1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/ksm.h> 23 24 #include <asm/tlb.h> 25 #include <asm/pgalloc.h> 26 #include "internal.h" 27 #include "mm_slot.h" 28 29 enum scan_result { 30 SCAN_FAIL, 31 SCAN_SUCCEED, 32 SCAN_PMD_NULL, 33 SCAN_PMD_NONE, 34 SCAN_PMD_MAPPED, 35 SCAN_EXCEED_NONE_PTE, 36 SCAN_EXCEED_SWAP_PTE, 37 SCAN_EXCEED_SHARED_PTE, 38 SCAN_PTE_NON_PRESENT, 39 SCAN_PTE_UFFD_WP, 40 SCAN_PTE_MAPPED_HUGEPAGE, 41 SCAN_PAGE_RO, 42 SCAN_LACK_REFERENCED_PAGE, 43 SCAN_PAGE_NULL, 44 SCAN_SCAN_ABORT, 45 SCAN_PAGE_COUNT, 46 SCAN_PAGE_LRU, 47 SCAN_PAGE_LOCK, 48 SCAN_PAGE_ANON, 49 SCAN_PAGE_COMPOUND, 50 SCAN_ANY_PROCESS, 51 SCAN_VMA_NULL, 52 SCAN_VMA_CHECK, 53 SCAN_ADDRESS_RANGE, 54 SCAN_DEL_PAGE_LRU, 55 SCAN_ALLOC_HUGE_PAGE_FAIL, 56 SCAN_CGROUP_CHARGE_FAIL, 57 SCAN_TRUNCATED, 58 SCAN_PAGE_HAS_PRIVATE, 59 SCAN_STORE_FAILED, 60 SCAN_COPY_MC, 61 SCAN_PAGE_FILLED, 62 }; 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/huge_memory.h> 66 67 static struct task_struct *khugepaged_thread __read_mostly; 68 static DEFINE_MUTEX(khugepaged_mutex); 69 70 /* default scan 8*512 pte (or vmas) every 30 second */ 71 static unsigned int khugepaged_pages_to_scan __read_mostly; 72 static unsigned int khugepaged_pages_collapsed; 73 static unsigned int khugepaged_full_scans; 74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 75 /* during fragmentation poll the hugepage allocator once every minute */ 76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 77 static unsigned long khugepaged_sleep_expire; 78 static DEFINE_SPINLOCK(khugepaged_mm_lock); 79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 80 /* 81 * default collapse hugepages if there is at least one pte mapped like 82 * it would have happened if the vma was large enough during page 83 * fault. 84 * 85 * Note that these are only respected if collapse was initiated by khugepaged. 86 */ 87 static unsigned int khugepaged_max_ptes_none __read_mostly; 88 static unsigned int khugepaged_max_ptes_swap __read_mostly; 89 static unsigned int khugepaged_max_ptes_shared __read_mostly; 90 91 #define MM_SLOTS_HASH_BITS 10 92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 93 94 static struct kmem_cache *mm_slot_cache __read_mostly; 95 96 struct collapse_control { 97 bool is_khugepaged; 98 99 /* Num pages scanned per node */ 100 u32 node_load[MAX_NUMNODES]; 101 102 /* nodemask for allocation fallback */ 103 nodemask_t alloc_nmask; 104 }; 105 106 /** 107 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 108 * @slot: hash lookup from mm to mm_slot 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 }; 113 114 /** 115 * struct khugepaged_scan - cursor for scanning 116 * @mm_head: the head of the mm list to scan 117 * @mm_slot: the current mm_slot we are scanning 118 * @address: the next address inside that to be scanned 119 * 120 * There is only the one khugepaged_scan instance of this cursor structure. 121 */ 122 struct khugepaged_scan { 123 struct list_head mm_head; 124 struct khugepaged_mm_slot *mm_slot; 125 unsigned long address; 126 }; 127 128 static struct khugepaged_scan khugepaged_scan = { 129 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 130 }; 131 132 #ifdef CONFIG_SYSFS 133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 134 struct kobj_attribute *attr, 135 char *buf) 136 { 137 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 138 } 139 140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 141 struct kobj_attribute *attr, 142 const char *buf, size_t count) 143 { 144 unsigned int msecs; 145 int err; 146 147 err = kstrtouint(buf, 10, &msecs); 148 if (err) 149 return -EINVAL; 150 151 khugepaged_scan_sleep_millisecs = msecs; 152 khugepaged_sleep_expire = 0; 153 wake_up_interruptible(&khugepaged_wait); 154 155 return count; 156 } 157 static struct kobj_attribute scan_sleep_millisecs_attr = 158 __ATTR_RW(scan_sleep_millisecs); 159 160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 char *buf) 163 { 164 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 165 } 166 167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 168 struct kobj_attribute *attr, 169 const char *buf, size_t count) 170 { 171 unsigned int msecs; 172 int err; 173 174 err = kstrtouint(buf, 10, &msecs); 175 if (err) 176 return -EINVAL; 177 178 khugepaged_alloc_sleep_millisecs = msecs; 179 khugepaged_sleep_expire = 0; 180 wake_up_interruptible(&khugepaged_wait); 181 182 return count; 183 } 184 static struct kobj_attribute alloc_sleep_millisecs_attr = 185 __ATTR_RW(alloc_sleep_millisecs); 186 187 static ssize_t pages_to_scan_show(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 char *buf) 190 { 191 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 192 } 193 static ssize_t pages_to_scan_store(struct kobject *kobj, 194 struct kobj_attribute *attr, 195 const char *buf, size_t count) 196 { 197 unsigned int pages; 198 int err; 199 200 err = kstrtouint(buf, 10, &pages); 201 if (err || !pages) 202 return -EINVAL; 203 204 khugepaged_pages_to_scan = pages; 205 206 return count; 207 } 208 static struct kobj_attribute pages_to_scan_attr = 209 __ATTR_RW(pages_to_scan); 210 211 static ssize_t pages_collapsed_show(struct kobject *kobj, 212 struct kobj_attribute *attr, 213 char *buf) 214 { 215 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 216 } 217 static struct kobj_attribute pages_collapsed_attr = 218 __ATTR_RO(pages_collapsed); 219 220 static ssize_t full_scans_show(struct kobject *kobj, 221 struct kobj_attribute *attr, 222 char *buf) 223 { 224 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 225 } 226 static struct kobj_attribute full_scans_attr = 227 __ATTR_RO(full_scans); 228 229 static ssize_t defrag_show(struct kobject *kobj, 230 struct kobj_attribute *attr, char *buf) 231 { 232 return single_hugepage_flag_show(kobj, attr, buf, 233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 234 } 235 static ssize_t defrag_store(struct kobject *kobj, 236 struct kobj_attribute *attr, 237 const char *buf, size_t count) 238 { 239 return single_hugepage_flag_store(kobj, attr, buf, count, 240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 241 } 242 static struct kobj_attribute khugepaged_defrag_attr = 243 __ATTR_RW(defrag); 244 245 /* 246 * max_ptes_none controls if khugepaged should collapse hugepages over 247 * any unmapped ptes in turn potentially increasing the memory 248 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 249 * reduce the available free memory in the system as it 250 * runs. Increasing max_ptes_none will instead potentially reduce the 251 * free memory in the system during the khugepaged scan. 252 */ 253 static ssize_t max_ptes_none_show(struct kobject *kobj, 254 struct kobj_attribute *attr, 255 char *buf) 256 { 257 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 258 } 259 static ssize_t max_ptes_none_store(struct kobject *kobj, 260 struct kobj_attribute *attr, 261 const char *buf, size_t count) 262 { 263 int err; 264 unsigned long max_ptes_none; 265 266 err = kstrtoul(buf, 10, &max_ptes_none); 267 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 268 return -EINVAL; 269 270 khugepaged_max_ptes_none = max_ptes_none; 271 272 return count; 273 } 274 static struct kobj_attribute khugepaged_max_ptes_none_attr = 275 __ATTR_RW(max_ptes_none); 276 277 static ssize_t max_ptes_swap_show(struct kobject *kobj, 278 struct kobj_attribute *attr, 279 char *buf) 280 { 281 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 282 } 283 284 static ssize_t max_ptes_swap_store(struct kobject *kobj, 285 struct kobj_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int err; 289 unsigned long max_ptes_swap; 290 291 err = kstrtoul(buf, 10, &max_ptes_swap); 292 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 293 return -EINVAL; 294 295 khugepaged_max_ptes_swap = max_ptes_swap; 296 297 return count; 298 } 299 300 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 301 __ATTR_RW(max_ptes_swap); 302 303 static ssize_t max_ptes_shared_show(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 char *buf) 306 { 307 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 308 } 309 310 static ssize_t max_ptes_shared_store(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 const char *buf, size_t count) 313 { 314 int err; 315 unsigned long max_ptes_shared; 316 317 err = kstrtoul(buf, 10, &max_ptes_shared); 318 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 319 return -EINVAL; 320 321 khugepaged_max_ptes_shared = max_ptes_shared; 322 323 return count; 324 } 325 326 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 327 __ATTR_RW(max_ptes_shared); 328 329 static struct attribute *khugepaged_attr[] = { 330 &khugepaged_defrag_attr.attr, 331 &khugepaged_max_ptes_none_attr.attr, 332 &khugepaged_max_ptes_swap_attr.attr, 333 &khugepaged_max_ptes_shared_attr.attr, 334 &pages_to_scan_attr.attr, 335 &pages_collapsed_attr.attr, 336 &full_scans_attr.attr, 337 &scan_sleep_millisecs_attr.attr, 338 &alloc_sleep_millisecs_attr.attr, 339 NULL, 340 }; 341 342 struct attribute_group khugepaged_attr_group = { 343 .attrs = khugepaged_attr, 344 .name = "khugepaged", 345 }; 346 #endif /* CONFIG_SYSFS */ 347 348 int hugepage_madvise(struct vm_area_struct *vma, 349 unsigned long *vm_flags, int advice) 350 { 351 switch (advice) { 352 case MADV_HUGEPAGE: 353 #ifdef CONFIG_S390 354 /* 355 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 356 * can't handle this properly after s390_enable_sie, so we simply 357 * ignore the madvise to prevent qemu from causing a SIGSEGV. 358 */ 359 if (mm_has_pgste(vma->vm_mm)) 360 return 0; 361 #endif 362 *vm_flags &= ~VM_NOHUGEPAGE; 363 *vm_flags |= VM_HUGEPAGE; 364 /* 365 * If the vma become good for khugepaged to scan, 366 * register it here without waiting a page fault that 367 * may not happen any time soon. 368 */ 369 khugepaged_enter_vma(vma, *vm_flags); 370 break; 371 case MADV_NOHUGEPAGE: 372 *vm_flags &= ~VM_HUGEPAGE; 373 *vm_flags |= VM_NOHUGEPAGE; 374 /* 375 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 376 * this vma even if we leave the mm registered in khugepaged if 377 * it got registered before VM_NOHUGEPAGE was set. 378 */ 379 break; 380 } 381 382 return 0; 383 } 384 385 int __init khugepaged_init(void) 386 { 387 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 388 sizeof(struct khugepaged_mm_slot), 389 __alignof__(struct khugepaged_mm_slot), 390 0, NULL); 391 if (!mm_slot_cache) 392 return -ENOMEM; 393 394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 398 399 return 0; 400 } 401 402 void __init khugepaged_destroy(void) 403 { 404 kmem_cache_destroy(mm_slot_cache); 405 } 406 407 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 408 { 409 return atomic_read(&mm->mm_users) == 0; 410 } 411 412 void __khugepaged_enter(struct mm_struct *mm) 413 { 414 struct khugepaged_mm_slot *mm_slot; 415 struct mm_slot *slot; 416 int wakeup; 417 418 /* __khugepaged_exit() must not run from under us */ 419 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 420 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 421 return; 422 423 mm_slot = mm_slot_alloc(mm_slot_cache); 424 if (!mm_slot) 425 return; 426 427 slot = &mm_slot->slot; 428 429 spin_lock(&khugepaged_mm_lock); 430 mm_slot_insert(mm_slots_hash, mm, slot); 431 /* 432 * Insert just behind the scanning cursor, to let the area settle 433 * down a little. 434 */ 435 wakeup = list_empty(&khugepaged_scan.mm_head); 436 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 437 spin_unlock(&khugepaged_mm_lock); 438 439 mmgrab(mm); 440 if (wakeup) 441 wake_up_interruptible(&khugepaged_wait); 442 } 443 444 void khugepaged_enter_vma(struct vm_area_struct *vma, 445 unsigned long vm_flags) 446 { 447 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 448 hugepage_flags_enabled()) { 449 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 450 __khugepaged_enter(vma->vm_mm); 451 } 452 } 453 454 void __khugepaged_exit(struct mm_struct *mm) 455 { 456 struct khugepaged_mm_slot *mm_slot; 457 struct mm_slot *slot; 458 int free = 0; 459 460 spin_lock(&khugepaged_mm_lock); 461 slot = mm_slot_lookup(mm_slots_hash, mm); 462 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 463 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 464 hash_del(&slot->hash); 465 list_del(&slot->mm_node); 466 free = 1; 467 } 468 spin_unlock(&khugepaged_mm_lock); 469 470 if (free) { 471 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 472 mm_slot_free(mm_slot_cache, mm_slot); 473 mmdrop(mm); 474 } else if (mm_slot) { 475 /* 476 * This is required to serialize against 477 * hpage_collapse_test_exit() (which is guaranteed to run 478 * under mmap sem read mode). Stop here (after we return all 479 * pagetables will be destroyed) until khugepaged has finished 480 * working on the pagetables under the mmap_lock. 481 */ 482 mmap_write_lock(mm); 483 mmap_write_unlock(mm); 484 } 485 } 486 487 static void release_pte_folio(struct folio *folio) 488 { 489 node_stat_mod_folio(folio, 490 NR_ISOLATED_ANON + folio_is_file_lru(folio), 491 -folio_nr_pages(folio)); 492 folio_unlock(folio); 493 folio_putback_lru(folio); 494 } 495 496 static void release_pte_page(struct page *page) 497 { 498 release_pte_folio(page_folio(page)); 499 } 500 501 static void release_pte_pages(pte_t *pte, pte_t *_pte, 502 struct list_head *compound_pagelist) 503 { 504 struct folio *folio, *tmp; 505 506 while (--_pte >= pte) { 507 pte_t pteval = ptep_get(_pte); 508 unsigned long pfn; 509 510 if (pte_none(pteval)) 511 continue; 512 pfn = pte_pfn(pteval); 513 if (is_zero_pfn(pfn)) 514 continue; 515 folio = pfn_folio(pfn); 516 if (folio_test_large(folio)) 517 continue; 518 release_pte_folio(folio); 519 } 520 521 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 522 list_del(&folio->lru); 523 release_pte_folio(folio); 524 } 525 } 526 527 static bool is_refcount_suitable(struct page *page) 528 { 529 int expected_refcount; 530 531 expected_refcount = total_mapcount(page); 532 if (PageSwapCache(page)) 533 expected_refcount += compound_nr(page); 534 535 return page_count(page) == expected_refcount; 536 } 537 538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 539 unsigned long address, 540 pte_t *pte, 541 struct collapse_control *cc, 542 struct list_head *compound_pagelist) 543 { 544 struct page *page = NULL; 545 pte_t *_pte; 546 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 547 bool writable = false; 548 549 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 550 _pte++, address += PAGE_SIZE) { 551 pte_t pteval = ptep_get(_pte); 552 if (pte_none(pteval) || (pte_present(pteval) && 553 is_zero_pfn(pte_pfn(pteval)))) { 554 ++none_or_zero; 555 if (!userfaultfd_armed(vma) && 556 (!cc->is_khugepaged || 557 none_or_zero <= khugepaged_max_ptes_none)) { 558 continue; 559 } else { 560 result = SCAN_EXCEED_NONE_PTE; 561 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 562 goto out; 563 } 564 } 565 if (!pte_present(pteval)) { 566 result = SCAN_PTE_NON_PRESENT; 567 goto out; 568 } 569 if (pte_uffd_wp(pteval)) { 570 result = SCAN_PTE_UFFD_WP; 571 goto out; 572 } 573 page = vm_normal_page(vma, address, pteval); 574 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 575 result = SCAN_PAGE_NULL; 576 goto out; 577 } 578 579 VM_BUG_ON_PAGE(!PageAnon(page), page); 580 581 if (page_mapcount(page) > 1) { 582 ++shared; 583 if (cc->is_khugepaged && 584 shared > khugepaged_max_ptes_shared) { 585 result = SCAN_EXCEED_SHARED_PTE; 586 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 587 goto out; 588 } 589 } 590 591 if (PageCompound(page)) { 592 struct page *p; 593 page = compound_head(page); 594 595 /* 596 * Check if we have dealt with the compound page 597 * already 598 */ 599 list_for_each_entry(p, compound_pagelist, lru) { 600 if (page == p) 601 goto next; 602 } 603 } 604 605 /* 606 * We can do it before isolate_lru_page because the 607 * page can't be freed from under us. NOTE: PG_lock 608 * is needed to serialize against split_huge_page 609 * when invoked from the VM. 610 */ 611 if (!trylock_page(page)) { 612 result = SCAN_PAGE_LOCK; 613 goto out; 614 } 615 616 /* 617 * Check if the page has any GUP (or other external) pins. 618 * 619 * The page table that maps the page has been already unlinked 620 * from the page table tree and this process cannot get 621 * an additional pin on the page. 622 * 623 * New pins can come later if the page is shared across fork, 624 * but not from this process. The other process cannot write to 625 * the page, only trigger CoW. 626 */ 627 if (!is_refcount_suitable(page)) { 628 unlock_page(page); 629 result = SCAN_PAGE_COUNT; 630 goto out; 631 } 632 633 /* 634 * Isolate the page to avoid collapsing an hugepage 635 * currently in use by the VM. 636 */ 637 if (!isolate_lru_page(page)) { 638 unlock_page(page); 639 result = SCAN_DEL_PAGE_LRU; 640 goto out; 641 } 642 mod_node_page_state(page_pgdat(page), 643 NR_ISOLATED_ANON + page_is_file_lru(page), 644 compound_nr(page)); 645 VM_BUG_ON_PAGE(!PageLocked(page), page); 646 VM_BUG_ON_PAGE(PageLRU(page), page); 647 648 if (PageCompound(page)) 649 list_add_tail(&page->lru, compound_pagelist); 650 next: 651 /* 652 * If collapse was initiated by khugepaged, check that there is 653 * enough young pte to justify collapsing the page 654 */ 655 if (cc->is_khugepaged && 656 (pte_young(pteval) || page_is_young(page) || 657 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 658 address))) 659 referenced++; 660 661 if (pte_write(pteval)) 662 writable = true; 663 } 664 665 if (unlikely(!writable)) { 666 result = SCAN_PAGE_RO; 667 } else if (unlikely(cc->is_khugepaged && !referenced)) { 668 result = SCAN_LACK_REFERENCED_PAGE; 669 } else { 670 result = SCAN_SUCCEED; 671 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 672 referenced, writable, result); 673 return result; 674 } 675 out: 676 release_pte_pages(pte, _pte, compound_pagelist); 677 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 678 referenced, writable, result); 679 return result; 680 } 681 682 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 683 struct vm_area_struct *vma, 684 unsigned long address, 685 spinlock_t *ptl, 686 struct list_head *compound_pagelist) 687 { 688 struct page *src_page; 689 struct page *tmp; 690 pte_t *_pte; 691 pte_t pteval; 692 693 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 694 _pte++, address += PAGE_SIZE) { 695 pteval = ptep_get(_pte); 696 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 697 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 698 if (is_zero_pfn(pte_pfn(pteval))) { 699 /* 700 * ptl mostly unnecessary. 701 */ 702 spin_lock(ptl); 703 ptep_clear(vma->vm_mm, address, _pte); 704 spin_unlock(ptl); 705 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 706 } 707 } else { 708 src_page = pte_page(pteval); 709 if (!PageCompound(src_page)) 710 release_pte_page(src_page); 711 /* 712 * ptl mostly unnecessary, but preempt has to 713 * be disabled to update the per-cpu stats 714 * inside page_remove_rmap(). 715 */ 716 spin_lock(ptl); 717 ptep_clear(vma->vm_mm, address, _pte); 718 page_remove_rmap(src_page, vma, false); 719 spin_unlock(ptl); 720 free_page_and_swap_cache(src_page); 721 } 722 } 723 724 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 725 list_del(&src_page->lru); 726 mod_node_page_state(page_pgdat(src_page), 727 NR_ISOLATED_ANON + page_is_file_lru(src_page), 728 -compound_nr(src_page)); 729 unlock_page(src_page); 730 free_swap_cache(src_page); 731 putback_lru_page(src_page); 732 } 733 } 734 735 static void __collapse_huge_page_copy_failed(pte_t *pte, 736 pmd_t *pmd, 737 pmd_t orig_pmd, 738 struct vm_area_struct *vma, 739 struct list_head *compound_pagelist) 740 { 741 spinlock_t *pmd_ptl; 742 743 /* 744 * Re-establish the PMD to point to the original page table 745 * entry. Restoring PMD needs to be done prior to releasing 746 * pages. Since pages are still isolated and locked here, 747 * acquiring anon_vma_lock_write is unnecessary. 748 */ 749 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 750 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 751 spin_unlock(pmd_ptl); 752 /* 753 * Release both raw and compound pages isolated 754 * in __collapse_huge_page_isolate. 755 */ 756 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 757 } 758 759 /* 760 * __collapse_huge_page_copy - attempts to copy memory contents from raw 761 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 762 * otherwise restores the original page table and releases isolated raw pages. 763 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 764 * 765 * @pte: starting of the PTEs to copy from 766 * @page: the new hugepage to copy contents to 767 * @pmd: pointer to the new hugepage's PMD 768 * @orig_pmd: the original raw pages' PMD 769 * @vma: the original raw pages' virtual memory area 770 * @address: starting address to copy 771 * @ptl: lock on raw pages' PTEs 772 * @compound_pagelist: list that stores compound pages 773 */ 774 static int __collapse_huge_page_copy(pte_t *pte, 775 struct page *page, 776 pmd_t *pmd, 777 pmd_t orig_pmd, 778 struct vm_area_struct *vma, 779 unsigned long address, 780 spinlock_t *ptl, 781 struct list_head *compound_pagelist) 782 { 783 struct page *src_page; 784 pte_t *_pte; 785 pte_t pteval; 786 unsigned long _address; 787 int result = SCAN_SUCCEED; 788 789 /* 790 * Copying pages' contents is subject to memory poison at any iteration. 791 */ 792 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; 793 _pte++, page++, _address += PAGE_SIZE) { 794 pteval = ptep_get(_pte); 795 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 796 clear_user_highpage(page, _address); 797 continue; 798 } 799 src_page = pte_page(pteval); 800 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { 801 result = SCAN_COPY_MC; 802 break; 803 } 804 } 805 806 if (likely(result == SCAN_SUCCEED)) 807 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 808 compound_pagelist); 809 else 810 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 811 compound_pagelist); 812 813 return result; 814 } 815 816 static void khugepaged_alloc_sleep(void) 817 { 818 DEFINE_WAIT(wait); 819 820 add_wait_queue(&khugepaged_wait, &wait); 821 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 822 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 823 remove_wait_queue(&khugepaged_wait, &wait); 824 } 825 826 struct collapse_control khugepaged_collapse_control = { 827 .is_khugepaged = true, 828 }; 829 830 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 831 { 832 int i; 833 834 /* 835 * If node_reclaim_mode is disabled, then no extra effort is made to 836 * allocate memory locally. 837 */ 838 if (!node_reclaim_enabled()) 839 return false; 840 841 /* If there is a count for this node already, it must be acceptable */ 842 if (cc->node_load[nid]) 843 return false; 844 845 for (i = 0; i < MAX_NUMNODES; i++) { 846 if (!cc->node_load[i]) 847 continue; 848 if (node_distance(nid, i) > node_reclaim_distance) 849 return true; 850 } 851 return false; 852 } 853 854 #define khugepaged_defrag() \ 855 (transparent_hugepage_flags & \ 856 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 857 858 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 859 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 860 { 861 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 862 } 863 864 #ifdef CONFIG_NUMA 865 static int hpage_collapse_find_target_node(struct collapse_control *cc) 866 { 867 int nid, target_node = 0, max_value = 0; 868 869 /* find first node with max normal pages hit */ 870 for (nid = 0; nid < MAX_NUMNODES; nid++) 871 if (cc->node_load[nid] > max_value) { 872 max_value = cc->node_load[nid]; 873 target_node = nid; 874 } 875 876 for_each_online_node(nid) { 877 if (max_value == cc->node_load[nid]) 878 node_set(nid, cc->alloc_nmask); 879 } 880 881 return target_node; 882 } 883 #else 884 static int hpage_collapse_find_target_node(struct collapse_control *cc) 885 { 886 return 0; 887 } 888 #endif 889 890 /* 891 * If mmap_lock temporarily dropped, revalidate vma 892 * before taking mmap_lock. 893 * Returns enum scan_result value. 894 */ 895 896 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 897 bool expect_anon, 898 struct vm_area_struct **vmap, 899 struct collapse_control *cc) 900 { 901 struct vm_area_struct *vma; 902 903 if (unlikely(hpage_collapse_test_exit(mm))) 904 return SCAN_ANY_PROCESS; 905 906 *vmap = vma = find_vma(mm, address); 907 if (!vma) 908 return SCAN_VMA_NULL; 909 910 if (!transhuge_vma_suitable(vma, address)) 911 return SCAN_ADDRESS_RANGE; 912 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 913 cc->is_khugepaged)) 914 return SCAN_VMA_CHECK; 915 /* 916 * Anon VMA expected, the address may be unmapped then 917 * remapped to file after khugepaged reaquired the mmap_lock. 918 * 919 * hugepage_vma_check may return true for qualified file 920 * vmas. 921 */ 922 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 923 return SCAN_PAGE_ANON; 924 return SCAN_SUCCEED; 925 } 926 927 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 928 unsigned long address, 929 pmd_t **pmd) 930 { 931 pmd_t pmde; 932 933 *pmd = mm_find_pmd(mm, address); 934 if (!*pmd) 935 return SCAN_PMD_NULL; 936 937 pmde = pmdp_get_lockless(*pmd); 938 if (pmd_none(pmde)) 939 return SCAN_PMD_NONE; 940 if (!pmd_present(pmde)) 941 return SCAN_PMD_NULL; 942 if (pmd_trans_huge(pmde)) 943 return SCAN_PMD_MAPPED; 944 if (pmd_devmap(pmde)) 945 return SCAN_PMD_NULL; 946 if (pmd_bad(pmde)) 947 return SCAN_PMD_NULL; 948 return SCAN_SUCCEED; 949 } 950 951 static int check_pmd_still_valid(struct mm_struct *mm, 952 unsigned long address, 953 pmd_t *pmd) 954 { 955 pmd_t *new_pmd; 956 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 957 958 if (result != SCAN_SUCCEED) 959 return result; 960 if (new_pmd != pmd) 961 return SCAN_FAIL; 962 return SCAN_SUCCEED; 963 } 964 965 /* 966 * Bring missing pages in from swap, to complete THP collapse. 967 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 968 * 969 * Called and returns without pte mapped or spinlocks held. 970 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 971 */ 972 static int __collapse_huge_page_swapin(struct mm_struct *mm, 973 struct vm_area_struct *vma, 974 unsigned long haddr, pmd_t *pmd, 975 int referenced) 976 { 977 int swapped_in = 0; 978 vm_fault_t ret = 0; 979 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 980 int result; 981 pte_t *pte = NULL; 982 spinlock_t *ptl; 983 984 for (address = haddr; address < end; address += PAGE_SIZE) { 985 struct vm_fault vmf = { 986 .vma = vma, 987 .address = address, 988 .pgoff = linear_page_index(vma, address), 989 .flags = FAULT_FLAG_ALLOW_RETRY, 990 .pmd = pmd, 991 }; 992 993 if (!pte++) { 994 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 995 if (!pte) { 996 mmap_read_unlock(mm); 997 result = SCAN_PMD_NULL; 998 goto out; 999 } 1000 } 1001 1002 vmf.orig_pte = ptep_get_lockless(pte); 1003 if (!is_swap_pte(vmf.orig_pte)) 1004 continue; 1005 1006 vmf.pte = pte; 1007 vmf.ptl = ptl; 1008 ret = do_swap_page(&vmf); 1009 /* Which unmaps pte (after perhaps re-checking the entry) */ 1010 pte = NULL; 1011 1012 /* 1013 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1014 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1015 * we do not retry here and swap entry will remain in pagetable 1016 * resulting in later failure. 1017 */ 1018 if (ret & VM_FAULT_RETRY) { 1019 /* Likely, but not guaranteed, that page lock failed */ 1020 result = SCAN_PAGE_LOCK; 1021 goto out; 1022 } 1023 if (ret & VM_FAULT_ERROR) { 1024 mmap_read_unlock(mm); 1025 result = SCAN_FAIL; 1026 goto out; 1027 } 1028 swapped_in++; 1029 } 1030 1031 if (pte) 1032 pte_unmap(pte); 1033 1034 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1035 if (swapped_in) 1036 lru_add_drain(); 1037 1038 result = SCAN_SUCCEED; 1039 out: 1040 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1041 return result; 1042 } 1043 1044 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 1045 struct collapse_control *cc) 1046 { 1047 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1048 GFP_TRANSHUGE); 1049 int node = hpage_collapse_find_target_node(cc); 1050 struct folio *folio; 1051 1052 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1053 if (!folio) { 1054 *hpage = NULL; 1055 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1056 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1057 } 1058 1059 count_vm_event(THP_COLLAPSE_ALLOC); 1060 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1061 folio_put(folio); 1062 *hpage = NULL; 1063 return SCAN_CGROUP_CHARGE_FAIL; 1064 } 1065 1066 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1067 1068 *hpage = folio_page(folio, 0); 1069 return SCAN_SUCCEED; 1070 } 1071 1072 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1073 int referenced, int unmapped, 1074 struct collapse_control *cc) 1075 { 1076 LIST_HEAD(compound_pagelist); 1077 pmd_t *pmd, _pmd; 1078 pte_t *pte; 1079 pgtable_t pgtable; 1080 struct folio *folio; 1081 struct page *hpage; 1082 spinlock_t *pmd_ptl, *pte_ptl; 1083 int result = SCAN_FAIL; 1084 struct vm_area_struct *vma; 1085 struct mmu_notifier_range range; 1086 1087 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1088 1089 /* 1090 * Before allocating the hugepage, release the mmap_lock read lock. 1091 * The allocation can take potentially a long time if it involves 1092 * sync compaction, and we do not need to hold the mmap_lock during 1093 * that. We will recheck the vma after taking it again in write mode. 1094 */ 1095 mmap_read_unlock(mm); 1096 1097 result = alloc_charge_hpage(&hpage, mm, cc); 1098 if (result != SCAN_SUCCEED) 1099 goto out_nolock; 1100 1101 mmap_read_lock(mm); 1102 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1103 if (result != SCAN_SUCCEED) { 1104 mmap_read_unlock(mm); 1105 goto out_nolock; 1106 } 1107 1108 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1109 if (result != SCAN_SUCCEED) { 1110 mmap_read_unlock(mm); 1111 goto out_nolock; 1112 } 1113 1114 if (unmapped) { 1115 /* 1116 * __collapse_huge_page_swapin will return with mmap_lock 1117 * released when it fails. So we jump out_nolock directly in 1118 * that case. Continuing to collapse causes inconsistency. 1119 */ 1120 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1121 referenced); 1122 if (result != SCAN_SUCCEED) 1123 goto out_nolock; 1124 } 1125 1126 mmap_read_unlock(mm); 1127 /* 1128 * Prevent all access to pagetables with the exception of 1129 * gup_fast later handled by the ptep_clear_flush and the VM 1130 * handled by the anon_vma lock + PG_lock. 1131 */ 1132 mmap_write_lock(mm); 1133 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1134 if (result != SCAN_SUCCEED) 1135 goto out_up_write; 1136 /* check if the pmd is still valid */ 1137 result = check_pmd_still_valid(mm, address, pmd); 1138 if (result != SCAN_SUCCEED) 1139 goto out_up_write; 1140 1141 vma_start_write(vma); 1142 anon_vma_lock_write(vma->anon_vma); 1143 1144 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1145 address + HPAGE_PMD_SIZE); 1146 mmu_notifier_invalidate_range_start(&range); 1147 1148 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1149 /* 1150 * This removes any huge TLB entry from the CPU so we won't allow 1151 * huge and small TLB entries for the same virtual address to 1152 * avoid the risk of CPU bugs in that area. 1153 * 1154 * Parallel fast GUP is fine since fast GUP will back off when 1155 * it detects PMD is changed. 1156 */ 1157 _pmd = pmdp_collapse_flush(vma, address, pmd); 1158 spin_unlock(pmd_ptl); 1159 mmu_notifier_invalidate_range_end(&range); 1160 tlb_remove_table_sync_one(); 1161 1162 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1163 if (pte) { 1164 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1165 &compound_pagelist); 1166 spin_unlock(pte_ptl); 1167 } else { 1168 result = SCAN_PMD_NULL; 1169 } 1170 1171 if (unlikely(result != SCAN_SUCCEED)) { 1172 if (pte) 1173 pte_unmap(pte); 1174 spin_lock(pmd_ptl); 1175 BUG_ON(!pmd_none(*pmd)); 1176 /* 1177 * We can only use set_pmd_at when establishing 1178 * hugepmds and never for establishing regular pmds that 1179 * points to regular pagetables. Use pmd_populate for that 1180 */ 1181 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1182 spin_unlock(pmd_ptl); 1183 anon_vma_unlock_write(vma->anon_vma); 1184 goto out_up_write; 1185 } 1186 1187 /* 1188 * All pages are isolated and locked so anon_vma rmap 1189 * can't run anymore. 1190 */ 1191 anon_vma_unlock_write(vma->anon_vma); 1192 1193 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, 1194 vma, address, pte_ptl, 1195 &compound_pagelist); 1196 pte_unmap(pte); 1197 if (unlikely(result != SCAN_SUCCEED)) 1198 goto out_up_write; 1199 1200 folio = page_folio(hpage); 1201 /* 1202 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1203 * copy_huge_page writes become visible before the set_pmd_at() 1204 * write. 1205 */ 1206 __folio_mark_uptodate(folio); 1207 pgtable = pmd_pgtable(_pmd); 1208 1209 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1210 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1211 1212 spin_lock(pmd_ptl); 1213 BUG_ON(!pmd_none(*pmd)); 1214 folio_add_new_anon_rmap(folio, vma, address); 1215 folio_add_lru_vma(folio, vma); 1216 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1217 set_pmd_at(mm, address, pmd, _pmd); 1218 update_mmu_cache_pmd(vma, address, pmd); 1219 spin_unlock(pmd_ptl); 1220 1221 hpage = NULL; 1222 1223 result = SCAN_SUCCEED; 1224 out_up_write: 1225 mmap_write_unlock(mm); 1226 out_nolock: 1227 if (hpage) 1228 put_page(hpage); 1229 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1230 return result; 1231 } 1232 1233 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1234 struct vm_area_struct *vma, 1235 unsigned long address, bool *mmap_locked, 1236 struct collapse_control *cc) 1237 { 1238 pmd_t *pmd; 1239 pte_t *pte, *_pte; 1240 int result = SCAN_FAIL, referenced = 0; 1241 int none_or_zero = 0, shared = 0; 1242 struct page *page = NULL; 1243 unsigned long _address; 1244 spinlock_t *ptl; 1245 int node = NUMA_NO_NODE, unmapped = 0; 1246 bool writable = false; 1247 1248 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1249 1250 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1251 if (result != SCAN_SUCCEED) 1252 goto out; 1253 1254 memset(cc->node_load, 0, sizeof(cc->node_load)); 1255 nodes_clear(cc->alloc_nmask); 1256 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1257 if (!pte) { 1258 result = SCAN_PMD_NULL; 1259 goto out; 1260 } 1261 1262 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1263 _pte++, _address += PAGE_SIZE) { 1264 pte_t pteval = ptep_get(_pte); 1265 if (is_swap_pte(pteval)) { 1266 ++unmapped; 1267 if (!cc->is_khugepaged || 1268 unmapped <= khugepaged_max_ptes_swap) { 1269 /* 1270 * Always be strict with uffd-wp 1271 * enabled swap entries. Please see 1272 * comment below for pte_uffd_wp(). 1273 */ 1274 if (pte_swp_uffd_wp_any(pteval)) { 1275 result = SCAN_PTE_UFFD_WP; 1276 goto out_unmap; 1277 } 1278 continue; 1279 } else { 1280 result = SCAN_EXCEED_SWAP_PTE; 1281 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1282 goto out_unmap; 1283 } 1284 } 1285 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1286 ++none_or_zero; 1287 if (!userfaultfd_armed(vma) && 1288 (!cc->is_khugepaged || 1289 none_or_zero <= khugepaged_max_ptes_none)) { 1290 continue; 1291 } else { 1292 result = SCAN_EXCEED_NONE_PTE; 1293 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1294 goto out_unmap; 1295 } 1296 } 1297 if (pte_uffd_wp(pteval)) { 1298 /* 1299 * Don't collapse the page if any of the small 1300 * PTEs are armed with uffd write protection. 1301 * Here we can also mark the new huge pmd as 1302 * write protected if any of the small ones is 1303 * marked but that could bring unknown 1304 * userfault messages that falls outside of 1305 * the registered range. So, just be simple. 1306 */ 1307 result = SCAN_PTE_UFFD_WP; 1308 goto out_unmap; 1309 } 1310 if (pte_write(pteval)) 1311 writable = true; 1312 1313 page = vm_normal_page(vma, _address, pteval); 1314 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1315 result = SCAN_PAGE_NULL; 1316 goto out_unmap; 1317 } 1318 1319 if (page_mapcount(page) > 1) { 1320 ++shared; 1321 if (cc->is_khugepaged && 1322 shared > khugepaged_max_ptes_shared) { 1323 result = SCAN_EXCEED_SHARED_PTE; 1324 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1325 goto out_unmap; 1326 } 1327 } 1328 1329 page = compound_head(page); 1330 1331 /* 1332 * Record which node the original page is from and save this 1333 * information to cc->node_load[]. 1334 * Khugepaged will allocate hugepage from the node has the max 1335 * hit record. 1336 */ 1337 node = page_to_nid(page); 1338 if (hpage_collapse_scan_abort(node, cc)) { 1339 result = SCAN_SCAN_ABORT; 1340 goto out_unmap; 1341 } 1342 cc->node_load[node]++; 1343 if (!PageLRU(page)) { 1344 result = SCAN_PAGE_LRU; 1345 goto out_unmap; 1346 } 1347 if (PageLocked(page)) { 1348 result = SCAN_PAGE_LOCK; 1349 goto out_unmap; 1350 } 1351 if (!PageAnon(page)) { 1352 result = SCAN_PAGE_ANON; 1353 goto out_unmap; 1354 } 1355 1356 /* 1357 * Check if the page has any GUP (or other external) pins. 1358 * 1359 * Here the check may be racy: 1360 * it may see total_mapcount > refcount in some cases? 1361 * But such case is ephemeral we could always retry collapse 1362 * later. However it may report false positive if the page 1363 * has excessive GUP pins (i.e. 512). Anyway the same check 1364 * will be done again later the risk seems low. 1365 */ 1366 if (!is_refcount_suitable(page)) { 1367 result = SCAN_PAGE_COUNT; 1368 goto out_unmap; 1369 } 1370 1371 /* 1372 * If collapse was initiated by khugepaged, check that there is 1373 * enough young pte to justify collapsing the page 1374 */ 1375 if (cc->is_khugepaged && 1376 (pte_young(pteval) || page_is_young(page) || 1377 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1378 address))) 1379 referenced++; 1380 } 1381 if (!writable) { 1382 result = SCAN_PAGE_RO; 1383 } else if (cc->is_khugepaged && 1384 (!referenced || 1385 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1386 result = SCAN_LACK_REFERENCED_PAGE; 1387 } else { 1388 result = SCAN_SUCCEED; 1389 } 1390 out_unmap: 1391 pte_unmap_unlock(pte, ptl); 1392 if (result == SCAN_SUCCEED) { 1393 result = collapse_huge_page(mm, address, referenced, 1394 unmapped, cc); 1395 /* collapse_huge_page will return with the mmap_lock released */ 1396 *mmap_locked = false; 1397 } 1398 out: 1399 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1400 none_or_zero, result, unmapped); 1401 return result; 1402 } 1403 1404 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1405 { 1406 struct mm_slot *slot = &mm_slot->slot; 1407 struct mm_struct *mm = slot->mm; 1408 1409 lockdep_assert_held(&khugepaged_mm_lock); 1410 1411 if (hpage_collapse_test_exit(mm)) { 1412 /* free mm_slot */ 1413 hash_del(&slot->hash); 1414 list_del(&slot->mm_node); 1415 1416 /* 1417 * Not strictly needed because the mm exited already. 1418 * 1419 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1420 */ 1421 1422 /* khugepaged_mm_lock actually not necessary for the below */ 1423 mm_slot_free(mm_slot_cache, mm_slot); 1424 mmdrop(mm); 1425 } 1426 } 1427 1428 #ifdef CONFIG_SHMEM 1429 /* hpage must be locked, and mmap_lock must be held */ 1430 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1431 pmd_t *pmdp, struct page *hpage) 1432 { 1433 struct vm_fault vmf = { 1434 .vma = vma, 1435 .address = addr, 1436 .flags = 0, 1437 .pmd = pmdp, 1438 }; 1439 1440 VM_BUG_ON(!PageTransHuge(hpage)); 1441 mmap_assert_locked(vma->vm_mm); 1442 1443 if (do_set_pmd(&vmf, hpage)) 1444 return SCAN_FAIL; 1445 1446 get_page(hpage); 1447 return SCAN_SUCCEED; 1448 } 1449 1450 /** 1451 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1452 * address haddr. 1453 * 1454 * @mm: process address space where collapse happens 1455 * @addr: THP collapse address 1456 * @install_pmd: If a huge PMD should be installed 1457 * 1458 * This function checks whether all the PTEs in the PMD are pointing to the 1459 * right THP. If so, retract the page table so the THP can refault in with 1460 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1461 */ 1462 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1463 bool install_pmd) 1464 { 1465 struct mmu_notifier_range range; 1466 bool notified = false; 1467 unsigned long haddr = addr & HPAGE_PMD_MASK; 1468 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1469 struct page *hpage; 1470 pte_t *start_pte, *pte; 1471 pmd_t *pmd, pgt_pmd; 1472 spinlock_t *pml = NULL, *ptl; 1473 int nr_ptes = 0, result = SCAN_FAIL; 1474 int i; 1475 1476 mmap_assert_locked(mm); 1477 1478 /* First check VMA found, in case page tables are being torn down */ 1479 if (!vma || !vma->vm_file || 1480 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1481 return SCAN_VMA_CHECK; 1482 1483 /* Fast check before locking page if already PMD-mapped */ 1484 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1485 if (result == SCAN_PMD_MAPPED) 1486 return result; 1487 1488 /* 1489 * If we are here, we've succeeded in replacing all the native pages 1490 * in the page cache with a single hugepage. If a mm were to fault-in 1491 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1492 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1493 * analogously elide sysfs THP settings here. 1494 */ 1495 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1496 return SCAN_VMA_CHECK; 1497 1498 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1499 if (userfaultfd_wp(vma)) 1500 return SCAN_PTE_UFFD_WP; 1501 1502 hpage = find_lock_page(vma->vm_file->f_mapping, 1503 linear_page_index(vma, haddr)); 1504 if (!hpage) 1505 return SCAN_PAGE_NULL; 1506 1507 if (!PageHead(hpage)) { 1508 result = SCAN_FAIL; 1509 goto drop_hpage; 1510 } 1511 1512 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1513 result = SCAN_PAGE_COMPOUND; 1514 goto drop_hpage; 1515 } 1516 1517 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1518 switch (result) { 1519 case SCAN_SUCCEED: 1520 break; 1521 case SCAN_PMD_NONE: 1522 /* 1523 * All pte entries have been removed and pmd cleared. 1524 * Skip all the pte checks and just update the pmd mapping. 1525 */ 1526 goto maybe_install_pmd; 1527 default: 1528 goto drop_hpage; 1529 } 1530 1531 result = SCAN_FAIL; 1532 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1533 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1534 goto drop_hpage; 1535 1536 /* step 1: check all mapped PTEs are to the right huge page */ 1537 for (i = 0, addr = haddr, pte = start_pte; 1538 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1539 struct page *page; 1540 pte_t ptent = ptep_get(pte); 1541 1542 /* empty pte, skip */ 1543 if (pte_none(ptent)) 1544 continue; 1545 1546 /* page swapped out, abort */ 1547 if (!pte_present(ptent)) { 1548 result = SCAN_PTE_NON_PRESENT; 1549 goto abort; 1550 } 1551 1552 page = vm_normal_page(vma, addr, ptent); 1553 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1554 page = NULL; 1555 /* 1556 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1557 * page table, but the new page will not be a subpage of hpage. 1558 */ 1559 if (hpage + i != page) 1560 goto abort; 1561 } 1562 1563 pte_unmap_unlock(start_pte, ptl); 1564 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1565 haddr, haddr + HPAGE_PMD_SIZE); 1566 mmu_notifier_invalidate_range_start(&range); 1567 notified = true; 1568 1569 /* 1570 * pmd_lock covers a wider range than ptl, and (if split from mm's 1571 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1572 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1573 * inserts a valid as-if-COWed PTE without even looking up page cache. 1574 * So page lock of hpage does not protect from it, so we must not drop 1575 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1576 */ 1577 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1578 pml = pmd_lock(mm, pmd); 1579 1580 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl); 1581 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1582 goto abort; 1583 if (!pml) 1584 spin_lock(ptl); 1585 else if (ptl != pml) 1586 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1587 1588 /* step 2: clear page table and adjust rmap */ 1589 for (i = 0, addr = haddr, pte = start_pte; 1590 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1591 struct page *page; 1592 pte_t ptent = ptep_get(pte); 1593 1594 if (pte_none(ptent)) 1595 continue; 1596 /* 1597 * We dropped ptl after the first scan, to do the mmu_notifier: 1598 * page lock stops more PTEs of the hpage being faulted in, but 1599 * does not stop write faults COWing anon copies from existing 1600 * PTEs; and does not stop those being swapped out or migrated. 1601 */ 1602 if (!pte_present(ptent)) { 1603 result = SCAN_PTE_NON_PRESENT; 1604 goto abort; 1605 } 1606 page = vm_normal_page(vma, addr, ptent); 1607 if (hpage + i != page) 1608 goto abort; 1609 1610 /* 1611 * Must clear entry, or a racing truncate may re-remove it. 1612 * TLB flush can be left until pmdp_collapse_flush() does it. 1613 * PTE dirty? Shmem page is already dirty; file is read-only. 1614 */ 1615 ptep_clear(mm, addr, pte); 1616 page_remove_rmap(page, vma, false); 1617 nr_ptes++; 1618 } 1619 1620 pte_unmap(start_pte); 1621 if (!pml) 1622 spin_unlock(ptl); 1623 1624 /* step 3: set proper refcount and mm_counters. */ 1625 if (nr_ptes) { 1626 page_ref_sub(hpage, nr_ptes); 1627 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes); 1628 } 1629 1630 /* step 4: remove empty page table */ 1631 if (!pml) { 1632 pml = pmd_lock(mm, pmd); 1633 if (ptl != pml) 1634 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1635 } 1636 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1637 pmdp_get_lockless_sync(); 1638 if (ptl != pml) 1639 spin_unlock(ptl); 1640 spin_unlock(pml); 1641 1642 mmu_notifier_invalidate_range_end(&range); 1643 1644 mm_dec_nr_ptes(mm); 1645 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1646 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1647 1648 maybe_install_pmd: 1649 /* step 5: install pmd entry */ 1650 result = install_pmd 1651 ? set_huge_pmd(vma, haddr, pmd, hpage) 1652 : SCAN_SUCCEED; 1653 goto drop_hpage; 1654 abort: 1655 if (nr_ptes) { 1656 flush_tlb_mm(mm); 1657 page_ref_sub(hpage, nr_ptes); 1658 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes); 1659 } 1660 if (start_pte) 1661 pte_unmap_unlock(start_pte, ptl); 1662 if (pml && pml != ptl) 1663 spin_unlock(pml); 1664 if (notified) 1665 mmu_notifier_invalidate_range_end(&range); 1666 drop_hpage: 1667 unlock_page(hpage); 1668 put_page(hpage); 1669 return result; 1670 } 1671 1672 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1673 { 1674 struct vm_area_struct *vma; 1675 1676 i_mmap_lock_read(mapping); 1677 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1678 struct mmu_notifier_range range; 1679 struct mm_struct *mm; 1680 unsigned long addr; 1681 pmd_t *pmd, pgt_pmd; 1682 spinlock_t *pml; 1683 spinlock_t *ptl; 1684 bool skipped_uffd = false; 1685 1686 /* 1687 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1688 * got written to. These VMAs are likely not worth removing 1689 * page tables from, as PMD-mapping is likely to be split later. 1690 */ 1691 if (READ_ONCE(vma->anon_vma)) 1692 continue; 1693 1694 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1695 if (addr & ~HPAGE_PMD_MASK || 1696 vma->vm_end < addr + HPAGE_PMD_SIZE) 1697 continue; 1698 1699 mm = vma->vm_mm; 1700 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1701 continue; 1702 1703 if (hpage_collapse_test_exit(mm)) 1704 continue; 1705 /* 1706 * When a vma is registered with uffd-wp, we cannot recycle 1707 * the page table because there may be pte markers installed. 1708 * Other vmas can still have the same file mapped hugely, but 1709 * skip this one: it will always be mapped in small page size 1710 * for uffd-wp registered ranges. 1711 */ 1712 if (userfaultfd_wp(vma)) 1713 continue; 1714 1715 /* PTEs were notified when unmapped; but now for the PMD? */ 1716 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1717 addr, addr + HPAGE_PMD_SIZE); 1718 mmu_notifier_invalidate_range_start(&range); 1719 1720 pml = pmd_lock(mm, pmd); 1721 ptl = pte_lockptr(mm, pmd); 1722 if (ptl != pml) 1723 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1724 1725 /* 1726 * Huge page lock is still held, so normally the page table 1727 * must remain empty; and we have already skipped anon_vma 1728 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1729 * held, it is still possible for a racing userfaultfd_ioctl() 1730 * to have inserted ptes or markers. Now that we hold ptlock, 1731 * repeating the anon_vma check protects from one category, 1732 * and repeating the userfaultfd_wp() check from another. 1733 */ 1734 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1735 skipped_uffd = true; 1736 } else { 1737 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1738 pmdp_get_lockless_sync(); 1739 } 1740 1741 if (ptl != pml) 1742 spin_unlock(ptl); 1743 spin_unlock(pml); 1744 1745 mmu_notifier_invalidate_range_end(&range); 1746 1747 if (!skipped_uffd) { 1748 mm_dec_nr_ptes(mm); 1749 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1750 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1751 } 1752 } 1753 i_mmap_unlock_read(mapping); 1754 } 1755 1756 /** 1757 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1758 * 1759 * @mm: process address space where collapse happens 1760 * @addr: virtual collapse start address 1761 * @file: file that collapse on 1762 * @start: collapse start address 1763 * @cc: collapse context and scratchpad 1764 * 1765 * Basic scheme is simple, details are more complex: 1766 * - allocate and lock a new huge page; 1767 * - scan page cache, locking old pages 1768 * + swap/gup in pages if necessary; 1769 * - copy data to new page 1770 * - handle shmem holes 1771 * + re-validate that holes weren't filled by someone else 1772 * + check for userfaultfd 1773 * - finalize updates to the page cache; 1774 * - if replacing succeeds: 1775 * + unlock huge page; 1776 * + free old pages; 1777 * - if replacing failed; 1778 * + unlock old pages 1779 * + unlock and free huge page; 1780 */ 1781 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1782 struct file *file, pgoff_t start, 1783 struct collapse_control *cc) 1784 { 1785 struct address_space *mapping = file->f_mapping; 1786 struct page *hpage; 1787 struct page *page; 1788 struct page *tmp; 1789 struct folio *folio; 1790 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1791 LIST_HEAD(pagelist); 1792 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1793 int nr_none = 0, result = SCAN_SUCCEED; 1794 bool is_shmem = shmem_file(file); 1795 int nr = 0; 1796 1797 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1798 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1799 1800 result = alloc_charge_hpage(&hpage, mm, cc); 1801 if (result != SCAN_SUCCEED) 1802 goto out; 1803 1804 __SetPageLocked(hpage); 1805 if (is_shmem) 1806 __SetPageSwapBacked(hpage); 1807 hpage->index = start; 1808 hpage->mapping = mapping; 1809 1810 /* 1811 * Ensure we have slots for all the pages in the range. This is 1812 * almost certainly a no-op because most of the pages must be present 1813 */ 1814 do { 1815 xas_lock_irq(&xas); 1816 xas_create_range(&xas); 1817 if (!xas_error(&xas)) 1818 break; 1819 xas_unlock_irq(&xas); 1820 if (!xas_nomem(&xas, GFP_KERNEL)) { 1821 result = SCAN_FAIL; 1822 goto rollback; 1823 } 1824 } while (1); 1825 1826 for (index = start; index < end; index++) { 1827 xas_set(&xas, index); 1828 page = xas_load(&xas); 1829 1830 VM_BUG_ON(index != xas.xa_index); 1831 if (is_shmem) { 1832 if (!page) { 1833 /* 1834 * Stop if extent has been truncated or 1835 * hole-punched, and is now completely 1836 * empty. 1837 */ 1838 if (index == start) { 1839 if (!xas_next_entry(&xas, end - 1)) { 1840 result = SCAN_TRUNCATED; 1841 goto xa_locked; 1842 } 1843 } 1844 nr_none++; 1845 continue; 1846 } 1847 1848 if (xa_is_value(page) || !PageUptodate(page)) { 1849 xas_unlock_irq(&xas); 1850 /* swap in or instantiate fallocated page */ 1851 if (shmem_get_folio(mapping->host, index, 1852 &folio, SGP_NOALLOC)) { 1853 result = SCAN_FAIL; 1854 goto xa_unlocked; 1855 } 1856 /* drain lru cache to help isolate_lru_page() */ 1857 lru_add_drain(); 1858 page = folio_file_page(folio, index); 1859 } else if (trylock_page(page)) { 1860 get_page(page); 1861 xas_unlock_irq(&xas); 1862 } else { 1863 result = SCAN_PAGE_LOCK; 1864 goto xa_locked; 1865 } 1866 } else { /* !is_shmem */ 1867 if (!page || xa_is_value(page)) { 1868 xas_unlock_irq(&xas); 1869 page_cache_sync_readahead(mapping, &file->f_ra, 1870 file, index, 1871 end - index); 1872 /* drain lru cache to help isolate_lru_page() */ 1873 lru_add_drain(); 1874 page = find_lock_page(mapping, index); 1875 if (unlikely(page == NULL)) { 1876 result = SCAN_FAIL; 1877 goto xa_unlocked; 1878 } 1879 } else if (PageDirty(page)) { 1880 /* 1881 * khugepaged only works on read-only fd, 1882 * so this page is dirty because it hasn't 1883 * been flushed since first write. There 1884 * won't be new dirty pages. 1885 * 1886 * Trigger async flush here and hope the 1887 * writeback is done when khugepaged 1888 * revisits this page. 1889 * 1890 * This is a one-off situation. We are not 1891 * forcing writeback in loop. 1892 */ 1893 xas_unlock_irq(&xas); 1894 filemap_flush(mapping); 1895 result = SCAN_FAIL; 1896 goto xa_unlocked; 1897 } else if (PageWriteback(page)) { 1898 xas_unlock_irq(&xas); 1899 result = SCAN_FAIL; 1900 goto xa_unlocked; 1901 } else if (trylock_page(page)) { 1902 get_page(page); 1903 xas_unlock_irq(&xas); 1904 } else { 1905 result = SCAN_PAGE_LOCK; 1906 goto xa_locked; 1907 } 1908 } 1909 1910 /* 1911 * The page must be locked, so we can drop the i_pages lock 1912 * without racing with truncate. 1913 */ 1914 VM_BUG_ON_PAGE(!PageLocked(page), page); 1915 1916 /* make sure the page is up to date */ 1917 if (unlikely(!PageUptodate(page))) { 1918 result = SCAN_FAIL; 1919 goto out_unlock; 1920 } 1921 1922 /* 1923 * If file was truncated then extended, or hole-punched, before 1924 * we locked the first page, then a THP might be there already. 1925 * This will be discovered on the first iteration. 1926 */ 1927 if (PageTransCompound(page)) { 1928 struct page *head = compound_head(page); 1929 1930 result = compound_order(head) == HPAGE_PMD_ORDER && 1931 head->index == start 1932 /* Maybe PMD-mapped */ 1933 ? SCAN_PTE_MAPPED_HUGEPAGE 1934 : SCAN_PAGE_COMPOUND; 1935 goto out_unlock; 1936 } 1937 1938 folio = page_folio(page); 1939 1940 if (folio_mapping(folio) != mapping) { 1941 result = SCAN_TRUNCATED; 1942 goto out_unlock; 1943 } 1944 1945 if (!is_shmem && (folio_test_dirty(folio) || 1946 folio_test_writeback(folio))) { 1947 /* 1948 * khugepaged only works on read-only fd, so this 1949 * page is dirty because it hasn't been flushed 1950 * since first write. 1951 */ 1952 result = SCAN_FAIL; 1953 goto out_unlock; 1954 } 1955 1956 if (!folio_isolate_lru(folio)) { 1957 result = SCAN_DEL_PAGE_LRU; 1958 goto out_unlock; 1959 } 1960 1961 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1962 result = SCAN_PAGE_HAS_PRIVATE; 1963 folio_putback_lru(folio); 1964 goto out_unlock; 1965 } 1966 1967 if (folio_mapped(folio)) 1968 try_to_unmap(folio, 1969 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1970 1971 xas_lock_irq(&xas); 1972 1973 VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page); 1974 1975 /* 1976 * We control three references to the page: 1977 * - we hold a pin on it; 1978 * - one reference from page cache; 1979 * - one from isolate_lru_page; 1980 * If those are the only references, then any new usage of the 1981 * page will have to fetch it from the page cache. That requires 1982 * locking the page to handle truncate, so any new usage will be 1983 * blocked until we unlock page after collapse/during rollback. 1984 */ 1985 if (page_count(page) != 3) { 1986 result = SCAN_PAGE_COUNT; 1987 xas_unlock_irq(&xas); 1988 putback_lru_page(page); 1989 goto out_unlock; 1990 } 1991 1992 /* 1993 * Accumulate the pages that are being collapsed. 1994 */ 1995 list_add_tail(&page->lru, &pagelist); 1996 continue; 1997 out_unlock: 1998 unlock_page(page); 1999 put_page(page); 2000 goto xa_unlocked; 2001 } 2002 2003 if (!is_shmem) { 2004 filemap_nr_thps_inc(mapping); 2005 /* 2006 * Paired with smp_mb() in do_dentry_open() to ensure 2007 * i_writecount is up to date and the update to nr_thps is 2008 * visible. Ensures the page cache will be truncated if the 2009 * file is opened writable. 2010 */ 2011 smp_mb(); 2012 if (inode_is_open_for_write(mapping->host)) { 2013 result = SCAN_FAIL; 2014 filemap_nr_thps_dec(mapping); 2015 } 2016 } 2017 2018 xa_locked: 2019 xas_unlock_irq(&xas); 2020 xa_unlocked: 2021 2022 /* 2023 * If collapse is successful, flush must be done now before copying. 2024 * If collapse is unsuccessful, does flush actually need to be done? 2025 * Do it anyway, to clear the state. 2026 */ 2027 try_to_unmap_flush(); 2028 2029 if (result == SCAN_SUCCEED && nr_none && 2030 !shmem_charge(mapping->host, nr_none)) 2031 result = SCAN_FAIL; 2032 if (result != SCAN_SUCCEED) { 2033 nr_none = 0; 2034 goto rollback; 2035 } 2036 2037 /* 2038 * The old pages are locked, so they won't change anymore. 2039 */ 2040 index = start; 2041 list_for_each_entry(page, &pagelist, lru) { 2042 while (index < page->index) { 2043 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2044 index++; 2045 } 2046 if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) { 2047 result = SCAN_COPY_MC; 2048 goto rollback; 2049 } 2050 index++; 2051 } 2052 while (index < end) { 2053 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2054 index++; 2055 } 2056 2057 if (nr_none) { 2058 struct vm_area_struct *vma; 2059 int nr_none_check = 0; 2060 2061 i_mmap_lock_read(mapping); 2062 xas_lock_irq(&xas); 2063 2064 xas_set(&xas, start); 2065 for (index = start; index < end; index++) { 2066 if (!xas_next(&xas)) { 2067 xas_store(&xas, XA_RETRY_ENTRY); 2068 if (xas_error(&xas)) { 2069 result = SCAN_STORE_FAILED; 2070 goto immap_locked; 2071 } 2072 nr_none_check++; 2073 } 2074 } 2075 2076 if (nr_none != nr_none_check) { 2077 result = SCAN_PAGE_FILLED; 2078 goto immap_locked; 2079 } 2080 2081 /* 2082 * If userspace observed a missing page in a VMA with a MODE_MISSING 2083 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that 2084 * page. If so, we need to roll back to avoid suppressing such an 2085 * event. Since wp/minor userfaultfds don't give userspace any 2086 * guarantees that the kernel doesn't fill a missing page with a zero 2087 * page, so they don't matter here. 2088 * 2089 * Any userfaultfds registered after this point will not be able to 2090 * observe any missing pages due to the previously inserted retry 2091 * entries. 2092 */ 2093 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2094 if (userfaultfd_missing(vma)) { 2095 result = SCAN_EXCEED_NONE_PTE; 2096 goto immap_locked; 2097 } 2098 } 2099 2100 immap_locked: 2101 i_mmap_unlock_read(mapping); 2102 if (result != SCAN_SUCCEED) { 2103 xas_set(&xas, start); 2104 for (index = start; index < end; index++) { 2105 if (xas_next(&xas) == XA_RETRY_ENTRY) 2106 xas_store(&xas, NULL); 2107 } 2108 2109 xas_unlock_irq(&xas); 2110 goto rollback; 2111 } 2112 } else { 2113 xas_lock_irq(&xas); 2114 } 2115 2116 folio = page_folio(hpage); 2117 nr = folio_nr_pages(folio); 2118 if (is_shmem) 2119 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 2120 else 2121 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, nr); 2122 2123 if (nr_none) { 2124 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_none); 2125 /* nr_none is always 0 for non-shmem. */ 2126 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_none); 2127 } 2128 2129 /* 2130 * Mark hpage as uptodate before inserting it into the page cache so 2131 * that it isn't mistaken for an fallocated but unwritten page. 2132 */ 2133 folio_mark_uptodate(folio); 2134 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2135 2136 if (is_shmem) 2137 folio_mark_dirty(folio); 2138 folio_add_lru(folio); 2139 2140 /* Join all the small entries into a single multi-index entry. */ 2141 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2142 xas_store(&xas, folio); 2143 WARN_ON_ONCE(xas_error(&xas)); 2144 xas_unlock_irq(&xas); 2145 2146 /* 2147 * Remove pte page tables, so we can re-fault the page as huge. 2148 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2149 */ 2150 retract_page_tables(mapping, start); 2151 if (cc && !cc->is_khugepaged) 2152 result = SCAN_PTE_MAPPED_HUGEPAGE; 2153 folio_unlock(folio); 2154 2155 /* 2156 * The collapse has succeeded, so free the old pages. 2157 */ 2158 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2159 list_del(&page->lru); 2160 page->mapping = NULL; 2161 ClearPageActive(page); 2162 ClearPageUnevictable(page); 2163 unlock_page(page); 2164 folio_put_refs(page_folio(page), 3); 2165 } 2166 2167 goto out; 2168 2169 rollback: 2170 /* Something went wrong: roll back page cache changes */ 2171 if (nr_none) { 2172 xas_lock_irq(&xas); 2173 mapping->nrpages -= nr_none; 2174 xas_unlock_irq(&xas); 2175 shmem_uncharge(mapping->host, nr_none); 2176 } 2177 2178 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2179 list_del(&page->lru); 2180 unlock_page(page); 2181 putback_lru_page(page); 2182 put_page(page); 2183 } 2184 /* 2185 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2186 * file only. This undo is not needed unless failure is 2187 * due to SCAN_COPY_MC. 2188 */ 2189 if (!is_shmem && result == SCAN_COPY_MC) { 2190 filemap_nr_thps_dec(mapping); 2191 /* 2192 * Paired with smp_mb() in do_dentry_open() to 2193 * ensure the update to nr_thps is visible. 2194 */ 2195 smp_mb(); 2196 } 2197 2198 hpage->mapping = NULL; 2199 2200 unlock_page(hpage); 2201 put_page(hpage); 2202 out: 2203 VM_BUG_ON(!list_empty(&pagelist)); 2204 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2205 return result; 2206 } 2207 2208 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2209 struct file *file, pgoff_t start, 2210 struct collapse_control *cc) 2211 { 2212 struct page *page = NULL; 2213 struct address_space *mapping = file->f_mapping; 2214 XA_STATE(xas, &mapping->i_pages, start); 2215 int present, swap; 2216 int node = NUMA_NO_NODE; 2217 int result = SCAN_SUCCEED; 2218 2219 present = 0; 2220 swap = 0; 2221 memset(cc->node_load, 0, sizeof(cc->node_load)); 2222 nodes_clear(cc->alloc_nmask); 2223 rcu_read_lock(); 2224 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2225 if (xas_retry(&xas, page)) 2226 continue; 2227 2228 if (xa_is_value(page)) { 2229 ++swap; 2230 if (cc->is_khugepaged && 2231 swap > khugepaged_max_ptes_swap) { 2232 result = SCAN_EXCEED_SWAP_PTE; 2233 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2234 break; 2235 } 2236 continue; 2237 } 2238 2239 /* 2240 * TODO: khugepaged should compact smaller compound pages 2241 * into a PMD sized page 2242 */ 2243 if (PageTransCompound(page)) { 2244 struct page *head = compound_head(page); 2245 2246 result = compound_order(head) == HPAGE_PMD_ORDER && 2247 head->index == start 2248 /* Maybe PMD-mapped */ 2249 ? SCAN_PTE_MAPPED_HUGEPAGE 2250 : SCAN_PAGE_COMPOUND; 2251 /* 2252 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2253 * by the caller won't touch the page cache, and so 2254 * it's safe to skip LRU and refcount checks before 2255 * returning. 2256 */ 2257 break; 2258 } 2259 2260 node = page_to_nid(page); 2261 if (hpage_collapse_scan_abort(node, cc)) { 2262 result = SCAN_SCAN_ABORT; 2263 break; 2264 } 2265 cc->node_load[node]++; 2266 2267 if (!PageLRU(page)) { 2268 result = SCAN_PAGE_LRU; 2269 break; 2270 } 2271 2272 if (page_count(page) != 2273 1 + page_mapcount(page) + page_has_private(page)) { 2274 result = SCAN_PAGE_COUNT; 2275 break; 2276 } 2277 2278 /* 2279 * We probably should check if the page is referenced here, but 2280 * nobody would transfer pte_young() to PageReferenced() for us. 2281 * And rmap walk here is just too costly... 2282 */ 2283 2284 present++; 2285 2286 if (need_resched()) { 2287 xas_pause(&xas); 2288 cond_resched_rcu(); 2289 } 2290 } 2291 rcu_read_unlock(); 2292 2293 if (result == SCAN_SUCCEED) { 2294 if (cc->is_khugepaged && 2295 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2296 result = SCAN_EXCEED_NONE_PTE; 2297 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2298 } else { 2299 result = collapse_file(mm, addr, file, start, cc); 2300 } 2301 } 2302 2303 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2304 return result; 2305 } 2306 #else 2307 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2308 struct file *file, pgoff_t start, 2309 struct collapse_control *cc) 2310 { 2311 BUILD_BUG(); 2312 } 2313 #endif 2314 2315 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2316 struct collapse_control *cc) 2317 __releases(&khugepaged_mm_lock) 2318 __acquires(&khugepaged_mm_lock) 2319 { 2320 struct vma_iterator vmi; 2321 struct khugepaged_mm_slot *mm_slot; 2322 struct mm_slot *slot; 2323 struct mm_struct *mm; 2324 struct vm_area_struct *vma; 2325 int progress = 0; 2326 2327 VM_BUG_ON(!pages); 2328 lockdep_assert_held(&khugepaged_mm_lock); 2329 *result = SCAN_FAIL; 2330 2331 if (khugepaged_scan.mm_slot) { 2332 mm_slot = khugepaged_scan.mm_slot; 2333 slot = &mm_slot->slot; 2334 } else { 2335 slot = list_entry(khugepaged_scan.mm_head.next, 2336 struct mm_slot, mm_node); 2337 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2338 khugepaged_scan.address = 0; 2339 khugepaged_scan.mm_slot = mm_slot; 2340 } 2341 spin_unlock(&khugepaged_mm_lock); 2342 2343 mm = slot->mm; 2344 /* 2345 * Don't wait for semaphore (to avoid long wait times). Just move to 2346 * the next mm on the list. 2347 */ 2348 vma = NULL; 2349 if (unlikely(!mmap_read_trylock(mm))) 2350 goto breakouterloop_mmap_lock; 2351 2352 progress++; 2353 if (unlikely(hpage_collapse_test_exit(mm))) 2354 goto breakouterloop; 2355 2356 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2357 for_each_vma(vmi, vma) { 2358 unsigned long hstart, hend; 2359 2360 cond_resched(); 2361 if (unlikely(hpage_collapse_test_exit(mm))) { 2362 progress++; 2363 break; 2364 } 2365 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2366 skip: 2367 progress++; 2368 continue; 2369 } 2370 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2371 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2372 if (khugepaged_scan.address > hend) 2373 goto skip; 2374 if (khugepaged_scan.address < hstart) 2375 khugepaged_scan.address = hstart; 2376 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2377 2378 while (khugepaged_scan.address < hend) { 2379 bool mmap_locked = true; 2380 2381 cond_resched(); 2382 if (unlikely(hpage_collapse_test_exit(mm))) 2383 goto breakouterloop; 2384 2385 VM_BUG_ON(khugepaged_scan.address < hstart || 2386 khugepaged_scan.address + HPAGE_PMD_SIZE > 2387 hend); 2388 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2389 struct file *file = get_file(vma->vm_file); 2390 pgoff_t pgoff = linear_page_index(vma, 2391 khugepaged_scan.address); 2392 2393 mmap_read_unlock(mm); 2394 mmap_locked = false; 2395 *result = hpage_collapse_scan_file(mm, 2396 khugepaged_scan.address, file, pgoff, cc); 2397 fput(file); 2398 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2399 mmap_read_lock(mm); 2400 if (hpage_collapse_test_exit(mm)) 2401 goto breakouterloop; 2402 *result = collapse_pte_mapped_thp(mm, 2403 khugepaged_scan.address, false); 2404 if (*result == SCAN_PMD_MAPPED) 2405 *result = SCAN_SUCCEED; 2406 mmap_read_unlock(mm); 2407 } 2408 } else { 2409 *result = hpage_collapse_scan_pmd(mm, vma, 2410 khugepaged_scan.address, &mmap_locked, cc); 2411 } 2412 2413 if (*result == SCAN_SUCCEED) 2414 ++khugepaged_pages_collapsed; 2415 2416 /* move to next address */ 2417 khugepaged_scan.address += HPAGE_PMD_SIZE; 2418 progress += HPAGE_PMD_NR; 2419 if (!mmap_locked) 2420 /* 2421 * We released mmap_lock so break loop. Note 2422 * that we drop mmap_lock before all hugepage 2423 * allocations, so if allocation fails, we are 2424 * guaranteed to break here and report the 2425 * correct result back to caller. 2426 */ 2427 goto breakouterloop_mmap_lock; 2428 if (progress >= pages) 2429 goto breakouterloop; 2430 } 2431 } 2432 breakouterloop: 2433 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2434 breakouterloop_mmap_lock: 2435 2436 spin_lock(&khugepaged_mm_lock); 2437 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2438 /* 2439 * Release the current mm_slot if this mm is about to die, or 2440 * if we scanned all vmas of this mm. 2441 */ 2442 if (hpage_collapse_test_exit(mm) || !vma) { 2443 /* 2444 * Make sure that if mm_users is reaching zero while 2445 * khugepaged runs here, khugepaged_exit will find 2446 * mm_slot not pointing to the exiting mm. 2447 */ 2448 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2449 slot = list_entry(slot->mm_node.next, 2450 struct mm_slot, mm_node); 2451 khugepaged_scan.mm_slot = 2452 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2453 khugepaged_scan.address = 0; 2454 } else { 2455 khugepaged_scan.mm_slot = NULL; 2456 khugepaged_full_scans++; 2457 } 2458 2459 collect_mm_slot(mm_slot); 2460 } 2461 2462 return progress; 2463 } 2464 2465 static int khugepaged_has_work(void) 2466 { 2467 return !list_empty(&khugepaged_scan.mm_head) && 2468 hugepage_flags_enabled(); 2469 } 2470 2471 static int khugepaged_wait_event(void) 2472 { 2473 return !list_empty(&khugepaged_scan.mm_head) || 2474 kthread_should_stop(); 2475 } 2476 2477 static void khugepaged_do_scan(struct collapse_control *cc) 2478 { 2479 unsigned int progress = 0, pass_through_head = 0; 2480 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2481 bool wait = true; 2482 int result = SCAN_SUCCEED; 2483 2484 lru_add_drain_all(); 2485 2486 while (true) { 2487 cond_resched(); 2488 2489 if (unlikely(kthread_should_stop() || try_to_freeze())) 2490 break; 2491 2492 spin_lock(&khugepaged_mm_lock); 2493 if (!khugepaged_scan.mm_slot) 2494 pass_through_head++; 2495 if (khugepaged_has_work() && 2496 pass_through_head < 2) 2497 progress += khugepaged_scan_mm_slot(pages - progress, 2498 &result, cc); 2499 else 2500 progress = pages; 2501 spin_unlock(&khugepaged_mm_lock); 2502 2503 if (progress >= pages) 2504 break; 2505 2506 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2507 /* 2508 * If fail to allocate the first time, try to sleep for 2509 * a while. When hit again, cancel the scan. 2510 */ 2511 if (!wait) 2512 break; 2513 wait = false; 2514 khugepaged_alloc_sleep(); 2515 } 2516 } 2517 } 2518 2519 static bool khugepaged_should_wakeup(void) 2520 { 2521 return kthread_should_stop() || 2522 time_after_eq(jiffies, khugepaged_sleep_expire); 2523 } 2524 2525 static void khugepaged_wait_work(void) 2526 { 2527 if (khugepaged_has_work()) { 2528 const unsigned long scan_sleep_jiffies = 2529 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2530 2531 if (!scan_sleep_jiffies) 2532 return; 2533 2534 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2535 wait_event_freezable_timeout(khugepaged_wait, 2536 khugepaged_should_wakeup(), 2537 scan_sleep_jiffies); 2538 return; 2539 } 2540 2541 if (hugepage_flags_enabled()) 2542 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2543 } 2544 2545 static int khugepaged(void *none) 2546 { 2547 struct khugepaged_mm_slot *mm_slot; 2548 2549 set_freezable(); 2550 set_user_nice(current, MAX_NICE); 2551 2552 while (!kthread_should_stop()) { 2553 khugepaged_do_scan(&khugepaged_collapse_control); 2554 khugepaged_wait_work(); 2555 } 2556 2557 spin_lock(&khugepaged_mm_lock); 2558 mm_slot = khugepaged_scan.mm_slot; 2559 khugepaged_scan.mm_slot = NULL; 2560 if (mm_slot) 2561 collect_mm_slot(mm_slot); 2562 spin_unlock(&khugepaged_mm_lock); 2563 return 0; 2564 } 2565 2566 static void set_recommended_min_free_kbytes(void) 2567 { 2568 struct zone *zone; 2569 int nr_zones = 0; 2570 unsigned long recommended_min; 2571 2572 if (!hugepage_flags_enabled()) { 2573 calculate_min_free_kbytes(); 2574 goto update_wmarks; 2575 } 2576 2577 for_each_populated_zone(zone) { 2578 /* 2579 * We don't need to worry about fragmentation of 2580 * ZONE_MOVABLE since it only has movable pages. 2581 */ 2582 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2583 continue; 2584 2585 nr_zones++; 2586 } 2587 2588 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2589 recommended_min = pageblock_nr_pages * nr_zones * 2; 2590 2591 /* 2592 * Make sure that on average at least two pageblocks are almost free 2593 * of another type, one for a migratetype to fall back to and a 2594 * second to avoid subsequent fallbacks of other types There are 3 2595 * MIGRATE_TYPES we care about. 2596 */ 2597 recommended_min += pageblock_nr_pages * nr_zones * 2598 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2599 2600 /* don't ever allow to reserve more than 5% of the lowmem */ 2601 recommended_min = min(recommended_min, 2602 (unsigned long) nr_free_buffer_pages() / 20); 2603 recommended_min <<= (PAGE_SHIFT-10); 2604 2605 if (recommended_min > min_free_kbytes) { 2606 if (user_min_free_kbytes >= 0) 2607 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2608 min_free_kbytes, recommended_min); 2609 2610 min_free_kbytes = recommended_min; 2611 } 2612 2613 update_wmarks: 2614 setup_per_zone_wmarks(); 2615 } 2616 2617 int start_stop_khugepaged(void) 2618 { 2619 int err = 0; 2620 2621 mutex_lock(&khugepaged_mutex); 2622 if (hugepage_flags_enabled()) { 2623 if (!khugepaged_thread) 2624 khugepaged_thread = kthread_run(khugepaged, NULL, 2625 "khugepaged"); 2626 if (IS_ERR(khugepaged_thread)) { 2627 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2628 err = PTR_ERR(khugepaged_thread); 2629 khugepaged_thread = NULL; 2630 goto fail; 2631 } 2632 2633 if (!list_empty(&khugepaged_scan.mm_head)) 2634 wake_up_interruptible(&khugepaged_wait); 2635 } else if (khugepaged_thread) { 2636 kthread_stop(khugepaged_thread); 2637 khugepaged_thread = NULL; 2638 } 2639 set_recommended_min_free_kbytes(); 2640 fail: 2641 mutex_unlock(&khugepaged_mutex); 2642 return err; 2643 } 2644 2645 void khugepaged_min_free_kbytes_update(void) 2646 { 2647 mutex_lock(&khugepaged_mutex); 2648 if (hugepage_flags_enabled() && khugepaged_thread) 2649 set_recommended_min_free_kbytes(); 2650 mutex_unlock(&khugepaged_mutex); 2651 } 2652 2653 bool current_is_khugepaged(void) 2654 { 2655 return kthread_func(current) == khugepaged; 2656 } 2657 2658 static int madvise_collapse_errno(enum scan_result r) 2659 { 2660 /* 2661 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2662 * actionable feedback to caller, so they may take an appropriate 2663 * fallback measure depending on the nature of the failure. 2664 */ 2665 switch (r) { 2666 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2667 return -ENOMEM; 2668 case SCAN_CGROUP_CHARGE_FAIL: 2669 case SCAN_EXCEED_NONE_PTE: 2670 return -EBUSY; 2671 /* Resource temporary unavailable - trying again might succeed */ 2672 case SCAN_PAGE_COUNT: 2673 case SCAN_PAGE_LOCK: 2674 case SCAN_PAGE_LRU: 2675 case SCAN_DEL_PAGE_LRU: 2676 case SCAN_PAGE_FILLED: 2677 return -EAGAIN; 2678 /* 2679 * Other: Trying again likely not to succeed / error intrinsic to 2680 * specified memory range. khugepaged likely won't be able to collapse 2681 * either. 2682 */ 2683 default: 2684 return -EINVAL; 2685 } 2686 } 2687 2688 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2689 unsigned long start, unsigned long end) 2690 { 2691 struct collapse_control *cc; 2692 struct mm_struct *mm = vma->vm_mm; 2693 unsigned long hstart, hend, addr; 2694 int thps = 0, last_fail = SCAN_FAIL; 2695 bool mmap_locked = true; 2696 2697 BUG_ON(vma->vm_start > start); 2698 BUG_ON(vma->vm_end < end); 2699 2700 *prev = vma; 2701 2702 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2703 return -EINVAL; 2704 2705 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2706 if (!cc) 2707 return -ENOMEM; 2708 cc->is_khugepaged = false; 2709 2710 mmgrab(mm); 2711 lru_add_drain_all(); 2712 2713 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2714 hend = end & HPAGE_PMD_MASK; 2715 2716 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2717 int result = SCAN_FAIL; 2718 2719 if (!mmap_locked) { 2720 cond_resched(); 2721 mmap_read_lock(mm); 2722 mmap_locked = true; 2723 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2724 cc); 2725 if (result != SCAN_SUCCEED) { 2726 last_fail = result; 2727 goto out_nolock; 2728 } 2729 2730 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2731 } 2732 mmap_assert_locked(mm); 2733 memset(cc->node_load, 0, sizeof(cc->node_load)); 2734 nodes_clear(cc->alloc_nmask); 2735 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2736 struct file *file = get_file(vma->vm_file); 2737 pgoff_t pgoff = linear_page_index(vma, addr); 2738 2739 mmap_read_unlock(mm); 2740 mmap_locked = false; 2741 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2742 cc); 2743 fput(file); 2744 } else { 2745 result = hpage_collapse_scan_pmd(mm, vma, addr, 2746 &mmap_locked, cc); 2747 } 2748 if (!mmap_locked) 2749 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2750 2751 handle_result: 2752 switch (result) { 2753 case SCAN_SUCCEED: 2754 case SCAN_PMD_MAPPED: 2755 ++thps; 2756 break; 2757 case SCAN_PTE_MAPPED_HUGEPAGE: 2758 BUG_ON(mmap_locked); 2759 BUG_ON(*prev); 2760 mmap_read_lock(mm); 2761 result = collapse_pte_mapped_thp(mm, addr, true); 2762 mmap_read_unlock(mm); 2763 goto handle_result; 2764 /* Whitelisted set of results where continuing OK */ 2765 case SCAN_PMD_NULL: 2766 case SCAN_PTE_NON_PRESENT: 2767 case SCAN_PTE_UFFD_WP: 2768 case SCAN_PAGE_RO: 2769 case SCAN_LACK_REFERENCED_PAGE: 2770 case SCAN_PAGE_NULL: 2771 case SCAN_PAGE_COUNT: 2772 case SCAN_PAGE_LOCK: 2773 case SCAN_PAGE_COMPOUND: 2774 case SCAN_PAGE_LRU: 2775 case SCAN_DEL_PAGE_LRU: 2776 last_fail = result; 2777 break; 2778 default: 2779 last_fail = result; 2780 /* Other error, exit */ 2781 goto out_maybelock; 2782 } 2783 } 2784 2785 out_maybelock: 2786 /* Caller expects us to hold mmap_lock on return */ 2787 if (!mmap_locked) 2788 mmap_read_lock(mm); 2789 out_nolock: 2790 mmap_assert_locked(mm); 2791 mmdrop(mm); 2792 kfree(cc); 2793 2794 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2795 : madvise_collapse_errno(last_fail); 2796 } 2797