xref: /openbmc/linux/mm/kasan/common.c (revision d73b49365ee65ac48074bdb5aa717bb4644dbbb7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29 
30 #include "kasan.h"
31 #include "../slab.h"
32 
33 depot_stack_handle_t kasan_save_stack(gfp_t flags)
34 {
35 	unsigned long entries[KASAN_STACK_DEPTH];
36 	unsigned int nr_entries;
37 
38 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 	nr_entries = filter_irq_stacks(entries, nr_entries);
40 	return stack_depot_save(entries, nr_entries, flags);
41 }
42 
43 void kasan_set_track(struct kasan_track *track, gfp_t flags)
44 {
45 	track->pid = current->pid;
46 	track->stack = kasan_save_stack(flags);
47 }
48 
49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
50 void kasan_enable_current(void)
51 {
52 	current->kasan_depth++;
53 }
54 
55 void kasan_disable_current(void)
56 {
57 	current->kasan_depth--;
58 }
59 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
60 
61 void kasan_unpoison_range(const void *address, size_t size)
62 {
63 	unpoison_range(address, size);
64 }
65 
66 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
67 {
68 	void *base = task_stack_page(task);
69 	size_t size = sp - base;
70 
71 	unpoison_range(base, size);
72 }
73 
74 /* Unpoison the entire stack for a task. */
75 void kasan_unpoison_task_stack(struct task_struct *task)
76 {
77 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
78 }
79 
80 /* Unpoison the stack for the current task beyond a watermark sp value. */
81 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
82 {
83 	/*
84 	 * Calculate the task stack base address.  Avoid using 'current'
85 	 * because this function is called by early resume code which hasn't
86 	 * yet set up the percpu register (%gs).
87 	 */
88 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
89 
90 	unpoison_range(base, watermark - base);
91 }
92 
93 void kasan_alloc_pages(struct page *page, unsigned int order)
94 {
95 	u8 tag;
96 	unsigned long i;
97 
98 	if (unlikely(PageHighMem(page)))
99 		return;
100 
101 	tag = random_tag();
102 	for (i = 0; i < (1 << order); i++)
103 		page_kasan_tag_set(page + i, tag);
104 	unpoison_range(page_address(page), PAGE_SIZE << order);
105 }
106 
107 void kasan_free_pages(struct page *page, unsigned int order)
108 {
109 	if (likely(!PageHighMem(page)))
110 		poison_range(page_address(page),
111 				PAGE_SIZE << order,
112 				KASAN_FREE_PAGE);
113 }
114 
115 /*
116  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
117  * For larger allocations larger redzones are used.
118  */
119 static inline unsigned int optimal_redzone(unsigned int object_size)
120 {
121 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
122 		return 0;
123 
124 	return
125 		object_size <= 64        - 16   ? 16 :
126 		object_size <= 128       - 32   ? 32 :
127 		object_size <= 512       - 64   ? 64 :
128 		object_size <= 4096      - 128  ? 128 :
129 		object_size <= (1 << 14) - 256  ? 256 :
130 		object_size <= (1 << 15) - 512  ? 512 :
131 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
132 }
133 
134 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
135 			slab_flags_t *flags)
136 {
137 	unsigned int orig_size = *size;
138 	unsigned int redzone_size;
139 	int redzone_adjust;
140 
141 	/* Add alloc meta. */
142 	cache->kasan_info.alloc_meta_offset = *size;
143 	*size += sizeof(struct kasan_alloc_meta);
144 
145 	/* Add free meta. */
146 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
147 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
148 	     cache->object_size < sizeof(struct kasan_free_meta))) {
149 		cache->kasan_info.free_meta_offset = *size;
150 		*size += sizeof(struct kasan_free_meta);
151 	}
152 
153 	redzone_size = optimal_redzone(cache->object_size);
154 	redzone_adjust = redzone_size -	(*size - cache->object_size);
155 	if (redzone_adjust > 0)
156 		*size += redzone_adjust;
157 
158 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
159 			max(*size, cache->object_size + redzone_size));
160 
161 	/*
162 	 * If the metadata doesn't fit, don't enable KASAN at all.
163 	 */
164 	if (*size <= cache->kasan_info.alloc_meta_offset ||
165 			*size <= cache->kasan_info.free_meta_offset) {
166 		cache->kasan_info.alloc_meta_offset = 0;
167 		cache->kasan_info.free_meta_offset = 0;
168 		*size = orig_size;
169 		return;
170 	}
171 
172 	*flags |= SLAB_KASAN;
173 }
174 
175 size_t kasan_metadata_size(struct kmem_cache *cache)
176 {
177 	return (cache->kasan_info.alloc_meta_offset ?
178 		sizeof(struct kasan_alloc_meta) : 0) +
179 		(cache->kasan_info.free_meta_offset ?
180 		sizeof(struct kasan_free_meta) : 0);
181 }
182 
183 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
184 					const void *object)
185 {
186 	return (void *)object + cache->kasan_info.alloc_meta_offset;
187 }
188 
189 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
190 				      const void *object)
191 {
192 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
193 	return (void *)object + cache->kasan_info.free_meta_offset;
194 }
195 
196 void kasan_poison_slab(struct page *page)
197 {
198 	unsigned long i;
199 
200 	for (i = 0; i < compound_nr(page); i++)
201 		page_kasan_tag_reset(page + i);
202 	poison_range(page_address(page), page_size(page),
203 		     KASAN_KMALLOC_REDZONE);
204 }
205 
206 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
207 {
208 	unpoison_range(object, cache->object_size);
209 }
210 
211 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
212 {
213 	poison_range(object,
214 			round_up(cache->object_size, KASAN_GRANULE_SIZE),
215 			KASAN_KMALLOC_REDZONE);
216 }
217 
218 /*
219  * This function assigns a tag to an object considering the following:
220  * 1. A cache might have a constructor, which might save a pointer to a slab
221  *    object somewhere (e.g. in the object itself). We preassign a tag for
222  *    each object in caches with constructors during slab creation and reuse
223  *    the same tag each time a particular object is allocated.
224  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
225  *    accessed after being freed. We preassign tags for objects in these
226  *    caches as well.
227  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
228  *    is stored as an array of indexes instead of a linked list. Assign tags
229  *    based on objects indexes, so that objects that are next to each other
230  *    get different tags.
231  */
232 static u8 assign_tag(struct kmem_cache *cache, const void *object,
233 			bool init, bool keep_tag)
234 {
235 	/*
236 	 * 1. When an object is kmalloc()'ed, two hooks are called:
237 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
238 	 *    tag only in the first one.
239 	 * 2. We reuse the same tag for krealloc'ed objects.
240 	 */
241 	if (keep_tag)
242 		return get_tag(object);
243 
244 	/*
245 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
246 	 * set, assign a tag when the object is being allocated (init == false).
247 	 */
248 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
249 		return init ? KASAN_TAG_KERNEL : random_tag();
250 
251 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
252 #ifdef CONFIG_SLAB
253 	/* For SLAB assign tags based on the object index in the freelist. */
254 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
255 #else
256 	/*
257 	 * For SLUB assign a random tag during slab creation, otherwise reuse
258 	 * the already assigned tag.
259 	 */
260 	return init ? random_tag() : get_tag(object);
261 #endif
262 }
263 
264 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
265 						const void *object)
266 {
267 	struct kasan_alloc_meta *alloc_info;
268 
269 	if (!(cache->flags & SLAB_KASAN))
270 		return (void *)object;
271 
272 	alloc_info = get_alloc_info(cache, object);
273 	__memset(alloc_info, 0, sizeof(*alloc_info));
274 
275 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
276 		object = set_tag(object,
277 				assign_tag(cache, object, true, false));
278 
279 	return (void *)object;
280 }
281 
282 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
283 			      unsigned long ip, bool quarantine)
284 {
285 	u8 tag;
286 	void *tagged_object;
287 	unsigned long rounded_up_size;
288 
289 	tag = get_tag(object);
290 	tagged_object = object;
291 	object = reset_tag(object);
292 
293 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
294 	    object)) {
295 		kasan_report_invalid_free(tagged_object, ip);
296 		return true;
297 	}
298 
299 	/* RCU slabs could be legally used after free within the RCU period */
300 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
301 		return false;
302 
303 	if (check_invalid_free(tagged_object)) {
304 		kasan_report_invalid_free(tagged_object, ip);
305 		return true;
306 	}
307 
308 	rounded_up_size = round_up(cache->object_size, KASAN_GRANULE_SIZE);
309 	poison_range(object, rounded_up_size, KASAN_KMALLOC_FREE);
310 
311 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
312 			unlikely(!(cache->flags & SLAB_KASAN)))
313 		return false;
314 
315 	kasan_set_free_info(cache, object, tag);
316 
317 	quarantine_put(get_free_info(cache, object), cache);
318 
319 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
320 }
321 
322 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
323 {
324 	return __kasan_slab_free(cache, object, ip, true);
325 }
326 
327 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
328 				size_t size, gfp_t flags, bool keep_tag)
329 {
330 	unsigned long redzone_start;
331 	unsigned long redzone_end;
332 	u8 tag = 0xff;
333 
334 	if (gfpflags_allow_blocking(flags))
335 		quarantine_reduce();
336 
337 	if (unlikely(object == NULL))
338 		return NULL;
339 
340 	redzone_start = round_up((unsigned long)(object + size),
341 				KASAN_GRANULE_SIZE);
342 	redzone_end = round_up((unsigned long)object + cache->object_size,
343 				KASAN_GRANULE_SIZE);
344 
345 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
346 		tag = assign_tag(cache, object, false, keep_tag);
347 
348 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
349 	unpoison_range(set_tag(object, tag), size);
350 	poison_range((void *)redzone_start, redzone_end - redzone_start,
351 		     KASAN_KMALLOC_REDZONE);
352 
353 	if (cache->flags & SLAB_KASAN)
354 		kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
355 
356 	return set_tag(object, tag);
357 }
358 
359 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
360 					gfp_t flags)
361 {
362 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
363 }
364 
365 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
366 				size_t size, gfp_t flags)
367 {
368 	return __kasan_kmalloc(cache, object, size, flags, true);
369 }
370 EXPORT_SYMBOL(kasan_kmalloc);
371 
372 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
373 						gfp_t flags)
374 {
375 	struct page *page;
376 	unsigned long redzone_start;
377 	unsigned long redzone_end;
378 
379 	if (gfpflags_allow_blocking(flags))
380 		quarantine_reduce();
381 
382 	if (unlikely(ptr == NULL))
383 		return NULL;
384 
385 	page = virt_to_page(ptr);
386 	redzone_start = round_up((unsigned long)(ptr + size),
387 				KASAN_GRANULE_SIZE);
388 	redzone_end = (unsigned long)ptr + page_size(page);
389 
390 	unpoison_range(ptr, size);
391 	poison_range((void *)redzone_start, redzone_end - redzone_start,
392 		     KASAN_PAGE_REDZONE);
393 
394 	return (void *)ptr;
395 }
396 
397 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
398 {
399 	struct page *page;
400 
401 	if (unlikely(object == ZERO_SIZE_PTR))
402 		return (void *)object;
403 
404 	page = virt_to_head_page(object);
405 
406 	if (unlikely(!PageSlab(page)))
407 		return kasan_kmalloc_large(object, size, flags);
408 	else
409 		return __kasan_kmalloc(page->slab_cache, object, size,
410 						flags, true);
411 }
412 
413 void kasan_poison_kfree(void *ptr, unsigned long ip)
414 {
415 	struct page *page;
416 
417 	page = virt_to_head_page(ptr);
418 
419 	if (unlikely(!PageSlab(page))) {
420 		if (ptr != page_address(page)) {
421 			kasan_report_invalid_free(ptr, ip);
422 			return;
423 		}
424 		poison_range(ptr, page_size(page), KASAN_FREE_PAGE);
425 	} else {
426 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
427 	}
428 }
429 
430 void kasan_kfree_large(void *ptr, unsigned long ip)
431 {
432 	if (ptr != page_address(virt_to_head_page(ptr)))
433 		kasan_report_invalid_free(ptr, ip);
434 	/* The object will be poisoned by page_alloc. */
435 }
436