1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/swapops.h> 20 #include <linux/shmem_fs.h> 21 22 #include <asm/tlb.h> 23 #include <asm/pgalloc.h> 24 #include "internal.h" 25 26 enum scan_result { 27 SCAN_FAIL, 28 SCAN_SUCCEED, 29 SCAN_PMD_NULL, 30 SCAN_EXCEED_NONE_PTE, 31 SCAN_EXCEED_SWAP_PTE, 32 SCAN_EXCEED_SHARED_PTE, 33 SCAN_PTE_NON_PRESENT, 34 SCAN_PTE_UFFD_WP, 35 SCAN_PAGE_RO, 36 SCAN_LACK_REFERENCED_PAGE, 37 SCAN_PAGE_NULL, 38 SCAN_SCAN_ABORT, 39 SCAN_PAGE_COUNT, 40 SCAN_PAGE_LRU, 41 SCAN_PAGE_LOCK, 42 SCAN_PAGE_ANON, 43 SCAN_PAGE_COMPOUND, 44 SCAN_ANY_PROCESS, 45 SCAN_VMA_NULL, 46 SCAN_VMA_CHECK, 47 SCAN_ADDRESS_RANGE, 48 SCAN_SWAP_CACHE_PAGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 static struct task_struct *khugepaged_thread __read_mostly; 60 static DEFINE_MUTEX(khugepaged_mutex); 61 62 /* default scan 8*512 pte (or vmas) every 30 second */ 63 static unsigned int khugepaged_pages_to_scan __read_mostly; 64 static unsigned int khugepaged_pages_collapsed; 65 static unsigned int khugepaged_full_scans; 66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 67 /* during fragmentation poll the hugepage allocator once every minute */ 68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 69 static unsigned long khugepaged_sleep_expire; 70 static DEFINE_SPINLOCK(khugepaged_mm_lock); 71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 72 /* 73 * default collapse hugepages if there is at least one pte mapped like 74 * it would have happened if the vma was large enough during page 75 * fault. 76 */ 77 static unsigned int khugepaged_max_ptes_none __read_mostly; 78 static unsigned int khugepaged_max_ptes_swap __read_mostly; 79 static unsigned int khugepaged_max_ptes_shared __read_mostly; 80 81 #define MM_SLOTS_HASH_BITS 10 82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 83 84 static struct kmem_cache *mm_slot_cache __read_mostly; 85 86 #define MAX_PTE_MAPPED_THP 8 87 88 /** 89 * struct mm_slot - hash lookup from mm to mm_slot 90 * @hash: hash collision list 91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 92 * @mm: the mm that this information is valid for 93 * @nr_pte_mapped_thp: number of pte mapped THP 94 * @pte_mapped_thp: address array corresponding pte mapped THP 95 */ 96 struct mm_slot { 97 struct hlist_node hash; 98 struct list_head mm_node; 99 struct mm_struct *mm; 100 101 /* pte-mapped THP in this mm */ 102 int nr_pte_mapped_thp; 103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 104 }; 105 106 /** 107 * struct khugepaged_scan - cursor for scanning 108 * @mm_head: the head of the mm list to scan 109 * @mm_slot: the current mm_slot we are scanning 110 * @address: the next address inside that to be scanned 111 * 112 * There is only the one khugepaged_scan instance of this cursor structure. 113 */ 114 struct khugepaged_scan { 115 struct list_head mm_head; 116 struct mm_slot *mm_slot; 117 unsigned long address; 118 }; 119 120 static struct khugepaged_scan khugepaged_scan = { 121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 122 }; 123 124 #ifdef CONFIG_SYSFS 125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 126 struct kobj_attribute *attr, 127 char *buf) 128 { 129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 130 } 131 132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 133 struct kobj_attribute *attr, 134 const char *buf, size_t count) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 khugepaged_scan_sleep_millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 static struct kobj_attribute scan_sleep_millisecs_attr = 150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 151 scan_sleep_millisecs_store); 152 153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 154 struct kobj_attribute *attr, 155 char *buf) 156 { 157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 158 } 159 160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 const char *buf, size_t count) 163 { 164 unsigned int msecs; 165 int err; 166 167 err = kstrtouint(buf, 10, &msecs); 168 if (err) 169 return -EINVAL; 170 171 khugepaged_alloc_sleep_millisecs = msecs; 172 khugepaged_sleep_expire = 0; 173 wake_up_interruptible(&khugepaged_wait); 174 175 return count; 176 } 177 static struct kobj_attribute alloc_sleep_millisecs_attr = 178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 179 alloc_sleep_millisecs_store); 180 181 static ssize_t pages_to_scan_show(struct kobject *kobj, 182 struct kobj_attribute *attr, 183 char *buf) 184 { 185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 186 } 187 static ssize_t pages_to_scan_store(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 const char *buf, size_t count) 190 { 191 unsigned int pages; 192 int err; 193 194 err = kstrtouint(buf, 10, &pages); 195 if (err || !pages) 196 return -EINVAL; 197 198 khugepaged_pages_to_scan = pages; 199 200 return count; 201 } 202 static struct kobj_attribute pages_to_scan_attr = 203 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 204 pages_to_scan_store); 205 206 static ssize_t pages_collapsed_show(struct kobject *kobj, 207 struct kobj_attribute *attr, 208 char *buf) 209 { 210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 211 } 212 static struct kobj_attribute pages_collapsed_attr = 213 __ATTR_RO(pages_collapsed); 214 215 static ssize_t full_scans_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 220 } 221 static struct kobj_attribute full_scans_attr = 222 __ATTR_RO(full_scans); 223 224 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 225 struct kobj_attribute *attr, char *buf) 226 { 227 return single_hugepage_flag_show(kobj, attr, buf, 228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 229 } 230 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 231 struct kobj_attribute *attr, 232 const char *buf, size_t count) 233 { 234 return single_hugepage_flag_store(kobj, attr, buf, count, 235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 236 } 237 static struct kobj_attribute khugepaged_defrag_attr = 238 __ATTR(defrag, 0644, khugepaged_defrag_show, 239 khugepaged_defrag_store); 240 241 /* 242 * max_ptes_none controls if khugepaged should collapse hugepages over 243 * any unmapped ptes in turn potentially increasing the memory 244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 245 * reduce the available free memory in the system as it 246 * runs. Increasing max_ptes_none will instead potentially reduce the 247 * free memory in the system during the khugepaged scan. 248 */ 249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 250 struct kobj_attribute *attr, 251 char *buf) 252 { 253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 254 } 255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 int err; 260 unsigned long max_ptes_none; 261 262 err = kstrtoul(buf, 10, &max_ptes_none); 263 if (err || max_ptes_none > HPAGE_PMD_NR-1) 264 return -EINVAL; 265 266 khugepaged_max_ptes_none = max_ptes_none; 267 268 return count; 269 } 270 static struct kobj_attribute khugepaged_max_ptes_none_attr = 271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 272 khugepaged_max_ptes_none_store); 273 274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, 275 struct kobj_attribute *attr, 276 char *buf) 277 { 278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 279 } 280 281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 const char *buf, size_t count) 284 { 285 int err; 286 unsigned long max_ptes_swap; 287 288 err = kstrtoul(buf, 10, &max_ptes_swap); 289 if (err || max_ptes_swap > HPAGE_PMD_NR-1) 290 return -EINVAL; 291 292 khugepaged_max_ptes_swap = max_ptes_swap; 293 294 return count; 295 } 296 297 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, 299 khugepaged_max_ptes_swap_store); 300 301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, 302 struct kobj_attribute *attr, 303 char *buf) 304 { 305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 306 } 307 308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, 309 struct kobj_attribute *attr, 310 const char *buf, size_t count) 311 { 312 int err; 313 unsigned long max_ptes_shared; 314 315 err = kstrtoul(buf, 10, &max_ptes_shared); 316 if (err || max_ptes_shared > HPAGE_PMD_NR-1) 317 return -EINVAL; 318 319 khugepaged_max_ptes_shared = max_ptes_shared; 320 321 return count; 322 } 323 324 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, 326 khugepaged_max_ptes_shared_store); 327 328 static struct attribute *khugepaged_attr[] = { 329 &khugepaged_defrag_attr.attr, 330 &khugepaged_max_ptes_none_attr.attr, 331 &khugepaged_max_ptes_swap_attr.attr, 332 &khugepaged_max_ptes_shared_attr.attr, 333 &pages_to_scan_attr.attr, 334 &pages_collapsed_attr.attr, 335 &full_scans_attr.attr, 336 &scan_sleep_millisecs_attr.attr, 337 &alloc_sleep_millisecs_attr.attr, 338 NULL, 339 }; 340 341 struct attribute_group khugepaged_attr_group = { 342 .attrs = khugepaged_attr, 343 .name = "khugepaged", 344 }; 345 #endif /* CONFIG_SYSFS */ 346 347 int hugepage_madvise(struct vm_area_struct *vma, 348 unsigned long *vm_flags, int advice) 349 { 350 switch (advice) { 351 case MADV_HUGEPAGE: 352 #ifdef CONFIG_S390 353 /* 354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 355 * can't handle this properly after s390_enable_sie, so we simply 356 * ignore the madvise to prevent qemu from causing a SIGSEGV. 357 */ 358 if (mm_has_pgste(vma->vm_mm)) 359 return 0; 360 #endif 361 *vm_flags &= ~VM_NOHUGEPAGE; 362 *vm_flags |= VM_HUGEPAGE; 363 /* 364 * If the vma become good for khugepaged to scan, 365 * register it here without waiting a page fault that 366 * may not happen any time soon. 367 */ 368 if (!(*vm_flags & VM_NO_KHUGEPAGED) && 369 khugepaged_enter_vma_merge(vma, *vm_flags)) 370 return -ENOMEM; 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 389 sizeof(struct mm_slot), 390 __alignof__(struct mm_slot), 0, NULL); 391 if (!mm_slot_cache) 392 return -ENOMEM; 393 394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 398 399 return 0; 400 } 401 402 void __init khugepaged_destroy(void) 403 { 404 kmem_cache_destroy(mm_slot_cache); 405 } 406 407 static inline struct mm_slot *alloc_mm_slot(void) 408 { 409 if (!mm_slot_cache) /* initialization failed */ 410 return NULL; 411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 412 } 413 414 static inline void free_mm_slot(struct mm_slot *mm_slot) 415 { 416 kmem_cache_free(mm_slot_cache, mm_slot); 417 } 418 419 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 420 { 421 struct mm_slot *mm_slot; 422 423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 424 if (mm == mm_slot->mm) 425 return mm_slot; 426 427 return NULL; 428 } 429 430 static void insert_to_mm_slots_hash(struct mm_struct *mm, 431 struct mm_slot *mm_slot) 432 { 433 mm_slot->mm = mm; 434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 435 } 436 437 static inline int khugepaged_test_exit(struct mm_struct *mm) 438 { 439 return atomic_read(&mm->mm_users) == 0; 440 } 441 442 static bool hugepage_vma_check(struct vm_area_struct *vma, 443 unsigned long vm_flags) 444 { 445 if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 446 (vm_flags & VM_NOHUGEPAGE) || 447 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 448 return false; 449 450 if (shmem_file(vma->vm_file) || 451 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 452 vma->vm_file && 453 (vm_flags & VM_DENYWRITE))) { 454 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, 455 HPAGE_PMD_NR); 456 } 457 if (!vma->anon_vma || vma->vm_ops) 458 return false; 459 if (vma_is_temporary_stack(vma)) 460 return false; 461 return !(vm_flags & VM_NO_KHUGEPAGED); 462 } 463 464 int __khugepaged_enter(struct mm_struct *mm) 465 { 466 struct mm_slot *mm_slot; 467 int wakeup; 468 469 mm_slot = alloc_mm_slot(); 470 if (!mm_slot) 471 return -ENOMEM; 472 473 /* __khugepaged_exit() must not run from under us */ 474 VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm); 475 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 476 free_mm_slot(mm_slot); 477 return 0; 478 } 479 480 spin_lock(&khugepaged_mm_lock); 481 insert_to_mm_slots_hash(mm, mm_slot); 482 /* 483 * Insert just behind the scanning cursor, to let the area settle 484 * down a little. 485 */ 486 wakeup = list_empty(&khugepaged_scan.mm_head); 487 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 488 spin_unlock(&khugepaged_mm_lock); 489 490 mmgrab(mm); 491 if (wakeup) 492 wake_up_interruptible(&khugepaged_wait); 493 494 return 0; 495 } 496 497 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 498 unsigned long vm_flags) 499 { 500 unsigned long hstart, hend; 501 502 /* 503 * khugepaged only supports read-only files for non-shmem files. 504 * khugepaged does not yet work on special mappings. And 505 * file-private shmem THP is not supported. 506 */ 507 if (!hugepage_vma_check(vma, vm_flags)) 508 return 0; 509 510 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 511 hend = vma->vm_end & HPAGE_PMD_MASK; 512 if (hstart < hend) 513 return khugepaged_enter(vma, vm_flags); 514 return 0; 515 } 516 517 void __khugepaged_exit(struct mm_struct *mm) 518 { 519 struct mm_slot *mm_slot; 520 int free = 0; 521 522 spin_lock(&khugepaged_mm_lock); 523 mm_slot = get_mm_slot(mm); 524 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 525 hash_del(&mm_slot->hash); 526 list_del(&mm_slot->mm_node); 527 free = 1; 528 } 529 spin_unlock(&khugepaged_mm_lock); 530 531 if (free) { 532 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 533 free_mm_slot(mm_slot); 534 mmdrop(mm); 535 } else if (mm_slot) { 536 /* 537 * This is required to serialize against 538 * khugepaged_test_exit() (which is guaranteed to run 539 * under mmap sem read mode). Stop here (after we 540 * return all pagetables will be destroyed) until 541 * khugepaged has finished working on the pagetables 542 * under the mmap_lock. 543 */ 544 mmap_write_lock(mm); 545 mmap_write_unlock(mm); 546 } 547 } 548 549 static void release_pte_page(struct page *page) 550 { 551 mod_node_page_state(page_pgdat(page), 552 NR_ISOLATED_ANON + page_is_file_lru(page), 553 -compound_nr(page)); 554 unlock_page(page); 555 putback_lru_page(page); 556 } 557 558 static void release_pte_pages(pte_t *pte, pte_t *_pte, 559 struct list_head *compound_pagelist) 560 { 561 struct page *page, *tmp; 562 563 while (--_pte >= pte) { 564 pte_t pteval = *_pte; 565 566 page = pte_page(pteval); 567 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 568 !PageCompound(page)) 569 release_pte_page(page); 570 } 571 572 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 573 list_del(&page->lru); 574 release_pte_page(page); 575 } 576 } 577 578 static bool is_refcount_suitable(struct page *page) 579 { 580 int expected_refcount; 581 582 expected_refcount = total_mapcount(page); 583 if (PageSwapCache(page)) 584 expected_refcount += compound_nr(page); 585 586 return page_count(page) == expected_refcount; 587 } 588 589 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 590 unsigned long address, 591 pte_t *pte, 592 struct list_head *compound_pagelist) 593 { 594 struct page *page = NULL; 595 pte_t *_pte; 596 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 597 bool writable = false; 598 599 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 600 _pte++, address += PAGE_SIZE) { 601 pte_t pteval = *_pte; 602 if (pte_none(pteval) || (pte_present(pteval) && 603 is_zero_pfn(pte_pfn(pteval)))) { 604 if (!userfaultfd_armed(vma) && 605 ++none_or_zero <= khugepaged_max_ptes_none) { 606 continue; 607 } else { 608 result = SCAN_EXCEED_NONE_PTE; 609 goto out; 610 } 611 } 612 if (!pte_present(pteval)) { 613 result = SCAN_PTE_NON_PRESENT; 614 goto out; 615 } 616 page = vm_normal_page(vma, address, pteval); 617 if (unlikely(!page)) { 618 result = SCAN_PAGE_NULL; 619 goto out; 620 } 621 622 VM_BUG_ON_PAGE(!PageAnon(page), page); 623 624 if (page_mapcount(page) > 1 && 625 ++shared > khugepaged_max_ptes_shared) { 626 result = SCAN_EXCEED_SHARED_PTE; 627 goto out; 628 } 629 630 if (PageCompound(page)) { 631 struct page *p; 632 page = compound_head(page); 633 634 /* 635 * Check if we have dealt with the compound page 636 * already 637 */ 638 list_for_each_entry(p, compound_pagelist, lru) { 639 if (page == p) 640 goto next; 641 } 642 } 643 644 /* 645 * We can do it before isolate_lru_page because the 646 * page can't be freed from under us. NOTE: PG_lock 647 * is needed to serialize against split_huge_page 648 * when invoked from the VM. 649 */ 650 if (!trylock_page(page)) { 651 result = SCAN_PAGE_LOCK; 652 goto out; 653 } 654 655 /* 656 * Check if the page has any GUP (or other external) pins. 657 * 658 * The page table that maps the page has been already unlinked 659 * from the page table tree and this process cannot get 660 * an additinal pin on the page. 661 * 662 * New pins can come later if the page is shared across fork, 663 * but not from this process. The other process cannot write to 664 * the page, only trigger CoW. 665 */ 666 if (!is_refcount_suitable(page)) { 667 unlock_page(page); 668 result = SCAN_PAGE_COUNT; 669 goto out; 670 } 671 if (!pte_write(pteval) && PageSwapCache(page) && 672 !reuse_swap_page(page, NULL)) { 673 /* 674 * Page is in the swap cache and cannot be re-used. 675 * It cannot be collapsed into a THP. 676 */ 677 unlock_page(page); 678 result = SCAN_SWAP_CACHE_PAGE; 679 goto out; 680 } 681 682 /* 683 * Isolate the page to avoid collapsing an hugepage 684 * currently in use by the VM. 685 */ 686 if (isolate_lru_page(page)) { 687 unlock_page(page); 688 result = SCAN_DEL_PAGE_LRU; 689 goto out; 690 } 691 mod_node_page_state(page_pgdat(page), 692 NR_ISOLATED_ANON + page_is_file_lru(page), 693 compound_nr(page)); 694 VM_BUG_ON_PAGE(!PageLocked(page), page); 695 VM_BUG_ON_PAGE(PageLRU(page), page); 696 697 if (PageCompound(page)) 698 list_add_tail(&page->lru, compound_pagelist); 699 next: 700 /* There should be enough young pte to collapse the page */ 701 if (pte_young(pteval) || 702 page_is_young(page) || PageReferenced(page) || 703 mmu_notifier_test_young(vma->vm_mm, address)) 704 referenced++; 705 706 if (pte_write(pteval)) 707 writable = true; 708 } 709 if (likely(writable)) { 710 if (likely(referenced)) { 711 result = SCAN_SUCCEED; 712 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 713 referenced, writable, result); 714 return 1; 715 } 716 } else { 717 result = SCAN_PAGE_RO; 718 } 719 720 out: 721 release_pte_pages(pte, _pte, compound_pagelist); 722 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 723 referenced, writable, result); 724 return 0; 725 } 726 727 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 728 struct vm_area_struct *vma, 729 unsigned long address, 730 spinlock_t *ptl, 731 struct list_head *compound_pagelist) 732 { 733 struct page *src_page, *tmp; 734 pte_t *_pte; 735 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 736 _pte++, page++, address += PAGE_SIZE) { 737 pte_t pteval = *_pte; 738 739 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 740 clear_user_highpage(page, address); 741 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 742 if (is_zero_pfn(pte_pfn(pteval))) { 743 /* 744 * ptl mostly unnecessary. 745 */ 746 spin_lock(ptl); 747 /* 748 * paravirt calls inside pte_clear here are 749 * superfluous. 750 */ 751 pte_clear(vma->vm_mm, address, _pte); 752 spin_unlock(ptl); 753 } 754 } else { 755 src_page = pte_page(pteval); 756 copy_user_highpage(page, src_page, address, vma); 757 if (!PageCompound(src_page)) 758 release_pte_page(src_page); 759 /* 760 * ptl mostly unnecessary, but preempt has to 761 * be disabled to update the per-cpu stats 762 * inside page_remove_rmap(). 763 */ 764 spin_lock(ptl); 765 /* 766 * paravirt calls inside pte_clear here are 767 * superfluous. 768 */ 769 pte_clear(vma->vm_mm, address, _pte); 770 page_remove_rmap(src_page, false); 771 spin_unlock(ptl); 772 free_page_and_swap_cache(src_page); 773 } 774 } 775 776 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 777 list_del(&src_page->lru); 778 release_pte_page(src_page); 779 } 780 } 781 782 static void khugepaged_alloc_sleep(void) 783 { 784 DEFINE_WAIT(wait); 785 786 add_wait_queue(&khugepaged_wait, &wait); 787 freezable_schedule_timeout_interruptible( 788 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 789 remove_wait_queue(&khugepaged_wait, &wait); 790 } 791 792 static int khugepaged_node_load[MAX_NUMNODES]; 793 794 static bool khugepaged_scan_abort(int nid) 795 { 796 int i; 797 798 /* 799 * If node_reclaim_mode is disabled, then no extra effort is made to 800 * allocate memory locally. 801 */ 802 if (!node_reclaim_mode) 803 return false; 804 805 /* If there is a count for this node already, it must be acceptable */ 806 if (khugepaged_node_load[nid]) 807 return false; 808 809 for (i = 0; i < MAX_NUMNODES; i++) { 810 if (!khugepaged_node_load[i]) 811 continue; 812 if (node_distance(nid, i) > node_reclaim_distance) 813 return true; 814 } 815 return false; 816 } 817 818 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 819 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 820 { 821 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 822 } 823 824 #ifdef CONFIG_NUMA 825 static int khugepaged_find_target_node(void) 826 { 827 static int last_khugepaged_target_node = NUMA_NO_NODE; 828 int nid, target_node = 0, max_value = 0; 829 830 /* find first node with max normal pages hit */ 831 for (nid = 0; nid < MAX_NUMNODES; nid++) 832 if (khugepaged_node_load[nid] > max_value) { 833 max_value = khugepaged_node_load[nid]; 834 target_node = nid; 835 } 836 837 /* do some balance if several nodes have the same hit record */ 838 if (target_node <= last_khugepaged_target_node) 839 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 840 nid++) 841 if (max_value == khugepaged_node_load[nid]) { 842 target_node = nid; 843 break; 844 } 845 846 last_khugepaged_target_node = target_node; 847 return target_node; 848 } 849 850 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 851 { 852 if (IS_ERR(*hpage)) { 853 if (!*wait) 854 return false; 855 856 *wait = false; 857 *hpage = NULL; 858 khugepaged_alloc_sleep(); 859 } else if (*hpage) { 860 put_page(*hpage); 861 *hpage = NULL; 862 } 863 864 return true; 865 } 866 867 static struct page * 868 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 869 { 870 VM_BUG_ON_PAGE(*hpage, *hpage); 871 872 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 873 if (unlikely(!*hpage)) { 874 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 875 *hpage = ERR_PTR(-ENOMEM); 876 return NULL; 877 } 878 879 prep_transhuge_page(*hpage); 880 count_vm_event(THP_COLLAPSE_ALLOC); 881 return *hpage; 882 } 883 #else 884 static int khugepaged_find_target_node(void) 885 { 886 return 0; 887 } 888 889 static inline struct page *alloc_khugepaged_hugepage(void) 890 { 891 struct page *page; 892 893 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 894 HPAGE_PMD_ORDER); 895 if (page) 896 prep_transhuge_page(page); 897 return page; 898 } 899 900 static struct page *khugepaged_alloc_hugepage(bool *wait) 901 { 902 struct page *hpage; 903 904 do { 905 hpage = alloc_khugepaged_hugepage(); 906 if (!hpage) { 907 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 908 if (!*wait) 909 return NULL; 910 911 *wait = false; 912 khugepaged_alloc_sleep(); 913 } else 914 count_vm_event(THP_COLLAPSE_ALLOC); 915 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 916 917 return hpage; 918 } 919 920 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 921 { 922 /* 923 * If the hpage allocated earlier was briefly exposed in page cache 924 * before collapse_file() failed, it is possible that racing lookups 925 * have not yet completed, and would then be unpleasantly surprised by 926 * finding the hpage reused for the same mapping at a different offset. 927 * Just release the previous allocation if there is any danger of that. 928 */ 929 if (*hpage && page_count(*hpage) > 1) { 930 put_page(*hpage); 931 *hpage = NULL; 932 } 933 934 if (!*hpage) 935 *hpage = khugepaged_alloc_hugepage(wait); 936 937 if (unlikely(!*hpage)) 938 return false; 939 940 return true; 941 } 942 943 static struct page * 944 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 945 { 946 VM_BUG_ON(!*hpage); 947 948 return *hpage; 949 } 950 #endif 951 952 /* 953 * If mmap_lock temporarily dropped, revalidate vma 954 * before taking mmap_lock. 955 * Return 0 if succeeds, otherwise return none-zero 956 * value (scan code). 957 */ 958 959 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 960 struct vm_area_struct **vmap) 961 { 962 struct vm_area_struct *vma; 963 unsigned long hstart, hend; 964 965 if (unlikely(khugepaged_test_exit(mm))) 966 return SCAN_ANY_PROCESS; 967 968 *vmap = vma = find_vma(mm, address); 969 if (!vma) 970 return SCAN_VMA_NULL; 971 972 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 973 hend = vma->vm_end & HPAGE_PMD_MASK; 974 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 975 return SCAN_ADDRESS_RANGE; 976 if (!hugepage_vma_check(vma, vma->vm_flags)) 977 return SCAN_VMA_CHECK; 978 /* Anon VMA expected */ 979 if (!vma->anon_vma || vma->vm_ops) 980 return SCAN_VMA_CHECK; 981 return 0; 982 } 983 984 /* 985 * Bring missing pages in from swap, to complete THP collapse. 986 * Only done if khugepaged_scan_pmd believes it is worthwhile. 987 * 988 * Called and returns without pte mapped or spinlocks held, 989 * but with mmap_lock held to protect against vma changes. 990 */ 991 992 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 993 struct vm_area_struct *vma, 994 unsigned long haddr, pmd_t *pmd, 995 int referenced) 996 { 997 int swapped_in = 0; 998 vm_fault_t ret = 0; 999 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1000 1001 for (address = haddr; address < end; address += PAGE_SIZE) { 1002 struct vm_fault vmf = { 1003 .vma = vma, 1004 .address = address, 1005 .pgoff = linear_page_index(vma, haddr), 1006 .flags = FAULT_FLAG_ALLOW_RETRY, 1007 .pmd = pmd, 1008 }; 1009 1010 vmf.pte = pte_offset_map(pmd, address); 1011 vmf.orig_pte = *vmf.pte; 1012 if (!is_swap_pte(vmf.orig_pte)) { 1013 pte_unmap(vmf.pte); 1014 continue; 1015 } 1016 swapped_in++; 1017 ret = do_swap_page(&vmf); 1018 1019 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ 1020 if (ret & VM_FAULT_RETRY) { 1021 mmap_read_lock(mm); 1022 if (hugepage_vma_revalidate(mm, haddr, &vma)) { 1023 /* vma is no longer available, don't continue to swapin */ 1024 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1025 return false; 1026 } 1027 /* check if the pmd is still valid */ 1028 if (mm_find_pmd(mm, haddr) != pmd) { 1029 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1030 return false; 1031 } 1032 } 1033 if (ret & VM_FAULT_ERROR) { 1034 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1035 return false; 1036 } 1037 } 1038 1039 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1040 if (swapped_in) 1041 lru_add_drain(); 1042 1043 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1044 return true; 1045 } 1046 1047 static void collapse_huge_page(struct mm_struct *mm, 1048 unsigned long address, 1049 struct page **hpage, 1050 int node, int referenced, int unmapped) 1051 { 1052 LIST_HEAD(compound_pagelist); 1053 pmd_t *pmd, _pmd; 1054 pte_t *pte; 1055 pgtable_t pgtable; 1056 struct page *new_page; 1057 spinlock_t *pmd_ptl, *pte_ptl; 1058 int isolated = 0, result = 0; 1059 struct vm_area_struct *vma; 1060 struct mmu_notifier_range range; 1061 gfp_t gfp; 1062 1063 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1064 1065 /* Only allocate from the target node */ 1066 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1067 1068 /* 1069 * Before allocating the hugepage, release the mmap_lock read lock. 1070 * The allocation can take potentially a long time if it involves 1071 * sync compaction, and we do not need to hold the mmap_lock during 1072 * that. We will recheck the vma after taking it again in write mode. 1073 */ 1074 mmap_read_unlock(mm); 1075 new_page = khugepaged_alloc_page(hpage, gfp, node); 1076 if (!new_page) { 1077 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1078 goto out_nolock; 1079 } 1080 1081 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1082 result = SCAN_CGROUP_CHARGE_FAIL; 1083 goto out_nolock; 1084 } 1085 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1086 1087 mmap_read_lock(mm); 1088 result = hugepage_vma_revalidate(mm, address, &vma); 1089 if (result) { 1090 mmap_read_unlock(mm); 1091 goto out_nolock; 1092 } 1093 1094 pmd = mm_find_pmd(mm, address); 1095 if (!pmd) { 1096 result = SCAN_PMD_NULL; 1097 mmap_read_unlock(mm); 1098 goto out_nolock; 1099 } 1100 1101 /* 1102 * __collapse_huge_page_swapin always returns with mmap_lock locked. 1103 * If it fails, we release mmap_lock and jump out_nolock. 1104 * Continuing to collapse causes inconsistency. 1105 */ 1106 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1107 pmd, referenced)) { 1108 mmap_read_unlock(mm); 1109 goto out_nolock; 1110 } 1111 1112 mmap_read_unlock(mm); 1113 /* 1114 * Prevent all access to pagetables with the exception of 1115 * gup_fast later handled by the ptep_clear_flush and the VM 1116 * handled by the anon_vma lock + PG_lock. 1117 */ 1118 mmap_write_lock(mm); 1119 result = hugepage_vma_revalidate(mm, address, &vma); 1120 if (result) 1121 goto out; 1122 /* check if the pmd is still valid */ 1123 if (mm_find_pmd(mm, address) != pmd) 1124 goto out; 1125 1126 anon_vma_lock_write(vma->anon_vma); 1127 1128 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1129 address, address + HPAGE_PMD_SIZE); 1130 mmu_notifier_invalidate_range_start(&range); 1131 1132 pte = pte_offset_map(pmd, address); 1133 pte_ptl = pte_lockptr(mm, pmd); 1134 1135 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1136 /* 1137 * After this gup_fast can't run anymore. This also removes 1138 * any huge TLB entry from the CPU so we won't allow 1139 * huge and small TLB entries for the same virtual address 1140 * to avoid the risk of CPU bugs in that area. 1141 */ 1142 _pmd = pmdp_collapse_flush(vma, address, pmd); 1143 spin_unlock(pmd_ptl); 1144 mmu_notifier_invalidate_range_end(&range); 1145 1146 spin_lock(pte_ptl); 1147 isolated = __collapse_huge_page_isolate(vma, address, pte, 1148 &compound_pagelist); 1149 spin_unlock(pte_ptl); 1150 1151 if (unlikely(!isolated)) { 1152 pte_unmap(pte); 1153 spin_lock(pmd_ptl); 1154 BUG_ON(!pmd_none(*pmd)); 1155 /* 1156 * We can only use set_pmd_at when establishing 1157 * hugepmds and never for establishing regular pmds that 1158 * points to regular pagetables. Use pmd_populate for that 1159 */ 1160 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1161 spin_unlock(pmd_ptl); 1162 anon_vma_unlock_write(vma->anon_vma); 1163 result = SCAN_FAIL; 1164 goto out; 1165 } 1166 1167 /* 1168 * All pages are isolated and locked so anon_vma rmap 1169 * can't run anymore. 1170 */ 1171 anon_vma_unlock_write(vma->anon_vma); 1172 1173 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1174 &compound_pagelist); 1175 pte_unmap(pte); 1176 __SetPageUptodate(new_page); 1177 pgtable = pmd_pgtable(_pmd); 1178 1179 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1180 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1181 1182 /* 1183 * spin_lock() below is not the equivalent of smp_wmb(), so 1184 * this is needed to avoid the copy_huge_page writes to become 1185 * visible after the set_pmd_at() write. 1186 */ 1187 smp_wmb(); 1188 1189 spin_lock(pmd_ptl); 1190 BUG_ON(!pmd_none(*pmd)); 1191 page_add_new_anon_rmap(new_page, vma, address, true); 1192 lru_cache_add_inactive_or_unevictable(new_page, vma); 1193 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1194 set_pmd_at(mm, address, pmd, _pmd); 1195 update_mmu_cache_pmd(vma, address, pmd); 1196 spin_unlock(pmd_ptl); 1197 1198 *hpage = NULL; 1199 1200 khugepaged_pages_collapsed++; 1201 result = SCAN_SUCCEED; 1202 out_up_write: 1203 mmap_write_unlock(mm); 1204 out_nolock: 1205 if (!IS_ERR_OR_NULL(*hpage)) 1206 mem_cgroup_uncharge(*hpage); 1207 trace_mm_collapse_huge_page(mm, isolated, result); 1208 return; 1209 out: 1210 goto out_up_write; 1211 } 1212 1213 static int khugepaged_scan_pmd(struct mm_struct *mm, 1214 struct vm_area_struct *vma, 1215 unsigned long address, 1216 struct page **hpage) 1217 { 1218 pmd_t *pmd; 1219 pte_t *pte, *_pte; 1220 int ret = 0, result = 0, referenced = 0; 1221 int none_or_zero = 0, shared = 0; 1222 struct page *page = NULL; 1223 unsigned long _address; 1224 spinlock_t *ptl; 1225 int node = NUMA_NO_NODE, unmapped = 0; 1226 bool writable = false; 1227 1228 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1229 1230 pmd = mm_find_pmd(mm, address); 1231 if (!pmd) { 1232 result = SCAN_PMD_NULL; 1233 goto out; 1234 } 1235 1236 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1237 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1238 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1239 _pte++, _address += PAGE_SIZE) { 1240 pte_t pteval = *_pte; 1241 if (is_swap_pte(pteval)) { 1242 if (++unmapped <= khugepaged_max_ptes_swap) { 1243 /* 1244 * Always be strict with uffd-wp 1245 * enabled swap entries. Please see 1246 * comment below for pte_uffd_wp(). 1247 */ 1248 if (pte_swp_uffd_wp(pteval)) { 1249 result = SCAN_PTE_UFFD_WP; 1250 goto out_unmap; 1251 } 1252 continue; 1253 } else { 1254 result = SCAN_EXCEED_SWAP_PTE; 1255 goto out_unmap; 1256 } 1257 } 1258 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1259 if (!userfaultfd_armed(vma) && 1260 ++none_or_zero <= khugepaged_max_ptes_none) { 1261 continue; 1262 } else { 1263 result = SCAN_EXCEED_NONE_PTE; 1264 goto out_unmap; 1265 } 1266 } 1267 if (!pte_present(pteval)) { 1268 result = SCAN_PTE_NON_PRESENT; 1269 goto out_unmap; 1270 } 1271 if (pte_uffd_wp(pteval)) { 1272 /* 1273 * Don't collapse the page if any of the small 1274 * PTEs are armed with uffd write protection. 1275 * Here we can also mark the new huge pmd as 1276 * write protected if any of the small ones is 1277 * marked but that could bring unknown 1278 * userfault messages that falls outside of 1279 * the registered range. So, just be simple. 1280 */ 1281 result = SCAN_PTE_UFFD_WP; 1282 goto out_unmap; 1283 } 1284 if (pte_write(pteval)) 1285 writable = true; 1286 1287 page = vm_normal_page(vma, _address, pteval); 1288 if (unlikely(!page)) { 1289 result = SCAN_PAGE_NULL; 1290 goto out_unmap; 1291 } 1292 1293 if (page_mapcount(page) > 1 && 1294 ++shared > khugepaged_max_ptes_shared) { 1295 result = SCAN_EXCEED_SHARED_PTE; 1296 goto out_unmap; 1297 } 1298 1299 page = compound_head(page); 1300 1301 /* 1302 * Record which node the original page is from and save this 1303 * information to khugepaged_node_load[]. 1304 * Khupaged will allocate hugepage from the node has the max 1305 * hit record. 1306 */ 1307 node = page_to_nid(page); 1308 if (khugepaged_scan_abort(node)) { 1309 result = SCAN_SCAN_ABORT; 1310 goto out_unmap; 1311 } 1312 khugepaged_node_load[node]++; 1313 if (!PageLRU(page)) { 1314 result = SCAN_PAGE_LRU; 1315 goto out_unmap; 1316 } 1317 if (PageLocked(page)) { 1318 result = SCAN_PAGE_LOCK; 1319 goto out_unmap; 1320 } 1321 if (!PageAnon(page)) { 1322 result = SCAN_PAGE_ANON; 1323 goto out_unmap; 1324 } 1325 1326 /* 1327 * Check if the page has any GUP (or other external) pins. 1328 * 1329 * Here the check is racy it may see totmal_mapcount > refcount 1330 * in some cases. 1331 * For example, one process with one forked child process. 1332 * The parent has the PMD split due to MADV_DONTNEED, then 1333 * the child is trying unmap the whole PMD, but khugepaged 1334 * may be scanning the parent between the child has 1335 * PageDoubleMap flag cleared and dec the mapcount. So 1336 * khugepaged may see total_mapcount > refcount. 1337 * 1338 * But such case is ephemeral we could always retry collapse 1339 * later. However it may report false positive if the page 1340 * has excessive GUP pins (i.e. 512). Anyway the same check 1341 * will be done again later the risk seems low. 1342 */ 1343 if (!is_refcount_suitable(page)) { 1344 result = SCAN_PAGE_COUNT; 1345 goto out_unmap; 1346 } 1347 if (pte_young(pteval) || 1348 page_is_young(page) || PageReferenced(page) || 1349 mmu_notifier_test_young(vma->vm_mm, address)) 1350 referenced++; 1351 } 1352 if (!writable) { 1353 result = SCAN_PAGE_RO; 1354 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1355 result = SCAN_LACK_REFERENCED_PAGE; 1356 } else { 1357 result = SCAN_SUCCEED; 1358 ret = 1; 1359 } 1360 out_unmap: 1361 pte_unmap_unlock(pte, ptl); 1362 if (ret) { 1363 node = khugepaged_find_target_node(); 1364 /* collapse_huge_page will return with the mmap_lock released */ 1365 collapse_huge_page(mm, address, hpage, node, 1366 referenced, unmapped); 1367 } 1368 out: 1369 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1370 none_or_zero, result, unmapped); 1371 return ret; 1372 } 1373 1374 static void collect_mm_slot(struct mm_slot *mm_slot) 1375 { 1376 struct mm_struct *mm = mm_slot->mm; 1377 1378 lockdep_assert_held(&khugepaged_mm_lock); 1379 1380 if (khugepaged_test_exit(mm)) { 1381 /* free mm_slot */ 1382 hash_del(&mm_slot->hash); 1383 list_del(&mm_slot->mm_node); 1384 1385 /* 1386 * Not strictly needed because the mm exited already. 1387 * 1388 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1389 */ 1390 1391 /* khugepaged_mm_lock actually not necessary for the below */ 1392 free_mm_slot(mm_slot); 1393 mmdrop(mm); 1394 } 1395 } 1396 1397 #ifdef CONFIG_SHMEM 1398 /* 1399 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1400 * khugepaged should try to collapse the page table. 1401 */ 1402 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1403 unsigned long addr) 1404 { 1405 struct mm_slot *mm_slot; 1406 1407 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1408 1409 spin_lock(&khugepaged_mm_lock); 1410 mm_slot = get_mm_slot(mm); 1411 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1412 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1413 spin_unlock(&khugepaged_mm_lock); 1414 return 0; 1415 } 1416 1417 /** 1418 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1419 * address haddr. 1420 * 1421 * @mm: process address space where collapse happens 1422 * @addr: THP collapse address 1423 * 1424 * This function checks whether all the PTEs in the PMD are pointing to the 1425 * right THP. If so, retract the page table so the THP can refault in with 1426 * as pmd-mapped. 1427 */ 1428 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1429 { 1430 unsigned long haddr = addr & HPAGE_PMD_MASK; 1431 struct vm_area_struct *vma = find_vma(mm, haddr); 1432 struct page *hpage; 1433 pte_t *start_pte, *pte; 1434 pmd_t *pmd, _pmd; 1435 spinlock_t *ptl; 1436 int count = 0; 1437 int i; 1438 1439 if (!vma || !vma->vm_file || 1440 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE) 1441 return; 1442 1443 /* 1444 * This vm_flags may not have VM_HUGEPAGE if the page was not 1445 * collapsed by this mm. But we can still collapse if the page is 1446 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1447 * will not fail the vma for missing VM_HUGEPAGE 1448 */ 1449 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) 1450 return; 1451 1452 hpage = find_lock_page(vma->vm_file->f_mapping, 1453 linear_page_index(vma, haddr)); 1454 if (!hpage) 1455 return; 1456 1457 if (!PageHead(hpage)) 1458 goto drop_hpage; 1459 1460 pmd = mm_find_pmd(mm, haddr); 1461 if (!pmd) 1462 goto drop_hpage; 1463 1464 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1465 1466 /* step 1: check all mapped PTEs are to the right huge page */ 1467 for (i = 0, addr = haddr, pte = start_pte; 1468 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1469 struct page *page; 1470 1471 /* empty pte, skip */ 1472 if (pte_none(*pte)) 1473 continue; 1474 1475 /* page swapped out, abort */ 1476 if (!pte_present(*pte)) 1477 goto abort; 1478 1479 page = vm_normal_page(vma, addr, *pte); 1480 1481 /* 1482 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1483 * page table, but the new page will not be a subpage of hpage. 1484 */ 1485 if (hpage + i != page) 1486 goto abort; 1487 count++; 1488 } 1489 1490 /* step 2: adjust rmap */ 1491 for (i = 0, addr = haddr, pte = start_pte; 1492 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1493 struct page *page; 1494 1495 if (pte_none(*pte)) 1496 continue; 1497 page = vm_normal_page(vma, addr, *pte); 1498 page_remove_rmap(page, false); 1499 } 1500 1501 pte_unmap_unlock(start_pte, ptl); 1502 1503 /* step 3: set proper refcount and mm_counters. */ 1504 if (count) { 1505 page_ref_sub(hpage, count); 1506 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1507 } 1508 1509 /* step 4: collapse pmd */ 1510 ptl = pmd_lock(vma->vm_mm, pmd); 1511 _pmd = pmdp_collapse_flush(vma, haddr, pmd); 1512 spin_unlock(ptl); 1513 mm_dec_nr_ptes(mm); 1514 pte_free(mm, pmd_pgtable(_pmd)); 1515 1516 drop_hpage: 1517 unlock_page(hpage); 1518 put_page(hpage); 1519 return; 1520 1521 abort: 1522 pte_unmap_unlock(start_pte, ptl); 1523 goto drop_hpage; 1524 } 1525 1526 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1527 { 1528 struct mm_struct *mm = mm_slot->mm; 1529 int i; 1530 1531 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1532 return 0; 1533 1534 if (!mmap_write_trylock(mm)) 1535 return -EBUSY; 1536 1537 if (unlikely(khugepaged_test_exit(mm))) 1538 goto out; 1539 1540 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1541 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1542 1543 out: 1544 mm_slot->nr_pte_mapped_thp = 0; 1545 mmap_write_unlock(mm); 1546 return 0; 1547 } 1548 1549 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1550 { 1551 struct vm_area_struct *vma; 1552 struct mm_struct *mm; 1553 unsigned long addr; 1554 pmd_t *pmd, _pmd; 1555 1556 i_mmap_lock_write(mapping); 1557 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1558 /* 1559 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1560 * got written to. These VMAs are likely not worth investing 1561 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1562 * later. 1563 * 1564 * Not that vma->anon_vma check is racy: it can be set up after 1565 * the check but before we took mmap_lock by the fault path. 1566 * But page lock would prevent establishing any new ptes of the 1567 * page, so we are safe. 1568 * 1569 * An alternative would be drop the check, but check that page 1570 * table is clear before calling pmdp_collapse_flush() under 1571 * ptl. It has higher chance to recover THP for the VMA, but 1572 * has higher cost too. 1573 */ 1574 if (vma->anon_vma) 1575 continue; 1576 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1577 if (addr & ~HPAGE_PMD_MASK) 1578 continue; 1579 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1580 continue; 1581 mm = vma->vm_mm; 1582 pmd = mm_find_pmd(mm, addr); 1583 if (!pmd) 1584 continue; 1585 /* 1586 * We need exclusive mmap_lock to retract page table. 1587 * 1588 * We use trylock due to lock inversion: we need to acquire 1589 * mmap_lock while holding page lock. Fault path does it in 1590 * reverse order. Trylock is a way to avoid deadlock. 1591 */ 1592 if (mmap_write_trylock(mm)) { 1593 if (!khugepaged_test_exit(mm)) { 1594 spinlock_t *ptl = pmd_lock(mm, pmd); 1595 /* assume page table is clear */ 1596 _pmd = pmdp_collapse_flush(vma, addr, pmd); 1597 spin_unlock(ptl); 1598 mm_dec_nr_ptes(mm); 1599 pte_free(mm, pmd_pgtable(_pmd)); 1600 } 1601 mmap_write_unlock(mm); 1602 } else { 1603 /* Try again later */ 1604 khugepaged_add_pte_mapped_thp(mm, addr); 1605 } 1606 } 1607 i_mmap_unlock_write(mapping); 1608 } 1609 1610 /** 1611 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1612 * 1613 * @mm: process address space where collapse happens 1614 * @file: file that collapse on 1615 * @start: collapse start address 1616 * @hpage: new allocated huge page for collapse 1617 * @node: appointed node the new huge page allocate from 1618 * 1619 * Basic scheme is simple, details are more complex: 1620 * - allocate and lock a new huge page; 1621 * - scan page cache replacing old pages with the new one 1622 * + swap/gup in pages if necessary; 1623 * + fill in gaps; 1624 * + keep old pages around in case rollback is required; 1625 * - if replacing succeeds: 1626 * + copy data over; 1627 * + free old pages; 1628 * + unlock huge page; 1629 * - if replacing failed; 1630 * + put all pages back and unfreeze them; 1631 * + restore gaps in the page cache; 1632 * + unlock and free huge page; 1633 */ 1634 static void collapse_file(struct mm_struct *mm, 1635 struct file *file, pgoff_t start, 1636 struct page **hpage, int node) 1637 { 1638 struct address_space *mapping = file->f_mapping; 1639 gfp_t gfp; 1640 struct page *new_page; 1641 pgoff_t index, end = start + HPAGE_PMD_NR; 1642 LIST_HEAD(pagelist); 1643 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1644 int nr_none = 0, result = SCAN_SUCCEED; 1645 bool is_shmem = shmem_file(file); 1646 1647 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1648 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1649 1650 /* Only allocate from the target node */ 1651 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1652 1653 new_page = khugepaged_alloc_page(hpage, gfp, node); 1654 if (!new_page) { 1655 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1656 goto out; 1657 } 1658 1659 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) { 1660 result = SCAN_CGROUP_CHARGE_FAIL; 1661 goto out; 1662 } 1663 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1664 1665 /* This will be less messy when we use multi-index entries */ 1666 do { 1667 xas_lock_irq(&xas); 1668 xas_create_range(&xas); 1669 if (!xas_error(&xas)) 1670 break; 1671 xas_unlock_irq(&xas); 1672 if (!xas_nomem(&xas, GFP_KERNEL)) { 1673 result = SCAN_FAIL; 1674 goto out; 1675 } 1676 } while (1); 1677 1678 __SetPageLocked(new_page); 1679 if (is_shmem) 1680 __SetPageSwapBacked(new_page); 1681 new_page->index = start; 1682 new_page->mapping = mapping; 1683 1684 /* 1685 * At this point the new_page is locked and not up-to-date. 1686 * It's safe to insert it into the page cache, because nobody would 1687 * be able to map it or use it in another way until we unlock it. 1688 */ 1689 1690 xas_set(&xas, start); 1691 for (index = start; index < end; index++) { 1692 struct page *page = xas_next(&xas); 1693 1694 VM_BUG_ON(index != xas.xa_index); 1695 if (is_shmem) { 1696 if (!page) { 1697 /* 1698 * Stop if extent has been truncated or 1699 * hole-punched, and is now completely 1700 * empty. 1701 */ 1702 if (index == start) { 1703 if (!xas_next_entry(&xas, end - 1)) { 1704 result = SCAN_TRUNCATED; 1705 goto xa_locked; 1706 } 1707 xas_set(&xas, index); 1708 } 1709 if (!shmem_charge(mapping->host, 1)) { 1710 result = SCAN_FAIL; 1711 goto xa_locked; 1712 } 1713 xas_store(&xas, new_page); 1714 nr_none++; 1715 continue; 1716 } 1717 1718 if (xa_is_value(page) || !PageUptodate(page)) { 1719 xas_unlock_irq(&xas); 1720 /* swap in or instantiate fallocated page */ 1721 if (shmem_getpage(mapping->host, index, &page, 1722 SGP_NOHUGE)) { 1723 result = SCAN_FAIL; 1724 goto xa_unlocked; 1725 } 1726 } else if (trylock_page(page)) { 1727 get_page(page); 1728 xas_unlock_irq(&xas); 1729 } else { 1730 result = SCAN_PAGE_LOCK; 1731 goto xa_locked; 1732 } 1733 } else { /* !is_shmem */ 1734 if (!page || xa_is_value(page)) { 1735 xas_unlock_irq(&xas); 1736 page_cache_sync_readahead(mapping, &file->f_ra, 1737 file, index, 1738 end - index); 1739 /* drain pagevecs to help isolate_lru_page() */ 1740 lru_add_drain(); 1741 page = find_lock_page(mapping, index); 1742 if (unlikely(page == NULL)) { 1743 result = SCAN_FAIL; 1744 goto xa_unlocked; 1745 } 1746 } else if (PageDirty(page)) { 1747 /* 1748 * khugepaged only works on read-only fd, 1749 * so this page is dirty because it hasn't 1750 * been flushed since first write. There 1751 * won't be new dirty pages. 1752 * 1753 * Trigger async flush here and hope the 1754 * writeback is done when khugepaged 1755 * revisits this page. 1756 * 1757 * This is a one-off situation. We are not 1758 * forcing writeback in loop. 1759 */ 1760 xas_unlock_irq(&xas); 1761 filemap_flush(mapping); 1762 result = SCAN_FAIL; 1763 goto xa_unlocked; 1764 } else if (trylock_page(page)) { 1765 get_page(page); 1766 xas_unlock_irq(&xas); 1767 } else { 1768 result = SCAN_PAGE_LOCK; 1769 goto xa_locked; 1770 } 1771 } 1772 1773 /* 1774 * The page must be locked, so we can drop the i_pages lock 1775 * without racing with truncate. 1776 */ 1777 VM_BUG_ON_PAGE(!PageLocked(page), page); 1778 1779 /* make sure the page is up to date */ 1780 if (unlikely(!PageUptodate(page))) { 1781 result = SCAN_FAIL; 1782 goto out_unlock; 1783 } 1784 1785 /* 1786 * If file was truncated then extended, or hole-punched, before 1787 * we locked the first page, then a THP might be there already. 1788 */ 1789 if (PageTransCompound(page)) { 1790 result = SCAN_PAGE_COMPOUND; 1791 goto out_unlock; 1792 } 1793 1794 if (page_mapping(page) != mapping) { 1795 result = SCAN_TRUNCATED; 1796 goto out_unlock; 1797 } 1798 1799 if (!is_shmem && PageDirty(page)) { 1800 /* 1801 * khugepaged only works on read-only fd, so this 1802 * page is dirty because it hasn't been flushed 1803 * since first write. 1804 */ 1805 result = SCAN_FAIL; 1806 goto out_unlock; 1807 } 1808 1809 if (isolate_lru_page(page)) { 1810 result = SCAN_DEL_PAGE_LRU; 1811 goto out_unlock; 1812 } 1813 1814 if (page_has_private(page) && 1815 !try_to_release_page(page, GFP_KERNEL)) { 1816 result = SCAN_PAGE_HAS_PRIVATE; 1817 putback_lru_page(page); 1818 goto out_unlock; 1819 } 1820 1821 if (page_mapped(page)) 1822 unmap_mapping_pages(mapping, index, 1, false); 1823 1824 xas_lock_irq(&xas); 1825 xas_set(&xas, index); 1826 1827 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1828 VM_BUG_ON_PAGE(page_mapped(page), page); 1829 1830 /* 1831 * The page is expected to have page_count() == 3: 1832 * - we hold a pin on it; 1833 * - one reference from page cache; 1834 * - one from isolate_lru_page; 1835 */ 1836 if (!page_ref_freeze(page, 3)) { 1837 result = SCAN_PAGE_COUNT; 1838 xas_unlock_irq(&xas); 1839 putback_lru_page(page); 1840 goto out_unlock; 1841 } 1842 1843 /* 1844 * Add the page to the list to be able to undo the collapse if 1845 * something go wrong. 1846 */ 1847 list_add_tail(&page->lru, &pagelist); 1848 1849 /* Finally, replace with the new page. */ 1850 xas_store(&xas, new_page); 1851 continue; 1852 out_unlock: 1853 unlock_page(page); 1854 put_page(page); 1855 goto xa_unlocked; 1856 } 1857 1858 if (is_shmem) 1859 __inc_lruvec_page_state(new_page, NR_SHMEM_THPS); 1860 else { 1861 __inc_lruvec_page_state(new_page, NR_FILE_THPS); 1862 filemap_nr_thps_inc(mapping); 1863 } 1864 1865 if (nr_none) { 1866 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1867 if (is_shmem) 1868 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1869 } 1870 1871 xa_locked: 1872 xas_unlock_irq(&xas); 1873 xa_unlocked: 1874 1875 if (result == SCAN_SUCCEED) { 1876 struct page *page, *tmp; 1877 1878 /* 1879 * Replacing old pages with new one has succeeded, now we 1880 * need to copy the content and free the old pages. 1881 */ 1882 index = start; 1883 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1884 while (index < page->index) { 1885 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1886 index++; 1887 } 1888 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1889 page); 1890 list_del(&page->lru); 1891 page->mapping = NULL; 1892 page_ref_unfreeze(page, 1); 1893 ClearPageActive(page); 1894 ClearPageUnevictable(page); 1895 unlock_page(page); 1896 put_page(page); 1897 index++; 1898 } 1899 while (index < end) { 1900 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1901 index++; 1902 } 1903 1904 SetPageUptodate(new_page); 1905 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1906 if (is_shmem) 1907 set_page_dirty(new_page); 1908 lru_cache_add(new_page); 1909 1910 /* 1911 * Remove pte page tables, so we can re-fault the page as huge. 1912 */ 1913 retract_page_tables(mapping, start); 1914 *hpage = NULL; 1915 1916 khugepaged_pages_collapsed++; 1917 } else { 1918 struct page *page; 1919 1920 /* Something went wrong: roll back page cache changes */ 1921 xas_lock_irq(&xas); 1922 mapping->nrpages -= nr_none; 1923 1924 if (is_shmem) 1925 shmem_uncharge(mapping->host, nr_none); 1926 1927 xas_set(&xas, start); 1928 xas_for_each(&xas, page, end - 1) { 1929 page = list_first_entry_or_null(&pagelist, 1930 struct page, lru); 1931 if (!page || xas.xa_index < page->index) { 1932 if (!nr_none) 1933 break; 1934 nr_none--; 1935 /* Put holes back where they were */ 1936 xas_store(&xas, NULL); 1937 continue; 1938 } 1939 1940 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1941 1942 /* Unfreeze the page. */ 1943 list_del(&page->lru); 1944 page_ref_unfreeze(page, 2); 1945 xas_store(&xas, page); 1946 xas_pause(&xas); 1947 xas_unlock_irq(&xas); 1948 unlock_page(page); 1949 putback_lru_page(page); 1950 xas_lock_irq(&xas); 1951 } 1952 VM_BUG_ON(nr_none); 1953 xas_unlock_irq(&xas); 1954 1955 new_page->mapping = NULL; 1956 } 1957 1958 unlock_page(new_page); 1959 out: 1960 VM_BUG_ON(!list_empty(&pagelist)); 1961 if (!IS_ERR_OR_NULL(*hpage)) 1962 mem_cgroup_uncharge(*hpage); 1963 /* TODO: tracepoints */ 1964 } 1965 1966 static void khugepaged_scan_file(struct mm_struct *mm, 1967 struct file *file, pgoff_t start, struct page **hpage) 1968 { 1969 struct page *page = NULL; 1970 struct address_space *mapping = file->f_mapping; 1971 XA_STATE(xas, &mapping->i_pages, start); 1972 int present, swap; 1973 int node = NUMA_NO_NODE; 1974 int result = SCAN_SUCCEED; 1975 1976 present = 0; 1977 swap = 0; 1978 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1979 rcu_read_lock(); 1980 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 1981 if (xas_retry(&xas, page)) 1982 continue; 1983 1984 if (xa_is_value(page)) { 1985 if (++swap > khugepaged_max_ptes_swap) { 1986 result = SCAN_EXCEED_SWAP_PTE; 1987 break; 1988 } 1989 continue; 1990 } 1991 1992 if (PageTransCompound(page)) { 1993 result = SCAN_PAGE_COMPOUND; 1994 break; 1995 } 1996 1997 node = page_to_nid(page); 1998 if (khugepaged_scan_abort(node)) { 1999 result = SCAN_SCAN_ABORT; 2000 break; 2001 } 2002 khugepaged_node_load[node]++; 2003 2004 if (!PageLRU(page)) { 2005 result = SCAN_PAGE_LRU; 2006 break; 2007 } 2008 2009 if (page_count(page) != 2010 1 + page_mapcount(page) + page_has_private(page)) { 2011 result = SCAN_PAGE_COUNT; 2012 break; 2013 } 2014 2015 /* 2016 * We probably should check if the page is referenced here, but 2017 * nobody would transfer pte_young() to PageReferenced() for us. 2018 * And rmap walk here is just too costly... 2019 */ 2020 2021 present++; 2022 2023 if (need_resched()) { 2024 xas_pause(&xas); 2025 cond_resched_rcu(); 2026 } 2027 } 2028 rcu_read_unlock(); 2029 2030 if (result == SCAN_SUCCEED) { 2031 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2032 result = SCAN_EXCEED_NONE_PTE; 2033 } else { 2034 node = khugepaged_find_target_node(); 2035 collapse_file(mm, file, start, hpage, node); 2036 } 2037 } 2038 2039 /* TODO: tracepoints */ 2040 } 2041 #else 2042 static void khugepaged_scan_file(struct mm_struct *mm, 2043 struct file *file, pgoff_t start, struct page **hpage) 2044 { 2045 BUILD_BUG(); 2046 } 2047 2048 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2049 { 2050 return 0; 2051 } 2052 #endif 2053 2054 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2055 struct page **hpage) 2056 __releases(&khugepaged_mm_lock) 2057 __acquires(&khugepaged_mm_lock) 2058 { 2059 struct mm_slot *mm_slot; 2060 struct mm_struct *mm; 2061 struct vm_area_struct *vma; 2062 int progress = 0; 2063 2064 VM_BUG_ON(!pages); 2065 lockdep_assert_held(&khugepaged_mm_lock); 2066 2067 if (khugepaged_scan.mm_slot) 2068 mm_slot = khugepaged_scan.mm_slot; 2069 else { 2070 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2071 struct mm_slot, mm_node); 2072 khugepaged_scan.address = 0; 2073 khugepaged_scan.mm_slot = mm_slot; 2074 } 2075 spin_unlock(&khugepaged_mm_lock); 2076 khugepaged_collapse_pte_mapped_thps(mm_slot); 2077 2078 mm = mm_slot->mm; 2079 /* 2080 * Don't wait for semaphore (to avoid long wait times). Just move to 2081 * the next mm on the list. 2082 */ 2083 vma = NULL; 2084 if (unlikely(!mmap_read_trylock(mm))) 2085 goto breakouterloop_mmap_lock; 2086 if (likely(!khugepaged_test_exit(mm))) 2087 vma = find_vma(mm, khugepaged_scan.address); 2088 2089 progress++; 2090 for (; vma; vma = vma->vm_next) { 2091 unsigned long hstart, hend; 2092 2093 cond_resched(); 2094 if (unlikely(khugepaged_test_exit(mm))) { 2095 progress++; 2096 break; 2097 } 2098 if (!hugepage_vma_check(vma, vma->vm_flags)) { 2099 skip: 2100 progress++; 2101 continue; 2102 } 2103 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2104 hend = vma->vm_end & HPAGE_PMD_MASK; 2105 if (hstart >= hend) 2106 goto skip; 2107 if (khugepaged_scan.address > hend) 2108 goto skip; 2109 if (khugepaged_scan.address < hstart) 2110 khugepaged_scan.address = hstart; 2111 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2112 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) 2113 goto skip; 2114 2115 while (khugepaged_scan.address < hend) { 2116 int ret; 2117 cond_resched(); 2118 if (unlikely(khugepaged_test_exit(mm))) 2119 goto breakouterloop; 2120 2121 VM_BUG_ON(khugepaged_scan.address < hstart || 2122 khugepaged_scan.address + HPAGE_PMD_SIZE > 2123 hend); 2124 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2125 struct file *file = get_file(vma->vm_file); 2126 pgoff_t pgoff = linear_page_index(vma, 2127 khugepaged_scan.address); 2128 2129 mmap_read_unlock(mm); 2130 ret = 1; 2131 khugepaged_scan_file(mm, file, pgoff, hpage); 2132 fput(file); 2133 } else { 2134 ret = khugepaged_scan_pmd(mm, vma, 2135 khugepaged_scan.address, 2136 hpage); 2137 } 2138 /* move to next address */ 2139 khugepaged_scan.address += HPAGE_PMD_SIZE; 2140 progress += HPAGE_PMD_NR; 2141 if (ret) 2142 /* we released mmap_lock so break loop */ 2143 goto breakouterloop_mmap_lock; 2144 if (progress >= pages) 2145 goto breakouterloop; 2146 } 2147 } 2148 breakouterloop: 2149 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2150 breakouterloop_mmap_lock: 2151 2152 spin_lock(&khugepaged_mm_lock); 2153 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2154 /* 2155 * Release the current mm_slot if this mm is about to die, or 2156 * if we scanned all vmas of this mm. 2157 */ 2158 if (khugepaged_test_exit(mm) || !vma) { 2159 /* 2160 * Make sure that if mm_users is reaching zero while 2161 * khugepaged runs here, khugepaged_exit will find 2162 * mm_slot not pointing to the exiting mm. 2163 */ 2164 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2165 khugepaged_scan.mm_slot = list_entry( 2166 mm_slot->mm_node.next, 2167 struct mm_slot, mm_node); 2168 khugepaged_scan.address = 0; 2169 } else { 2170 khugepaged_scan.mm_slot = NULL; 2171 khugepaged_full_scans++; 2172 } 2173 2174 collect_mm_slot(mm_slot); 2175 } 2176 2177 return progress; 2178 } 2179 2180 static int khugepaged_has_work(void) 2181 { 2182 return !list_empty(&khugepaged_scan.mm_head) && 2183 khugepaged_enabled(); 2184 } 2185 2186 static int khugepaged_wait_event(void) 2187 { 2188 return !list_empty(&khugepaged_scan.mm_head) || 2189 kthread_should_stop(); 2190 } 2191 2192 static void khugepaged_do_scan(void) 2193 { 2194 struct page *hpage = NULL; 2195 unsigned int progress = 0, pass_through_head = 0; 2196 unsigned int pages = khugepaged_pages_to_scan; 2197 bool wait = true; 2198 2199 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2200 2201 lru_add_drain_all(); 2202 2203 while (progress < pages) { 2204 if (!khugepaged_prealloc_page(&hpage, &wait)) 2205 break; 2206 2207 cond_resched(); 2208 2209 if (unlikely(kthread_should_stop() || try_to_freeze())) 2210 break; 2211 2212 spin_lock(&khugepaged_mm_lock); 2213 if (!khugepaged_scan.mm_slot) 2214 pass_through_head++; 2215 if (khugepaged_has_work() && 2216 pass_through_head < 2) 2217 progress += khugepaged_scan_mm_slot(pages - progress, 2218 &hpage); 2219 else 2220 progress = pages; 2221 spin_unlock(&khugepaged_mm_lock); 2222 } 2223 2224 if (!IS_ERR_OR_NULL(hpage)) 2225 put_page(hpage); 2226 } 2227 2228 static bool khugepaged_should_wakeup(void) 2229 { 2230 return kthread_should_stop() || 2231 time_after_eq(jiffies, khugepaged_sleep_expire); 2232 } 2233 2234 static void khugepaged_wait_work(void) 2235 { 2236 if (khugepaged_has_work()) { 2237 const unsigned long scan_sleep_jiffies = 2238 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2239 2240 if (!scan_sleep_jiffies) 2241 return; 2242 2243 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2244 wait_event_freezable_timeout(khugepaged_wait, 2245 khugepaged_should_wakeup(), 2246 scan_sleep_jiffies); 2247 return; 2248 } 2249 2250 if (khugepaged_enabled()) 2251 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2252 } 2253 2254 static int khugepaged(void *none) 2255 { 2256 struct mm_slot *mm_slot; 2257 2258 set_freezable(); 2259 set_user_nice(current, MAX_NICE); 2260 2261 while (!kthread_should_stop()) { 2262 khugepaged_do_scan(); 2263 khugepaged_wait_work(); 2264 } 2265 2266 spin_lock(&khugepaged_mm_lock); 2267 mm_slot = khugepaged_scan.mm_slot; 2268 khugepaged_scan.mm_slot = NULL; 2269 if (mm_slot) 2270 collect_mm_slot(mm_slot); 2271 spin_unlock(&khugepaged_mm_lock); 2272 return 0; 2273 } 2274 2275 static void set_recommended_min_free_kbytes(void) 2276 { 2277 struct zone *zone; 2278 int nr_zones = 0; 2279 unsigned long recommended_min; 2280 2281 for_each_populated_zone(zone) { 2282 /* 2283 * We don't need to worry about fragmentation of 2284 * ZONE_MOVABLE since it only has movable pages. 2285 */ 2286 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2287 continue; 2288 2289 nr_zones++; 2290 } 2291 2292 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2293 recommended_min = pageblock_nr_pages * nr_zones * 2; 2294 2295 /* 2296 * Make sure that on average at least two pageblocks are almost free 2297 * of another type, one for a migratetype to fall back to and a 2298 * second to avoid subsequent fallbacks of other types There are 3 2299 * MIGRATE_TYPES we care about. 2300 */ 2301 recommended_min += pageblock_nr_pages * nr_zones * 2302 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2303 2304 /* don't ever allow to reserve more than 5% of the lowmem */ 2305 recommended_min = min(recommended_min, 2306 (unsigned long) nr_free_buffer_pages() / 20); 2307 recommended_min <<= (PAGE_SHIFT-10); 2308 2309 if (recommended_min > min_free_kbytes) { 2310 if (user_min_free_kbytes >= 0) 2311 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2312 min_free_kbytes, recommended_min); 2313 2314 min_free_kbytes = recommended_min; 2315 } 2316 setup_per_zone_wmarks(); 2317 } 2318 2319 int start_stop_khugepaged(void) 2320 { 2321 int err = 0; 2322 2323 mutex_lock(&khugepaged_mutex); 2324 if (khugepaged_enabled()) { 2325 if (!khugepaged_thread) 2326 khugepaged_thread = kthread_run(khugepaged, NULL, 2327 "khugepaged"); 2328 if (IS_ERR(khugepaged_thread)) { 2329 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2330 err = PTR_ERR(khugepaged_thread); 2331 khugepaged_thread = NULL; 2332 goto fail; 2333 } 2334 2335 if (!list_empty(&khugepaged_scan.mm_head)) 2336 wake_up_interruptible(&khugepaged_wait); 2337 2338 set_recommended_min_free_kbytes(); 2339 } else if (khugepaged_thread) { 2340 kthread_stop(khugepaged_thread); 2341 khugepaged_thread = NULL; 2342 } 2343 fail: 2344 mutex_unlock(&khugepaged_mutex); 2345 return err; 2346 } 2347 2348 void khugepaged_min_free_kbytes_update(void) 2349 { 2350 mutex_lock(&khugepaged_mutex); 2351 if (khugepaged_enabled() && khugepaged_thread) 2352 set_recommended_min_free_kbytes(); 2353 mutex_unlock(&khugepaged_mutex); 2354 } 2355