xref: /openbmc/linux/mm/khugepaged.c (revision 281a0312ce4199fad0c808b97b7d3a5416417c67)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/ksm.h>
23 
24 #include <asm/tlb.h>
25 #include <asm/pgalloc.h>
26 #include "internal.h"
27 #include "mm_slot.h"
28 
29 enum scan_result {
30 	SCAN_FAIL,
31 	SCAN_SUCCEED,
32 	SCAN_PMD_NULL,
33 	SCAN_PMD_NONE,
34 	SCAN_PMD_MAPPED,
35 	SCAN_EXCEED_NONE_PTE,
36 	SCAN_EXCEED_SWAP_PTE,
37 	SCAN_EXCEED_SHARED_PTE,
38 	SCAN_PTE_NON_PRESENT,
39 	SCAN_PTE_UFFD_WP,
40 	SCAN_PTE_MAPPED_HUGEPAGE,
41 	SCAN_PAGE_RO,
42 	SCAN_LACK_REFERENCED_PAGE,
43 	SCAN_PAGE_NULL,
44 	SCAN_SCAN_ABORT,
45 	SCAN_PAGE_COUNT,
46 	SCAN_PAGE_LRU,
47 	SCAN_PAGE_LOCK,
48 	SCAN_PAGE_ANON,
49 	SCAN_PAGE_COMPOUND,
50 	SCAN_ANY_PROCESS,
51 	SCAN_VMA_NULL,
52 	SCAN_VMA_CHECK,
53 	SCAN_ADDRESS_RANGE,
54 	SCAN_DEL_PAGE_LRU,
55 	SCAN_ALLOC_HUGE_PAGE_FAIL,
56 	SCAN_CGROUP_CHARGE_FAIL,
57 	SCAN_TRUNCATED,
58 	SCAN_PAGE_HAS_PRIVATE,
59 	SCAN_STORE_FAILED,
60 	SCAN_COPY_MC,
61 	SCAN_PAGE_FILLED,
62 };
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66 
67 static struct task_struct *khugepaged_thread __read_mostly;
68 static DEFINE_MUTEX(khugepaged_mutex);
69 
70 /* default scan 8*512 pte (or vmas) every 30 second */
71 static unsigned int khugepaged_pages_to_scan __read_mostly;
72 static unsigned int khugepaged_pages_collapsed;
73 static unsigned int khugepaged_full_scans;
74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75 /* during fragmentation poll the hugepage allocator once every minute */
76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77 static unsigned long khugepaged_sleep_expire;
78 static DEFINE_SPINLOCK(khugepaged_mm_lock);
79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
80 /*
81  * default collapse hugepages if there is at least one pte mapped like
82  * it would have happened if the vma was large enough during page
83  * fault.
84  *
85  * Note that these are only respected if collapse was initiated by khugepaged.
86  */
87 static unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89 static unsigned int khugepaged_max_ptes_shared __read_mostly;
90 
91 #define MM_SLOTS_HASH_BITS 10
92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
93 
94 static struct kmem_cache *mm_slot_cache __read_mostly;
95 
96 struct collapse_control {
97 	bool is_khugepaged;
98 
99 	/* Num pages scanned per node */
100 	u32 node_load[MAX_NUMNODES];
101 
102 	/* nodemask for allocation fallback */
103 	nodemask_t alloc_nmask;
104 };
105 
106 /**
107  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
108  * @slot: hash lookup from mm to mm_slot
109  */
110 struct khugepaged_mm_slot {
111 	struct mm_slot slot;
112 };
113 
114 /**
115  * struct khugepaged_scan - cursor for scanning
116  * @mm_head: the head of the mm list to scan
117  * @mm_slot: the current mm_slot we are scanning
118  * @address: the next address inside that to be scanned
119  *
120  * There is only the one khugepaged_scan instance of this cursor structure.
121  */
122 struct khugepaged_scan {
123 	struct list_head mm_head;
124 	struct khugepaged_mm_slot *mm_slot;
125 	unsigned long address;
126 };
127 
128 static struct khugepaged_scan khugepaged_scan = {
129 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
130 };
131 
132 #ifdef CONFIG_SYSFS
133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
134 					 struct kobj_attribute *attr,
135 					 char *buf)
136 {
137 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
138 }
139 
140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
141 					  struct kobj_attribute *attr,
142 					  const char *buf, size_t count)
143 {
144 	unsigned int msecs;
145 	int err;
146 
147 	err = kstrtouint(buf, 10, &msecs);
148 	if (err)
149 		return -EINVAL;
150 
151 	khugepaged_scan_sleep_millisecs = msecs;
152 	khugepaged_sleep_expire = 0;
153 	wake_up_interruptible(&khugepaged_wait);
154 
155 	return count;
156 }
157 static struct kobj_attribute scan_sleep_millisecs_attr =
158 	__ATTR_RW(scan_sleep_millisecs);
159 
160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
161 					  struct kobj_attribute *attr,
162 					  char *buf)
163 {
164 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
165 }
166 
167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
168 					   struct kobj_attribute *attr,
169 					   const char *buf, size_t count)
170 {
171 	unsigned int msecs;
172 	int err;
173 
174 	err = kstrtouint(buf, 10, &msecs);
175 	if (err)
176 		return -EINVAL;
177 
178 	khugepaged_alloc_sleep_millisecs = msecs;
179 	khugepaged_sleep_expire = 0;
180 	wake_up_interruptible(&khugepaged_wait);
181 
182 	return count;
183 }
184 static struct kobj_attribute alloc_sleep_millisecs_attr =
185 	__ATTR_RW(alloc_sleep_millisecs);
186 
187 static ssize_t pages_to_scan_show(struct kobject *kobj,
188 				  struct kobj_attribute *attr,
189 				  char *buf)
190 {
191 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
192 }
193 static ssize_t pages_to_scan_store(struct kobject *kobj,
194 				   struct kobj_attribute *attr,
195 				   const char *buf, size_t count)
196 {
197 	unsigned int pages;
198 	int err;
199 
200 	err = kstrtouint(buf, 10, &pages);
201 	if (err || !pages)
202 		return -EINVAL;
203 
204 	khugepaged_pages_to_scan = pages;
205 
206 	return count;
207 }
208 static struct kobj_attribute pages_to_scan_attr =
209 	__ATTR_RW(pages_to_scan);
210 
211 static ssize_t pages_collapsed_show(struct kobject *kobj,
212 				    struct kobj_attribute *attr,
213 				    char *buf)
214 {
215 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
216 }
217 static struct kobj_attribute pages_collapsed_attr =
218 	__ATTR_RO(pages_collapsed);
219 
220 static ssize_t full_scans_show(struct kobject *kobj,
221 			       struct kobj_attribute *attr,
222 			       char *buf)
223 {
224 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
225 }
226 static struct kobj_attribute full_scans_attr =
227 	__ATTR_RO(full_scans);
228 
229 static ssize_t defrag_show(struct kobject *kobj,
230 			   struct kobj_attribute *attr, char *buf)
231 {
232 	return single_hugepage_flag_show(kobj, attr, buf,
233 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
234 }
235 static ssize_t defrag_store(struct kobject *kobj,
236 			    struct kobj_attribute *attr,
237 			    const char *buf, size_t count)
238 {
239 	return single_hugepage_flag_store(kobj, attr, buf, count,
240 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
241 }
242 static struct kobj_attribute khugepaged_defrag_attr =
243 	__ATTR_RW(defrag);
244 
245 /*
246  * max_ptes_none controls if khugepaged should collapse hugepages over
247  * any unmapped ptes in turn potentially increasing the memory
248  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
249  * reduce the available free memory in the system as it
250  * runs. Increasing max_ptes_none will instead potentially reduce the
251  * free memory in the system during the khugepaged scan.
252  */
253 static ssize_t max_ptes_none_show(struct kobject *kobj,
254 				  struct kobj_attribute *attr,
255 				  char *buf)
256 {
257 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
258 }
259 static ssize_t max_ptes_none_store(struct kobject *kobj,
260 				   struct kobj_attribute *attr,
261 				   const char *buf, size_t count)
262 {
263 	int err;
264 	unsigned long max_ptes_none;
265 
266 	err = kstrtoul(buf, 10, &max_ptes_none);
267 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
268 		return -EINVAL;
269 
270 	khugepaged_max_ptes_none = max_ptes_none;
271 
272 	return count;
273 }
274 static struct kobj_attribute khugepaged_max_ptes_none_attr =
275 	__ATTR_RW(max_ptes_none);
276 
277 static ssize_t max_ptes_swap_show(struct kobject *kobj,
278 				  struct kobj_attribute *attr,
279 				  char *buf)
280 {
281 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
282 }
283 
284 static ssize_t max_ptes_swap_store(struct kobject *kobj,
285 				   struct kobj_attribute *attr,
286 				   const char *buf, size_t count)
287 {
288 	int err;
289 	unsigned long max_ptes_swap;
290 
291 	err  = kstrtoul(buf, 10, &max_ptes_swap);
292 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
293 		return -EINVAL;
294 
295 	khugepaged_max_ptes_swap = max_ptes_swap;
296 
297 	return count;
298 }
299 
300 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
301 	__ATTR_RW(max_ptes_swap);
302 
303 static ssize_t max_ptes_shared_show(struct kobject *kobj,
304 				    struct kobj_attribute *attr,
305 				    char *buf)
306 {
307 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
308 }
309 
310 static ssize_t max_ptes_shared_store(struct kobject *kobj,
311 				     struct kobj_attribute *attr,
312 				     const char *buf, size_t count)
313 {
314 	int err;
315 	unsigned long max_ptes_shared;
316 
317 	err  = kstrtoul(buf, 10, &max_ptes_shared);
318 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
319 		return -EINVAL;
320 
321 	khugepaged_max_ptes_shared = max_ptes_shared;
322 
323 	return count;
324 }
325 
326 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
327 	__ATTR_RW(max_ptes_shared);
328 
329 static struct attribute *khugepaged_attr[] = {
330 	&khugepaged_defrag_attr.attr,
331 	&khugepaged_max_ptes_none_attr.attr,
332 	&khugepaged_max_ptes_swap_attr.attr,
333 	&khugepaged_max_ptes_shared_attr.attr,
334 	&pages_to_scan_attr.attr,
335 	&pages_collapsed_attr.attr,
336 	&full_scans_attr.attr,
337 	&scan_sleep_millisecs_attr.attr,
338 	&alloc_sleep_millisecs_attr.attr,
339 	NULL,
340 };
341 
342 struct attribute_group khugepaged_attr_group = {
343 	.attrs = khugepaged_attr,
344 	.name = "khugepaged",
345 };
346 #endif /* CONFIG_SYSFS */
347 
348 int hugepage_madvise(struct vm_area_struct *vma,
349 		     unsigned long *vm_flags, int advice)
350 {
351 	switch (advice) {
352 	case MADV_HUGEPAGE:
353 #ifdef CONFIG_S390
354 		/*
355 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
356 		 * can't handle this properly after s390_enable_sie, so we simply
357 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 		 */
359 		if (mm_has_pgste(vma->vm_mm))
360 			return 0;
361 #endif
362 		*vm_flags &= ~VM_NOHUGEPAGE;
363 		*vm_flags |= VM_HUGEPAGE;
364 		/*
365 		 * If the vma become good for khugepaged to scan,
366 		 * register it here without waiting a page fault that
367 		 * may not happen any time soon.
368 		 */
369 		khugepaged_enter_vma(vma, *vm_flags);
370 		break;
371 	case MADV_NOHUGEPAGE:
372 		*vm_flags &= ~VM_HUGEPAGE;
373 		*vm_flags |= VM_NOHUGEPAGE;
374 		/*
375 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
376 		 * this vma even if we leave the mm registered in khugepaged if
377 		 * it got registered before VM_NOHUGEPAGE was set.
378 		 */
379 		break;
380 	}
381 
382 	return 0;
383 }
384 
385 int __init khugepaged_init(void)
386 {
387 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
388 					  sizeof(struct khugepaged_mm_slot),
389 					  __alignof__(struct khugepaged_mm_slot),
390 					  0, NULL);
391 	if (!mm_slot_cache)
392 		return -ENOMEM;
393 
394 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398 
399 	return 0;
400 }
401 
402 void __init khugepaged_destroy(void)
403 {
404 	kmem_cache_destroy(mm_slot_cache);
405 }
406 
407 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
408 {
409 	return atomic_read(&mm->mm_users) == 0;
410 }
411 
412 void __khugepaged_enter(struct mm_struct *mm)
413 {
414 	struct khugepaged_mm_slot *mm_slot;
415 	struct mm_slot *slot;
416 	int wakeup;
417 
418 	/* __khugepaged_exit() must not run from under us */
419 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
420 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
421 		return;
422 
423 	mm_slot = mm_slot_alloc(mm_slot_cache);
424 	if (!mm_slot)
425 		return;
426 
427 	slot = &mm_slot->slot;
428 
429 	spin_lock(&khugepaged_mm_lock);
430 	mm_slot_insert(mm_slots_hash, mm, slot);
431 	/*
432 	 * Insert just behind the scanning cursor, to let the area settle
433 	 * down a little.
434 	 */
435 	wakeup = list_empty(&khugepaged_scan.mm_head);
436 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
437 	spin_unlock(&khugepaged_mm_lock);
438 
439 	mmgrab(mm);
440 	if (wakeup)
441 		wake_up_interruptible(&khugepaged_wait);
442 }
443 
444 void khugepaged_enter_vma(struct vm_area_struct *vma,
445 			  unsigned long vm_flags)
446 {
447 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
448 	    hugepage_flags_enabled()) {
449 		if (hugepage_vma_check(vma, vm_flags, false, false, true))
450 			__khugepaged_enter(vma->vm_mm);
451 	}
452 }
453 
454 void __khugepaged_exit(struct mm_struct *mm)
455 {
456 	struct khugepaged_mm_slot *mm_slot;
457 	struct mm_slot *slot;
458 	int free = 0;
459 
460 	spin_lock(&khugepaged_mm_lock);
461 	slot = mm_slot_lookup(mm_slots_hash, mm);
462 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
463 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
464 		hash_del(&slot->hash);
465 		list_del(&slot->mm_node);
466 		free = 1;
467 	}
468 	spin_unlock(&khugepaged_mm_lock);
469 
470 	if (free) {
471 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
472 		mm_slot_free(mm_slot_cache, mm_slot);
473 		mmdrop(mm);
474 	} else if (mm_slot) {
475 		/*
476 		 * This is required to serialize against
477 		 * hpage_collapse_test_exit() (which is guaranteed to run
478 		 * under mmap sem read mode). Stop here (after we return all
479 		 * pagetables will be destroyed) until khugepaged has finished
480 		 * working on the pagetables under the mmap_lock.
481 		 */
482 		mmap_write_lock(mm);
483 		mmap_write_unlock(mm);
484 	}
485 }
486 
487 static void release_pte_folio(struct folio *folio)
488 {
489 	node_stat_mod_folio(folio,
490 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
491 			-folio_nr_pages(folio));
492 	folio_unlock(folio);
493 	folio_putback_lru(folio);
494 }
495 
496 static void release_pte_page(struct page *page)
497 {
498 	release_pte_folio(page_folio(page));
499 }
500 
501 static void release_pte_pages(pte_t *pte, pte_t *_pte,
502 		struct list_head *compound_pagelist)
503 {
504 	struct folio *folio, *tmp;
505 
506 	while (--_pte >= pte) {
507 		pte_t pteval = ptep_get(_pte);
508 		unsigned long pfn;
509 
510 		if (pte_none(pteval))
511 			continue;
512 		pfn = pte_pfn(pteval);
513 		if (is_zero_pfn(pfn))
514 			continue;
515 		folio = pfn_folio(pfn);
516 		if (folio_test_large(folio))
517 			continue;
518 		release_pte_folio(folio);
519 	}
520 
521 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
522 		list_del(&folio->lru);
523 		release_pte_folio(folio);
524 	}
525 }
526 
527 static bool is_refcount_suitable(struct page *page)
528 {
529 	int expected_refcount;
530 
531 	expected_refcount = total_mapcount(page);
532 	if (PageSwapCache(page))
533 		expected_refcount += compound_nr(page);
534 
535 	return page_count(page) == expected_refcount;
536 }
537 
538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
539 					unsigned long address,
540 					pte_t *pte,
541 					struct collapse_control *cc,
542 					struct list_head *compound_pagelist)
543 {
544 	struct page *page = NULL;
545 	pte_t *_pte;
546 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
547 	bool writable = false;
548 
549 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
550 	     _pte++, address += PAGE_SIZE) {
551 		pte_t pteval = ptep_get(_pte);
552 		if (pte_none(pteval) || (pte_present(pteval) &&
553 				is_zero_pfn(pte_pfn(pteval)))) {
554 			++none_or_zero;
555 			if (!userfaultfd_armed(vma) &&
556 			    (!cc->is_khugepaged ||
557 			     none_or_zero <= khugepaged_max_ptes_none)) {
558 				continue;
559 			} else {
560 				result = SCAN_EXCEED_NONE_PTE;
561 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
562 				goto out;
563 			}
564 		}
565 		if (!pte_present(pteval)) {
566 			result = SCAN_PTE_NON_PRESENT;
567 			goto out;
568 		}
569 		if (pte_uffd_wp(pteval)) {
570 			result = SCAN_PTE_UFFD_WP;
571 			goto out;
572 		}
573 		page = vm_normal_page(vma, address, pteval);
574 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
575 			result = SCAN_PAGE_NULL;
576 			goto out;
577 		}
578 
579 		VM_BUG_ON_PAGE(!PageAnon(page), page);
580 
581 		if (page_mapcount(page) > 1) {
582 			++shared;
583 			if (cc->is_khugepaged &&
584 			    shared > khugepaged_max_ptes_shared) {
585 				result = SCAN_EXCEED_SHARED_PTE;
586 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
587 				goto out;
588 			}
589 		}
590 
591 		if (PageCompound(page)) {
592 			struct page *p;
593 			page = compound_head(page);
594 
595 			/*
596 			 * Check if we have dealt with the compound page
597 			 * already
598 			 */
599 			list_for_each_entry(p, compound_pagelist, lru) {
600 				if (page == p)
601 					goto next;
602 			}
603 		}
604 
605 		/*
606 		 * We can do it before isolate_lru_page because the
607 		 * page can't be freed from under us. NOTE: PG_lock
608 		 * is needed to serialize against split_huge_page
609 		 * when invoked from the VM.
610 		 */
611 		if (!trylock_page(page)) {
612 			result = SCAN_PAGE_LOCK;
613 			goto out;
614 		}
615 
616 		/*
617 		 * Check if the page has any GUP (or other external) pins.
618 		 *
619 		 * The page table that maps the page has been already unlinked
620 		 * from the page table tree and this process cannot get
621 		 * an additional pin on the page.
622 		 *
623 		 * New pins can come later if the page is shared across fork,
624 		 * but not from this process. The other process cannot write to
625 		 * the page, only trigger CoW.
626 		 */
627 		if (!is_refcount_suitable(page)) {
628 			unlock_page(page);
629 			result = SCAN_PAGE_COUNT;
630 			goto out;
631 		}
632 
633 		/*
634 		 * Isolate the page to avoid collapsing an hugepage
635 		 * currently in use by the VM.
636 		 */
637 		if (!isolate_lru_page(page)) {
638 			unlock_page(page);
639 			result = SCAN_DEL_PAGE_LRU;
640 			goto out;
641 		}
642 		mod_node_page_state(page_pgdat(page),
643 				NR_ISOLATED_ANON + page_is_file_lru(page),
644 				compound_nr(page));
645 		VM_BUG_ON_PAGE(!PageLocked(page), page);
646 		VM_BUG_ON_PAGE(PageLRU(page), page);
647 
648 		if (PageCompound(page))
649 			list_add_tail(&page->lru, compound_pagelist);
650 next:
651 		/*
652 		 * If collapse was initiated by khugepaged, check that there is
653 		 * enough young pte to justify collapsing the page
654 		 */
655 		if (cc->is_khugepaged &&
656 		    (pte_young(pteval) || page_is_young(page) ||
657 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
658 								     address)))
659 			referenced++;
660 
661 		if (pte_write(pteval))
662 			writable = true;
663 	}
664 
665 	if (unlikely(!writable)) {
666 		result = SCAN_PAGE_RO;
667 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
668 		result = SCAN_LACK_REFERENCED_PAGE;
669 	} else {
670 		result = SCAN_SUCCEED;
671 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
672 						    referenced, writable, result);
673 		return result;
674 	}
675 out:
676 	release_pte_pages(pte, _pte, compound_pagelist);
677 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
678 					    referenced, writable, result);
679 	return result;
680 }
681 
682 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
683 						struct vm_area_struct *vma,
684 						unsigned long address,
685 						spinlock_t *ptl,
686 						struct list_head *compound_pagelist)
687 {
688 	struct page *src_page;
689 	struct page *tmp;
690 	pte_t *_pte;
691 	pte_t pteval;
692 
693 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
694 	     _pte++, address += PAGE_SIZE) {
695 		pteval = ptep_get(_pte);
696 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
697 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
698 			if (is_zero_pfn(pte_pfn(pteval))) {
699 				/*
700 				 * ptl mostly unnecessary.
701 				 */
702 				spin_lock(ptl);
703 				ptep_clear(vma->vm_mm, address, _pte);
704 				spin_unlock(ptl);
705 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
706 			}
707 		} else {
708 			src_page = pte_page(pteval);
709 			if (!PageCompound(src_page))
710 				release_pte_page(src_page);
711 			/*
712 			 * ptl mostly unnecessary, but preempt has to
713 			 * be disabled to update the per-cpu stats
714 			 * inside page_remove_rmap().
715 			 */
716 			spin_lock(ptl);
717 			ptep_clear(vma->vm_mm, address, _pte);
718 			page_remove_rmap(src_page, vma, false);
719 			spin_unlock(ptl);
720 			free_page_and_swap_cache(src_page);
721 		}
722 	}
723 
724 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
725 		list_del(&src_page->lru);
726 		mod_node_page_state(page_pgdat(src_page),
727 				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
728 				    -compound_nr(src_page));
729 		unlock_page(src_page);
730 		free_swap_cache(src_page);
731 		putback_lru_page(src_page);
732 	}
733 }
734 
735 static void __collapse_huge_page_copy_failed(pte_t *pte,
736 					     pmd_t *pmd,
737 					     pmd_t orig_pmd,
738 					     struct vm_area_struct *vma,
739 					     struct list_head *compound_pagelist)
740 {
741 	spinlock_t *pmd_ptl;
742 
743 	/*
744 	 * Re-establish the PMD to point to the original page table
745 	 * entry. Restoring PMD needs to be done prior to releasing
746 	 * pages. Since pages are still isolated and locked here,
747 	 * acquiring anon_vma_lock_write is unnecessary.
748 	 */
749 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
750 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
751 	spin_unlock(pmd_ptl);
752 	/*
753 	 * Release both raw and compound pages isolated
754 	 * in __collapse_huge_page_isolate.
755 	 */
756 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
757 }
758 
759 /*
760  * __collapse_huge_page_copy - attempts to copy memory contents from raw
761  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
762  * otherwise restores the original page table and releases isolated raw pages.
763  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
764  *
765  * @pte: starting of the PTEs to copy from
766  * @page: the new hugepage to copy contents to
767  * @pmd: pointer to the new hugepage's PMD
768  * @orig_pmd: the original raw pages' PMD
769  * @vma: the original raw pages' virtual memory area
770  * @address: starting address to copy
771  * @ptl: lock on raw pages' PTEs
772  * @compound_pagelist: list that stores compound pages
773  */
774 static int __collapse_huge_page_copy(pte_t *pte,
775 				     struct page *page,
776 				     pmd_t *pmd,
777 				     pmd_t orig_pmd,
778 				     struct vm_area_struct *vma,
779 				     unsigned long address,
780 				     spinlock_t *ptl,
781 				     struct list_head *compound_pagelist)
782 {
783 	struct page *src_page;
784 	pte_t *_pte;
785 	pte_t pteval;
786 	unsigned long _address;
787 	int result = SCAN_SUCCEED;
788 
789 	/*
790 	 * Copying pages' contents is subject to memory poison at any iteration.
791 	 */
792 	for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
793 	     _pte++, page++, _address += PAGE_SIZE) {
794 		pteval = ptep_get(_pte);
795 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
796 			clear_user_highpage(page, _address);
797 			continue;
798 		}
799 		src_page = pte_page(pteval);
800 		if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
801 			result = SCAN_COPY_MC;
802 			break;
803 		}
804 	}
805 
806 	if (likely(result == SCAN_SUCCEED))
807 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
808 						    compound_pagelist);
809 	else
810 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
811 						 compound_pagelist);
812 
813 	return result;
814 }
815 
816 static void khugepaged_alloc_sleep(void)
817 {
818 	DEFINE_WAIT(wait);
819 
820 	add_wait_queue(&khugepaged_wait, &wait);
821 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
822 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
823 	remove_wait_queue(&khugepaged_wait, &wait);
824 }
825 
826 struct collapse_control khugepaged_collapse_control = {
827 	.is_khugepaged = true,
828 };
829 
830 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
831 {
832 	int i;
833 
834 	/*
835 	 * If node_reclaim_mode is disabled, then no extra effort is made to
836 	 * allocate memory locally.
837 	 */
838 	if (!node_reclaim_enabled())
839 		return false;
840 
841 	/* If there is a count for this node already, it must be acceptable */
842 	if (cc->node_load[nid])
843 		return false;
844 
845 	for (i = 0; i < MAX_NUMNODES; i++) {
846 		if (!cc->node_load[i])
847 			continue;
848 		if (node_distance(nid, i) > node_reclaim_distance)
849 			return true;
850 	}
851 	return false;
852 }
853 
854 #define khugepaged_defrag()					\
855 	(transparent_hugepage_flags &				\
856 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
857 
858 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
859 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
860 {
861 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
862 }
863 
864 #ifdef CONFIG_NUMA
865 static int hpage_collapse_find_target_node(struct collapse_control *cc)
866 {
867 	int nid, target_node = 0, max_value = 0;
868 
869 	/* find first node with max normal pages hit */
870 	for (nid = 0; nid < MAX_NUMNODES; nid++)
871 		if (cc->node_load[nid] > max_value) {
872 			max_value = cc->node_load[nid];
873 			target_node = nid;
874 		}
875 
876 	for_each_online_node(nid) {
877 		if (max_value == cc->node_load[nid])
878 			node_set(nid, cc->alloc_nmask);
879 	}
880 
881 	return target_node;
882 }
883 #else
884 static int hpage_collapse_find_target_node(struct collapse_control *cc)
885 {
886 	return 0;
887 }
888 #endif
889 
890 /*
891  * If mmap_lock temporarily dropped, revalidate vma
892  * before taking mmap_lock.
893  * Returns enum scan_result value.
894  */
895 
896 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
897 				   bool expect_anon,
898 				   struct vm_area_struct **vmap,
899 				   struct collapse_control *cc)
900 {
901 	struct vm_area_struct *vma;
902 
903 	if (unlikely(hpage_collapse_test_exit(mm)))
904 		return SCAN_ANY_PROCESS;
905 
906 	*vmap = vma = find_vma(mm, address);
907 	if (!vma)
908 		return SCAN_VMA_NULL;
909 
910 	if (!transhuge_vma_suitable(vma, address))
911 		return SCAN_ADDRESS_RANGE;
912 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
913 				cc->is_khugepaged))
914 		return SCAN_VMA_CHECK;
915 	/*
916 	 * Anon VMA expected, the address may be unmapped then
917 	 * remapped to file after khugepaged reaquired the mmap_lock.
918 	 *
919 	 * hugepage_vma_check may return true for qualified file
920 	 * vmas.
921 	 */
922 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
923 		return SCAN_PAGE_ANON;
924 	return SCAN_SUCCEED;
925 }
926 
927 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
928 				   unsigned long address,
929 				   pmd_t **pmd)
930 {
931 	pmd_t pmde;
932 
933 	*pmd = mm_find_pmd(mm, address);
934 	if (!*pmd)
935 		return SCAN_PMD_NULL;
936 
937 	pmde = pmdp_get_lockless(*pmd);
938 	if (pmd_none(pmde))
939 		return SCAN_PMD_NONE;
940 	if (!pmd_present(pmde))
941 		return SCAN_PMD_NULL;
942 	if (pmd_trans_huge(pmde))
943 		return SCAN_PMD_MAPPED;
944 	if (pmd_devmap(pmde))
945 		return SCAN_PMD_NULL;
946 	if (pmd_bad(pmde))
947 		return SCAN_PMD_NULL;
948 	return SCAN_SUCCEED;
949 }
950 
951 static int check_pmd_still_valid(struct mm_struct *mm,
952 				 unsigned long address,
953 				 pmd_t *pmd)
954 {
955 	pmd_t *new_pmd;
956 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
957 
958 	if (result != SCAN_SUCCEED)
959 		return result;
960 	if (new_pmd != pmd)
961 		return SCAN_FAIL;
962 	return SCAN_SUCCEED;
963 }
964 
965 /*
966  * Bring missing pages in from swap, to complete THP collapse.
967  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
968  *
969  * Called and returns without pte mapped or spinlocks held.
970  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
971  */
972 static int __collapse_huge_page_swapin(struct mm_struct *mm,
973 				       struct vm_area_struct *vma,
974 				       unsigned long haddr, pmd_t *pmd,
975 				       int referenced)
976 {
977 	int swapped_in = 0;
978 	vm_fault_t ret = 0;
979 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
980 	int result;
981 	pte_t *pte = NULL;
982 	spinlock_t *ptl;
983 
984 	for (address = haddr; address < end; address += PAGE_SIZE) {
985 		struct vm_fault vmf = {
986 			.vma = vma,
987 			.address = address,
988 			.pgoff = linear_page_index(vma, address),
989 			.flags = FAULT_FLAG_ALLOW_RETRY,
990 			.pmd = pmd,
991 		};
992 
993 		if (!pte++) {
994 			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
995 			if (!pte) {
996 				mmap_read_unlock(mm);
997 				result = SCAN_PMD_NULL;
998 				goto out;
999 			}
1000 		}
1001 
1002 		vmf.orig_pte = ptep_get_lockless(pte);
1003 		if (!is_swap_pte(vmf.orig_pte))
1004 			continue;
1005 
1006 		vmf.pte = pte;
1007 		vmf.ptl = ptl;
1008 		ret = do_swap_page(&vmf);
1009 		/* Which unmaps pte (after perhaps re-checking the entry) */
1010 		pte = NULL;
1011 
1012 		/*
1013 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1014 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1015 		 * we do not retry here and swap entry will remain in pagetable
1016 		 * resulting in later failure.
1017 		 */
1018 		if (ret & VM_FAULT_RETRY) {
1019 			/* Likely, but not guaranteed, that page lock failed */
1020 			result = SCAN_PAGE_LOCK;
1021 			goto out;
1022 		}
1023 		if (ret & VM_FAULT_ERROR) {
1024 			mmap_read_unlock(mm);
1025 			result = SCAN_FAIL;
1026 			goto out;
1027 		}
1028 		swapped_in++;
1029 	}
1030 
1031 	if (pte)
1032 		pte_unmap(pte);
1033 
1034 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1035 	if (swapped_in)
1036 		lru_add_drain();
1037 
1038 	result = SCAN_SUCCEED;
1039 out:
1040 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1041 	return result;
1042 }
1043 
1044 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
1045 			      struct collapse_control *cc)
1046 {
1047 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1048 		     GFP_TRANSHUGE);
1049 	int node = hpage_collapse_find_target_node(cc);
1050 	struct folio *folio;
1051 
1052 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1053 	if (!folio) {
1054 		*hpage = NULL;
1055 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1056 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1057 	}
1058 
1059 	count_vm_event(THP_COLLAPSE_ALLOC);
1060 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1061 		folio_put(folio);
1062 		*hpage = NULL;
1063 		return SCAN_CGROUP_CHARGE_FAIL;
1064 	}
1065 
1066 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1067 
1068 	*hpage = folio_page(folio, 0);
1069 	return SCAN_SUCCEED;
1070 }
1071 
1072 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1073 			      int referenced, int unmapped,
1074 			      struct collapse_control *cc)
1075 {
1076 	LIST_HEAD(compound_pagelist);
1077 	pmd_t *pmd, _pmd;
1078 	pte_t *pte;
1079 	pgtable_t pgtable;
1080 	struct folio *folio;
1081 	struct page *hpage;
1082 	spinlock_t *pmd_ptl, *pte_ptl;
1083 	int result = SCAN_FAIL;
1084 	struct vm_area_struct *vma;
1085 	struct mmu_notifier_range range;
1086 
1087 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1088 
1089 	/*
1090 	 * Before allocating the hugepage, release the mmap_lock read lock.
1091 	 * The allocation can take potentially a long time if it involves
1092 	 * sync compaction, and we do not need to hold the mmap_lock during
1093 	 * that. We will recheck the vma after taking it again in write mode.
1094 	 */
1095 	mmap_read_unlock(mm);
1096 
1097 	result = alloc_charge_hpage(&hpage, mm, cc);
1098 	if (result != SCAN_SUCCEED)
1099 		goto out_nolock;
1100 
1101 	mmap_read_lock(mm);
1102 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1103 	if (result != SCAN_SUCCEED) {
1104 		mmap_read_unlock(mm);
1105 		goto out_nolock;
1106 	}
1107 
1108 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1109 	if (result != SCAN_SUCCEED) {
1110 		mmap_read_unlock(mm);
1111 		goto out_nolock;
1112 	}
1113 
1114 	if (unmapped) {
1115 		/*
1116 		 * __collapse_huge_page_swapin will return with mmap_lock
1117 		 * released when it fails. So we jump out_nolock directly in
1118 		 * that case.  Continuing to collapse causes inconsistency.
1119 		 */
1120 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1121 						     referenced);
1122 		if (result != SCAN_SUCCEED)
1123 			goto out_nolock;
1124 	}
1125 
1126 	mmap_read_unlock(mm);
1127 	/*
1128 	 * Prevent all access to pagetables with the exception of
1129 	 * gup_fast later handled by the ptep_clear_flush and the VM
1130 	 * handled by the anon_vma lock + PG_lock.
1131 	 */
1132 	mmap_write_lock(mm);
1133 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1134 	if (result != SCAN_SUCCEED)
1135 		goto out_up_write;
1136 	/* check if the pmd is still valid */
1137 	result = check_pmd_still_valid(mm, address, pmd);
1138 	if (result != SCAN_SUCCEED)
1139 		goto out_up_write;
1140 
1141 	vma_start_write(vma);
1142 	anon_vma_lock_write(vma->anon_vma);
1143 
1144 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1145 				address + HPAGE_PMD_SIZE);
1146 	mmu_notifier_invalidate_range_start(&range);
1147 
1148 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1149 	/*
1150 	 * This removes any huge TLB entry from the CPU so we won't allow
1151 	 * huge and small TLB entries for the same virtual address to
1152 	 * avoid the risk of CPU bugs in that area.
1153 	 *
1154 	 * Parallel fast GUP is fine since fast GUP will back off when
1155 	 * it detects PMD is changed.
1156 	 */
1157 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1158 	spin_unlock(pmd_ptl);
1159 	mmu_notifier_invalidate_range_end(&range);
1160 	tlb_remove_table_sync_one();
1161 
1162 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1163 	if (pte) {
1164 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1165 						      &compound_pagelist);
1166 		spin_unlock(pte_ptl);
1167 	} else {
1168 		result = SCAN_PMD_NULL;
1169 	}
1170 
1171 	if (unlikely(result != SCAN_SUCCEED)) {
1172 		if (pte)
1173 			pte_unmap(pte);
1174 		spin_lock(pmd_ptl);
1175 		BUG_ON(!pmd_none(*pmd));
1176 		/*
1177 		 * We can only use set_pmd_at when establishing
1178 		 * hugepmds and never for establishing regular pmds that
1179 		 * points to regular pagetables. Use pmd_populate for that
1180 		 */
1181 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1182 		spin_unlock(pmd_ptl);
1183 		anon_vma_unlock_write(vma->anon_vma);
1184 		goto out_up_write;
1185 	}
1186 
1187 	/*
1188 	 * All pages are isolated and locked so anon_vma rmap
1189 	 * can't run anymore.
1190 	 */
1191 	anon_vma_unlock_write(vma->anon_vma);
1192 
1193 	result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
1194 					   vma, address, pte_ptl,
1195 					   &compound_pagelist);
1196 	pte_unmap(pte);
1197 	if (unlikely(result != SCAN_SUCCEED))
1198 		goto out_up_write;
1199 
1200 	folio = page_folio(hpage);
1201 	/*
1202 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1203 	 * copy_huge_page writes become visible before the set_pmd_at()
1204 	 * write.
1205 	 */
1206 	__folio_mark_uptodate(folio);
1207 	pgtable = pmd_pgtable(_pmd);
1208 
1209 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1210 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1211 
1212 	spin_lock(pmd_ptl);
1213 	BUG_ON(!pmd_none(*pmd));
1214 	folio_add_new_anon_rmap(folio, vma, address);
1215 	folio_add_lru_vma(folio, vma);
1216 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1217 	set_pmd_at(mm, address, pmd, _pmd);
1218 	update_mmu_cache_pmd(vma, address, pmd);
1219 	spin_unlock(pmd_ptl);
1220 
1221 	hpage = NULL;
1222 
1223 	result = SCAN_SUCCEED;
1224 out_up_write:
1225 	mmap_write_unlock(mm);
1226 out_nolock:
1227 	if (hpage)
1228 		put_page(hpage);
1229 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1230 	return result;
1231 }
1232 
1233 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1234 				   struct vm_area_struct *vma,
1235 				   unsigned long address, bool *mmap_locked,
1236 				   struct collapse_control *cc)
1237 {
1238 	pmd_t *pmd;
1239 	pte_t *pte, *_pte;
1240 	int result = SCAN_FAIL, referenced = 0;
1241 	int none_or_zero = 0, shared = 0;
1242 	struct page *page = NULL;
1243 	unsigned long _address;
1244 	spinlock_t *ptl;
1245 	int node = NUMA_NO_NODE, unmapped = 0;
1246 	bool writable = false;
1247 
1248 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1249 
1250 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1251 	if (result != SCAN_SUCCEED)
1252 		goto out;
1253 
1254 	memset(cc->node_load, 0, sizeof(cc->node_load));
1255 	nodes_clear(cc->alloc_nmask);
1256 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1257 	if (!pte) {
1258 		result = SCAN_PMD_NULL;
1259 		goto out;
1260 	}
1261 
1262 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1263 	     _pte++, _address += PAGE_SIZE) {
1264 		pte_t pteval = ptep_get(_pte);
1265 		if (is_swap_pte(pteval)) {
1266 			++unmapped;
1267 			if (!cc->is_khugepaged ||
1268 			    unmapped <= khugepaged_max_ptes_swap) {
1269 				/*
1270 				 * Always be strict with uffd-wp
1271 				 * enabled swap entries.  Please see
1272 				 * comment below for pte_uffd_wp().
1273 				 */
1274 				if (pte_swp_uffd_wp_any(pteval)) {
1275 					result = SCAN_PTE_UFFD_WP;
1276 					goto out_unmap;
1277 				}
1278 				continue;
1279 			} else {
1280 				result = SCAN_EXCEED_SWAP_PTE;
1281 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1282 				goto out_unmap;
1283 			}
1284 		}
1285 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1286 			++none_or_zero;
1287 			if (!userfaultfd_armed(vma) &&
1288 			    (!cc->is_khugepaged ||
1289 			     none_or_zero <= khugepaged_max_ptes_none)) {
1290 				continue;
1291 			} else {
1292 				result = SCAN_EXCEED_NONE_PTE;
1293 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1294 				goto out_unmap;
1295 			}
1296 		}
1297 		if (pte_uffd_wp(pteval)) {
1298 			/*
1299 			 * Don't collapse the page if any of the small
1300 			 * PTEs are armed with uffd write protection.
1301 			 * Here we can also mark the new huge pmd as
1302 			 * write protected if any of the small ones is
1303 			 * marked but that could bring unknown
1304 			 * userfault messages that falls outside of
1305 			 * the registered range.  So, just be simple.
1306 			 */
1307 			result = SCAN_PTE_UFFD_WP;
1308 			goto out_unmap;
1309 		}
1310 		if (pte_write(pteval))
1311 			writable = true;
1312 
1313 		page = vm_normal_page(vma, _address, pteval);
1314 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1315 			result = SCAN_PAGE_NULL;
1316 			goto out_unmap;
1317 		}
1318 
1319 		if (page_mapcount(page) > 1) {
1320 			++shared;
1321 			if (cc->is_khugepaged &&
1322 			    shared > khugepaged_max_ptes_shared) {
1323 				result = SCAN_EXCEED_SHARED_PTE;
1324 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1325 				goto out_unmap;
1326 			}
1327 		}
1328 
1329 		page = compound_head(page);
1330 
1331 		/*
1332 		 * Record which node the original page is from and save this
1333 		 * information to cc->node_load[].
1334 		 * Khugepaged will allocate hugepage from the node has the max
1335 		 * hit record.
1336 		 */
1337 		node = page_to_nid(page);
1338 		if (hpage_collapse_scan_abort(node, cc)) {
1339 			result = SCAN_SCAN_ABORT;
1340 			goto out_unmap;
1341 		}
1342 		cc->node_load[node]++;
1343 		if (!PageLRU(page)) {
1344 			result = SCAN_PAGE_LRU;
1345 			goto out_unmap;
1346 		}
1347 		if (PageLocked(page)) {
1348 			result = SCAN_PAGE_LOCK;
1349 			goto out_unmap;
1350 		}
1351 		if (!PageAnon(page)) {
1352 			result = SCAN_PAGE_ANON;
1353 			goto out_unmap;
1354 		}
1355 
1356 		/*
1357 		 * Check if the page has any GUP (or other external) pins.
1358 		 *
1359 		 * Here the check may be racy:
1360 		 * it may see total_mapcount > refcount in some cases?
1361 		 * But such case is ephemeral we could always retry collapse
1362 		 * later.  However it may report false positive if the page
1363 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1364 		 * will be done again later the risk seems low.
1365 		 */
1366 		if (!is_refcount_suitable(page)) {
1367 			result = SCAN_PAGE_COUNT;
1368 			goto out_unmap;
1369 		}
1370 
1371 		/*
1372 		 * If collapse was initiated by khugepaged, check that there is
1373 		 * enough young pte to justify collapsing the page
1374 		 */
1375 		if (cc->is_khugepaged &&
1376 		    (pte_young(pteval) || page_is_young(page) ||
1377 		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1378 								     address)))
1379 			referenced++;
1380 	}
1381 	if (!writable) {
1382 		result = SCAN_PAGE_RO;
1383 	} else if (cc->is_khugepaged &&
1384 		   (!referenced ||
1385 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1386 		result = SCAN_LACK_REFERENCED_PAGE;
1387 	} else {
1388 		result = SCAN_SUCCEED;
1389 	}
1390 out_unmap:
1391 	pte_unmap_unlock(pte, ptl);
1392 	if (result == SCAN_SUCCEED) {
1393 		result = collapse_huge_page(mm, address, referenced,
1394 					    unmapped, cc);
1395 		/* collapse_huge_page will return with the mmap_lock released */
1396 		*mmap_locked = false;
1397 	}
1398 out:
1399 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1400 				     none_or_zero, result, unmapped);
1401 	return result;
1402 }
1403 
1404 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1405 {
1406 	struct mm_slot *slot = &mm_slot->slot;
1407 	struct mm_struct *mm = slot->mm;
1408 
1409 	lockdep_assert_held(&khugepaged_mm_lock);
1410 
1411 	if (hpage_collapse_test_exit(mm)) {
1412 		/* free mm_slot */
1413 		hash_del(&slot->hash);
1414 		list_del(&slot->mm_node);
1415 
1416 		/*
1417 		 * Not strictly needed because the mm exited already.
1418 		 *
1419 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1420 		 */
1421 
1422 		/* khugepaged_mm_lock actually not necessary for the below */
1423 		mm_slot_free(mm_slot_cache, mm_slot);
1424 		mmdrop(mm);
1425 	}
1426 }
1427 
1428 #ifdef CONFIG_SHMEM
1429 /* hpage must be locked, and mmap_lock must be held */
1430 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1431 			pmd_t *pmdp, struct page *hpage)
1432 {
1433 	struct vm_fault vmf = {
1434 		.vma = vma,
1435 		.address = addr,
1436 		.flags = 0,
1437 		.pmd = pmdp,
1438 	};
1439 
1440 	VM_BUG_ON(!PageTransHuge(hpage));
1441 	mmap_assert_locked(vma->vm_mm);
1442 
1443 	if (do_set_pmd(&vmf, hpage))
1444 		return SCAN_FAIL;
1445 
1446 	get_page(hpage);
1447 	return SCAN_SUCCEED;
1448 }
1449 
1450 /**
1451  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1452  * address haddr.
1453  *
1454  * @mm: process address space where collapse happens
1455  * @addr: THP collapse address
1456  * @install_pmd: If a huge PMD should be installed
1457  *
1458  * This function checks whether all the PTEs in the PMD are pointing to the
1459  * right THP. If so, retract the page table so the THP can refault in with
1460  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1461  */
1462 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1463 			    bool install_pmd)
1464 {
1465 	struct mmu_notifier_range range;
1466 	bool notified = false;
1467 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1468 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1469 	struct page *hpage;
1470 	pte_t *start_pte, *pte;
1471 	pmd_t *pmd, pgt_pmd;
1472 	spinlock_t *pml = NULL, *ptl;
1473 	int nr_ptes = 0, result = SCAN_FAIL;
1474 	int i;
1475 
1476 	mmap_assert_locked(mm);
1477 
1478 	/* First check VMA found, in case page tables are being torn down */
1479 	if (!vma || !vma->vm_file ||
1480 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1481 		return SCAN_VMA_CHECK;
1482 
1483 	/* Fast check before locking page if already PMD-mapped */
1484 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1485 	if (result == SCAN_PMD_MAPPED)
1486 		return result;
1487 
1488 	/*
1489 	 * If we are here, we've succeeded in replacing all the native pages
1490 	 * in the page cache with a single hugepage. If a mm were to fault-in
1491 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1492 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1493 	 * analogously elide sysfs THP settings here.
1494 	 */
1495 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1496 		return SCAN_VMA_CHECK;
1497 
1498 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1499 	if (userfaultfd_wp(vma))
1500 		return SCAN_PTE_UFFD_WP;
1501 
1502 	hpage = find_lock_page(vma->vm_file->f_mapping,
1503 			       linear_page_index(vma, haddr));
1504 	if (!hpage)
1505 		return SCAN_PAGE_NULL;
1506 
1507 	if (!PageHead(hpage)) {
1508 		result = SCAN_FAIL;
1509 		goto drop_hpage;
1510 	}
1511 
1512 	if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1513 		result = SCAN_PAGE_COMPOUND;
1514 		goto drop_hpage;
1515 	}
1516 
1517 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1518 	switch (result) {
1519 	case SCAN_SUCCEED:
1520 		break;
1521 	case SCAN_PMD_NONE:
1522 		/*
1523 		 * All pte entries have been removed and pmd cleared.
1524 		 * Skip all the pte checks and just update the pmd mapping.
1525 		 */
1526 		goto maybe_install_pmd;
1527 	default:
1528 		goto drop_hpage;
1529 	}
1530 
1531 	result = SCAN_FAIL;
1532 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1533 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1534 		goto drop_hpage;
1535 
1536 	/* step 1: check all mapped PTEs are to the right huge page */
1537 	for (i = 0, addr = haddr, pte = start_pte;
1538 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1539 		struct page *page;
1540 		pte_t ptent = ptep_get(pte);
1541 
1542 		/* empty pte, skip */
1543 		if (pte_none(ptent))
1544 			continue;
1545 
1546 		/* page swapped out, abort */
1547 		if (!pte_present(ptent)) {
1548 			result = SCAN_PTE_NON_PRESENT;
1549 			goto abort;
1550 		}
1551 
1552 		page = vm_normal_page(vma, addr, ptent);
1553 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1554 			page = NULL;
1555 		/*
1556 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1557 		 * page table, but the new page will not be a subpage of hpage.
1558 		 */
1559 		if (hpage + i != page)
1560 			goto abort;
1561 	}
1562 
1563 	pte_unmap_unlock(start_pte, ptl);
1564 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1565 				haddr, haddr + HPAGE_PMD_SIZE);
1566 	mmu_notifier_invalidate_range_start(&range);
1567 	notified = true;
1568 
1569 	/*
1570 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1571 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1572 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1573 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1574 	 * So page lock of hpage does not protect from it, so we must not drop
1575 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1576 	 */
1577 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1578 		pml = pmd_lock(mm, pmd);
1579 
1580 	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1581 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1582 		goto abort;
1583 	if (!pml)
1584 		spin_lock(ptl);
1585 	else if (ptl != pml)
1586 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1587 
1588 	/* step 2: clear page table and adjust rmap */
1589 	for (i = 0, addr = haddr, pte = start_pte;
1590 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1591 		struct page *page;
1592 		pte_t ptent = ptep_get(pte);
1593 
1594 		if (pte_none(ptent))
1595 			continue;
1596 		/*
1597 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1598 		 * page lock stops more PTEs of the hpage being faulted in, but
1599 		 * does not stop write faults COWing anon copies from existing
1600 		 * PTEs; and does not stop those being swapped out or migrated.
1601 		 */
1602 		if (!pte_present(ptent)) {
1603 			result = SCAN_PTE_NON_PRESENT;
1604 			goto abort;
1605 		}
1606 		page = vm_normal_page(vma, addr, ptent);
1607 		if (hpage + i != page)
1608 			goto abort;
1609 
1610 		/*
1611 		 * Must clear entry, or a racing truncate may re-remove it.
1612 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1613 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1614 		 */
1615 		ptep_clear(mm, addr, pte);
1616 		page_remove_rmap(page, vma, false);
1617 		nr_ptes++;
1618 	}
1619 
1620 	pte_unmap(start_pte);
1621 	if (!pml)
1622 		spin_unlock(ptl);
1623 
1624 	/* step 3: set proper refcount and mm_counters. */
1625 	if (nr_ptes) {
1626 		page_ref_sub(hpage, nr_ptes);
1627 		add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1628 	}
1629 
1630 	/* step 4: remove empty page table */
1631 	if (!pml) {
1632 		pml = pmd_lock(mm, pmd);
1633 		if (ptl != pml)
1634 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1635 	}
1636 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1637 	pmdp_get_lockless_sync();
1638 	if (ptl != pml)
1639 		spin_unlock(ptl);
1640 	spin_unlock(pml);
1641 
1642 	mmu_notifier_invalidate_range_end(&range);
1643 
1644 	mm_dec_nr_ptes(mm);
1645 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1646 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1647 
1648 maybe_install_pmd:
1649 	/* step 5: install pmd entry */
1650 	result = install_pmd
1651 			? set_huge_pmd(vma, haddr, pmd, hpage)
1652 			: SCAN_SUCCEED;
1653 	goto drop_hpage;
1654 abort:
1655 	if (nr_ptes) {
1656 		flush_tlb_mm(mm);
1657 		page_ref_sub(hpage, nr_ptes);
1658 		add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1659 	}
1660 	if (start_pte)
1661 		pte_unmap_unlock(start_pte, ptl);
1662 	if (pml && pml != ptl)
1663 		spin_unlock(pml);
1664 	if (notified)
1665 		mmu_notifier_invalidate_range_end(&range);
1666 drop_hpage:
1667 	unlock_page(hpage);
1668 	put_page(hpage);
1669 	return result;
1670 }
1671 
1672 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1673 {
1674 	struct vm_area_struct *vma;
1675 
1676 	i_mmap_lock_read(mapping);
1677 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1678 		struct mmu_notifier_range range;
1679 		struct mm_struct *mm;
1680 		unsigned long addr;
1681 		pmd_t *pmd, pgt_pmd;
1682 		spinlock_t *pml;
1683 		spinlock_t *ptl;
1684 		bool skipped_uffd = false;
1685 
1686 		/*
1687 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1688 		 * got written to. These VMAs are likely not worth removing
1689 		 * page tables from, as PMD-mapping is likely to be split later.
1690 		 */
1691 		if (READ_ONCE(vma->anon_vma))
1692 			continue;
1693 
1694 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1695 		if (addr & ~HPAGE_PMD_MASK ||
1696 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1697 			continue;
1698 
1699 		mm = vma->vm_mm;
1700 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1701 			continue;
1702 
1703 		if (hpage_collapse_test_exit(mm))
1704 			continue;
1705 		/*
1706 		 * When a vma is registered with uffd-wp, we cannot recycle
1707 		 * the page table because there may be pte markers installed.
1708 		 * Other vmas can still have the same file mapped hugely, but
1709 		 * skip this one: it will always be mapped in small page size
1710 		 * for uffd-wp registered ranges.
1711 		 */
1712 		if (userfaultfd_wp(vma))
1713 			continue;
1714 
1715 		/* PTEs were notified when unmapped; but now for the PMD? */
1716 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1717 					addr, addr + HPAGE_PMD_SIZE);
1718 		mmu_notifier_invalidate_range_start(&range);
1719 
1720 		pml = pmd_lock(mm, pmd);
1721 		ptl = pte_lockptr(mm, pmd);
1722 		if (ptl != pml)
1723 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1724 
1725 		/*
1726 		 * Huge page lock is still held, so normally the page table
1727 		 * must remain empty; and we have already skipped anon_vma
1728 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1729 		 * held, it is still possible for a racing userfaultfd_ioctl()
1730 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1731 		 * repeating the anon_vma check protects from one category,
1732 		 * and repeating the userfaultfd_wp() check from another.
1733 		 */
1734 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1735 			skipped_uffd = true;
1736 		} else {
1737 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1738 			pmdp_get_lockless_sync();
1739 		}
1740 
1741 		if (ptl != pml)
1742 			spin_unlock(ptl);
1743 		spin_unlock(pml);
1744 
1745 		mmu_notifier_invalidate_range_end(&range);
1746 
1747 		if (!skipped_uffd) {
1748 			mm_dec_nr_ptes(mm);
1749 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1750 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1751 		}
1752 	}
1753 	i_mmap_unlock_read(mapping);
1754 }
1755 
1756 /**
1757  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1758  *
1759  * @mm: process address space where collapse happens
1760  * @addr: virtual collapse start address
1761  * @file: file that collapse on
1762  * @start: collapse start address
1763  * @cc: collapse context and scratchpad
1764  *
1765  * Basic scheme is simple, details are more complex:
1766  *  - allocate and lock a new huge page;
1767  *  - scan page cache, locking old pages
1768  *    + swap/gup in pages if necessary;
1769  *  - copy data to new page
1770  *  - handle shmem holes
1771  *    + re-validate that holes weren't filled by someone else
1772  *    + check for userfaultfd
1773  *  - finalize updates to the page cache;
1774  *  - if replacing succeeds:
1775  *    + unlock huge page;
1776  *    + free old pages;
1777  *  - if replacing failed;
1778  *    + unlock old pages
1779  *    + unlock and free huge page;
1780  */
1781 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1782 			 struct file *file, pgoff_t start,
1783 			 struct collapse_control *cc)
1784 {
1785 	struct address_space *mapping = file->f_mapping;
1786 	struct page *hpage;
1787 	struct page *page;
1788 	struct page *tmp;
1789 	struct folio *folio;
1790 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1791 	LIST_HEAD(pagelist);
1792 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1793 	int nr_none = 0, result = SCAN_SUCCEED;
1794 	bool is_shmem = shmem_file(file);
1795 	int nr = 0;
1796 
1797 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1798 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1799 
1800 	result = alloc_charge_hpage(&hpage, mm, cc);
1801 	if (result != SCAN_SUCCEED)
1802 		goto out;
1803 
1804 	__SetPageLocked(hpage);
1805 	if (is_shmem)
1806 		__SetPageSwapBacked(hpage);
1807 	hpage->index = start;
1808 	hpage->mapping = mapping;
1809 
1810 	/*
1811 	 * Ensure we have slots for all the pages in the range.  This is
1812 	 * almost certainly a no-op because most of the pages must be present
1813 	 */
1814 	do {
1815 		xas_lock_irq(&xas);
1816 		xas_create_range(&xas);
1817 		if (!xas_error(&xas))
1818 			break;
1819 		xas_unlock_irq(&xas);
1820 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1821 			result = SCAN_FAIL;
1822 			goto rollback;
1823 		}
1824 	} while (1);
1825 
1826 	for (index = start; index < end; index++) {
1827 		xas_set(&xas, index);
1828 		page = xas_load(&xas);
1829 
1830 		VM_BUG_ON(index != xas.xa_index);
1831 		if (is_shmem) {
1832 			if (!page) {
1833 				/*
1834 				 * Stop if extent has been truncated or
1835 				 * hole-punched, and is now completely
1836 				 * empty.
1837 				 */
1838 				if (index == start) {
1839 					if (!xas_next_entry(&xas, end - 1)) {
1840 						result = SCAN_TRUNCATED;
1841 						goto xa_locked;
1842 					}
1843 				}
1844 				nr_none++;
1845 				continue;
1846 			}
1847 
1848 			if (xa_is_value(page) || !PageUptodate(page)) {
1849 				xas_unlock_irq(&xas);
1850 				/* swap in or instantiate fallocated page */
1851 				if (shmem_get_folio(mapping->host, index,
1852 						&folio, SGP_NOALLOC)) {
1853 					result = SCAN_FAIL;
1854 					goto xa_unlocked;
1855 				}
1856 				/* drain lru cache to help isolate_lru_page() */
1857 				lru_add_drain();
1858 				page = folio_file_page(folio, index);
1859 			} else if (trylock_page(page)) {
1860 				get_page(page);
1861 				xas_unlock_irq(&xas);
1862 			} else {
1863 				result = SCAN_PAGE_LOCK;
1864 				goto xa_locked;
1865 			}
1866 		} else {	/* !is_shmem */
1867 			if (!page || xa_is_value(page)) {
1868 				xas_unlock_irq(&xas);
1869 				page_cache_sync_readahead(mapping, &file->f_ra,
1870 							  file, index,
1871 							  end - index);
1872 				/* drain lru cache to help isolate_lru_page() */
1873 				lru_add_drain();
1874 				page = find_lock_page(mapping, index);
1875 				if (unlikely(page == NULL)) {
1876 					result = SCAN_FAIL;
1877 					goto xa_unlocked;
1878 				}
1879 			} else if (PageDirty(page)) {
1880 				/*
1881 				 * khugepaged only works on read-only fd,
1882 				 * so this page is dirty because it hasn't
1883 				 * been flushed since first write. There
1884 				 * won't be new dirty pages.
1885 				 *
1886 				 * Trigger async flush here and hope the
1887 				 * writeback is done when khugepaged
1888 				 * revisits this page.
1889 				 *
1890 				 * This is a one-off situation. We are not
1891 				 * forcing writeback in loop.
1892 				 */
1893 				xas_unlock_irq(&xas);
1894 				filemap_flush(mapping);
1895 				result = SCAN_FAIL;
1896 				goto xa_unlocked;
1897 			} else if (PageWriteback(page)) {
1898 				xas_unlock_irq(&xas);
1899 				result = SCAN_FAIL;
1900 				goto xa_unlocked;
1901 			} else if (trylock_page(page)) {
1902 				get_page(page);
1903 				xas_unlock_irq(&xas);
1904 			} else {
1905 				result = SCAN_PAGE_LOCK;
1906 				goto xa_locked;
1907 			}
1908 		}
1909 
1910 		/*
1911 		 * The page must be locked, so we can drop the i_pages lock
1912 		 * without racing with truncate.
1913 		 */
1914 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1915 
1916 		/* make sure the page is up to date */
1917 		if (unlikely(!PageUptodate(page))) {
1918 			result = SCAN_FAIL;
1919 			goto out_unlock;
1920 		}
1921 
1922 		/*
1923 		 * If file was truncated then extended, or hole-punched, before
1924 		 * we locked the first page, then a THP might be there already.
1925 		 * This will be discovered on the first iteration.
1926 		 */
1927 		if (PageTransCompound(page)) {
1928 			struct page *head = compound_head(page);
1929 
1930 			result = compound_order(head) == HPAGE_PMD_ORDER &&
1931 					head->index == start
1932 					/* Maybe PMD-mapped */
1933 					? SCAN_PTE_MAPPED_HUGEPAGE
1934 					: SCAN_PAGE_COMPOUND;
1935 			goto out_unlock;
1936 		}
1937 
1938 		folio = page_folio(page);
1939 
1940 		if (folio_mapping(folio) != mapping) {
1941 			result = SCAN_TRUNCATED;
1942 			goto out_unlock;
1943 		}
1944 
1945 		if (!is_shmem && (folio_test_dirty(folio) ||
1946 				  folio_test_writeback(folio))) {
1947 			/*
1948 			 * khugepaged only works on read-only fd, so this
1949 			 * page is dirty because it hasn't been flushed
1950 			 * since first write.
1951 			 */
1952 			result = SCAN_FAIL;
1953 			goto out_unlock;
1954 		}
1955 
1956 		if (!folio_isolate_lru(folio)) {
1957 			result = SCAN_DEL_PAGE_LRU;
1958 			goto out_unlock;
1959 		}
1960 
1961 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1962 			result = SCAN_PAGE_HAS_PRIVATE;
1963 			folio_putback_lru(folio);
1964 			goto out_unlock;
1965 		}
1966 
1967 		if (folio_mapped(folio))
1968 			try_to_unmap(folio,
1969 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1970 
1971 		xas_lock_irq(&xas);
1972 
1973 		VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
1974 
1975 		/*
1976 		 * We control three references to the page:
1977 		 *  - we hold a pin on it;
1978 		 *  - one reference from page cache;
1979 		 *  - one from isolate_lru_page;
1980 		 * If those are the only references, then any new usage of the
1981 		 * page will have to fetch it from the page cache. That requires
1982 		 * locking the page to handle truncate, so any new usage will be
1983 		 * blocked until we unlock page after collapse/during rollback.
1984 		 */
1985 		if (page_count(page) != 3) {
1986 			result = SCAN_PAGE_COUNT;
1987 			xas_unlock_irq(&xas);
1988 			putback_lru_page(page);
1989 			goto out_unlock;
1990 		}
1991 
1992 		/*
1993 		 * Accumulate the pages that are being collapsed.
1994 		 */
1995 		list_add_tail(&page->lru, &pagelist);
1996 		continue;
1997 out_unlock:
1998 		unlock_page(page);
1999 		put_page(page);
2000 		goto xa_unlocked;
2001 	}
2002 
2003 	if (!is_shmem) {
2004 		filemap_nr_thps_inc(mapping);
2005 		/*
2006 		 * Paired with smp_mb() in do_dentry_open() to ensure
2007 		 * i_writecount is up to date and the update to nr_thps is
2008 		 * visible. Ensures the page cache will be truncated if the
2009 		 * file is opened writable.
2010 		 */
2011 		smp_mb();
2012 		if (inode_is_open_for_write(mapping->host)) {
2013 			result = SCAN_FAIL;
2014 			filemap_nr_thps_dec(mapping);
2015 		}
2016 	}
2017 
2018 xa_locked:
2019 	xas_unlock_irq(&xas);
2020 xa_unlocked:
2021 
2022 	/*
2023 	 * If collapse is successful, flush must be done now before copying.
2024 	 * If collapse is unsuccessful, does flush actually need to be done?
2025 	 * Do it anyway, to clear the state.
2026 	 */
2027 	try_to_unmap_flush();
2028 
2029 	if (result == SCAN_SUCCEED && nr_none &&
2030 	    !shmem_charge(mapping->host, nr_none))
2031 		result = SCAN_FAIL;
2032 	if (result != SCAN_SUCCEED) {
2033 		nr_none = 0;
2034 		goto rollback;
2035 	}
2036 
2037 	/*
2038 	 * The old pages are locked, so they won't change anymore.
2039 	 */
2040 	index = start;
2041 	list_for_each_entry(page, &pagelist, lru) {
2042 		while (index < page->index) {
2043 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
2044 			index++;
2045 		}
2046 		if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
2047 			result = SCAN_COPY_MC;
2048 			goto rollback;
2049 		}
2050 		index++;
2051 	}
2052 	while (index < end) {
2053 		clear_highpage(hpage + (index % HPAGE_PMD_NR));
2054 		index++;
2055 	}
2056 
2057 	if (nr_none) {
2058 		struct vm_area_struct *vma;
2059 		int nr_none_check = 0;
2060 
2061 		i_mmap_lock_read(mapping);
2062 		xas_lock_irq(&xas);
2063 
2064 		xas_set(&xas, start);
2065 		for (index = start; index < end; index++) {
2066 			if (!xas_next(&xas)) {
2067 				xas_store(&xas, XA_RETRY_ENTRY);
2068 				if (xas_error(&xas)) {
2069 					result = SCAN_STORE_FAILED;
2070 					goto immap_locked;
2071 				}
2072 				nr_none_check++;
2073 			}
2074 		}
2075 
2076 		if (nr_none != nr_none_check) {
2077 			result = SCAN_PAGE_FILLED;
2078 			goto immap_locked;
2079 		}
2080 
2081 		/*
2082 		 * If userspace observed a missing page in a VMA with a MODE_MISSING
2083 		 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
2084 		 * page. If so, we need to roll back to avoid suppressing such an
2085 		 * event. Since wp/minor userfaultfds don't give userspace any
2086 		 * guarantees that the kernel doesn't fill a missing page with a zero
2087 		 * page, so they don't matter here.
2088 		 *
2089 		 * Any userfaultfds registered after this point will not be able to
2090 		 * observe any missing pages due to the previously inserted retry
2091 		 * entries.
2092 		 */
2093 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2094 			if (userfaultfd_missing(vma)) {
2095 				result = SCAN_EXCEED_NONE_PTE;
2096 				goto immap_locked;
2097 			}
2098 		}
2099 
2100 immap_locked:
2101 		i_mmap_unlock_read(mapping);
2102 		if (result != SCAN_SUCCEED) {
2103 			xas_set(&xas, start);
2104 			for (index = start; index < end; index++) {
2105 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2106 					xas_store(&xas, NULL);
2107 			}
2108 
2109 			xas_unlock_irq(&xas);
2110 			goto rollback;
2111 		}
2112 	} else {
2113 		xas_lock_irq(&xas);
2114 	}
2115 
2116 	folio = page_folio(hpage);
2117 	nr = folio_nr_pages(folio);
2118 	if (is_shmem)
2119 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
2120 	else
2121 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, nr);
2122 
2123 	if (nr_none) {
2124 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_none);
2125 		/* nr_none is always 0 for non-shmem. */
2126 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_none);
2127 	}
2128 
2129 	/*
2130 	 * Mark hpage as uptodate before inserting it into the page cache so
2131 	 * that it isn't mistaken for an fallocated but unwritten page.
2132 	 */
2133 	folio_mark_uptodate(folio);
2134 	folio_ref_add(folio, HPAGE_PMD_NR - 1);
2135 
2136 	if (is_shmem)
2137 		folio_mark_dirty(folio);
2138 	folio_add_lru(folio);
2139 
2140 	/* Join all the small entries into a single multi-index entry. */
2141 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2142 	xas_store(&xas, folio);
2143 	WARN_ON_ONCE(xas_error(&xas));
2144 	xas_unlock_irq(&xas);
2145 
2146 	/*
2147 	 * Remove pte page tables, so we can re-fault the page as huge.
2148 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2149 	 */
2150 	retract_page_tables(mapping, start);
2151 	if (cc && !cc->is_khugepaged)
2152 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2153 	folio_unlock(folio);
2154 
2155 	/*
2156 	 * The collapse has succeeded, so free the old pages.
2157 	 */
2158 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2159 		list_del(&page->lru);
2160 		page->mapping = NULL;
2161 		ClearPageActive(page);
2162 		ClearPageUnevictable(page);
2163 		unlock_page(page);
2164 		folio_put_refs(page_folio(page), 3);
2165 	}
2166 
2167 	goto out;
2168 
2169 rollback:
2170 	/* Something went wrong: roll back page cache changes */
2171 	if (nr_none) {
2172 		xas_lock_irq(&xas);
2173 		mapping->nrpages -= nr_none;
2174 		xas_unlock_irq(&xas);
2175 		shmem_uncharge(mapping->host, nr_none);
2176 	}
2177 
2178 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2179 		list_del(&page->lru);
2180 		unlock_page(page);
2181 		putback_lru_page(page);
2182 		put_page(page);
2183 	}
2184 	/*
2185 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2186 	 * file only. This undo is not needed unless failure is
2187 	 * due to SCAN_COPY_MC.
2188 	 */
2189 	if (!is_shmem && result == SCAN_COPY_MC) {
2190 		filemap_nr_thps_dec(mapping);
2191 		/*
2192 		 * Paired with smp_mb() in do_dentry_open() to
2193 		 * ensure the update to nr_thps is visible.
2194 		 */
2195 		smp_mb();
2196 	}
2197 
2198 	hpage->mapping = NULL;
2199 
2200 	unlock_page(hpage);
2201 	put_page(hpage);
2202 out:
2203 	VM_BUG_ON(!list_empty(&pagelist));
2204 	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2205 	return result;
2206 }
2207 
2208 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2209 				    struct file *file, pgoff_t start,
2210 				    struct collapse_control *cc)
2211 {
2212 	struct page *page = NULL;
2213 	struct address_space *mapping = file->f_mapping;
2214 	XA_STATE(xas, &mapping->i_pages, start);
2215 	int present, swap;
2216 	int node = NUMA_NO_NODE;
2217 	int result = SCAN_SUCCEED;
2218 
2219 	present = 0;
2220 	swap = 0;
2221 	memset(cc->node_load, 0, sizeof(cc->node_load));
2222 	nodes_clear(cc->alloc_nmask);
2223 	rcu_read_lock();
2224 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2225 		if (xas_retry(&xas, page))
2226 			continue;
2227 
2228 		if (xa_is_value(page)) {
2229 			++swap;
2230 			if (cc->is_khugepaged &&
2231 			    swap > khugepaged_max_ptes_swap) {
2232 				result = SCAN_EXCEED_SWAP_PTE;
2233 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2234 				break;
2235 			}
2236 			continue;
2237 		}
2238 
2239 		/*
2240 		 * TODO: khugepaged should compact smaller compound pages
2241 		 * into a PMD sized page
2242 		 */
2243 		if (PageTransCompound(page)) {
2244 			struct page *head = compound_head(page);
2245 
2246 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2247 					head->index == start
2248 					/* Maybe PMD-mapped */
2249 					? SCAN_PTE_MAPPED_HUGEPAGE
2250 					: SCAN_PAGE_COMPOUND;
2251 			/*
2252 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2253 			 * by the caller won't touch the page cache, and so
2254 			 * it's safe to skip LRU and refcount checks before
2255 			 * returning.
2256 			 */
2257 			break;
2258 		}
2259 
2260 		node = page_to_nid(page);
2261 		if (hpage_collapse_scan_abort(node, cc)) {
2262 			result = SCAN_SCAN_ABORT;
2263 			break;
2264 		}
2265 		cc->node_load[node]++;
2266 
2267 		if (!PageLRU(page)) {
2268 			result = SCAN_PAGE_LRU;
2269 			break;
2270 		}
2271 
2272 		if (page_count(page) !=
2273 		    1 + page_mapcount(page) + page_has_private(page)) {
2274 			result = SCAN_PAGE_COUNT;
2275 			break;
2276 		}
2277 
2278 		/*
2279 		 * We probably should check if the page is referenced here, but
2280 		 * nobody would transfer pte_young() to PageReferenced() for us.
2281 		 * And rmap walk here is just too costly...
2282 		 */
2283 
2284 		present++;
2285 
2286 		if (need_resched()) {
2287 			xas_pause(&xas);
2288 			cond_resched_rcu();
2289 		}
2290 	}
2291 	rcu_read_unlock();
2292 
2293 	if (result == SCAN_SUCCEED) {
2294 		if (cc->is_khugepaged &&
2295 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2296 			result = SCAN_EXCEED_NONE_PTE;
2297 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2298 		} else {
2299 			result = collapse_file(mm, addr, file, start, cc);
2300 		}
2301 	}
2302 
2303 	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2304 	return result;
2305 }
2306 #else
2307 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2308 				    struct file *file, pgoff_t start,
2309 				    struct collapse_control *cc)
2310 {
2311 	BUILD_BUG();
2312 }
2313 #endif
2314 
2315 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2316 					    struct collapse_control *cc)
2317 	__releases(&khugepaged_mm_lock)
2318 	__acquires(&khugepaged_mm_lock)
2319 {
2320 	struct vma_iterator vmi;
2321 	struct khugepaged_mm_slot *mm_slot;
2322 	struct mm_slot *slot;
2323 	struct mm_struct *mm;
2324 	struct vm_area_struct *vma;
2325 	int progress = 0;
2326 
2327 	VM_BUG_ON(!pages);
2328 	lockdep_assert_held(&khugepaged_mm_lock);
2329 	*result = SCAN_FAIL;
2330 
2331 	if (khugepaged_scan.mm_slot) {
2332 		mm_slot = khugepaged_scan.mm_slot;
2333 		slot = &mm_slot->slot;
2334 	} else {
2335 		slot = list_entry(khugepaged_scan.mm_head.next,
2336 				     struct mm_slot, mm_node);
2337 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2338 		khugepaged_scan.address = 0;
2339 		khugepaged_scan.mm_slot = mm_slot;
2340 	}
2341 	spin_unlock(&khugepaged_mm_lock);
2342 
2343 	mm = slot->mm;
2344 	/*
2345 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2346 	 * the next mm on the list.
2347 	 */
2348 	vma = NULL;
2349 	if (unlikely(!mmap_read_trylock(mm)))
2350 		goto breakouterloop_mmap_lock;
2351 
2352 	progress++;
2353 	if (unlikely(hpage_collapse_test_exit(mm)))
2354 		goto breakouterloop;
2355 
2356 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2357 	for_each_vma(vmi, vma) {
2358 		unsigned long hstart, hend;
2359 
2360 		cond_resched();
2361 		if (unlikely(hpage_collapse_test_exit(mm))) {
2362 			progress++;
2363 			break;
2364 		}
2365 		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2366 skip:
2367 			progress++;
2368 			continue;
2369 		}
2370 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2371 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2372 		if (khugepaged_scan.address > hend)
2373 			goto skip;
2374 		if (khugepaged_scan.address < hstart)
2375 			khugepaged_scan.address = hstart;
2376 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2377 
2378 		while (khugepaged_scan.address < hend) {
2379 			bool mmap_locked = true;
2380 
2381 			cond_resched();
2382 			if (unlikely(hpage_collapse_test_exit(mm)))
2383 				goto breakouterloop;
2384 
2385 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2386 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2387 				  hend);
2388 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2389 				struct file *file = get_file(vma->vm_file);
2390 				pgoff_t pgoff = linear_page_index(vma,
2391 						khugepaged_scan.address);
2392 
2393 				mmap_read_unlock(mm);
2394 				mmap_locked = false;
2395 				*result = hpage_collapse_scan_file(mm,
2396 					khugepaged_scan.address, file, pgoff, cc);
2397 				fput(file);
2398 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2399 					mmap_read_lock(mm);
2400 					if (hpage_collapse_test_exit(mm))
2401 						goto breakouterloop;
2402 					*result = collapse_pte_mapped_thp(mm,
2403 						khugepaged_scan.address, false);
2404 					if (*result == SCAN_PMD_MAPPED)
2405 						*result = SCAN_SUCCEED;
2406 					mmap_read_unlock(mm);
2407 				}
2408 			} else {
2409 				*result = hpage_collapse_scan_pmd(mm, vma,
2410 					khugepaged_scan.address, &mmap_locked, cc);
2411 			}
2412 
2413 			if (*result == SCAN_SUCCEED)
2414 				++khugepaged_pages_collapsed;
2415 
2416 			/* move to next address */
2417 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2418 			progress += HPAGE_PMD_NR;
2419 			if (!mmap_locked)
2420 				/*
2421 				 * We released mmap_lock so break loop.  Note
2422 				 * that we drop mmap_lock before all hugepage
2423 				 * allocations, so if allocation fails, we are
2424 				 * guaranteed to break here and report the
2425 				 * correct result back to caller.
2426 				 */
2427 				goto breakouterloop_mmap_lock;
2428 			if (progress >= pages)
2429 				goto breakouterloop;
2430 		}
2431 	}
2432 breakouterloop:
2433 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2434 breakouterloop_mmap_lock:
2435 
2436 	spin_lock(&khugepaged_mm_lock);
2437 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2438 	/*
2439 	 * Release the current mm_slot if this mm is about to die, or
2440 	 * if we scanned all vmas of this mm.
2441 	 */
2442 	if (hpage_collapse_test_exit(mm) || !vma) {
2443 		/*
2444 		 * Make sure that if mm_users is reaching zero while
2445 		 * khugepaged runs here, khugepaged_exit will find
2446 		 * mm_slot not pointing to the exiting mm.
2447 		 */
2448 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2449 			slot = list_entry(slot->mm_node.next,
2450 					  struct mm_slot, mm_node);
2451 			khugepaged_scan.mm_slot =
2452 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2453 			khugepaged_scan.address = 0;
2454 		} else {
2455 			khugepaged_scan.mm_slot = NULL;
2456 			khugepaged_full_scans++;
2457 		}
2458 
2459 		collect_mm_slot(mm_slot);
2460 	}
2461 
2462 	return progress;
2463 }
2464 
2465 static int khugepaged_has_work(void)
2466 {
2467 	return !list_empty(&khugepaged_scan.mm_head) &&
2468 		hugepage_flags_enabled();
2469 }
2470 
2471 static int khugepaged_wait_event(void)
2472 {
2473 	return !list_empty(&khugepaged_scan.mm_head) ||
2474 		kthread_should_stop();
2475 }
2476 
2477 static void khugepaged_do_scan(struct collapse_control *cc)
2478 {
2479 	unsigned int progress = 0, pass_through_head = 0;
2480 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2481 	bool wait = true;
2482 	int result = SCAN_SUCCEED;
2483 
2484 	lru_add_drain_all();
2485 
2486 	while (true) {
2487 		cond_resched();
2488 
2489 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2490 			break;
2491 
2492 		spin_lock(&khugepaged_mm_lock);
2493 		if (!khugepaged_scan.mm_slot)
2494 			pass_through_head++;
2495 		if (khugepaged_has_work() &&
2496 		    pass_through_head < 2)
2497 			progress += khugepaged_scan_mm_slot(pages - progress,
2498 							    &result, cc);
2499 		else
2500 			progress = pages;
2501 		spin_unlock(&khugepaged_mm_lock);
2502 
2503 		if (progress >= pages)
2504 			break;
2505 
2506 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2507 			/*
2508 			 * If fail to allocate the first time, try to sleep for
2509 			 * a while.  When hit again, cancel the scan.
2510 			 */
2511 			if (!wait)
2512 				break;
2513 			wait = false;
2514 			khugepaged_alloc_sleep();
2515 		}
2516 	}
2517 }
2518 
2519 static bool khugepaged_should_wakeup(void)
2520 {
2521 	return kthread_should_stop() ||
2522 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2523 }
2524 
2525 static void khugepaged_wait_work(void)
2526 {
2527 	if (khugepaged_has_work()) {
2528 		const unsigned long scan_sleep_jiffies =
2529 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2530 
2531 		if (!scan_sleep_jiffies)
2532 			return;
2533 
2534 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2535 		wait_event_freezable_timeout(khugepaged_wait,
2536 					     khugepaged_should_wakeup(),
2537 					     scan_sleep_jiffies);
2538 		return;
2539 	}
2540 
2541 	if (hugepage_flags_enabled())
2542 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2543 }
2544 
2545 static int khugepaged(void *none)
2546 {
2547 	struct khugepaged_mm_slot *mm_slot;
2548 
2549 	set_freezable();
2550 	set_user_nice(current, MAX_NICE);
2551 
2552 	while (!kthread_should_stop()) {
2553 		khugepaged_do_scan(&khugepaged_collapse_control);
2554 		khugepaged_wait_work();
2555 	}
2556 
2557 	spin_lock(&khugepaged_mm_lock);
2558 	mm_slot = khugepaged_scan.mm_slot;
2559 	khugepaged_scan.mm_slot = NULL;
2560 	if (mm_slot)
2561 		collect_mm_slot(mm_slot);
2562 	spin_unlock(&khugepaged_mm_lock);
2563 	return 0;
2564 }
2565 
2566 static void set_recommended_min_free_kbytes(void)
2567 {
2568 	struct zone *zone;
2569 	int nr_zones = 0;
2570 	unsigned long recommended_min;
2571 
2572 	if (!hugepage_flags_enabled()) {
2573 		calculate_min_free_kbytes();
2574 		goto update_wmarks;
2575 	}
2576 
2577 	for_each_populated_zone(zone) {
2578 		/*
2579 		 * We don't need to worry about fragmentation of
2580 		 * ZONE_MOVABLE since it only has movable pages.
2581 		 */
2582 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2583 			continue;
2584 
2585 		nr_zones++;
2586 	}
2587 
2588 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2589 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2590 
2591 	/*
2592 	 * Make sure that on average at least two pageblocks are almost free
2593 	 * of another type, one for a migratetype to fall back to and a
2594 	 * second to avoid subsequent fallbacks of other types There are 3
2595 	 * MIGRATE_TYPES we care about.
2596 	 */
2597 	recommended_min += pageblock_nr_pages * nr_zones *
2598 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2599 
2600 	/* don't ever allow to reserve more than 5% of the lowmem */
2601 	recommended_min = min(recommended_min,
2602 			      (unsigned long) nr_free_buffer_pages() / 20);
2603 	recommended_min <<= (PAGE_SHIFT-10);
2604 
2605 	if (recommended_min > min_free_kbytes) {
2606 		if (user_min_free_kbytes >= 0)
2607 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2608 				min_free_kbytes, recommended_min);
2609 
2610 		min_free_kbytes = recommended_min;
2611 	}
2612 
2613 update_wmarks:
2614 	setup_per_zone_wmarks();
2615 }
2616 
2617 int start_stop_khugepaged(void)
2618 {
2619 	int err = 0;
2620 
2621 	mutex_lock(&khugepaged_mutex);
2622 	if (hugepage_flags_enabled()) {
2623 		if (!khugepaged_thread)
2624 			khugepaged_thread = kthread_run(khugepaged, NULL,
2625 							"khugepaged");
2626 		if (IS_ERR(khugepaged_thread)) {
2627 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2628 			err = PTR_ERR(khugepaged_thread);
2629 			khugepaged_thread = NULL;
2630 			goto fail;
2631 		}
2632 
2633 		if (!list_empty(&khugepaged_scan.mm_head))
2634 			wake_up_interruptible(&khugepaged_wait);
2635 	} else if (khugepaged_thread) {
2636 		kthread_stop(khugepaged_thread);
2637 		khugepaged_thread = NULL;
2638 	}
2639 	set_recommended_min_free_kbytes();
2640 fail:
2641 	mutex_unlock(&khugepaged_mutex);
2642 	return err;
2643 }
2644 
2645 void khugepaged_min_free_kbytes_update(void)
2646 {
2647 	mutex_lock(&khugepaged_mutex);
2648 	if (hugepage_flags_enabled() && khugepaged_thread)
2649 		set_recommended_min_free_kbytes();
2650 	mutex_unlock(&khugepaged_mutex);
2651 }
2652 
2653 bool current_is_khugepaged(void)
2654 {
2655 	return kthread_func(current) == khugepaged;
2656 }
2657 
2658 static int madvise_collapse_errno(enum scan_result r)
2659 {
2660 	/*
2661 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2662 	 * actionable feedback to caller, so they may take an appropriate
2663 	 * fallback measure depending on the nature of the failure.
2664 	 */
2665 	switch (r) {
2666 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2667 		return -ENOMEM;
2668 	case SCAN_CGROUP_CHARGE_FAIL:
2669 	case SCAN_EXCEED_NONE_PTE:
2670 		return -EBUSY;
2671 	/* Resource temporary unavailable - trying again might succeed */
2672 	case SCAN_PAGE_COUNT:
2673 	case SCAN_PAGE_LOCK:
2674 	case SCAN_PAGE_LRU:
2675 	case SCAN_DEL_PAGE_LRU:
2676 	case SCAN_PAGE_FILLED:
2677 		return -EAGAIN;
2678 	/*
2679 	 * Other: Trying again likely not to succeed / error intrinsic to
2680 	 * specified memory range. khugepaged likely won't be able to collapse
2681 	 * either.
2682 	 */
2683 	default:
2684 		return -EINVAL;
2685 	}
2686 }
2687 
2688 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2689 		     unsigned long start, unsigned long end)
2690 {
2691 	struct collapse_control *cc;
2692 	struct mm_struct *mm = vma->vm_mm;
2693 	unsigned long hstart, hend, addr;
2694 	int thps = 0, last_fail = SCAN_FAIL;
2695 	bool mmap_locked = true;
2696 
2697 	BUG_ON(vma->vm_start > start);
2698 	BUG_ON(vma->vm_end < end);
2699 
2700 	*prev = vma;
2701 
2702 	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2703 		return -EINVAL;
2704 
2705 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2706 	if (!cc)
2707 		return -ENOMEM;
2708 	cc->is_khugepaged = false;
2709 
2710 	mmgrab(mm);
2711 	lru_add_drain_all();
2712 
2713 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2714 	hend = end & HPAGE_PMD_MASK;
2715 
2716 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2717 		int result = SCAN_FAIL;
2718 
2719 		if (!mmap_locked) {
2720 			cond_resched();
2721 			mmap_read_lock(mm);
2722 			mmap_locked = true;
2723 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2724 							 cc);
2725 			if (result  != SCAN_SUCCEED) {
2726 				last_fail = result;
2727 				goto out_nolock;
2728 			}
2729 
2730 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2731 		}
2732 		mmap_assert_locked(mm);
2733 		memset(cc->node_load, 0, sizeof(cc->node_load));
2734 		nodes_clear(cc->alloc_nmask);
2735 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2736 			struct file *file = get_file(vma->vm_file);
2737 			pgoff_t pgoff = linear_page_index(vma, addr);
2738 
2739 			mmap_read_unlock(mm);
2740 			mmap_locked = false;
2741 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2742 							  cc);
2743 			fput(file);
2744 		} else {
2745 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2746 							 &mmap_locked, cc);
2747 		}
2748 		if (!mmap_locked)
2749 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2750 
2751 handle_result:
2752 		switch (result) {
2753 		case SCAN_SUCCEED:
2754 		case SCAN_PMD_MAPPED:
2755 			++thps;
2756 			break;
2757 		case SCAN_PTE_MAPPED_HUGEPAGE:
2758 			BUG_ON(mmap_locked);
2759 			BUG_ON(*prev);
2760 			mmap_read_lock(mm);
2761 			result = collapse_pte_mapped_thp(mm, addr, true);
2762 			mmap_read_unlock(mm);
2763 			goto handle_result;
2764 		/* Whitelisted set of results where continuing OK */
2765 		case SCAN_PMD_NULL:
2766 		case SCAN_PTE_NON_PRESENT:
2767 		case SCAN_PTE_UFFD_WP:
2768 		case SCAN_PAGE_RO:
2769 		case SCAN_LACK_REFERENCED_PAGE:
2770 		case SCAN_PAGE_NULL:
2771 		case SCAN_PAGE_COUNT:
2772 		case SCAN_PAGE_LOCK:
2773 		case SCAN_PAGE_COMPOUND:
2774 		case SCAN_PAGE_LRU:
2775 		case SCAN_DEL_PAGE_LRU:
2776 			last_fail = result;
2777 			break;
2778 		default:
2779 			last_fail = result;
2780 			/* Other error, exit */
2781 			goto out_maybelock;
2782 		}
2783 	}
2784 
2785 out_maybelock:
2786 	/* Caller expects us to hold mmap_lock on return */
2787 	if (!mmap_locked)
2788 		mmap_read_lock(mm);
2789 out_nolock:
2790 	mmap_assert_locked(mm);
2791 	mmdrop(mm);
2792 	kfree(cc);
2793 
2794 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2795 			: madvise_collapse_errno(last_fail);
2796 }
2797