xref: /openbmc/linux/mm/khugepaged.c (revision 2f55f070e5b80f130f5b161931ca91ce9cb2e625)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 
27 enum scan_result {
28 	SCAN_FAIL,
29 	SCAN_SUCCEED,
30 	SCAN_PMD_NULL,
31 	SCAN_EXCEED_NONE_PTE,
32 	SCAN_EXCEED_SWAP_PTE,
33 	SCAN_EXCEED_SHARED_PTE,
34 	SCAN_PTE_NON_PRESENT,
35 	SCAN_PTE_UFFD_WP,
36 	SCAN_PAGE_RO,
37 	SCAN_LACK_REFERENCED_PAGE,
38 	SCAN_PAGE_NULL,
39 	SCAN_SCAN_ABORT,
40 	SCAN_PAGE_COUNT,
41 	SCAN_PAGE_LRU,
42 	SCAN_PAGE_LOCK,
43 	SCAN_PAGE_ANON,
44 	SCAN_PAGE_COMPOUND,
45 	SCAN_ANY_PROCESS,
46 	SCAN_VMA_NULL,
47 	SCAN_VMA_CHECK,
48 	SCAN_ADDRESS_RANGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61 
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83 
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85 
86 #define MAX_PTE_MAPPED_THP 8
87 
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97 	struct hlist_node hash;
98 	struct list_head mm_node;
99 	struct mm_struct *mm;
100 
101 	/* pte-mapped THP in this mm */
102 	int nr_pte_mapped_thp;
103 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 	       scan_sleep_millisecs_store);
152 
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 					  struct kobj_attribute *attr,
155 					  char *buf)
156 {
157 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159 
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 					   struct kobj_attribute *attr,
162 					   const char *buf, size_t count)
163 {
164 	unsigned int msecs;
165 	int err;
166 
167 	err = kstrtouint(buf, 10, &msecs);
168 	if (err)
169 		return -EINVAL;
170 
171 	khugepaged_alloc_sleep_millisecs = msecs;
172 	khugepaged_sleep_expire = 0;
173 	wake_up_interruptible(&khugepaged_wait);
174 
175 	return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 	       alloc_sleep_millisecs_store);
180 
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 				  struct kobj_attribute *attr,
183 				  char *buf)
184 {
185 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 				   struct kobj_attribute *attr,
189 				   const char *buf, size_t count)
190 {
191 	unsigned int pages;
192 	int err;
193 
194 	err = kstrtouint(buf, 10, &pages);
195 	if (err || !pages)
196 		return -EINVAL;
197 
198 	khugepaged_pages_to_scan = pages;
199 
200 	return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 	       pages_to_scan_store);
205 
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 				    struct kobj_attribute *attr,
208 				    char *buf)
209 {
210 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213 	__ATTR_RO(pages_collapsed);
214 
215 static ssize_t full_scans_show(struct kobject *kobj,
216 			       struct kobj_attribute *attr,
217 			       char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222 	__ATTR_RO(full_scans);
223 
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 				      struct kobj_attribute *attr, char *buf)
226 {
227 	return single_hugepage_flag_show(kobj, attr, buf,
228 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 				       struct kobj_attribute *attr,
232 				       const char *buf, size_t count)
233 {
234 	return single_hugepage_flag_store(kobj, attr, buf, count,
235 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238 	__ATTR(defrag, 0644, khugepaged_defrag_show,
239 	       khugepaged_defrag_store);
240 
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 					     struct kobj_attribute *attr,
251 					     char *buf)
252 {
253 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 					      struct kobj_attribute *attr,
257 					      const char *buf, size_t count)
258 {
259 	int err;
260 	unsigned long max_ptes_none;
261 
262 	err = kstrtoul(buf, 10, &max_ptes_none);
263 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
264 		return -EINVAL;
265 
266 	khugepaged_max_ptes_none = max_ptes_none;
267 
268 	return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 	       khugepaged_max_ptes_none_store);
273 
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 					     struct kobj_attribute *attr,
276 					     char *buf)
277 {
278 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280 
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 					      struct kobj_attribute *attr,
283 					      const char *buf, size_t count)
284 {
285 	int err;
286 	unsigned long max_ptes_swap;
287 
288 	err  = kstrtoul(buf, 10, &max_ptes_swap);
289 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
290 		return -EINVAL;
291 
292 	khugepaged_max_ptes_swap = max_ptes_swap;
293 
294 	return count;
295 }
296 
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 	       khugepaged_max_ptes_swap_store);
300 
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 					       struct kobj_attribute *attr,
303 					       char *buf)
304 {
305 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307 
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 					      struct kobj_attribute *attr,
310 					      const char *buf, size_t count)
311 {
312 	int err;
313 	unsigned long max_ptes_shared;
314 
315 	err  = kstrtoul(buf, 10, &max_ptes_shared);
316 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
317 		return -EINVAL;
318 
319 	khugepaged_max_ptes_shared = max_ptes_shared;
320 
321 	return count;
322 }
323 
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 	       khugepaged_max_ptes_shared_store);
327 
328 static struct attribute *khugepaged_attr[] = {
329 	&khugepaged_defrag_attr.attr,
330 	&khugepaged_max_ptes_none_attr.attr,
331 	&khugepaged_max_ptes_swap_attr.attr,
332 	&khugepaged_max_ptes_shared_attr.attr,
333 	&pages_to_scan_attr.attr,
334 	&pages_collapsed_attr.attr,
335 	&full_scans_attr.attr,
336 	&scan_sleep_millisecs_attr.attr,
337 	&alloc_sleep_millisecs_attr.attr,
338 	NULL,
339 };
340 
341 struct attribute_group khugepaged_attr_group = {
342 	.attrs = khugepaged_attr,
343 	.name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346 
347 int hugepage_madvise(struct vm_area_struct *vma,
348 		     unsigned long *vm_flags, int advice)
349 {
350 	switch (advice) {
351 	case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353 		/*
354 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 		 * can't handle this properly after s390_enable_sie, so we simply
356 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
357 		 */
358 		if (mm_has_pgste(vma->vm_mm))
359 			return 0;
360 #endif
361 		*vm_flags &= ~VM_NOHUGEPAGE;
362 		*vm_flags |= VM_HUGEPAGE;
363 		/*
364 		 * If the vma become good for khugepaged to scan,
365 		 * register it here without waiting a page fault that
366 		 * may not happen any time soon.
367 		 */
368 		khugepaged_enter_vma(vma, *vm_flags);
369 		break;
370 	case MADV_NOHUGEPAGE:
371 		*vm_flags &= ~VM_HUGEPAGE;
372 		*vm_flags |= VM_NOHUGEPAGE;
373 		/*
374 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
375 		 * this vma even if we leave the mm registered in khugepaged if
376 		 * it got registered before VM_NOHUGEPAGE was set.
377 		 */
378 		break;
379 	}
380 
381 	return 0;
382 }
383 
384 int __init khugepaged_init(void)
385 {
386 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
387 					  sizeof(struct mm_slot),
388 					  __alignof__(struct mm_slot), 0, NULL);
389 	if (!mm_slot_cache)
390 		return -ENOMEM;
391 
392 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396 
397 	return 0;
398 }
399 
400 void __init khugepaged_destroy(void)
401 {
402 	kmem_cache_destroy(mm_slot_cache);
403 }
404 
405 static inline struct mm_slot *alloc_mm_slot(void)
406 {
407 	if (!mm_slot_cache)	/* initialization failed */
408 		return NULL;
409 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
410 }
411 
412 static inline void free_mm_slot(struct mm_slot *mm_slot)
413 {
414 	kmem_cache_free(mm_slot_cache, mm_slot);
415 }
416 
417 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
418 {
419 	struct mm_slot *mm_slot;
420 
421 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
422 		if (mm == mm_slot->mm)
423 			return mm_slot;
424 
425 	return NULL;
426 }
427 
428 static void insert_to_mm_slots_hash(struct mm_struct *mm,
429 				    struct mm_slot *mm_slot)
430 {
431 	mm_slot->mm = mm;
432 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
433 }
434 
435 static inline int khugepaged_test_exit(struct mm_struct *mm)
436 {
437 	return atomic_read(&mm->mm_users) == 0;
438 }
439 
440 bool hugepage_vma_check(struct vm_area_struct *vma,
441 			unsigned long vm_flags)
442 {
443 	if (!transhuge_vma_enabled(vma, vm_flags))
444 		return false;
445 
446 	if (vm_flags & VM_NO_KHUGEPAGED)
447 		return false;
448 
449 	/* Don't run khugepaged against DAX vma */
450 	if (vma_is_dax(vma))
451 		return false;
452 
453 	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
454 				vma->vm_pgoff, HPAGE_PMD_NR))
455 		return false;
456 
457 	/* Enabled via shmem mount options or sysfs settings. */
458 	if (shmem_file(vma->vm_file))
459 		return shmem_huge_enabled(vma);
460 
461 	/* THP settings require madvise. */
462 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
463 		return false;
464 
465 	/* Only regular file is valid */
466 	if (file_thp_enabled(vma))
467 		return true;
468 
469 	if (!vma->anon_vma || !vma_is_anonymous(vma))
470 		return false;
471 	if (vma_is_temporary_stack(vma))
472 		return false;
473 
474 	return true;
475 }
476 
477 void __khugepaged_enter(struct mm_struct *mm)
478 {
479 	struct mm_slot *mm_slot;
480 	int wakeup;
481 
482 	mm_slot = alloc_mm_slot();
483 	if (!mm_slot)
484 		return;
485 
486 	/* __khugepaged_exit() must not run from under us */
487 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
488 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
489 		free_mm_slot(mm_slot);
490 		return;
491 	}
492 
493 	spin_lock(&khugepaged_mm_lock);
494 	insert_to_mm_slots_hash(mm, mm_slot);
495 	/*
496 	 * Insert just behind the scanning cursor, to let the area settle
497 	 * down a little.
498 	 */
499 	wakeup = list_empty(&khugepaged_scan.mm_head);
500 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
501 	spin_unlock(&khugepaged_mm_lock);
502 
503 	mmgrab(mm);
504 	if (wakeup)
505 		wake_up_interruptible(&khugepaged_wait);
506 }
507 
508 void khugepaged_enter_vma(struct vm_area_struct *vma,
509 			  unsigned long vm_flags)
510 {
511 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
512 	    khugepaged_enabled() &&
513 	    (((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
514 	     (vma->vm_end & HPAGE_PMD_MASK))) {
515 		if (hugepage_vma_check(vma, vm_flags))
516 			__khugepaged_enter(vma->vm_mm);
517 	}
518 }
519 
520 void __khugepaged_exit(struct mm_struct *mm)
521 {
522 	struct mm_slot *mm_slot;
523 	int free = 0;
524 
525 	spin_lock(&khugepaged_mm_lock);
526 	mm_slot = get_mm_slot(mm);
527 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
528 		hash_del(&mm_slot->hash);
529 		list_del(&mm_slot->mm_node);
530 		free = 1;
531 	}
532 	spin_unlock(&khugepaged_mm_lock);
533 
534 	if (free) {
535 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
536 		free_mm_slot(mm_slot);
537 		mmdrop(mm);
538 	} else if (mm_slot) {
539 		/*
540 		 * This is required to serialize against
541 		 * khugepaged_test_exit() (which is guaranteed to run
542 		 * under mmap sem read mode). Stop here (after we
543 		 * return all pagetables will be destroyed) until
544 		 * khugepaged has finished working on the pagetables
545 		 * under the mmap_lock.
546 		 */
547 		mmap_write_lock(mm);
548 		mmap_write_unlock(mm);
549 	}
550 }
551 
552 static void release_pte_page(struct page *page)
553 {
554 	mod_node_page_state(page_pgdat(page),
555 			NR_ISOLATED_ANON + page_is_file_lru(page),
556 			-compound_nr(page));
557 	unlock_page(page);
558 	putback_lru_page(page);
559 }
560 
561 static void release_pte_pages(pte_t *pte, pte_t *_pte,
562 		struct list_head *compound_pagelist)
563 {
564 	struct page *page, *tmp;
565 
566 	while (--_pte >= pte) {
567 		pte_t pteval = *_pte;
568 
569 		page = pte_page(pteval);
570 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
571 				!PageCompound(page))
572 			release_pte_page(page);
573 	}
574 
575 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
576 		list_del(&page->lru);
577 		release_pte_page(page);
578 	}
579 }
580 
581 static bool is_refcount_suitable(struct page *page)
582 {
583 	int expected_refcount;
584 
585 	expected_refcount = total_mapcount(page);
586 	if (PageSwapCache(page))
587 		expected_refcount += compound_nr(page);
588 
589 	return page_count(page) == expected_refcount;
590 }
591 
592 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
593 					unsigned long address,
594 					pte_t *pte,
595 					struct list_head *compound_pagelist)
596 {
597 	struct page *page = NULL;
598 	pte_t *_pte;
599 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
600 	bool writable = false;
601 
602 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
603 	     _pte++, address += PAGE_SIZE) {
604 		pte_t pteval = *_pte;
605 		if (pte_none(pteval) || (pte_present(pteval) &&
606 				is_zero_pfn(pte_pfn(pteval)))) {
607 			if (!userfaultfd_armed(vma) &&
608 			    ++none_or_zero <= khugepaged_max_ptes_none) {
609 				continue;
610 			} else {
611 				result = SCAN_EXCEED_NONE_PTE;
612 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
613 				goto out;
614 			}
615 		}
616 		if (!pte_present(pteval)) {
617 			result = SCAN_PTE_NON_PRESENT;
618 			goto out;
619 		}
620 		page = vm_normal_page(vma, address, pteval);
621 		if (unlikely(!page)) {
622 			result = SCAN_PAGE_NULL;
623 			goto out;
624 		}
625 
626 		VM_BUG_ON_PAGE(!PageAnon(page), page);
627 
628 		if (page_mapcount(page) > 1 &&
629 				++shared > khugepaged_max_ptes_shared) {
630 			result = SCAN_EXCEED_SHARED_PTE;
631 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
632 			goto out;
633 		}
634 
635 		if (PageCompound(page)) {
636 			struct page *p;
637 			page = compound_head(page);
638 
639 			/*
640 			 * Check if we have dealt with the compound page
641 			 * already
642 			 */
643 			list_for_each_entry(p, compound_pagelist, lru) {
644 				if (page == p)
645 					goto next;
646 			}
647 		}
648 
649 		/*
650 		 * We can do it before isolate_lru_page because the
651 		 * page can't be freed from under us. NOTE: PG_lock
652 		 * is needed to serialize against split_huge_page
653 		 * when invoked from the VM.
654 		 */
655 		if (!trylock_page(page)) {
656 			result = SCAN_PAGE_LOCK;
657 			goto out;
658 		}
659 
660 		/*
661 		 * Check if the page has any GUP (or other external) pins.
662 		 *
663 		 * The page table that maps the page has been already unlinked
664 		 * from the page table tree and this process cannot get
665 		 * an additional pin on the page.
666 		 *
667 		 * New pins can come later if the page is shared across fork,
668 		 * but not from this process. The other process cannot write to
669 		 * the page, only trigger CoW.
670 		 */
671 		if (!is_refcount_suitable(page)) {
672 			unlock_page(page);
673 			result = SCAN_PAGE_COUNT;
674 			goto out;
675 		}
676 
677 		/*
678 		 * Isolate the page to avoid collapsing an hugepage
679 		 * currently in use by the VM.
680 		 */
681 		if (isolate_lru_page(page)) {
682 			unlock_page(page);
683 			result = SCAN_DEL_PAGE_LRU;
684 			goto out;
685 		}
686 		mod_node_page_state(page_pgdat(page),
687 				NR_ISOLATED_ANON + page_is_file_lru(page),
688 				compound_nr(page));
689 		VM_BUG_ON_PAGE(!PageLocked(page), page);
690 		VM_BUG_ON_PAGE(PageLRU(page), page);
691 
692 		if (PageCompound(page))
693 			list_add_tail(&page->lru, compound_pagelist);
694 next:
695 		/* There should be enough young pte to collapse the page */
696 		if (pte_young(pteval) ||
697 		    page_is_young(page) || PageReferenced(page) ||
698 		    mmu_notifier_test_young(vma->vm_mm, address))
699 			referenced++;
700 
701 		if (pte_write(pteval))
702 			writable = true;
703 	}
704 
705 	if (unlikely(!writable)) {
706 		result = SCAN_PAGE_RO;
707 	} else if (unlikely(!referenced)) {
708 		result = SCAN_LACK_REFERENCED_PAGE;
709 	} else {
710 		result = SCAN_SUCCEED;
711 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
712 						    referenced, writable, result);
713 		return 1;
714 	}
715 out:
716 	release_pte_pages(pte, _pte, compound_pagelist);
717 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
718 					    referenced, writable, result);
719 	return 0;
720 }
721 
722 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
723 				      struct vm_area_struct *vma,
724 				      unsigned long address,
725 				      spinlock_t *ptl,
726 				      struct list_head *compound_pagelist)
727 {
728 	struct page *src_page, *tmp;
729 	pte_t *_pte;
730 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
731 				_pte++, page++, address += PAGE_SIZE) {
732 		pte_t pteval = *_pte;
733 
734 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
735 			clear_user_highpage(page, address);
736 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
737 			if (is_zero_pfn(pte_pfn(pteval))) {
738 				/*
739 				 * ptl mostly unnecessary.
740 				 */
741 				spin_lock(ptl);
742 				ptep_clear(vma->vm_mm, address, _pte);
743 				spin_unlock(ptl);
744 			}
745 		} else {
746 			src_page = pte_page(pteval);
747 			copy_user_highpage(page, src_page, address, vma);
748 			if (!PageCompound(src_page))
749 				release_pte_page(src_page);
750 			/*
751 			 * ptl mostly unnecessary, but preempt has to
752 			 * be disabled to update the per-cpu stats
753 			 * inside page_remove_rmap().
754 			 */
755 			spin_lock(ptl);
756 			ptep_clear(vma->vm_mm, address, _pte);
757 			page_remove_rmap(src_page, vma, false);
758 			spin_unlock(ptl);
759 			free_page_and_swap_cache(src_page);
760 		}
761 	}
762 
763 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
764 		list_del(&src_page->lru);
765 		release_pte_page(src_page);
766 	}
767 }
768 
769 static void khugepaged_alloc_sleep(void)
770 {
771 	DEFINE_WAIT(wait);
772 
773 	add_wait_queue(&khugepaged_wait, &wait);
774 	freezable_schedule_timeout_interruptible(
775 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
776 	remove_wait_queue(&khugepaged_wait, &wait);
777 }
778 
779 static int khugepaged_node_load[MAX_NUMNODES];
780 
781 static bool khugepaged_scan_abort(int nid)
782 {
783 	int i;
784 
785 	/*
786 	 * If node_reclaim_mode is disabled, then no extra effort is made to
787 	 * allocate memory locally.
788 	 */
789 	if (!node_reclaim_enabled())
790 		return false;
791 
792 	/* If there is a count for this node already, it must be acceptable */
793 	if (khugepaged_node_load[nid])
794 		return false;
795 
796 	for (i = 0; i < MAX_NUMNODES; i++) {
797 		if (!khugepaged_node_load[i])
798 			continue;
799 		if (node_distance(nid, i) > node_reclaim_distance)
800 			return true;
801 	}
802 	return false;
803 }
804 
805 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
806 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
807 {
808 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
809 }
810 
811 #ifdef CONFIG_NUMA
812 static int khugepaged_find_target_node(void)
813 {
814 	static int last_khugepaged_target_node = NUMA_NO_NODE;
815 	int nid, target_node = 0, max_value = 0;
816 
817 	/* find first node with max normal pages hit */
818 	for (nid = 0; nid < MAX_NUMNODES; nid++)
819 		if (khugepaged_node_load[nid] > max_value) {
820 			max_value = khugepaged_node_load[nid];
821 			target_node = nid;
822 		}
823 
824 	/* do some balance if several nodes have the same hit record */
825 	if (target_node <= last_khugepaged_target_node)
826 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
827 				nid++)
828 			if (max_value == khugepaged_node_load[nid]) {
829 				target_node = nid;
830 				break;
831 			}
832 
833 	last_khugepaged_target_node = target_node;
834 	return target_node;
835 }
836 
837 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
838 {
839 	if (IS_ERR(*hpage)) {
840 		if (!*wait)
841 			return false;
842 
843 		*wait = false;
844 		*hpage = NULL;
845 		khugepaged_alloc_sleep();
846 	} else if (*hpage) {
847 		put_page(*hpage);
848 		*hpage = NULL;
849 	}
850 
851 	return true;
852 }
853 
854 static struct page *
855 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
856 {
857 	VM_BUG_ON_PAGE(*hpage, *hpage);
858 
859 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
860 	if (unlikely(!*hpage)) {
861 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
862 		*hpage = ERR_PTR(-ENOMEM);
863 		return NULL;
864 	}
865 
866 	prep_transhuge_page(*hpage);
867 	count_vm_event(THP_COLLAPSE_ALLOC);
868 	return *hpage;
869 }
870 #else
871 static int khugepaged_find_target_node(void)
872 {
873 	return 0;
874 }
875 
876 static inline struct page *alloc_khugepaged_hugepage(void)
877 {
878 	struct page *page;
879 
880 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
881 			   HPAGE_PMD_ORDER);
882 	if (page)
883 		prep_transhuge_page(page);
884 	return page;
885 }
886 
887 static struct page *khugepaged_alloc_hugepage(bool *wait)
888 {
889 	struct page *hpage;
890 
891 	do {
892 		hpage = alloc_khugepaged_hugepage();
893 		if (!hpage) {
894 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
895 			if (!*wait)
896 				return NULL;
897 
898 			*wait = false;
899 			khugepaged_alloc_sleep();
900 		} else
901 			count_vm_event(THP_COLLAPSE_ALLOC);
902 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
903 
904 	return hpage;
905 }
906 
907 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
908 {
909 	/*
910 	 * If the hpage allocated earlier was briefly exposed in page cache
911 	 * before collapse_file() failed, it is possible that racing lookups
912 	 * have not yet completed, and would then be unpleasantly surprised by
913 	 * finding the hpage reused for the same mapping at a different offset.
914 	 * Just release the previous allocation if there is any danger of that.
915 	 */
916 	if (*hpage && page_count(*hpage) > 1) {
917 		put_page(*hpage);
918 		*hpage = NULL;
919 	}
920 
921 	if (!*hpage)
922 		*hpage = khugepaged_alloc_hugepage(wait);
923 
924 	if (unlikely(!*hpage))
925 		return false;
926 
927 	return true;
928 }
929 
930 static struct page *
931 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
932 {
933 	VM_BUG_ON(!*hpage);
934 
935 	return  *hpage;
936 }
937 #endif
938 
939 /*
940  * If mmap_lock temporarily dropped, revalidate vma
941  * before taking mmap_lock.
942  * Return 0 if succeeds, otherwise return none-zero
943  * value (scan code).
944  */
945 
946 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
947 		struct vm_area_struct **vmap)
948 {
949 	struct vm_area_struct *vma;
950 	unsigned long hstart, hend;
951 
952 	if (unlikely(khugepaged_test_exit(mm)))
953 		return SCAN_ANY_PROCESS;
954 
955 	*vmap = vma = find_vma(mm, address);
956 	if (!vma)
957 		return SCAN_VMA_NULL;
958 
959 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
960 	hend = vma->vm_end & HPAGE_PMD_MASK;
961 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
962 		return SCAN_ADDRESS_RANGE;
963 	if (!hugepage_vma_check(vma, vma->vm_flags))
964 		return SCAN_VMA_CHECK;
965 	/* Anon VMA expected */
966 	if (!vma->anon_vma || !vma_is_anonymous(vma))
967 		return SCAN_VMA_CHECK;
968 	return 0;
969 }
970 
971 /*
972  * Bring missing pages in from swap, to complete THP collapse.
973  * Only done if khugepaged_scan_pmd believes it is worthwhile.
974  *
975  * Called and returns without pte mapped or spinlocks held.
976  * Note that if false is returned, mmap_lock will be released.
977  */
978 
979 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
980 					struct vm_area_struct *vma,
981 					unsigned long haddr, pmd_t *pmd,
982 					int referenced)
983 {
984 	int swapped_in = 0;
985 	vm_fault_t ret = 0;
986 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
987 
988 	for (address = haddr; address < end; address += PAGE_SIZE) {
989 		struct vm_fault vmf = {
990 			.vma = vma,
991 			.address = address,
992 			.pgoff = linear_page_index(vma, haddr),
993 			.flags = FAULT_FLAG_ALLOW_RETRY,
994 			.pmd = pmd,
995 		};
996 
997 		vmf.pte = pte_offset_map(pmd, address);
998 		vmf.orig_pte = *vmf.pte;
999 		if (!is_swap_pte(vmf.orig_pte)) {
1000 			pte_unmap(vmf.pte);
1001 			continue;
1002 		}
1003 		ret = do_swap_page(&vmf);
1004 
1005 		/*
1006 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1007 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1008 		 * we do not retry here and swap entry will remain in pagetable
1009 		 * resulting in later failure.
1010 		 */
1011 		if (ret & VM_FAULT_RETRY) {
1012 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1013 			return false;
1014 		}
1015 		if (ret & VM_FAULT_ERROR) {
1016 			mmap_read_unlock(mm);
1017 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1018 			return false;
1019 		}
1020 		swapped_in++;
1021 	}
1022 
1023 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1024 	if (swapped_in)
1025 		lru_add_drain();
1026 
1027 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1028 	return true;
1029 }
1030 
1031 static void collapse_huge_page(struct mm_struct *mm,
1032 				   unsigned long address,
1033 				   struct page **hpage,
1034 				   int node, int referenced, int unmapped)
1035 {
1036 	LIST_HEAD(compound_pagelist);
1037 	pmd_t *pmd, _pmd;
1038 	pte_t *pte;
1039 	pgtable_t pgtable;
1040 	struct page *new_page;
1041 	spinlock_t *pmd_ptl, *pte_ptl;
1042 	int isolated = 0, result = 0;
1043 	struct vm_area_struct *vma;
1044 	struct mmu_notifier_range range;
1045 	gfp_t gfp;
1046 
1047 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1048 
1049 	/* Only allocate from the target node */
1050 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1051 
1052 	/*
1053 	 * Before allocating the hugepage, release the mmap_lock read lock.
1054 	 * The allocation can take potentially a long time if it involves
1055 	 * sync compaction, and we do not need to hold the mmap_lock during
1056 	 * that. We will recheck the vma after taking it again in write mode.
1057 	 */
1058 	mmap_read_unlock(mm);
1059 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1060 	if (!new_page) {
1061 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1062 		goto out_nolock;
1063 	}
1064 
1065 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1066 		result = SCAN_CGROUP_CHARGE_FAIL;
1067 		goto out_nolock;
1068 	}
1069 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1070 
1071 	mmap_read_lock(mm);
1072 	result = hugepage_vma_revalidate(mm, address, &vma);
1073 	if (result) {
1074 		mmap_read_unlock(mm);
1075 		goto out_nolock;
1076 	}
1077 
1078 	pmd = mm_find_pmd(mm, address);
1079 	if (!pmd) {
1080 		result = SCAN_PMD_NULL;
1081 		mmap_read_unlock(mm);
1082 		goto out_nolock;
1083 	}
1084 
1085 	/*
1086 	 * __collapse_huge_page_swapin will return with mmap_lock released
1087 	 * when it fails. So we jump out_nolock directly in that case.
1088 	 * Continuing to collapse causes inconsistency.
1089 	 */
1090 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1091 						     pmd, referenced)) {
1092 		goto out_nolock;
1093 	}
1094 
1095 	mmap_read_unlock(mm);
1096 	/*
1097 	 * Prevent all access to pagetables with the exception of
1098 	 * gup_fast later handled by the ptep_clear_flush and the VM
1099 	 * handled by the anon_vma lock + PG_lock.
1100 	 */
1101 	mmap_write_lock(mm);
1102 	result = hugepage_vma_revalidate(mm, address, &vma);
1103 	if (result)
1104 		goto out_up_write;
1105 	/* check if the pmd is still valid */
1106 	if (mm_find_pmd(mm, address) != pmd)
1107 		goto out_up_write;
1108 
1109 	anon_vma_lock_write(vma->anon_vma);
1110 
1111 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1112 				address, address + HPAGE_PMD_SIZE);
1113 	mmu_notifier_invalidate_range_start(&range);
1114 
1115 	pte = pte_offset_map(pmd, address);
1116 	pte_ptl = pte_lockptr(mm, pmd);
1117 
1118 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1119 	/*
1120 	 * After this gup_fast can't run anymore. This also removes
1121 	 * any huge TLB entry from the CPU so we won't allow
1122 	 * huge and small TLB entries for the same virtual address
1123 	 * to avoid the risk of CPU bugs in that area.
1124 	 */
1125 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1126 	spin_unlock(pmd_ptl);
1127 	mmu_notifier_invalidate_range_end(&range);
1128 
1129 	spin_lock(pte_ptl);
1130 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1131 			&compound_pagelist);
1132 	spin_unlock(pte_ptl);
1133 
1134 	if (unlikely(!isolated)) {
1135 		pte_unmap(pte);
1136 		spin_lock(pmd_ptl);
1137 		BUG_ON(!pmd_none(*pmd));
1138 		/*
1139 		 * We can only use set_pmd_at when establishing
1140 		 * hugepmds and never for establishing regular pmds that
1141 		 * points to regular pagetables. Use pmd_populate for that
1142 		 */
1143 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1144 		spin_unlock(pmd_ptl);
1145 		anon_vma_unlock_write(vma->anon_vma);
1146 		result = SCAN_FAIL;
1147 		goto out_up_write;
1148 	}
1149 
1150 	/*
1151 	 * All pages are isolated and locked so anon_vma rmap
1152 	 * can't run anymore.
1153 	 */
1154 	anon_vma_unlock_write(vma->anon_vma);
1155 
1156 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1157 			&compound_pagelist);
1158 	pte_unmap(pte);
1159 	/*
1160 	 * spin_lock() below is not the equivalent of smp_wmb(), but
1161 	 * the smp_wmb() inside __SetPageUptodate() can be reused to
1162 	 * avoid the copy_huge_page writes to become visible after
1163 	 * the set_pmd_at() write.
1164 	 */
1165 	__SetPageUptodate(new_page);
1166 	pgtable = pmd_pgtable(_pmd);
1167 
1168 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1169 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1170 
1171 	spin_lock(pmd_ptl);
1172 	BUG_ON(!pmd_none(*pmd));
1173 	page_add_new_anon_rmap(new_page, vma, address);
1174 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1175 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1176 	set_pmd_at(mm, address, pmd, _pmd);
1177 	update_mmu_cache_pmd(vma, address, pmd);
1178 	spin_unlock(pmd_ptl);
1179 
1180 	*hpage = NULL;
1181 
1182 	khugepaged_pages_collapsed++;
1183 	result = SCAN_SUCCEED;
1184 out_up_write:
1185 	mmap_write_unlock(mm);
1186 out_nolock:
1187 	if (!IS_ERR_OR_NULL(*hpage))
1188 		mem_cgroup_uncharge(page_folio(*hpage));
1189 	trace_mm_collapse_huge_page(mm, isolated, result);
1190 	return;
1191 }
1192 
1193 static int khugepaged_scan_pmd(struct mm_struct *mm,
1194 			       struct vm_area_struct *vma,
1195 			       unsigned long address,
1196 			       struct page **hpage)
1197 {
1198 	pmd_t *pmd;
1199 	pte_t *pte, *_pte;
1200 	int ret = 0, result = 0, referenced = 0;
1201 	int none_or_zero = 0, shared = 0;
1202 	struct page *page = NULL;
1203 	unsigned long _address;
1204 	spinlock_t *ptl;
1205 	int node = NUMA_NO_NODE, unmapped = 0;
1206 	bool writable = false;
1207 
1208 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1209 
1210 	pmd = mm_find_pmd(mm, address);
1211 	if (!pmd) {
1212 		result = SCAN_PMD_NULL;
1213 		goto out;
1214 	}
1215 
1216 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1217 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1218 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1219 	     _pte++, _address += PAGE_SIZE) {
1220 		pte_t pteval = *_pte;
1221 		if (is_swap_pte(pteval)) {
1222 			if (++unmapped <= khugepaged_max_ptes_swap) {
1223 				/*
1224 				 * Always be strict with uffd-wp
1225 				 * enabled swap entries.  Please see
1226 				 * comment below for pte_uffd_wp().
1227 				 */
1228 				if (pte_swp_uffd_wp(pteval)) {
1229 					result = SCAN_PTE_UFFD_WP;
1230 					goto out_unmap;
1231 				}
1232 				continue;
1233 			} else {
1234 				result = SCAN_EXCEED_SWAP_PTE;
1235 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1236 				goto out_unmap;
1237 			}
1238 		}
1239 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1240 			if (!userfaultfd_armed(vma) &&
1241 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1242 				continue;
1243 			} else {
1244 				result = SCAN_EXCEED_NONE_PTE;
1245 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1246 				goto out_unmap;
1247 			}
1248 		}
1249 		if (pte_uffd_wp(pteval)) {
1250 			/*
1251 			 * Don't collapse the page if any of the small
1252 			 * PTEs are armed with uffd write protection.
1253 			 * Here we can also mark the new huge pmd as
1254 			 * write protected if any of the small ones is
1255 			 * marked but that could bring unknown
1256 			 * userfault messages that falls outside of
1257 			 * the registered range.  So, just be simple.
1258 			 */
1259 			result = SCAN_PTE_UFFD_WP;
1260 			goto out_unmap;
1261 		}
1262 		if (pte_write(pteval))
1263 			writable = true;
1264 
1265 		page = vm_normal_page(vma, _address, pteval);
1266 		if (unlikely(!page)) {
1267 			result = SCAN_PAGE_NULL;
1268 			goto out_unmap;
1269 		}
1270 
1271 		if (page_mapcount(page) > 1 &&
1272 				++shared > khugepaged_max_ptes_shared) {
1273 			result = SCAN_EXCEED_SHARED_PTE;
1274 			count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1275 			goto out_unmap;
1276 		}
1277 
1278 		page = compound_head(page);
1279 
1280 		/*
1281 		 * Record which node the original page is from and save this
1282 		 * information to khugepaged_node_load[].
1283 		 * Khugepaged will allocate hugepage from the node has the max
1284 		 * hit record.
1285 		 */
1286 		node = page_to_nid(page);
1287 		if (khugepaged_scan_abort(node)) {
1288 			result = SCAN_SCAN_ABORT;
1289 			goto out_unmap;
1290 		}
1291 		khugepaged_node_load[node]++;
1292 		if (!PageLRU(page)) {
1293 			result = SCAN_PAGE_LRU;
1294 			goto out_unmap;
1295 		}
1296 		if (PageLocked(page)) {
1297 			result = SCAN_PAGE_LOCK;
1298 			goto out_unmap;
1299 		}
1300 		if (!PageAnon(page)) {
1301 			result = SCAN_PAGE_ANON;
1302 			goto out_unmap;
1303 		}
1304 
1305 		/*
1306 		 * Check if the page has any GUP (or other external) pins.
1307 		 *
1308 		 * Here the check is racy it may see total_mapcount > refcount
1309 		 * in some cases.
1310 		 * For example, one process with one forked child process.
1311 		 * The parent has the PMD split due to MADV_DONTNEED, then
1312 		 * the child is trying unmap the whole PMD, but khugepaged
1313 		 * may be scanning the parent between the child has
1314 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1315 		 * khugepaged may see total_mapcount > refcount.
1316 		 *
1317 		 * But such case is ephemeral we could always retry collapse
1318 		 * later.  However it may report false positive if the page
1319 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1320 		 * will be done again later the risk seems low.
1321 		 */
1322 		if (!is_refcount_suitable(page)) {
1323 			result = SCAN_PAGE_COUNT;
1324 			goto out_unmap;
1325 		}
1326 		if (pte_young(pteval) ||
1327 		    page_is_young(page) || PageReferenced(page) ||
1328 		    mmu_notifier_test_young(vma->vm_mm, address))
1329 			referenced++;
1330 	}
1331 	if (!writable) {
1332 		result = SCAN_PAGE_RO;
1333 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1334 		result = SCAN_LACK_REFERENCED_PAGE;
1335 	} else {
1336 		result = SCAN_SUCCEED;
1337 		ret = 1;
1338 	}
1339 out_unmap:
1340 	pte_unmap_unlock(pte, ptl);
1341 	if (ret) {
1342 		node = khugepaged_find_target_node();
1343 		/* collapse_huge_page will return with the mmap_lock released */
1344 		collapse_huge_page(mm, address, hpage, node,
1345 				referenced, unmapped);
1346 	}
1347 out:
1348 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1349 				     none_or_zero, result, unmapped);
1350 	return ret;
1351 }
1352 
1353 static void collect_mm_slot(struct mm_slot *mm_slot)
1354 {
1355 	struct mm_struct *mm = mm_slot->mm;
1356 
1357 	lockdep_assert_held(&khugepaged_mm_lock);
1358 
1359 	if (khugepaged_test_exit(mm)) {
1360 		/* free mm_slot */
1361 		hash_del(&mm_slot->hash);
1362 		list_del(&mm_slot->mm_node);
1363 
1364 		/*
1365 		 * Not strictly needed because the mm exited already.
1366 		 *
1367 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1368 		 */
1369 
1370 		/* khugepaged_mm_lock actually not necessary for the below */
1371 		free_mm_slot(mm_slot);
1372 		mmdrop(mm);
1373 	}
1374 }
1375 
1376 #ifdef CONFIG_SHMEM
1377 /*
1378  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1379  * khugepaged should try to collapse the page table.
1380  */
1381 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1382 					 unsigned long addr)
1383 {
1384 	struct mm_slot *mm_slot;
1385 
1386 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1387 
1388 	spin_lock(&khugepaged_mm_lock);
1389 	mm_slot = get_mm_slot(mm);
1390 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1391 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1392 	spin_unlock(&khugepaged_mm_lock);
1393 	return 0;
1394 }
1395 
1396 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1397 				  unsigned long addr, pmd_t *pmdp)
1398 {
1399 	spinlock_t *ptl;
1400 	pmd_t pmd;
1401 
1402 	mmap_assert_write_locked(mm);
1403 	ptl = pmd_lock(vma->vm_mm, pmdp);
1404 	pmd = pmdp_collapse_flush(vma, addr, pmdp);
1405 	spin_unlock(ptl);
1406 	mm_dec_nr_ptes(mm);
1407 	page_table_check_pte_clear_range(mm, addr, pmd);
1408 	pte_free(mm, pmd_pgtable(pmd));
1409 }
1410 
1411 /**
1412  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1413  * address haddr.
1414  *
1415  * @mm: process address space where collapse happens
1416  * @addr: THP collapse address
1417  *
1418  * This function checks whether all the PTEs in the PMD are pointing to the
1419  * right THP. If so, retract the page table so the THP can refault in with
1420  * as pmd-mapped.
1421  */
1422 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1423 {
1424 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1425 	struct vm_area_struct *vma = find_vma(mm, haddr);
1426 	struct page *hpage;
1427 	pte_t *start_pte, *pte;
1428 	pmd_t *pmd;
1429 	spinlock_t *ptl;
1430 	int count = 0;
1431 	int i;
1432 
1433 	if (!vma || !vma->vm_file ||
1434 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1435 		return;
1436 
1437 	/*
1438 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1439 	 * collapsed by this mm. But we can still collapse if the page is
1440 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1441 	 * will not fail the vma for missing VM_HUGEPAGE
1442 	 */
1443 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1444 		return;
1445 
1446 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1447 	if (userfaultfd_wp(vma))
1448 		return;
1449 
1450 	hpage = find_lock_page(vma->vm_file->f_mapping,
1451 			       linear_page_index(vma, haddr));
1452 	if (!hpage)
1453 		return;
1454 
1455 	if (!PageHead(hpage))
1456 		goto drop_hpage;
1457 
1458 	pmd = mm_find_pmd(mm, haddr);
1459 	if (!pmd)
1460 		goto drop_hpage;
1461 
1462 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1463 
1464 	/* step 1: check all mapped PTEs are to the right huge page */
1465 	for (i = 0, addr = haddr, pte = start_pte;
1466 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1467 		struct page *page;
1468 
1469 		/* empty pte, skip */
1470 		if (pte_none(*pte))
1471 			continue;
1472 
1473 		/* page swapped out, abort */
1474 		if (!pte_present(*pte))
1475 			goto abort;
1476 
1477 		page = vm_normal_page(vma, addr, *pte);
1478 
1479 		/*
1480 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1481 		 * page table, but the new page will not be a subpage of hpage.
1482 		 */
1483 		if (hpage + i != page)
1484 			goto abort;
1485 		count++;
1486 	}
1487 
1488 	/* step 2: adjust rmap */
1489 	for (i = 0, addr = haddr, pte = start_pte;
1490 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1491 		struct page *page;
1492 
1493 		if (pte_none(*pte))
1494 			continue;
1495 		page = vm_normal_page(vma, addr, *pte);
1496 		page_remove_rmap(page, vma, false);
1497 	}
1498 
1499 	pte_unmap_unlock(start_pte, ptl);
1500 
1501 	/* step 3: set proper refcount and mm_counters. */
1502 	if (count) {
1503 		page_ref_sub(hpage, count);
1504 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1505 	}
1506 
1507 	/* step 4: collapse pmd */
1508 	collapse_and_free_pmd(mm, vma, haddr, pmd);
1509 drop_hpage:
1510 	unlock_page(hpage);
1511 	put_page(hpage);
1512 	return;
1513 
1514 abort:
1515 	pte_unmap_unlock(start_pte, ptl);
1516 	goto drop_hpage;
1517 }
1518 
1519 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1520 {
1521 	struct mm_struct *mm = mm_slot->mm;
1522 	int i;
1523 
1524 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1525 		return;
1526 
1527 	if (!mmap_write_trylock(mm))
1528 		return;
1529 
1530 	if (unlikely(khugepaged_test_exit(mm)))
1531 		goto out;
1532 
1533 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1534 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1535 
1536 out:
1537 	mm_slot->nr_pte_mapped_thp = 0;
1538 	mmap_write_unlock(mm);
1539 }
1540 
1541 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1542 {
1543 	struct vm_area_struct *vma;
1544 	struct mm_struct *mm;
1545 	unsigned long addr;
1546 	pmd_t *pmd;
1547 
1548 	i_mmap_lock_write(mapping);
1549 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1550 		/*
1551 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1552 		 * got written to. These VMAs are likely not worth investing
1553 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1554 		 * later.
1555 		 *
1556 		 * Note that vma->anon_vma check is racy: it can be set up after
1557 		 * the check but before we took mmap_lock by the fault path.
1558 		 * But page lock would prevent establishing any new ptes of the
1559 		 * page, so we are safe.
1560 		 *
1561 		 * An alternative would be drop the check, but check that page
1562 		 * table is clear before calling pmdp_collapse_flush() under
1563 		 * ptl. It has higher chance to recover THP for the VMA, but
1564 		 * has higher cost too.
1565 		 */
1566 		if (vma->anon_vma)
1567 			continue;
1568 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1569 		if (addr & ~HPAGE_PMD_MASK)
1570 			continue;
1571 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1572 			continue;
1573 		mm = vma->vm_mm;
1574 		pmd = mm_find_pmd(mm, addr);
1575 		if (!pmd)
1576 			continue;
1577 		/*
1578 		 * We need exclusive mmap_lock to retract page table.
1579 		 *
1580 		 * We use trylock due to lock inversion: we need to acquire
1581 		 * mmap_lock while holding page lock. Fault path does it in
1582 		 * reverse order. Trylock is a way to avoid deadlock.
1583 		 */
1584 		if (mmap_write_trylock(mm)) {
1585 			/*
1586 			 * When a vma is registered with uffd-wp, we can't
1587 			 * recycle the pmd pgtable because there can be pte
1588 			 * markers installed.  Skip it only, so the rest mm/vma
1589 			 * can still have the same file mapped hugely, however
1590 			 * it'll always mapped in small page size for uffd-wp
1591 			 * registered ranges.
1592 			 */
1593 			if (!khugepaged_test_exit(mm) && !userfaultfd_wp(vma))
1594 				collapse_and_free_pmd(mm, vma, addr, pmd);
1595 			mmap_write_unlock(mm);
1596 		} else {
1597 			/* Try again later */
1598 			khugepaged_add_pte_mapped_thp(mm, addr);
1599 		}
1600 	}
1601 	i_mmap_unlock_write(mapping);
1602 }
1603 
1604 /**
1605  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1606  *
1607  * @mm: process address space where collapse happens
1608  * @file: file that collapse on
1609  * @start: collapse start address
1610  * @hpage: new allocated huge page for collapse
1611  * @node: appointed node the new huge page allocate from
1612  *
1613  * Basic scheme is simple, details are more complex:
1614  *  - allocate and lock a new huge page;
1615  *  - scan page cache replacing old pages with the new one
1616  *    + swap/gup in pages if necessary;
1617  *    + fill in gaps;
1618  *    + keep old pages around in case rollback is required;
1619  *  - if replacing succeeds:
1620  *    + copy data over;
1621  *    + free old pages;
1622  *    + unlock huge page;
1623  *  - if replacing failed;
1624  *    + put all pages back and unfreeze them;
1625  *    + restore gaps in the page cache;
1626  *    + unlock and free huge page;
1627  */
1628 static void collapse_file(struct mm_struct *mm,
1629 		struct file *file, pgoff_t start,
1630 		struct page **hpage, int node)
1631 {
1632 	struct address_space *mapping = file->f_mapping;
1633 	gfp_t gfp;
1634 	struct page *new_page;
1635 	pgoff_t index, end = start + HPAGE_PMD_NR;
1636 	LIST_HEAD(pagelist);
1637 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1638 	int nr_none = 0, result = SCAN_SUCCEED;
1639 	bool is_shmem = shmem_file(file);
1640 	int nr;
1641 
1642 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1643 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1644 
1645 	/* Only allocate from the target node */
1646 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1647 
1648 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1649 	if (!new_page) {
1650 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1651 		goto out;
1652 	}
1653 
1654 	if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1655 		result = SCAN_CGROUP_CHARGE_FAIL;
1656 		goto out;
1657 	}
1658 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1659 
1660 	/*
1661 	 * Ensure we have slots for all the pages in the range.  This is
1662 	 * almost certainly a no-op because most of the pages must be present
1663 	 */
1664 	do {
1665 		xas_lock_irq(&xas);
1666 		xas_create_range(&xas);
1667 		if (!xas_error(&xas))
1668 			break;
1669 		xas_unlock_irq(&xas);
1670 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1671 			result = SCAN_FAIL;
1672 			goto out;
1673 		}
1674 	} while (1);
1675 
1676 	__SetPageLocked(new_page);
1677 	if (is_shmem)
1678 		__SetPageSwapBacked(new_page);
1679 	new_page->index = start;
1680 	new_page->mapping = mapping;
1681 
1682 	/*
1683 	 * At this point the new_page is locked and not up-to-date.
1684 	 * It's safe to insert it into the page cache, because nobody would
1685 	 * be able to map it or use it in another way until we unlock it.
1686 	 */
1687 
1688 	xas_set(&xas, start);
1689 	for (index = start; index < end; index++) {
1690 		struct page *page = xas_next(&xas);
1691 
1692 		VM_BUG_ON(index != xas.xa_index);
1693 		if (is_shmem) {
1694 			if (!page) {
1695 				/*
1696 				 * Stop if extent has been truncated or
1697 				 * hole-punched, and is now completely
1698 				 * empty.
1699 				 */
1700 				if (index == start) {
1701 					if (!xas_next_entry(&xas, end - 1)) {
1702 						result = SCAN_TRUNCATED;
1703 						goto xa_locked;
1704 					}
1705 					xas_set(&xas, index);
1706 				}
1707 				if (!shmem_charge(mapping->host, 1)) {
1708 					result = SCAN_FAIL;
1709 					goto xa_locked;
1710 				}
1711 				xas_store(&xas, new_page);
1712 				nr_none++;
1713 				continue;
1714 			}
1715 
1716 			if (xa_is_value(page) || !PageUptodate(page)) {
1717 				xas_unlock_irq(&xas);
1718 				/* swap in or instantiate fallocated page */
1719 				if (shmem_getpage(mapping->host, index, &page,
1720 						  SGP_NOALLOC)) {
1721 					result = SCAN_FAIL;
1722 					goto xa_unlocked;
1723 				}
1724 			} else if (trylock_page(page)) {
1725 				get_page(page);
1726 				xas_unlock_irq(&xas);
1727 			} else {
1728 				result = SCAN_PAGE_LOCK;
1729 				goto xa_locked;
1730 			}
1731 		} else {	/* !is_shmem */
1732 			if (!page || xa_is_value(page)) {
1733 				xas_unlock_irq(&xas);
1734 				page_cache_sync_readahead(mapping, &file->f_ra,
1735 							  file, index,
1736 							  end - index);
1737 				/* drain pagevecs to help isolate_lru_page() */
1738 				lru_add_drain();
1739 				page = find_lock_page(mapping, index);
1740 				if (unlikely(page == NULL)) {
1741 					result = SCAN_FAIL;
1742 					goto xa_unlocked;
1743 				}
1744 			} else if (PageDirty(page)) {
1745 				/*
1746 				 * khugepaged only works on read-only fd,
1747 				 * so this page is dirty because it hasn't
1748 				 * been flushed since first write. There
1749 				 * won't be new dirty pages.
1750 				 *
1751 				 * Trigger async flush here and hope the
1752 				 * writeback is done when khugepaged
1753 				 * revisits this page.
1754 				 *
1755 				 * This is a one-off situation. We are not
1756 				 * forcing writeback in loop.
1757 				 */
1758 				xas_unlock_irq(&xas);
1759 				filemap_flush(mapping);
1760 				result = SCAN_FAIL;
1761 				goto xa_unlocked;
1762 			} else if (PageWriteback(page)) {
1763 				xas_unlock_irq(&xas);
1764 				result = SCAN_FAIL;
1765 				goto xa_unlocked;
1766 			} else if (trylock_page(page)) {
1767 				get_page(page);
1768 				xas_unlock_irq(&xas);
1769 			} else {
1770 				result = SCAN_PAGE_LOCK;
1771 				goto xa_locked;
1772 			}
1773 		}
1774 
1775 		/*
1776 		 * The page must be locked, so we can drop the i_pages lock
1777 		 * without racing with truncate.
1778 		 */
1779 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1780 
1781 		/* make sure the page is up to date */
1782 		if (unlikely(!PageUptodate(page))) {
1783 			result = SCAN_FAIL;
1784 			goto out_unlock;
1785 		}
1786 
1787 		/*
1788 		 * If file was truncated then extended, or hole-punched, before
1789 		 * we locked the first page, then a THP might be there already.
1790 		 */
1791 		if (PageTransCompound(page)) {
1792 			result = SCAN_PAGE_COMPOUND;
1793 			goto out_unlock;
1794 		}
1795 
1796 		if (page_mapping(page) != mapping) {
1797 			result = SCAN_TRUNCATED;
1798 			goto out_unlock;
1799 		}
1800 
1801 		if (!is_shmem && (PageDirty(page) ||
1802 				  PageWriteback(page))) {
1803 			/*
1804 			 * khugepaged only works on read-only fd, so this
1805 			 * page is dirty because it hasn't been flushed
1806 			 * since first write.
1807 			 */
1808 			result = SCAN_FAIL;
1809 			goto out_unlock;
1810 		}
1811 
1812 		if (isolate_lru_page(page)) {
1813 			result = SCAN_DEL_PAGE_LRU;
1814 			goto out_unlock;
1815 		}
1816 
1817 		if (page_has_private(page) &&
1818 		    !try_to_release_page(page, GFP_KERNEL)) {
1819 			result = SCAN_PAGE_HAS_PRIVATE;
1820 			putback_lru_page(page);
1821 			goto out_unlock;
1822 		}
1823 
1824 		if (page_mapped(page))
1825 			try_to_unmap(page_folio(page),
1826 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1827 
1828 		xas_lock_irq(&xas);
1829 		xas_set(&xas, index);
1830 
1831 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1832 
1833 		/*
1834 		 * The page is expected to have page_count() == 3:
1835 		 *  - we hold a pin on it;
1836 		 *  - one reference from page cache;
1837 		 *  - one from isolate_lru_page;
1838 		 */
1839 		if (!page_ref_freeze(page, 3)) {
1840 			result = SCAN_PAGE_COUNT;
1841 			xas_unlock_irq(&xas);
1842 			putback_lru_page(page);
1843 			goto out_unlock;
1844 		}
1845 
1846 		/*
1847 		 * Add the page to the list to be able to undo the collapse if
1848 		 * something go wrong.
1849 		 */
1850 		list_add_tail(&page->lru, &pagelist);
1851 
1852 		/* Finally, replace with the new page. */
1853 		xas_store(&xas, new_page);
1854 		continue;
1855 out_unlock:
1856 		unlock_page(page);
1857 		put_page(page);
1858 		goto xa_unlocked;
1859 	}
1860 	nr = thp_nr_pages(new_page);
1861 
1862 	if (is_shmem)
1863 		__mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1864 	else {
1865 		__mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1866 		filemap_nr_thps_inc(mapping);
1867 		/*
1868 		 * Paired with smp_mb() in do_dentry_open() to ensure
1869 		 * i_writecount is up to date and the update to nr_thps is
1870 		 * visible. Ensures the page cache will be truncated if the
1871 		 * file is opened writable.
1872 		 */
1873 		smp_mb();
1874 		if (inode_is_open_for_write(mapping->host)) {
1875 			result = SCAN_FAIL;
1876 			__mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1877 			filemap_nr_thps_dec(mapping);
1878 			goto xa_locked;
1879 		}
1880 	}
1881 
1882 	if (nr_none) {
1883 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1884 		/* nr_none is always 0 for non-shmem. */
1885 		__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1886 	}
1887 
1888 	/* Join all the small entries into a single multi-index entry */
1889 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1890 	xas_store(&xas, new_page);
1891 xa_locked:
1892 	xas_unlock_irq(&xas);
1893 xa_unlocked:
1894 
1895 	/*
1896 	 * If collapse is successful, flush must be done now before copying.
1897 	 * If collapse is unsuccessful, does flush actually need to be done?
1898 	 * Do it anyway, to clear the state.
1899 	 */
1900 	try_to_unmap_flush();
1901 
1902 	if (result == SCAN_SUCCEED) {
1903 		struct page *page, *tmp;
1904 
1905 		/*
1906 		 * Replacing old pages with new one has succeeded, now we
1907 		 * need to copy the content and free the old pages.
1908 		 */
1909 		index = start;
1910 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1911 			while (index < page->index) {
1912 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1913 				index++;
1914 			}
1915 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1916 					page);
1917 			list_del(&page->lru);
1918 			page->mapping = NULL;
1919 			page_ref_unfreeze(page, 1);
1920 			ClearPageActive(page);
1921 			ClearPageUnevictable(page);
1922 			unlock_page(page);
1923 			put_page(page);
1924 			index++;
1925 		}
1926 		while (index < end) {
1927 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1928 			index++;
1929 		}
1930 
1931 		SetPageUptodate(new_page);
1932 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1933 		if (is_shmem)
1934 			set_page_dirty(new_page);
1935 		lru_cache_add(new_page);
1936 
1937 		/*
1938 		 * Remove pte page tables, so we can re-fault the page as huge.
1939 		 */
1940 		retract_page_tables(mapping, start);
1941 		*hpage = NULL;
1942 
1943 		khugepaged_pages_collapsed++;
1944 	} else {
1945 		struct page *page;
1946 
1947 		/* Something went wrong: roll back page cache changes */
1948 		xas_lock_irq(&xas);
1949 		if (nr_none) {
1950 			mapping->nrpages -= nr_none;
1951 			shmem_uncharge(mapping->host, nr_none);
1952 		}
1953 
1954 		xas_set(&xas, start);
1955 		xas_for_each(&xas, page, end - 1) {
1956 			page = list_first_entry_or_null(&pagelist,
1957 					struct page, lru);
1958 			if (!page || xas.xa_index < page->index) {
1959 				if (!nr_none)
1960 					break;
1961 				nr_none--;
1962 				/* Put holes back where they were */
1963 				xas_store(&xas, NULL);
1964 				continue;
1965 			}
1966 
1967 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1968 
1969 			/* Unfreeze the page. */
1970 			list_del(&page->lru);
1971 			page_ref_unfreeze(page, 2);
1972 			xas_store(&xas, page);
1973 			xas_pause(&xas);
1974 			xas_unlock_irq(&xas);
1975 			unlock_page(page);
1976 			putback_lru_page(page);
1977 			xas_lock_irq(&xas);
1978 		}
1979 		VM_BUG_ON(nr_none);
1980 		xas_unlock_irq(&xas);
1981 
1982 		new_page->mapping = NULL;
1983 	}
1984 
1985 	unlock_page(new_page);
1986 out:
1987 	VM_BUG_ON(!list_empty(&pagelist));
1988 	if (!IS_ERR_OR_NULL(*hpage))
1989 		mem_cgroup_uncharge(page_folio(*hpage));
1990 	/* TODO: tracepoints */
1991 }
1992 
1993 static void khugepaged_scan_file(struct mm_struct *mm,
1994 		struct file *file, pgoff_t start, struct page **hpage)
1995 {
1996 	struct page *page = NULL;
1997 	struct address_space *mapping = file->f_mapping;
1998 	XA_STATE(xas, &mapping->i_pages, start);
1999 	int present, swap;
2000 	int node = NUMA_NO_NODE;
2001 	int result = SCAN_SUCCEED;
2002 
2003 	present = 0;
2004 	swap = 0;
2005 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2006 	rcu_read_lock();
2007 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2008 		if (xas_retry(&xas, page))
2009 			continue;
2010 
2011 		if (xa_is_value(page)) {
2012 			if (++swap > khugepaged_max_ptes_swap) {
2013 				result = SCAN_EXCEED_SWAP_PTE;
2014 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2015 				break;
2016 			}
2017 			continue;
2018 		}
2019 
2020 		/*
2021 		 * XXX: khugepaged should compact smaller compound pages
2022 		 * into a PMD sized page
2023 		 */
2024 		if (PageTransCompound(page)) {
2025 			result = SCAN_PAGE_COMPOUND;
2026 			break;
2027 		}
2028 
2029 		node = page_to_nid(page);
2030 		if (khugepaged_scan_abort(node)) {
2031 			result = SCAN_SCAN_ABORT;
2032 			break;
2033 		}
2034 		khugepaged_node_load[node]++;
2035 
2036 		if (!PageLRU(page)) {
2037 			result = SCAN_PAGE_LRU;
2038 			break;
2039 		}
2040 
2041 		if (page_count(page) !=
2042 		    1 + page_mapcount(page) + page_has_private(page)) {
2043 			result = SCAN_PAGE_COUNT;
2044 			break;
2045 		}
2046 
2047 		/*
2048 		 * We probably should check if the page is referenced here, but
2049 		 * nobody would transfer pte_young() to PageReferenced() for us.
2050 		 * And rmap walk here is just too costly...
2051 		 */
2052 
2053 		present++;
2054 
2055 		if (need_resched()) {
2056 			xas_pause(&xas);
2057 			cond_resched_rcu();
2058 		}
2059 	}
2060 	rcu_read_unlock();
2061 
2062 	if (result == SCAN_SUCCEED) {
2063 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2064 			result = SCAN_EXCEED_NONE_PTE;
2065 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2066 		} else {
2067 			node = khugepaged_find_target_node();
2068 			collapse_file(mm, file, start, hpage, node);
2069 		}
2070 	}
2071 
2072 	/* TODO: tracepoints */
2073 }
2074 #else
2075 static void khugepaged_scan_file(struct mm_struct *mm,
2076 		struct file *file, pgoff_t start, struct page **hpage)
2077 {
2078 	BUILD_BUG();
2079 }
2080 
2081 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2082 {
2083 }
2084 #endif
2085 
2086 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2087 					    struct page **hpage)
2088 	__releases(&khugepaged_mm_lock)
2089 	__acquires(&khugepaged_mm_lock)
2090 {
2091 	struct mm_slot *mm_slot;
2092 	struct mm_struct *mm;
2093 	struct vm_area_struct *vma;
2094 	int progress = 0;
2095 
2096 	VM_BUG_ON(!pages);
2097 	lockdep_assert_held(&khugepaged_mm_lock);
2098 
2099 	if (khugepaged_scan.mm_slot)
2100 		mm_slot = khugepaged_scan.mm_slot;
2101 	else {
2102 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2103 				     struct mm_slot, mm_node);
2104 		khugepaged_scan.address = 0;
2105 		khugepaged_scan.mm_slot = mm_slot;
2106 	}
2107 	spin_unlock(&khugepaged_mm_lock);
2108 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2109 
2110 	mm = mm_slot->mm;
2111 	/*
2112 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2113 	 * the next mm on the list.
2114 	 */
2115 	vma = NULL;
2116 	if (unlikely(!mmap_read_trylock(mm)))
2117 		goto breakouterloop_mmap_lock;
2118 	if (likely(!khugepaged_test_exit(mm)))
2119 		vma = find_vma(mm, khugepaged_scan.address);
2120 
2121 	progress++;
2122 	for (; vma; vma = vma->vm_next) {
2123 		unsigned long hstart, hend;
2124 
2125 		cond_resched();
2126 		if (unlikely(khugepaged_test_exit(mm))) {
2127 			progress++;
2128 			break;
2129 		}
2130 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2131 skip:
2132 			progress++;
2133 			continue;
2134 		}
2135 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2136 		hend = vma->vm_end & HPAGE_PMD_MASK;
2137 		if (hstart >= hend)
2138 			goto skip;
2139 		if (khugepaged_scan.address > hend)
2140 			goto skip;
2141 		if (khugepaged_scan.address < hstart)
2142 			khugepaged_scan.address = hstart;
2143 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2144 
2145 		while (khugepaged_scan.address < hend) {
2146 			int ret;
2147 			cond_resched();
2148 			if (unlikely(khugepaged_test_exit(mm)))
2149 				goto breakouterloop;
2150 
2151 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2152 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2153 				  hend);
2154 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2155 				struct file *file = get_file(vma->vm_file);
2156 				pgoff_t pgoff = linear_page_index(vma,
2157 						khugepaged_scan.address);
2158 
2159 				mmap_read_unlock(mm);
2160 				ret = 1;
2161 				khugepaged_scan_file(mm, file, pgoff, hpage);
2162 				fput(file);
2163 			} else {
2164 				ret = khugepaged_scan_pmd(mm, vma,
2165 						khugepaged_scan.address,
2166 						hpage);
2167 			}
2168 			/* move to next address */
2169 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2170 			progress += HPAGE_PMD_NR;
2171 			if (ret)
2172 				/* we released mmap_lock so break loop */
2173 				goto breakouterloop_mmap_lock;
2174 			if (progress >= pages)
2175 				goto breakouterloop;
2176 		}
2177 	}
2178 breakouterloop:
2179 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2180 breakouterloop_mmap_lock:
2181 
2182 	spin_lock(&khugepaged_mm_lock);
2183 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2184 	/*
2185 	 * Release the current mm_slot if this mm is about to die, or
2186 	 * if we scanned all vmas of this mm.
2187 	 */
2188 	if (khugepaged_test_exit(mm) || !vma) {
2189 		/*
2190 		 * Make sure that if mm_users is reaching zero while
2191 		 * khugepaged runs here, khugepaged_exit will find
2192 		 * mm_slot not pointing to the exiting mm.
2193 		 */
2194 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2195 			khugepaged_scan.mm_slot = list_entry(
2196 				mm_slot->mm_node.next,
2197 				struct mm_slot, mm_node);
2198 			khugepaged_scan.address = 0;
2199 		} else {
2200 			khugepaged_scan.mm_slot = NULL;
2201 			khugepaged_full_scans++;
2202 		}
2203 
2204 		collect_mm_slot(mm_slot);
2205 	}
2206 
2207 	return progress;
2208 }
2209 
2210 static int khugepaged_has_work(void)
2211 {
2212 	return !list_empty(&khugepaged_scan.mm_head) &&
2213 		khugepaged_enabled();
2214 }
2215 
2216 static int khugepaged_wait_event(void)
2217 {
2218 	return !list_empty(&khugepaged_scan.mm_head) ||
2219 		kthread_should_stop();
2220 }
2221 
2222 static void khugepaged_do_scan(void)
2223 {
2224 	struct page *hpage = NULL;
2225 	unsigned int progress = 0, pass_through_head = 0;
2226 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2227 	bool wait = true;
2228 
2229 	lru_add_drain_all();
2230 
2231 	while (progress < pages) {
2232 		if (!khugepaged_prealloc_page(&hpage, &wait))
2233 			break;
2234 
2235 		cond_resched();
2236 
2237 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2238 			break;
2239 
2240 		spin_lock(&khugepaged_mm_lock);
2241 		if (!khugepaged_scan.mm_slot)
2242 			pass_through_head++;
2243 		if (khugepaged_has_work() &&
2244 		    pass_through_head < 2)
2245 			progress += khugepaged_scan_mm_slot(pages - progress,
2246 							    &hpage);
2247 		else
2248 			progress = pages;
2249 		spin_unlock(&khugepaged_mm_lock);
2250 	}
2251 
2252 	if (!IS_ERR_OR_NULL(hpage))
2253 		put_page(hpage);
2254 }
2255 
2256 static bool khugepaged_should_wakeup(void)
2257 {
2258 	return kthread_should_stop() ||
2259 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2260 }
2261 
2262 static void khugepaged_wait_work(void)
2263 {
2264 	if (khugepaged_has_work()) {
2265 		const unsigned long scan_sleep_jiffies =
2266 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2267 
2268 		if (!scan_sleep_jiffies)
2269 			return;
2270 
2271 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2272 		wait_event_freezable_timeout(khugepaged_wait,
2273 					     khugepaged_should_wakeup(),
2274 					     scan_sleep_jiffies);
2275 		return;
2276 	}
2277 
2278 	if (khugepaged_enabled())
2279 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2280 }
2281 
2282 static int khugepaged(void *none)
2283 {
2284 	struct mm_slot *mm_slot;
2285 
2286 	set_freezable();
2287 	set_user_nice(current, MAX_NICE);
2288 
2289 	while (!kthread_should_stop()) {
2290 		khugepaged_do_scan();
2291 		khugepaged_wait_work();
2292 	}
2293 
2294 	spin_lock(&khugepaged_mm_lock);
2295 	mm_slot = khugepaged_scan.mm_slot;
2296 	khugepaged_scan.mm_slot = NULL;
2297 	if (mm_slot)
2298 		collect_mm_slot(mm_slot);
2299 	spin_unlock(&khugepaged_mm_lock);
2300 	return 0;
2301 }
2302 
2303 static void set_recommended_min_free_kbytes(void)
2304 {
2305 	struct zone *zone;
2306 	int nr_zones = 0;
2307 	unsigned long recommended_min;
2308 
2309 	if (!khugepaged_enabled()) {
2310 		calculate_min_free_kbytes();
2311 		goto update_wmarks;
2312 	}
2313 
2314 	for_each_populated_zone(zone) {
2315 		/*
2316 		 * We don't need to worry about fragmentation of
2317 		 * ZONE_MOVABLE since it only has movable pages.
2318 		 */
2319 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2320 			continue;
2321 
2322 		nr_zones++;
2323 	}
2324 
2325 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2326 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2327 
2328 	/*
2329 	 * Make sure that on average at least two pageblocks are almost free
2330 	 * of another type, one for a migratetype to fall back to and a
2331 	 * second to avoid subsequent fallbacks of other types There are 3
2332 	 * MIGRATE_TYPES we care about.
2333 	 */
2334 	recommended_min += pageblock_nr_pages * nr_zones *
2335 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2336 
2337 	/* don't ever allow to reserve more than 5% of the lowmem */
2338 	recommended_min = min(recommended_min,
2339 			      (unsigned long) nr_free_buffer_pages() / 20);
2340 	recommended_min <<= (PAGE_SHIFT-10);
2341 
2342 	if (recommended_min > min_free_kbytes) {
2343 		if (user_min_free_kbytes >= 0)
2344 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2345 				min_free_kbytes, recommended_min);
2346 
2347 		min_free_kbytes = recommended_min;
2348 	}
2349 
2350 update_wmarks:
2351 	setup_per_zone_wmarks();
2352 }
2353 
2354 int start_stop_khugepaged(void)
2355 {
2356 	int err = 0;
2357 
2358 	mutex_lock(&khugepaged_mutex);
2359 	if (khugepaged_enabled()) {
2360 		if (!khugepaged_thread)
2361 			khugepaged_thread = kthread_run(khugepaged, NULL,
2362 							"khugepaged");
2363 		if (IS_ERR(khugepaged_thread)) {
2364 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2365 			err = PTR_ERR(khugepaged_thread);
2366 			khugepaged_thread = NULL;
2367 			goto fail;
2368 		}
2369 
2370 		if (!list_empty(&khugepaged_scan.mm_head))
2371 			wake_up_interruptible(&khugepaged_wait);
2372 	} else if (khugepaged_thread) {
2373 		kthread_stop(khugepaged_thread);
2374 		khugepaged_thread = NULL;
2375 	}
2376 	set_recommended_min_free_kbytes();
2377 fail:
2378 	mutex_unlock(&khugepaged_mutex);
2379 	return err;
2380 }
2381 
2382 void khugepaged_min_free_kbytes_update(void)
2383 {
2384 	mutex_lock(&khugepaged_mutex);
2385 	if (khugepaged_enabled() && khugepaged_thread)
2386 		set_recommended_min_free_kbytes();
2387 	mutex_unlock(&khugepaged_mutex);
2388 }
2389