trace.entries = trace;
506 	stack_trace.skip = 2;
507 	save_stack_trace(&stack_trace);
508 
509 	return stack_trace.nr_entries;
510 }
511 
512 /*
513  * Create the metadata (struct kmemleak_object) corresponding to an allocated
514  * memory block and add it to the object_list and object_tree_root.
515  */
516 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
517 					     int min_count, gfp_t gfp)
518 {
519 	unsigned long flags;
520 	struct kmemleak_object *object, *parent;
521 	struct rb_node **link, *rb_parent;
522 
523 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
524 	if (!object) {
525 		pr_warning("Cannot allocate a kmemleak_object structure\n");
526 		kmemleak_disable();
527 		return NULL;
528 	}
529 
530 	INIT_LIST_HEAD(&object->object_list);
531 	INIT_LIST_HEAD(&object->gray_list);
532 	INIT_HLIST_HEAD(&object->area_list);
533 	spin_lock_init(&object->lock);
534 	atomic_set(&object->use_count, 1);
535 	object->flags = OBJECT_ALLOCATED;
536 	object->pointer = ptr;
537 	object->size = size;
538 	object->min_count = min_count;
539 	object->count = 0;			/* white color initially */
540 	object->jiffies = jiffies;
541 	object->checksum = 0;
542 
543 	/* task information */
544 	if (in_irq()) {
545 		object->pid = 0;
546 		strncpy(object->comm, "hardirq", sizeof(object->comm));
547 	} else if (in_softirq()) {
548 		object->pid = 0;
549 		strncpy(object->comm, "softirq", sizeof(object->comm));
550 	} else {
551 		object->pid = current->pid;
552 		/*
553 		 * There is a small chance of a race with set_task_comm(),
554 		 * however using get_task_comm() here may cause locking
555 		 * dependency issues with current->alloc_lock. In the worst
556 		 * case, the command line is not correct.
557 		 */
558 		strncpy(object->comm, current->comm, sizeof(object->comm));
559 	}
560 
561 	/* kernel backtrace */
562 	object->trace_len = __save_stack_trace(object->trace);
563 
564 	write_lock_irqsave(&kmemleak_lock, flags);
565 
566 	min_addr = min(min_addr, ptr);
567 	max_addr = max(max_addr, ptr + size);
568 	link = &object_tree_root.rb_node;
569 	rb_parent = NULL;
570 	while (*link) {
571 		rb_parent = *link;
572 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
573 		if (ptr + size <= parent->pointer)
574 			link = &parent->rb_node.rb_left;
575 		else if (parent->pointer + parent->size <= ptr)
576 			link = &parent->rb_node.rb_right;
577 		else {
578 			kmemleak_stop("Cannot insert 0x%lx into the object "
579 				      "search tree (overlaps existing)\n",
580 				      ptr);
581 			kmem_cache_free(object_cache, object);
582 			object = parent;
583 			spin_lock(&object->lock);
584 			dump_object_info(object);
585 			spin_unlock(&object->lock);
586 			goto out;
587 		}
588 	}
589 	rb_link_node(&object->rb_node, rb_parent, link);
590 	rb_insert_color(&object->rb_node, &object_tree_root);
591 
592 	list_add_tail_rcu(&object->object_list, &object_list);
593 out:
594 	write_unlock_irqrestore(&kmemleak_lock, flags);
595 	return object;
596 }
597 
598 /*
599  * Remove the metadata (struct kmemleak_object) for a memory block from the
600  * object_list and object_tree_root and decrement its use_count.
601  */
602 static void __delete_object(struct kmemleak_object *object)
603 {
604 	unsigned long flags;
605 
606 	write_lock_irqsave(&kmemleak_lock, flags);
607 	rb_erase(&object->rb_node, &object_tree_root);
608 	list_del_rcu(&object->object_list);
609 	write_unlock_irqrestore(&kmemleak_lock, flags);
610 
611 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
612 	WARN_ON(atomic_read(&object->use_count) < 2);
613 
614 	/*
615 	 * Locking here also ensures that the corresponding memory block
616 	 * cannot be freed when it is being scanned.
617 	 */
618 	spin_lock_irqsave(&object->lock, flags);
619 	object->flags &= ~OBJECT_ALLOCATED;
620 	spin_unlock_irqrestore(&object->lock, flags);
621 	put_object(object);
622 }
623 
624 /*
625  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
626  * delete it.
627  */
628 static void delete_object_full(unsigned long ptr)
629 {
630 	struct kmemleak_object *object;
631 
632 	object = find_and_get_object(ptr, 0);
633 	if (!object) {
634 #ifdef DEBUG
635 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
636 			      ptr);
637 #endif
638 		return;
639 	}
640 	__delete_object(object);
641 	put_object(object);
642 }
643 
644 /*
645  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646  * delete it. If the memory block is partially freed, the function may create
647  * additional metadata for the remaining parts of the block.
648  */
649 static void delete_object_part(unsigned long ptr, size_t size)
650 {
651 	struct kmemleak_object *object;
652 	unsigned long start, end;
653 
654 	object = find_and_get_object(ptr, 1);
655 	if (!object) {
656 #ifdef DEBUG
657 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
658 			      "(size %zu)\n", ptr, size);
659 #endif
660 		return;
661 	}
662 	__delete_object(object);
663 
664 	/*
665 	 * Create one or two objects that may result from the memory block
666 	 * split. Note that partial freeing is only done by free_bootmem() and
667 	 * this happens before kmemleak_init() is called. The path below is
668 	 * only executed during early log recording in kmemleak_init(), so
669 	 * GFP_KERNEL is enough.
670 	 */
671 	start = object->pointer;
672 	end = object->pointer + object->size;
673 	if (ptr > start)
674 		create_object(start, ptr - start, object->min_count,
675 			      GFP_KERNEL);
676 	if (ptr + size < end)
677 		create_object(ptr + size, end - ptr - size, object->min_count,
678 			      GFP_KERNEL);
679 
680 	put_object(object);
681 }
682 
683 static void __paint_it(struct kmemleak_object *object, int color)
684 {
685 	object->min_count = color;
686 	if (color == KMEMLEAK_BLACK)
687 		object->flags |= OBJECT_NO_SCAN;
688 }
689 
690 static void paint_it(struct kmemleak_object *object, int color)
691 {
692 	unsigned long flags;
693 
694 	spin_lock_irqsave(&object->lock, flags);
695 	__paint_it(object, color);
696 	spin_unlock_irqrestore(&object->lock, flags);
697 }
698 
699 static void paint_ptr(unsigned long ptr, int color)
700 {
701 	struct kmemleak_object *object;
702 
703 	object = find_and_get_object(ptr, 0);
704 	if (!object) {
705 		kmemleak_warn("Trying to color unknown object "
706 			      "at 0x%08lx as %s\n", ptr,
707 			      (color == KMEMLEAK_GREY) ? "Grey" :
708 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
709 		return;
710 	}
711 	paint_it(object, color);
712 	put_object(object);
713 }
714 
715 /*
716  * Mark an object permanently as gray-colored so that it can no longer be
717  * reported as a leak. This is used in general to mark a false positive.
718  */
719 static void make_gray_object(unsigned long ptr)
720 {
721 	paint_ptr(ptr, KMEMLEAK_GREY);
722 }
723 
724 /*
725  * Mark the object as black-colored so that it is ignored from scans and
726  * reporting.
727  */
728 static void make_black_object(unsigned long ptr)
729 {
730 	paint_ptr(ptr, KMEMLEAK_BLACK);
731 }
732 
733 /*
734  * Add a scanning area to the object. If at least one such area is added,
735  * kmemleak will only scan these ranges rather than the whole memory block.
736  */
737 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
738 {
739 	unsigned long flags;
740 	struct kmemleak_object *object;
741 	struct kmemleak_scan_area *area;
742 
743 	object = find_and_get_object(ptr, 1);
744 	if (!object) {
745 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
746 			      ptr);
747 		return;
748 	}
749 
750 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
751 	if (!area) {
752 		pr_warning("Cannot allocate a scan area\n");
753 		goto out;
754 	}
755 
756 	spin_lock_irqsave(&object->lock, flags);
757 	if (size == SIZE_MAX) {
758 		size = object->pointer + object->size - ptr;
759 	} else if (ptr + size > object->pointer + object->size) {
760 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
761 		dump_object_info(object);
762 		kmem_cache_free(scan_area_cache, area);
763 		goto out_unlock;
764 	}
765 
766 	INIT_HLIST_NODE(&area->node);
767 	area->start = ptr;
768 	area->size = size;
769 
770 	hlist_add_head(&area->node, &object->area_list);
771 out_unlock:
772 	spin_unlock_irqrestore(&object->lock, flags);
773 out:
774 	put_object(object);
775 }
776 
777 /*
778  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
779  * pointer. Such object will not be scanned by kmemleak but references to it
780  * are searched.
781  */
782 static void object_no_scan(unsigned long ptr)
783 {
784 	unsigned long flags;
785 	struct kmemleak_object *object;
786 
787 	object = find_and_get_object(ptr, 0);
788 	if (!object) {
789 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
790 		return;
791 	}
792 
793 	spin_lock_irqsave(&object->lock, flags);
794 	object->flags |= OBJECT_NO_SCAN;
795 	spin_unlock_irqrestore(&object->lock, flags);
796 	put_object(object);
797 }
798 
799 /*
800  * Log an early kmemleak_* call to the early_log buffer. These calls will be
801  * processed later once kmemleak is fully initialized.
802  */
803 static void __init log_early(int op_type, const void *ptr, size_t size,
804 			     int min_count)
805 {
806 	unsigned long flags;
807 	struct early_log *log;
808 
809 	if (kmemleak_error) {
810 		/* kmemleak stopped recording, just count the requests */
811 		crt_early_log++;
812 		return;
813 	}
814 
815 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
816 		kmemleak_disable();
817 		return;
818 	}
819 
820 	/*
821 	 * There is no need for locking since the kernel is still in UP mode
822 	 * at this stage. Disabling the IRQs is enough.
823 	 */
824 	local_irq_save(flags);
825 	log = &early_log[crt_early_log];
826 	log->op_type = op_type;
827 	log->ptr = ptr;
828 	log->size = size;
829 	log->min_count = min_count;
830 	log->trace_len = __save_stack_trace(log->trace);
831 	crt_early_log++;
832 	local_irq_restore(flags);
833 }
834 
835 /*
836  * Log an early allocated block and populate the stack trace.
837  */
838 static void early_alloc(struct early_log *log)
839 {
840 	struct kmemleak_object *object;
841 	unsigned long flags;
842 	int i;
843 
844 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
845 		return;
846 
847 	/*
848 	 * RCU locking needed to ensure object is not freed via put_object().
849 	 */
850 	rcu_read_lock();
851 	object = create_object((unsigned long)log->ptr, log->size,
852 			       log->min_count, GFP_ATOMIC);
853 	if (!object)
854 		goto out;
855 	spin_lock_irqsave(&object->lock, flags);
856 	for (i = 0; i < log->trace_len; i++)
857 		object->trace[i] = log->trace[i];
858 	object->trace_len = log->trace_len;
859 	spin_unlock_irqrestore(&object->lock, flags);
860 out:
861 	rcu_read_unlock();
862 }
863 
864 /*
865  * Log an early allocated block and populate the stack trace.
866  */
867 static void early_alloc_percpu(struct early_log *log)
868 {
869 	unsigned int cpu;
870 	const void __percpu *ptr = log->ptr;
871 
872 	for_each_possible_cpu(cpu) {
873 		log->ptr = per_cpu_ptr(ptr, cpu);
874 		early_alloc(log);
875 	}
876 }
877 
878 /**
879  * kmemleak_alloc - register a newly allocated object
880  * @ptr:	pointer to beginning of the object
881  * @size:	size of the object
882  * @min_count:	minimum number of references to this object. If during memory
883  *		scanning a number of references less than @min_count is found,
884  *		the object is reported as a memory leak. If @min_count is 0,
885  *		the object is never reported as a leak. If @min_count is -1,
886  *		the object is ignored (not scanned and not reported as a leak)
887  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
888  *
889  * This function is called from the kernel allocators when a new object
890  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
891  */
892 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
893 			  gfp_t gfp)
894 {
895 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
896 
897 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
898 		create_object((unsigned long)ptr, size, min_count, gfp);
899 	else if (kmemleak_early_log)
900 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
901 }
902 EXPORT_SYMBOL_GPL(kmemleak_alloc);
903 
904 /**
905  * kmemleak_alloc_percpu - register a newly allocated __percpu object
906  * @ptr:	__percpu pointer to beginning of the object
907  * @size:	size of the object
908  *
909  * This function is called from the kernel percpu allocator when a new object
910  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
911  * allocation.
912  */
913 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
914 {
915 	unsigned int cpu;
916 
917 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
918 
919 	/*
920 	 * Percpu allocations are only scanned and not reported as leaks
921 	 * (min_count is set to 0).
922 	 */
923 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
924 		for_each_possible_cpu(cpu)
925 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
926 				      size, 0, GFP_KERNEL);
927 	else if (kmemleak_early_log)
928 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
929 }
930 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
931 
932 /**
933  * kmemleak_free - unregister a previously registered object
934  * @ptr:	pointer to beginning of the object
935  *
936  * This function is called from the kernel allocators when an object (memory
937  * block) is freed (kmem_cache_free, kfree, vfree etc.).
938  */
939 void __ref kmemleak_free(const void *ptr)
940 {
941 	pr_debug("%s(0x%p)\n", __func__, ptr);
942 
943 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944 		delete_object_full((unsigned long)ptr);
945 	else if (kmemleak_early_log)
946 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
947 }
948 EXPORT_SYMBOL_GPL(kmemleak_free);
949 
950 /**
951  * kmemleak_free_part - partially unregister a previously registered object
952  * @ptr:	pointer to the beginning or inside the object. This also
953  *		represents the start of the range to be freed
954  * @size:	size to be unregistered
955  *
956  * This function is called when only a part of a memory block is freed
957  * (usually from the bootmem allocator).
958  */
959 void __ref kmemleak_free_part(const void *ptr, size_t size)
960 {
961 	pr_debug("%s(0x%p)\n", __func__, ptr);
962 
963 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
964 		delete_object_part((unsigned long)ptr, size);
965 	else if (kmemleak_early_log)
966 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free_part);
969 
970 /**
971  * kmemleak_free_percpu - unregister a previously registered __percpu object
972  * @ptr:	__percpu pointer to beginning of the object
973  *
974  * This function is called from the kernel percpu allocator when an object
975  * (memory block) is freed (free_percpu).
976  */
977 void __ref kmemleak_free_percpu(const void __percpu *ptr)
978 {
979 	unsigned int cpu;
980 
981 	pr_debug("%s(0x%p)\n", __func__, ptr);
982 
983 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 		for_each_possible_cpu(cpu)
985 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
986 								      cpu));
987 	else if (kmemleak_early_log)
988 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
989 }
990 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
991 
992 /**
993  * kmemleak_update_trace - update object allocation stack trace
994  * @ptr:	pointer to beginning of the object
995  *
996  * Override the object allocation stack trace for cases where the actual
997  * allocation place is not always useful.
998  */
999 void __ref kmemleak_update_trace(const void *ptr)
1000 {
1001 	struct kmemleak_object *object;
1002 	unsigned long flags;
1003 
1004 	pr_debug("%s(0x%p)\n", __func__, ptr);
1005 
1006 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1007 		return;
1008 
1009 	object = find_and_get_object((unsigned long)ptr, 1);
1010 	if (!object) {
1011 #ifdef DEBUG
1012 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1013 			      ptr);
1014 #endif
1015 		return;
1016 	}
1017 
1018 	spin_lock_irqsave(&object->lock, flags);
1019 	object->trace_len = __save_stack_trace(object->trace);
1020 	spin_unlock_irqrestore(&object->lock, flags);
1021 
1022 	put_object(object);
1023 }
1024 EXPORT_SYMBOL(kmemleak_update_trace);
1025 
1026 /**
1027  * kmemleak_not_leak - mark an allocated object as false positive
1028  * @ptr:	pointer to beginning of the object
1029  *
1030  * Calling this function on an object will cause the memory block to no longer
1031  * be reported as leak and always be scanned.
1032  */
1033 void __ref kmemleak_not_leak(const void *ptr)
1034 {
1035 	pr_debug("%s(0x%p)\n", __func__, ptr);
1036 
1037 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1038 		make_gray_object((unsigned long)ptr);
1039 	else if (kmemleak_early_log)
1040 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1041 }
1042 EXPORT_SYMBOL(kmemleak_not_leak);
1043 
1044 /**
1045  * kmemleak_ignore - ignore an allocated object
1046  * @ptr:	pointer to beginning of the object
1047  *
1048  * Calling this function on an object will cause the memory block to be
1049  * ignored (not scanned and not reported as a leak). This is usually done when
1050  * it is known that the corresponding block is not a leak and does not contain
1051  * any references to other allocated memory blocks.
1052  */
1053 void __ref kmemleak_ignore(const void *ptr)
1054 {
1055 	pr_debug("%s(0x%p)\n", __func__, ptr);
1056 
1057 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 		make_black_object((unsigned long)ptr);
1059 	else if (kmemleak_early_log)
1060 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1061 }
1062 EXPORT_SYMBOL(kmemleak_ignore);
1063 
1064 /**
1065  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1066  * @ptr:	pointer to beginning or inside the object. This also
1067  *		represents the start of the scan area
1068  * @size:	size of the scan area
1069  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1070  *
1071  * This function is used when it is known that only certain parts of an object
1072  * contain references to other objects. Kmemleak will only scan these areas
1073  * reducing the number false negatives.
1074  */
1075 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1076 {
1077 	pr_debug("%s(0x%p)\n", __func__, ptr);
1078 
1079 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1080 		add_scan_area((unsigned long)ptr, size, gfp);
1081 	else if (kmemleak_early_log)
1082 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1083 }
1084 EXPORT_SYMBOL(kmemleak_scan_area);
1085 
1086 /**
1087  * kmemleak_no_scan - do not scan an allocated object
1088  * @ptr:	pointer to beginning of the object
1089  *
1090  * This function notifies kmemleak not to scan the given memory block. Useful
1091  * in situations where it is known that the given object does not contain any
1092  * references to other objects. Kmemleak will not scan such objects reducing
1093  * the number of false negatives.
1094  */
1095 void __ref kmemleak_no_scan(const void *ptr)
1096 {
1097 	pr_debug("%s(0x%p)\n", __func__, ptr);
1098 
1099 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1100 		object_no_scan((unsigned long)ptr);
1101 	else if (kmemleak_early_log)
1102 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1103 }
1104 EXPORT_SYMBOL(kmemleak_no_scan);
1105 
1106 /*
1107  * Update an object's checksum and return true if it was modified.
1108  */
1109 static bool update_checksum(struct kmemleak_object *object)
1110 {
1111 	u32 old_csum = object->checksum;
1112 
1113 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1114 		return false;
1115 
1116 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1117 	return object->checksum != old_csum;
1118 }
1119 
1120 /*
1121  * Memory scanning is a long process and it needs to be interruptable. This
1122  * function checks whether such interrupt condition occurred.
1123  */
1124 static int scan_should_stop(void)
1125 {
1126 	if (!kmemleak_enabled)
1127 		return 1;
1128 
1129 	/*
1130 	 * This function may be called from either process or kthread context,
1131 	 * hence the need to check for both stop conditions.
1132 	 */
1133 	if (current->mm)
1134 		return signal_pending(current);
1135 	else
1136 		return kthread_should_stop();
1137 
1138 	return 0;
1139 }
1140 
1141 /*
1142  * Scan a memory block (exclusive range) for valid pointers and add those
1143  * found to the gray list.
1144  */
1145 static void scan_block(void *_start, void *_end,
1146 		       struct kmemleak_object *scanned, int allow_resched)
1147 {
1148 	unsigned long *ptr;
1149 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1150 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1151 
1152 	for (ptr = start; ptr < end; ptr++) {
1153 		struct kmemleak_object *object;
1154 		unsigned long flags;
1155 		unsigned long pointer;
1156 
1157 		if (allow_resched)
1158 			cond_resched();
1159 		if (scan_should_stop())
1160 			break;
1161 
1162 		/* don't scan uninitialized memory */
1163 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1164 						  BYTES_PER_POINTER))
1165 			continue;
1166 
1167 		pointer = *ptr;
1168 
1169 		object = find_and_get_object(pointer, 1);
1170 		if (!object)
1171 			continue;
1172 		if (object == scanned) {
1173 			/* self referenced, ignore */
1174 			put_object(object);
1175 			continue;
1176 		}
1177 
1178 		/*
1179 		 * Avoid the lockdep recursive warning on object->lock being
1180 		 * previously acquired in scan_object(). These locks are
1181 		 * enclosed by scan_mutex.
1182 		 */
1183 		spin_lock_irqsave_nested(&object->lock, flags,
1184 					 SINGLE_DEPTH_NESTING);
1185 		if (!color_white(object)) {
1186 			/* non-orphan, ignored or new */
1187 			spin_unlock_irqrestore(&object->lock, flags);
1188 			put_object(object);
1189 			continue;
1190 		}
1191 
1192 		/*
1193 		 * Increase the object's reference count (number of pointers
1194 		 * to the memory block). If this count reaches the required
1195 		 * minimum, the object's color will become gray and it will be
1196 		 * added to the gray_list.
1197 		 */
1198 		object->count++;
1199 		if (color_gray(object)) {
1200 			list_add_tail(&object->gray_list, &gray_list);
1201 			spin_unlock_irqrestore(&object->lock, flags);
1202 			continue;
1203 		}
1204 
1205 		spin_unlock_irqrestore(&object->lock, flags);
1206 		put_object(object);
1207 	}
1208 }
1209 
1210 /*
1211  * Scan a memory block corresponding to a kmemleak_object. A condition is
1212  * that object->use_count >= 1.
1213  */
1214 static void scan_object(struct kmemleak_object *object)
1215 {
1216 	struct kmemleak_scan_area *area;
1217 	unsigned long flags;
1218 
1219 	/*
1220 	 * Once the object->lock is acquired, the corresponding memory block
1221 	 * cannot be freed (the same lock is acquired in delete_object).
1222 	 */
1223 	spin_lock_irqsave(&object->lock, flags);
1224 	if (object->flags & OBJECT_NO_SCAN)
1225 		goto out;
1226 	if (!(object->flags & OBJECT_ALLOCATED))
1227 		/* already freed object */
1228 		goto out;
1229 	if (hlist_empty(&object->area_list)) {
1230 		void *start = (void *)object->pointer;
1231 		void *end = (void *)(object->pointer + object->size);
1232 
1233 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1234 		       !(object->flags & OBJECT_NO_SCAN)) {
1235 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1236 				   object, 0);
1237 			start += MAX_SCAN_SIZE;
1238 
1239 			spin_unlock_irqrestore(&object->lock, flags);
1240 			cond_resched();
1241 			spin_lock_irqsave(&object->lock, flags);
1242 		}
1243 	} else
1244 		hlist_for_each_entry(area, &object->area_list, node)
1245 			scan_block((void *)area->start,
1246 				   (void *)(area->start + area->size),
1247 				   object, 0);
1248 out:
1249 	spin_unlock_irqrestore(&object->lock, flags);
1250 }
1251 
1252 /*
1253  * Scan the objects already referenced (gray objects). More objects will be
1254  * referenced and, if there are no memory leaks, all the objects are scanned.
1255  */
1256 static void scan_gray_list(void)
1257 {
1258 	struct kmemleak_object *object, *tmp;
1259 
1260 	/*
1261 	 * The list traversal is safe for both tail additions and removals
1262 	 * from inside the loop. The kmemleak objects cannot be freed from
1263 	 * outside the loop because their use_count was incremented.
1264 	 */
1265 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1266 	while (&object->gray_list != &gray_list) {
1267 		cond_resched();
1268 
1269 		/* may add new objects to the list */
1270 		if (!scan_should_stop())
1271 			scan_object(object);
1272 
1273 		tmp = list_entry(object->gray_list.next, typeof(*object),
1274 				 gray_list);
1275 
1276 		/* remove the object from the list and release it */
1277 		list_del(&object->gray_list);
1278 		put_object(object);
1279 
1280 		object = tmp;
1281 	}
1282 	WARN_ON(!list_empty(&gray_list));
1283 }
1284 
1285 /*
1286  * Scan data sections and all the referenced memory blocks allocated via the
1287  * kernel's standard allocators. This function must be called with the
1288  * scan_mutex held.
1289  */
1290 static void kmemleak_scan(void)
1291 {
1292 	unsigned long flags;
1293 	struct kmemleak_object *object;
1294 	int i;
1295 	int new_leaks = 0;
1296 
1297 	jiffies_last_scan = jiffies;
1298 
1299 	/* prepare the kmemleak_object's */
1300 	rcu_read_lock();
1301 	list_for_each_entry_rcu(object, &object_list, object_list) {
1302 		spin_lock_irqsave(&object->lock, flags);
1303 #ifdef DEBUG
1304 		/*
1305 		 * With a few exceptions there should be a maximum of
1306 		 * 1 reference to any object at this point.
1307 		 */
1308 		if (atomic_read(&object->use_count) > 1) {
1309 			pr_debug("object->use_count = %d\n",
1310 				 atomic_read(&object->use_count));
1311 			dump_object_info(object);
1312 		}
1313 #endif
1314 		/* reset the reference count (whiten the object) */
1315 		object->count = 0;
1316 		if (color_gray(object) && get_object(object))
1317 			list_add_tail(&object->gray_list, &gray_list);
1318 
1319 		spin_unlock_irqrestore(&object->lock, flags);
1320 	}
1321 	rcu_read_unlock();
1322 
1323 	/* data/bss scanning */
1324 	scan_block(_sdata, _edata, NULL, 1);
1325 	scan_block(__bss_start, __bss_stop, NULL, 1);
1326 
1327 #ifdef CONFIG_SMP
1328 	/* per-cpu sections scanning */
1329 	for_each_possible_cpu(i)
1330 		scan_block(__per_cpu_start + per_cpu_offset(i),
1331 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1332 #endif
1333 
1334 	/*
1335 	 * Struct page scanning for each node.
1336 	 */
1337 	get_online_mems();
1338 	for_each_online_node(i) {
1339 		unsigned long start_pfn = node_start_pfn(i);
1340 		unsigned long end_pfn = node_end_pfn(i);
1341 		unsigned long pfn;
1342 
1343 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1344 			struct page *page;
1345 
1346 			if (!pfn_valid(pfn))
1347 				continue;
1348 			page = pfn_to_page(pfn);
1349 			/* only scan if page is in use */
1350 			if (page_count(page) == 0)
1351 				continue;
1352 			scan_block(page, page + 1, NULL, 1);
1353 		}
1354 	}
1355 	put_online_mems();
1356 
1357 	/*
1358 	 * Scanning the task stacks (may introduce false negatives).
1359 	 */
1360 	if (kmemleak_stack_scan) {
1361 		struct task_struct *p, *g;
1362 
1363 		read_lock(&tasklist_lock);
1364 		do_each_thread(g, p) {
1365 			scan_block(task_stack_page(p), task_stack_page(p) +
1366 				   THREAD_SIZE, NULL, 0);
1367 		} while_each_thread(g, p);
1368 		read_unlock(&tasklist_lock);
1369 	}
1370 
1371 	/*
1372 	 * Scan the objects already referenced from the sections scanned
1373 	 * above.
1374 	 */
1375 	scan_gray_list();
1376 
1377 	/*
1378 	 * Check for new or unreferenced objects modified since the previous
1379 	 * scan and color them gray until the next scan.
1380 	 */
1381 	rcu_read_lock();
1382 	list_for_each_entry_rcu(object, &object_list, object_list) {
1383 		spin_lock_irqsave(&object->lock, flags);
1384 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1385 		    && update_checksum(object) && get_object(object)) {
1386 			/* color it gray temporarily */
1387 			object->count = object->min_count;
1388 			list_add_tail(&object->gray_list, &gray_list);
1389 		}
1390 		spin_unlock_irqrestore(&object->lock, flags);
1391 	}
1392 	rcu_read_unlock();
1393 
1394 	/*
1395 	 * Re-scan the gray list for modified unreferenced objects.
1396 	 */
1397 	scan_gray_list();
1398 
1399 	/*
1400 	 * If scanning was stopped do not report any new unreferenced objects.
1401 	 */
1402 	if (scan_should_stop())
1403 		return;
1404 
1405 	/*
1406 	 * Scanning result reporting.
1407 	 */
1408 	rcu_read_lock();
1409 	list_for_each_entry_rcu(object, &object_list, object_list) {
1410 		spin_lock_irqsave(&object->lock, flags);
1411 		if (unreferenced_object(object) &&
1412 		    !(object->flags & OBJECT_REPORTED)) {
1413 			object->flags |= OBJECT_REPORTED;
1414 			new_leaks++;
1415 		}
1416 		spin_unlock_irqrestore(&object->lock, flags);
1417 	}
1418 	rcu_read_unlock();
1419 
1420 	if (new_leaks) {
1421 		kmemleak_found_leaks = true;
1422 
1423 		pr_info("%d new suspected memory leaks (see "
1424 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1425 	}
1426 
1427 }
1428 
1429 /*
1430  * Thread function performing automatic memory scanning. Unreferenced objects
1431  * at the end of a memory scan are reported but only the first time.
1432  */
1433 static int kmemleak_scan_thread(void *arg)
1434 {
1435 	static int first_run = 1;
1436 
1437 	pr_info("Automatic memory scanning thread started\n");
1438 	set_user_nice(current, 10);
1439 
1440 	/*
1441 	 * Wait before the first scan to allow the system to fully initialize.
1442 	 */
1443 	if (first_run) {
1444 		first_run = 0;
1445 		ssleep(SECS_FIRST_SCAN);
1446 	}
1447 
1448 	while (!kthread_should_stop()) {
1449 		signed long timeout = jiffies_scan_wait;
1450 
1451 		mutex_lock(&scan_mutex);
1452 		kmemleak_scan();
1453 		mutex_unlock(&scan_mutex);
1454 
1455 		/* wait before the next scan */
1456 		while (timeout && !kthread_should_stop())
1457 			timeout = schedule_timeout_interruptible(timeout);
1458 	}
1459 
1460 	pr_info("Automatic memory scanning thread ended\n");
1461 
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Start the automatic memory scanning thread. This function must be called
1467  * with the scan_mutex held.
1468  */
1469 static void start_scan_thread(void)
1470 {
1471 	if (scan_thread)
1472 		return;
1473 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1474 	if (IS_ERR(scan_thread)) {
1475 		pr_warning("Failed to create the scan thread\n");
1476 		scan_thread = NULL;
1477 	}
1478 }
1479 
1480 /*
1481  * Stop the automatic memory scanning thread. This function must be called
1482  * with the scan_mutex held.
1483  */
1484 static void stop_scan_thread(void)
1485 {
1486 	if (scan_thread) {
1487 		kthread_stop(scan_thread);
1488 		scan_thread = NULL;
1489 	}
1490 }
1491 
1492 /*
1493  * Iterate over the object_list and return the first valid object at or after
1494  * the required position with its use_count incremented. The function triggers
1495  * a memory scanning when the pos argument points to the first position.
1496  */
1497 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1498 {
1499 	struct kmemleak_object *object;
1500 	loff_t n = *pos;
1501 	int err;
1502 
1503 	err = mutex_lock_interruptible(&scan_mutex);
1504 	if (err < 0)
1505 		return ERR_PTR(err);
1506 
1507 	rcu_read_lock();
1508 	list_for_each_entry_rcu(object, &object_list, object_list) {
1509 		if (n-- > 0)
1510 			continue;
1511 		if (get_object(object))
1512 			goto out;
1513 	}
1514 	object = NULL;
1515 out:
1516 	return object;
1517 }
1518 
1519 /*
1520  * Return the next object in the object_list. The function decrements the
1521  * use_count of the previous object and increases that of the next one.
1522  */
1523 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1524 {
1525 	struct kmemleak_object *prev_obj = v;
1526 	struct kmemleak_object *next_obj = NULL;
1527 	struct kmemleak_object *obj = prev_obj;
1528 
1529 	++(*pos);
1530 
1531 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1532 		if (get_object(obj)) {
1533 			next_obj = obj;
1534 			break;
1535 		}
1536 	}
1537 
1538 	put_object(prev_obj);
1539 	return next_obj;
1540 }
1541 
1542 /*
1543  * Decrement the use_count of the last object required, if any.
1544  */
1545 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1546 {
1547 	if (!IS_ERR(v)) {
1548 		/*
1549 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1550 		 * waiting was interrupted, so only release it if !IS_ERR.
1551 		 */
1552 		rcu_read_unlock();
1553 		mutex_unlock(&scan_mutex);
1554 		if (v)
1555 			put_object(v);
1556 	}
1557 }
1558 
1559 /*
1560  * Print the information for an unreferenced object to the seq file.
1561  */
1562 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1563 {
1564 	struct kmemleak_object *object = v;
1565 	unsigned long flags;
1566 
1567 	spin_lock_irqsave(&object->lock, flags);
1568 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1569 		print_unreferenced(seq, object);
1570 	spin_unlock_irqrestore(&object->lock, flags);
1571 	return 0;
1572 }
1573 
1574 static const struct seq_operations kmemleak_seq_ops = {
1575 	.start = kmemleak_seq_start,
1576 	.next  = kmemleak_seq_next,
1577 	.stop  = kmemleak_seq_stop,
1578 	.show  = kmemleak_seq_show,
1579 };
1580 
1581 static int kmemleak_open(struct inode *inode, struct file *file)
1582 {
1583 	return seq_open(file, &kmemleak_seq_ops);
1584 }
1585 
1586 static int dump_str_object_info(const char *str)
1587 {
1588 	unsigned long flags;
1589 	struct kmemleak_object *object;
1590 	unsigned long addr;
1591 
1592 	if (kstrtoul(str, 0, &addr))
1593 		return -EINVAL;
1594 	object = find_and_get_object(addr, 0);
1595 	if (!object) {
1596 		pr_info("Unknown object at 0x%08lx\n", addr);
1597 		return -EINVAL;
1598 	}
1599 
1600 	spin_lock_irqsave(&object->lock, flags);
1601 	dump_object_info(object);
1602 	spin_unlock_irqrestore(&object->lock, flags);
1603 
1604 	put_object(object);
1605 	return 0;
1606 }
1607 
1608 /*
1609  * We use grey instead of black to ensure we can do future scans on the same
1610  * objects. If we did not do future scans these black objects could
1611  * potentially contain references to newly allocated objects in the future and
1612  * we'd end up with false positives.
1613  */
1614 static void kmemleak_clear(void)
1615 {
1616 	struct kmemleak_object *object;
1617 	unsigned long flags;
1618 
1619 	rcu_read_lock();
1620 	list_for_each_entry_rcu(object, &object_list, object_list) {
1621 		spin_lock_irqsave(&object->lock, flags);
1622 		if ((object->flags & OBJECT_REPORTED) &&
1623 		    unreferenced_object(object))
1624 			__paint_it(object, KMEMLEAK_GREY);
1625 		spin_unlock_irqrestore(&object->lock, flags);
1626 	}
1627 	rcu_read_unlock();
1628 
1629 	kmemleak_found_leaks = false;
1630 }
1631 
1632 static void __kmemleak_do_cleanup(void);
1633 
1634 /*
1635  * File write operation to configure kmemleak at run-time. The following
1636  * commands can be written to the /sys/kernel/debug/kmemleak file:
1637  *   off	- disable kmemleak (irreversible)
1638  *   stack=on	- enable the task stacks scanning
1639  *   stack=off	- disable the tasks stacks scanning
1640  *   scan=on	- start the automatic memory scanning thread
1641  *   scan=off	- stop the automatic memory scanning thread
1642  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1643  *		  disable it)
1644  *   scan	- trigger a memory scan
1645  *   clear	- mark all current reported unreferenced kmemleak objects as
1646  *		  grey to ignore printing them, or free all kmemleak objects
1647  *		  if kmemleak has been disabled.
1648  *   dump=...	- dump information about the object found at the given address
1649  */
1650 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1651 			      size_t size, loff_t *ppos)
1652 {
1653 	char buf[64];
1654 	int buf_size;
1655 	int ret;
1656 
1657 	buf_size = min(size, (sizeof(buf) - 1));
1658 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1659 		return -EFAULT;
1660 	buf[buf_size] = 0;
1661 
1662 	ret = mutex_lock_interruptible(&scan_mutex);
1663 	if (ret < 0)
1664 		return ret;
1665 
1666 	if (strncmp(buf, "clear", 5) == 0) {
1667 		if (kmemleak_enabled)
1668 			kmemleak_clear();
1669 		else
1670 			__kmemleak_do_cleanup();
1671 		goto out;
1672 	}
1673 
1674 	if (!kmemleak_enabled) {
1675 		ret = -EBUSY;
1676 		goto out;
1677 	}
1678 
1679 	if (strncmp(buf, "off", 3) == 0)
1680 		kmemleak_disable();
1681 	else if (strncmp(buf, "stack=on", 8) == 0)
1682 		kmemleak_stack_scan = 1;
1683 	else if (strncmp(buf, "stack=off", 9) == 0)
1684 		kmemleak_stack_scan = 0;
1685 	else if (strncmp(buf, "scan=on", 7) == 0)
1686 		start_scan_thread();
1687 	else if (strncmp(buf, "scan=off", 8) == 0)
1688 		stop_scan_thread();
1689 	else if (strncmp(buf, "scan=", 5) == 0) {
1690 		unsigned long secs;
1691 
1692 		ret = kstrtoul(buf + 5, 0, &secs);
1693 		if (ret < 0)
1694 			goto out;
1695 		stop_scan_thread();
1696 		if (secs) {
1697 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1698 			start_scan_thread();
1699 		}
1700 	} else if (strncmp(buf, "scan", 4) == 0)
1701 		kmemleak_scan();
1702 	else if (strncmp(buf, "dump=", 5) == 0)
1703 		ret = dump_str_object_info(buf + 5);
1704 	else
1705 		ret = -EINVAL;
1706 
1707 out:
1708 	mutex_unlock(&scan_mutex);
1709 	if (ret < 0)
1710 		return ret;
1711 
1712 	/* ignore the rest of the buffer, only one command at a time */
1713 	*ppos += size;
1714 	return size;
1715 }
1716 
1717 static const struct file_operations kmemleak_fops = {
1718 	.owner		= THIS_MODULE,
1719 	.open		= kmemleak_open,
1720 	.read		= seq_read,
1721 	.write		= kmemleak_write,
1722 	.llseek		= seq_lseek,
1723 	.release	= seq_release,
1724 };
1725 
1726 static void __kmemleak_do_cleanup(void)
1727 {
1728 	struct kmemleak_object *object;
1729 
1730 	rcu_read_lock();
1731 	list_for_each_entry_rcu(object, &object_list, object_list)
1732 		delete_object_full(object->pointer);
1733 	rcu_read_unlock();
1734 }
1735 
1736 /*
1737  * Stop the memory scanning thread and free the kmemleak internal objects if
1738  * no previous scan thread (otherwise, kmemleak may still have some useful
1739  * information on memory leaks).
1740  */
1741 static void kmemleak_do_cleanup(struct work_struct *work)
1742 {
1743 	mutex_lock(&scan_mutex);
1744 	stop_scan_thread();
1745 
1746 	if (!kmemleak_found_leaks)
1747 		__kmemleak_do_cleanup();
1748 	else
1749 		pr_info("Kmemleak disabled without freeing internal data. "
1750 			"Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1751 	mutex_unlock(&scan_mutex);
1752 }
1753 
1754 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1755 
1756 /*
1757  * Disable kmemleak. No memory allocation/freeing will be traced once this
1758  * function is called. Disabling kmemleak is an irreversible operation.
1759  */
1760 static void kmemleak_disable(void)
1761 {
1762 	/* atomically check whether it was already invoked */
1763 	if (cmpxchg(&kmemleak_error, 0, 1))
1764 		return;
1765 
1766 	/* stop any memory operation tracing */
1767 	kmemleak_enabled = 0;
1768 
1769 	/* check whether it is too early for a kernel thread */
1770 	if (kmemleak_initialized)
1771 		schedule_work(&cleanup_work);
1772 
1773 	pr_info("Kernel memory leak detector disabled\n");
1774 }
1775 
1776 /*
1777  * Allow boot-time kmemleak disabling (enabled by default).
1778  */
1779 static int kmemleak_boot_config(char *str)
1780 {
1781 	if (!str)
1782 		return -EINVAL;
1783 	if (strcmp(str, "off") == 0)
1784 		kmemleak_disable();
1785 	else if (strcmp(str, "on") == 0)
1786 		kmemleak_skip_disable = 1;
1787 	else
1788 		return -EINVAL;
1789 	return 0;
1790 }
1791 early_param("kmemleak", kmemleak_boot_config);
1792 
1793 static void __init print_log_trace(struct early_log *log)
1794 {
1795 	struct stack_trace trace;
1796 
1797 	trace.nr_entries = log->trace_len;
1798 	trace.entries = log->trace;
1799 
1800 	pr_notice("Early log backtrace:\n");
1801 	print_stack_trace(&trace, 2);
1802 }
1803 
1804 /*
1805  * Kmemleak initialization.
1806  */
1807 void __init kmemleak_init(void)
1808 {
1809 	int i;
1810 	unsigned long flags;
1811 
1812 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1813 	if (!kmemleak_skip_disable) {
1814 		kmemleak_early_log = 0;
1815 		kmemleak_disable();
1816 		return;
1817 	}
1818 #endif
1819 
1820 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1821 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1822 
1823 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1824 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1825 
1826 	if (crt_early_log >= ARRAY_SIZE(early_log))
1827 		pr_warning("Early log buffer exceeded (%d), please increase "
1828 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1829 
1830 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1831 	local_irq_save(flags);
1832 	kmemleak_early_log = 0;
1833 	if (kmemleak_error) {
1834 		local_irq_restore(flags);
1835 		return;
1836 	} else
1837 		kmemleak_enabled = 1;
1838 	local_irq_restore(flags);
1839 
1840 	/*
1841 	 * This is the point where tracking allocations is safe. Automatic
1842 	 * scanning is started during the late initcall. Add the early logged
1843 	 * callbacks to the kmemleak infrastructure.
1844 	 */
1845 	for (i = 0; i < crt_early_log; i++) {
1846 		struct early_log *log = &early_log[i];
1847 
1848 		switch (log->op_type) {
1849 		case KMEMLEAK_ALLOC:
1850 			early_alloc(log);
1851 			break;
1852 		case KMEMLEAK_ALLOC_PERCPU:
1853 			early_alloc_percpu(log);
1854 			break;
1855 		case KMEMLEAK_FREE:
1856 			kmemleak_free(log->ptr);
1857 			break;
1858 		case KMEMLEAK_FREE_PART:
1859 			kmemleak_free_part(log->ptr, log->size);
1860 			break;
1861 		case KMEMLEAK_FREE_PERCPU:
1862 			kmemleak_free_percpu(log->ptr);
1863 			break;
1864 		case KMEMLEAK_NOT_LEAK:
1865 			kmemleak_not_leak(log->ptr);
1866 			break;
1867 		case KMEMLEAK_IGNORE:
1868 			kmemleak_ignore(log->ptr);
1869 			break;
1870 		case KMEMLEAK_SCAN_AREA:
1871 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1872 			break;
1873 		case KMEMLEAK_NO_SCAN:
1874 			kmemleak_no_scan(log->ptr);
1875 			break;
1876 		default:
1877 			kmemleak_warn("Unknown early log operation: %d\n",
1878 				      log->op_type);
1879 		}
1880 
1881 		if (kmemleak_warning) {
1882 			print_log_trace(log);
1883 			kmemleak_warning = 0;
1884 		}
1885 	}
1886 }
1887 
1888 /*
1889  * Late initialization function.
1890  */
1891 static int __init kmemleak_late_init(void)
1892 {
1893 	struct dentry *dentry;
1894 
1895 	kmemleak_initialized = 1;
1896 
1897 	if (kmemleak_error) {
1898 		/*
1899 		 * Some error occurred and kmemleak was disabled. There is a
1900 		 * small chance that kmemleak_disable() was called immediately
1901 		 * after setting kmemleak_initialized and we may end up with
1902 		 * two clean-up threads but serialized by scan_mutex.
1903 		 */
1904 		schedule_work(&cleanup_work);
1905 		return -ENOMEM;
1906 	}
1907 
1908 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1909 				     &kmemleak_fops);
1910 	if (!dentry)
1911 		pr_warning("Failed to create the debugfs kmemleak file\n");
1912 	mutex_lock(&scan_mutex);
1913 	start_scan_thread();
1914 	mutex_unlock(&scan_mutex);
1915 
1916 	pr_info("Kernel memory leak detector initialized\n");
1917 
1918 	return 0;
1919 }
1920 late_initcall(kmemleak_late_init);
1921