1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/kcsan-checks.h> 14 #include <linux/kfence.h> 15 #include <linux/kmemleak.h> 16 #include <linux/list.h> 17 #include <linux/lockdep.h> 18 #include <linux/memblock.h> 19 #include <linux/moduleparam.h> 20 #include <linux/random.h> 21 #include <linux/rcupdate.h> 22 #include <linux/seq_file.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/string.h> 26 27 #include <asm/kfence.h> 28 29 #include "kfence.h" 30 31 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 32 #define KFENCE_WARN_ON(cond) \ 33 ({ \ 34 const bool __cond = WARN_ON(cond); \ 35 if (unlikely(__cond)) \ 36 WRITE_ONCE(kfence_enabled, false); \ 37 __cond; \ 38 }) 39 40 /* === Data ================================================================= */ 41 42 static bool kfence_enabled __read_mostly; 43 44 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 45 46 #ifdef MODULE_PARAM_PREFIX 47 #undef MODULE_PARAM_PREFIX 48 #endif 49 #define MODULE_PARAM_PREFIX "kfence." 50 51 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 52 { 53 unsigned long num; 54 int ret = kstrtoul(val, 0, &num); 55 56 if (ret < 0) 57 return ret; 58 59 if (!num) /* Using 0 to indicate KFENCE is disabled. */ 60 WRITE_ONCE(kfence_enabled, false); 61 else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 62 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ 63 64 *((unsigned long *)kp->arg) = num; 65 return 0; 66 } 67 68 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 69 { 70 if (!READ_ONCE(kfence_enabled)) 71 return sprintf(buffer, "0\n"); 72 73 return param_get_ulong(buffer, kp); 74 } 75 76 static const struct kernel_param_ops sample_interval_param_ops = { 77 .set = param_set_sample_interval, 78 .get = param_get_sample_interval, 79 }; 80 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 81 82 /* The pool of pages used for guard pages and objects. */ 83 char *__kfence_pool __ro_after_init; 84 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 85 86 /* 87 * Per-object metadata, with one-to-one mapping of object metadata to 88 * backing pages (in __kfence_pool). 89 */ 90 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 91 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; 92 93 /* Freelist with available objects. */ 94 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 95 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 96 97 #ifdef CONFIG_KFENCE_STATIC_KEYS 98 /* The static key to set up a KFENCE allocation. */ 99 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 100 #endif 101 102 /* Gates the allocation, ensuring only one succeeds in a given period. */ 103 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 104 105 /* Statistics counters for debugfs. */ 106 enum kfence_counter_id { 107 KFENCE_COUNTER_ALLOCATED, 108 KFENCE_COUNTER_ALLOCS, 109 KFENCE_COUNTER_FREES, 110 KFENCE_COUNTER_ZOMBIES, 111 KFENCE_COUNTER_BUGS, 112 KFENCE_COUNTER_COUNT, 113 }; 114 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 115 static const char *const counter_names[] = { 116 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 117 [KFENCE_COUNTER_ALLOCS] = "total allocations", 118 [KFENCE_COUNTER_FREES] = "total frees", 119 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 120 [KFENCE_COUNTER_BUGS] = "total bugs", 121 }; 122 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 123 124 /* === Internals ============================================================ */ 125 126 static bool kfence_protect(unsigned long addr) 127 { 128 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 129 } 130 131 static bool kfence_unprotect(unsigned long addr) 132 { 133 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 134 } 135 136 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) 137 { 138 long index; 139 140 /* The checks do not affect performance; only called from slow-paths. */ 141 142 if (!is_kfence_address((void *)addr)) 143 return NULL; 144 145 /* 146 * May be an invalid index if called with an address at the edge of 147 * __kfence_pool, in which case we would report an "invalid access" 148 * error. 149 */ 150 index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; 151 if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) 152 return NULL; 153 154 return &kfence_metadata[index]; 155 } 156 157 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 158 { 159 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 160 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 161 162 /* The checks do not affect performance; only called from slow-paths. */ 163 164 /* Only call with a pointer into kfence_metadata. */ 165 if (KFENCE_WARN_ON(meta < kfence_metadata || 166 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 167 return 0; 168 169 /* 170 * This metadata object only ever maps to 1 page; verify that the stored 171 * address is in the expected range. 172 */ 173 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 174 return 0; 175 176 return pageaddr; 177 } 178 179 /* 180 * Update the object's metadata state, including updating the alloc/free stacks 181 * depending on the state transition. 182 */ 183 static noinline void metadata_update_state(struct kfence_metadata *meta, 184 enum kfence_object_state next) 185 { 186 struct kfence_track *track = 187 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; 188 189 lockdep_assert_held(&meta->lock); 190 191 /* 192 * Skip over 1 (this) functions; noinline ensures we do not accidentally 193 * skip over the caller by never inlining. 194 */ 195 track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 196 track->pid = task_pid_nr(current); 197 198 /* 199 * Pairs with READ_ONCE() in 200 * kfence_shutdown_cache(), 201 * kfence_handle_page_fault(). 202 */ 203 WRITE_ONCE(meta->state, next); 204 } 205 206 /* Write canary byte to @addr. */ 207 static inline bool set_canary_byte(u8 *addr) 208 { 209 *addr = KFENCE_CANARY_PATTERN(addr); 210 return true; 211 } 212 213 /* Check canary byte at @addr. */ 214 static inline bool check_canary_byte(u8 *addr) 215 { 216 if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) 217 return true; 218 219 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 220 kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr), 221 KFENCE_ERROR_CORRUPTION); 222 return false; 223 } 224 225 /* __always_inline this to ensure we won't do an indirect call to fn. */ 226 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) 227 { 228 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 229 unsigned long addr; 230 231 lockdep_assert_held(&meta->lock); 232 233 /* 234 * We'll iterate over each canary byte per-side until fn() returns 235 * false. However, we'll still iterate over the canary bytes to the 236 * right of the object even if there was an error in the canary bytes to 237 * the left of the object. Specifically, if check_canary_byte() 238 * generates an error, showing both sides might give more clues as to 239 * what the error is about when displaying which bytes were corrupted. 240 */ 241 242 /* Apply to left of object. */ 243 for (addr = pageaddr; addr < meta->addr; addr++) { 244 if (!fn((u8 *)addr)) 245 break; 246 } 247 248 /* Apply to right of object. */ 249 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { 250 if (!fn((u8 *)addr)) 251 break; 252 } 253 } 254 255 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp) 256 { 257 struct kfence_metadata *meta = NULL; 258 unsigned long flags; 259 struct page *page; 260 void *addr; 261 262 /* Try to obtain a free object. */ 263 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 264 if (!list_empty(&kfence_freelist)) { 265 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 266 list_del_init(&meta->list); 267 } 268 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 269 if (!meta) 270 return NULL; 271 272 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 273 /* 274 * This is extremely unlikely -- we are reporting on a 275 * use-after-free, which locked meta->lock, and the reporting 276 * code via printk calls kmalloc() which ends up in 277 * kfence_alloc() and tries to grab the same object that we're 278 * reporting on. While it has never been observed, lockdep does 279 * report that there is a possibility of deadlock. Fix it by 280 * using trylock and bailing out gracefully. 281 */ 282 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 283 /* Put the object back on the freelist. */ 284 list_add_tail(&meta->list, &kfence_freelist); 285 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 286 287 return NULL; 288 } 289 290 meta->addr = metadata_to_pageaddr(meta); 291 /* Unprotect if we're reusing this page. */ 292 if (meta->state == KFENCE_OBJECT_FREED) 293 kfence_unprotect(meta->addr); 294 295 /* 296 * Note: for allocations made before RNG initialization, will always 297 * return zero. We still benefit from enabling KFENCE as early as 298 * possible, even when the RNG is not yet available, as this will allow 299 * KFENCE to detect bugs due to earlier allocations. The only downside 300 * is that the out-of-bounds accesses detected are deterministic for 301 * such allocations. 302 */ 303 if (prandom_u32_max(2)) { 304 /* Allocate on the "right" side, re-calculate address. */ 305 meta->addr += PAGE_SIZE - size; 306 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 307 } 308 309 addr = (void *)meta->addr; 310 311 /* Update remaining metadata. */ 312 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED); 313 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 314 WRITE_ONCE(meta->cache, cache); 315 meta->size = size; 316 for_each_canary(meta, set_canary_byte); 317 318 /* Set required struct page fields. */ 319 page = virt_to_page(meta->addr); 320 page->slab_cache = cache; 321 if (IS_ENABLED(CONFIG_SLUB)) 322 page->objects = 1; 323 if (IS_ENABLED(CONFIG_SLAB)) 324 page->s_mem = addr; 325 326 raw_spin_unlock_irqrestore(&meta->lock, flags); 327 328 /* Memory initialization. */ 329 330 /* 331 * We check slab_want_init_on_alloc() ourselves, rather than letting 332 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 333 * redzone. 334 */ 335 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 336 memzero_explicit(addr, size); 337 if (cache->ctor) 338 cache->ctor(addr); 339 340 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) 341 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 342 343 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 344 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 345 346 return addr; 347 } 348 349 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 350 { 351 struct kcsan_scoped_access assert_page_exclusive; 352 unsigned long flags; 353 354 raw_spin_lock_irqsave(&meta->lock, flags); 355 356 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { 357 /* Invalid or double-free, bail out. */ 358 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 359 kfence_report_error((unsigned long)addr, false, NULL, meta, 360 KFENCE_ERROR_INVALID_FREE); 361 raw_spin_unlock_irqrestore(&meta->lock, flags); 362 return; 363 } 364 365 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 366 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 367 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 368 &assert_page_exclusive); 369 370 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 371 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 372 373 /* Restore page protection if there was an OOB access. */ 374 if (meta->unprotected_page) { 375 kfence_protect(meta->unprotected_page); 376 meta->unprotected_page = 0; 377 } 378 379 /* Check canary bytes for memory corruption. */ 380 for_each_canary(meta, check_canary_byte); 381 382 /* 383 * Clear memory if init-on-free is set. While we protect the page, the 384 * data is still there, and after a use-after-free is detected, we 385 * unprotect the page, so the data is still accessible. 386 */ 387 if (!zombie && unlikely(slab_want_init_on_free(meta->cache))) 388 memzero_explicit(addr, meta->size); 389 390 /* Mark the object as freed. */ 391 metadata_update_state(meta, KFENCE_OBJECT_FREED); 392 393 raw_spin_unlock_irqrestore(&meta->lock, flags); 394 395 /* Protect to detect use-after-frees. */ 396 kfence_protect((unsigned long)addr); 397 398 kcsan_end_scoped_access(&assert_page_exclusive); 399 if (!zombie) { 400 /* Add it to the tail of the freelist for reuse. */ 401 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 402 KFENCE_WARN_ON(!list_empty(&meta->list)); 403 list_add_tail(&meta->list, &kfence_freelist); 404 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 405 406 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 407 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 408 } else { 409 /* See kfence_shutdown_cache(). */ 410 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 411 } 412 } 413 414 static void rcu_guarded_free(struct rcu_head *h) 415 { 416 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 417 418 kfence_guarded_free((void *)meta->addr, meta, false); 419 } 420 421 static bool __init kfence_init_pool(void) 422 { 423 unsigned long addr = (unsigned long)__kfence_pool; 424 struct page *pages; 425 int i; 426 427 if (!__kfence_pool) 428 return false; 429 430 if (!arch_kfence_init_pool()) 431 goto err; 432 433 pages = virt_to_page(addr); 434 435 /* 436 * Set up object pages: they must have PG_slab set, to avoid freeing 437 * these as real pages. 438 * 439 * We also want to avoid inserting kfence_free() in the kfree() 440 * fast-path in SLUB, and therefore need to ensure kfree() correctly 441 * enters __slab_free() slow-path. 442 */ 443 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 444 if (!i || (i % 2)) 445 continue; 446 447 /* Verify we do not have a compound head page. */ 448 if (WARN_ON(compound_head(&pages[i]) != &pages[i])) 449 goto err; 450 451 __SetPageSlab(&pages[i]); 452 } 453 454 /* 455 * Protect the first 2 pages. The first page is mostly unnecessary, and 456 * merely serves as an extended guard page. However, adding one 457 * additional page in the beginning gives us an even number of pages, 458 * which simplifies the mapping of address to metadata index. 459 */ 460 for (i = 0; i < 2; i++) { 461 if (unlikely(!kfence_protect(addr))) 462 goto err; 463 464 addr += PAGE_SIZE; 465 } 466 467 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 468 struct kfence_metadata *meta = &kfence_metadata[i]; 469 470 /* Initialize metadata. */ 471 INIT_LIST_HEAD(&meta->list); 472 raw_spin_lock_init(&meta->lock); 473 meta->state = KFENCE_OBJECT_UNUSED; 474 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ 475 list_add_tail(&meta->list, &kfence_freelist); 476 477 /* Protect the right redzone. */ 478 if (unlikely(!kfence_protect(addr + PAGE_SIZE))) 479 goto err; 480 481 addr += 2 * PAGE_SIZE; 482 } 483 484 /* 485 * The pool is live and will never be deallocated from this point on. 486 * Remove the pool object from the kmemleak object tree, as it would 487 * otherwise overlap with allocations returned by kfence_alloc(), which 488 * are registered with kmemleak through the slab post-alloc hook. 489 */ 490 kmemleak_free(__kfence_pool); 491 492 return true; 493 494 err: 495 /* 496 * Only release unprotected pages, and do not try to go back and change 497 * page attributes due to risk of failing to do so as well. If changing 498 * page attributes for some pages fails, it is very likely that it also 499 * fails for the first page, and therefore expect addr==__kfence_pool in 500 * most failure cases. 501 */ 502 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 503 __kfence_pool = NULL; 504 return false; 505 } 506 507 /* === DebugFS Interface ==================================================== */ 508 509 static int stats_show(struct seq_file *seq, void *v) 510 { 511 int i; 512 513 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 514 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 515 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 516 517 return 0; 518 } 519 DEFINE_SHOW_ATTRIBUTE(stats); 520 521 /* 522 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 523 * start_object() and next_object() return the object index + 1, because NULL is used 524 * to stop iteration. 525 */ 526 static void *start_object(struct seq_file *seq, loff_t *pos) 527 { 528 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 529 return (void *)((long)*pos + 1); 530 return NULL; 531 } 532 533 static void stop_object(struct seq_file *seq, void *v) 534 { 535 } 536 537 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 538 { 539 ++*pos; 540 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 541 return (void *)((long)*pos + 1); 542 return NULL; 543 } 544 545 static int show_object(struct seq_file *seq, void *v) 546 { 547 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 548 unsigned long flags; 549 550 raw_spin_lock_irqsave(&meta->lock, flags); 551 kfence_print_object(seq, meta); 552 raw_spin_unlock_irqrestore(&meta->lock, flags); 553 seq_puts(seq, "---------------------------------\n"); 554 555 return 0; 556 } 557 558 static const struct seq_operations object_seqops = { 559 .start = start_object, 560 .next = next_object, 561 .stop = stop_object, 562 .show = show_object, 563 }; 564 565 static int open_objects(struct inode *inode, struct file *file) 566 { 567 return seq_open(file, &object_seqops); 568 } 569 570 static const struct file_operations objects_fops = { 571 .open = open_objects, 572 .read = seq_read, 573 .llseek = seq_lseek, 574 }; 575 576 static int __init kfence_debugfs_init(void) 577 { 578 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); 579 580 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 581 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 582 return 0; 583 } 584 585 late_initcall(kfence_debugfs_init); 586 587 /* === Allocation Gate Timer ================================================ */ 588 589 /* 590 * Set up delayed work, which will enable and disable the static key. We need to 591 * use a work queue (rather than a simple timer), since enabling and disabling a 592 * static key cannot be done from an interrupt. 593 * 594 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 595 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 596 * more aggressive sampling intervals), we could get away with a variant that 597 * avoids IPIs, at the cost of not immediately capturing allocations if the 598 * instructions remain cached. 599 */ 600 static struct delayed_work kfence_timer; 601 static void toggle_allocation_gate(struct work_struct *work) 602 { 603 if (!READ_ONCE(kfence_enabled)) 604 return; 605 606 /* Enable static key, and await allocation to happen. */ 607 atomic_set(&kfence_allocation_gate, 0); 608 #ifdef CONFIG_KFENCE_STATIC_KEYS 609 static_branch_enable(&kfence_allocation_key); 610 /* 611 * Await an allocation. Timeout after 1 second, in case the kernel stops 612 * doing allocations, to avoid stalling this worker task for too long. 613 */ 614 { 615 unsigned long end_wait = jiffies + HZ; 616 617 do { 618 set_current_state(TASK_UNINTERRUPTIBLE); 619 if (atomic_read(&kfence_allocation_gate) != 0) 620 break; 621 schedule_timeout(1); 622 } while (time_before(jiffies, end_wait)); 623 __set_current_state(TASK_RUNNING); 624 } 625 /* Disable static key and reset timer. */ 626 static_branch_disable(&kfence_allocation_key); 627 #endif 628 schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval)); 629 } 630 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); 631 632 /* === Public interface ===================================================== */ 633 634 void __init kfence_alloc_pool(void) 635 { 636 if (!kfence_sample_interval) 637 return; 638 639 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 640 641 if (!__kfence_pool) 642 pr_err("failed to allocate pool\n"); 643 } 644 645 void __init kfence_init(void) 646 { 647 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 648 if (!kfence_sample_interval) 649 return; 650 651 if (!kfence_init_pool()) { 652 pr_err("%s failed\n", __func__); 653 return; 654 } 655 656 WRITE_ONCE(kfence_enabled, true); 657 schedule_delayed_work(&kfence_timer, 0); 658 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 659 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 660 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 661 } 662 663 void kfence_shutdown_cache(struct kmem_cache *s) 664 { 665 unsigned long flags; 666 struct kfence_metadata *meta; 667 int i; 668 669 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 670 bool in_use; 671 672 meta = &kfence_metadata[i]; 673 674 /* 675 * If we observe some inconsistent cache and state pair where we 676 * should have returned false here, cache destruction is racing 677 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 678 * the lock will not help, as different critical section 679 * serialization will have the same outcome. 680 */ 681 if (READ_ONCE(meta->cache) != s || 682 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) 683 continue; 684 685 raw_spin_lock_irqsave(&meta->lock, flags); 686 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; 687 raw_spin_unlock_irqrestore(&meta->lock, flags); 688 689 if (in_use) { 690 /* 691 * This cache still has allocations, and we should not 692 * release them back into the freelist so they can still 693 * safely be used and retain the kernel's default 694 * behaviour of keeping the allocations alive (leak the 695 * cache); however, they effectively become "zombie 696 * allocations" as the KFENCE objects are the only ones 697 * still in use and the owning cache is being destroyed. 698 * 699 * We mark them freed, so that any subsequent use shows 700 * more useful error messages that will include stack 701 * traces of the user of the object, the original 702 * allocation, and caller to shutdown_cache(). 703 */ 704 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 705 } 706 } 707 708 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 709 meta = &kfence_metadata[i]; 710 711 /* See above. */ 712 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 713 continue; 714 715 raw_spin_lock_irqsave(&meta->lock, flags); 716 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 717 meta->cache = NULL; 718 raw_spin_unlock_irqrestore(&meta->lock, flags); 719 } 720 } 721 722 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 723 { 724 /* 725 * allocation_gate only needs to become non-zero, so it doesn't make 726 * sense to continue writing to it and pay the associated contention 727 * cost, in case we have a large number of concurrent allocations. 728 */ 729 if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1) 730 return NULL; 731 732 if (!READ_ONCE(kfence_enabled)) 733 return NULL; 734 735 if (size > PAGE_SIZE) 736 return NULL; 737 738 return kfence_guarded_alloc(s, size, flags); 739 } 740 741 size_t kfence_ksize(const void *addr) 742 { 743 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 744 745 /* 746 * Read locklessly -- if there is a race with __kfence_alloc(), this is 747 * either a use-after-free or invalid access. 748 */ 749 return meta ? meta->size : 0; 750 } 751 752 void *kfence_object_start(const void *addr) 753 { 754 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 755 756 /* 757 * Read locklessly -- if there is a race with __kfence_alloc(), this is 758 * either a use-after-free or invalid access. 759 */ 760 return meta ? (void *)meta->addr : NULL; 761 } 762 763 void __kfence_free(void *addr) 764 { 765 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 766 767 /* 768 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 769 * the object, as the object page may be recycled for other-typed 770 * objects once it has been freed. meta->cache may be NULL if the cache 771 * was destroyed. 772 */ 773 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) 774 call_rcu(&meta->rcu_head, rcu_guarded_free); 775 else 776 kfence_guarded_free(addr, meta, false); 777 } 778 779 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 780 { 781 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 782 struct kfence_metadata *to_report = NULL; 783 enum kfence_error_type error_type; 784 unsigned long flags; 785 786 if (!is_kfence_address((void *)addr)) 787 return false; 788 789 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 790 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 791 792 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 793 794 if (page_index % 2) { 795 /* This is a redzone, report a buffer overflow. */ 796 struct kfence_metadata *meta; 797 int distance = 0; 798 799 meta = addr_to_metadata(addr - PAGE_SIZE); 800 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 801 to_report = meta; 802 /* Data race ok; distance calculation approximate. */ 803 distance = addr - data_race(meta->addr + meta->size); 804 } 805 806 meta = addr_to_metadata(addr + PAGE_SIZE); 807 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 808 /* Data race ok; distance calculation approximate. */ 809 if (!to_report || distance > data_race(meta->addr) - addr) 810 to_report = meta; 811 } 812 813 if (!to_report) 814 goto out; 815 816 raw_spin_lock_irqsave(&to_report->lock, flags); 817 to_report->unprotected_page = addr; 818 error_type = KFENCE_ERROR_OOB; 819 820 /* 821 * If the object was freed before we took the look we can still 822 * report this as an OOB -- the report will simply show the 823 * stacktrace of the free as well. 824 */ 825 } else { 826 to_report = addr_to_metadata(addr); 827 if (!to_report) 828 goto out; 829 830 raw_spin_lock_irqsave(&to_report->lock, flags); 831 error_type = KFENCE_ERROR_UAF; 832 /* 833 * We may race with __kfence_alloc(), and it is possible that a 834 * freed object may be reallocated. We simply report this as a 835 * use-after-free, with the stack trace showing the place where 836 * the object was re-allocated. 837 */ 838 } 839 840 out: 841 if (to_report) { 842 kfence_report_error(addr, is_write, regs, to_report, error_type); 843 raw_spin_unlock_irqrestore(&to_report->lock, flags); 844 } else { 845 /* This may be a UAF or OOB access, but we can't be sure. */ 846 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 847 } 848 849 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 850 } 851