xref: /openbmc/linux/mm/kfence/core.c (revision a08b9f2f2267421092bf4b882a9461858216ed47)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/kcsan-checks.h>
14 #include <linux/kfence.h>
15 #include <linux/list.h>
16 #include <linux/lockdep.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/random.h>
20 #include <linux/rcupdate.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 
26 #include <asm/kfence.h>
27 
28 #include "kfence.h"
29 
30 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
31 #define KFENCE_WARN_ON(cond)                                                   \
32 	({                                                                     \
33 		const bool __cond = WARN_ON(cond);                             \
34 		if (unlikely(__cond))                                          \
35 			WRITE_ONCE(kfence_enabled, false);                     \
36 		__cond;                                                        \
37 	})
38 
39 /* === Data ================================================================= */
40 
41 static bool kfence_enabled __read_mostly;
42 
43 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
44 
45 #ifdef MODULE_PARAM_PREFIX
46 #undef MODULE_PARAM_PREFIX
47 #endif
48 #define MODULE_PARAM_PREFIX "kfence."
49 
50 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
51 {
52 	unsigned long num;
53 	int ret = kstrtoul(val, 0, &num);
54 
55 	if (ret < 0)
56 		return ret;
57 
58 	if (!num) /* Using 0 to indicate KFENCE is disabled. */
59 		WRITE_ONCE(kfence_enabled, false);
60 	else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
61 		return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
62 
63 	*((unsigned long *)kp->arg) = num;
64 	return 0;
65 }
66 
67 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
68 {
69 	if (!READ_ONCE(kfence_enabled))
70 		return sprintf(buffer, "0\n");
71 
72 	return param_get_ulong(buffer, kp);
73 }
74 
75 static const struct kernel_param_ops sample_interval_param_ops = {
76 	.set = param_set_sample_interval,
77 	.get = param_get_sample_interval,
78 };
79 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
80 
81 /* The pool of pages used for guard pages and objects. */
82 char *__kfence_pool __ro_after_init;
83 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
84 
85 /*
86  * Per-object metadata, with one-to-one mapping of object metadata to
87  * backing pages (in __kfence_pool).
88  */
89 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
90 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
91 
92 /* Freelist with available objects. */
93 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
94 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
95 
96 #ifdef CONFIG_KFENCE_STATIC_KEYS
97 /* The static key to set up a KFENCE allocation. */
98 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
99 #endif
100 
101 /* Gates the allocation, ensuring only one succeeds in a given period. */
102 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
103 
104 /* Statistics counters for debugfs. */
105 enum kfence_counter_id {
106 	KFENCE_COUNTER_ALLOCATED,
107 	KFENCE_COUNTER_ALLOCS,
108 	KFENCE_COUNTER_FREES,
109 	KFENCE_COUNTER_ZOMBIES,
110 	KFENCE_COUNTER_BUGS,
111 	KFENCE_COUNTER_COUNT,
112 };
113 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
114 static const char *const counter_names[] = {
115 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
116 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
117 	[KFENCE_COUNTER_FREES]		= "total frees",
118 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
119 	[KFENCE_COUNTER_BUGS]		= "total bugs",
120 };
121 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
122 
123 /* === Internals ============================================================ */
124 
125 static bool kfence_protect(unsigned long addr)
126 {
127 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
128 }
129 
130 static bool kfence_unprotect(unsigned long addr)
131 {
132 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
133 }
134 
135 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
136 {
137 	long index;
138 
139 	/* The checks do not affect performance; only called from slow-paths. */
140 
141 	if (!is_kfence_address((void *)addr))
142 		return NULL;
143 
144 	/*
145 	 * May be an invalid index if called with an address at the edge of
146 	 * __kfence_pool, in which case we would report an "invalid access"
147 	 * error.
148 	 */
149 	index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
150 	if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
151 		return NULL;
152 
153 	return &kfence_metadata[index];
154 }
155 
156 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
157 {
158 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
159 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
160 
161 	/* The checks do not affect performance; only called from slow-paths. */
162 
163 	/* Only call with a pointer into kfence_metadata. */
164 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
165 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
166 		return 0;
167 
168 	/*
169 	 * This metadata object only ever maps to 1 page; verify that the stored
170 	 * address is in the expected range.
171 	 */
172 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
173 		return 0;
174 
175 	return pageaddr;
176 }
177 
178 /*
179  * Update the object's metadata state, including updating the alloc/free stacks
180  * depending on the state transition.
181  */
182 static noinline void metadata_update_state(struct kfence_metadata *meta,
183 					   enum kfence_object_state next)
184 {
185 	struct kfence_track *track =
186 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
187 
188 	lockdep_assert_held(&meta->lock);
189 
190 	/*
191 	 * Skip over 1 (this) functions; noinline ensures we do not accidentally
192 	 * skip over the caller by never inlining.
193 	 */
194 	track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
195 	track->pid = task_pid_nr(current);
196 
197 	/*
198 	 * Pairs with READ_ONCE() in
199 	 *	kfence_shutdown_cache(),
200 	 *	kfence_handle_page_fault().
201 	 */
202 	WRITE_ONCE(meta->state, next);
203 }
204 
205 /* Write canary byte to @addr. */
206 static inline bool set_canary_byte(u8 *addr)
207 {
208 	*addr = KFENCE_CANARY_PATTERN(addr);
209 	return true;
210 }
211 
212 /* Check canary byte at @addr. */
213 static inline bool check_canary_byte(u8 *addr)
214 {
215 	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
216 		return true;
217 
218 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
219 	kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
220 			    KFENCE_ERROR_CORRUPTION);
221 	return false;
222 }
223 
224 /* __always_inline this to ensure we won't do an indirect call to fn. */
225 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
226 {
227 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
228 	unsigned long addr;
229 
230 	lockdep_assert_held(&meta->lock);
231 
232 	/*
233 	 * We'll iterate over each canary byte per-side until fn() returns
234 	 * false. However, we'll still iterate over the canary bytes to the
235 	 * right of the object even if there was an error in the canary bytes to
236 	 * the left of the object. Specifically, if check_canary_byte()
237 	 * generates an error, showing both sides might give more clues as to
238 	 * what the error is about when displaying which bytes were corrupted.
239 	 */
240 
241 	/* Apply to left of object. */
242 	for (addr = pageaddr; addr < meta->addr; addr++) {
243 		if (!fn((u8 *)addr))
244 			break;
245 	}
246 
247 	/* Apply to right of object. */
248 	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
249 		if (!fn((u8 *)addr))
250 			break;
251 	}
252 }
253 
254 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
255 {
256 	struct kfence_metadata *meta = NULL;
257 	unsigned long flags;
258 	struct page *page;
259 	void *addr;
260 
261 	/* Try to obtain a free object. */
262 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
263 	if (!list_empty(&kfence_freelist)) {
264 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
265 		list_del_init(&meta->list);
266 	}
267 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
268 	if (!meta)
269 		return NULL;
270 
271 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
272 		/*
273 		 * This is extremely unlikely -- we are reporting on a
274 		 * use-after-free, which locked meta->lock, and the reporting
275 		 * code via printk calls kmalloc() which ends up in
276 		 * kfence_alloc() and tries to grab the same object that we're
277 		 * reporting on. While it has never been observed, lockdep does
278 		 * report that there is a possibility of deadlock. Fix it by
279 		 * using trylock and bailing out gracefully.
280 		 */
281 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
282 		/* Put the object back on the freelist. */
283 		list_add_tail(&meta->list, &kfence_freelist);
284 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
285 
286 		return NULL;
287 	}
288 
289 	meta->addr = metadata_to_pageaddr(meta);
290 	/* Unprotect if we're reusing this page. */
291 	if (meta->state == KFENCE_OBJECT_FREED)
292 		kfence_unprotect(meta->addr);
293 
294 	/*
295 	 * Note: for allocations made before RNG initialization, will always
296 	 * return zero. We still benefit from enabling KFENCE as early as
297 	 * possible, even when the RNG is not yet available, as this will allow
298 	 * KFENCE to detect bugs due to earlier allocations. The only downside
299 	 * is that the out-of-bounds accesses detected are deterministic for
300 	 * such allocations.
301 	 */
302 	if (prandom_u32_max(2)) {
303 		/* Allocate on the "right" side, re-calculate address. */
304 		meta->addr += PAGE_SIZE - size;
305 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
306 	}
307 
308 	addr = (void *)meta->addr;
309 
310 	/* Update remaining metadata. */
311 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
312 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
313 	WRITE_ONCE(meta->cache, cache);
314 	meta->size = size;
315 	for_each_canary(meta, set_canary_byte);
316 
317 	/* Set required struct page fields. */
318 	page = virt_to_page(meta->addr);
319 	page->slab_cache = cache;
320 	if (IS_ENABLED(CONFIG_SLUB))
321 		page->objects = 1;
322 	if (IS_ENABLED(CONFIG_SLAB))
323 		page->s_mem = addr;
324 
325 	raw_spin_unlock_irqrestore(&meta->lock, flags);
326 
327 	/* Memory initialization. */
328 
329 	/*
330 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
331 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
332 	 * redzone.
333 	 */
334 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
335 		memzero_explicit(addr, size);
336 	if (cache->ctor)
337 		cache->ctor(addr);
338 
339 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
340 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
341 
342 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
343 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
344 
345 	return addr;
346 }
347 
348 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
349 {
350 	struct kcsan_scoped_access assert_page_exclusive;
351 	unsigned long flags;
352 
353 	raw_spin_lock_irqsave(&meta->lock, flags);
354 
355 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
356 		/* Invalid or double-free, bail out. */
357 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
358 		kfence_report_error((unsigned long)addr, false, NULL, meta,
359 				    KFENCE_ERROR_INVALID_FREE);
360 		raw_spin_unlock_irqrestore(&meta->lock, flags);
361 		return;
362 	}
363 
364 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
365 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
366 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
367 				  &assert_page_exclusive);
368 
369 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
370 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
371 
372 	/* Restore page protection if there was an OOB access. */
373 	if (meta->unprotected_page) {
374 		kfence_protect(meta->unprotected_page);
375 		meta->unprotected_page = 0;
376 	}
377 
378 	/* Check canary bytes for memory corruption. */
379 	for_each_canary(meta, check_canary_byte);
380 
381 	/*
382 	 * Clear memory if init-on-free is set. While we protect the page, the
383 	 * data is still there, and after a use-after-free is detected, we
384 	 * unprotect the page, so the data is still accessible.
385 	 */
386 	if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
387 		memzero_explicit(addr, meta->size);
388 
389 	/* Mark the object as freed. */
390 	metadata_update_state(meta, KFENCE_OBJECT_FREED);
391 
392 	raw_spin_unlock_irqrestore(&meta->lock, flags);
393 
394 	/* Protect to detect use-after-frees. */
395 	kfence_protect((unsigned long)addr);
396 
397 	kcsan_end_scoped_access(&assert_page_exclusive);
398 	if (!zombie) {
399 		/* Add it to the tail of the freelist for reuse. */
400 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
401 		KFENCE_WARN_ON(!list_empty(&meta->list));
402 		list_add_tail(&meta->list, &kfence_freelist);
403 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
404 
405 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
406 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
407 	} else {
408 		/* See kfence_shutdown_cache(). */
409 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
410 	}
411 }
412 
413 static void rcu_guarded_free(struct rcu_head *h)
414 {
415 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
416 
417 	kfence_guarded_free((void *)meta->addr, meta, false);
418 }
419 
420 static bool __init kfence_init_pool(void)
421 {
422 	unsigned long addr = (unsigned long)__kfence_pool;
423 	struct page *pages;
424 	int i;
425 
426 	if (!__kfence_pool)
427 		return false;
428 
429 	if (!arch_kfence_init_pool())
430 		goto err;
431 
432 	pages = virt_to_page(addr);
433 
434 	/*
435 	 * Set up object pages: they must have PG_slab set, to avoid freeing
436 	 * these as real pages.
437 	 *
438 	 * We also want to avoid inserting kfence_free() in the kfree()
439 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
440 	 * enters __slab_free() slow-path.
441 	 */
442 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
443 		if (!i || (i % 2))
444 			continue;
445 
446 		/* Verify we do not have a compound head page. */
447 		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
448 			goto err;
449 
450 		__SetPageSlab(&pages[i]);
451 	}
452 
453 	/*
454 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
455 	 * merely serves as an extended guard page. However, adding one
456 	 * additional page in the beginning gives us an even number of pages,
457 	 * which simplifies the mapping of address to metadata index.
458 	 */
459 	for (i = 0; i < 2; i++) {
460 		if (unlikely(!kfence_protect(addr)))
461 			goto err;
462 
463 		addr += PAGE_SIZE;
464 	}
465 
466 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
467 		struct kfence_metadata *meta = &kfence_metadata[i];
468 
469 		/* Initialize metadata. */
470 		INIT_LIST_HEAD(&meta->list);
471 		raw_spin_lock_init(&meta->lock);
472 		meta->state = KFENCE_OBJECT_UNUSED;
473 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
474 		list_add_tail(&meta->list, &kfence_freelist);
475 
476 		/* Protect the right redzone. */
477 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
478 			goto err;
479 
480 		addr += 2 * PAGE_SIZE;
481 	}
482 
483 	return true;
484 
485 err:
486 	/*
487 	 * Only release unprotected pages, and do not try to go back and change
488 	 * page attributes due to risk of failing to do so as well. If changing
489 	 * page attributes for some pages fails, it is very likely that it also
490 	 * fails for the first page, and therefore expect addr==__kfence_pool in
491 	 * most failure cases.
492 	 */
493 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
494 	__kfence_pool = NULL;
495 	return false;
496 }
497 
498 /* === DebugFS Interface ==================================================== */
499 
500 static int stats_show(struct seq_file *seq, void *v)
501 {
502 	int i;
503 
504 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
505 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
506 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
507 
508 	return 0;
509 }
510 DEFINE_SHOW_ATTRIBUTE(stats);
511 
512 /*
513  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
514  * start_object() and next_object() return the object index + 1, because NULL is used
515  * to stop iteration.
516  */
517 static void *start_object(struct seq_file *seq, loff_t *pos)
518 {
519 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
520 		return (void *)((long)*pos + 1);
521 	return NULL;
522 }
523 
524 static void stop_object(struct seq_file *seq, void *v)
525 {
526 }
527 
528 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
529 {
530 	++*pos;
531 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
532 		return (void *)((long)*pos + 1);
533 	return NULL;
534 }
535 
536 static int show_object(struct seq_file *seq, void *v)
537 {
538 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
539 	unsigned long flags;
540 
541 	raw_spin_lock_irqsave(&meta->lock, flags);
542 	kfence_print_object(seq, meta);
543 	raw_spin_unlock_irqrestore(&meta->lock, flags);
544 	seq_puts(seq, "---------------------------------\n");
545 
546 	return 0;
547 }
548 
549 static const struct seq_operations object_seqops = {
550 	.start = start_object,
551 	.next = next_object,
552 	.stop = stop_object,
553 	.show = show_object,
554 };
555 
556 static int open_objects(struct inode *inode, struct file *file)
557 {
558 	return seq_open(file, &object_seqops);
559 }
560 
561 static const struct file_operations objects_fops = {
562 	.open = open_objects,
563 	.read = seq_read,
564 	.llseek = seq_lseek,
565 };
566 
567 static int __init kfence_debugfs_init(void)
568 {
569 	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
570 
571 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
572 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
573 	return 0;
574 }
575 
576 late_initcall(kfence_debugfs_init);
577 
578 /* === Allocation Gate Timer ================================================ */
579 
580 /*
581  * Set up delayed work, which will enable and disable the static key. We need to
582  * use a work queue (rather than a simple timer), since enabling and disabling a
583  * static key cannot be done from an interrupt.
584  *
585  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
586  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
587  * more aggressive sampling intervals), we could get away with a variant that
588  * avoids IPIs, at the cost of not immediately capturing allocations if the
589  * instructions remain cached.
590  */
591 static struct delayed_work kfence_timer;
592 static void toggle_allocation_gate(struct work_struct *work)
593 {
594 	if (!READ_ONCE(kfence_enabled))
595 		return;
596 
597 	/* Enable static key, and await allocation to happen. */
598 	atomic_set(&kfence_allocation_gate, 0);
599 #ifdef CONFIG_KFENCE_STATIC_KEYS
600 	static_branch_enable(&kfence_allocation_key);
601 	/*
602 	 * Await an allocation. Timeout after 1 second, in case the kernel stops
603 	 * doing allocations, to avoid stalling this worker task for too long.
604 	 */
605 	{
606 		unsigned long end_wait = jiffies + HZ;
607 
608 		do {
609 			set_current_state(TASK_UNINTERRUPTIBLE);
610 			if (atomic_read(&kfence_allocation_gate) != 0)
611 				break;
612 			schedule_timeout(1);
613 		} while (time_before(jiffies, end_wait));
614 		__set_current_state(TASK_RUNNING);
615 	}
616 	/* Disable static key and reset timer. */
617 	static_branch_disable(&kfence_allocation_key);
618 #endif
619 	schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval));
620 }
621 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
622 
623 /* === Public interface ===================================================== */
624 
625 void __init kfence_alloc_pool(void)
626 {
627 	if (!kfence_sample_interval)
628 		return;
629 
630 	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
631 
632 	if (!__kfence_pool)
633 		pr_err("failed to allocate pool\n");
634 }
635 
636 void __init kfence_init(void)
637 {
638 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
639 	if (!kfence_sample_interval)
640 		return;
641 
642 	if (!kfence_init_pool()) {
643 		pr_err("%s failed\n", __func__);
644 		return;
645 	}
646 
647 	WRITE_ONCE(kfence_enabled, true);
648 	schedule_delayed_work(&kfence_timer, 0);
649 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
650 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
651 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
652 }
653 
654 void kfence_shutdown_cache(struct kmem_cache *s)
655 {
656 	unsigned long flags;
657 	struct kfence_metadata *meta;
658 	int i;
659 
660 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
661 		bool in_use;
662 
663 		meta = &kfence_metadata[i];
664 
665 		/*
666 		 * If we observe some inconsistent cache and state pair where we
667 		 * should have returned false here, cache destruction is racing
668 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
669 		 * the lock will not help, as different critical section
670 		 * serialization will have the same outcome.
671 		 */
672 		if (READ_ONCE(meta->cache) != s ||
673 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
674 			continue;
675 
676 		raw_spin_lock_irqsave(&meta->lock, flags);
677 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
678 		raw_spin_unlock_irqrestore(&meta->lock, flags);
679 
680 		if (in_use) {
681 			/*
682 			 * This cache still has allocations, and we should not
683 			 * release them back into the freelist so they can still
684 			 * safely be used and retain the kernel's default
685 			 * behaviour of keeping the allocations alive (leak the
686 			 * cache); however, they effectively become "zombie
687 			 * allocations" as the KFENCE objects are the only ones
688 			 * still in use and the owning cache is being destroyed.
689 			 *
690 			 * We mark them freed, so that any subsequent use shows
691 			 * more useful error messages that will include stack
692 			 * traces of the user of the object, the original
693 			 * allocation, and caller to shutdown_cache().
694 			 */
695 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
696 		}
697 	}
698 
699 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
700 		meta = &kfence_metadata[i];
701 
702 		/* See above. */
703 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
704 			continue;
705 
706 		raw_spin_lock_irqsave(&meta->lock, flags);
707 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
708 			meta->cache = NULL;
709 		raw_spin_unlock_irqrestore(&meta->lock, flags);
710 	}
711 }
712 
713 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
714 {
715 	/*
716 	 * allocation_gate only needs to become non-zero, so it doesn't make
717 	 * sense to continue writing to it and pay the associated contention
718 	 * cost, in case we have a large number of concurrent allocations.
719 	 */
720 	if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
721 		return NULL;
722 
723 	if (!READ_ONCE(kfence_enabled))
724 		return NULL;
725 
726 	if (size > PAGE_SIZE)
727 		return NULL;
728 
729 	return kfence_guarded_alloc(s, size, flags);
730 }
731 
732 size_t kfence_ksize(const void *addr)
733 {
734 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
735 
736 	/*
737 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
738 	 * either a use-after-free or invalid access.
739 	 */
740 	return meta ? meta->size : 0;
741 }
742 
743 void *kfence_object_start(const void *addr)
744 {
745 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
746 
747 	/*
748 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
749 	 * either a use-after-free or invalid access.
750 	 */
751 	return meta ? (void *)meta->addr : NULL;
752 }
753 
754 void __kfence_free(void *addr)
755 {
756 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
757 
758 	/*
759 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
760 	 * the object, as the object page may be recycled for other-typed
761 	 * objects once it has been freed. meta->cache may be NULL if the cache
762 	 * was destroyed.
763 	 */
764 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
765 		call_rcu(&meta->rcu_head, rcu_guarded_free);
766 	else
767 		kfence_guarded_free(addr, meta, false);
768 }
769 
770 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
771 {
772 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
773 	struct kfence_metadata *to_report = NULL;
774 	enum kfence_error_type error_type;
775 	unsigned long flags;
776 
777 	if (!is_kfence_address((void *)addr))
778 		return false;
779 
780 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
781 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
782 
783 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
784 
785 	if (page_index % 2) {
786 		/* This is a redzone, report a buffer overflow. */
787 		struct kfence_metadata *meta;
788 		int distance = 0;
789 
790 		meta = addr_to_metadata(addr - PAGE_SIZE);
791 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
792 			to_report = meta;
793 			/* Data race ok; distance calculation approximate. */
794 			distance = addr - data_race(meta->addr + meta->size);
795 		}
796 
797 		meta = addr_to_metadata(addr + PAGE_SIZE);
798 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
799 			/* Data race ok; distance calculation approximate. */
800 			if (!to_report || distance > data_race(meta->addr) - addr)
801 				to_report = meta;
802 		}
803 
804 		if (!to_report)
805 			goto out;
806 
807 		raw_spin_lock_irqsave(&to_report->lock, flags);
808 		to_report->unprotected_page = addr;
809 		error_type = KFENCE_ERROR_OOB;
810 
811 		/*
812 		 * If the object was freed before we took the look we can still
813 		 * report this as an OOB -- the report will simply show the
814 		 * stacktrace of the free as well.
815 		 */
816 	} else {
817 		to_report = addr_to_metadata(addr);
818 		if (!to_report)
819 			goto out;
820 
821 		raw_spin_lock_irqsave(&to_report->lock, flags);
822 		error_type = KFENCE_ERROR_UAF;
823 		/*
824 		 * We may race with __kfence_alloc(), and it is possible that a
825 		 * freed object may be reallocated. We simply report this as a
826 		 * use-after-free, with the stack trace showing the place where
827 		 * the object was re-allocated.
828 		 */
829 	}
830 
831 out:
832 	if (to_report) {
833 		kfence_report_error(addr, is_write, regs, to_report, error_type);
834 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
835 	} else {
836 		/* This may be a UAF or OOB access, but we can't be sure. */
837 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
838 	}
839 
840 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
841 }
842