xref: /openbmc/linux/mm/kfence/core.c (revision 3aa139aa9fdc138a84243dc49dc18d9b40e1c6e4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/kcsan-checks.h>
14 #include <linux/kfence.h>
15 #include <linux/kmemleak.h>
16 #include <linux/list.h>
17 #include <linux/lockdep.h>
18 #include <linux/memblock.h>
19 #include <linux/moduleparam.h>
20 #include <linux/random.h>
21 #include <linux/rcupdate.h>
22 #include <linux/seq_file.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 
27 #include <asm/kfence.h>
28 
29 #include "kfence.h"
30 
31 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
32 #define KFENCE_WARN_ON(cond)                                                   \
33 	({                                                                     \
34 		const bool __cond = WARN_ON(cond);                             \
35 		if (unlikely(__cond))                                          \
36 			WRITE_ONCE(kfence_enabled, false);                     \
37 		__cond;                                                        \
38 	})
39 
40 /* === Data ================================================================= */
41 
42 static bool kfence_enabled __read_mostly;
43 
44 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
45 
46 #ifdef MODULE_PARAM_PREFIX
47 #undef MODULE_PARAM_PREFIX
48 #endif
49 #define MODULE_PARAM_PREFIX "kfence."
50 
51 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
52 {
53 	unsigned long num;
54 	int ret = kstrtoul(val, 0, &num);
55 
56 	if (ret < 0)
57 		return ret;
58 
59 	if (!num) /* Using 0 to indicate KFENCE is disabled. */
60 		WRITE_ONCE(kfence_enabled, false);
61 	else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
62 		return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
63 
64 	*((unsigned long *)kp->arg) = num;
65 	return 0;
66 }
67 
68 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
69 {
70 	if (!READ_ONCE(kfence_enabled))
71 		return sprintf(buffer, "0\n");
72 
73 	return param_get_ulong(buffer, kp);
74 }
75 
76 static const struct kernel_param_ops sample_interval_param_ops = {
77 	.set = param_set_sample_interval,
78 	.get = param_get_sample_interval,
79 };
80 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
81 
82 /* The pool of pages used for guard pages and objects. */
83 char *__kfence_pool __ro_after_init;
84 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
85 
86 /*
87  * Per-object metadata, with one-to-one mapping of object metadata to
88  * backing pages (in __kfence_pool).
89  */
90 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
91 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
92 
93 /* Freelist with available objects. */
94 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
95 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
96 
97 #ifdef CONFIG_KFENCE_STATIC_KEYS
98 /* The static key to set up a KFENCE allocation. */
99 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
100 #endif
101 
102 /* Gates the allocation, ensuring only one succeeds in a given period. */
103 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
104 
105 /* Statistics counters for debugfs. */
106 enum kfence_counter_id {
107 	KFENCE_COUNTER_ALLOCATED,
108 	KFENCE_COUNTER_ALLOCS,
109 	KFENCE_COUNTER_FREES,
110 	KFENCE_COUNTER_ZOMBIES,
111 	KFENCE_COUNTER_BUGS,
112 	KFENCE_COUNTER_COUNT,
113 };
114 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
115 static const char *const counter_names[] = {
116 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
117 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
118 	[KFENCE_COUNTER_FREES]		= "total frees",
119 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
120 	[KFENCE_COUNTER_BUGS]		= "total bugs",
121 };
122 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
123 
124 /* === Internals ============================================================ */
125 
126 static bool kfence_protect(unsigned long addr)
127 {
128 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
129 }
130 
131 static bool kfence_unprotect(unsigned long addr)
132 {
133 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
134 }
135 
136 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
137 {
138 	long index;
139 
140 	/* The checks do not affect performance; only called from slow-paths. */
141 
142 	if (!is_kfence_address((void *)addr))
143 		return NULL;
144 
145 	/*
146 	 * May be an invalid index if called with an address at the edge of
147 	 * __kfence_pool, in which case we would report an "invalid access"
148 	 * error.
149 	 */
150 	index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
151 	if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
152 		return NULL;
153 
154 	return &kfence_metadata[index];
155 }
156 
157 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
158 {
159 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
160 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
161 
162 	/* The checks do not affect performance; only called from slow-paths. */
163 
164 	/* Only call with a pointer into kfence_metadata. */
165 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
166 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
167 		return 0;
168 
169 	/*
170 	 * This metadata object only ever maps to 1 page; verify that the stored
171 	 * address is in the expected range.
172 	 */
173 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
174 		return 0;
175 
176 	return pageaddr;
177 }
178 
179 /*
180  * Update the object's metadata state, including updating the alloc/free stacks
181  * depending on the state transition.
182  */
183 static noinline void metadata_update_state(struct kfence_metadata *meta,
184 					   enum kfence_object_state next)
185 {
186 	struct kfence_track *track =
187 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
188 
189 	lockdep_assert_held(&meta->lock);
190 
191 	/*
192 	 * Skip over 1 (this) functions; noinline ensures we do not accidentally
193 	 * skip over the caller by never inlining.
194 	 */
195 	track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
196 	track->pid = task_pid_nr(current);
197 
198 	/*
199 	 * Pairs with READ_ONCE() in
200 	 *	kfence_shutdown_cache(),
201 	 *	kfence_handle_page_fault().
202 	 */
203 	WRITE_ONCE(meta->state, next);
204 }
205 
206 /* Write canary byte to @addr. */
207 static inline bool set_canary_byte(u8 *addr)
208 {
209 	*addr = KFENCE_CANARY_PATTERN(addr);
210 	return true;
211 }
212 
213 /* Check canary byte at @addr. */
214 static inline bool check_canary_byte(u8 *addr)
215 {
216 	if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
217 		return true;
218 
219 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
220 	kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
221 			    KFENCE_ERROR_CORRUPTION);
222 	return false;
223 }
224 
225 /* __always_inline this to ensure we won't do an indirect call to fn. */
226 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
227 {
228 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
229 	unsigned long addr;
230 
231 	lockdep_assert_held(&meta->lock);
232 
233 	/*
234 	 * We'll iterate over each canary byte per-side until fn() returns
235 	 * false. However, we'll still iterate over the canary bytes to the
236 	 * right of the object even if there was an error in the canary bytes to
237 	 * the left of the object. Specifically, if check_canary_byte()
238 	 * generates an error, showing both sides might give more clues as to
239 	 * what the error is about when displaying which bytes were corrupted.
240 	 */
241 
242 	/* Apply to left of object. */
243 	for (addr = pageaddr; addr < meta->addr; addr++) {
244 		if (!fn((u8 *)addr))
245 			break;
246 	}
247 
248 	/* Apply to right of object. */
249 	for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
250 		if (!fn((u8 *)addr))
251 			break;
252 	}
253 }
254 
255 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
256 {
257 	struct kfence_metadata *meta = NULL;
258 	unsigned long flags;
259 	struct page *page;
260 	void *addr;
261 
262 	/* Try to obtain a free object. */
263 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
264 	if (!list_empty(&kfence_freelist)) {
265 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
266 		list_del_init(&meta->list);
267 	}
268 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
269 	if (!meta)
270 		return NULL;
271 
272 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
273 		/*
274 		 * This is extremely unlikely -- we are reporting on a
275 		 * use-after-free, which locked meta->lock, and the reporting
276 		 * code via printk calls kmalloc() which ends up in
277 		 * kfence_alloc() and tries to grab the same object that we're
278 		 * reporting on. While it has never been observed, lockdep does
279 		 * report that there is a possibility of deadlock. Fix it by
280 		 * using trylock and bailing out gracefully.
281 		 */
282 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
283 		/* Put the object back on the freelist. */
284 		list_add_tail(&meta->list, &kfence_freelist);
285 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
286 
287 		return NULL;
288 	}
289 
290 	meta->addr = metadata_to_pageaddr(meta);
291 	/* Unprotect if we're reusing this page. */
292 	if (meta->state == KFENCE_OBJECT_FREED)
293 		kfence_unprotect(meta->addr);
294 
295 	/*
296 	 * Note: for allocations made before RNG initialization, will always
297 	 * return zero. We still benefit from enabling KFENCE as early as
298 	 * possible, even when the RNG is not yet available, as this will allow
299 	 * KFENCE to detect bugs due to earlier allocations. The only downside
300 	 * is that the out-of-bounds accesses detected are deterministic for
301 	 * such allocations.
302 	 */
303 	if (prandom_u32_max(2)) {
304 		/* Allocate on the "right" side, re-calculate address. */
305 		meta->addr += PAGE_SIZE - size;
306 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
307 	}
308 
309 	addr = (void *)meta->addr;
310 
311 	/* Update remaining metadata. */
312 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
313 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
314 	WRITE_ONCE(meta->cache, cache);
315 	meta->size = size;
316 	for_each_canary(meta, set_canary_byte);
317 
318 	/* Set required struct page fields. */
319 	page = virt_to_page(meta->addr);
320 	page->slab_cache = cache;
321 	if (IS_ENABLED(CONFIG_SLUB))
322 		page->objects = 1;
323 	if (IS_ENABLED(CONFIG_SLAB))
324 		page->s_mem = addr;
325 
326 	raw_spin_unlock_irqrestore(&meta->lock, flags);
327 
328 	/* Memory initialization. */
329 
330 	/*
331 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
332 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
333 	 * redzone.
334 	 */
335 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
336 		memzero_explicit(addr, size);
337 	if (cache->ctor)
338 		cache->ctor(addr);
339 
340 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
341 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
342 
343 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
344 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
345 
346 	return addr;
347 }
348 
349 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
350 {
351 	struct kcsan_scoped_access assert_page_exclusive;
352 	unsigned long flags;
353 
354 	raw_spin_lock_irqsave(&meta->lock, flags);
355 
356 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
357 		/* Invalid or double-free, bail out. */
358 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
359 		kfence_report_error((unsigned long)addr, false, NULL, meta,
360 				    KFENCE_ERROR_INVALID_FREE);
361 		raw_spin_unlock_irqrestore(&meta->lock, flags);
362 		return;
363 	}
364 
365 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
366 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
367 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
368 				  &assert_page_exclusive);
369 
370 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
371 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
372 
373 	/* Restore page protection if there was an OOB access. */
374 	if (meta->unprotected_page) {
375 		kfence_protect(meta->unprotected_page);
376 		meta->unprotected_page = 0;
377 	}
378 
379 	/* Check canary bytes for memory corruption. */
380 	for_each_canary(meta, check_canary_byte);
381 
382 	/*
383 	 * Clear memory if init-on-free is set. While we protect the page, the
384 	 * data is still there, and after a use-after-free is detected, we
385 	 * unprotect the page, so the data is still accessible.
386 	 */
387 	if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
388 		memzero_explicit(addr, meta->size);
389 
390 	/* Mark the object as freed. */
391 	metadata_update_state(meta, KFENCE_OBJECT_FREED);
392 
393 	raw_spin_unlock_irqrestore(&meta->lock, flags);
394 
395 	/* Protect to detect use-after-frees. */
396 	kfence_protect((unsigned long)addr);
397 
398 	kcsan_end_scoped_access(&assert_page_exclusive);
399 	if (!zombie) {
400 		/* Add it to the tail of the freelist for reuse. */
401 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
402 		KFENCE_WARN_ON(!list_empty(&meta->list));
403 		list_add_tail(&meta->list, &kfence_freelist);
404 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
405 
406 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
407 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
408 	} else {
409 		/* See kfence_shutdown_cache(). */
410 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
411 	}
412 }
413 
414 static void rcu_guarded_free(struct rcu_head *h)
415 {
416 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
417 
418 	kfence_guarded_free((void *)meta->addr, meta, false);
419 }
420 
421 static bool __init kfence_init_pool(void)
422 {
423 	unsigned long addr = (unsigned long)__kfence_pool;
424 	struct page *pages;
425 	int i;
426 
427 	if (!__kfence_pool)
428 		return false;
429 
430 	if (!arch_kfence_init_pool())
431 		goto err;
432 
433 	pages = virt_to_page(addr);
434 
435 	/*
436 	 * Set up object pages: they must have PG_slab set, to avoid freeing
437 	 * these as real pages.
438 	 *
439 	 * We also want to avoid inserting kfence_free() in the kfree()
440 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
441 	 * enters __slab_free() slow-path.
442 	 */
443 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
444 		if (!i || (i % 2))
445 			continue;
446 
447 		/* Verify we do not have a compound head page. */
448 		if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
449 			goto err;
450 
451 		__SetPageSlab(&pages[i]);
452 	}
453 
454 	/*
455 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
456 	 * merely serves as an extended guard page. However, adding one
457 	 * additional page in the beginning gives us an even number of pages,
458 	 * which simplifies the mapping of address to metadata index.
459 	 */
460 	for (i = 0; i < 2; i++) {
461 		if (unlikely(!kfence_protect(addr)))
462 			goto err;
463 
464 		addr += PAGE_SIZE;
465 	}
466 
467 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
468 		struct kfence_metadata *meta = &kfence_metadata[i];
469 
470 		/* Initialize metadata. */
471 		INIT_LIST_HEAD(&meta->list);
472 		raw_spin_lock_init(&meta->lock);
473 		meta->state = KFENCE_OBJECT_UNUSED;
474 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
475 		list_add_tail(&meta->list, &kfence_freelist);
476 
477 		/* Protect the right redzone. */
478 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
479 			goto err;
480 
481 		addr += 2 * PAGE_SIZE;
482 	}
483 
484 	/*
485 	 * The pool is live and will never be deallocated from this point on.
486 	 * Remove the pool object from the kmemleak object tree, as it would
487 	 * otherwise overlap with allocations returned by kfence_alloc(), which
488 	 * are registered with kmemleak through the slab post-alloc hook.
489 	 */
490 	kmemleak_free(__kfence_pool);
491 
492 	return true;
493 
494 err:
495 	/*
496 	 * Only release unprotected pages, and do not try to go back and change
497 	 * page attributes due to risk of failing to do so as well. If changing
498 	 * page attributes for some pages fails, it is very likely that it also
499 	 * fails for the first page, and therefore expect addr==__kfence_pool in
500 	 * most failure cases.
501 	 */
502 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
503 	__kfence_pool = NULL;
504 	return false;
505 }
506 
507 /* === DebugFS Interface ==================================================== */
508 
509 static int stats_show(struct seq_file *seq, void *v)
510 {
511 	int i;
512 
513 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
514 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
515 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
516 
517 	return 0;
518 }
519 DEFINE_SHOW_ATTRIBUTE(stats);
520 
521 /*
522  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
523  * start_object() and next_object() return the object index + 1, because NULL is used
524  * to stop iteration.
525  */
526 static void *start_object(struct seq_file *seq, loff_t *pos)
527 {
528 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
529 		return (void *)((long)*pos + 1);
530 	return NULL;
531 }
532 
533 static void stop_object(struct seq_file *seq, void *v)
534 {
535 }
536 
537 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
538 {
539 	++*pos;
540 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
541 		return (void *)((long)*pos + 1);
542 	return NULL;
543 }
544 
545 static int show_object(struct seq_file *seq, void *v)
546 {
547 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
548 	unsigned long flags;
549 
550 	raw_spin_lock_irqsave(&meta->lock, flags);
551 	kfence_print_object(seq, meta);
552 	raw_spin_unlock_irqrestore(&meta->lock, flags);
553 	seq_puts(seq, "---------------------------------\n");
554 
555 	return 0;
556 }
557 
558 static const struct seq_operations object_seqops = {
559 	.start = start_object,
560 	.next = next_object,
561 	.stop = stop_object,
562 	.show = show_object,
563 };
564 
565 static int open_objects(struct inode *inode, struct file *file)
566 {
567 	return seq_open(file, &object_seqops);
568 }
569 
570 static const struct file_operations objects_fops = {
571 	.open = open_objects,
572 	.read = seq_read,
573 	.llseek = seq_lseek,
574 };
575 
576 static int __init kfence_debugfs_init(void)
577 {
578 	struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
579 
580 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
581 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
582 	return 0;
583 }
584 
585 late_initcall(kfence_debugfs_init);
586 
587 /* === Allocation Gate Timer ================================================ */
588 
589 /*
590  * Set up delayed work, which will enable and disable the static key. We need to
591  * use a work queue (rather than a simple timer), since enabling and disabling a
592  * static key cannot be done from an interrupt.
593  *
594  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
595  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
596  * more aggressive sampling intervals), we could get away with a variant that
597  * avoids IPIs, at the cost of not immediately capturing allocations if the
598  * instructions remain cached.
599  */
600 static struct delayed_work kfence_timer;
601 static void toggle_allocation_gate(struct work_struct *work)
602 {
603 	if (!READ_ONCE(kfence_enabled))
604 		return;
605 
606 	/* Enable static key, and await allocation to happen. */
607 	atomic_set(&kfence_allocation_gate, 0);
608 #ifdef CONFIG_KFENCE_STATIC_KEYS
609 	static_branch_enable(&kfence_allocation_key);
610 	/*
611 	 * Await an allocation. Timeout after 1 second, in case the kernel stops
612 	 * doing allocations, to avoid stalling this worker task for too long.
613 	 */
614 	{
615 		unsigned long end_wait = jiffies + HZ;
616 
617 		do {
618 			set_current_state(TASK_UNINTERRUPTIBLE);
619 			if (atomic_read(&kfence_allocation_gate) != 0)
620 				break;
621 			schedule_timeout(1);
622 		} while (time_before(jiffies, end_wait));
623 		__set_current_state(TASK_RUNNING);
624 	}
625 	/* Disable static key and reset timer. */
626 	static_branch_disable(&kfence_allocation_key);
627 #endif
628 	schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval));
629 }
630 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
631 
632 /* === Public interface ===================================================== */
633 
634 void __init kfence_alloc_pool(void)
635 {
636 	if (!kfence_sample_interval)
637 		return;
638 
639 	__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
640 
641 	if (!__kfence_pool)
642 		pr_err("failed to allocate pool\n");
643 }
644 
645 void __init kfence_init(void)
646 {
647 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
648 	if (!kfence_sample_interval)
649 		return;
650 
651 	if (!kfence_init_pool()) {
652 		pr_err("%s failed\n", __func__);
653 		return;
654 	}
655 
656 	WRITE_ONCE(kfence_enabled, true);
657 	schedule_delayed_work(&kfence_timer, 0);
658 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
659 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
660 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
661 }
662 
663 void kfence_shutdown_cache(struct kmem_cache *s)
664 {
665 	unsigned long flags;
666 	struct kfence_metadata *meta;
667 	int i;
668 
669 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
670 		bool in_use;
671 
672 		meta = &kfence_metadata[i];
673 
674 		/*
675 		 * If we observe some inconsistent cache and state pair where we
676 		 * should have returned false here, cache destruction is racing
677 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
678 		 * the lock will not help, as different critical section
679 		 * serialization will have the same outcome.
680 		 */
681 		if (READ_ONCE(meta->cache) != s ||
682 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
683 			continue;
684 
685 		raw_spin_lock_irqsave(&meta->lock, flags);
686 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
687 		raw_spin_unlock_irqrestore(&meta->lock, flags);
688 
689 		if (in_use) {
690 			/*
691 			 * This cache still has allocations, and we should not
692 			 * release them back into the freelist so they can still
693 			 * safely be used and retain the kernel's default
694 			 * behaviour of keeping the allocations alive (leak the
695 			 * cache); however, they effectively become "zombie
696 			 * allocations" as the KFENCE objects are the only ones
697 			 * still in use and the owning cache is being destroyed.
698 			 *
699 			 * We mark them freed, so that any subsequent use shows
700 			 * more useful error messages that will include stack
701 			 * traces of the user of the object, the original
702 			 * allocation, and caller to shutdown_cache().
703 			 */
704 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
705 		}
706 	}
707 
708 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
709 		meta = &kfence_metadata[i];
710 
711 		/* See above. */
712 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
713 			continue;
714 
715 		raw_spin_lock_irqsave(&meta->lock, flags);
716 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
717 			meta->cache = NULL;
718 		raw_spin_unlock_irqrestore(&meta->lock, flags);
719 	}
720 }
721 
722 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
723 {
724 	/*
725 	 * allocation_gate only needs to become non-zero, so it doesn't make
726 	 * sense to continue writing to it and pay the associated contention
727 	 * cost, in case we have a large number of concurrent allocations.
728 	 */
729 	if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
730 		return NULL;
731 
732 	if (!READ_ONCE(kfence_enabled))
733 		return NULL;
734 
735 	if (size > PAGE_SIZE)
736 		return NULL;
737 
738 	return kfence_guarded_alloc(s, size, flags);
739 }
740 
741 size_t kfence_ksize(const void *addr)
742 {
743 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
744 
745 	/*
746 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
747 	 * either a use-after-free or invalid access.
748 	 */
749 	return meta ? meta->size : 0;
750 }
751 
752 void *kfence_object_start(const void *addr)
753 {
754 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
755 
756 	/*
757 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
758 	 * either a use-after-free or invalid access.
759 	 */
760 	return meta ? (void *)meta->addr : NULL;
761 }
762 
763 void __kfence_free(void *addr)
764 {
765 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
766 
767 	/*
768 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
769 	 * the object, as the object page may be recycled for other-typed
770 	 * objects once it has been freed. meta->cache may be NULL if the cache
771 	 * was destroyed.
772 	 */
773 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
774 		call_rcu(&meta->rcu_head, rcu_guarded_free);
775 	else
776 		kfence_guarded_free(addr, meta, false);
777 }
778 
779 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
780 {
781 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
782 	struct kfence_metadata *to_report = NULL;
783 	enum kfence_error_type error_type;
784 	unsigned long flags;
785 
786 	if (!is_kfence_address((void *)addr))
787 		return false;
788 
789 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
790 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
791 
792 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
793 
794 	if (page_index % 2) {
795 		/* This is a redzone, report a buffer overflow. */
796 		struct kfence_metadata *meta;
797 		int distance = 0;
798 
799 		meta = addr_to_metadata(addr - PAGE_SIZE);
800 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
801 			to_report = meta;
802 			/* Data race ok; distance calculation approximate. */
803 			distance = addr - data_race(meta->addr + meta->size);
804 		}
805 
806 		meta = addr_to_metadata(addr + PAGE_SIZE);
807 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
808 			/* Data race ok; distance calculation approximate. */
809 			if (!to_report || distance > data_race(meta->addr) - addr)
810 				to_report = meta;
811 		}
812 
813 		if (!to_report)
814 			goto out;
815 
816 		raw_spin_lock_irqsave(&to_report->lock, flags);
817 		to_report->unprotected_page = addr;
818 		error_type = KFENCE_ERROR_OOB;
819 
820 		/*
821 		 * If the object was freed before we took the look we can still
822 		 * report this as an OOB -- the report will simply show the
823 		 * stacktrace of the free as well.
824 		 */
825 	} else {
826 		to_report = addr_to_metadata(addr);
827 		if (!to_report)
828 			goto out;
829 
830 		raw_spin_lock_irqsave(&to_report->lock, flags);
831 		error_type = KFENCE_ERROR_UAF;
832 		/*
833 		 * We may race with __kfence_alloc(), and it is possible that a
834 		 * freed object may be reallocated. We simply report this as a
835 		 * use-after-free, with the stack trace showing the place where
836 		 * the object was re-allocated.
837 		 */
838 	}
839 
840 out:
841 	if (to_report) {
842 		kfence_report_error(addr, is_write, regs, to_report, error_type);
843 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
844 	} else {
845 		/* This may be a UAF or OOB access, but we can't be sure. */
846 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
847 	}
848 
849 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
850 }
851