1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 SCAN_STORE_FAILED, 59 SCAN_COPY_MC, 60 SCAN_PAGE_FILLED, 61 }; 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/huge_memory.h> 65 66 static struct task_struct *khugepaged_thread __read_mostly; 67 static DEFINE_MUTEX(khugepaged_mutex); 68 69 /* default scan 8*512 pte (or vmas) every 30 second */ 70 static unsigned int khugepaged_pages_to_scan __read_mostly; 71 static unsigned int khugepaged_pages_collapsed; 72 static unsigned int khugepaged_full_scans; 73 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 74 /* during fragmentation poll the hugepage allocator once every minute */ 75 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 76 static unsigned long khugepaged_sleep_expire; 77 static DEFINE_SPINLOCK(khugepaged_mm_lock); 78 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 79 /* 80 * default collapse hugepages if there is at least one pte mapped like 81 * it would have happened if the vma was large enough during page 82 * fault. 83 * 84 * Note that these are only respected if collapse was initiated by khugepaged. 85 */ 86 static unsigned int khugepaged_max_ptes_none __read_mostly; 87 static unsigned int khugepaged_max_ptes_swap __read_mostly; 88 static unsigned int khugepaged_max_ptes_shared __read_mostly; 89 90 #define MM_SLOTS_HASH_BITS 10 91 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 92 93 static struct kmem_cache *mm_slot_cache __read_mostly; 94 95 #define MAX_PTE_MAPPED_THP 8 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 * @nr_pte_mapped_thp: number of pte mapped THP 111 * @pte_mapped_thp: address array corresponding pte mapped THP 112 */ 113 struct khugepaged_mm_slot { 114 struct mm_slot slot; 115 116 /* pte-mapped THP in this mm */ 117 int nr_pte_mapped_thp; 118 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 119 }; 120 121 /** 122 * struct khugepaged_scan - cursor for scanning 123 * @mm_head: the head of the mm list to scan 124 * @mm_slot: the current mm_slot we are scanning 125 * @address: the next address inside that to be scanned 126 * 127 * There is only the one khugepaged_scan instance of this cursor structure. 128 */ 129 struct khugepaged_scan { 130 struct list_head mm_head; 131 struct khugepaged_mm_slot *mm_slot; 132 unsigned long address; 133 }; 134 135 static struct khugepaged_scan khugepaged_scan = { 136 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 137 }; 138 139 #ifdef CONFIG_SYSFS 140 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 141 struct kobj_attribute *attr, 142 char *buf) 143 { 144 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 145 } 146 147 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 148 struct kobj_attribute *attr, 149 const char *buf, size_t count) 150 { 151 unsigned int msecs; 152 int err; 153 154 err = kstrtouint(buf, 10, &msecs); 155 if (err) 156 return -EINVAL; 157 158 khugepaged_scan_sleep_millisecs = msecs; 159 khugepaged_sleep_expire = 0; 160 wake_up_interruptible(&khugepaged_wait); 161 162 return count; 163 } 164 static struct kobj_attribute scan_sleep_millisecs_attr = 165 __ATTR_RW(scan_sleep_millisecs); 166 167 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 168 struct kobj_attribute *attr, 169 char *buf) 170 { 171 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 172 } 173 174 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 175 struct kobj_attribute *attr, 176 const char *buf, size_t count) 177 { 178 unsigned int msecs; 179 int err; 180 181 err = kstrtouint(buf, 10, &msecs); 182 if (err) 183 return -EINVAL; 184 185 khugepaged_alloc_sleep_millisecs = msecs; 186 khugepaged_sleep_expire = 0; 187 wake_up_interruptible(&khugepaged_wait); 188 189 return count; 190 } 191 static struct kobj_attribute alloc_sleep_millisecs_attr = 192 __ATTR_RW(alloc_sleep_millisecs); 193 194 static ssize_t pages_to_scan_show(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 char *buf) 197 { 198 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 199 } 200 static ssize_t pages_to_scan_store(struct kobject *kobj, 201 struct kobj_attribute *attr, 202 const char *buf, size_t count) 203 { 204 unsigned int pages; 205 int err; 206 207 err = kstrtouint(buf, 10, &pages); 208 if (err || !pages) 209 return -EINVAL; 210 211 khugepaged_pages_to_scan = pages; 212 213 return count; 214 } 215 static struct kobj_attribute pages_to_scan_attr = 216 __ATTR_RW(pages_to_scan); 217 218 static ssize_t pages_collapsed_show(struct kobject *kobj, 219 struct kobj_attribute *attr, 220 char *buf) 221 { 222 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 223 } 224 static struct kobj_attribute pages_collapsed_attr = 225 __ATTR_RO(pages_collapsed); 226 227 static ssize_t full_scans_show(struct kobject *kobj, 228 struct kobj_attribute *attr, 229 char *buf) 230 { 231 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 232 } 233 static struct kobj_attribute full_scans_attr = 234 __ATTR_RO(full_scans); 235 236 static ssize_t defrag_show(struct kobject *kobj, 237 struct kobj_attribute *attr, char *buf) 238 { 239 return single_hugepage_flag_show(kobj, attr, buf, 240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 241 } 242 static ssize_t defrag_store(struct kobject *kobj, 243 struct kobj_attribute *attr, 244 const char *buf, size_t count) 245 { 246 return single_hugepage_flag_store(kobj, attr, buf, count, 247 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 248 } 249 static struct kobj_attribute khugepaged_defrag_attr = 250 __ATTR_RW(defrag); 251 252 /* 253 * max_ptes_none controls if khugepaged should collapse hugepages over 254 * any unmapped ptes in turn potentially increasing the memory 255 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 256 * reduce the available free memory in the system as it 257 * runs. Increasing max_ptes_none will instead potentially reduce the 258 * free memory in the system during the khugepaged scan. 259 */ 260 static ssize_t max_ptes_none_show(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 char *buf) 263 { 264 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 265 } 266 static ssize_t max_ptes_none_store(struct kobject *kobj, 267 struct kobj_attribute *attr, 268 const char *buf, size_t count) 269 { 270 int err; 271 unsigned long max_ptes_none; 272 273 err = kstrtoul(buf, 10, &max_ptes_none); 274 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 275 return -EINVAL; 276 277 khugepaged_max_ptes_none = max_ptes_none; 278 279 return count; 280 } 281 static struct kobj_attribute khugepaged_max_ptes_none_attr = 282 __ATTR_RW(max_ptes_none); 283 284 static ssize_t max_ptes_swap_show(struct kobject *kobj, 285 struct kobj_attribute *attr, 286 char *buf) 287 { 288 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 289 } 290 291 static ssize_t max_ptes_swap_store(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 const char *buf, size_t count) 294 { 295 int err; 296 unsigned long max_ptes_swap; 297 298 err = kstrtoul(buf, 10, &max_ptes_swap); 299 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 300 return -EINVAL; 301 302 khugepaged_max_ptes_swap = max_ptes_swap; 303 304 return count; 305 } 306 307 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 308 __ATTR_RW(max_ptes_swap); 309 310 static ssize_t max_ptes_shared_show(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 char *buf) 313 { 314 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 315 } 316 317 static ssize_t max_ptes_shared_store(struct kobject *kobj, 318 struct kobj_attribute *attr, 319 const char *buf, size_t count) 320 { 321 int err; 322 unsigned long max_ptes_shared; 323 324 err = kstrtoul(buf, 10, &max_ptes_shared); 325 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 326 return -EINVAL; 327 328 khugepaged_max_ptes_shared = max_ptes_shared; 329 330 return count; 331 } 332 333 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 334 __ATTR_RW(max_ptes_shared); 335 336 static struct attribute *khugepaged_attr[] = { 337 &khugepaged_defrag_attr.attr, 338 &khugepaged_max_ptes_none_attr.attr, 339 &khugepaged_max_ptes_swap_attr.attr, 340 &khugepaged_max_ptes_shared_attr.attr, 341 &pages_to_scan_attr.attr, 342 &pages_collapsed_attr.attr, 343 &full_scans_attr.attr, 344 &scan_sleep_millisecs_attr.attr, 345 &alloc_sleep_millisecs_attr.attr, 346 NULL, 347 }; 348 349 struct attribute_group khugepaged_attr_group = { 350 .attrs = khugepaged_attr, 351 .name = "khugepaged", 352 }; 353 #endif /* CONFIG_SYSFS */ 354 355 int hugepage_madvise(struct vm_area_struct *vma, 356 unsigned long *vm_flags, int advice) 357 { 358 switch (advice) { 359 case MADV_HUGEPAGE: 360 #ifdef CONFIG_S390 361 /* 362 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 363 * can't handle this properly after s390_enable_sie, so we simply 364 * ignore the madvise to prevent qemu from causing a SIGSEGV. 365 */ 366 if (mm_has_pgste(vma->vm_mm)) 367 return 0; 368 #endif 369 *vm_flags &= ~VM_NOHUGEPAGE; 370 *vm_flags |= VM_HUGEPAGE; 371 /* 372 * If the vma become good for khugepaged to scan, 373 * register it here without waiting a page fault that 374 * may not happen any time soon. 375 */ 376 khugepaged_enter_vma(vma, *vm_flags); 377 break; 378 case MADV_NOHUGEPAGE: 379 *vm_flags &= ~VM_HUGEPAGE; 380 *vm_flags |= VM_NOHUGEPAGE; 381 /* 382 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 383 * this vma even if we leave the mm registered in khugepaged if 384 * it got registered before VM_NOHUGEPAGE was set. 385 */ 386 break; 387 } 388 389 return 0; 390 } 391 392 int __init khugepaged_init(void) 393 { 394 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 395 sizeof(struct khugepaged_mm_slot), 396 __alignof__(struct khugepaged_mm_slot), 397 0, NULL); 398 if (!mm_slot_cache) 399 return -ENOMEM; 400 401 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 402 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 403 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 404 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 405 406 return 0; 407 } 408 409 void __init khugepaged_destroy(void) 410 { 411 kmem_cache_destroy(mm_slot_cache); 412 } 413 414 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 415 { 416 return atomic_read(&mm->mm_users) == 0; 417 } 418 419 void __khugepaged_enter(struct mm_struct *mm) 420 { 421 struct khugepaged_mm_slot *mm_slot; 422 struct mm_slot *slot; 423 int wakeup; 424 425 /* __khugepaged_exit() must not run from under us */ 426 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 427 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 428 return; 429 430 mm_slot = mm_slot_alloc(mm_slot_cache); 431 if (!mm_slot) 432 return; 433 434 slot = &mm_slot->slot; 435 436 spin_lock(&khugepaged_mm_lock); 437 mm_slot_insert(mm_slots_hash, mm, slot); 438 /* 439 * Insert just behind the scanning cursor, to let the area settle 440 * down a little. 441 */ 442 wakeup = list_empty(&khugepaged_scan.mm_head); 443 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 444 spin_unlock(&khugepaged_mm_lock); 445 446 mmgrab(mm); 447 if (wakeup) 448 wake_up_interruptible(&khugepaged_wait); 449 } 450 451 void khugepaged_enter_vma(struct vm_area_struct *vma, 452 unsigned long vm_flags) 453 { 454 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 455 hugepage_flags_enabled()) { 456 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 457 __khugepaged_enter(vma->vm_mm); 458 } 459 } 460 461 void __khugepaged_exit(struct mm_struct *mm) 462 { 463 struct khugepaged_mm_slot *mm_slot; 464 struct mm_slot *slot; 465 int free = 0; 466 467 spin_lock(&khugepaged_mm_lock); 468 slot = mm_slot_lookup(mm_slots_hash, mm); 469 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 470 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 471 hash_del(&slot->hash); 472 list_del(&slot->mm_node); 473 free = 1; 474 } 475 spin_unlock(&khugepaged_mm_lock); 476 477 if (free) { 478 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 479 mm_slot_free(mm_slot_cache, mm_slot); 480 mmdrop(mm); 481 } else if (mm_slot) { 482 /* 483 * This is required to serialize against 484 * hpage_collapse_test_exit() (which is guaranteed to run 485 * under mmap sem read mode). Stop here (after we return all 486 * pagetables will be destroyed) until khugepaged has finished 487 * working on the pagetables under the mmap_lock. 488 */ 489 mmap_write_lock(mm); 490 mmap_write_unlock(mm); 491 } 492 } 493 494 static void release_pte_folio(struct folio *folio) 495 { 496 node_stat_mod_folio(folio, 497 NR_ISOLATED_ANON + folio_is_file_lru(folio), 498 -folio_nr_pages(folio)); 499 folio_unlock(folio); 500 folio_putback_lru(folio); 501 } 502 503 static void release_pte_page(struct page *page) 504 { 505 release_pte_folio(page_folio(page)); 506 } 507 508 static void release_pte_pages(pte_t *pte, pte_t *_pte, 509 struct list_head *compound_pagelist) 510 { 511 struct folio *folio, *tmp; 512 513 while (--_pte >= pte) { 514 pte_t pteval = ptep_get(_pte); 515 unsigned long pfn; 516 517 if (pte_none(pteval)) 518 continue; 519 pfn = pte_pfn(pteval); 520 if (is_zero_pfn(pfn)) 521 continue; 522 folio = pfn_folio(pfn); 523 if (folio_test_large(folio)) 524 continue; 525 release_pte_folio(folio); 526 } 527 528 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 529 list_del(&folio->lru); 530 release_pte_folio(folio); 531 } 532 } 533 534 static bool is_refcount_suitable(struct page *page) 535 { 536 int expected_refcount; 537 538 expected_refcount = total_mapcount(page); 539 if (PageSwapCache(page)) 540 expected_refcount += compound_nr(page); 541 542 return page_count(page) == expected_refcount; 543 } 544 545 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 546 unsigned long address, 547 pte_t *pte, 548 struct collapse_control *cc, 549 struct list_head *compound_pagelist) 550 { 551 struct page *page = NULL; 552 pte_t *_pte; 553 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 554 bool writable = false; 555 556 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 557 _pte++, address += PAGE_SIZE) { 558 pte_t pteval = ptep_get(_pte); 559 if (pte_none(pteval) || (pte_present(pteval) && 560 is_zero_pfn(pte_pfn(pteval)))) { 561 ++none_or_zero; 562 if (!userfaultfd_armed(vma) && 563 (!cc->is_khugepaged || 564 none_or_zero <= khugepaged_max_ptes_none)) { 565 continue; 566 } else { 567 result = SCAN_EXCEED_NONE_PTE; 568 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 569 goto out; 570 } 571 } 572 if (!pte_present(pteval)) { 573 result = SCAN_PTE_NON_PRESENT; 574 goto out; 575 } 576 if (pte_uffd_wp(pteval)) { 577 result = SCAN_PTE_UFFD_WP; 578 goto out; 579 } 580 page = vm_normal_page(vma, address, pteval); 581 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 582 result = SCAN_PAGE_NULL; 583 goto out; 584 } 585 586 VM_BUG_ON_PAGE(!PageAnon(page), page); 587 588 if (page_mapcount(page) > 1) { 589 ++shared; 590 if (cc->is_khugepaged && 591 shared > khugepaged_max_ptes_shared) { 592 result = SCAN_EXCEED_SHARED_PTE; 593 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 594 goto out; 595 } 596 } 597 598 if (PageCompound(page)) { 599 struct page *p; 600 page = compound_head(page); 601 602 /* 603 * Check if we have dealt with the compound page 604 * already 605 */ 606 list_for_each_entry(p, compound_pagelist, lru) { 607 if (page == p) 608 goto next; 609 } 610 } 611 612 /* 613 * We can do it before isolate_lru_page because the 614 * page can't be freed from under us. NOTE: PG_lock 615 * is needed to serialize against split_huge_page 616 * when invoked from the VM. 617 */ 618 if (!trylock_page(page)) { 619 result = SCAN_PAGE_LOCK; 620 goto out; 621 } 622 623 /* 624 * Check if the page has any GUP (or other external) pins. 625 * 626 * The page table that maps the page has been already unlinked 627 * from the page table tree and this process cannot get 628 * an additional pin on the page. 629 * 630 * New pins can come later if the page is shared across fork, 631 * but not from this process. The other process cannot write to 632 * the page, only trigger CoW. 633 */ 634 if (!is_refcount_suitable(page)) { 635 unlock_page(page); 636 result = SCAN_PAGE_COUNT; 637 goto out; 638 } 639 640 /* 641 * Isolate the page to avoid collapsing an hugepage 642 * currently in use by the VM. 643 */ 644 if (!isolate_lru_page(page)) { 645 unlock_page(page); 646 result = SCAN_DEL_PAGE_LRU; 647 goto out; 648 } 649 mod_node_page_state(page_pgdat(page), 650 NR_ISOLATED_ANON + page_is_file_lru(page), 651 compound_nr(page)); 652 VM_BUG_ON_PAGE(!PageLocked(page), page); 653 VM_BUG_ON_PAGE(PageLRU(page), page); 654 655 if (PageCompound(page)) 656 list_add_tail(&page->lru, compound_pagelist); 657 next: 658 /* 659 * If collapse was initiated by khugepaged, check that there is 660 * enough young pte to justify collapsing the page 661 */ 662 if (cc->is_khugepaged && 663 (pte_young(pteval) || page_is_young(page) || 664 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 665 address))) 666 referenced++; 667 668 if (pte_write(pteval)) 669 writable = true; 670 } 671 672 if (unlikely(!writable)) { 673 result = SCAN_PAGE_RO; 674 } else if (unlikely(cc->is_khugepaged && !referenced)) { 675 result = SCAN_LACK_REFERENCED_PAGE; 676 } else { 677 result = SCAN_SUCCEED; 678 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 679 referenced, writable, result); 680 return result; 681 } 682 out: 683 release_pte_pages(pte, _pte, compound_pagelist); 684 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 685 referenced, writable, result); 686 return result; 687 } 688 689 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 690 struct vm_area_struct *vma, 691 unsigned long address, 692 spinlock_t *ptl, 693 struct list_head *compound_pagelist) 694 { 695 struct page *src_page; 696 struct page *tmp; 697 pte_t *_pte; 698 pte_t pteval; 699 700 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 701 _pte++, address += PAGE_SIZE) { 702 pteval = ptep_get(_pte); 703 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 704 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 705 if (is_zero_pfn(pte_pfn(pteval))) { 706 /* 707 * ptl mostly unnecessary. 708 */ 709 spin_lock(ptl); 710 ptep_clear(vma->vm_mm, address, _pte); 711 spin_unlock(ptl); 712 } 713 } else { 714 src_page = pte_page(pteval); 715 if (!PageCompound(src_page)) 716 release_pte_page(src_page); 717 /* 718 * ptl mostly unnecessary, but preempt has to 719 * be disabled to update the per-cpu stats 720 * inside page_remove_rmap(). 721 */ 722 spin_lock(ptl); 723 ptep_clear(vma->vm_mm, address, _pte); 724 page_remove_rmap(src_page, vma, false); 725 spin_unlock(ptl); 726 free_page_and_swap_cache(src_page); 727 } 728 } 729 730 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 731 list_del(&src_page->lru); 732 mod_node_page_state(page_pgdat(src_page), 733 NR_ISOLATED_ANON + page_is_file_lru(src_page), 734 -compound_nr(src_page)); 735 unlock_page(src_page); 736 free_swap_cache(src_page); 737 putback_lru_page(src_page); 738 } 739 } 740 741 static void __collapse_huge_page_copy_failed(pte_t *pte, 742 pmd_t *pmd, 743 pmd_t orig_pmd, 744 struct vm_area_struct *vma, 745 struct list_head *compound_pagelist) 746 { 747 spinlock_t *pmd_ptl; 748 749 /* 750 * Re-establish the PMD to point to the original page table 751 * entry. Restoring PMD needs to be done prior to releasing 752 * pages. Since pages are still isolated and locked here, 753 * acquiring anon_vma_lock_write is unnecessary. 754 */ 755 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 756 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 757 spin_unlock(pmd_ptl); 758 /* 759 * Release both raw and compound pages isolated 760 * in __collapse_huge_page_isolate. 761 */ 762 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 763 } 764 765 /* 766 * __collapse_huge_page_copy - attempts to copy memory contents from raw 767 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 768 * otherwise restores the original page table and releases isolated raw pages. 769 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 770 * 771 * @pte: starting of the PTEs to copy from 772 * @page: the new hugepage to copy contents to 773 * @pmd: pointer to the new hugepage's PMD 774 * @orig_pmd: the original raw pages' PMD 775 * @vma: the original raw pages' virtual memory area 776 * @address: starting address to copy 777 * @ptl: lock on raw pages' PTEs 778 * @compound_pagelist: list that stores compound pages 779 */ 780 static int __collapse_huge_page_copy(pte_t *pte, 781 struct page *page, 782 pmd_t *pmd, 783 pmd_t orig_pmd, 784 struct vm_area_struct *vma, 785 unsigned long address, 786 spinlock_t *ptl, 787 struct list_head *compound_pagelist) 788 { 789 struct page *src_page; 790 pte_t *_pte; 791 pte_t pteval; 792 unsigned long _address; 793 int result = SCAN_SUCCEED; 794 795 /* 796 * Copying pages' contents is subject to memory poison at any iteration. 797 */ 798 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; 799 _pte++, page++, _address += PAGE_SIZE) { 800 pteval = ptep_get(_pte); 801 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 802 clear_user_highpage(page, _address); 803 continue; 804 } 805 src_page = pte_page(pteval); 806 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { 807 result = SCAN_COPY_MC; 808 break; 809 } 810 } 811 812 if (likely(result == SCAN_SUCCEED)) 813 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 814 compound_pagelist); 815 else 816 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 817 compound_pagelist); 818 819 return result; 820 } 821 822 static void khugepaged_alloc_sleep(void) 823 { 824 DEFINE_WAIT(wait); 825 826 add_wait_queue(&khugepaged_wait, &wait); 827 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 828 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 829 remove_wait_queue(&khugepaged_wait, &wait); 830 } 831 832 struct collapse_control khugepaged_collapse_control = { 833 .is_khugepaged = true, 834 }; 835 836 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 837 { 838 int i; 839 840 /* 841 * If node_reclaim_mode is disabled, then no extra effort is made to 842 * allocate memory locally. 843 */ 844 if (!node_reclaim_enabled()) 845 return false; 846 847 /* If there is a count for this node already, it must be acceptable */ 848 if (cc->node_load[nid]) 849 return false; 850 851 for (i = 0; i < MAX_NUMNODES; i++) { 852 if (!cc->node_load[i]) 853 continue; 854 if (node_distance(nid, i) > node_reclaim_distance) 855 return true; 856 } 857 return false; 858 } 859 860 #define khugepaged_defrag() \ 861 (transparent_hugepage_flags & \ 862 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 863 864 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 865 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 866 { 867 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 868 } 869 870 #ifdef CONFIG_NUMA 871 static int hpage_collapse_find_target_node(struct collapse_control *cc) 872 { 873 int nid, target_node = 0, max_value = 0; 874 875 /* find first node with max normal pages hit */ 876 for (nid = 0; nid < MAX_NUMNODES; nid++) 877 if (cc->node_load[nid] > max_value) { 878 max_value = cc->node_load[nid]; 879 target_node = nid; 880 } 881 882 for_each_online_node(nid) { 883 if (max_value == cc->node_load[nid]) 884 node_set(nid, cc->alloc_nmask); 885 } 886 887 return target_node; 888 } 889 #else 890 static int hpage_collapse_find_target_node(struct collapse_control *cc) 891 { 892 return 0; 893 } 894 #endif 895 896 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 897 nodemask_t *nmask) 898 { 899 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 900 if (unlikely(!*hpage)) { 901 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 902 return false; 903 } 904 905 prep_transhuge_page(*hpage); 906 count_vm_event(THP_COLLAPSE_ALLOC); 907 return true; 908 } 909 910 /* 911 * If mmap_lock temporarily dropped, revalidate vma 912 * before taking mmap_lock. 913 * Returns enum scan_result value. 914 */ 915 916 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 917 bool expect_anon, 918 struct vm_area_struct **vmap, 919 struct collapse_control *cc) 920 { 921 struct vm_area_struct *vma; 922 923 if (unlikely(hpage_collapse_test_exit(mm))) 924 return SCAN_ANY_PROCESS; 925 926 *vmap = vma = find_vma(mm, address); 927 if (!vma) 928 return SCAN_VMA_NULL; 929 930 if (!transhuge_vma_suitable(vma, address)) 931 return SCAN_ADDRESS_RANGE; 932 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 933 cc->is_khugepaged)) 934 return SCAN_VMA_CHECK; 935 /* 936 * Anon VMA expected, the address may be unmapped then 937 * remapped to file after khugepaged reaquired the mmap_lock. 938 * 939 * hugepage_vma_check may return true for qualified file 940 * vmas. 941 */ 942 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 943 return SCAN_PAGE_ANON; 944 return SCAN_SUCCEED; 945 } 946 947 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 948 unsigned long address, 949 pmd_t **pmd) 950 { 951 pmd_t pmde; 952 953 *pmd = mm_find_pmd(mm, address); 954 if (!*pmd) 955 return SCAN_PMD_NULL; 956 957 pmde = pmdp_get_lockless(*pmd); 958 if (pmd_none(pmde)) 959 return SCAN_PMD_NONE; 960 if (!pmd_present(pmde)) 961 return SCAN_PMD_NULL; 962 if (pmd_trans_huge(pmde)) 963 return SCAN_PMD_MAPPED; 964 if (pmd_devmap(pmde)) 965 return SCAN_PMD_NULL; 966 if (pmd_bad(pmde)) 967 return SCAN_PMD_NULL; 968 return SCAN_SUCCEED; 969 } 970 971 static int check_pmd_still_valid(struct mm_struct *mm, 972 unsigned long address, 973 pmd_t *pmd) 974 { 975 pmd_t *new_pmd; 976 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 977 978 if (result != SCAN_SUCCEED) 979 return result; 980 if (new_pmd != pmd) 981 return SCAN_FAIL; 982 return SCAN_SUCCEED; 983 } 984 985 /* 986 * Bring missing pages in from swap, to complete THP collapse. 987 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 988 * 989 * Called and returns without pte mapped or spinlocks held. 990 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 991 */ 992 static int __collapse_huge_page_swapin(struct mm_struct *mm, 993 struct vm_area_struct *vma, 994 unsigned long haddr, pmd_t *pmd, 995 int referenced) 996 { 997 int swapped_in = 0; 998 vm_fault_t ret = 0; 999 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1000 int result; 1001 pte_t *pte = NULL; 1002 spinlock_t *ptl; 1003 1004 for (address = haddr; address < end; address += PAGE_SIZE) { 1005 struct vm_fault vmf = { 1006 .vma = vma, 1007 .address = address, 1008 .pgoff = linear_page_index(vma, address), 1009 .flags = FAULT_FLAG_ALLOW_RETRY, 1010 .pmd = pmd, 1011 }; 1012 1013 if (!pte++) { 1014 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 1015 if (!pte) { 1016 mmap_read_unlock(mm); 1017 result = SCAN_PMD_NULL; 1018 goto out; 1019 } 1020 } 1021 1022 vmf.orig_pte = ptep_get_lockless(pte); 1023 if (!is_swap_pte(vmf.orig_pte)) 1024 continue; 1025 1026 vmf.pte = pte; 1027 vmf.ptl = ptl; 1028 ret = do_swap_page(&vmf); 1029 /* Which unmaps pte (after perhaps re-checking the entry) */ 1030 pte = NULL; 1031 1032 /* 1033 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1034 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1035 * we do not retry here and swap entry will remain in pagetable 1036 * resulting in later failure. 1037 */ 1038 if (ret & VM_FAULT_RETRY) { 1039 /* Likely, but not guaranteed, that page lock failed */ 1040 result = SCAN_PAGE_LOCK; 1041 goto out; 1042 } 1043 if (ret & VM_FAULT_ERROR) { 1044 mmap_read_unlock(mm); 1045 result = SCAN_FAIL; 1046 goto out; 1047 } 1048 swapped_in++; 1049 } 1050 1051 if (pte) 1052 pte_unmap(pte); 1053 1054 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1055 if (swapped_in) 1056 lru_add_drain(); 1057 1058 result = SCAN_SUCCEED; 1059 out: 1060 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1061 return result; 1062 } 1063 1064 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 1065 struct collapse_control *cc) 1066 { 1067 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1068 GFP_TRANSHUGE); 1069 int node = hpage_collapse_find_target_node(cc); 1070 struct folio *folio; 1071 1072 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 1073 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1074 1075 folio = page_folio(*hpage); 1076 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1077 folio_put(folio); 1078 *hpage = NULL; 1079 return SCAN_CGROUP_CHARGE_FAIL; 1080 } 1081 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 1082 1083 return SCAN_SUCCEED; 1084 } 1085 1086 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1087 int referenced, int unmapped, 1088 struct collapse_control *cc) 1089 { 1090 LIST_HEAD(compound_pagelist); 1091 pmd_t *pmd, _pmd; 1092 pte_t *pte; 1093 pgtable_t pgtable; 1094 struct page *hpage; 1095 spinlock_t *pmd_ptl, *pte_ptl; 1096 int result = SCAN_FAIL; 1097 struct vm_area_struct *vma; 1098 struct mmu_notifier_range range; 1099 1100 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1101 1102 /* 1103 * Before allocating the hugepage, release the mmap_lock read lock. 1104 * The allocation can take potentially a long time if it involves 1105 * sync compaction, and we do not need to hold the mmap_lock during 1106 * that. We will recheck the vma after taking it again in write mode. 1107 */ 1108 mmap_read_unlock(mm); 1109 1110 result = alloc_charge_hpage(&hpage, mm, cc); 1111 if (result != SCAN_SUCCEED) 1112 goto out_nolock; 1113 1114 mmap_read_lock(mm); 1115 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1116 if (result != SCAN_SUCCEED) { 1117 mmap_read_unlock(mm); 1118 goto out_nolock; 1119 } 1120 1121 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1122 if (result != SCAN_SUCCEED) { 1123 mmap_read_unlock(mm); 1124 goto out_nolock; 1125 } 1126 1127 if (unmapped) { 1128 /* 1129 * __collapse_huge_page_swapin will return with mmap_lock 1130 * released when it fails. So we jump out_nolock directly in 1131 * that case. Continuing to collapse causes inconsistency. 1132 */ 1133 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1134 referenced); 1135 if (result != SCAN_SUCCEED) 1136 goto out_nolock; 1137 } 1138 1139 mmap_read_unlock(mm); 1140 /* 1141 * Prevent all access to pagetables with the exception of 1142 * gup_fast later handled by the ptep_clear_flush and the VM 1143 * handled by the anon_vma lock + PG_lock. 1144 */ 1145 mmap_write_lock(mm); 1146 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1147 if (result != SCAN_SUCCEED) 1148 goto out_up_write; 1149 /* check if the pmd is still valid */ 1150 result = check_pmd_still_valid(mm, address, pmd); 1151 if (result != SCAN_SUCCEED) 1152 goto out_up_write; 1153 1154 vma_start_write(vma); 1155 anon_vma_lock_write(vma->anon_vma); 1156 1157 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1158 address + HPAGE_PMD_SIZE); 1159 mmu_notifier_invalidate_range_start(&range); 1160 1161 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1162 /* 1163 * This removes any huge TLB entry from the CPU so we won't allow 1164 * huge and small TLB entries for the same virtual address to 1165 * avoid the risk of CPU bugs in that area. 1166 * 1167 * Parallel fast GUP is fine since fast GUP will back off when 1168 * it detects PMD is changed. 1169 */ 1170 _pmd = pmdp_collapse_flush(vma, address, pmd); 1171 spin_unlock(pmd_ptl); 1172 mmu_notifier_invalidate_range_end(&range); 1173 tlb_remove_table_sync_one(); 1174 1175 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1176 if (pte) { 1177 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1178 &compound_pagelist); 1179 spin_unlock(pte_ptl); 1180 } else { 1181 result = SCAN_PMD_NULL; 1182 } 1183 1184 if (unlikely(result != SCAN_SUCCEED)) { 1185 if (pte) 1186 pte_unmap(pte); 1187 spin_lock(pmd_ptl); 1188 BUG_ON(!pmd_none(*pmd)); 1189 /* 1190 * We can only use set_pmd_at when establishing 1191 * hugepmds and never for establishing regular pmds that 1192 * points to regular pagetables. Use pmd_populate for that 1193 */ 1194 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1195 spin_unlock(pmd_ptl); 1196 anon_vma_unlock_write(vma->anon_vma); 1197 goto out_up_write; 1198 } 1199 1200 /* 1201 * All pages are isolated and locked so anon_vma rmap 1202 * can't run anymore. 1203 */ 1204 anon_vma_unlock_write(vma->anon_vma); 1205 1206 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, 1207 vma, address, pte_ptl, 1208 &compound_pagelist); 1209 pte_unmap(pte); 1210 if (unlikely(result != SCAN_SUCCEED)) 1211 goto out_up_write; 1212 1213 /* 1214 * spin_lock() below is not the equivalent of smp_wmb(), but 1215 * the smp_wmb() inside __SetPageUptodate() can be reused to 1216 * avoid the copy_huge_page writes to become visible after 1217 * the set_pmd_at() write. 1218 */ 1219 __SetPageUptodate(hpage); 1220 pgtable = pmd_pgtable(_pmd); 1221 1222 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1223 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1224 1225 spin_lock(pmd_ptl); 1226 BUG_ON(!pmd_none(*pmd)); 1227 page_add_new_anon_rmap(hpage, vma, address); 1228 lru_cache_add_inactive_or_unevictable(hpage, vma); 1229 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1230 set_pmd_at(mm, address, pmd, _pmd); 1231 update_mmu_cache_pmd(vma, address, pmd); 1232 spin_unlock(pmd_ptl); 1233 1234 hpage = NULL; 1235 1236 result = SCAN_SUCCEED; 1237 out_up_write: 1238 mmap_write_unlock(mm); 1239 out_nolock: 1240 if (hpage) 1241 put_page(hpage); 1242 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1243 return result; 1244 } 1245 1246 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1247 struct vm_area_struct *vma, 1248 unsigned long address, bool *mmap_locked, 1249 struct collapse_control *cc) 1250 { 1251 pmd_t *pmd; 1252 pte_t *pte, *_pte; 1253 int result = SCAN_FAIL, referenced = 0; 1254 int none_or_zero = 0, shared = 0; 1255 struct page *page = NULL; 1256 unsigned long _address; 1257 spinlock_t *ptl; 1258 int node = NUMA_NO_NODE, unmapped = 0; 1259 bool writable = false; 1260 1261 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1262 1263 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1264 if (result != SCAN_SUCCEED) 1265 goto out; 1266 1267 memset(cc->node_load, 0, sizeof(cc->node_load)); 1268 nodes_clear(cc->alloc_nmask); 1269 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1270 if (!pte) { 1271 result = SCAN_PMD_NULL; 1272 goto out; 1273 } 1274 1275 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1276 _pte++, _address += PAGE_SIZE) { 1277 pte_t pteval = ptep_get(_pte); 1278 if (is_swap_pte(pteval)) { 1279 ++unmapped; 1280 if (!cc->is_khugepaged || 1281 unmapped <= khugepaged_max_ptes_swap) { 1282 /* 1283 * Always be strict with uffd-wp 1284 * enabled swap entries. Please see 1285 * comment below for pte_uffd_wp(). 1286 */ 1287 if (pte_swp_uffd_wp_any(pteval)) { 1288 result = SCAN_PTE_UFFD_WP; 1289 goto out_unmap; 1290 } 1291 continue; 1292 } else { 1293 result = SCAN_EXCEED_SWAP_PTE; 1294 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1295 goto out_unmap; 1296 } 1297 } 1298 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1299 ++none_or_zero; 1300 if (!userfaultfd_armed(vma) && 1301 (!cc->is_khugepaged || 1302 none_or_zero <= khugepaged_max_ptes_none)) { 1303 continue; 1304 } else { 1305 result = SCAN_EXCEED_NONE_PTE; 1306 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1307 goto out_unmap; 1308 } 1309 } 1310 if (pte_uffd_wp(pteval)) { 1311 /* 1312 * Don't collapse the page if any of the small 1313 * PTEs are armed with uffd write protection. 1314 * Here we can also mark the new huge pmd as 1315 * write protected if any of the small ones is 1316 * marked but that could bring unknown 1317 * userfault messages that falls outside of 1318 * the registered range. So, just be simple. 1319 */ 1320 result = SCAN_PTE_UFFD_WP; 1321 goto out_unmap; 1322 } 1323 if (pte_write(pteval)) 1324 writable = true; 1325 1326 page = vm_normal_page(vma, _address, pteval); 1327 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1328 result = SCAN_PAGE_NULL; 1329 goto out_unmap; 1330 } 1331 1332 if (page_mapcount(page) > 1) { 1333 ++shared; 1334 if (cc->is_khugepaged && 1335 shared > khugepaged_max_ptes_shared) { 1336 result = SCAN_EXCEED_SHARED_PTE; 1337 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1338 goto out_unmap; 1339 } 1340 } 1341 1342 page = compound_head(page); 1343 1344 /* 1345 * Record which node the original page is from and save this 1346 * information to cc->node_load[]. 1347 * Khugepaged will allocate hugepage from the node has the max 1348 * hit record. 1349 */ 1350 node = page_to_nid(page); 1351 if (hpage_collapse_scan_abort(node, cc)) { 1352 result = SCAN_SCAN_ABORT; 1353 goto out_unmap; 1354 } 1355 cc->node_load[node]++; 1356 if (!PageLRU(page)) { 1357 result = SCAN_PAGE_LRU; 1358 goto out_unmap; 1359 } 1360 if (PageLocked(page)) { 1361 result = SCAN_PAGE_LOCK; 1362 goto out_unmap; 1363 } 1364 if (!PageAnon(page)) { 1365 result = SCAN_PAGE_ANON; 1366 goto out_unmap; 1367 } 1368 1369 /* 1370 * Check if the page has any GUP (or other external) pins. 1371 * 1372 * Here the check may be racy: 1373 * it may see total_mapcount > refcount in some cases? 1374 * But such case is ephemeral we could always retry collapse 1375 * later. However it may report false positive if the page 1376 * has excessive GUP pins (i.e. 512). Anyway the same check 1377 * will be done again later the risk seems low. 1378 */ 1379 if (!is_refcount_suitable(page)) { 1380 result = SCAN_PAGE_COUNT; 1381 goto out_unmap; 1382 } 1383 1384 /* 1385 * If collapse was initiated by khugepaged, check that there is 1386 * enough young pte to justify collapsing the page 1387 */ 1388 if (cc->is_khugepaged && 1389 (pte_young(pteval) || page_is_young(page) || 1390 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1391 address))) 1392 referenced++; 1393 } 1394 if (!writable) { 1395 result = SCAN_PAGE_RO; 1396 } else if (cc->is_khugepaged && 1397 (!referenced || 1398 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1399 result = SCAN_LACK_REFERENCED_PAGE; 1400 } else { 1401 result = SCAN_SUCCEED; 1402 } 1403 out_unmap: 1404 pte_unmap_unlock(pte, ptl); 1405 if (result == SCAN_SUCCEED) { 1406 result = collapse_huge_page(mm, address, referenced, 1407 unmapped, cc); 1408 /* collapse_huge_page will return with the mmap_lock released */ 1409 *mmap_locked = false; 1410 } 1411 out: 1412 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1413 none_or_zero, result, unmapped); 1414 return result; 1415 } 1416 1417 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1418 { 1419 struct mm_slot *slot = &mm_slot->slot; 1420 struct mm_struct *mm = slot->mm; 1421 1422 lockdep_assert_held(&khugepaged_mm_lock); 1423 1424 if (hpage_collapse_test_exit(mm)) { 1425 /* free mm_slot */ 1426 hash_del(&slot->hash); 1427 list_del(&slot->mm_node); 1428 1429 /* 1430 * Not strictly needed because the mm exited already. 1431 * 1432 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1433 */ 1434 1435 /* khugepaged_mm_lock actually not necessary for the below */ 1436 mm_slot_free(mm_slot_cache, mm_slot); 1437 mmdrop(mm); 1438 } 1439 } 1440 1441 #ifdef CONFIG_SHMEM 1442 /* 1443 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1444 * khugepaged should try to collapse the page table. 1445 * 1446 * Note that following race exists: 1447 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1448 * emptying the A's ->pte_mapped_thp[] array. 1449 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1450 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1451 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1452 * ->pte-mapped_thp[] array. 1453 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1454 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1455 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1456 * Thus, it's possible the same address is added multiple times for the same 1457 * mm_struct. Should this happen, we'll simply attempt 1458 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1459 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1460 * attempts will return quickly (without grabbing any additional locks) when 1461 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1462 * check, and since this is a rare occurrence, the cost of preventing this 1463 * "multiple-add" is thought to be more expensive than just handling it, should 1464 * it occur. 1465 */ 1466 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1467 unsigned long addr) 1468 { 1469 struct khugepaged_mm_slot *mm_slot; 1470 struct mm_slot *slot; 1471 bool ret = false; 1472 1473 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1474 1475 spin_lock(&khugepaged_mm_lock); 1476 slot = mm_slot_lookup(mm_slots_hash, mm); 1477 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1478 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1479 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1480 ret = true; 1481 } 1482 spin_unlock(&khugepaged_mm_lock); 1483 return ret; 1484 } 1485 1486 /* hpage must be locked, and mmap_lock must be held in write */ 1487 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1488 pmd_t *pmdp, struct page *hpage) 1489 { 1490 struct vm_fault vmf = { 1491 .vma = vma, 1492 .address = addr, 1493 .flags = 0, 1494 .pmd = pmdp, 1495 }; 1496 1497 VM_BUG_ON(!PageTransHuge(hpage)); 1498 mmap_assert_write_locked(vma->vm_mm); 1499 1500 if (do_set_pmd(&vmf, hpage)) 1501 return SCAN_FAIL; 1502 1503 get_page(hpage); 1504 return SCAN_SUCCEED; 1505 } 1506 1507 /* 1508 * A note about locking: 1509 * Trying to take the page table spinlocks would be useless here because those 1510 * are only used to synchronize: 1511 * 1512 * - modifying terminal entries (ones that point to a data page, not to another 1513 * page table) 1514 * - installing *new* non-terminal entries 1515 * 1516 * Instead, we need roughly the same kind of protection as free_pgtables() or 1517 * mm_take_all_locks() (but only for a single VMA): 1518 * The mmap lock together with this VMA's rmap locks covers all paths towards 1519 * the page table entries we're messing with here, except for hardware page 1520 * table walks and lockless_pages_from_mm(). 1521 */ 1522 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1523 unsigned long addr, pmd_t *pmdp) 1524 { 1525 pmd_t pmd; 1526 struct mmu_notifier_range range; 1527 1528 mmap_assert_write_locked(mm); 1529 if (vma->vm_file) 1530 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1531 /* 1532 * All anon_vmas attached to the VMA have the same root and are 1533 * therefore locked by the same lock. 1534 */ 1535 if (vma->anon_vma) 1536 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1537 1538 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1539 addr + HPAGE_PMD_SIZE); 1540 mmu_notifier_invalidate_range_start(&range); 1541 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1542 tlb_remove_table_sync_one(); 1543 mmu_notifier_invalidate_range_end(&range); 1544 mm_dec_nr_ptes(mm); 1545 page_table_check_pte_clear_range(mm, addr, pmd); 1546 pte_free(mm, pmd_pgtable(pmd)); 1547 } 1548 1549 /** 1550 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1551 * address haddr. 1552 * 1553 * @mm: process address space where collapse happens 1554 * @addr: THP collapse address 1555 * @install_pmd: If a huge PMD should be installed 1556 * 1557 * This function checks whether all the PTEs in the PMD are pointing to the 1558 * right THP. If so, retract the page table so the THP can refault in with 1559 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1560 */ 1561 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1562 bool install_pmd) 1563 { 1564 unsigned long haddr = addr & HPAGE_PMD_MASK; 1565 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1566 struct page *hpage; 1567 pte_t *start_pte, *pte; 1568 pmd_t *pmd; 1569 spinlock_t *ptl; 1570 int count = 0, result = SCAN_FAIL; 1571 int i; 1572 1573 mmap_assert_write_locked(mm); 1574 1575 /* Fast check before locking page if already PMD-mapped */ 1576 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1577 if (result == SCAN_PMD_MAPPED) 1578 return result; 1579 1580 if (!vma || !vma->vm_file || 1581 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1582 return SCAN_VMA_CHECK; 1583 1584 /* 1585 * If we are here, we've succeeded in replacing all the native pages 1586 * in the page cache with a single hugepage. If a mm were to fault-in 1587 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1588 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1589 * analogously elide sysfs THP settings here. 1590 */ 1591 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1592 return SCAN_VMA_CHECK; 1593 1594 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1595 if (userfaultfd_wp(vma)) 1596 return SCAN_PTE_UFFD_WP; 1597 1598 hpage = find_lock_page(vma->vm_file->f_mapping, 1599 linear_page_index(vma, haddr)); 1600 if (!hpage) 1601 return SCAN_PAGE_NULL; 1602 1603 if (!PageHead(hpage)) { 1604 result = SCAN_FAIL; 1605 goto drop_hpage; 1606 } 1607 1608 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1609 result = SCAN_PAGE_COMPOUND; 1610 goto drop_hpage; 1611 } 1612 1613 switch (result) { 1614 case SCAN_SUCCEED: 1615 break; 1616 case SCAN_PMD_NONE: 1617 /* 1618 * In MADV_COLLAPSE path, possible race with khugepaged where 1619 * all pte entries have been removed and pmd cleared. If so, 1620 * skip all the pte checks and just update the pmd mapping. 1621 */ 1622 goto maybe_install_pmd; 1623 default: 1624 goto drop_hpage; 1625 } 1626 1627 /* Lock the vma before taking i_mmap and page table locks */ 1628 vma_start_write(vma); 1629 1630 /* 1631 * We need to lock the mapping so that from here on, only GUP-fast and 1632 * hardware page walks can access the parts of the page tables that 1633 * we're operating on. 1634 * See collapse_and_free_pmd(). 1635 */ 1636 i_mmap_lock_write(vma->vm_file->f_mapping); 1637 1638 /* 1639 * This spinlock should be unnecessary: Nobody else should be accessing 1640 * the page tables under spinlock protection here, only 1641 * lockless_pages_from_mm() and the hardware page walker can access page 1642 * tables while all the high-level locks are held in write mode. 1643 */ 1644 result = SCAN_FAIL; 1645 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1646 if (!start_pte) 1647 goto drop_immap; 1648 1649 /* step 1: check all mapped PTEs are to the right huge page */ 1650 for (i = 0, addr = haddr, pte = start_pte; 1651 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1652 struct page *page; 1653 pte_t ptent = ptep_get(pte); 1654 1655 /* empty pte, skip */ 1656 if (pte_none(ptent)) 1657 continue; 1658 1659 /* page swapped out, abort */ 1660 if (!pte_present(ptent)) { 1661 result = SCAN_PTE_NON_PRESENT; 1662 goto abort; 1663 } 1664 1665 page = vm_normal_page(vma, addr, ptent); 1666 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1667 page = NULL; 1668 /* 1669 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1670 * page table, but the new page will not be a subpage of hpage. 1671 */ 1672 if (hpage + i != page) 1673 goto abort; 1674 count++; 1675 } 1676 1677 /* step 2: adjust rmap */ 1678 for (i = 0, addr = haddr, pte = start_pte; 1679 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1680 struct page *page; 1681 pte_t ptent = ptep_get(pte); 1682 1683 if (pte_none(ptent)) 1684 continue; 1685 page = vm_normal_page(vma, addr, ptent); 1686 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1687 goto abort; 1688 page_remove_rmap(page, vma, false); 1689 } 1690 1691 pte_unmap_unlock(start_pte, ptl); 1692 1693 /* step 3: set proper refcount and mm_counters. */ 1694 if (count) { 1695 page_ref_sub(hpage, count); 1696 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1697 } 1698 1699 /* step 4: remove pte entries */ 1700 /* we make no change to anon, but protect concurrent anon page lookup */ 1701 if (vma->anon_vma) 1702 anon_vma_lock_write(vma->anon_vma); 1703 1704 collapse_and_free_pmd(mm, vma, haddr, pmd); 1705 1706 if (vma->anon_vma) 1707 anon_vma_unlock_write(vma->anon_vma); 1708 i_mmap_unlock_write(vma->vm_file->f_mapping); 1709 1710 maybe_install_pmd: 1711 /* step 5: install pmd entry */ 1712 result = install_pmd 1713 ? set_huge_pmd(vma, haddr, pmd, hpage) 1714 : SCAN_SUCCEED; 1715 1716 drop_hpage: 1717 unlock_page(hpage); 1718 put_page(hpage); 1719 return result; 1720 1721 abort: 1722 pte_unmap_unlock(start_pte, ptl); 1723 drop_immap: 1724 i_mmap_unlock_write(vma->vm_file->f_mapping); 1725 goto drop_hpage; 1726 } 1727 1728 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1729 { 1730 struct mm_slot *slot = &mm_slot->slot; 1731 struct mm_struct *mm = slot->mm; 1732 int i; 1733 1734 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1735 return; 1736 1737 if (!mmap_write_trylock(mm)) 1738 return; 1739 1740 if (unlikely(hpage_collapse_test_exit(mm))) 1741 goto out; 1742 1743 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1744 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1745 1746 out: 1747 mm_slot->nr_pte_mapped_thp = 0; 1748 mmap_write_unlock(mm); 1749 } 1750 1751 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1752 struct mm_struct *target_mm, 1753 unsigned long target_addr, struct page *hpage, 1754 struct collapse_control *cc) 1755 { 1756 struct vm_area_struct *vma; 1757 int target_result = SCAN_FAIL; 1758 1759 i_mmap_lock_write(mapping); 1760 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1761 int result = SCAN_FAIL; 1762 struct mm_struct *mm = NULL; 1763 unsigned long addr = 0; 1764 pmd_t *pmd; 1765 bool is_target = false; 1766 1767 /* 1768 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1769 * got written to. These VMAs are likely not worth investing 1770 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1771 * later. 1772 * 1773 * Note that vma->anon_vma check is racy: it can be set up after 1774 * the check but before we took mmap_lock by the fault path. 1775 * But page lock would prevent establishing any new ptes of the 1776 * page, so we are safe. 1777 * 1778 * An alternative would be drop the check, but check that page 1779 * table is clear before calling pmdp_collapse_flush() under 1780 * ptl. It has higher chance to recover THP for the VMA, but 1781 * has higher cost too. It would also probably require locking 1782 * the anon_vma. 1783 */ 1784 if (READ_ONCE(vma->anon_vma)) { 1785 result = SCAN_PAGE_ANON; 1786 goto next; 1787 } 1788 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1789 if (addr & ~HPAGE_PMD_MASK || 1790 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1791 result = SCAN_VMA_CHECK; 1792 goto next; 1793 } 1794 mm = vma->vm_mm; 1795 is_target = mm == target_mm && addr == target_addr; 1796 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1797 if (result != SCAN_SUCCEED) 1798 goto next; 1799 /* 1800 * We need exclusive mmap_lock to retract page table. 1801 * 1802 * We use trylock due to lock inversion: we need to acquire 1803 * mmap_lock while holding page lock. Fault path does it in 1804 * reverse order. Trylock is a way to avoid deadlock. 1805 * 1806 * Also, it's not MADV_COLLAPSE's job to collapse other 1807 * mappings - let khugepaged take care of them later. 1808 */ 1809 result = SCAN_PTE_MAPPED_HUGEPAGE; 1810 if ((cc->is_khugepaged || is_target) && 1811 mmap_write_trylock(mm)) { 1812 /* trylock for the same lock inversion as above */ 1813 if (!vma_try_start_write(vma)) 1814 goto unlock_next; 1815 1816 /* 1817 * Re-check whether we have an ->anon_vma, because 1818 * collapse_and_free_pmd() requires that either no 1819 * ->anon_vma exists or the anon_vma is locked. 1820 * We already checked ->anon_vma above, but that check 1821 * is racy because ->anon_vma can be populated under the 1822 * mmap lock in read mode. 1823 */ 1824 if (vma->anon_vma) { 1825 result = SCAN_PAGE_ANON; 1826 goto unlock_next; 1827 } 1828 /* 1829 * When a vma is registered with uffd-wp, we can't 1830 * recycle the pmd pgtable because there can be pte 1831 * markers installed. Skip it only, so the rest mm/vma 1832 * can still have the same file mapped hugely, however 1833 * it'll always mapped in small page size for uffd-wp 1834 * registered ranges. 1835 */ 1836 if (hpage_collapse_test_exit(mm)) { 1837 result = SCAN_ANY_PROCESS; 1838 goto unlock_next; 1839 } 1840 if (userfaultfd_wp(vma)) { 1841 result = SCAN_PTE_UFFD_WP; 1842 goto unlock_next; 1843 } 1844 collapse_and_free_pmd(mm, vma, addr, pmd); 1845 if (!cc->is_khugepaged && is_target) 1846 result = set_huge_pmd(vma, addr, pmd, hpage); 1847 else 1848 result = SCAN_SUCCEED; 1849 1850 unlock_next: 1851 mmap_write_unlock(mm); 1852 goto next; 1853 } 1854 /* 1855 * Calling context will handle target mm/addr. Otherwise, let 1856 * khugepaged try again later. 1857 */ 1858 if (!is_target) { 1859 khugepaged_add_pte_mapped_thp(mm, addr); 1860 continue; 1861 } 1862 next: 1863 if (is_target) 1864 target_result = result; 1865 } 1866 i_mmap_unlock_write(mapping); 1867 return target_result; 1868 } 1869 1870 /** 1871 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1872 * 1873 * @mm: process address space where collapse happens 1874 * @addr: virtual collapse start address 1875 * @file: file that collapse on 1876 * @start: collapse start address 1877 * @cc: collapse context and scratchpad 1878 * 1879 * Basic scheme is simple, details are more complex: 1880 * - allocate and lock a new huge page; 1881 * - scan page cache, locking old pages 1882 * + swap/gup in pages if necessary; 1883 * - copy data to new page 1884 * - handle shmem holes 1885 * + re-validate that holes weren't filled by someone else 1886 * + check for userfaultfd 1887 * - finalize updates to the page cache; 1888 * - if replacing succeeds: 1889 * + unlock huge page; 1890 * + free old pages; 1891 * - if replacing failed; 1892 * + unlock old pages 1893 * + unlock and free huge page; 1894 */ 1895 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1896 struct file *file, pgoff_t start, 1897 struct collapse_control *cc) 1898 { 1899 struct address_space *mapping = file->f_mapping; 1900 struct page *hpage; 1901 struct page *page; 1902 struct page *tmp; 1903 struct folio *folio; 1904 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1905 LIST_HEAD(pagelist); 1906 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1907 int nr_none = 0, result = SCAN_SUCCEED; 1908 bool is_shmem = shmem_file(file); 1909 int nr = 0; 1910 1911 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1912 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1913 1914 result = alloc_charge_hpage(&hpage, mm, cc); 1915 if (result != SCAN_SUCCEED) 1916 goto out; 1917 1918 __SetPageLocked(hpage); 1919 if (is_shmem) 1920 __SetPageSwapBacked(hpage); 1921 hpage->index = start; 1922 hpage->mapping = mapping; 1923 1924 /* 1925 * Ensure we have slots for all the pages in the range. This is 1926 * almost certainly a no-op because most of the pages must be present 1927 */ 1928 do { 1929 xas_lock_irq(&xas); 1930 xas_create_range(&xas); 1931 if (!xas_error(&xas)) 1932 break; 1933 xas_unlock_irq(&xas); 1934 if (!xas_nomem(&xas, GFP_KERNEL)) { 1935 result = SCAN_FAIL; 1936 goto rollback; 1937 } 1938 } while (1); 1939 1940 for (index = start; index < end; index++) { 1941 xas_set(&xas, index); 1942 page = xas_load(&xas); 1943 1944 VM_BUG_ON(index != xas.xa_index); 1945 if (is_shmem) { 1946 if (!page) { 1947 /* 1948 * Stop if extent has been truncated or 1949 * hole-punched, and is now completely 1950 * empty. 1951 */ 1952 if (index == start) { 1953 if (!xas_next_entry(&xas, end - 1)) { 1954 result = SCAN_TRUNCATED; 1955 goto xa_locked; 1956 } 1957 } 1958 nr_none++; 1959 continue; 1960 } 1961 1962 if (xa_is_value(page) || !PageUptodate(page)) { 1963 xas_unlock_irq(&xas); 1964 /* swap in or instantiate fallocated page */ 1965 if (shmem_get_folio(mapping->host, index, 1966 &folio, SGP_NOALLOC)) { 1967 result = SCAN_FAIL; 1968 goto xa_unlocked; 1969 } 1970 /* drain lru cache to help isolate_lru_page() */ 1971 lru_add_drain(); 1972 page = folio_file_page(folio, index); 1973 } else if (trylock_page(page)) { 1974 get_page(page); 1975 xas_unlock_irq(&xas); 1976 } else { 1977 result = SCAN_PAGE_LOCK; 1978 goto xa_locked; 1979 } 1980 } else { /* !is_shmem */ 1981 if (!page || xa_is_value(page)) { 1982 xas_unlock_irq(&xas); 1983 page_cache_sync_readahead(mapping, &file->f_ra, 1984 file, index, 1985 end - index); 1986 /* drain lru cache to help isolate_lru_page() */ 1987 lru_add_drain(); 1988 page = find_lock_page(mapping, index); 1989 if (unlikely(page == NULL)) { 1990 result = SCAN_FAIL; 1991 goto xa_unlocked; 1992 } 1993 } else if (PageDirty(page)) { 1994 /* 1995 * khugepaged only works on read-only fd, 1996 * so this page is dirty because it hasn't 1997 * been flushed since first write. There 1998 * won't be new dirty pages. 1999 * 2000 * Trigger async flush here and hope the 2001 * writeback is done when khugepaged 2002 * revisits this page. 2003 * 2004 * This is a one-off situation. We are not 2005 * forcing writeback in loop. 2006 */ 2007 xas_unlock_irq(&xas); 2008 filemap_flush(mapping); 2009 result = SCAN_FAIL; 2010 goto xa_unlocked; 2011 } else if (PageWriteback(page)) { 2012 xas_unlock_irq(&xas); 2013 result = SCAN_FAIL; 2014 goto xa_unlocked; 2015 } else if (trylock_page(page)) { 2016 get_page(page); 2017 xas_unlock_irq(&xas); 2018 } else { 2019 result = SCAN_PAGE_LOCK; 2020 goto xa_locked; 2021 } 2022 } 2023 2024 /* 2025 * The page must be locked, so we can drop the i_pages lock 2026 * without racing with truncate. 2027 */ 2028 VM_BUG_ON_PAGE(!PageLocked(page), page); 2029 2030 /* make sure the page is up to date */ 2031 if (unlikely(!PageUptodate(page))) { 2032 result = SCAN_FAIL; 2033 goto out_unlock; 2034 } 2035 2036 /* 2037 * If file was truncated then extended, or hole-punched, before 2038 * we locked the first page, then a THP might be there already. 2039 * This will be discovered on the first iteration. 2040 */ 2041 if (PageTransCompound(page)) { 2042 struct page *head = compound_head(page); 2043 2044 result = compound_order(head) == HPAGE_PMD_ORDER && 2045 head->index == start 2046 /* Maybe PMD-mapped */ 2047 ? SCAN_PTE_MAPPED_HUGEPAGE 2048 : SCAN_PAGE_COMPOUND; 2049 goto out_unlock; 2050 } 2051 2052 folio = page_folio(page); 2053 2054 if (folio_mapping(folio) != mapping) { 2055 result = SCAN_TRUNCATED; 2056 goto out_unlock; 2057 } 2058 2059 if (!is_shmem && (folio_test_dirty(folio) || 2060 folio_test_writeback(folio))) { 2061 /* 2062 * khugepaged only works on read-only fd, so this 2063 * page is dirty because it hasn't been flushed 2064 * since first write. 2065 */ 2066 result = SCAN_FAIL; 2067 goto out_unlock; 2068 } 2069 2070 if (!folio_isolate_lru(folio)) { 2071 result = SCAN_DEL_PAGE_LRU; 2072 goto out_unlock; 2073 } 2074 2075 if (folio_has_private(folio) && 2076 !filemap_release_folio(folio, GFP_KERNEL)) { 2077 result = SCAN_PAGE_HAS_PRIVATE; 2078 folio_putback_lru(folio); 2079 goto out_unlock; 2080 } 2081 2082 if (folio_mapped(folio)) 2083 try_to_unmap(folio, 2084 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2085 2086 xas_lock_irq(&xas); 2087 2088 VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page); 2089 2090 /* 2091 * We control three references to the page: 2092 * - we hold a pin on it; 2093 * - one reference from page cache; 2094 * - one from isolate_lru_page; 2095 * If those are the only references, then any new usage of the 2096 * page will have to fetch it from the page cache. That requires 2097 * locking the page to handle truncate, so any new usage will be 2098 * blocked until we unlock page after collapse/during rollback. 2099 */ 2100 if (page_count(page) != 3) { 2101 result = SCAN_PAGE_COUNT; 2102 xas_unlock_irq(&xas); 2103 putback_lru_page(page); 2104 goto out_unlock; 2105 } 2106 2107 /* 2108 * Accumulate the pages that are being collapsed. 2109 */ 2110 list_add_tail(&page->lru, &pagelist); 2111 continue; 2112 out_unlock: 2113 unlock_page(page); 2114 put_page(page); 2115 goto xa_unlocked; 2116 } 2117 2118 if (!is_shmem) { 2119 filemap_nr_thps_inc(mapping); 2120 /* 2121 * Paired with smp_mb() in do_dentry_open() to ensure 2122 * i_writecount is up to date and the update to nr_thps is 2123 * visible. Ensures the page cache will be truncated if the 2124 * file is opened writable. 2125 */ 2126 smp_mb(); 2127 if (inode_is_open_for_write(mapping->host)) { 2128 result = SCAN_FAIL; 2129 filemap_nr_thps_dec(mapping); 2130 } 2131 } 2132 2133 xa_locked: 2134 xas_unlock_irq(&xas); 2135 xa_unlocked: 2136 2137 /* 2138 * If collapse is successful, flush must be done now before copying. 2139 * If collapse is unsuccessful, does flush actually need to be done? 2140 * Do it anyway, to clear the state. 2141 */ 2142 try_to_unmap_flush(); 2143 2144 if (result == SCAN_SUCCEED && nr_none && 2145 !shmem_charge(mapping->host, nr_none)) 2146 result = SCAN_FAIL; 2147 if (result != SCAN_SUCCEED) { 2148 nr_none = 0; 2149 goto rollback; 2150 } 2151 2152 /* 2153 * The old pages are locked, so they won't change anymore. 2154 */ 2155 index = start; 2156 list_for_each_entry(page, &pagelist, lru) { 2157 while (index < page->index) { 2158 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2159 index++; 2160 } 2161 if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) { 2162 result = SCAN_COPY_MC; 2163 goto rollback; 2164 } 2165 index++; 2166 } 2167 while (index < end) { 2168 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2169 index++; 2170 } 2171 2172 if (nr_none) { 2173 struct vm_area_struct *vma; 2174 int nr_none_check = 0; 2175 2176 i_mmap_lock_read(mapping); 2177 xas_lock_irq(&xas); 2178 2179 xas_set(&xas, start); 2180 for (index = start; index < end; index++) { 2181 if (!xas_next(&xas)) { 2182 xas_store(&xas, XA_RETRY_ENTRY); 2183 if (xas_error(&xas)) { 2184 result = SCAN_STORE_FAILED; 2185 goto immap_locked; 2186 } 2187 nr_none_check++; 2188 } 2189 } 2190 2191 if (nr_none != nr_none_check) { 2192 result = SCAN_PAGE_FILLED; 2193 goto immap_locked; 2194 } 2195 2196 /* 2197 * If userspace observed a missing page in a VMA with a MODE_MISSING 2198 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that 2199 * page. If so, we need to roll back to avoid suppressing such an 2200 * event. Since wp/minor userfaultfds don't give userspace any 2201 * guarantees that the kernel doesn't fill a missing page with a zero 2202 * page, so they don't matter here. 2203 * 2204 * Any userfaultfds registered after this point will not be able to 2205 * observe any missing pages due to the previously inserted retry 2206 * entries. 2207 */ 2208 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2209 if (userfaultfd_missing(vma)) { 2210 result = SCAN_EXCEED_NONE_PTE; 2211 goto immap_locked; 2212 } 2213 } 2214 2215 immap_locked: 2216 i_mmap_unlock_read(mapping); 2217 if (result != SCAN_SUCCEED) { 2218 xas_set(&xas, start); 2219 for (index = start; index < end; index++) { 2220 if (xas_next(&xas) == XA_RETRY_ENTRY) 2221 xas_store(&xas, NULL); 2222 } 2223 2224 xas_unlock_irq(&xas); 2225 goto rollback; 2226 } 2227 } else { 2228 xas_lock_irq(&xas); 2229 } 2230 2231 nr = thp_nr_pages(hpage); 2232 if (is_shmem) 2233 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 2234 else 2235 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 2236 2237 if (nr_none) { 2238 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2239 /* nr_none is always 0 for non-shmem. */ 2240 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2241 } 2242 2243 /* 2244 * Mark hpage as uptodate before inserting it into the page cache so 2245 * that it isn't mistaken for an fallocated but unwritten page. 2246 */ 2247 folio = page_folio(hpage); 2248 folio_mark_uptodate(folio); 2249 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2250 2251 if (is_shmem) 2252 folio_mark_dirty(folio); 2253 folio_add_lru(folio); 2254 2255 /* Join all the small entries into a single multi-index entry. */ 2256 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2257 xas_store(&xas, hpage); 2258 WARN_ON_ONCE(xas_error(&xas)); 2259 xas_unlock_irq(&xas); 2260 2261 /* 2262 * Remove pte page tables, so we can re-fault the page as huge. 2263 */ 2264 result = retract_page_tables(mapping, start, mm, addr, hpage, 2265 cc); 2266 unlock_page(hpage); 2267 2268 /* 2269 * The collapse has succeeded, so free the old pages. 2270 */ 2271 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2272 list_del(&page->lru); 2273 page->mapping = NULL; 2274 ClearPageActive(page); 2275 ClearPageUnevictable(page); 2276 unlock_page(page); 2277 folio_put_refs(page_folio(page), 3); 2278 } 2279 2280 goto out; 2281 2282 rollback: 2283 /* Something went wrong: roll back page cache changes */ 2284 if (nr_none) { 2285 xas_lock_irq(&xas); 2286 mapping->nrpages -= nr_none; 2287 xas_unlock_irq(&xas); 2288 shmem_uncharge(mapping->host, nr_none); 2289 } 2290 2291 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2292 list_del(&page->lru); 2293 unlock_page(page); 2294 putback_lru_page(page); 2295 put_page(page); 2296 } 2297 /* 2298 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2299 * file only. This undo is not needed unless failure is 2300 * due to SCAN_COPY_MC. 2301 */ 2302 if (!is_shmem && result == SCAN_COPY_MC) { 2303 filemap_nr_thps_dec(mapping); 2304 /* 2305 * Paired with smp_mb() in do_dentry_open() to 2306 * ensure the update to nr_thps is visible. 2307 */ 2308 smp_mb(); 2309 } 2310 2311 hpage->mapping = NULL; 2312 2313 unlock_page(hpage); 2314 put_page(hpage); 2315 out: 2316 VM_BUG_ON(!list_empty(&pagelist)); 2317 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2318 return result; 2319 } 2320 2321 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2322 struct file *file, pgoff_t start, 2323 struct collapse_control *cc) 2324 { 2325 struct page *page = NULL; 2326 struct address_space *mapping = file->f_mapping; 2327 XA_STATE(xas, &mapping->i_pages, start); 2328 int present, swap; 2329 int node = NUMA_NO_NODE; 2330 int result = SCAN_SUCCEED; 2331 2332 present = 0; 2333 swap = 0; 2334 memset(cc->node_load, 0, sizeof(cc->node_load)); 2335 nodes_clear(cc->alloc_nmask); 2336 rcu_read_lock(); 2337 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2338 if (xas_retry(&xas, page)) 2339 continue; 2340 2341 if (xa_is_value(page)) { 2342 ++swap; 2343 if (cc->is_khugepaged && 2344 swap > khugepaged_max_ptes_swap) { 2345 result = SCAN_EXCEED_SWAP_PTE; 2346 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2347 break; 2348 } 2349 continue; 2350 } 2351 2352 /* 2353 * TODO: khugepaged should compact smaller compound pages 2354 * into a PMD sized page 2355 */ 2356 if (PageTransCompound(page)) { 2357 struct page *head = compound_head(page); 2358 2359 result = compound_order(head) == HPAGE_PMD_ORDER && 2360 head->index == start 2361 /* Maybe PMD-mapped */ 2362 ? SCAN_PTE_MAPPED_HUGEPAGE 2363 : SCAN_PAGE_COMPOUND; 2364 /* 2365 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2366 * by the caller won't touch the page cache, and so 2367 * it's safe to skip LRU and refcount checks before 2368 * returning. 2369 */ 2370 break; 2371 } 2372 2373 node = page_to_nid(page); 2374 if (hpage_collapse_scan_abort(node, cc)) { 2375 result = SCAN_SCAN_ABORT; 2376 break; 2377 } 2378 cc->node_load[node]++; 2379 2380 if (!PageLRU(page)) { 2381 result = SCAN_PAGE_LRU; 2382 break; 2383 } 2384 2385 if (page_count(page) != 2386 1 + page_mapcount(page) + page_has_private(page)) { 2387 result = SCAN_PAGE_COUNT; 2388 break; 2389 } 2390 2391 /* 2392 * We probably should check if the page is referenced here, but 2393 * nobody would transfer pte_young() to PageReferenced() for us. 2394 * And rmap walk here is just too costly... 2395 */ 2396 2397 present++; 2398 2399 if (need_resched()) { 2400 xas_pause(&xas); 2401 cond_resched_rcu(); 2402 } 2403 } 2404 rcu_read_unlock(); 2405 2406 if (result == SCAN_SUCCEED) { 2407 if (cc->is_khugepaged && 2408 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2409 result = SCAN_EXCEED_NONE_PTE; 2410 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2411 } else { 2412 result = collapse_file(mm, addr, file, start, cc); 2413 } 2414 } 2415 2416 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2417 return result; 2418 } 2419 #else 2420 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2421 struct file *file, pgoff_t start, 2422 struct collapse_control *cc) 2423 { 2424 BUILD_BUG(); 2425 } 2426 2427 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2428 { 2429 } 2430 2431 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2432 unsigned long addr) 2433 { 2434 return false; 2435 } 2436 #endif 2437 2438 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2439 struct collapse_control *cc) 2440 __releases(&khugepaged_mm_lock) 2441 __acquires(&khugepaged_mm_lock) 2442 { 2443 struct vma_iterator vmi; 2444 struct khugepaged_mm_slot *mm_slot; 2445 struct mm_slot *slot; 2446 struct mm_struct *mm; 2447 struct vm_area_struct *vma; 2448 int progress = 0; 2449 2450 VM_BUG_ON(!pages); 2451 lockdep_assert_held(&khugepaged_mm_lock); 2452 *result = SCAN_FAIL; 2453 2454 if (khugepaged_scan.mm_slot) { 2455 mm_slot = khugepaged_scan.mm_slot; 2456 slot = &mm_slot->slot; 2457 } else { 2458 slot = list_entry(khugepaged_scan.mm_head.next, 2459 struct mm_slot, mm_node); 2460 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2461 khugepaged_scan.address = 0; 2462 khugepaged_scan.mm_slot = mm_slot; 2463 } 2464 spin_unlock(&khugepaged_mm_lock); 2465 khugepaged_collapse_pte_mapped_thps(mm_slot); 2466 2467 mm = slot->mm; 2468 /* 2469 * Don't wait for semaphore (to avoid long wait times). Just move to 2470 * the next mm on the list. 2471 */ 2472 vma = NULL; 2473 if (unlikely(!mmap_read_trylock(mm))) 2474 goto breakouterloop_mmap_lock; 2475 2476 progress++; 2477 if (unlikely(hpage_collapse_test_exit(mm))) 2478 goto breakouterloop; 2479 2480 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2481 for_each_vma(vmi, vma) { 2482 unsigned long hstart, hend; 2483 2484 cond_resched(); 2485 if (unlikely(hpage_collapse_test_exit(mm))) { 2486 progress++; 2487 break; 2488 } 2489 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2490 skip: 2491 progress++; 2492 continue; 2493 } 2494 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2495 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2496 if (khugepaged_scan.address > hend) 2497 goto skip; 2498 if (khugepaged_scan.address < hstart) 2499 khugepaged_scan.address = hstart; 2500 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2501 2502 while (khugepaged_scan.address < hend) { 2503 bool mmap_locked = true; 2504 2505 cond_resched(); 2506 if (unlikely(hpage_collapse_test_exit(mm))) 2507 goto breakouterloop; 2508 2509 VM_BUG_ON(khugepaged_scan.address < hstart || 2510 khugepaged_scan.address + HPAGE_PMD_SIZE > 2511 hend); 2512 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2513 struct file *file = get_file(vma->vm_file); 2514 pgoff_t pgoff = linear_page_index(vma, 2515 khugepaged_scan.address); 2516 2517 mmap_read_unlock(mm); 2518 *result = hpage_collapse_scan_file(mm, 2519 khugepaged_scan.address, 2520 file, pgoff, cc); 2521 mmap_locked = false; 2522 fput(file); 2523 } else { 2524 *result = hpage_collapse_scan_pmd(mm, vma, 2525 khugepaged_scan.address, 2526 &mmap_locked, 2527 cc); 2528 } 2529 switch (*result) { 2530 case SCAN_PTE_MAPPED_HUGEPAGE: { 2531 pmd_t *pmd; 2532 2533 *result = find_pmd_or_thp_or_none(mm, 2534 khugepaged_scan.address, 2535 &pmd); 2536 if (*result != SCAN_SUCCEED) 2537 break; 2538 if (!khugepaged_add_pte_mapped_thp(mm, 2539 khugepaged_scan.address)) 2540 break; 2541 } fallthrough; 2542 case SCAN_SUCCEED: 2543 ++khugepaged_pages_collapsed; 2544 break; 2545 default: 2546 break; 2547 } 2548 2549 /* move to next address */ 2550 khugepaged_scan.address += HPAGE_PMD_SIZE; 2551 progress += HPAGE_PMD_NR; 2552 if (!mmap_locked) 2553 /* 2554 * We released mmap_lock so break loop. Note 2555 * that we drop mmap_lock before all hugepage 2556 * allocations, so if allocation fails, we are 2557 * guaranteed to break here and report the 2558 * correct result back to caller. 2559 */ 2560 goto breakouterloop_mmap_lock; 2561 if (progress >= pages) 2562 goto breakouterloop; 2563 } 2564 } 2565 breakouterloop: 2566 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2567 breakouterloop_mmap_lock: 2568 2569 spin_lock(&khugepaged_mm_lock); 2570 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2571 /* 2572 * Release the current mm_slot if this mm is about to die, or 2573 * if we scanned all vmas of this mm. 2574 */ 2575 if (hpage_collapse_test_exit(mm) || !vma) { 2576 /* 2577 * Make sure that if mm_users is reaching zero while 2578 * khugepaged runs here, khugepaged_exit will find 2579 * mm_slot not pointing to the exiting mm. 2580 */ 2581 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2582 slot = list_entry(slot->mm_node.next, 2583 struct mm_slot, mm_node); 2584 khugepaged_scan.mm_slot = 2585 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2586 khugepaged_scan.address = 0; 2587 } else { 2588 khugepaged_scan.mm_slot = NULL; 2589 khugepaged_full_scans++; 2590 } 2591 2592 collect_mm_slot(mm_slot); 2593 } 2594 2595 return progress; 2596 } 2597 2598 static int khugepaged_has_work(void) 2599 { 2600 return !list_empty(&khugepaged_scan.mm_head) && 2601 hugepage_flags_enabled(); 2602 } 2603 2604 static int khugepaged_wait_event(void) 2605 { 2606 return !list_empty(&khugepaged_scan.mm_head) || 2607 kthread_should_stop(); 2608 } 2609 2610 static void khugepaged_do_scan(struct collapse_control *cc) 2611 { 2612 unsigned int progress = 0, pass_through_head = 0; 2613 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2614 bool wait = true; 2615 int result = SCAN_SUCCEED; 2616 2617 lru_add_drain_all(); 2618 2619 while (true) { 2620 cond_resched(); 2621 2622 if (unlikely(kthread_should_stop() || try_to_freeze())) 2623 break; 2624 2625 spin_lock(&khugepaged_mm_lock); 2626 if (!khugepaged_scan.mm_slot) 2627 pass_through_head++; 2628 if (khugepaged_has_work() && 2629 pass_through_head < 2) 2630 progress += khugepaged_scan_mm_slot(pages - progress, 2631 &result, cc); 2632 else 2633 progress = pages; 2634 spin_unlock(&khugepaged_mm_lock); 2635 2636 if (progress >= pages) 2637 break; 2638 2639 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2640 /* 2641 * If fail to allocate the first time, try to sleep for 2642 * a while. When hit again, cancel the scan. 2643 */ 2644 if (!wait) 2645 break; 2646 wait = false; 2647 khugepaged_alloc_sleep(); 2648 } 2649 } 2650 } 2651 2652 static bool khugepaged_should_wakeup(void) 2653 { 2654 return kthread_should_stop() || 2655 time_after_eq(jiffies, khugepaged_sleep_expire); 2656 } 2657 2658 static void khugepaged_wait_work(void) 2659 { 2660 if (khugepaged_has_work()) { 2661 const unsigned long scan_sleep_jiffies = 2662 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2663 2664 if (!scan_sleep_jiffies) 2665 return; 2666 2667 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2668 wait_event_freezable_timeout(khugepaged_wait, 2669 khugepaged_should_wakeup(), 2670 scan_sleep_jiffies); 2671 return; 2672 } 2673 2674 if (hugepage_flags_enabled()) 2675 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2676 } 2677 2678 static int khugepaged(void *none) 2679 { 2680 struct khugepaged_mm_slot *mm_slot; 2681 2682 set_freezable(); 2683 set_user_nice(current, MAX_NICE); 2684 2685 while (!kthread_should_stop()) { 2686 khugepaged_do_scan(&khugepaged_collapse_control); 2687 khugepaged_wait_work(); 2688 } 2689 2690 spin_lock(&khugepaged_mm_lock); 2691 mm_slot = khugepaged_scan.mm_slot; 2692 khugepaged_scan.mm_slot = NULL; 2693 if (mm_slot) 2694 collect_mm_slot(mm_slot); 2695 spin_unlock(&khugepaged_mm_lock); 2696 return 0; 2697 } 2698 2699 static void set_recommended_min_free_kbytes(void) 2700 { 2701 struct zone *zone; 2702 int nr_zones = 0; 2703 unsigned long recommended_min; 2704 2705 if (!hugepage_flags_enabled()) { 2706 calculate_min_free_kbytes(); 2707 goto update_wmarks; 2708 } 2709 2710 for_each_populated_zone(zone) { 2711 /* 2712 * We don't need to worry about fragmentation of 2713 * ZONE_MOVABLE since it only has movable pages. 2714 */ 2715 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2716 continue; 2717 2718 nr_zones++; 2719 } 2720 2721 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2722 recommended_min = pageblock_nr_pages * nr_zones * 2; 2723 2724 /* 2725 * Make sure that on average at least two pageblocks are almost free 2726 * of another type, one for a migratetype to fall back to and a 2727 * second to avoid subsequent fallbacks of other types There are 3 2728 * MIGRATE_TYPES we care about. 2729 */ 2730 recommended_min += pageblock_nr_pages * nr_zones * 2731 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2732 2733 /* don't ever allow to reserve more than 5% of the lowmem */ 2734 recommended_min = min(recommended_min, 2735 (unsigned long) nr_free_buffer_pages() / 20); 2736 recommended_min <<= (PAGE_SHIFT-10); 2737 2738 if (recommended_min > min_free_kbytes) { 2739 if (user_min_free_kbytes >= 0) 2740 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2741 min_free_kbytes, recommended_min); 2742 2743 min_free_kbytes = recommended_min; 2744 } 2745 2746 update_wmarks: 2747 setup_per_zone_wmarks(); 2748 } 2749 2750 int start_stop_khugepaged(void) 2751 { 2752 int err = 0; 2753 2754 mutex_lock(&khugepaged_mutex); 2755 if (hugepage_flags_enabled()) { 2756 if (!khugepaged_thread) 2757 khugepaged_thread = kthread_run(khugepaged, NULL, 2758 "khugepaged"); 2759 if (IS_ERR(khugepaged_thread)) { 2760 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2761 err = PTR_ERR(khugepaged_thread); 2762 khugepaged_thread = NULL; 2763 goto fail; 2764 } 2765 2766 if (!list_empty(&khugepaged_scan.mm_head)) 2767 wake_up_interruptible(&khugepaged_wait); 2768 } else if (khugepaged_thread) { 2769 kthread_stop(khugepaged_thread); 2770 khugepaged_thread = NULL; 2771 } 2772 set_recommended_min_free_kbytes(); 2773 fail: 2774 mutex_unlock(&khugepaged_mutex); 2775 return err; 2776 } 2777 2778 void khugepaged_min_free_kbytes_update(void) 2779 { 2780 mutex_lock(&khugepaged_mutex); 2781 if (hugepage_flags_enabled() && khugepaged_thread) 2782 set_recommended_min_free_kbytes(); 2783 mutex_unlock(&khugepaged_mutex); 2784 } 2785 2786 bool current_is_khugepaged(void) 2787 { 2788 return kthread_func(current) == khugepaged; 2789 } 2790 2791 static int madvise_collapse_errno(enum scan_result r) 2792 { 2793 /* 2794 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2795 * actionable feedback to caller, so they may take an appropriate 2796 * fallback measure depending on the nature of the failure. 2797 */ 2798 switch (r) { 2799 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2800 return -ENOMEM; 2801 case SCAN_CGROUP_CHARGE_FAIL: 2802 case SCAN_EXCEED_NONE_PTE: 2803 return -EBUSY; 2804 /* Resource temporary unavailable - trying again might succeed */ 2805 case SCAN_PAGE_COUNT: 2806 case SCAN_PAGE_LOCK: 2807 case SCAN_PAGE_LRU: 2808 case SCAN_DEL_PAGE_LRU: 2809 case SCAN_PAGE_FILLED: 2810 return -EAGAIN; 2811 /* 2812 * Other: Trying again likely not to succeed / error intrinsic to 2813 * specified memory range. khugepaged likely won't be able to collapse 2814 * either. 2815 */ 2816 default: 2817 return -EINVAL; 2818 } 2819 } 2820 2821 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2822 unsigned long start, unsigned long end) 2823 { 2824 struct collapse_control *cc; 2825 struct mm_struct *mm = vma->vm_mm; 2826 unsigned long hstart, hend, addr; 2827 int thps = 0, last_fail = SCAN_FAIL; 2828 bool mmap_locked = true; 2829 2830 BUG_ON(vma->vm_start > start); 2831 BUG_ON(vma->vm_end < end); 2832 2833 *prev = vma; 2834 2835 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2836 return -EINVAL; 2837 2838 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2839 if (!cc) 2840 return -ENOMEM; 2841 cc->is_khugepaged = false; 2842 2843 mmgrab(mm); 2844 lru_add_drain_all(); 2845 2846 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2847 hend = end & HPAGE_PMD_MASK; 2848 2849 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2850 int result = SCAN_FAIL; 2851 2852 if (!mmap_locked) { 2853 cond_resched(); 2854 mmap_read_lock(mm); 2855 mmap_locked = true; 2856 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2857 cc); 2858 if (result != SCAN_SUCCEED) { 2859 last_fail = result; 2860 goto out_nolock; 2861 } 2862 2863 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2864 } 2865 mmap_assert_locked(mm); 2866 memset(cc->node_load, 0, sizeof(cc->node_load)); 2867 nodes_clear(cc->alloc_nmask); 2868 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2869 struct file *file = get_file(vma->vm_file); 2870 pgoff_t pgoff = linear_page_index(vma, addr); 2871 2872 mmap_read_unlock(mm); 2873 mmap_locked = false; 2874 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2875 cc); 2876 fput(file); 2877 } else { 2878 result = hpage_collapse_scan_pmd(mm, vma, addr, 2879 &mmap_locked, cc); 2880 } 2881 if (!mmap_locked) 2882 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2883 2884 handle_result: 2885 switch (result) { 2886 case SCAN_SUCCEED: 2887 case SCAN_PMD_MAPPED: 2888 ++thps; 2889 break; 2890 case SCAN_PTE_MAPPED_HUGEPAGE: 2891 BUG_ON(mmap_locked); 2892 BUG_ON(*prev); 2893 mmap_write_lock(mm); 2894 result = collapse_pte_mapped_thp(mm, addr, true); 2895 mmap_write_unlock(mm); 2896 goto handle_result; 2897 /* Whitelisted set of results where continuing OK */ 2898 case SCAN_PMD_NULL: 2899 case SCAN_PTE_NON_PRESENT: 2900 case SCAN_PTE_UFFD_WP: 2901 case SCAN_PAGE_RO: 2902 case SCAN_LACK_REFERENCED_PAGE: 2903 case SCAN_PAGE_NULL: 2904 case SCAN_PAGE_COUNT: 2905 case SCAN_PAGE_LOCK: 2906 case SCAN_PAGE_COMPOUND: 2907 case SCAN_PAGE_LRU: 2908 case SCAN_DEL_PAGE_LRU: 2909 last_fail = result; 2910 break; 2911 default: 2912 last_fail = result; 2913 /* Other error, exit */ 2914 goto out_maybelock; 2915 } 2916 } 2917 2918 out_maybelock: 2919 /* Caller expects us to hold mmap_lock on return */ 2920 if (!mmap_locked) 2921 mmap_read_lock(mm); 2922 out_nolock: 2923 mmap_assert_locked(mm); 2924 mmdrop(mm); 2925 kfree(cc); 2926 2927 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2928 : madvise_collapse_errno(last_fail); 2929 } 2930