xref: /openbmc/linux/mm/khugepaged.c (revision 66137fb34a4b5e519d4e4679ae5aca9989688a94)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 
27 enum scan_result {
28 	SCAN_FAIL,
29 	SCAN_SUCCEED,
30 	SCAN_PMD_NULL,
31 	SCAN_EXCEED_NONE_PTE,
32 	SCAN_EXCEED_SWAP_PTE,
33 	SCAN_EXCEED_SHARED_PTE,
34 	SCAN_PTE_NON_PRESENT,
35 	SCAN_PTE_UFFD_WP,
36 	SCAN_PAGE_RO,
37 	SCAN_LACK_REFERENCED_PAGE,
38 	SCAN_PAGE_NULL,
39 	SCAN_SCAN_ABORT,
40 	SCAN_PAGE_COUNT,
41 	SCAN_PAGE_LRU,
42 	SCAN_PAGE_LOCK,
43 	SCAN_PAGE_ANON,
44 	SCAN_PAGE_COMPOUND,
45 	SCAN_ANY_PROCESS,
46 	SCAN_VMA_NULL,
47 	SCAN_VMA_CHECK,
48 	SCAN_ADDRESS_RANGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61 
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83 
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85 
86 #define MAX_PTE_MAPPED_THP 8
87 
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97 	struct hlist_node hash;
98 	struct list_head mm_node;
99 	struct mm_struct *mm;
100 
101 	/* pte-mapped THP in this mm */
102 	int nr_pte_mapped_thp;
103 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR_RW(scan_sleep_millisecs);
151 
152 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
153 					  struct kobj_attribute *attr,
154 					  char *buf)
155 {
156 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
157 }
158 
159 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
160 					   struct kobj_attribute *attr,
161 					   const char *buf, size_t count)
162 {
163 	unsigned int msecs;
164 	int err;
165 
166 	err = kstrtouint(buf, 10, &msecs);
167 	if (err)
168 		return -EINVAL;
169 
170 	khugepaged_alloc_sleep_millisecs = msecs;
171 	khugepaged_sleep_expire = 0;
172 	wake_up_interruptible(&khugepaged_wait);
173 
174 	return count;
175 }
176 static struct kobj_attribute alloc_sleep_millisecs_attr =
177 	__ATTR_RW(alloc_sleep_millisecs);
178 
179 static ssize_t pages_to_scan_show(struct kobject *kobj,
180 				  struct kobj_attribute *attr,
181 				  char *buf)
182 {
183 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
184 }
185 static ssize_t pages_to_scan_store(struct kobject *kobj,
186 				   struct kobj_attribute *attr,
187 				   const char *buf, size_t count)
188 {
189 	unsigned int pages;
190 	int err;
191 
192 	err = kstrtouint(buf, 10, &pages);
193 	if (err || !pages)
194 		return -EINVAL;
195 
196 	khugepaged_pages_to_scan = pages;
197 
198 	return count;
199 }
200 static struct kobj_attribute pages_to_scan_attr =
201 	__ATTR_RW(pages_to_scan);
202 
203 static ssize_t pages_collapsed_show(struct kobject *kobj,
204 				    struct kobj_attribute *attr,
205 				    char *buf)
206 {
207 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
208 }
209 static struct kobj_attribute pages_collapsed_attr =
210 	__ATTR_RO(pages_collapsed);
211 
212 static ssize_t full_scans_show(struct kobject *kobj,
213 			       struct kobj_attribute *attr,
214 			       char *buf)
215 {
216 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
217 }
218 static struct kobj_attribute full_scans_attr =
219 	__ATTR_RO(full_scans);
220 
221 static ssize_t defrag_show(struct kobject *kobj,
222 			   struct kobj_attribute *attr, char *buf)
223 {
224 	return single_hugepage_flag_show(kobj, attr, buf,
225 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
226 }
227 static ssize_t defrag_store(struct kobject *kobj,
228 			    struct kobj_attribute *attr,
229 			    const char *buf, size_t count)
230 {
231 	return single_hugepage_flag_store(kobj, attr, buf, count,
232 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
233 }
234 static struct kobj_attribute khugepaged_defrag_attr =
235 	__ATTR_RW(defrag);
236 
237 /*
238  * max_ptes_none controls if khugepaged should collapse hugepages over
239  * any unmapped ptes in turn potentially increasing the memory
240  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
241  * reduce the available free memory in the system as it
242  * runs. Increasing max_ptes_none will instead potentially reduce the
243  * free memory in the system during the khugepaged scan.
244  */
245 static ssize_t max_ptes_none_show(struct kobject *kobj,
246 				  struct kobj_attribute *attr,
247 				  char *buf)
248 {
249 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
250 }
251 static ssize_t max_ptes_none_store(struct kobject *kobj,
252 				   struct kobj_attribute *attr,
253 				   const char *buf, size_t count)
254 {
255 	int err;
256 	unsigned long max_ptes_none;
257 
258 	err = kstrtoul(buf, 10, &max_ptes_none);
259 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
260 		return -EINVAL;
261 
262 	khugepaged_max_ptes_none = max_ptes_none;
263 
264 	return count;
265 }
266 static struct kobj_attribute khugepaged_max_ptes_none_attr =
267 	__ATTR_RW(max_ptes_none);
268 
269 static ssize_t max_ptes_swap_show(struct kobject *kobj,
270 				  struct kobj_attribute *attr,
271 				  char *buf)
272 {
273 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
274 }
275 
276 static ssize_t max_ptes_swap_store(struct kobject *kobj,
277 				   struct kobj_attribute *attr,
278 				   const char *buf, size_t count)
279 {
280 	int err;
281 	unsigned long max_ptes_swap;
282 
283 	err  = kstrtoul(buf, 10, &max_ptes_swap);
284 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
285 		return -EINVAL;
286 
287 	khugepaged_max_ptes_swap = max_ptes_swap;
288 
289 	return count;
290 }
291 
292 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
293 	__ATTR_RW(max_ptes_swap);
294 
295 static ssize_t max_ptes_shared_show(struct kobject *kobj,
296 				    struct kobj_attribute *attr,
297 				    char *buf)
298 {
299 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
300 }
301 
302 static ssize_t max_ptes_shared_store(struct kobject *kobj,
303 				     struct kobj_attribute *attr,
304 				     const char *buf, size_t count)
305 {
306 	int err;
307 	unsigned long max_ptes_shared;
308 
309 	err  = kstrtoul(buf, 10, &max_ptes_shared);
310 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
311 		return -EINVAL;
312 
313 	khugepaged_max_ptes_shared = max_ptes_shared;
314 
315 	return count;
316 }
317 
318 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
319 	__ATTR_RW(max_ptes_shared);
320 
321 static struct attribute *khugepaged_attr[] = {
322 	&khugepaged_defrag_attr.attr,
323 	&khugepaged_max_ptes_none_attr.attr,
324 	&khugepaged_max_ptes_swap_attr.attr,
325 	&khugepaged_max_ptes_shared_attr.attr,
326 	&pages_to_scan_attr.attr,
327 	&pages_collapsed_attr.attr,
328 	&full_scans_attr.attr,
329 	&scan_sleep_millisecs_attr.attr,
330 	&alloc_sleep_millisecs_attr.attr,
331 	NULL,
332 };
333 
334 struct attribute_group khugepaged_attr_group = {
335 	.attrs = khugepaged_attr,
336 	.name = "khugepaged",
337 };
338 #endif /* CONFIG_SYSFS */
339 
340 int hugepage_madvise(struct vm_area_struct *vma,
341 		     unsigned long *vm_flags, int advice)
342 {
343 	switch (advice) {
344 	case MADV_HUGEPAGE:
345 #ifdef CONFIG_S390
346 		/*
347 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
348 		 * can't handle this properly after s390_enable_sie, so we simply
349 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
350 		 */
351 		if (mm_has_pgste(vma->vm_mm))
352 			return 0;
353 #endif
354 		*vm_flags &= ~VM_NOHUGEPAGE;
355 		*vm_flags |= VM_HUGEPAGE;
356 		/*
357 		 * If the vma become good for khugepaged to scan,
358 		 * register it here without waiting a page fault that
359 		 * may not happen any time soon.
360 		 */
361 		khugepaged_enter_vma(vma, *vm_flags);
362 		break;
363 	case MADV_NOHUGEPAGE:
364 		*vm_flags &= ~VM_HUGEPAGE;
365 		*vm_flags |= VM_NOHUGEPAGE;
366 		/*
367 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
368 		 * this vma even if we leave the mm registered in khugepaged if
369 		 * it got registered before VM_NOHUGEPAGE was set.
370 		 */
371 		break;
372 	}
373 
374 	return 0;
375 }
376 
377 int __init khugepaged_init(void)
378 {
379 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
380 					  sizeof(struct mm_slot),
381 					  __alignof__(struct mm_slot), 0, NULL);
382 	if (!mm_slot_cache)
383 		return -ENOMEM;
384 
385 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
386 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
387 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
388 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
389 
390 	return 0;
391 }
392 
393 void __init khugepaged_destroy(void)
394 {
395 	kmem_cache_destroy(mm_slot_cache);
396 }
397 
398 static inline struct mm_slot *alloc_mm_slot(void)
399 {
400 	if (!mm_slot_cache)	/* initialization failed */
401 		return NULL;
402 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
403 }
404 
405 static inline void free_mm_slot(struct mm_slot *mm_slot)
406 {
407 	kmem_cache_free(mm_slot_cache, mm_slot);
408 }
409 
410 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
411 {
412 	struct mm_slot *mm_slot;
413 
414 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
415 		if (mm == mm_slot->mm)
416 			return mm_slot;
417 
418 	return NULL;
419 }
420 
421 static void insert_to_mm_slots_hash(struct mm_struct *mm,
422 				    struct mm_slot *mm_slot)
423 {
424 	mm_slot->mm = mm;
425 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
426 }
427 
428 static inline int khugepaged_test_exit(struct mm_struct *mm)
429 {
430 	return atomic_read(&mm->mm_users) == 0;
431 }
432 
433 bool hugepage_vma_check(struct vm_area_struct *vma,
434 			unsigned long vm_flags)
435 {
436 	if (!transhuge_vma_enabled(vma, vm_flags))
437 		return false;
438 
439 	if (vm_flags & VM_NO_KHUGEPAGED)
440 		return false;
441 
442 	/* Don't run khugepaged against DAX vma */
443 	if (vma_is_dax(vma))
444 		return false;
445 
446 	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
447 				vma->vm_pgoff, HPAGE_PMD_NR))
448 		return false;
449 
450 	/* Enabled via shmem mount options or sysfs settings. */
451 	if (shmem_file(vma->vm_file))
452 		return shmem_huge_enabled(vma);
453 
454 	if (!khugepaged_enabled())
455 		return false;
456 
457 	/* THP settings require madvise. */
458 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
459 		return false;
460 
461 	/* Only regular file is valid */
462 	if (file_thp_enabled(vma))
463 		return true;
464 
465 	if (!vma->anon_vma || !vma_is_anonymous(vma))
466 		return false;
467 	if (vma_is_temporary_stack(vma))
468 		return false;
469 
470 	return true;
471 }
472 
473 void __khugepaged_enter(struct mm_struct *mm)
474 {
475 	struct mm_slot *mm_slot;
476 	int wakeup;
477 
478 	mm_slot = alloc_mm_slot();
479 	if (!mm_slot)
480 		return;
481 
482 	/* __khugepaged_exit() must not run from under us */
483 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
484 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
485 		free_mm_slot(mm_slot);
486 		return;
487 	}
488 
489 	spin_lock(&khugepaged_mm_lock);
490 	insert_to_mm_slots_hash(mm, mm_slot);
491 	/*
492 	 * Insert just behind the scanning cursor, to let the area settle
493 	 * down a little.
494 	 */
495 	wakeup = list_empty(&khugepaged_scan.mm_head);
496 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
497 	spin_unlock(&khugepaged_mm_lock);
498 
499 	mmgrab(mm);
500 	if (wakeup)
501 		wake_up_interruptible(&khugepaged_wait);
502 }
503 
504 void khugepaged_enter_vma(struct vm_area_struct *vma,
505 			  unsigned long vm_flags)
506 {
507 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
508 	    khugepaged_enabled() &&
509 	    (((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
510 	     (vma->vm_end & HPAGE_PMD_MASK))) {
511 		if (hugepage_vma_check(vma, vm_flags))
512 			__khugepaged_enter(vma->vm_mm);
513 	}
514 }
515 
516 void __khugepaged_exit(struct mm_struct *mm)
517 {
518 	struct mm_slot *mm_slot;
519 	int free = 0;
520 
521 	spin_lock(&khugepaged_mm_lock);
522 	mm_slot = get_mm_slot(mm);
523 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
524 		hash_del(&mm_slot->hash);
525 		list_del(&mm_slot->mm_node);
526 		free = 1;
527 	}
528 	spin_unlock(&khugepaged_mm_lock);
529 
530 	if (free) {
531 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
532 		free_mm_slot(mm_slot);
533 		mmdrop(mm);
534 	} else if (mm_slot) {
535 		/*
536 		 * This is required to serialize against
537 		 * khugepaged_test_exit() (which is guaranteed to run
538 		 * under mmap sem read mode). Stop here (after we
539 		 * return all pagetables will be destroyed) until
540 		 * khugepaged has finished working on the pagetables
541 		 * under the mmap_lock.
542 		 */
543 		mmap_write_lock(mm);
544 		mmap_write_unlock(mm);
545 	}
546 }
547 
548 static void release_pte_page(struct page *page)
549 {
550 	mod_node_page_state(page_pgdat(page),
551 			NR_ISOLATED_ANON + page_is_file_lru(page),
552 			-compound_nr(page));
553 	unlock_page(page);
554 	putback_lru_page(page);
555 }
556 
557 static void release_pte_pages(pte_t *pte, pte_t *_pte,
558 		struct list_head *compound_pagelist)
559 {
560 	struct page *page, *tmp;
561 
562 	while (--_pte >= pte) {
563 		pte_t pteval = *_pte;
564 
565 		page = pte_page(pteval);
566 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
567 				!PageCompound(page))
568 			release_pte_page(page);
569 	}
570 
571 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
572 		list_del(&page->lru);
573 		release_pte_page(page);
574 	}
575 }
576 
577 static bool is_refcount_suitable(struct page *page)
578 {
579 	int expected_refcount;
580 
581 	expected_refcount = total_mapcount(page);
582 	if (PageSwapCache(page))
583 		expected_refcount += compound_nr(page);
584 
585 	return page_count(page) == expected_refcount;
586 }
587 
588 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
589 					unsigned long address,
590 					pte_t *pte,
591 					struct list_head *compound_pagelist)
592 {
593 	struct page *page = NULL;
594 	pte_t *_pte;
595 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
596 	bool writable = false;
597 
598 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
599 	     _pte++, address += PAGE_SIZE) {
600 		pte_t pteval = *_pte;
601 		if (pte_none(pteval) || (pte_present(pteval) &&
602 				is_zero_pfn(pte_pfn(pteval)))) {
603 			if (!userfaultfd_armed(vma) &&
604 			    ++none_or_zero <= khugepaged_max_ptes_none) {
605 				continue;
606 			} else {
607 				result = SCAN_EXCEED_NONE_PTE;
608 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
609 				goto out;
610 			}
611 		}
612 		if (!pte_present(pteval)) {
613 			result = SCAN_PTE_NON_PRESENT;
614 			goto out;
615 		}
616 		page = vm_normal_page(vma, address, pteval);
617 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
618 			result = SCAN_PAGE_NULL;
619 			goto out;
620 		}
621 
622 		VM_BUG_ON_PAGE(!PageAnon(page), page);
623 
624 		if (page_mapcount(page) > 1 &&
625 				++shared > khugepaged_max_ptes_shared) {
626 			result = SCAN_EXCEED_SHARED_PTE;
627 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
628 			goto out;
629 		}
630 
631 		if (PageCompound(page)) {
632 			struct page *p;
633 			page = compound_head(page);
634 
635 			/*
636 			 * Check if we have dealt with the compound page
637 			 * already
638 			 */
639 			list_for_each_entry(p, compound_pagelist, lru) {
640 				if (page == p)
641 					goto next;
642 			}
643 		}
644 
645 		/*
646 		 * We can do it before isolate_lru_page because the
647 		 * page can't be freed from under us. NOTE: PG_lock
648 		 * is needed to serialize against split_huge_page
649 		 * when invoked from the VM.
650 		 */
651 		if (!trylock_page(page)) {
652 			result = SCAN_PAGE_LOCK;
653 			goto out;
654 		}
655 
656 		/*
657 		 * Check if the page has any GUP (or other external) pins.
658 		 *
659 		 * The page table that maps the page has been already unlinked
660 		 * from the page table tree and this process cannot get
661 		 * an additional pin on the page.
662 		 *
663 		 * New pins can come later if the page is shared across fork,
664 		 * but not from this process. The other process cannot write to
665 		 * the page, only trigger CoW.
666 		 */
667 		if (!is_refcount_suitable(page)) {
668 			unlock_page(page);
669 			result = SCAN_PAGE_COUNT;
670 			goto out;
671 		}
672 
673 		/*
674 		 * Isolate the page to avoid collapsing an hugepage
675 		 * currently in use by the VM.
676 		 */
677 		if (isolate_lru_page(page)) {
678 			unlock_page(page);
679 			result = SCAN_DEL_PAGE_LRU;
680 			goto out;
681 		}
682 		mod_node_page_state(page_pgdat(page),
683 				NR_ISOLATED_ANON + page_is_file_lru(page),
684 				compound_nr(page));
685 		VM_BUG_ON_PAGE(!PageLocked(page), page);
686 		VM_BUG_ON_PAGE(PageLRU(page), page);
687 
688 		if (PageCompound(page))
689 			list_add_tail(&page->lru, compound_pagelist);
690 next:
691 		/* There should be enough young pte to collapse the page */
692 		if (pte_young(pteval) ||
693 		    page_is_young(page) || PageReferenced(page) ||
694 		    mmu_notifier_test_young(vma->vm_mm, address))
695 			referenced++;
696 
697 		if (pte_write(pteval))
698 			writable = true;
699 	}
700 
701 	if (unlikely(!writable)) {
702 		result = SCAN_PAGE_RO;
703 	} else if (unlikely(!referenced)) {
704 		result = SCAN_LACK_REFERENCED_PAGE;
705 	} else {
706 		result = SCAN_SUCCEED;
707 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
708 						    referenced, writable, result);
709 		return 1;
710 	}
711 out:
712 	release_pte_pages(pte, _pte, compound_pagelist);
713 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
714 					    referenced, writable, result);
715 	return 0;
716 }
717 
718 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
719 				      struct vm_area_struct *vma,
720 				      unsigned long address,
721 				      spinlock_t *ptl,
722 				      struct list_head *compound_pagelist)
723 {
724 	struct page *src_page, *tmp;
725 	pte_t *_pte;
726 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
727 				_pte++, page++, address += PAGE_SIZE) {
728 		pte_t pteval = *_pte;
729 
730 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
731 			clear_user_highpage(page, address);
732 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
733 			if (is_zero_pfn(pte_pfn(pteval))) {
734 				/*
735 				 * ptl mostly unnecessary.
736 				 */
737 				spin_lock(ptl);
738 				ptep_clear(vma->vm_mm, address, _pte);
739 				spin_unlock(ptl);
740 			}
741 		} else {
742 			src_page = pte_page(pteval);
743 			copy_user_highpage(page, src_page, address, vma);
744 			if (!PageCompound(src_page))
745 				release_pte_page(src_page);
746 			/*
747 			 * ptl mostly unnecessary, but preempt has to
748 			 * be disabled to update the per-cpu stats
749 			 * inside page_remove_rmap().
750 			 */
751 			spin_lock(ptl);
752 			ptep_clear(vma->vm_mm, address, _pte);
753 			page_remove_rmap(src_page, vma, false);
754 			spin_unlock(ptl);
755 			free_page_and_swap_cache(src_page);
756 		}
757 	}
758 
759 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
760 		list_del(&src_page->lru);
761 		mod_node_page_state(page_pgdat(src_page),
762 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
763 				    -compound_nr(src_page));
764 		unlock_page(src_page);
765 		free_swap_cache(src_page);
766 		putback_lru_page(src_page);
767 	}
768 }
769 
770 static void khugepaged_alloc_sleep(void)
771 {
772 	DEFINE_WAIT(wait);
773 
774 	add_wait_queue(&khugepaged_wait, &wait);
775 	freezable_schedule_timeout_interruptible(
776 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
777 	remove_wait_queue(&khugepaged_wait, &wait);
778 }
779 
780 static int khugepaged_node_load[MAX_NUMNODES];
781 
782 static bool khugepaged_scan_abort(int nid)
783 {
784 	int i;
785 
786 	/*
787 	 * If node_reclaim_mode is disabled, then no extra effort is made to
788 	 * allocate memory locally.
789 	 */
790 	if (!node_reclaim_enabled())
791 		return false;
792 
793 	/* If there is a count for this node already, it must be acceptable */
794 	if (khugepaged_node_load[nid])
795 		return false;
796 
797 	for (i = 0; i < MAX_NUMNODES; i++) {
798 		if (!khugepaged_node_load[i])
799 			continue;
800 		if (node_distance(nid, i) > node_reclaim_distance)
801 			return true;
802 	}
803 	return false;
804 }
805 
806 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
807 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
808 {
809 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
810 }
811 
812 #ifdef CONFIG_NUMA
813 static int khugepaged_find_target_node(void)
814 {
815 	static int last_khugepaged_target_node = NUMA_NO_NODE;
816 	int nid, target_node = 0, max_value = 0;
817 
818 	/* find first node with max normal pages hit */
819 	for (nid = 0; nid < MAX_NUMNODES; nid++)
820 		if (khugepaged_node_load[nid] > max_value) {
821 			max_value = khugepaged_node_load[nid];
822 			target_node = nid;
823 		}
824 
825 	/* do some balance if several nodes have the same hit record */
826 	if (target_node <= last_khugepaged_target_node)
827 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
828 				nid++)
829 			if (max_value == khugepaged_node_load[nid]) {
830 				target_node = nid;
831 				break;
832 			}
833 
834 	last_khugepaged_target_node = target_node;
835 	return target_node;
836 }
837 
838 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
839 {
840 	if (IS_ERR(*hpage)) {
841 		if (!*wait)
842 			return false;
843 
844 		*wait = false;
845 		*hpage = NULL;
846 		khugepaged_alloc_sleep();
847 	} else if (*hpage) {
848 		put_page(*hpage);
849 		*hpage = NULL;
850 	}
851 
852 	return true;
853 }
854 
855 static struct page *
856 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
857 {
858 	VM_BUG_ON_PAGE(*hpage, *hpage);
859 
860 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
861 	if (unlikely(!*hpage)) {
862 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
863 		*hpage = ERR_PTR(-ENOMEM);
864 		return NULL;
865 	}
866 
867 	prep_transhuge_page(*hpage);
868 	count_vm_event(THP_COLLAPSE_ALLOC);
869 	return *hpage;
870 }
871 #else
872 static int khugepaged_find_target_node(void)
873 {
874 	return 0;
875 }
876 
877 static inline struct page *alloc_khugepaged_hugepage(void)
878 {
879 	struct page *page;
880 
881 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
882 			   HPAGE_PMD_ORDER);
883 	if (page)
884 		prep_transhuge_page(page);
885 	return page;
886 }
887 
888 static struct page *khugepaged_alloc_hugepage(bool *wait)
889 {
890 	struct page *hpage;
891 
892 	do {
893 		hpage = alloc_khugepaged_hugepage();
894 		if (!hpage) {
895 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
896 			if (!*wait)
897 				return NULL;
898 
899 			*wait = false;
900 			khugepaged_alloc_sleep();
901 		} else
902 			count_vm_event(THP_COLLAPSE_ALLOC);
903 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
904 
905 	return hpage;
906 }
907 
908 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
909 {
910 	/*
911 	 * If the hpage allocated earlier was briefly exposed in page cache
912 	 * before collapse_file() failed, it is possible that racing lookups
913 	 * have not yet completed, and would then be unpleasantly surprised by
914 	 * finding the hpage reused for the same mapping at a different offset.
915 	 * Just release the previous allocation if there is any danger of that.
916 	 */
917 	if (*hpage && page_count(*hpage) > 1) {
918 		put_page(*hpage);
919 		*hpage = NULL;
920 	}
921 
922 	if (!*hpage)
923 		*hpage = khugepaged_alloc_hugepage(wait);
924 
925 	if (unlikely(!*hpage))
926 		return false;
927 
928 	return true;
929 }
930 
931 static struct page *
932 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
933 {
934 	VM_BUG_ON(!*hpage);
935 
936 	return  *hpage;
937 }
938 #endif
939 
940 /*
941  * If mmap_lock temporarily dropped, revalidate vma
942  * before taking mmap_lock.
943  * Return 0 if succeeds, otherwise return none-zero
944  * value (scan code).
945  */
946 
947 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
948 		struct vm_area_struct **vmap)
949 {
950 	struct vm_area_struct *vma;
951 	unsigned long hstart, hend;
952 
953 	if (unlikely(khugepaged_test_exit(mm)))
954 		return SCAN_ANY_PROCESS;
955 
956 	*vmap = vma = find_vma(mm, address);
957 	if (!vma)
958 		return SCAN_VMA_NULL;
959 
960 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
961 	hend = vma->vm_end & HPAGE_PMD_MASK;
962 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
963 		return SCAN_ADDRESS_RANGE;
964 	if (!hugepage_vma_check(vma, vma->vm_flags))
965 		return SCAN_VMA_CHECK;
966 	/* Anon VMA expected */
967 	if (!vma->anon_vma || !vma_is_anonymous(vma))
968 		return SCAN_VMA_CHECK;
969 	return 0;
970 }
971 
972 /*
973  * Bring missing pages in from swap, to complete THP collapse.
974  * Only done if khugepaged_scan_pmd believes it is worthwhile.
975  *
976  * Called and returns without pte mapped or spinlocks held.
977  * Note that if false is returned, mmap_lock will be released.
978  */
979 
980 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
981 					struct vm_area_struct *vma,
982 					unsigned long haddr, pmd_t *pmd,
983 					int referenced)
984 {
985 	int swapped_in = 0;
986 	vm_fault_t ret = 0;
987 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
988 
989 	for (address = haddr; address < end; address += PAGE_SIZE) {
990 		struct vm_fault vmf = {
991 			.vma = vma,
992 			.address = address,
993 			.pgoff = linear_page_index(vma, haddr),
994 			.flags = FAULT_FLAG_ALLOW_RETRY,
995 			.pmd = pmd,
996 		};
997 
998 		vmf.pte = pte_offset_map(pmd, address);
999 		vmf.orig_pte = *vmf.pte;
1000 		if (!is_swap_pte(vmf.orig_pte)) {
1001 			pte_unmap(vmf.pte);
1002 			continue;
1003 		}
1004 		ret = do_swap_page(&vmf);
1005 
1006 		/*
1007 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1008 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1009 		 * we do not retry here and swap entry will remain in pagetable
1010 		 * resulting in later failure.
1011 		 */
1012 		if (ret & VM_FAULT_RETRY) {
1013 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1014 			return false;
1015 		}
1016 		if (ret & VM_FAULT_ERROR) {
1017 			mmap_read_unlock(mm);
1018 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1019 			return false;
1020 		}
1021 		swapped_in++;
1022 	}
1023 
1024 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1025 	if (swapped_in)
1026 		lru_add_drain();
1027 
1028 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1029 	return true;
1030 }
1031 
1032 static void collapse_huge_page(struct mm_struct *mm,
1033 				   unsigned long address,
1034 				   struct page **hpage,
1035 				   int node, int referenced, int unmapped)
1036 {
1037 	LIST_HEAD(compound_pagelist);
1038 	pmd_t *pmd, _pmd;
1039 	pte_t *pte;
1040 	pgtable_t pgtable;
1041 	struct page *new_page;
1042 	spinlock_t *pmd_ptl, *pte_ptl;
1043 	int isolated = 0, result = 0;
1044 	struct vm_area_struct *vma;
1045 	struct mmu_notifier_range range;
1046 	gfp_t gfp;
1047 
1048 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1049 
1050 	/* Only allocate from the target node */
1051 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1052 
1053 	/*
1054 	 * Before allocating the hugepage, release the mmap_lock read lock.
1055 	 * The allocation can take potentially a long time if it involves
1056 	 * sync compaction, and we do not need to hold the mmap_lock during
1057 	 * that. We will recheck the vma after taking it again in write mode.
1058 	 */
1059 	mmap_read_unlock(mm);
1060 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1061 	if (!new_page) {
1062 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1063 		goto out_nolock;
1064 	}
1065 
1066 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1067 		result = SCAN_CGROUP_CHARGE_FAIL;
1068 		goto out_nolock;
1069 	}
1070 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1071 
1072 	mmap_read_lock(mm);
1073 	result = hugepage_vma_revalidate(mm, address, &vma);
1074 	if (result) {
1075 		mmap_read_unlock(mm);
1076 		goto out_nolock;
1077 	}
1078 
1079 	pmd = mm_find_pmd(mm, address);
1080 	if (!pmd) {
1081 		result = SCAN_PMD_NULL;
1082 		mmap_read_unlock(mm);
1083 		goto out_nolock;
1084 	}
1085 
1086 	/*
1087 	 * __collapse_huge_page_swapin will return with mmap_lock released
1088 	 * when it fails. So we jump out_nolock directly in that case.
1089 	 * Continuing to collapse causes inconsistency.
1090 	 */
1091 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1092 						     pmd, referenced)) {
1093 		goto out_nolock;
1094 	}
1095 
1096 	mmap_read_unlock(mm);
1097 	/*
1098 	 * Prevent all access to pagetables with the exception of
1099 	 * gup_fast later handled by the ptep_clear_flush and the VM
1100 	 * handled by the anon_vma lock + PG_lock.
1101 	 */
1102 	mmap_write_lock(mm);
1103 	result = hugepage_vma_revalidate(mm, address, &vma);
1104 	if (result)
1105 		goto out_up_write;
1106 	/* check if the pmd is still valid */
1107 	if (mm_find_pmd(mm, address) != pmd)
1108 		goto out_up_write;
1109 
1110 	anon_vma_lock_write(vma->anon_vma);
1111 
1112 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1113 				address, address + HPAGE_PMD_SIZE);
1114 	mmu_notifier_invalidate_range_start(&range);
1115 
1116 	pte = pte_offset_map(pmd, address);
1117 	pte_ptl = pte_lockptr(mm, pmd);
1118 
1119 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1120 	/*
1121 	 * After this gup_fast can't run anymore. This also removes
1122 	 * any huge TLB entry from the CPU so we won't allow
1123 	 * huge and small TLB entries for the same virtual address
1124 	 * to avoid the risk of CPU bugs in that area.
1125 	 */
1126 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1127 	spin_unlock(pmd_ptl);
1128 	mmu_notifier_invalidate_range_end(&range);
1129 
1130 	spin_lock(pte_ptl);
1131 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1132 			&compound_pagelist);
1133 	spin_unlock(pte_ptl);
1134 
1135 	if (unlikely(!isolated)) {
1136 		pte_unmap(pte);
1137 		spin_lock(pmd_ptl);
1138 		BUG_ON(!pmd_none(*pmd));
1139 		/*
1140 		 * We can only use set_pmd_at when establishing
1141 		 * hugepmds and never for establishing regular pmds that
1142 		 * points to regular pagetables. Use pmd_populate for that
1143 		 */
1144 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1145 		spin_unlock(pmd_ptl);
1146 		anon_vma_unlock_write(vma->anon_vma);
1147 		result = SCAN_FAIL;
1148 		goto out_up_write;
1149 	}
1150 
1151 	/*
1152 	 * All pages are isolated and locked so anon_vma rmap
1153 	 * can't run anymore.
1154 	 */
1155 	anon_vma_unlock_write(vma->anon_vma);
1156 
1157 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1158 			&compound_pagelist);
1159 	pte_unmap(pte);
1160 	/*
1161 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1162 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1163 	 * avoid the copy_huge_page writes to become visible after
1164 	 * the set_pmd_at() write.
1165 	 */
1166 	__SetPageUptodate(new_page);
1167 	pgtable = pmd_pgtable(_pmd);
1168 
1169 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1170 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1171 
1172 	spin_lock(pmd_ptl);
1173 	BUG_ON(!pmd_none(*pmd));
1174 	page_add_new_anon_rmap(new_page, vma, address);
1175 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1176 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1177 	set_pmd_at(mm, address, pmd, _pmd);
1178 	update_mmu_cache_pmd(vma, address, pmd);
1179 	spin_unlock(pmd_ptl);
1180 
1181 	*hpage = NULL;
1182 
1183 	khugepaged_pages_collapsed++;
1184 	result = SCAN_SUCCEED;
1185 out_up_write:
1186 	mmap_write_unlock(mm);
1187 out_nolock:
1188 	if (!IS_ERR_OR_NULL(*hpage))
1189 		mem_cgroup_uncharge(page_folio(*hpage));
1190 	trace_mm_collapse_huge_page(mm, isolated, result);
1191 	return;
1192 }
1193 
1194 static int khugepaged_scan_pmd(struct mm_struct *mm,
1195 			       struct vm_area_struct *vma,
1196 			       unsigned long address,
1197 			       struct page **hpage)
1198 {
1199 	pmd_t *pmd;
1200 	pte_t *pte, *_pte;
1201 	int ret = 0, result = 0, referenced = 0;
1202 	int none_or_zero = 0, shared = 0;
1203 	struct page *page = NULL;
1204 	unsigned long _address;
1205 	spinlock_t *ptl;
1206 	int node = NUMA_NO_NODE, unmapped = 0;
1207 	bool writable = false;
1208 
1209 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1210 
1211 	pmd = mm_find_pmd(mm, address);
1212 	if (!pmd) {
1213 		result = SCAN_PMD_NULL;
1214 		goto out;
1215 	}
1216 
1217 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1218 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1219 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1220 	     _pte++, _address += PAGE_SIZE) {
1221 		pte_t pteval = *_pte;
1222 		if (is_swap_pte(pteval)) {
1223 			if (++unmapped <= khugepaged_max_ptes_swap) {
1224 				/*
1225 				 * Always be strict with uffd-wp
1226 				 * enabled swap entries.  Please see
1227 				 * comment below for pte_uffd_wp().
1228 				 */
1229 				if (pte_swp_uffd_wp(pteval)) {
1230 					result = SCAN_PTE_UFFD_WP;
1231 					goto out_unmap;
1232 				}
1233 				continue;
1234 			} else {
1235 				result = SCAN_EXCEED_SWAP_PTE;
1236 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1237 				goto out_unmap;
1238 			}
1239 		}
1240 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1241 			if (!userfaultfd_armed(vma) &&
1242 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1243 				continue;
1244 			} else {
1245 				result = SCAN_EXCEED_NONE_PTE;
1246 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1247 				goto out_unmap;
1248 			}
1249 		}
1250 		if (pte_uffd_wp(pteval)) {
1251 			/*
1252 			 * Don't collapse the page if any of the small
1253 			 * PTEs are armed with uffd write protection.
1254 			 * Here we can also mark the new huge pmd as
1255 			 * write protected if any of the small ones is
1256 			 * marked but that could bring unknown
1257 			 * userfault messages that falls outside of
1258 			 * the registered range.  So, just be simple.
1259 			 */
1260 			result = SCAN_PTE_UFFD_WP;
1261 			goto out_unmap;
1262 		}
1263 		if (pte_write(pteval))
1264 			writable = true;
1265 
1266 		page = vm_normal_page(vma, _address, pteval);
1267 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1268 			result = SCAN_PAGE_NULL;
1269 			goto out_unmap;
1270 		}
1271 
1272 		if (page_mapcount(page) > 1 &&
1273 				++shared > khugepaged_max_ptes_shared) {
1274 			result = SCAN_EXCEED_SHARED_PTE;
1275 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1276 			goto out_unmap;
1277 		}
1278 
1279 		page = compound_head(page);
1280 
1281 		/*
1282 		 * Record which node the original page is from and save this
1283 		 * information to khugepaged_node_load[].
1284 		 * Khugepaged will allocate hugepage from the node has the max
1285 		 * hit record.
1286 		 */
1287 		node = page_to_nid(page);
1288 		if (khugepaged_scan_abort(node)) {
1289 			result = SCAN_SCAN_ABORT;
1290 			goto out_unmap;
1291 		}
1292 		khugepaged_node_load[node]++;
1293 		if (!PageLRU(page)) {
1294 			result = SCAN_PAGE_LRU;
1295 			goto out_unmap;
1296 		}
1297 		if (PageLocked(page)) {
1298 			result = SCAN_PAGE_LOCK;
1299 			goto out_unmap;
1300 		}
1301 		if (!PageAnon(page)) {
1302 			result = SCAN_PAGE_ANON;
1303 			goto out_unmap;
1304 		}
1305 
1306 		/*
1307 		 * Check if the page has any GUP (or other external) pins.
1308 		 *
1309 		 * Here the check is racy it may see total_mapcount > refcount
1310 		 * in some cases.
1311 		 * For example, one process with one forked child process.
1312 		 * The parent has the PMD split due to MADV_DONTNEED, then
1313 		 * the child is trying unmap the whole PMD, but khugepaged
1314 		 * may be scanning the parent between the child has
1315 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1316 		 * khugepaged may see total_mapcount > refcount.
1317 		 *
1318 		 * But such case is ephemeral we could always retry collapse
1319 		 * later.  However it may report false positive if the page
1320 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1321 		 * will be done again later the risk seems low.
1322 		 */
1323 		if (!is_refcount_suitable(page)) {
1324 			result = SCAN_PAGE_COUNT;
1325 			goto out_unmap;
1326 		}
1327 		if (pte_young(pteval) ||
1328 		    page_is_young(page) || PageReferenced(page) ||
1329 		    mmu_notifier_test_young(vma->vm_mm, address))
1330 			referenced++;
1331 	}
1332 	if (!writable) {
1333 		result = SCAN_PAGE_RO;
1334 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1335 		result = SCAN_LACK_REFERENCED_PAGE;
1336 	} else {
1337 		result = SCAN_SUCCEED;
1338 		ret = 1;
1339 	}
1340 out_unmap:
1341 	pte_unmap_unlock(pte, ptl);
1342 	if (ret) {
1343 		node = khugepaged_find_target_node();
1344 		/* collapse_huge_page will return with the mmap_lock released */
1345 		collapse_huge_page(mm, address, hpage, node,
1346 				referenced, unmapped);
1347 	}
1348 out:
1349 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1350 				     none_or_zero, result, unmapped);
1351 	return ret;
1352 }
1353 
1354 static void collect_mm_slot(struct mm_slot *mm_slot)
1355 {
1356 	struct mm_struct *mm = mm_slot->mm;
1357 
1358 	lockdep_assert_held(&khugepaged_mm_lock);
1359 
1360 	if (khugepaged_test_exit(mm)) {
1361 		/* free mm_slot */
1362 		hash_del(&mm_slot->hash);
1363 		list_del(&mm_slot->mm_node);
1364 
1365 		/*
1366 		 * Not strictly needed because the mm exited already.
1367 		 *
1368 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1369 		 */
1370 
1371 		/* khugepaged_mm_lock actually not necessary for the below */
1372 		free_mm_slot(mm_slot);
1373 		mmdrop(mm);
1374 	}
1375 }
1376 
1377 #ifdef CONFIG_SHMEM
1378 /*
1379  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1380  * khugepaged should try to collapse the page table.
1381  */
1382 static void khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1383 					  unsigned long addr)
1384 {
1385 	struct mm_slot *mm_slot;
1386 
1387 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1388 
1389 	spin_lock(&khugepaged_mm_lock);
1390 	mm_slot = get_mm_slot(mm);
1391 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1392 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1393 	spin_unlock(&khugepaged_mm_lock);
1394 }
1395 
1396 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1397 				  unsigned long addr, pmd_t *pmdp)
1398 {
1399 	spinlock_t *ptl;
1400 	pmd_t pmd;
1401 
1402 	mmap_assert_write_locked(mm);
1403 	ptl = pmd_lock(vma->vm_mm, pmdp);
1404 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1405 	spin_unlock(ptl);
1406 	mm_dec_nr_ptes(mm);
1407 	page_table_check_pte_clear_range(mm, addr, pmd);
1408 	pte_free(mm, pmd_pgtable(pmd));
1409 }
1410 
1411 /**
1412  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1413  * address haddr.
1414  *
1415  * @mm: process address space where collapse happens
1416  * @addr: THP collapse address
1417  *
1418  * This function checks whether all the PTEs in the PMD are pointing to the
1419  * right THP. If so, retract the page table so the THP can refault in with
1420  * as pmd-mapped.
1421  */
1422 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1423 {
1424 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1425 	struct vm_area_struct *vma = find_vma(mm, haddr);
1426 	struct page *hpage;
1427 	pte_t *start_pte, *pte;
1428 	pmd_t *pmd;
1429 	spinlock_t *ptl;
1430 	int count = 0;
1431 	int i;
1432 
1433 	if (!vma || !vma->vm_file ||
1434 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1435 		return;
1436 
1437 	/*
1438 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1439 	 * collapsed by this mm. But we can still collapse if the page is
1440 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1441 	 * will not fail the vma for missing VM_HUGEPAGE
1442 	 */
1443 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1444 		return;
1445 
1446 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1447 	if (userfaultfd_wp(vma))
1448 		return;
1449 
1450 	hpage = find_lock_page(vma->vm_file->f_mapping,
1451 			       linear_page_index(vma, haddr));
1452 	if (!hpage)
1453 		return;
1454 
1455 	if (!PageHead(hpage))
1456 		goto drop_hpage;
1457 
1458 	pmd = mm_find_pmd(mm, haddr);
1459 	if (!pmd)
1460 		goto drop_hpage;
1461 
1462 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1463 
1464 	/* step 1: check all mapped PTEs are to the right huge page */
1465 	for (i = 0, addr = haddr, pte = start_pte;
1466 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1467 		struct page *page;
1468 
1469 		/* empty pte, skip */
1470 		if (pte_none(*pte))
1471 			continue;
1472 
1473 		/* page swapped out, abort */
1474 		if (!pte_present(*pte))
1475 			goto abort;
1476 
1477 		page = vm_normal_page(vma, addr, *pte);
1478 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1479 			page = NULL;
1480 		/*
1481 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1482 		 * page table, but the new page will not be a subpage of hpage.
1483 		 */
1484 		if (hpage + i != page)
1485 			goto abort;
1486 		count++;
1487 	}
1488 
1489 	/* step 2: adjust rmap */
1490 	for (i = 0, addr = haddr, pte = start_pte;
1491 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1492 		struct page *page;
1493 
1494 		if (pte_none(*pte))
1495 			continue;
1496 		page = vm_normal_page(vma, addr, *pte);
1497 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1498 			goto abort;
1499 		page_remove_rmap(page, vma, false);
1500 	}
1501 
1502 	pte_unmap_unlock(start_pte, ptl);
1503 
1504 	/* step 3: set proper refcount and mm_counters. */
1505 	if (count) {
1506 		page_ref_sub(hpage, count);
1507 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1508 	}
1509 
1510 	/* step 4: collapse pmd */
1511 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1512 drop_hpage:
1513 	unlock_page(hpage);
1514 	put_page(hpage);
1515 	return;
1516 
1517 abort:
1518 	pte_unmap_unlock(start_pte, ptl);
1519 	goto drop_hpage;
1520 }
1521 
1522 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1523 {
1524 	struct mm_struct *mm = mm_slot->mm;
1525 	int i;
1526 
1527 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1528 		return;
1529 
1530 	if (!mmap_write_trylock(mm))
1531 		return;
1532 
1533 	if (unlikely(khugepaged_test_exit(mm)))
1534 		goto out;
1535 
1536 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1537 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1538 
1539 out:
1540 	mm_slot->nr_pte_mapped_thp = 0;
1541 	mmap_write_unlock(mm);
1542 }
1543 
1544 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1545 {
1546 	struct vm_area_struct *vma;
1547 	struct mm_struct *mm;
1548 	unsigned long addr;
1549 	pmd_t *pmd;
1550 
1551 	i_mmap_lock_write(mapping);
1552 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1553 		/*
1554 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1555 		 * got written to. These VMAs are likely not worth investing
1556 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1557 		 * later.
1558 		 *
1559 		 * Note that vma->anon_vma check is racy: it can be set up after
1560 		 * the check but before we took mmap_lock by the fault path.
1561 		 * But page lock would prevent establishing any new ptes of the
1562 		 * page, so we are safe.
1563 		 *
1564 		 * An alternative would be drop the check, but check that page
1565 		 * table is clear before calling pmdp_collapse_flush() under
1566 		 * ptl. It has higher chance to recover THP for the VMA, but
1567 		 * has higher cost too.
1568 		 */
1569 		if (vma->anon_vma)
1570 			continue;
1571 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1572 		if (addr & ~HPAGE_PMD_MASK)
1573 			continue;
1574 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1575 			continue;
1576 		mm = vma->vm_mm;
1577 		pmd = mm_find_pmd(mm, addr);
1578 		if (!pmd)
1579 			continue;
1580 		/*
1581 		 * We need exclusive mmap_lock to retract page table.
1582 		 *
1583 		 * We use trylock due to lock inversion: we need to acquire
1584 		 * mmap_lock while holding page lock. Fault path does it in
1585 		 * reverse order. Trylock is a way to avoid deadlock.
1586 		 */
1587 		if (mmap_write_trylock(mm)) {
1588 			/*
1589 			 * When a vma is registered with uffd-wp, we can't
1590 			 * recycle the pmd pgtable because there can be pte
1591 			 * markers installed.  Skip it only, so the rest mm/vma
1592 			 * can still have the same file mapped hugely, however
1593 			 * it'll always mapped in small page size for uffd-wp
1594 			 * registered ranges.
1595 			 */
1596 			if (!khugepaged_test_exit(mm) && !userfaultfd_wp(vma))
1597 				collapse_and_free_pmd(mm, vma, addr, pmd);
1598 			mmap_write_unlock(mm);
1599 		} else {
1600 			/* Try again later */
1601 			khugepaged_add_pte_mapped_thp(mm, addr);
1602 		}
1603 	}
1604 	i_mmap_unlock_write(mapping);
1605 }
1606 
1607 /**
1608  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1609  *
1610  * @mm: process address space where collapse happens
1611  * @file: file that collapse on
1612  * @start: collapse start address
1613  * @hpage: new allocated huge page for collapse
1614  * @node: appointed node the new huge page allocate from
1615  *
1616  * Basic scheme is simple, details are more complex:
1617  *  - allocate and lock a new huge page;
1618  *  - scan page cache replacing old pages with the new one
1619  *    + swap/gup in pages if necessary;
1620  *    + fill in gaps;
1621  *    + keep old pages around in case rollback is required;
1622  *  - if replacing succeeds:
1623  *    + copy data over;
1624  *    + free old pages;
1625  *    + unlock huge page;
1626  *  - if replacing failed;
1627  *    + put all pages back and unfreeze them;
1628  *    + restore gaps in the page cache;
1629  *    + unlock and free huge page;
1630  */
1631 static void collapse_file(struct mm_struct *mm,
1632 		struct file *file, pgoff_t start,
1633 		struct page **hpage, int node)
1634 {
1635 	struct address_space *mapping = file->f_mapping;
1636 	gfp_t gfp;
1637 	struct page *new_page;
1638 	pgoff_t index, end = start + HPAGE_PMD_NR;
1639 	LIST_HEAD(pagelist);
1640 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1641 	int nr_none = 0, result = SCAN_SUCCEED;
1642 	bool is_shmem = shmem_file(file);
1643 	int nr;
1644 
1645 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1646 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1647 
1648 	/* Only allocate from the target node */
1649 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1650 
1651 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1652 	if (!new_page) {
1653 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1654 		goto out;
1655 	}
1656 
1657 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1658 		result = SCAN_CGROUP_CHARGE_FAIL;
1659 		goto out;
1660 	}
1661 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1662 
1663 	/*
1664 	 * Ensure we have slots for all the pages in the range.  This is
1665 	 * almost certainly a no-op because most of the pages must be present
1666 	 */
1667 	do {
1668 		xas_lock_irq(&xas);
1669 		xas_create_range(&xas);
1670 		if (!xas_error(&xas))
1671 			break;
1672 		xas_unlock_irq(&xas);
1673 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1674 			result = SCAN_FAIL;
1675 			goto out;
1676 		}
1677 	} while (1);
1678 
1679 	__SetPageLocked(new_page);
1680 	if (is_shmem)
1681 		__SetPageSwapBacked(new_page);
1682 	new_page->index = start;
1683 	new_page->mapping = mapping;
1684 
1685 	/*
1686 	 * At this point the new_page is locked and not up-to-date.
1687 	 * It's safe to insert it into the page cache, because nobody would
1688 	 * be able to map it or use it in another way until we unlock it.
1689 	 */
1690 
1691 	xas_set(&xas, start);
1692 	for (index = start; index < end; index++) {
1693 		struct page *page = xas_next(&xas);
1694 
1695 		VM_BUG_ON(index != xas.xa_index);
1696 		if (is_shmem) {
1697 			if (!page) {
1698 				/*
1699 				 * Stop if extent has been truncated or
1700 				 * hole-punched, and is now completely
1701 				 * empty.
1702 				 */
1703 				if (index == start) {
1704 					if (!xas_next_entry(&xas, end - 1)) {
1705 						result = SCAN_TRUNCATED;
1706 						goto xa_locked;
1707 					}
1708 					xas_set(&xas, index);
1709 				}
1710 				if (!shmem_charge(mapping->host, 1)) {
1711 					result = SCAN_FAIL;
1712 					goto xa_locked;
1713 				}
1714 				xas_store(&xas, new_page);
1715 				nr_none++;
1716 				continue;
1717 			}
1718 
1719 			if (xa_is_value(page) || !PageUptodate(page)) {
1720 				xas_unlock_irq(&xas);
1721 				/* swap in or instantiate fallocated page */
1722 				if (shmem_getpage(mapping->host, index, &page,
1723 						  SGP_NOALLOC)) {
1724 					result = SCAN_FAIL;
1725 					goto xa_unlocked;
1726 				}
1727 			} else if (trylock_page(page)) {
1728 				get_page(page);
1729 				xas_unlock_irq(&xas);
1730 			} else {
1731 				result = SCAN_PAGE_LOCK;
1732 				goto xa_locked;
1733 			}
1734 		} else {	/* !is_shmem */
1735 			if (!page || xa_is_value(page)) {
1736 				xas_unlock_irq(&xas);
1737 				page_cache_sync_readahead(mapping, &file->f_ra,
1738 							  file, index,
1739 							  end - index);
1740 				/* drain pagevecs to help isolate_lru_page() */
1741 				lru_add_drain();
1742 				page = find_lock_page(mapping, index);
1743 				if (unlikely(page == NULL)) {
1744 					result = SCAN_FAIL;
1745 					goto xa_unlocked;
1746 				}
1747 			} else if (PageDirty(page)) {
1748 				/*
1749 				 * khugepaged only works on read-only fd,
1750 				 * so this page is dirty because it hasn't
1751 				 * been flushed since first write. There
1752 				 * won't be new dirty pages.
1753 				 *
1754 				 * Trigger async flush here and hope the
1755 				 * writeback is done when khugepaged
1756 				 * revisits this page.
1757 				 *
1758 				 * This is a one-off situation. We are not
1759 				 * forcing writeback in loop.
1760 				 */
1761 				xas_unlock_irq(&xas);
1762 				filemap_flush(mapping);
1763 				result = SCAN_FAIL;
1764 				goto xa_unlocked;
1765 			} else if (PageWriteback(page)) {
1766 				xas_unlock_irq(&xas);
1767 				result = SCAN_FAIL;
1768 				goto xa_unlocked;
1769 			} else if (trylock_page(page)) {
1770 				get_page(page);
1771 				xas_unlock_irq(&xas);
1772 			} else {
1773 				result = SCAN_PAGE_LOCK;
1774 				goto xa_locked;
1775 			}
1776 		}
1777 
1778 		/*
1779 		 * The page must be locked, so we can drop the i_pages lock
1780 		 * without racing with truncate.
1781 		 */
1782 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1783 
1784 		/* make sure the page is up to date */
1785 		if (unlikely(!PageUptodate(page))) {
1786 			result = SCAN_FAIL;
1787 			goto out_unlock;
1788 		}
1789 
1790 		/*
1791 		 * If file was truncated then extended, or hole-punched, before
1792 		 * we locked the first page, then a THP might be there already.
1793 		 */
1794 		if (PageTransCompound(page)) {
1795 			result = SCAN_PAGE_COMPOUND;
1796 			goto out_unlock;
1797 		}
1798 
1799 		if (page_mapping(page) != mapping) {
1800 			result = SCAN_TRUNCATED;
1801 			goto out_unlock;
1802 		}
1803 
1804 		if (!is_shmem && (PageDirty(page) ||
1805 				  PageWriteback(page))) {
1806 			/*
1807 			 * khugepaged only works on read-only fd, so this
1808 			 * page is dirty because it hasn't been flushed
1809 			 * since first write.
1810 			 */
1811 			result = SCAN_FAIL;
1812 			goto out_unlock;
1813 		}
1814 
1815 		if (isolate_lru_page(page)) {
1816 			result = SCAN_DEL_PAGE_LRU;
1817 			goto out_unlock;
1818 		}
1819 
1820 		if (page_has_private(page) &&
1821 		    !try_to_release_page(page, GFP_KERNEL)) {
1822 			result = SCAN_PAGE_HAS_PRIVATE;
1823 			putback_lru_page(page);
1824 			goto out_unlock;
1825 		}
1826 
1827 		if (page_mapped(page))
1828 			try_to_unmap(page_folio(page),
1829 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1830 
1831 		xas_lock_irq(&xas);
1832 		xas_set(&xas, index);
1833 
1834 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1835 
1836 		/*
1837 		 * The page is expected to have page_count() == 3:
1838 		 *  - we hold a pin on it;
1839 		 *  - one reference from page cache;
1840 		 *  - one from isolate_lru_page;
1841 		 */
1842 		if (!page_ref_freeze(page, 3)) {
1843 			result = SCAN_PAGE_COUNT;
1844 			xas_unlock_irq(&xas);
1845 			putback_lru_page(page);
1846 			goto out_unlock;
1847 		}
1848 
1849 		/*
1850 		 * Add the page to the list to be able to undo the collapse if
1851 		 * something go wrong.
1852 		 */
1853 		list_add_tail(&page->lru, &pagelist);
1854 
1855 		/* Finally, replace with the new page. */
1856 		xas_store(&xas, new_page);
1857 		continue;
1858 out_unlock:
1859 		unlock_page(page);
1860 		put_page(page);
1861 		goto xa_unlocked;
1862 	}
1863 	nr = thp_nr_pages(new_page);
1864 
1865 	if (is_shmem)
1866 		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1867 	else {
1868 		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1869 		filemap_nr_thps_inc(mapping);
1870 		/*
1871 		 * Paired with smp_mb() in do_dentry_open() to ensure
1872 		 * i_writecount is up to date and the update to nr_thps is
1873 		 * visible. Ensures the page cache will be truncated if the
1874 		 * file is opened writable.
1875 		 */
1876 		smp_mb();
1877 		if (inode_is_open_for_write(mapping->host)) {
1878 			result = SCAN_FAIL;
1879 			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1880 			filemap_nr_thps_dec(mapping);
1881 			goto xa_locked;
1882 		}
1883 	}
1884 
1885 	if (nr_none) {
1886 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1887 		/* nr_none is always 0 for non-shmem. */
1888 		__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1889 	}
1890 
1891 	/* Join all the small entries into a single multi-index entry */
1892 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1893 	xas_store(&xas, new_page);
1894 xa_locked:
1895 	xas_unlock_irq(&xas);
1896 xa_unlocked:
1897 
1898 	/*
1899 	 * If collapse is successful, flush must be done now before copying.
1900 	 * If collapse is unsuccessful, does flush actually need to be done?
1901 	 * Do it anyway, to clear the state.
1902 	 */
1903 	try_to_unmap_flush();
1904 
1905 	if (result == SCAN_SUCCEED) {
1906 		struct page *page, *tmp;
1907 
1908 		/*
1909 		 * Replacing old pages with new one has succeeded, now we
1910 		 * need to copy the content and free the old pages.
1911 		 */
1912 		index = start;
1913 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1914 			while (index < page->index) {
1915 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1916 				index++;
1917 			}
1918 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1919 					page);
1920 			list_del(&page->lru);
1921 			page->mapping = NULL;
1922 			page_ref_unfreeze(page, 1);
1923 			ClearPageActive(page);
1924 			ClearPageUnevictable(page);
1925 			unlock_page(page);
1926 			put_page(page);
1927 			index++;
1928 		}
1929 		while (index < end) {
1930 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1931 			index++;
1932 		}
1933 
1934 		SetPageUptodate(new_page);
1935 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1936 		if (is_shmem)
1937 			set_page_dirty(new_page);
1938 		lru_cache_add(new_page);
1939 
1940 		/*
1941 		 * Remove pte page tables, so we can re-fault the page as huge.
1942 		 */
1943 		retract_page_tables(mapping, start);
1944 		*hpage = NULL;
1945 
1946 		khugepaged_pages_collapsed++;
1947 	} else {
1948 		struct page *page;
1949 
1950 		/* Something went wrong: roll back page cache changes */
1951 		xas_lock_irq(&xas);
1952 		if (nr_none) {
1953 			mapping->nrpages -= nr_none;
1954 			shmem_uncharge(mapping->host, nr_none);
1955 		}
1956 
1957 		xas_set(&xas, start);
1958 		xas_for_each(&xas, page, end - 1) {
1959 			page = list_first_entry_or_null(&pagelist,
1960 					struct page, lru);
1961 			if (!page || xas.xa_index < page->index) {
1962 				if (!nr_none)
1963 					break;
1964 				nr_none--;
1965 				/* Put holes back where they were */
1966 				xas_store(&xas, NULL);
1967 				continue;
1968 			}
1969 
1970 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1971 
1972 			/* Unfreeze the page. */
1973 			list_del(&page->lru);
1974 			page_ref_unfreeze(page, 2);
1975 			xas_store(&xas, page);
1976 			xas_pause(&xas);
1977 			xas_unlock_irq(&xas);
1978 			unlock_page(page);
1979 			putback_lru_page(page);
1980 			xas_lock_irq(&xas);
1981 		}
1982 		VM_BUG_ON(nr_none);
1983 		xas_unlock_irq(&xas);
1984 
1985 		new_page->mapping = NULL;
1986 	}
1987 
1988 	unlock_page(new_page);
1989 out:
1990 	VM_BUG_ON(!list_empty(&pagelist));
1991 	if (!IS_ERR_OR_NULL(*hpage))
1992 		mem_cgroup_uncharge(page_folio(*hpage));
1993 	/* TODO: tracepoints */
1994 }
1995 
1996 static void khugepaged_scan_file(struct mm_struct *mm,
1997 		struct file *file, pgoff_t start, struct page **hpage)
1998 {
1999 	struct page *page = NULL;
2000 	struct address_space *mapping = file->f_mapping;
2001 	XA_STATE(xas, &mapping->i_pages, start);
2002 	int present, swap;
2003 	int node = NUMA_NO_NODE;
2004 	int result = SCAN_SUCCEED;
2005 
2006 	present = 0;
2007 	swap = 0;
2008 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2009 	rcu_read_lock();
2010 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2011 		if (xas_retry(&xas, page))
2012 			continue;
2013 
2014 		if (xa_is_value(page)) {
2015 			if (++swap > khugepaged_max_ptes_swap) {
2016 				result = SCAN_EXCEED_SWAP_PTE;
2017 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2018 				break;
2019 			}
2020 			continue;
2021 		}
2022 
2023 		/*
2024 		 * XXX: khugepaged should compact smaller compound pages
2025 		 * into a PMD sized page
2026 		 */
2027 		if (PageTransCompound(page)) {
2028 			result = SCAN_PAGE_COMPOUND;
2029 			break;
2030 		}
2031 
2032 		node = page_to_nid(page);
2033 		if (khugepaged_scan_abort(node)) {
2034 			result = SCAN_SCAN_ABORT;
2035 			break;
2036 		}
2037 		khugepaged_node_load[node]++;
2038 
2039 		if (!PageLRU(page)) {
2040 			result = SCAN_PAGE_LRU;
2041 			break;
2042 		}
2043 
2044 		if (page_count(page) !=
2045 		    1 + page_mapcount(page) + page_has_private(page)) {
2046 			result = SCAN_PAGE_COUNT;
2047 			break;
2048 		}
2049 
2050 		/*
2051 		 * We probably should check if the page is referenced here, but
2052 		 * nobody would transfer pte_young() to PageReferenced() for us.
2053 		 * And rmap walk here is just too costly...
2054 		 */
2055 
2056 		present++;
2057 
2058 		if (need_resched()) {
2059 			xas_pause(&xas);
2060 			cond_resched_rcu();
2061 		}
2062 	}
2063 	rcu_read_unlock();
2064 
2065 	if (result == SCAN_SUCCEED) {
2066 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2067 			result = SCAN_EXCEED_NONE_PTE;
2068 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2069 		} else {
2070 			node = khugepaged_find_target_node();
2071 			collapse_file(mm, file, start, hpage, node);
2072 		}
2073 	}
2074 
2075 	/* TODO: tracepoints */
2076 }
2077 #else
2078 static void khugepaged_scan_file(struct mm_struct *mm,
2079 		struct file *file, pgoff_t start, struct page **hpage)
2080 {
2081 	BUILD_BUG();
2082 }
2083 
2084 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2085 {
2086 }
2087 #endif
2088 
2089 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2090 					    struct page **hpage)
2091 	__releases(&khugepaged_mm_lock)
2092 	__acquires(&khugepaged_mm_lock)
2093 {
2094 	struct mm_slot *mm_slot;
2095 	struct mm_struct *mm;
2096 	struct vm_area_struct *vma;
2097 	int progress = 0;
2098 
2099 	VM_BUG_ON(!pages);
2100 	lockdep_assert_held(&khugepaged_mm_lock);
2101 
2102 	if (khugepaged_scan.mm_slot)
2103 		mm_slot = khugepaged_scan.mm_slot;
2104 	else {
2105 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2106 				     struct mm_slot, mm_node);
2107 		khugepaged_scan.address = 0;
2108 		khugepaged_scan.mm_slot = mm_slot;
2109 	}
2110 	spin_unlock(&khugepaged_mm_lock);
2111 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2112 
2113 	mm = mm_slot->mm;
2114 	/*
2115 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2116 	 * the next mm on the list.
2117 	 */
2118 	vma = NULL;
2119 	if (unlikely(!mmap_read_trylock(mm)))
2120 		goto breakouterloop_mmap_lock;
2121 	if (likely(!khugepaged_test_exit(mm)))
2122 		vma = find_vma(mm, khugepaged_scan.address);
2123 
2124 	progress++;
2125 	for (; vma; vma = vma->vm_next) {
2126 		unsigned long hstart, hend;
2127 
2128 		cond_resched();
2129 		if (unlikely(khugepaged_test_exit(mm))) {
2130 			progress++;
2131 			break;
2132 		}
2133 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2134 skip:
2135 			progress++;
2136 			continue;
2137 		}
2138 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2139 		hend = vma->vm_end & HPAGE_PMD_MASK;
2140 		if (hstart >= hend)
2141 			goto skip;
2142 		if (khugepaged_scan.address > hend)
2143 			goto skip;
2144 		if (khugepaged_scan.address < hstart)
2145 			khugepaged_scan.address = hstart;
2146 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2147 
2148 		while (khugepaged_scan.address < hend) {
2149 			int ret;
2150 			cond_resched();
2151 			if (unlikely(khugepaged_test_exit(mm)))
2152 				goto breakouterloop;
2153 
2154 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2155 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2156 				  hend);
2157 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2158 				struct file *file = get_file(vma->vm_file);
2159 				pgoff_t pgoff = linear_page_index(vma,
2160 						khugepaged_scan.address);
2161 
2162 				mmap_read_unlock(mm);
2163 				ret = 1;
2164 				khugepaged_scan_file(mm, file, pgoff, hpage);
2165 				fput(file);
2166 			} else {
2167 				ret = khugepaged_scan_pmd(mm, vma,
2168 						khugepaged_scan.address,
2169 						hpage);
2170 			}
2171 			/* move to next address */
2172 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2173 			progress += HPAGE_PMD_NR;
2174 			if (ret)
2175 				/* we released mmap_lock so break loop */
2176 				goto breakouterloop_mmap_lock;
2177 			if (progress >= pages)
2178 				goto breakouterloop;
2179 		}
2180 	}
2181 breakouterloop:
2182 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2183 breakouterloop_mmap_lock:
2184 
2185 	spin_lock(&khugepaged_mm_lock);
2186 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2187 	/*
2188 	 * Release the current mm_slot if this mm is about to die, or
2189 	 * if we scanned all vmas of this mm.
2190 	 */
2191 	if (khugepaged_test_exit(mm) || !vma) {
2192 		/*
2193 		 * Make sure that if mm_users is reaching zero while
2194 		 * khugepaged runs here, khugepaged_exit will find
2195 		 * mm_slot not pointing to the exiting mm.
2196 		 */
2197 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2198 			khugepaged_scan.mm_slot = list_entry(
2199 				mm_slot->mm_node.next,
2200 				struct mm_slot, mm_node);
2201 			khugepaged_scan.address = 0;
2202 		} else {
2203 			khugepaged_scan.mm_slot = NULL;
2204 			khugepaged_full_scans++;
2205 		}
2206 
2207 		collect_mm_slot(mm_slot);
2208 	}
2209 
2210 	return progress;
2211 }
2212 
2213 static int khugepaged_has_work(void)
2214 {
2215 	return !list_empty(&khugepaged_scan.mm_head) &&
2216 		khugepaged_enabled();
2217 }
2218 
2219 static int khugepaged_wait_event(void)
2220 {
2221 	return !list_empty(&khugepaged_scan.mm_head) ||
2222 		kthread_should_stop();
2223 }
2224 
2225 static void khugepaged_do_scan(void)
2226 {
2227 	struct page *hpage = NULL;
2228 	unsigned int progress = 0, pass_through_head = 0;
2229 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2230 	bool wait = true;
2231 
2232 	lru_add_drain_all();
2233 
2234 	while (progress < pages) {
2235 		if (!khugepaged_prealloc_page(&hpage, &wait))
2236 			break;
2237 
2238 		cond_resched();
2239 
2240 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2241 			break;
2242 
2243 		spin_lock(&khugepaged_mm_lock);
2244 		if (!khugepaged_scan.mm_slot)
2245 			pass_through_head++;
2246 		if (khugepaged_has_work() &&
2247 		    pass_through_head < 2)
2248 			progress += khugepaged_scan_mm_slot(pages - progress,
2249 							    &hpage);
2250 		else
2251 			progress = pages;
2252 		spin_unlock(&khugepaged_mm_lock);
2253 	}
2254 
2255 	if (!IS_ERR_OR_NULL(hpage))
2256 		put_page(hpage);
2257 }
2258 
2259 static bool khugepaged_should_wakeup(void)
2260 {
2261 	return kthread_should_stop() ||
2262 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2263 }
2264 
2265 static void khugepaged_wait_work(void)
2266 {
2267 	if (khugepaged_has_work()) {
2268 		const unsigned long scan_sleep_jiffies =
2269 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2270 
2271 		if (!scan_sleep_jiffies)
2272 			return;
2273 
2274 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2275 		wait_event_freezable_timeout(khugepaged_wait,
2276 					     khugepaged_should_wakeup(),
2277 					     scan_sleep_jiffies);
2278 		return;
2279 	}
2280 
2281 	if (khugepaged_enabled())
2282 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2283 }
2284 
2285 static int khugepaged(void *none)
2286 {
2287 	struct mm_slot *mm_slot;
2288 
2289 	set_freezable();
2290 	set_user_nice(current, MAX_NICE);
2291 
2292 	while (!kthread_should_stop()) {
2293 		khugepaged_do_scan();
2294 		khugepaged_wait_work();
2295 	}
2296 
2297 	spin_lock(&khugepaged_mm_lock);
2298 	mm_slot = khugepaged_scan.mm_slot;
2299 	khugepaged_scan.mm_slot = NULL;
2300 	if (mm_slot)
2301 		collect_mm_slot(mm_slot);
2302 	spin_unlock(&khugepaged_mm_lock);
2303 	return 0;
2304 }
2305 
2306 static void set_recommended_min_free_kbytes(void)
2307 {
2308 	struct zone *zone;
2309 	int nr_zones = 0;
2310 	unsigned long recommended_min;
2311 
2312 	if (!khugepaged_enabled()) {
2313 		calculate_min_free_kbytes();
2314 		goto update_wmarks;
2315 	}
2316 
2317 	for_each_populated_zone(zone) {
2318 		/*
2319 		 * We don't need to worry about fragmentation of
2320 		 * ZONE_MOVABLE since it only has movable pages.
2321 		 */
2322 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2323 			continue;
2324 
2325 		nr_zones++;
2326 	}
2327 
2328 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2329 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2330 
2331 	/*
2332 	 * Make sure that on average at least two pageblocks are almost free
2333 	 * of another type, one for a migratetype to fall back to and a
2334 	 * second to avoid subsequent fallbacks of other types There are 3
2335 	 * MIGRATE_TYPES we care about.
2336 	 */
2337 	recommended_min += pageblock_nr_pages * nr_zones *
2338 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2339 
2340 	/* don't ever allow to reserve more than 5% of the lowmem */
2341 	recommended_min = min(recommended_min,
2342 			      (unsigned long) nr_free_buffer_pages() / 20);
2343 	recommended_min <<= (PAGE_SHIFT-10);
2344 
2345 	if (recommended_min > min_free_kbytes) {
2346 		if (user_min_free_kbytes >= 0)
2347 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2348 				min_free_kbytes, recommended_min);
2349 
2350 		min_free_kbytes = recommended_min;
2351 	}
2352 
2353 update_wmarks:
2354 	setup_per_zone_wmarks();
2355 }
2356 
2357 int start_stop_khugepaged(void)
2358 {
2359 	int err = 0;
2360 
2361 	mutex_lock(&khugepaged_mutex);
2362 	if (khugepaged_enabled()) {
2363 		if (!khugepaged_thread)
2364 			khugepaged_thread = kthread_run(khugepaged, NULL,
2365 							"khugepaged");
2366 		if (IS_ERR(khugepaged_thread)) {
2367 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2368 			err = PTR_ERR(khugepaged_thread);
2369 			khugepaged_thread = NULL;
2370 			goto fail;
2371 		}
2372 
2373 		if (!list_empty(&khugepaged_scan.mm_head))
2374 			wake_up_interruptible(&khugepaged_wait);
2375 	} else if (khugepaged_thread) {
2376 		kthread_stop(khugepaged_thread);
2377 		khugepaged_thread = NULL;
2378 	}
2379 	set_recommended_min_free_kbytes();
2380 fail:
2381 	mutex_unlock(&khugepaged_mutex);
2382 	return err;
2383 }
2384 
2385 void khugepaged_min_free_kbytes_update(void)
2386 {
2387 	mutex_lock(&khugepaged_mutex);
2388 	if (khugepaged_enabled() && khugepaged_thread)
2389 		set_recommended_min_free_kbytes();
2390 	mutex_unlock(&khugepaged_mutex);
2391 }
2392