1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/slab.h> 25 #include <linux/stacktrace.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/bug.h> 29 30 #include "kasan.h" 31 #include "../slab.h" 32 33 depot_stack_handle_t kasan_save_stack(gfp_t flags) 34 { 35 unsigned long entries[KASAN_STACK_DEPTH]; 36 unsigned int nr_entries; 37 38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 39 nr_entries = filter_irq_stacks(entries, nr_entries); 40 return stack_depot_save(entries, nr_entries, flags); 41 } 42 43 void kasan_set_track(struct kasan_track *track, gfp_t flags) 44 { 45 track->pid = current->pid; 46 track->stack = kasan_save_stack(flags); 47 } 48 49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 50 void kasan_enable_current(void) 51 { 52 current->kasan_depth++; 53 } 54 55 void kasan_disable_current(void) 56 { 57 current->kasan_depth--; 58 } 59 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 60 61 void kasan_unpoison_range(const void *address, size_t size) 62 { 63 unpoison_range(address, size); 64 } 65 66 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) 67 { 68 void *base = task_stack_page(task); 69 size_t size = sp - base; 70 71 unpoison_range(base, size); 72 } 73 74 /* Unpoison the entire stack for a task. */ 75 void kasan_unpoison_task_stack(struct task_struct *task) 76 { 77 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); 78 } 79 80 /* Unpoison the stack for the current task beyond a watermark sp value. */ 81 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 82 { 83 /* 84 * Calculate the task stack base address. Avoid using 'current' 85 * because this function is called by early resume code which hasn't 86 * yet set up the percpu register (%gs). 87 */ 88 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 89 90 unpoison_range(base, watermark - base); 91 } 92 93 void kasan_alloc_pages(struct page *page, unsigned int order) 94 { 95 u8 tag; 96 unsigned long i; 97 98 if (unlikely(PageHighMem(page))) 99 return; 100 101 tag = random_tag(); 102 for (i = 0; i < (1 << order); i++) 103 page_kasan_tag_set(page + i, tag); 104 unpoison_range(page_address(page), PAGE_SIZE << order); 105 } 106 107 void kasan_free_pages(struct page *page, unsigned int order) 108 { 109 if (likely(!PageHighMem(page))) 110 poison_range(page_address(page), 111 PAGE_SIZE << order, 112 KASAN_FREE_PAGE); 113 } 114 115 /* 116 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 117 * For larger allocations larger redzones are used. 118 */ 119 static inline unsigned int optimal_redzone(unsigned int object_size) 120 { 121 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 122 return 0; 123 124 return 125 object_size <= 64 - 16 ? 16 : 126 object_size <= 128 - 32 ? 32 : 127 object_size <= 512 - 64 ? 64 : 128 object_size <= 4096 - 128 ? 128 : 129 object_size <= (1 << 14) - 256 ? 256 : 130 object_size <= (1 << 15) - 512 ? 512 : 131 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 132 } 133 134 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 135 slab_flags_t *flags) 136 { 137 unsigned int orig_size = *size; 138 unsigned int redzone_size; 139 int redzone_adjust; 140 141 /* Add alloc meta. */ 142 cache->kasan_info.alloc_meta_offset = *size; 143 *size += sizeof(struct kasan_alloc_meta); 144 145 /* Add free meta. */ 146 if (IS_ENABLED(CONFIG_KASAN_GENERIC) && 147 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || 148 cache->object_size < sizeof(struct kasan_free_meta))) { 149 cache->kasan_info.free_meta_offset = *size; 150 *size += sizeof(struct kasan_free_meta); 151 } 152 153 redzone_size = optimal_redzone(cache->object_size); 154 redzone_adjust = redzone_size - (*size - cache->object_size); 155 if (redzone_adjust > 0) 156 *size += redzone_adjust; 157 158 *size = min_t(unsigned int, KMALLOC_MAX_SIZE, 159 max(*size, cache->object_size + redzone_size)); 160 161 /* 162 * If the metadata doesn't fit, don't enable KASAN at all. 163 */ 164 if (*size <= cache->kasan_info.alloc_meta_offset || 165 *size <= cache->kasan_info.free_meta_offset) { 166 cache->kasan_info.alloc_meta_offset = 0; 167 cache->kasan_info.free_meta_offset = 0; 168 *size = orig_size; 169 return; 170 } 171 172 *flags |= SLAB_KASAN; 173 } 174 175 size_t kasan_metadata_size(struct kmem_cache *cache) 176 { 177 return (cache->kasan_info.alloc_meta_offset ? 178 sizeof(struct kasan_alloc_meta) : 0) + 179 (cache->kasan_info.free_meta_offset ? 180 sizeof(struct kasan_free_meta) : 0); 181 } 182 183 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, 184 const void *object) 185 { 186 return (void *)object + cache->kasan_info.alloc_meta_offset; 187 } 188 189 struct kasan_free_meta *get_free_info(struct kmem_cache *cache, 190 const void *object) 191 { 192 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 193 return (void *)object + cache->kasan_info.free_meta_offset; 194 } 195 196 void kasan_poison_slab(struct page *page) 197 { 198 unsigned long i; 199 200 for (i = 0; i < compound_nr(page); i++) 201 page_kasan_tag_reset(page + i); 202 poison_range(page_address(page), page_size(page), 203 KASAN_KMALLOC_REDZONE); 204 } 205 206 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 207 { 208 unpoison_range(object, cache->object_size); 209 } 210 211 void kasan_poison_object_data(struct kmem_cache *cache, void *object) 212 { 213 poison_range(object, 214 round_up(cache->object_size, KASAN_GRANULE_SIZE), 215 KASAN_KMALLOC_REDZONE); 216 } 217 218 /* 219 * This function assigns a tag to an object considering the following: 220 * 1. A cache might have a constructor, which might save a pointer to a slab 221 * object somewhere (e.g. in the object itself). We preassign a tag for 222 * each object in caches with constructors during slab creation and reuse 223 * the same tag each time a particular object is allocated. 224 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 225 * accessed after being freed. We preassign tags for objects in these 226 * caches as well. 227 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 228 * is stored as an array of indexes instead of a linked list. Assign tags 229 * based on objects indexes, so that objects that are next to each other 230 * get different tags. 231 */ 232 static u8 assign_tag(struct kmem_cache *cache, const void *object, 233 bool init, bool keep_tag) 234 { 235 /* 236 * 1. When an object is kmalloc()'ed, two hooks are called: 237 * kasan_slab_alloc() and kasan_kmalloc(). We assign the 238 * tag only in the first one. 239 * 2. We reuse the same tag for krealloc'ed objects. 240 */ 241 if (keep_tag) 242 return get_tag(object); 243 244 /* 245 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 246 * set, assign a tag when the object is being allocated (init == false). 247 */ 248 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 249 return init ? KASAN_TAG_KERNEL : random_tag(); 250 251 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 252 #ifdef CONFIG_SLAB 253 /* For SLAB assign tags based on the object index in the freelist. */ 254 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 255 #else 256 /* 257 * For SLUB assign a random tag during slab creation, otherwise reuse 258 * the already assigned tag. 259 */ 260 return init ? random_tag() : get_tag(object); 261 #endif 262 } 263 264 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, 265 const void *object) 266 { 267 struct kasan_alloc_meta *alloc_info; 268 269 if (!(cache->flags & SLAB_KASAN)) 270 return (void *)object; 271 272 alloc_info = get_alloc_info(cache, object); 273 __memset(alloc_info, 0, sizeof(*alloc_info)); 274 275 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 276 object = set_tag(object, 277 assign_tag(cache, object, true, false)); 278 279 return (void *)object; 280 } 281 282 static bool __kasan_slab_free(struct kmem_cache *cache, void *object, 283 unsigned long ip, bool quarantine) 284 { 285 u8 tag; 286 void *tagged_object; 287 unsigned long rounded_up_size; 288 289 tag = get_tag(object); 290 tagged_object = object; 291 object = reset_tag(object); 292 293 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 294 object)) { 295 kasan_report_invalid_free(tagged_object, ip); 296 return true; 297 } 298 299 /* RCU slabs could be legally used after free within the RCU period */ 300 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 301 return false; 302 303 if (check_invalid_free(tagged_object)) { 304 kasan_report_invalid_free(tagged_object, ip); 305 return true; 306 } 307 308 rounded_up_size = round_up(cache->object_size, KASAN_GRANULE_SIZE); 309 poison_range(object, rounded_up_size, KASAN_KMALLOC_FREE); 310 311 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || 312 unlikely(!(cache->flags & SLAB_KASAN))) 313 return false; 314 315 kasan_set_free_info(cache, object, tag); 316 317 quarantine_put(get_free_info(cache, object), cache); 318 319 return IS_ENABLED(CONFIG_KASAN_GENERIC); 320 } 321 322 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) 323 { 324 return __kasan_slab_free(cache, object, ip, true); 325 } 326 327 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, 328 size_t size, gfp_t flags, bool keep_tag) 329 { 330 unsigned long redzone_start; 331 unsigned long redzone_end; 332 u8 tag = 0xff; 333 334 if (gfpflags_allow_blocking(flags)) 335 quarantine_reduce(); 336 337 if (unlikely(object == NULL)) 338 return NULL; 339 340 redzone_start = round_up((unsigned long)(object + size), 341 KASAN_GRANULE_SIZE); 342 redzone_end = round_up((unsigned long)object + cache->object_size, 343 KASAN_GRANULE_SIZE); 344 345 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 346 tag = assign_tag(cache, object, false, keep_tag); 347 348 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ 349 unpoison_range(set_tag(object, tag), size); 350 poison_range((void *)redzone_start, redzone_end - redzone_start, 351 KASAN_KMALLOC_REDZONE); 352 353 if (cache->flags & SLAB_KASAN) 354 kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags); 355 356 return set_tag(object, tag); 357 } 358 359 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, 360 gfp_t flags) 361 { 362 return __kasan_kmalloc(cache, object, cache->object_size, flags, false); 363 } 364 365 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, 366 size_t size, gfp_t flags) 367 { 368 return __kasan_kmalloc(cache, object, size, flags, true); 369 } 370 EXPORT_SYMBOL(kasan_kmalloc); 371 372 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, 373 gfp_t flags) 374 { 375 struct page *page; 376 unsigned long redzone_start; 377 unsigned long redzone_end; 378 379 if (gfpflags_allow_blocking(flags)) 380 quarantine_reduce(); 381 382 if (unlikely(ptr == NULL)) 383 return NULL; 384 385 page = virt_to_page(ptr); 386 redzone_start = round_up((unsigned long)(ptr + size), 387 KASAN_GRANULE_SIZE); 388 redzone_end = (unsigned long)ptr + page_size(page); 389 390 unpoison_range(ptr, size); 391 poison_range((void *)redzone_start, redzone_end - redzone_start, 392 KASAN_PAGE_REDZONE); 393 394 return (void *)ptr; 395 } 396 397 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) 398 { 399 struct page *page; 400 401 if (unlikely(object == ZERO_SIZE_PTR)) 402 return (void *)object; 403 404 page = virt_to_head_page(object); 405 406 if (unlikely(!PageSlab(page))) 407 return kasan_kmalloc_large(object, size, flags); 408 else 409 return __kasan_kmalloc(page->slab_cache, object, size, 410 flags, true); 411 } 412 413 void kasan_poison_kfree(void *ptr, unsigned long ip) 414 { 415 struct page *page; 416 417 page = virt_to_head_page(ptr); 418 419 if (unlikely(!PageSlab(page))) { 420 if (ptr != page_address(page)) { 421 kasan_report_invalid_free(ptr, ip); 422 return; 423 } 424 poison_range(ptr, page_size(page), KASAN_FREE_PAGE); 425 } else { 426 __kasan_slab_free(page->slab_cache, ptr, ip, false); 427 } 428 } 429 430 void kasan_kfree_large(void *ptr, unsigned long ip) 431 { 432 if (ptr != page_address(virt_to_head_page(ptr))) 433 kasan_report_invalid_free(ptr, ip); 434 /* The object will be poisoned by page_alloc. */ 435 } 436