xref: /openbmc/linux/mm/hugetlb.c (revision ec8f24b7faaf3d4799a7c3f4c1b87f6b02778ad1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34 
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42 
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47  * Minimum page order among possible hugepage sizes, set to a proper value
48  * at boot time.
49  */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51 
52 __initdata LIST_HEAD(huge_boot_pages);
53 
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59 
60 /*
61  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62  * free_huge_pages, and surplus_huge_pages.
63  */
64 DEFINE_SPINLOCK(hugetlb_lock);
65 
66 /*
67  * Serializes faults on the same logical page.  This is used to
68  * prevent spurious OOMs when the hugepage pool is fully utilized.
69  */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72 
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75 
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
79 
80 	spin_unlock(&spool->lock);
81 
82 	/* If no pages are used, and no other handles to the subpool
83 	 * remain, give up any reservations mased on minimum size and
84 	 * free the subpool */
85 	if (free) {
86 		if (spool->min_hpages != -1)
87 			hugetlb_acct_memory(spool->hstate,
88 						-spool->min_hpages);
89 		kfree(spool);
90 	}
91 }
92 
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 						long min_hpages)
95 {
96 	struct hugepage_subpool *spool;
97 
98 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 	if (!spool)
100 		return NULL;
101 
102 	spin_lock_init(&spool->lock);
103 	spool->count = 1;
104 	spool->max_hpages = max_hpages;
105 	spool->hstate = h;
106 	spool->min_hpages = min_hpages;
107 
108 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 		kfree(spool);
110 		return NULL;
111 	}
112 	spool->rsv_hpages = min_hpages;
113 
114 	return spool;
115 }
116 
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119 	spin_lock(&spool->lock);
120 	BUG_ON(!spool->count);
121 	spool->count--;
122 	unlock_or_release_subpool(spool);
123 }
124 
125 /*
126  * Subpool accounting for allocating and reserving pages.
127  * Return -ENOMEM if there are not enough resources to satisfy the
128  * the request.  Otherwise, return the number of pages by which the
129  * global pools must be adjusted (upward).  The returned value may
130  * only be different than the passed value (delta) in the case where
131  * a subpool minimum size must be manitained.
132  */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 				      long delta)
135 {
136 	long ret = delta;
137 
138 	if (!spool)
139 		return ret;
140 
141 	spin_lock(&spool->lock);
142 
143 	if (spool->max_hpages != -1) {		/* maximum size accounting */
144 		if ((spool->used_hpages + delta) <= spool->max_hpages)
145 			spool->used_hpages += delta;
146 		else {
147 			ret = -ENOMEM;
148 			goto unlock_ret;
149 		}
150 	}
151 
152 	/* minimum size accounting */
153 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 		if (delta > spool->rsv_hpages) {
155 			/*
156 			 * Asking for more reserves than those already taken on
157 			 * behalf of subpool.  Return difference.
158 			 */
159 			ret = delta - spool->rsv_hpages;
160 			spool->rsv_hpages = 0;
161 		} else {
162 			ret = 0;	/* reserves already accounted for */
163 			spool->rsv_hpages -= delta;
164 		}
165 	}
166 
167 unlock_ret:
168 	spin_unlock(&spool->lock);
169 	return ret;
170 }
171 
172 /*
173  * Subpool accounting for freeing and unreserving pages.
174  * Return the number of global page reservations that must be dropped.
175  * The return value may only be different than the passed value (delta)
176  * in the case where a subpool minimum size must be maintained.
177  */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 				       long delta)
180 {
181 	long ret = delta;
182 
183 	if (!spool)
184 		return delta;
185 
186 	spin_lock(&spool->lock);
187 
188 	if (spool->max_hpages != -1)		/* maximum size accounting */
189 		spool->used_hpages -= delta;
190 
191 	 /* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 		if (spool->rsv_hpages + delta <= spool->min_hpages)
194 			ret = 0;
195 		else
196 			ret = spool->rsv_hpages + delta - spool->min_hpages;
197 
198 		spool->rsv_hpages += delta;
199 		if (spool->rsv_hpages > spool->min_hpages)
200 			spool->rsv_hpages = spool->min_hpages;
201 	}
202 
203 	/*
204 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 	 * quota reference, free it now.
206 	 */
207 	unlock_or_release_subpool(spool);
208 
209 	return ret;
210 }
211 
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214 	return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216 
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219 	return subpool_inode(file_inode(vma->vm_file));
220 }
221 
222 /*
223  * Region tracking -- allows tracking of reservations and instantiated pages
224  *                    across the pages in a mapping.
225  *
226  * The region data structures are embedded into a resv_map and protected
227  * by a resv_map's lock.  The set of regions within the resv_map represent
228  * reservations for huge pages, or huge pages that have already been
229  * instantiated within the map.  The from and to elements are huge page
230  * indicies into the associated mapping.  from indicates the starting index
231  * of the region.  to represents the first index past the end of  the region.
232  *
233  * For example, a file region structure with from == 0 and to == 4 represents
234  * four huge pages in a mapping.  It is important to note that the to element
235  * represents the first element past the end of the region. This is used in
236  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237  *
238  * Interval notation of the form [from, to) will be used to indicate that
239  * the endpoint from is inclusive and to is exclusive.
240  */
241 struct file_region {
242 	struct list_head link;
243 	long from;
244 	long to;
245 };
246 
247 /*
248  * Add the huge page range represented by [f, t) to the reserve
249  * map.  In the normal case, existing regions will be expanded
250  * to accommodate the specified range.  Sufficient regions should
251  * exist for expansion due to the previous call to region_chg
252  * with the same range.  However, it is possible that region_del
253  * could have been called after region_chg and modifed the map
254  * in such a way that no region exists to be expanded.  In this
255  * case, pull a region descriptor from the cache associated with
256  * the map and use that for the new range.
257  *
258  * Return the number of new huge pages added to the map.  This
259  * number is greater than or equal to zero.
260  */
261 static long region_add(struct resv_map *resv, long f, long t)
262 {
263 	struct list_head *head = &resv->regions;
264 	struct file_region *rg, *nrg, *trg;
265 	long add = 0;
266 
267 	spin_lock(&resv->lock);
268 	/* Locate the region we are either in or before. */
269 	list_for_each_entry(rg, head, link)
270 		if (f <= rg->to)
271 			break;
272 
273 	/*
274 	 * If no region exists which can be expanded to include the
275 	 * specified range, the list must have been modified by an
276 	 * interleving call to region_del().  Pull a region descriptor
277 	 * from the cache and use it for this range.
278 	 */
279 	if (&rg->link == head || t < rg->from) {
280 		VM_BUG_ON(resv->region_cache_count <= 0);
281 
282 		resv->region_cache_count--;
283 		nrg = list_first_entry(&resv->region_cache, struct file_region,
284 					link);
285 		list_del(&nrg->link);
286 
287 		nrg->from = f;
288 		nrg->to = t;
289 		list_add(&nrg->link, rg->link.prev);
290 
291 		add += t - f;
292 		goto out_locked;
293 	}
294 
295 	/* Round our left edge to the current segment if it encloses us. */
296 	if (f > rg->from)
297 		f = rg->from;
298 
299 	/* Check for and consume any regions we now overlap with. */
300 	nrg = rg;
301 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 		if (&rg->link == head)
303 			break;
304 		if (rg->from > t)
305 			break;
306 
307 		/* If this area reaches higher then extend our area to
308 		 * include it completely.  If this is not the first area
309 		 * which we intend to reuse, free it. */
310 		if (rg->to > t)
311 			t = rg->to;
312 		if (rg != nrg) {
313 			/* Decrement return value by the deleted range.
314 			 * Another range will span this area so that by
315 			 * end of routine add will be >= zero
316 			 */
317 			add -= (rg->to - rg->from);
318 			list_del(&rg->link);
319 			kfree(rg);
320 		}
321 	}
322 
323 	add += (nrg->from - f);		/* Added to beginning of region */
324 	nrg->from = f;
325 	add += t - nrg->to;		/* Added to end of region */
326 	nrg->to = t;
327 
328 out_locked:
329 	resv->adds_in_progress--;
330 	spin_unlock(&resv->lock);
331 	VM_BUG_ON(add < 0);
332 	return add;
333 }
334 
335 /*
336  * Examine the existing reserve map and determine how many
337  * huge pages in the specified range [f, t) are NOT currently
338  * represented.  This routine is called before a subsequent
339  * call to region_add that will actually modify the reserve
340  * map to add the specified range [f, t).  region_chg does
341  * not change the number of huge pages represented by the
342  * map.  However, if the existing regions in the map can not
343  * be expanded to represent the new range, a new file_region
344  * structure is added to the map as a placeholder.  This is
345  * so that the subsequent region_add call will have all the
346  * regions it needs and will not fail.
347  *
348  * Upon entry, region_chg will also examine the cache of region descriptors
349  * associated with the map.  If there are not enough descriptors cached, one
350  * will be allocated for the in progress add operation.
351  *
352  * Returns the number of huge pages that need to be added to the existing
353  * reservation map for the range [f, t).  This number is greater or equal to
354  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
355  * is needed and can not be allocated.
356  */
357 static long region_chg(struct resv_map *resv, long f, long t)
358 {
359 	struct list_head *head = &resv->regions;
360 	struct file_region *rg, *nrg = NULL;
361 	long chg = 0;
362 
363 retry:
364 	spin_lock(&resv->lock);
365 retry_locked:
366 	resv->adds_in_progress++;
367 
368 	/*
369 	 * Check for sufficient descriptors in the cache to accommodate
370 	 * the number of in progress add operations.
371 	 */
372 	if (resv->adds_in_progress > resv->region_cache_count) {
373 		struct file_region *trg;
374 
375 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 		/* Must drop lock to allocate a new descriptor. */
377 		resv->adds_in_progress--;
378 		spin_unlock(&resv->lock);
379 
380 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 		if (!trg) {
382 			kfree(nrg);
383 			return -ENOMEM;
384 		}
385 
386 		spin_lock(&resv->lock);
387 		list_add(&trg->link, &resv->region_cache);
388 		resv->region_cache_count++;
389 		goto retry_locked;
390 	}
391 
392 	/* Locate the region we are before or in. */
393 	list_for_each_entry(rg, head, link)
394 		if (f <= rg->to)
395 			break;
396 
397 	/* If we are below the current region then a new region is required.
398 	 * Subtle, allocate a new region at the position but make it zero
399 	 * size such that we can guarantee to record the reservation. */
400 	if (&rg->link == head || t < rg->from) {
401 		if (!nrg) {
402 			resv->adds_in_progress--;
403 			spin_unlock(&resv->lock);
404 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 			if (!nrg)
406 				return -ENOMEM;
407 
408 			nrg->from = f;
409 			nrg->to   = f;
410 			INIT_LIST_HEAD(&nrg->link);
411 			goto retry;
412 		}
413 
414 		list_add(&nrg->link, rg->link.prev);
415 		chg = t - f;
416 		goto out_nrg;
417 	}
418 
419 	/* Round our left edge to the current segment if it encloses us. */
420 	if (f > rg->from)
421 		f = rg->from;
422 	chg = t - f;
423 
424 	/* Check for and consume any regions we now overlap with. */
425 	list_for_each_entry(rg, rg->link.prev, link) {
426 		if (&rg->link == head)
427 			break;
428 		if (rg->from > t)
429 			goto out;
430 
431 		/* We overlap with this area, if it extends further than
432 		 * us then we must extend ourselves.  Account for its
433 		 * existing reservation. */
434 		if (rg->to > t) {
435 			chg += rg->to - t;
436 			t = rg->to;
437 		}
438 		chg -= rg->to - rg->from;
439 	}
440 
441 out:
442 	spin_unlock(&resv->lock);
443 	/*  We already know we raced and no longer need the new region */
444 	kfree(nrg);
445 	return chg;
446 out_nrg:
447 	spin_unlock(&resv->lock);
448 	return chg;
449 }
450 
451 /*
452  * Abort the in progress add operation.  The adds_in_progress field
453  * of the resv_map keeps track of the operations in progress between
454  * calls to region_chg and region_add.  Operations are sometimes
455  * aborted after the call to region_chg.  In such cases, region_abort
456  * is called to decrement the adds_in_progress counter.
457  *
458  * NOTE: The range arguments [f, t) are not needed or used in this
459  * routine.  They are kept to make reading the calling code easier as
460  * arguments will match the associated region_chg call.
461  */
462 static void region_abort(struct resv_map *resv, long f, long t)
463 {
464 	spin_lock(&resv->lock);
465 	VM_BUG_ON(!resv->region_cache_count);
466 	resv->adds_in_progress--;
467 	spin_unlock(&resv->lock);
468 }
469 
470 /*
471  * Delete the specified range [f, t) from the reserve map.  If the
472  * t parameter is LONG_MAX, this indicates that ALL regions after f
473  * should be deleted.  Locate the regions which intersect [f, t)
474  * and either trim, delete or split the existing regions.
475  *
476  * Returns the number of huge pages deleted from the reserve map.
477  * In the normal case, the return value is zero or more.  In the
478  * case where a region must be split, a new region descriptor must
479  * be allocated.  If the allocation fails, -ENOMEM will be returned.
480  * NOTE: If the parameter t == LONG_MAX, then we will never split
481  * a region and possibly return -ENOMEM.  Callers specifying
482  * t == LONG_MAX do not need to check for -ENOMEM error.
483  */
484 static long region_del(struct resv_map *resv, long f, long t)
485 {
486 	struct list_head *head = &resv->regions;
487 	struct file_region *rg, *trg;
488 	struct file_region *nrg = NULL;
489 	long del = 0;
490 
491 retry:
492 	spin_lock(&resv->lock);
493 	list_for_each_entry_safe(rg, trg, head, link) {
494 		/*
495 		 * Skip regions before the range to be deleted.  file_region
496 		 * ranges are normally of the form [from, to).  However, there
497 		 * may be a "placeholder" entry in the map which is of the form
498 		 * (from, to) with from == to.  Check for placeholder entries
499 		 * at the beginning of the range to be deleted.
500 		 */
501 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 			continue;
503 
504 		if (rg->from >= t)
505 			break;
506 
507 		if (f > rg->from && t < rg->to) { /* Must split region */
508 			/*
509 			 * Check for an entry in the cache before dropping
510 			 * lock and attempting allocation.
511 			 */
512 			if (!nrg &&
513 			    resv->region_cache_count > resv->adds_in_progress) {
514 				nrg = list_first_entry(&resv->region_cache,
515 							struct file_region,
516 							link);
517 				list_del(&nrg->link);
518 				resv->region_cache_count--;
519 			}
520 
521 			if (!nrg) {
522 				spin_unlock(&resv->lock);
523 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 				if (!nrg)
525 					return -ENOMEM;
526 				goto retry;
527 			}
528 
529 			del += t - f;
530 
531 			/* New entry for end of split region */
532 			nrg->from = t;
533 			nrg->to = rg->to;
534 			INIT_LIST_HEAD(&nrg->link);
535 
536 			/* Original entry is trimmed */
537 			rg->to = f;
538 
539 			list_add(&nrg->link, &rg->link);
540 			nrg = NULL;
541 			break;
542 		}
543 
544 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 			del += rg->to - rg->from;
546 			list_del(&rg->link);
547 			kfree(rg);
548 			continue;
549 		}
550 
551 		if (f <= rg->from) {	/* Trim beginning of region */
552 			del += t - rg->from;
553 			rg->from = t;
554 		} else {		/* Trim end of region */
555 			del += rg->to - f;
556 			rg->to = f;
557 		}
558 	}
559 
560 	spin_unlock(&resv->lock);
561 	kfree(nrg);
562 	return del;
563 }
564 
565 /*
566  * A rare out of memory error was encountered which prevented removal of
567  * the reserve map region for a page.  The huge page itself was free'ed
568  * and removed from the page cache.  This routine will adjust the subpool
569  * usage count, and the global reserve count if needed.  By incrementing
570  * these counts, the reserve map entry which could not be deleted will
571  * appear as a "reserved" entry instead of simply dangling with incorrect
572  * counts.
573  */
574 void hugetlb_fix_reserve_counts(struct inode *inode)
575 {
576 	struct hugepage_subpool *spool = subpool_inode(inode);
577 	long rsv_adjust;
578 
579 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 	if (rsv_adjust) {
581 		struct hstate *h = hstate_inode(inode);
582 
583 		hugetlb_acct_memory(h, 1);
584 	}
585 }
586 
587 /*
588  * Count and return the number of huge pages in the reserve map
589  * that intersect with the range [f, t).
590  */
591 static long region_count(struct resv_map *resv, long f, long t)
592 {
593 	struct list_head *head = &resv->regions;
594 	struct file_region *rg;
595 	long chg = 0;
596 
597 	spin_lock(&resv->lock);
598 	/* Locate each segment we overlap with, and count that overlap. */
599 	list_for_each_entry(rg, head, link) {
600 		long seg_from;
601 		long seg_to;
602 
603 		if (rg->to <= f)
604 			continue;
605 		if (rg->from >= t)
606 			break;
607 
608 		seg_from = max(rg->from, f);
609 		seg_to = min(rg->to, t);
610 
611 		chg += seg_to - seg_from;
612 	}
613 	spin_unlock(&resv->lock);
614 
615 	return chg;
616 }
617 
618 /*
619  * Convert the address within this vma to the page offset within
620  * the mapping, in pagecache page units; huge pages here.
621  */
622 static pgoff_t vma_hugecache_offset(struct hstate *h,
623 			struct vm_area_struct *vma, unsigned long address)
624 {
625 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 			(vma->vm_pgoff >> huge_page_order(h));
627 }
628 
629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 				     unsigned long address)
631 {
632 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
633 }
634 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 
636 /*
637  * Return the size of the pages allocated when backing a VMA. In the majority
638  * cases this will be same size as used by the page table entries.
639  */
640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641 {
642 	if (vma->vm_ops && vma->vm_ops->pagesize)
643 		return vma->vm_ops->pagesize(vma);
644 	return PAGE_SIZE;
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 
648 /*
649  * Return the page size being used by the MMU to back a VMA. In the majority
650  * of cases, the page size used by the kernel matches the MMU size. On
651  * architectures where it differs, an architecture-specific 'strong'
652  * version of this symbol is required.
653  */
654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655 {
656 	return vma_kernel_pagesize(vma);
657 }
658 
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689 	return (unsigned long)vma->vm_private_data;
690 }
691 
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 							unsigned long value)
694 {
695 	vma->vm_private_data = (void *)value;
696 }
697 
698 struct resv_map *resv_map_alloc(void)
699 {
700 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702 
703 	if (!resv_map || !rg) {
704 		kfree(resv_map);
705 		kfree(rg);
706 		return NULL;
707 	}
708 
709 	kref_init(&resv_map->refs);
710 	spin_lock_init(&resv_map->lock);
711 	INIT_LIST_HEAD(&resv_map->regions);
712 
713 	resv_map->adds_in_progress = 0;
714 
715 	INIT_LIST_HEAD(&resv_map->region_cache);
716 	list_add(&rg->link, &resv_map->region_cache);
717 	resv_map->region_cache_count = 1;
718 
719 	return resv_map;
720 }
721 
722 void resv_map_release(struct kref *ref)
723 {
724 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 	struct list_head *head = &resv_map->region_cache;
726 	struct file_region *rg, *trg;
727 
728 	/* Clear out any active regions before we release the map. */
729 	region_del(resv_map, 0, LONG_MAX);
730 
731 	/* ... and any entries left in the cache */
732 	list_for_each_entry_safe(rg, trg, head, link) {
733 		list_del(&rg->link);
734 		kfree(rg);
735 	}
736 
737 	VM_BUG_ON(resv_map->adds_in_progress);
738 
739 	kfree(resv_map);
740 }
741 
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744 	/*
745 	 * At inode evict time, i_mapping may not point to the original
746 	 * address space within the inode.  This original address space
747 	 * contains the pointer to the resv_map.  So, always use the
748 	 * address space embedded within the inode.
749 	 * The VERY common case is inode->mapping == &inode->i_data but,
750 	 * this may not be true for device special inodes.
751 	 */
752 	return (struct resv_map *)(&inode->i_data)->private_data;
753 }
754 
755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756 {
757 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 	if (vma->vm_flags & VM_MAYSHARE) {
759 		struct address_space *mapping = vma->vm_file->f_mapping;
760 		struct inode *inode = mapping->host;
761 
762 		return inode_resv_map(inode);
763 
764 	} else {
765 		return (struct resv_map *)(get_vma_private_data(vma) &
766 							~HPAGE_RESV_MASK);
767 	}
768 }
769 
770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771 {
772 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 
775 	set_vma_private_data(vma, (get_vma_private_data(vma) &
776 				HPAGE_RESV_MASK) | (unsigned long)map);
777 }
778 
779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780 {
781 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783 
784 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785 }
786 
787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788 {
789 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790 
791 	return (get_vma_private_data(vma) & flag) != 0;
792 }
793 
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796 {
797 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 	if (!(vma->vm_flags & VM_MAYSHARE))
799 		vma->vm_private_data = (void *)0;
800 }
801 
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804 {
805 	if (vma->vm_flags & VM_NORESERVE) {
806 		/*
807 		 * This address is already reserved by other process(chg == 0),
808 		 * so, we should decrement reserved count. Without decrementing,
809 		 * reserve count remains after releasing inode, because this
810 		 * allocated page will go into page cache and is regarded as
811 		 * coming from reserved pool in releasing step.  Currently, we
812 		 * don't have any other solution to deal with this situation
813 		 * properly, so add work-around here.
814 		 */
815 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 			return true;
817 		else
818 			return false;
819 	}
820 
821 	/* Shared mappings always use reserves */
822 	if (vma->vm_flags & VM_MAYSHARE) {
823 		/*
824 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
825 		 * be a region map for all pages.  The only situation where
826 		 * there is no region map is if a hole was punched via
827 		 * fallocate.  In this case, there really are no reverves to
828 		 * use.  This situation is indicated if chg != 0.
829 		 */
830 		if (chg)
831 			return false;
832 		else
833 			return true;
834 	}
835 
836 	/*
837 	 * Only the process that called mmap() has reserves for
838 	 * private mappings.
839 	 */
840 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 		/*
842 		 * Like the shared case above, a hole punch or truncate
843 		 * could have been performed on the private mapping.
844 		 * Examine the value of chg to determine if reserves
845 		 * actually exist or were previously consumed.
846 		 * Very Subtle - The value of chg comes from a previous
847 		 * call to vma_needs_reserves().  The reserve map for
848 		 * private mappings has different (opposite) semantics
849 		 * than that of shared mappings.  vma_needs_reserves()
850 		 * has already taken this difference in semantics into
851 		 * account.  Therefore, the meaning of chg is the same
852 		 * as in the shared case above.  Code could easily be
853 		 * combined, but keeping it separate draws attention to
854 		 * subtle differences.
855 		 */
856 		if (chg)
857 			return false;
858 		else
859 			return true;
860 	}
861 
862 	return false;
863 }
864 
865 static void enqueue_huge_page(struct hstate *h, struct page *page)
866 {
867 	int nid = page_to_nid(page);
868 	list_move(&page->lru, &h->hugepage_freelists[nid]);
869 	h->free_huge_pages++;
870 	h->free_huge_pages_node[nid]++;
871 }
872 
873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874 {
875 	struct page *page;
876 
877 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 		if (!PageHWPoison(page))
879 			break;
880 	/*
881 	 * if 'non-isolated free hugepage' not found on the list,
882 	 * the allocation fails.
883 	 */
884 	if (&h->hugepage_freelists[nid] == &page->lru)
885 		return NULL;
886 	list_move(&page->lru, &h->hugepage_activelist);
887 	set_page_refcounted(page);
888 	h->free_huge_pages--;
889 	h->free_huge_pages_node[nid]--;
890 	return page;
891 }
892 
893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 		nodemask_t *nmask)
895 {
896 	unsigned int cpuset_mems_cookie;
897 	struct zonelist *zonelist;
898 	struct zone *zone;
899 	struct zoneref *z;
900 	int node = NUMA_NO_NODE;
901 
902 	zonelist = node_zonelist(nid, gfp_mask);
903 
904 retry_cpuset:
905 	cpuset_mems_cookie = read_mems_allowed_begin();
906 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 		struct page *page;
908 
909 		if (!cpuset_zone_allowed(zone, gfp_mask))
910 			continue;
911 		/*
912 		 * no need to ask again on the same node. Pool is node rather than
913 		 * zone aware
914 		 */
915 		if (zone_to_nid(zone) == node)
916 			continue;
917 		node = zone_to_nid(zone);
918 
919 		page = dequeue_huge_page_node_exact(h, node);
920 		if (page)
921 			return page;
922 	}
923 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 		goto retry_cpuset;
925 
926 	return NULL;
927 }
928 
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t htlb_alloc_mask(struct hstate *h)
931 {
932 	if (hugepage_movable_supported(h))
933 		return GFP_HIGHUSER_MOVABLE;
934 	else
935 		return GFP_HIGHUSER;
936 }
937 
938 static struct page *dequeue_huge_page_vma(struct hstate *h,
939 				struct vm_area_struct *vma,
940 				unsigned long address, int avoid_reserve,
941 				long chg)
942 {
943 	struct page *page;
944 	struct mempolicy *mpol;
945 	gfp_t gfp_mask;
946 	nodemask_t *nodemask;
947 	int nid;
948 
949 	/*
950 	 * A child process with MAP_PRIVATE mappings created by their parent
951 	 * have no page reserves. This check ensures that reservations are
952 	 * not "stolen". The child may still get SIGKILLed
953 	 */
954 	if (!vma_has_reserves(vma, chg) &&
955 			h->free_huge_pages - h->resv_huge_pages == 0)
956 		goto err;
957 
958 	/* If reserves cannot be used, ensure enough pages are in the pool */
959 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 		goto err;
961 
962 	gfp_mask = htlb_alloc_mask(h);
963 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 		SetPagePrivate(page);
967 		h->resv_huge_pages--;
968 	}
969 
970 	mpol_cond_put(mpol);
971 	return page;
972 
973 err:
974 	return NULL;
975 }
976 
977 /*
978  * common helper functions for hstate_next_node_to_{alloc|free}.
979  * We may have allocated or freed a huge page based on a different
980  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981  * be outside of *nodes_allowed.  Ensure that we use an allowed
982  * node for alloc or free.
983  */
984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985 {
986 	nid = next_node_in(nid, *nodes_allowed);
987 	VM_BUG_ON(nid >= MAX_NUMNODES);
988 
989 	return nid;
990 }
991 
992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994 	if (!node_isset(nid, *nodes_allowed))
995 		nid = next_node_allowed(nid, nodes_allowed);
996 	return nid;
997 }
998 
999 /*
1000  * returns the previously saved node ["this node"] from which to
1001  * allocate a persistent huge page for the pool and advance the
1002  * next node from which to allocate, handling wrap at end of node
1003  * mask.
1004  */
1005 static int hstate_next_node_to_alloc(struct hstate *h,
1006 					nodemask_t *nodes_allowed)
1007 {
1008 	int nid;
1009 
1010 	VM_BUG_ON(!nodes_allowed);
1011 
1012 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014 
1015 	return nid;
1016 }
1017 
1018 /*
1019  * helper for free_pool_huge_page() - return the previously saved
1020  * node ["this node"] from which to free a huge page.  Advance the
1021  * next node id whether or not we find a free huge page to free so
1022  * that the next attempt to free addresses the next node.
1023  */
1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025 {
1026 	int nid;
1027 
1028 	VM_BUG_ON(!nodes_allowed);
1029 
1030 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032 
1033 	return nid;
1034 }
1035 
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037 	for (nr_nodes = nodes_weight(*mask);				\
1038 		nr_nodes > 0 &&						\
1039 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040 		nr_nodes--)
1041 
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043 	for (nr_nodes = nodes_weight(*mask);				\
1044 		nr_nodes > 0 &&						\
1045 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046 		nr_nodes--)
1047 
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page *page,
1050 					unsigned int order)
1051 {
1052 	int i;
1053 	int nr_pages = 1 << order;
1054 	struct page *p = page + 1;
1055 
1056 	atomic_set(compound_mapcount_ptr(page), 0);
1057 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 		clear_compound_head(p);
1059 		set_page_refcounted(p);
1060 	}
1061 
1062 	set_compound_order(page, 0);
1063 	__ClearPageHead(page);
1064 }
1065 
1066 static void free_gigantic_page(struct page *page, unsigned int order)
1067 {
1068 	free_contig_range(page_to_pfn(page), 1 << order);
1069 }
1070 
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn,
1073 				unsigned long nr_pages, gfp_t gfp_mask)
1074 {
1075 	unsigned long end_pfn = start_pfn + nr_pages;
1076 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 				  gfp_mask);
1078 }
1079 
1080 static bool pfn_range_valid_gigantic(struct zone *z,
1081 			unsigned long start_pfn, unsigned long nr_pages)
1082 {
1083 	unsigned long i, end_pfn = start_pfn + nr_pages;
1084 	struct page *page;
1085 
1086 	for (i = start_pfn; i < end_pfn; i++) {
1087 		if (!pfn_valid(i))
1088 			return false;
1089 
1090 		page = pfn_to_page(i);
1091 
1092 		if (page_zone(page) != z)
1093 			return false;
1094 
1095 		if (PageReserved(page))
1096 			return false;
1097 
1098 		if (page_count(page) > 0)
1099 			return false;
1100 
1101 		if (PageHuge(page))
1102 			return false;
1103 	}
1104 
1105 	return true;
1106 }
1107 
1108 static bool zone_spans_last_pfn(const struct zone *zone,
1109 			unsigned long start_pfn, unsigned long nr_pages)
1110 {
1111 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 	return zone_spans_pfn(zone, last_pfn);
1113 }
1114 
1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 		int nid, nodemask_t *nodemask)
1117 {
1118 	unsigned int order = huge_page_order(h);
1119 	unsigned long nr_pages = 1 << order;
1120 	unsigned long ret, pfn, flags;
1121 	struct zonelist *zonelist;
1122 	struct zone *zone;
1123 	struct zoneref *z;
1124 
1125 	zonelist = node_zonelist(nid, gfp_mask);
1126 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127 		spin_lock_irqsave(&zone->lock, flags);
1128 
1129 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1132 				/*
1133 				 * We release the zone lock here because
1134 				 * alloc_contig_range() will also lock the zone
1135 				 * at some point. If there's an allocation
1136 				 * spinning on this lock, it may win the race
1137 				 * and cause alloc_contig_range() to fail...
1138 				 */
1139 				spin_unlock_irqrestore(&zone->lock, flags);
1140 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141 				if (!ret)
1142 					return pfn_to_page(pfn);
1143 				spin_lock_irqsave(&zone->lock, flags);
1144 			}
1145 			pfn += nr_pages;
1146 		}
1147 
1148 		spin_unlock_irqrestore(&zone->lock, flags);
1149 	}
1150 
1151 	return NULL;
1152 }
1153 
1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 					int nid, nodemask_t *nodemask)
1159 {
1160 	return NULL;
1161 }
1162 #endif /* CONFIG_CONTIG_ALLOC */
1163 
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166 					int nid, nodemask_t *nodemask)
1167 {
1168 	return NULL;
1169 }
1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1171 static inline void destroy_compound_gigantic_page(struct page *page,
1172 						unsigned int order) { }
1173 #endif
1174 
1175 static void update_and_free_page(struct hstate *h, struct page *page)
1176 {
1177 	int i;
1178 
1179 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180 		return;
1181 
1182 	h->nr_huge_pages--;
1183 	h->nr_huge_pages_node[page_to_nid(page)]--;
1184 	for (i = 0; i < pages_per_huge_page(h); i++) {
1185 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 				1 << PG_referenced | 1 << PG_dirty |
1187 				1 << PG_active | 1 << PG_private |
1188 				1 << PG_writeback);
1189 	}
1190 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192 	set_page_refcounted(page);
1193 	if (hstate_is_gigantic(h)) {
1194 		destroy_compound_gigantic_page(page, huge_page_order(h));
1195 		free_gigantic_page(page, huge_page_order(h));
1196 	} else {
1197 		__free_pages(page, huge_page_order(h));
1198 	}
1199 }
1200 
1201 struct hstate *size_to_hstate(unsigned long size)
1202 {
1203 	struct hstate *h;
1204 
1205 	for_each_hstate(h) {
1206 		if (huge_page_size(h) == size)
1207 			return h;
1208 	}
1209 	return NULL;
1210 }
1211 
1212 /*
1213  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214  * to hstate->hugepage_activelist.)
1215  *
1216  * This function can be called for tail pages, but never returns true for them.
1217  */
1218 bool page_huge_active(struct page *page)
1219 {
1220 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 	return PageHead(page) && PagePrivate(&page[1]);
1222 }
1223 
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page *page)
1226 {
1227 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 	SetPagePrivate(&page[1]);
1229 }
1230 
1231 static void clear_page_huge_active(struct page *page)
1232 {
1233 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 	ClearPagePrivate(&page[1]);
1235 }
1236 
1237 /*
1238  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239  * code
1240  */
1241 static inline bool PageHugeTemporary(struct page *page)
1242 {
1243 	if (!PageHuge(page))
1244 		return false;
1245 
1246 	return (unsigned long)page[2].mapping == -1U;
1247 }
1248 
1249 static inline void SetPageHugeTemporary(struct page *page)
1250 {
1251 	page[2].mapping = (void *)-1U;
1252 }
1253 
1254 static inline void ClearPageHugeTemporary(struct page *page)
1255 {
1256 	page[2].mapping = NULL;
1257 }
1258 
1259 void free_huge_page(struct page *page)
1260 {
1261 	/*
1262 	 * Can't pass hstate in here because it is called from the
1263 	 * compound page destructor.
1264 	 */
1265 	struct hstate *h = page_hstate(page);
1266 	int nid = page_to_nid(page);
1267 	struct hugepage_subpool *spool =
1268 		(struct hugepage_subpool *)page_private(page);
1269 	bool restore_reserve;
1270 
1271 	VM_BUG_ON_PAGE(page_count(page), page);
1272 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1273 
1274 	set_page_private(page, 0);
1275 	page->mapping = NULL;
1276 	restore_reserve = PagePrivate(page);
1277 	ClearPagePrivate(page);
1278 
1279 	/*
1280 	 * If PagePrivate() was set on page, page allocation consumed a
1281 	 * reservation.  If the page was associated with a subpool, there
1282 	 * would have been a page reserved in the subpool before allocation
1283 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1284 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 	 * remove the reserved page from the subpool.
1286 	 */
1287 	if (!restore_reserve) {
1288 		/*
1289 		 * A return code of zero implies that the subpool will be
1290 		 * under its minimum size if the reservation is not restored
1291 		 * after page is free.  Therefore, force restore_reserve
1292 		 * operation.
1293 		 */
1294 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 			restore_reserve = true;
1296 	}
1297 
1298 	spin_lock(&hugetlb_lock);
1299 	clear_page_huge_active(page);
1300 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 				     pages_per_huge_page(h), page);
1302 	if (restore_reserve)
1303 		h->resv_huge_pages++;
1304 
1305 	if (PageHugeTemporary(page)) {
1306 		list_del(&page->lru);
1307 		ClearPageHugeTemporary(page);
1308 		update_and_free_page(h, page);
1309 	} else if (h->surplus_huge_pages_node[nid]) {
1310 		/* remove the page from active list */
1311 		list_del(&page->lru);
1312 		update_and_free_page(h, page);
1313 		h->surplus_huge_pages--;
1314 		h->surplus_huge_pages_node[nid]--;
1315 	} else {
1316 		arch_clear_hugepage_flags(page);
1317 		enqueue_huge_page(h, page);
1318 	}
1319 	spin_unlock(&hugetlb_lock);
1320 }
1321 
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1323 {
1324 	INIT_LIST_HEAD(&page->lru);
1325 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1326 	spin_lock(&hugetlb_lock);
1327 	set_hugetlb_cgroup(page, NULL);
1328 	h->nr_huge_pages++;
1329 	h->nr_huge_pages_node[nid]++;
1330 	spin_unlock(&hugetlb_lock);
1331 }
1332 
1333 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1334 {
1335 	int i;
1336 	int nr_pages = 1 << order;
1337 	struct page *p = page + 1;
1338 
1339 	/* we rely on prep_new_huge_page to set the destructor */
1340 	set_compound_order(page, order);
1341 	__ClearPageReserved(page);
1342 	__SetPageHead(page);
1343 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1344 		/*
1345 		 * For gigantic hugepages allocated through bootmem at
1346 		 * boot, it's safer to be consistent with the not-gigantic
1347 		 * hugepages and clear the PG_reserved bit from all tail pages
1348 		 * too.  Otherwse drivers using get_user_pages() to access tail
1349 		 * pages may get the reference counting wrong if they see
1350 		 * PG_reserved set on a tail page (despite the head page not
1351 		 * having PG_reserved set).  Enforcing this consistency between
1352 		 * head and tail pages allows drivers to optimize away a check
1353 		 * on the head page when they need know if put_page() is needed
1354 		 * after get_user_pages().
1355 		 */
1356 		__ClearPageReserved(p);
1357 		set_page_count(p, 0);
1358 		set_compound_head(p, page);
1359 	}
1360 	atomic_set(compound_mapcount_ptr(page), -1);
1361 }
1362 
1363 /*
1364  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365  * transparent huge pages.  See the PageTransHuge() documentation for more
1366  * details.
1367  */
1368 int PageHuge(struct page *page)
1369 {
1370 	if (!PageCompound(page))
1371 		return 0;
1372 
1373 	page = compound_head(page);
1374 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1375 }
1376 EXPORT_SYMBOL_GPL(PageHuge);
1377 
1378 /*
1379  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380  * normal or transparent huge pages.
1381  */
1382 int PageHeadHuge(struct page *page_head)
1383 {
1384 	if (!PageHead(page_head))
1385 		return 0;
1386 
1387 	return get_compound_page_dtor(page_head) == free_huge_page;
1388 }
1389 
1390 pgoff_t __basepage_index(struct page *page)
1391 {
1392 	struct page *page_head = compound_head(page);
1393 	pgoff_t index = page_index(page_head);
1394 	unsigned long compound_idx;
1395 
1396 	if (!PageHuge(page_head))
1397 		return page_index(page);
1398 
1399 	if (compound_order(page_head) >= MAX_ORDER)
1400 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401 	else
1402 		compound_idx = page - page_head;
1403 
1404 	return (index << compound_order(page_head)) + compound_idx;
1405 }
1406 
1407 static struct page *alloc_buddy_huge_page(struct hstate *h,
1408 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1409 {
1410 	int order = huge_page_order(h);
1411 	struct page *page;
1412 
1413 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1414 	if (nid == NUMA_NO_NODE)
1415 		nid = numa_mem_id();
1416 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1417 	if (page)
1418 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1419 	else
1420 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1421 
1422 	return page;
1423 }
1424 
1425 /*
1426  * Common helper to allocate a fresh hugetlb page. All specific allocators
1427  * should use this function to get new hugetlb pages
1428  */
1429 static struct page *alloc_fresh_huge_page(struct hstate *h,
1430 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1431 {
1432 	struct page *page;
1433 
1434 	if (hstate_is_gigantic(h))
1435 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1436 	else
1437 		page = alloc_buddy_huge_page(h, gfp_mask,
1438 				nid, nmask);
1439 	if (!page)
1440 		return NULL;
1441 
1442 	if (hstate_is_gigantic(h))
1443 		prep_compound_gigantic_page(page, huge_page_order(h));
1444 	prep_new_huge_page(h, page, page_to_nid(page));
1445 
1446 	return page;
1447 }
1448 
1449 /*
1450  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1451  * manner.
1452  */
1453 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1454 {
1455 	struct page *page;
1456 	int nr_nodes, node;
1457 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1458 
1459 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1460 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1461 		if (page)
1462 			break;
1463 	}
1464 
1465 	if (!page)
1466 		return 0;
1467 
1468 	put_page(page); /* free it into the hugepage allocator */
1469 
1470 	return 1;
1471 }
1472 
1473 /*
1474  * Free huge page from pool from next node to free.
1475  * Attempt to keep persistent huge pages more or less
1476  * balanced over allowed nodes.
1477  * Called with hugetlb_lock locked.
1478  */
1479 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1480 							 bool acct_surplus)
1481 {
1482 	int nr_nodes, node;
1483 	int ret = 0;
1484 
1485 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1486 		/*
1487 		 * If we're returning unused surplus pages, only examine
1488 		 * nodes with surplus pages.
1489 		 */
1490 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1491 		    !list_empty(&h->hugepage_freelists[node])) {
1492 			struct page *page =
1493 				list_entry(h->hugepage_freelists[node].next,
1494 					  struct page, lru);
1495 			list_del(&page->lru);
1496 			h->free_huge_pages--;
1497 			h->free_huge_pages_node[node]--;
1498 			if (acct_surplus) {
1499 				h->surplus_huge_pages--;
1500 				h->surplus_huge_pages_node[node]--;
1501 			}
1502 			update_and_free_page(h, page);
1503 			ret = 1;
1504 			break;
1505 		}
1506 	}
1507 
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Dissolve a given free hugepage into free buddy pages. This function does
1513  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1514  * dissolution fails because a give page is not a free hugepage, or because
1515  * free hugepages are fully reserved.
1516  */
1517 int dissolve_free_huge_page(struct page *page)
1518 {
1519 	int rc = -EBUSY;
1520 
1521 	spin_lock(&hugetlb_lock);
1522 	if (PageHuge(page) && !page_count(page)) {
1523 		struct page *head = compound_head(page);
1524 		struct hstate *h = page_hstate(head);
1525 		int nid = page_to_nid(head);
1526 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1527 			goto out;
1528 		/*
1529 		 * Move PageHWPoison flag from head page to the raw error page,
1530 		 * which makes any subpages rather than the error page reusable.
1531 		 */
1532 		if (PageHWPoison(head) && page != head) {
1533 			SetPageHWPoison(page);
1534 			ClearPageHWPoison(head);
1535 		}
1536 		list_del(&head->lru);
1537 		h->free_huge_pages--;
1538 		h->free_huge_pages_node[nid]--;
1539 		h->max_huge_pages--;
1540 		update_and_free_page(h, head);
1541 		rc = 0;
1542 	}
1543 out:
1544 	spin_unlock(&hugetlb_lock);
1545 	return rc;
1546 }
1547 
1548 /*
1549  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1550  * make specified memory blocks removable from the system.
1551  * Note that this will dissolve a free gigantic hugepage completely, if any
1552  * part of it lies within the given range.
1553  * Also note that if dissolve_free_huge_page() returns with an error, all
1554  * free hugepages that were dissolved before that error are lost.
1555  */
1556 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1557 {
1558 	unsigned long pfn;
1559 	struct page *page;
1560 	int rc = 0;
1561 
1562 	if (!hugepages_supported())
1563 		return rc;
1564 
1565 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1566 		page = pfn_to_page(pfn);
1567 		if (PageHuge(page) && !page_count(page)) {
1568 			rc = dissolve_free_huge_page(page);
1569 			if (rc)
1570 				break;
1571 		}
1572 	}
1573 
1574 	return rc;
1575 }
1576 
1577 /*
1578  * Allocates a fresh surplus page from the page allocator.
1579  */
1580 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1581 		int nid, nodemask_t *nmask)
1582 {
1583 	struct page *page = NULL;
1584 
1585 	if (hstate_is_gigantic(h))
1586 		return NULL;
1587 
1588 	spin_lock(&hugetlb_lock);
1589 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1590 		goto out_unlock;
1591 	spin_unlock(&hugetlb_lock);
1592 
1593 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1594 	if (!page)
1595 		return NULL;
1596 
1597 	spin_lock(&hugetlb_lock);
1598 	/*
1599 	 * We could have raced with the pool size change.
1600 	 * Double check that and simply deallocate the new page
1601 	 * if we would end up overcommiting the surpluses. Abuse
1602 	 * temporary page to workaround the nasty free_huge_page
1603 	 * codeflow
1604 	 */
1605 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1606 		SetPageHugeTemporary(page);
1607 		spin_unlock(&hugetlb_lock);
1608 		put_page(page);
1609 		return NULL;
1610 	} else {
1611 		h->surplus_huge_pages++;
1612 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1613 	}
1614 
1615 out_unlock:
1616 	spin_unlock(&hugetlb_lock);
1617 
1618 	return page;
1619 }
1620 
1621 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1622 				     int nid, nodemask_t *nmask)
1623 {
1624 	struct page *page;
1625 
1626 	if (hstate_is_gigantic(h))
1627 		return NULL;
1628 
1629 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1630 	if (!page)
1631 		return NULL;
1632 
1633 	/*
1634 	 * We do not account these pages as surplus because they are only
1635 	 * temporary and will be released properly on the last reference
1636 	 */
1637 	SetPageHugeTemporary(page);
1638 
1639 	return page;
1640 }
1641 
1642 /*
1643  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1644  */
1645 static
1646 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1647 		struct vm_area_struct *vma, unsigned long addr)
1648 {
1649 	struct page *page;
1650 	struct mempolicy *mpol;
1651 	gfp_t gfp_mask = htlb_alloc_mask(h);
1652 	int nid;
1653 	nodemask_t *nodemask;
1654 
1655 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1656 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1657 	mpol_cond_put(mpol);
1658 
1659 	return page;
1660 }
1661 
1662 /* page migration callback function */
1663 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1664 {
1665 	gfp_t gfp_mask = htlb_alloc_mask(h);
1666 	struct page *page = NULL;
1667 
1668 	if (nid != NUMA_NO_NODE)
1669 		gfp_mask |= __GFP_THISNODE;
1670 
1671 	spin_lock(&hugetlb_lock);
1672 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1673 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1674 	spin_unlock(&hugetlb_lock);
1675 
1676 	if (!page)
1677 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1678 
1679 	return page;
1680 }
1681 
1682 /* page migration callback function */
1683 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1684 		nodemask_t *nmask)
1685 {
1686 	gfp_t gfp_mask = htlb_alloc_mask(h);
1687 
1688 	spin_lock(&hugetlb_lock);
1689 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1690 		struct page *page;
1691 
1692 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1693 		if (page) {
1694 			spin_unlock(&hugetlb_lock);
1695 			return page;
1696 		}
1697 	}
1698 	spin_unlock(&hugetlb_lock);
1699 
1700 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1701 }
1702 
1703 /* mempolicy aware migration callback */
1704 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1705 		unsigned long address)
1706 {
1707 	struct mempolicy *mpol;
1708 	nodemask_t *nodemask;
1709 	struct page *page;
1710 	gfp_t gfp_mask;
1711 	int node;
1712 
1713 	gfp_mask = htlb_alloc_mask(h);
1714 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1715 	page = alloc_huge_page_nodemask(h, node, nodemask);
1716 	mpol_cond_put(mpol);
1717 
1718 	return page;
1719 }
1720 
1721 /*
1722  * Increase the hugetlb pool such that it can accommodate a reservation
1723  * of size 'delta'.
1724  */
1725 static int gather_surplus_pages(struct hstate *h, int delta)
1726 {
1727 	struct list_head surplus_list;
1728 	struct page *page, *tmp;
1729 	int ret, i;
1730 	int needed, allocated;
1731 	bool alloc_ok = true;
1732 
1733 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1734 	if (needed <= 0) {
1735 		h->resv_huge_pages += delta;
1736 		return 0;
1737 	}
1738 
1739 	allocated = 0;
1740 	INIT_LIST_HEAD(&surplus_list);
1741 
1742 	ret = -ENOMEM;
1743 retry:
1744 	spin_unlock(&hugetlb_lock);
1745 	for (i = 0; i < needed; i++) {
1746 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1747 				NUMA_NO_NODE, NULL);
1748 		if (!page) {
1749 			alloc_ok = false;
1750 			break;
1751 		}
1752 		list_add(&page->lru, &surplus_list);
1753 		cond_resched();
1754 	}
1755 	allocated += i;
1756 
1757 	/*
1758 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1759 	 * because either resv_huge_pages or free_huge_pages may have changed.
1760 	 */
1761 	spin_lock(&hugetlb_lock);
1762 	needed = (h->resv_huge_pages + delta) -
1763 			(h->free_huge_pages + allocated);
1764 	if (needed > 0) {
1765 		if (alloc_ok)
1766 			goto retry;
1767 		/*
1768 		 * We were not able to allocate enough pages to
1769 		 * satisfy the entire reservation so we free what
1770 		 * we've allocated so far.
1771 		 */
1772 		goto free;
1773 	}
1774 	/*
1775 	 * The surplus_list now contains _at_least_ the number of extra pages
1776 	 * needed to accommodate the reservation.  Add the appropriate number
1777 	 * of pages to the hugetlb pool and free the extras back to the buddy
1778 	 * allocator.  Commit the entire reservation here to prevent another
1779 	 * process from stealing the pages as they are added to the pool but
1780 	 * before they are reserved.
1781 	 */
1782 	needed += allocated;
1783 	h->resv_huge_pages += delta;
1784 	ret = 0;
1785 
1786 	/* Free the needed pages to the hugetlb pool */
1787 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1788 		if ((--needed) < 0)
1789 			break;
1790 		/*
1791 		 * This page is now managed by the hugetlb allocator and has
1792 		 * no users -- drop the buddy allocator's reference.
1793 		 */
1794 		put_page_testzero(page);
1795 		VM_BUG_ON_PAGE(page_count(page), page);
1796 		enqueue_huge_page(h, page);
1797 	}
1798 free:
1799 	spin_unlock(&hugetlb_lock);
1800 
1801 	/* Free unnecessary surplus pages to the buddy allocator */
1802 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1803 		put_page(page);
1804 	spin_lock(&hugetlb_lock);
1805 
1806 	return ret;
1807 }
1808 
1809 /*
1810  * This routine has two main purposes:
1811  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1812  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1813  *    to the associated reservation map.
1814  * 2) Free any unused surplus pages that may have been allocated to satisfy
1815  *    the reservation.  As many as unused_resv_pages may be freed.
1816  *
1817  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1818  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1819  * we must make sure nobody else can claim pages we are in the process of
1820  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1821  * number of huge pages we plan to free when dropping the lock.
1822  */
1823 static void return_unused_surplus_pages(struct hstate *h,
1824 					unsigned long unused_resv_pages)
1825 {
1826 	unsigned long nr_pages;
1827 
1828 	/* Cannot return gigantic pages currently */
1829 	if (hstate_is_gigantic(h))
1830 		goto out;
1831 
1832 	/*
1833 	 * Part (or even all) of the reservation could have been backed
1834 	 * by pre-allocated pages. Only free surplus pages.
1835 	 */
1836 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1837 
1838 	/*
1839 	 * We want to release as many surplus pages as possible, spread
1840 	 * evenly across all nodes with memory. Iterate across these nodes
1841 	 * until we can no longer free unreserved surplus pages. This occurs
1842 	 * when the nodes with surplus pages have no free pages.
1843 	 * free_pool_huge_page() will balance the the freed pages across the
1844 	 * on-line nodes with memory and will handle the hstate accounting.
1845 	 *
1846 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1847 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1848 	 * to cover subsequent pages we may free.
1849 	 */
1850 	while (nr_pages--) {
1851 		h->resv_huge_pages--;
1852 		unused_resv_pages--;
1853 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1854 			goto out;
1855 		cond_resched_lock(&hugetlb_lock);
1856 	}
1857 
1858 out:
1859 	/* Fully uncommit the reservation */
1860 	h->resv_huge_pages -= unused_resv_pages;
1861 }
1862 
1863 
1864 /*
1865  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1866  * are used by the huge page allocation routines to manage reservations.
1867  *
1868  * vma_needs_reservation is called to determine if the huge page at addr
1869  * within the vma has an associated reservation.  If a reservation is
1870  * needed, the value 1 is returned.  The caller is then responsible for
1871  * managing the global reservation and subpool usage counts.  After
1872  * the huge page has been allocated, vma_commit_reservation is called
1873  * to add the page to the reservation map.  If the page allocation fails,
1874  * the reservation must be ended instead of committed.  vma_end_reservation
1875  * is called in such cases.
1876  *
1877  * In the normal case, vma_commit_reservation returns the same value
1878  * as the preceding vma_needs_reservation call.  The only time this
1879  * is not the case is if a reserve map was changed between calls.  It
1880  * is the responsibility of the caller to notice the difference and
1881  * take appropriate action.
1882  *
1883  * vma_add_reservation is used in error paths where a reservation must
1884  * be restored when a newly allocated huge page must be freed.  It is
1885  * to be called after calling vma_needs_reservation to determine if a
1886  * reservation exists.
1887  */
1888 enum vma_resv_mode {
1889 	VMA_NEEDS_RESV,
1890 	VMA_COMMIT_RESV,
1891 	VMA_END_RESV,
1892 	VMA_ADD_RESV,
1893 };
1894 static long __vma_reservation_common(struct hstate *h,
1895 				struct vm_area_struct *vma, unsigned long addr,
1896 				enum vma_resv_mode mode)
1897 {
1898 	struct resv_map *resv;
1899 	pgoff_t idx;
1900 	long ret;
1901 
1902 	resv = vma_resv_map(vma);
1903 	if (!resv)
1904 		return 1;
1905 
1906 	idx = vma_hugecache_offset(h, vma, addr);
1907 	switch (mode) {
1908 	case VMA_NEEDS_RESV:
1909 		ret = region_chg(resv, idx, idx + 1);
1910 		break;
1911 	case VMA_COMMIT_RESV:
1912 		ret = region_add(resv, idx, idx + 1);
1913 		break;
1914 	case VMA_END_RESV:
1915 		region_abort(resv, idx, idx + 1);
1916 		ret = 0;
1917 		break;
1918 	case VMA_ADD_RESV:
1919 		if (vma->vm_flags & VM_MAYSHARE)
1920 			ret = region_add(resv, idx, idx + 1);
1921 		else {
1922 			region_abort(resv, idx, idx + 1);
1923 			ret = region_del(resv, idx, idx + 1);
1924 		}
1925 		break;
1926 	default:
1927 		BUG();
1928 	}
1929 
1930 	if (vma->vm_flags & VM_MAYSHARE)
1931 		return ret;
1932 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1933 		/*
1934 		 * In most cases, reserves always exist for private mappings.
1935 		 * However, a file associated with mapping could have been
1936 		 * hole punched or truncated after reserves were consumed.
1937 		 * As subsequent fault on such a range will not use reserves.
1938 		 * Subtle - The reserve map for private mappings has the
1939 		 * opposite meaning than that of shared mappings.  If NO
1940 		 * entry is in the reserve map, it means a reservation exists.
1941 		 * If an entry exists in the reserve map, it means the
1942 		 * reservation has already been consumed.  As a result, the
1943 		 * return value of this routine is the opposite of the
1944 		 * value returned from reserve map manipulation routines above.
1945 		 */
1946 		if (ret)
1947 			return 0;
1948 		else
1949 			return 1;
1950 	}
1951 	else
1952 		return ret < 0 ? ret : 0;
1953 }
1954 
1955 static long vma_needs_reservation(struct hstate *h,
1956 			struct vm_area_struct *vma, unsigned long addr)
1957 {
1958 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1959 }
1960 
1961 static long vma_commit_reservation(struct hstate *h,
1962 			struct vm_area_struct *vma, unsigned long addr)
1963 {
1964 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1965 }
1966 
1967 static void vma_end_reservation(struct hstate *h,
1968 			struct vm_area_struct *vma, unsigned long addr)
1969 {
1970 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1971 }
1972 
1973 static long vma_add_reservation(struct hstate *h,
1974 			struct vm_area_struct *vma, unsigned long addr)
1975 {
1976 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1977 }
1978 
1979 /*
1980  * This routine is called to restore a reservation on error paths.  In the
1981  * specific error paths, a huge page was allocated (via alloc_huge_page)
1982  * and is about to be freed.  If a reservation for the page existed,
1983  * alloc_huge_page would have consumed the reservation and set PagePrivate
1984  * in the newly allocated page.  When the page is freed via free_huge_page,
1985  * the global reservation count will be incremented if PagePrivate is set.
1986  * However, free_huge_page can not adjust the reserve map.  Adjust the
1987  * reserve map here to be consistent with global reserve count adjustments
1988  * to be made by free_huge_page.
1989  */
1990 static void restore_reserve_on_error(struct hstate *h,
1991 			struct vm_area_struct *vma, unsigned long address,
1992 			struct page *page)
1993 {
1994 	if (unlikely(PagePrivate(page))) {
1995 		long rc = vma_needs_reservation(h, vma, address);
1996 
1997 		if (unlikely(rc < 0)) {
1998 			/*
1999 			 * Rare out of memory condition in reserve map
2000 			 * manipulation.  Clear PagePrivate so that
2001 			 * global reserve count will not be incremented
2002 			 * by free_huge_page.  This will make it appear
2003 			 * as though the reservation for this page was
2004 			 * consumed.  This may prevent the task from
2005 			 * faulting in the page at a later time.  This
2006 			 * is better than inconsistent global huge page
2007 			 * accounting of reserve counts.
2008 			 */
2009 			ClearPagePrivate(page);
2010 		} else if (rc) {
2011 			rc = vma_add_reservation(h, vma, address);
2012 			if (unlikely(rc < 0))
2013 				/*
2014 				 * See above comment about rare out of
2015 				 * memory condition.
2016 				 */
2017 				ClearPagePrivate(page);
2018 		} else
2019 			vma_end_reservation(h, vma, address);
2020 	}
2021 }
2022 
2023 struct page *alloc_huge_page(struct vm_area_struct *vma,
2024 				    unsigned long addr, int avoid_reserve)
2025 {
2026 	struct hugepage_subpool *spool = subpool_vma(vma);
2027 	struct hstate *h = hstate_vma(vma);
2028 	struct page *page;
2029 	long map_chg, map_commit;
2030 	long gbl_chg;
2031 	int ret, idx;
2032 	struct hugetlb_cgroup *h_cg;
2033 
2034 	idx = hstate_index(h);
2035 	/*
2036 	 * Examine the region/reserve map to determine if the process
2037 	 * has a reservation for the page to be allocated.  A return
2038 	 * code of zero indicates a reservation exists (no change).
2039 	 */
2040 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2041 	if (map_chg < 0)
2042 		return ERR_PTR(-ENOMEM);
2043 
2044 	/*
2045 	 * Processes that did not create the mapping will have no
2046 	 * reserves as indicated by the region/reserve map. Check
2047 	 * that the allocation will not exceed the subpool limit.
2048 	 * Allocations for MAP_NORESERVE mappings also need to be
2049 	 * checked against any subpool limit.
2050 	 */
2051 	if (map_chg || avoid_reserve) {
2052 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2053 		if (gbl_chg < 0) {
2054 			vma_end_reservation(h, vma, addr);
2055 			return ERR_PTR(-ENOSPC);
2056 		}
2057 
2058 		/*
2059 		 * Even though there was no reservation in the region/reserve
2060 		 * map, there could be reservations associated with the
2061 		 * subpool that can be used.  This would be indicated if the
2062 		 * return value of hugepage_subpool_get_pages() is zero.
2063 		 * However, if avoid_reserve is specified we still avoid even
2064 		 * the subpool reservations.
2065 		 */
2066 		if (avoid_reserve)
2067 			gbl_chg = 1;
2068 	}
2069 
2070 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2071 	if (ret)
2072 		goto out_subpool_put;
2073 
2074 	spin_lock(&hugetlb_lock);
2075 	/*
2076 	 * glb_chg is passed to indicate whether or not a page must be taken
2077 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2078 	 * a reservation exists for the allocation.
2079 	 */
2080 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2081 	if (!page) {
2082 		spin_unlock(&hugetlb_lock);
2083 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2084 		if (!page)
2085 			goto out_uncharge_cgroup;
2086 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2087 			SetPagePrivate(page);
2088 			h->resv_huge_pages--;
2089 		}
2090 		spin_lock(&hugetlb_lock);
2091 		list_move(&page->lru, &h->hugepage_activelist);
2092 		/* Fall through */
2093 	}
2094 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2095 	spin_unlock(&hugetlb_lock);
2096 
2097 	set_page_private(page, (unsigned long)spool);
2098 
2099 	map_commit = vma_commit_reservation(h, vma, addr);
2100 	if (unlikely(map_chg > map_commit)) {
2101 		/*
2102 		 * The page was added to the reservation map between
2103 		 * vma_needs_reservation and vma_commit_reservation.
2104 		 * This indicates a race with hugetlb_reserve_pages.
2105 		 * Adjust for the subpool count incremented above AND
2106 		 * in hugetlb_reserve_pages for the same page.  Also,
2107 		 * the reservation count added in hugetlb_reserve_pages
2108 		 * no longer applies.
2109 		 */
2110 		long rsv_adjust;
2111 
2112 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2113 		hugetlb_acct_memory(h, -rsv_adjust);
2114 	}
2115 	return page;
2116 
2117 out_uncharge_cgroup:
2118 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2119 out_subpool_put:
2120 	if (map_chg || avoid_reserve)
2121 		hugepage_subpool_put_pages(spool, 1);
2122 	vma_end_reservation(h, vma, addr);
2123 	return ERR_PTR(-ENOSPC);
2124 }
2125 
2126 int alloc_bootmem_huge_page(struct hstate *h)
2127 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2128 int __alloc_bootmem_huge_page(struct hstate *h)
2129 {
2130 	struct huge_bootmem_page *m;
2131 	int nr_nodes, node;
2132 
2133 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2134 		void *addr;
2135 
2136 		addr = memblock_alloc_try_nid_raw(
2137 				huge_page_size(h), huge_page_size(h),
2138 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2139 		if (addr) {
2140 			/*
2141 			 * Use the beginning of the huge page to store the
2142 			 * huge_bootmem_page struct (until gather_bootmem
2143 			 * puts them into the mem_map).
2144 			 */
2145 			m = addr;
2146 			goto found;
2147 		}
2148 	}
2149 	return 0;
2150 
2151 found:
2152 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2153 	/* Put them into a private list first because mem_map is not up yet */
2154 	INIT_LIST_HEAD(&m->list);
2155 	list_add(&m->list, &huge_boot_pages);
2156 	m->hstate = h;
2157 	return 1;
2158 }
2159 
2160 static void __init prep_compound_huge_page(struct page *page,
2161 		unsigned int order)
2162 {
2163 	if (unlikely(order > (MAX_ORDER - 1)))
2164 		prep_compound_gigantic_page(page, order);
2165 	else
2166 		prep_compound_page(page, order);
2167 }
2168 
2169 /* Put bootmem huge pages into the standard lists after mem_map is up */
2170 static void __init gather_bootmem_prealloc(void)
2171 {
2172 	struct huge_bootmem_page *m;
2173 
2174 	list_for_each_entry(m, &huge_boot_pages, list) {
2175 		struct page *page = virt_to_page(m);
2176 		struct hstate *h = m->hstate;
2177 
2178 		WARN_ON(page_count(page) != 1);
2179 		prep_compound_huge_page(page, h->order);
2180 		WARN_ON(PageReserved(page));
2181 		prep_new_huge_page(h, page, page_to_nid(page));
2182 		put_page(page); /* free it into the hugepage allocator */
2183 
2184 		/*
2185 		 * If we had gigantic hugepages allocated at boot time, we need
2186 		 * to restore the 'stolen' pages to totalram_pages in order to
2187 		 * fix confusing memory reports from free(1) and another
2188 		 * side-effects, like CommitLimit going negative.
2189 		 */
2190 		if (hstate_is_gigantic(h))
2191 			adjust_managed_page_count(page, 1 << h->order);
2192 		cond_resched();
2193 	}
2194 }
2195 
2196 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2197 {
2198 	unsigned long i;
2199 
2200 	for (i = 0; i < h->max_huge_pages; ++i) {
2201 		if (hstate_is_gigantic(h)) {
2202 			if (!alloc_bootmem_huge_page(h))
2203 				break;
2204 		} else if (!alloc_pool_huge_page(h,
2205 					 &node_states[N_MEMORY]))
2206 			break;
2207 		cond_resched();
2208 	}
2209 	if (i < h->max_huge_pages) {
2210 		char buf[32];
2211 
2212 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2213 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2214 			h->max_huge_pages, buf, i);
2215 		h->max_huge_pages = i;
2216 	}
2217 }
2218 
2219 static void __init hugetlb_init_hstates(void)
2220 {
2221 	struct hstate *h;
2222 
2223 	for_each_hstate(h) {
2224 		if (minimum_order > huge_page_order(h))
2225 			minimum_order = huge_page_order(h);
2226 
2227 		/* oversize hugepages were init'ed in early boot */
2228 		if (!hstate_is_gigantic(h))
2229 			hugetlb_hstate_alloc_pages(h);
2230 	}
2231 	VM_BUG_ON(minimum_order == UINT_MAX);
2232 }
2233 
2234 static void __init report_hugepages(void)
2235 {
2236 	struct hstate *h;
2237 
2238 	for_each_hstate(h) {
2239 		char buf[32];
2240 
2241 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2242 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2243 			buf, h->free_huge_pages);
2244 	}
2245 }
2246 
2247 #ifdef CONFIG_HIGHMEM
2248 static void try_to_free_low(struct hstate *h, unsigned long count,
2249 						nodemask_t *nodes_allowed)
2250 {
2251 	int i;
2252 
2253 	if (hstate_is_gigantic(h))
2254 		return;
2255 
2256 	for_each_node_mask(i, *nodes_allowed) {
2257 		struct page *page, *next;
2258 		struct list_head *freel = &h->hugepage_freelists[i];
2259 		list_for_each_entry_safe(page, next, freel, lru) {
2260 			if (count >= h->nr_huge_pages)
2261 				return;
2262 			if (PageHighMem(page))
2263 				continue;
2264 			list_del(&page->lru);
2265 			update_and_free_page(h, page);
2266 			h->free_huge_pages--;
2267 			h->free_huge_pages_node[page_to_nid(page)]--;
2268 		}
2269 	}
2270 }
2271 #else
2272 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2273 						nodemask_t *nodes_allowed)
2274 {
2275 }
2276 #endif
2277 
2278 /*
2279  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2280  * balanced by operating on them in a round-robin fashion.
2281  * Returns 1 if an adjustment was made.
2282  */
2283 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2284 				int delta)
2285 {
2286 	int nr_nodes, node;
2287 
2288 	VM_BUG_ON(delta != -1 && delta != 1);
2289 
2290 	if (delta < 0) {
2291 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2292 			if (h->surplus_huge_pages_node[node])
2293 				goto found;
2294 		}
2295 	} else {
2296 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2297 			if (h->surplus_huge_pages_node[node] <
2298 					h->nr_huge_pages_node[node])
2299 				goto found;
2300 		}
2301 	}
2302 	return 0;
2303 
2304 found:
2305 	h->surplus_huge_pages += delta;
2306 	h->surplus_huge_pages_node[node] += delta;
2307 	return 1;
2308 }
2309 
2310 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2311 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2312 			      nodemask_t *nodes_allowed)
2313 {
2314 	unsigned long min_count, ret;
2315 
2316 	spin_lock(&hugetlb_lock);
2317 
2318 	/*
2319 	 * Check for a node specific request.
2320 	 * Changing node specific huge page count may require a corresponding
2321 	 * change to the global count.  In any case, the passed node mask
2322 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2323 	 */
2324 	if (nid != NUMA_NO_NODE) {
2325 		unsigned long old_count = count;
2326 
2327 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2328 		/*
2329 		 * User may have specified a large count value which caused the
2330 		 * above calculation to overflow.  In this case, they wanted
2331 		 * to allocate as many huge pages as possible.  Set count to
2332 		 * largest possible value to align with their intention.
2333 		 */
2334 		if (count < old_count)
2335 			count = ULONG_MAX;
2336 	}
2337 
2338 	/*
2339 	 * Gigantic pages runtime allocation depend on the capability for large
2340 	 * page range allocation.
2341 	 * If the system does not provide this feature, return an error when
2342 	 * the user tries to allocate gigantic pages but let the user free the
2343 	 * boottime allocated gigantic pages.
2344 	 */
2345 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2346 		if (count > persistent_huge_pages(h)) {
2347 			spin_unlock(&hugetlb_lock);
2348 			return -EINVAL;
2349 		}
2350 		/* Fall through to decrease pool */
2351 	}
2352 
2353 	/*
2354 	 * Increase the pool size
2355 	 * First take pages out of surplus state.  Then make up the
2356 	 * remaining difference by allocating fresh huge pages.
2357 	 *
2358 	 * We might race with alloc_surplus_huge_page() here and be unable
2359 	 * to convert a surplus huge page to a normal huge page. That is
2360 	 * not critical, though, it just means the overall size of the
2361 	 * pool might be one hugepage larger than it needs to be, but
2362 	 * within all the constraints specified by the sysctls.
2363 	 */
2364 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2365 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2366 			break;
2367 	}
2368 
2369 	while (count > persistent_huge_pages(h)) {
2370 		/*
2371 		 * If this allocation races such that we no longer need the
2372 		 * page, free_huge_page will handle it by freeing the page
2373 		 * and reducing the surplus.
2374 		 */
2375 		spin_unlock(&hugetlb_lock);
2376 
2377 		/* yield cpu to avoid soft lockup */
2378 		cond_resched();
2379 
2380 		ret = alloc_pool_huge_page(h, nodes_allowed);
2381 		spin_lock(&hugetlb_lock);
2382 		if (!ret)
2383 			goto out;
2384 
2385 		/* Bail for signals. Probably ctrl-c from user */
2386 		if (signal_pending(current))
2387 			goto out;
2388 	}
2389 
2390 	/*
2391 	 * Decrease the pool size
2392 	 * First return free pages to the buddy allocator (being careful
2393 	 * to keep enough around to satisfy reservations).  Then place
2394 	 * pages into surplus state as needed so the pool will shrink
2395 	 * to the desired size as pages become free.
2396 	 *
2397 	 * By placing pages into the surplus state independent of the
2398 	 * overcommit value, we are allowing the surplus pool size to
2399 	 * exceed overcommit. There are few sane options here. Since
2400 	 * alloc_surplus_huge_page() is checking the global counter,
2401 	 * though, we'll note that we're not allowed to exceed surplus
2402 	 * and won't grow the pool anywhere else. Not until one of the
2403 	 * sysctls are changed, or the surplus pages go out of use.
2404 	 */
2405 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2406 	min_count = max(count, min_count);
2407 	try_to_free_low(h, min_count, nodes_allowed);
2408 	while (min_count < persistent_huge_pages(h)) {
2409 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2410 			break;
2411 		cond_resched_lock(&hugetlb_lock);
2412 	}
2413 	while (count < persistent_huge_pages(h)) {
2414 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2415 			break;
2416 	}
2417 out:
2418 	h->max_huge_pages = persistent_huge_pages(h);
2419 	spin_unlock(&hugetlb_lock);
2420 
2421 	return 0;
2422 }
2423 
2424 #define HSTATE_ATTR_RO(_name) \
2425 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2426 
2427 #define HSTATE_ATTR(_name) \
2428 	static struct kobj_attribute _name##_attr = \
2429 		__ATTR(_name, 0644, _name##_show, _name##_store)
2430 
2431 static struct kobject *hugepages_kobj;
2432 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2433 
2434 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2435 
2436 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2437 {
2438 	int i;
2439 
2440 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2441 		if (hstate_kobjs[i] == kobj) {
2442 			if (nidp)
2443 				*nidp = NUMA_NO_NODE;
2444 			return &hstates[i];
2445 		}
2446 
2447 	return kobj_to_node_hstate(kobj, nidp);
2448 }
2449 
2450 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2451 					struct kobj_attribute *attr, char *buf)
2452 {
2453 	struct hstate *h;
2454 	unsigned long nr_huge_pages;
2455 	int nid;
2456 
2457 	h = kobj_to_hstate(kobj, &nid);
2458 	if (nid == NUMA_NO_NODE)
2459 		nr_huge_pages = h->nr_huge_pages;
2460 	else
2461 		nr_huge_pages = h->nr_huge_pages_node[nid];
2462 
2463 	return sprintf(buf, "%lu\n", nr_huge_pages);
2464 }
2465 
2466 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2467 					   struct hstate *h, int nid,
2468 					   unsigned long count, size_t len)
2469 {
2470 	int err;
2471 	nodemask_t nodes_allowed, *n_mask;
2472 
2473 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2474 		return -EINVAL;
2475 
2476 	if (nid == NUMA_NO_NODE) {
2477 		/*
2478 		 * global hstate attribute
2479 		 */
2480 		if (!(obey_mempolicy &&
2481 				init_nodemask_of_mempolicy(&nodes_allowed)))
2482 			n_mask = &node_states[N_MEMORY];
2483 		else
2484 			n_mask = &nodes_allowed;
2485 	} else {
2486 		/*
2487 		 * Node specific request.  count adjustment happens in
2488 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2489 		 */
2490 		init_nodemask_of_node(&nodes_allowed, nid);
2491 		n_mask = &nodes_allowed;
2492 	}
2493 
2494 	err = set_max_huge_pages(h, count, nid, n_mask);
2495 
2496 	return err ? err : len;
2497 }
2498 
2499 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2500 					 struct kobject *kobj, const char *buf,
2501 					 size_t len)
2502 {
2503 	struct hstate *h;
2504 	unsigned long count;
2505 	int nid;
2506 	int err;
2507 
2508 	err = kstrtoul(buf, 10, &count);
2509 	if (err)
2510 		return err;
2511 
2512 	h = kobj_to_hstate(kobj, &nid);
2513 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2514 }
2515 
2516 static ssize_t nr_hugepages_show(struct kobject *kobj,
2517 				       struct kobj_attribute *attr, char *buf)
2518 {
2519 	return nr_hugepages_show_common(kobj, attr, buf);
2520 }
2521 
2522 static ssize_t nr_hugepages_store(struct kobject *kobj,
2523 	       struct kobj_attribute *attr, const char *buf, size_t len)
2524 {
2525 	return nr_hugepages_store_common(false, kobj, buf, len);
2526 }
2527 HSTATE_ATTR(nr_hugepages);
2528 
2529 #ifdef CONFIG_NUMA
2530 
2531 /*
2532  * hstate attribute for optionally mempolicy-based constraint on persistent
2533  * huge page alloc/free.
2534  */
2535 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2536 				       struct kobj_attribute *attr, char *buf)
2537 {
2538 	return nr_hugepages_show_common(kobj, attr, buf);
2539 }
2540 
2541 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2542 	       struct kobj_attribute *attr, const char *buf, size_t len)
2543 {
2544 	return nr_hugepages_store_common(true, kobj, buf, len);
2545 }
2546 HSTATE_ATTR(nr_hugepages_mempolicy);
2547 #endif
2548 
2549 
2550 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2551 					struct kobj_attribute *attr, char *buf)
2552 {
2553 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2554 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2555 }
2556 
2557 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2558 		struct kobj_attribute *attr, const char *buf, size_t count)
2559 {
2560 	int err;
2561 	unsigned long input;
2562 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2563 
2564 	if (hstate_is_gigantic(h))
2565 		return -EINVAL;
2566 
2567 	err = kstrtoul(buf, 10, &input);
2568 	if (err)
2569 		return err;
2570 
2571 	spin_lock(&hugetlb_lock);
2572 	h->nr_overcommit_huge_pages = input;
2573 	spin_unlock(&hugetlb_lock);
2574 
2575 	return count;
2576 }
2577 HSTATE_ATTR(nr_overcommit_hugepages);
2578 
2579 static ssize_t free_hugepages_show(struct kobject *kobj,
2580 					struct kobj_attribute *attr, char *buf)
2581 {
2582 	struct hstate *h;
2583 	unsigned long free_huge_pages;
2584 	int nid;
2585 
2586 	h = kobj_to_hstate(kobj, &nid);
2587 	if (nid == NUMA_NO_NODE)
2588 		free_huge_pages = h->free_huge_pages;
2589 	else
2590 		free_huge_pages = h->free_huge_pages_node[nid];
2591 
2592 	return sprintf(buf, "%lu\n", free_huge_pages);
2593 }
2594 HSTATE_ATTR_RO(free_hugepages);
2595 
2596 static ssize_t resv_hugepages_show(struct kobject *kobj,
2597 					struct kobj_attribute *attr, char *buf)
2598 {
2599 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2600 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2601 }
2602 HSTATE_ATTR_RO(resv_hugepages);
2603 
2604 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2605 					struct kobj_attribute *attr, char *buf)
2606 {
2607 	struct hstate *h;
2608 	unsigned long surplus_huge_pages;
2609 	int nid;
2610 
2611 	h = kobj_to_hstate(kobj, &nid);
2612 	if (nid == NUMA_NO_NODE)
2613 		surplus_huge_pages = h->surplus_huge_pages;
2614 	else
2615 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2616 
2617 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2618 }
2619 HSTATE_ATTR_RO(surplus_hugepages);
2620 
2621 static struct attribute *hstate_attrs[] = {
2622 	&nr_hugepages_attr.attr,
2623 	&nr_overcommit_hugepages_attr.attr,
2624 	&free_hugepages_attr.attr,
2625 	&resv_hugepages_attr.attr,
2626 	&surplus_hugepages_attr.attr,
2627 #ifdef CONFIG_NUMA
2628 	&nr_hugepages_mempolicy_attr.attr,
2629 #endif
2630 	NULL,
2631 };
2632 
2633 static const struct attribute_group hstate_attr_group = {
2634 	.attrs = hstate_attrs,
2635 };
2636 
2637 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2638 				    struct kobject **hstate_kobjs,
2639 				    const struct attribute_group *hstate_attr_group)
2640 {
2641 	int retval;
2642 	int hi = hstate_index(h);
2643 
2644 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2645 	if (!hstate_kobjs[hi])
2646 		return -ENOMEM;
2647 
2648 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2649 	if (retval)
2650 		kobject_put(hstate_kobjs[hi]);
2651 
2652 	return retval;
2653 }
2654 
2655 static void __init hugetlb_sysfs_init(void)
2656 {
2657 	struct hstate *h;
2658 	int err;
2659 
2660 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2661 	if (!hugepages_kobj)
2662 		return;
2663 
2664 	for_each_hstate(h) {
2665 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2666 					 hstate_kobjs, &hstate_attr_group);
2667 		if (err)
2668 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2669 	}
2670 }
2671 
2672 #ifdef CONFIG_NUMA
2673 
2674 /*
2675  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2676  * with node devices in node_devices[] using a parallel array.  The array
2677  * index of a node device or _hstate == node id.
2678  * This is here to avoid any static dependency of the node device driver, in
2679  * the base kernel, on the hugetlb module.
2680  */
2681 struct node_hstate {
2682 	struct kobject		*hugepages_kobj;
2683 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2684 };
2685 static struct node_hstate node_hstates[MAX_NUMNODES];
2686 
2687 /*
2688  * A subset of global hstate attributes for node devices
2689  */
2690 static struct attribute *per_node_hstate_attrs[] = {
2691 	&nr_hugepages_attr.attr,
2692 	&free_hugepages_attr.attr,
2693 	&surplus_hugepages_attr.attr,
2694 	NULL,
2695 };
2696 
2697 static const struct attribute_group per_node_hstate_attr_group = {
2698 	.attrs = per_node_hstate_attrs,
2699 };
2700 
2701 /*
2702  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2703  * Returns node id via non-NULL nidp.
2704  */
2705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2706 {
2707 	int nid;
2708 
2709 	for (nid = 0; nid < nr_node_ids; nid++) {
2710 		struct node_hstate *nhs = &node_hstates[nid];
2711 		int i;
2712 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2713 			if (nhs->hstate_kobjs[i] == kobj) {
2714 				if (nidp)
2715 					*nidp = nid;
2716 				return &hstates[i];
2717 			}
2718 	}
2719 
2720 	BUG();
2721 	return NULL;
2722 }
2723 
2724 /*
2725  * Unregister hstate attributes from a single node device.
2726  * No-op if no hstate attributes attached.
2727  */
2728 static void hugetlb_unregister_node(struct node *node)
2729 {
2730 	struct hstate *h;
2731 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2732 
2733 	if (!nhs->hugepages_kobj)
2734 		return;		/* no hstate attributes */
2735 
2736 	for_each_hstate(h) {
2737 		int idx = hstate_index(h);
2738 		if (nhs->hstate_kobjs[idx]) {
2739 			kobject_put(nhs->hstate_kobjs[idx]);
2740 			nhs->hstate_kobjs[idx] = NULL;
2741 		}
2742 	}
2743 
2744 	kobject_put(nhs->hugepages_kobj);
2745 	nhs->hugepages_kobj = NULL;
2746 }
2747 
2748 
2749 /*
2750  * Register hstate attributes for a single node device.
2751  * No-op if attributes already registered.
2752  */
2753 static void hugetlb_register_node(struct node *node)
2754 {
2755 	struct hstate *h;
2756 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2757 	int err;
2758 
2759 	if (nhs->hugepages_kobj)
2760 		return;		/* already allocated */
2761 
2762 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2763 							&node->dev.kobj);
2764 	if (!nhs->hugepages_kobj)
2765 		return;
2766 
2767 	for_each_hstate(h) {
2768 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2769 						nhs->hstate_kobjs,
2770 						&per_node_hstate_attr_group);
2771 		if (err) {
2772 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2773 				h->name, node->dev.id);
2774 			hugetlb_unregister_node(node);
2775 			break;
2776 		}
2777 	}
2778 }
2779 
2780 /*
2781  * hugetlb init time:  register hstate attributes for all registered node
2782  * devices of nodes that have memory.  All on-line nodes should have
2783  * registered their associated device by this time.
2784  */
2785 static void __init hugetlb_register_all_nodes(void)
2786 {
2787 	int nid;
2788 
2789 	for_each_node_state(nid, N_MEMORY) {
2790 		struct node *node = node_devices[nid];
2791 		if (node->dev.id == nid)
2792 			hugetlb_register_node(node);
2793 	}
2794 
2795 	/*
2796 	 * Let the node device driver know we're here so it can
2797 	 * [un]register hstate attributes on node hotplug.
2798 	 */
2799 	register_hugetlbfs_with_node(hugetlb_register_node,
2800 				     hugetlb_unregister_node);
2801 }
2802 #else	/* !CONFIG_NUMA */
2803 
2804 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2805 {
2806 	BUG();
2807 	if (nidp)
2808 		*nidp = -1;
2809 	return NULL;
2810 }
2811 
2812 static void hugetlb_register_all_nodes(void) { }
2813 
2814 #endif
2815 
2816 static int __init hugetlb_init(void)
2817 {
2818 	int i;
2819 
2820 	if (!hugepages_supported())
2821 		return 0;
2822 
2823 	if (!size_to_hstate(default_hstate_size)) {
2824 		if (default_hstate_size != 0) {
2825 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2826 			       default_hstate_size, HPAGE_SIZE);
2827 		}
2828 
2829 		default_hstate_size = HPAGE_SIZE;
2830 		if (!size_to_hstate(default_hstate_size))
2831 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2832 	}
2833 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2834 	if (default_hstate_max_huge_pages) {
2835 		if (!default_hstate.max_huge_pages)
2836 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2837 	}
2838 
2839 	hugetlb_init_hstates();
2840 	gather_bootmem_prealloc();
2841 	report_hugepages();
2842 
2843 	hugetlb_sysfs_init();
2844 	hugetlb_register_all_nodes();
2845 	hugetlb_cgroup_file_init();
2846 
2847 #ifdef CONFIG_SMP
2848 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2849 #else
2850 	num_fault_mutexes = 1;
2851 #endif
2852 	hugetlb_fault_mutex_table =
2853 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2854 			      GFP_KERNEL);
2855 	BUG_ON(!hugetlb_fault_mutex_table);
2856 
2857 	for (i = 0; i < num_fault_mutexes; i++)
2858 		mutex_init(&hugetlb_fault_mutex_table[i]);
2859 	return 0;
2860 }
2861 subsys_initcall(hugetlb_init);
2862 
2863 /* Should be called on processing a hugepagesz=... option */
2864 void __init hugetlb_bad_size(void)
2865 {
2866 	parsed_valid_hugepagesz = false;
2867 }
2868 
2869 void __init hugetlb_add_hstate(unsigned int order)
2870 {
2871 	struct hstate *h;
2872 	unsigned long i;
2873 
2874 	if (size_to_hstate(PAGE_SIZE << order)) {
2875 		pr_warn("hugepagesz= specified twice, ignoring\n");
2876 		return;
2877 	}
2878 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2879 	BUG_ON(order == 0);
2880 	h = &hstates[hugetlb_max_hstate++];
2881 	h->order = order;
2882 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2883 	h->nr_huge_pages = 0;
2884 	h->free_huge_pages = 0;
2885 	for (i = 0; i < MAX_NUMNODES; ++i)
2886 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2887 	INIT_LIST_HEAD(&h->hugepage_activelist);
2888 	h->next_nid_to_alloc = first_memory_node;
2889 	h->next_nid_to_free = first_memory_node;
2890 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2891 					huge_page_size(h)/1024);
2892 
2893 	parsed_hstate = h;
2894 }
2895 
2896 static int __init hugetlb_nrpages_setup(char *s)
2897 {
2898 	unsigned long *mhp;
2899 	static unsigned long *last_mhp;
2900 
2901 	if (!parsed_valid_hugepagesz) {
2902 		pr_warn("hugepages = %s preceded by "
2903 			"an unsupported hugepagesz, ignoring\n", s);
2904 		parsed_valid_hugepagesz = true;
2905 		return 1;
2906 	}
2907 	/*
2908 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2909 	 * so this hugepages= parameter goes to the "default hstate".
2910 	 */
2911 	else if (!hugetlb_max_hstate)
2912 		mhp = &default_hstate_max_huge_pages;
2913 	else
2914 		mhp = &parsed_hstate->max_huge_pages;
2915 
2916 	if (mhp == last_mhp) {
2917 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2918 		return 1;
2919 	}
2920 
2921 	if (sscanf(s, "%lu", mhp) <= 0)
2922 		*mhp = 0;
2923 
2924 	/*
2925 	 * Global state is always initialized later in hugetlb_init.
2926 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2927 	 * use the bootmem allocator.
2928 	 */
2929 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2930 		hugetlb_hstate_alloc_pages(parsed_hstate);
2931 
2932 	last_mhp = mhp;
2933 
2934 	return 1;
2935 }
2936 __setup("hugepages=", hugetlb_nrpages_setup);
2937 
2938 static int __init hugetlb_default_setup(char *s)
2939 {
2940 	default_hstate_size = memparse(s, &s);
2941 	return 1;
2942 }
2943 __setup("default_hugepagesz=", hugetlb_default_setup);
2944 
2945 static unsigned int cpuset_mems_nr(unsigned int *array)
2946 {
2947 	int node;
2948 	unsigned int nr = 0;
2949 
2950 	for_each_node_mask(node, cpuset_current_mems_allowed)
2951 		nr += array[node];
2952 
2953 	return nr;
2954 }
2955 
2956 #ifdef CONFIG_SYSCTL
2957 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2958 			 struct ctl_table *table, int write,
2959 			 void __user *buffer, size_t *length, loff_t *ppos)
2960 {
2961 	struct hstate *h = &default_hstate;
2962 	unsigned long tmp = h->max_huge_pages;
2963 	int ret;
2964 
2965 	if (!hugepages_supported())
2966 		return -EOPNOTSUPP;
2967 
2968 	table->data = &tmp;
2969 	table->maxlen = sizeof(unsigned long);
2970 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2971 	if (ret)
2972 		goto out;
2973 
2974 	if (write)
2975 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2976 						  NUMA_NO_NODE, tmp, *length);
2977 out:
2978 	return ret;
2979 }
2980 
2981 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2982 			  void __user *buffer, size_t *length, loff_t *ppos)
2983 {
2984 
2985 	return hugetlb_sysctl_handler_common(false, table, write,
2986 							buffer, length, ppos);
2987 }
2988 
2989 #ifdef CONFIG_NUMA
2990 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2991 			  void __user *buffer, size_t *length, loff_t *ppos)
2992 {
2993 	return hugetlb_sysctl_handler_common(true, table, write,
2994 							buffer, length, ppos);
2995 }
2996 #endif /* CONFIG_NUMA */
2997 
2998 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2999 			void __user *buffer,
3000 			size_t *length, loff_t *ppos)
3001 {
3002 	struct hstate *h = &default_hstate;
3003 	unsigned long tmp;
3004 	int ret;
3005 
3006 	if (!hugepages_supported())
3007 		return -EOPNOTSUPP;
3008 
3009 	tmp = h->nr_overcommit_huge_pages;
3010 
3011 	if (write && hstate_is_gigantic(h))
3012 		return -EINVAL;
3013 
3014 	table->data = &tmp;
3015 	table->maxlen = sizeof(unsigned long);
3016 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3017 	if (ret)
3018 		goto out;
3019 
3020 	if (write) {
3021 		spin_lock(&hugetlb_lock);
3022 		h->nr_overcommit_huge_pages = tmp;
3023 		spin_unlock(&hugetlb_lock);
3024 	}
3025 out:
3026 	return ret;
3027 }
3028 
3029 #endif /* CONFIG_SYSCTL */
3030 
3031 void hugetlb_report_meminfo(struct seq_file *m)
3032 {
3033 	struct hstate *h;
3034 	unsigned long total = 0;
3035 
3036 	if (!hugepages_supported())
3037 		return;
3038 
3039 	for_each_hstate(h) {
3040 		unsigned long count = h->nr_huge_pages;
3041 
3042 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3043 
3044 		if (h == &default_hstate)
3045 			seq_printf(m,
3046 				   "HugePages_Total:   %5lu\n"
3047 				   "HugePages_Free:    %5lu\n"
3048 				   "HugePages_Rsvd:    %5lu\n"
3049 				   "HugePages_Surp:    %5lu\n"
3050 				   "Hugepagesize:   %8lu kB\n",
3051 				   count,
3052 				   h->free_huge_pages,
3053 				   h->resv_huge_pages,
3054 				   h->surplus_huge_pages,
3055 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3056 	}
3057 
3058 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3059 }
3060 
3061 int hugetlb_report_node_meminfo(int nid, char *buf)
3062 {
3063 	struct hstate *h = &default_hstate;
3064 	if (!hugepages_supported())
3065 		return 0;
3066 	return sprintf(buf,
3067 		"Node %d HugePages_Total: %5u\n"
3068 		"Node %d HugePages_Free:  %5u\n"
3069 		"Node %d HugePages_Surp:  %5u\n",
3070 		nid, h->nr_huge_pages_node[nid],
3071 		nid, h->free_huge_pages_node[nid],
3072 		nid, h->surplus_huge_pages_node[nid]);
3073 }
3074 
3075 void hugetlb_show_meminfo(void)
3076 {
3077 	struct hstate *h;
3078 	int nid;
3079 
3080 	if (!hugepages_supported())
3081 		return;
3082 
3083 	for_each_node_state(nid, N_MEMORY)
3084 		for_each_hstate(h)
3085 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3086 				nid,
3087 				h->nr_huge_pages_node[nid],
3088 				h->free_huge_pages_node[nid],
3089 				h->surplus_huge_pages_node[nid],
3090 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3091 }
3092 
3093 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3094 {
3095 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3096 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3097 }
3098 
3099 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3100 unsigned long hugetlb_total_pages(void)
3101 {
3102 	struct hstate *h;
3103 	unsigned long nr_total_pages = 0;
3104 
3105 	for_each_hstate(h)
3106 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3107 	return nr_total_pages;
3108 }
3109 
3110 static int hugetlb_acct_memory(struct hstate *h, long delta)
3111 {
3112 	int ret = -ENOMEM;
3113 
3114 	spin_lock(&hugetlb_lock);
3115 	/*
3116 	 * When cpuset is configured, it breaks the strict hugetlb page
3117 	 * reservation as the accounting is done on a global variable. Such
3118 	 * reservation is completely rubbish in the presence of cpuset because
3119 	 * the reservation is not checked against page availability for the
3120 	 * current cpuset. Application can still potentially OOM'ed by kernel
3121 	 * with lack of free htlb page in cpuset that the task is in.
3122 	 * Attempt to enforce strict accounting with cpuset is almost
3123 	 * impossible (or too ugly) because cpuset is too fluid that
3124 	 * task or memory node can be dynamically moved between cpusets.
3125 	 *
3126 	 * The change of semantics for shared hugetlb mapping with cpuset is
3127 	 * undesirable. However, in order to preserve some of the semantics,
3128 	 * we fall back to check against current free page availability as
3129 	 * a best attempt and hopefully to minimize the impact of changing
3130 	 * semantics that cpuset has.
3131 	 */
3132 	if (delta > 0) {
3133 		if (gather_surplus_pages(h, delta) < 0)
3134 			goto out;
3135 
3136 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3137 			return_unused_surplus_pages(h, delta);
3138 			goto out;
3139 		}
3140 	}
3141 
3142 	ret = 0;
3143 	if (delta < 0)
3144 		return_unused_surplus_pages(h, (unsigned long) -delta);
3145 
3146 out:
3147 	spin_unlock(&hugetlb_lock);
3148 	return ret;
3149 }
3150 
3151 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3152 {
3153 	struct resv_map *resv = vma_resv_map(vma);
3154 
3155 	/*
3156 	 * This new VMA should share its siblings reservation map if present.
3157 	 * The VMA will only ever have a valid reservation map pointer where
3158 	 * it is being copied for another still existing VMA.  As that VMA
3159 	 * has a reference to the reservation map it cannot disappear until
3160 	 * after this open call completes.  It is therefore safe to take a
3161 	 * new reference here without additional locking.
3162 	 */
3163 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3164 		kref_get(&resv->refs);
3165 }
3166 
3167 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3168 {
3169 	struct hstate *h = hstate_vma(vma);
3170 	struct resv_map *resv = vma_resv_map(vma);
3171 	struct hugepage_subpool *spool = subpool_vma(vma);
3172 	unsigned long reserve, start, end;
3173 	long gbl_reserve;
3174 
3175 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3176 		return;
3177 
3178 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3179 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3180 
3181 	reserve = (end - start) - region_count(resv, start, end);
3182 
3183 	kref_put(&resv->refs, resv_map_release);
3184 
3185 	if (reserve) {
3186 		/*
3187 		 * Decrement reserve counts.  The global reserve count may be
3188 		 * adjusted if the subpool has a minimum size.
3189 		 */
3190 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3191 		hugetlb_acct_memory(h, -gbl_reserve);
3192 	}
3193 }
3194 
3195 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3196 {
3197 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3198 		return -EINVAL;
3199 	return 0;
3200 }
3201 
3202 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3203 {
3204 	struct hstate *hstate = hstate_vma(vma);
3205 
3206 	return 1UL << huge_page_shift(hstate);
3207 }
3208 
3209 /*
3210  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3211  * handle_mm_fault() to try to instantiate regular-sized pages in the
3212  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3213  * this far.
3214  */
3215 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3216 {
3217 	BUG();
3218 	return 0;
3219 }
3220 
3221 /*
3222  * When a new function is introduced to vm_operations_struct and added
3223  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3224  * This is because under System V memory model, mappings created via
3225  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3226  * their original vm_ops are overwritten with shm_vm_ops.
3227  */
3228 const struct vm_operations_struct hugetlb_vm_ops = {
3229 	.fault = hugetlb_vm_op_fault,
3230 	.open = hugetlb_vm_op_open,
3231 	.close = hugetlb_vm_op_close,
3232 	.split = hugetlb_vm_op_split,
3233 	.pagesize = hugetlb_vm_op_pagesize,
3234 };
3235 
3236 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3237 				int writable)
3238 {
3239 	pte_t entry;
3240 
3241 	if (writable) {
3242 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3243 					 vma->vm_page_prot)));
3244 	} else {
3245 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3246 					   vma->vm_page_prot));
3247 	}
3248 	entry = pte_mkyoung(entry);
3249 	entry = pte_mkhuge(entry);
3250 	entry = arch_make_huge_pte(entry, vma, page, writable);
3251 
3252 	return entry;
3253 }
3254 
3255 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3256 				   unsigned long address, pte_t *ptep)
3257 {
3258 	pte_t entry;
3259 
3260 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3261 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3262 		update_mmu_cache(vma, address, ptep);
3263 }
3264 
3265 bool is_hugetlb_entry_migration(pte_t pte)
3266 {
3267 	swp_entry_t swp;
3268 
3269 	if (huge_pte_none(pte) || pte_present(pte))
3270 		return false;
3271 	swp = pte_to_swp_entry(pte);
3272 	if (non_swap_entry(swp) && is_migration_entry(swp))
3273 		return true;
3274 	else
3275 		return false;
3276 }
3277 
3278 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3279 {
3280 	swp_entry_t swp;
3281 
3282 	if (huge_pte_none(pte) || pte_present(pte))
3283 		return 0;
3284 	swp = pte_to_swp_entry(pte);
3285 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3286 		return 1;
3287 	else
3288 		return 0;
3289 }
3290 
3291 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3292 			    struct vm_area_struct *vma)
3293 {
3294 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3295 	struct page *ptepage;
3296 	unsigned long addr;
3297 	int cow;
3298 	struct hstate *h = hstate_vma(vma);
3299 	unsigned long sz = huge_page_size(h);
3300 	struct mmu_notifier_range range;
3301 	int ret = 0;
3302 
3303 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3304 
3305 	if (cow) {
3306 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3307 					vma->vm_start,
3308 					vma->vm_end);
3309 		mmu_notifier_invalidate_range_start(&range);
3310 	}
3311 
3312 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3313 		spinlock_t *src_ptl, *dst_ptl;
3314 		src_pte = huge_pte_offset(src, addr, sz);
3315 		if (!src_pte)
3316 			continue;
3317 		dst_pte = huge_pte_alloc(dst, addr, sz);
3318 		if (!dst_pte) {
3319 			ret = -ENOMEM;
3320 			break;
3321 		}
3322 
3323 		/*
3324 		 * If the pagetables are shared don't copy or take references.
3325 		 * dst_pte == src_pte is the common case of src/dest sharing.
3326 		 *
3327 		 * However, src could have 'unshared' and dst shares with
3328 		 * another vma.  If dst_pte !none, this implies sharing.
3329 		 * Check here before taking page table lock, and once again
3330 		 * after taking the lock below.
3331 		 */
3332 		dst_entry = huge_ptep_get(dst_pte);
3333 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3334 			continue;
3335 
3336 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3337 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3338 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3339 		entry = huge_ptep_get(src_pte);
3340 		dst_entry = huge_ptep_get(dst_pte);
3341 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3342 			/*
3343 			 * Skip if src entry none.  Also, skip in the
3344 			 * unlikely case dst entry !none as this implies
3345 			 * sharing with another vma.
3346 			 */
3347 			;
3348 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3349 				    is_hugetlb_entry_hwpoisoned(entry))) {
3350 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3351 
3352 			if (is_write_migration_entry(swp_entry) && cow) {
3353 				/*
3354 				 * COW mappings require pages in both
3355 				 * parent and child to be set to read.
3356 				 */
3357 				make_migration_entry_read(&swp_entry);
3358 				entry = swp_entry_to_pte(swp_entry);
3359 				set_huge_swap_pte_at(src, addr, src_pte,
3360 						     entry, sz);
3361 			}
3362 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3363 		} else {
3364 			if (cow) {
3365 				/*
3366 				 * No need to notify as we are downgrading page
3367 				 * table protection not changing it to point
3368 				 * to a new page.
3369 				 *
3370 				 * See Documentation/vm/mmu_notifier.rst
3371 				 */
3372 				huge_ptep_set_wrprotect(src, addr, src_pte);
3373 			}
3374 			entry = huge_ptep_get(src_pte);
3375 			ptepage = pte_page(entry);
3376 			get_page(ptepage);
3377 			page_dup_rmap(ptepage, true);
3378 			set_huge_pte_at(dst, addr, dst_pte, entry);
3379 			hugetlb_count_add(pages_per_huge_page(h), dst);
3380 		}
3381 		spin_unlock(src_ptl);
3382 		spin_unlock(dst_ptl);
3383 	}
3384 
3385 	if (cow)
3386 		mmu_notifier_invalidate_range_end(&range);
3387 
3388 	return ret;
3389 }
3390 
3391 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3392 			    unsigned long start, unsigned long end,
3393 			    struct page *ref_page)
3394 {
3395 	struct mm_struct *mm = vma->vm_mm;
3396 	unsigned long address;
3397 	pte_t *ptep;
3398 	pte_t pte;
3399 	spinlock_t *ptl;
3400 	struct page *page;
3401 	struct hstate *h = hstate_vma(vma);
3402 	unsigned long sz = huge_page_size(h);
3403 	struct mmu_notifier_range range;
3404 
3405 	WARN_ON(!is_vm_hugetlb_page(vma));
3406 	BUG_ON(start & ~huge_page_mask(h));
3407 	BUG_ON(end & ~huge_page_mask(h));
3408 
3409 	/*
3410 	 * This is a hugetlb vma, all the pte entries should point
3411 	 * to huge page.
3412 	 */
3413 	tlb_change_page_size(tlb, sz);
3414 	tlb_start_vma(tlb, vma);
3415 
3416 	/*
3417 	 * If sharing possible, alert mmu notifiers of worst case.
3418 	 */
3419 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3420 				end);
3421 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3422 	mmu_notifier_invalidate_range_start(&range);
3423 	address = start;
3424 	for (; address < end; address += sz) {
3425 		ptep = huge_pte_offset(mm, address, sz);
3426 		if (!ptep)
3427 			continue;
3428 
3429 		ptl = huge_pte_lock(h, mm, ptep);
3430 		if (huge_pmd_unshare(mm, &address, ptep)) {
3431 			spin_unlock(ptl);
3432 			/*
3433 			 * We just unmapped a page of PMDs by clearing a PUD.
3434 			 * The caller's TLB flush range should cover this area.
3435 			 */
3436 			continue;
3437 		}
3438 
3439 		pte = huge_ptep_get(ptep);
3440 		if (huge_pte_none(pte)) {
3441 			spin_unlock(ptl);
3442 			continue;
3443 		}
3444 
3445 		/*
3446 		 * Migrating hugepage or HWPoisoned hugepage is already
3447 		 * unmapped and its refcount is dropped, so just clear pte here.
3448 		 */
3449 		if (unlikely(!pte_present(pte))) {
3450 			huge_pte_clear(mm, address, ptep, sz);
3451 			spin_unlock(ptl);
3452 			continue;
3453 		}
3454 
3455 		page = pte_page(pte);
3456 		/*
3457 		 * If a reference page is supplied, it is because a specific
3458 		 * page is being unmapped, not a range. Ensure the page we
3459 		 * are about to unmap is the actual page of interest.
3460 		 */
3461 		if (ref_page) {
3462 			if (page != ref_page) {
3463 				spin_unlock(ptl);
3464 				continue;
3465 			}
3466 			/*
3467 			 * Mark the VMA as having unmapped its page so that
3468 			 * future faults in this VMA will fail rather than
3469 			 * looking like data was lost
3470 			 */
3471 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3472 		}
3473 
3474 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3475 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3476 		if (huge_pte_dirty(pte))
3477 			set_page_dirty(page);
3478 
3479 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3480 		page_remove_rmap(page, true);
3481 
3482 		spin_unlock(ptl);
3483 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3484 		/*
3485 		 * Bail out after unmapping reference page if supplied
3486 		 */
3487 		if (ref_page)
3488 			break;
3489 	}
3490 	mmu_notifier_invalidate_range_end(&range);
3491 	tlb_end_vma(tlb, vma);
3492 }
3493 
3494 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3495 			  struct vm_area_struct *vma, unsigned long start,
3496 			  unsigned long end, struct page *ref_page)
3497 {
3498 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3499 
3500 	/*
3501 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3502 	 * test will fail on a vma being torn down, and not grab a page table
3503 	 * on its way out.  We're lucky that the flag has such an appropriate
3504 	 * name, and can in fact be safely cleared here. We could clear it
3505 	 * before the __unmap_hugepage_range above, but all that's necessary
3506 	 * is to clear it before releasing the i_mmap_rwsem. This works
3507 	 * because in the context this is called, the VMA is about to be
3508 	 * destroyed and the i_mmap_rwsem is held.
3509 	 */
3510 	vma->vm_flags &= ~VM_MAYSHARE;
3511 }
3512 
3513 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3514 			  unsigned long end, struct page *ref_page)
3515 {
3516 	struct mm_struct *mm;
3517 	struct mmu_gather tlb;
3518 	unsigned long tlb_start = start;
3519 	unsigned long tlb_end = end;
3520 
3521 	/*
3522 	 * If shared PMDs were possibly used within this vma range, adjust
3523 	 * start/end for worst case tlb flushing.
3524 	 * Note that we can not be sure if PMDs are shared until we try to
3525 	 * unmap pages.  However, we want to make sure TLB flushing covers
3526 	 * the largest possible range.
3527 	 */
3528 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3529 
3530 	mm = vma->vm_mm;
3531 
3532 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3533 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3534 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3535 }
3536 
3537 /*
3538  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3539  * mappping it owns the reserve page for. The intention is to unmap the page
3540  * from other VMAs and let the children be SIGKILLed if they are faulting the
3541  * same region.
3542  */
3543 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3544 			      struct page *page, unsigned long address)
3545 {
3546 	struct hstate *h = hstate_vma(vma);
3547 	struct vm_area_struct *iter_vma;
3548 	struct address_space *mapping;
3549 	pgoff_t pgoff;
3550 
3551 	/*
3552 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3553 	 * from page cache lookup which is in HPAGE_SIZE units.
3554 	 */
3555 	address = address & huge_page_mask(h);
3556 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3557 			vma->vm_pgoff;
3558 	mapping = vma->vm_file->f_mapping;
3559 
3560 	/*
3561 	 * Take the mapping lock for the duration of the table walk. As
3562 	 * this mapping should be shared between all the VMAs,
3563 	 * __unmap_hugepage_range() is called as the lock is already held
3564 	 */
3565 	i_mmap_lock_write(mapping);
3566 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3567 		/* Do not unmap the current VMA */
3568 		if (iter_vma == vma)
3569 			continue;
3570 
3571 		/*
3572 		 * Shared VMAs have their own reserves and do not affect
3573 		 * MAP_PRIVATE accounting but it is possible that a shared
3574 		 * VMA is using the same page so check and skip such VMAs.
3575 		 */
3576 		if (iter_vma->vm_flags & VM_MAYSHARE)
3577 			continue;
3578 
3579 		/*
3580 		 * Unmap the page from other VMAs without their own reserves.
3581 		 * They get marked to be SIGKILLed if they fault in these
3582 		 * areas. This is because a future no-page fault on this VMA
3583 		 * could insert a zeroed page instead of the data existing
3584 		 * from the time of fork. This would look like data corruption
3585 		 */
3586 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3587 			unmap_hugepage_range(iter_vma, address,
3588 					     address + huge_page_size(h), page);
3589 	}
3590 	i_mmap_unlock_write(mapping);
3591 }
3592 
3593 /*
3594  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3595  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3596  * cannot race with other handlers or page migration.
3597  * Keep the pte_same checks anyway to make transition from the mutex easier.
3598  */
3599 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3600 		       unsigned long address, pte_t *ptep,
3601 		       struct page *pagecache_page, spinlock_t *ptl)
3602 {
3603 	pte_t pte;
3604 	struct hstate *h = hstate_vma(vma);
3605 	struct page *old_page, *new_page;
3606 	int outside_reserve = 0;
3607 	vm_fault_t ret = 0;
3608 	unsigned long haddr = address & huge_page_mask(h);
3609 	struct mmu_notifier_range range;
3610 
3611 	pte = huge_ptep_get(ptep);
3612 	old_page = pte_page(pte);
3613 
3614 retry_avoidcopy:
3615 	/* If no-one else is actually using this page, avoid the copy
3616 	 * and just make the page writable */
3617 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3618 		page_move_anon_rmap(old_page, vma);
3619 		set_huge_ptep_writable(vma, haddr, ptep);
3620 		return 0;
3621 	}
3622 
3623 	/*
3624 	 * If the process that created a MAP_PRIVATE mapping is about to
3625 	 * perform a COW due to a shared page count, attempt to satisfy
3626 	 * the allocation without using the existing reserves. The pagecache
3627 	 * page is used to determine if the reserve at this address was
3628 	 * consumed or not. If reserves were used, a partial faulted mapping
3629 	 * at the time of fork() could consume its reserves on COW instead
3630 	 * of the full address range.
3631 	 */
3632 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3633 			old_page != pagecache_page)
3634 		outside_reserve = 1;
3635 
3636 	get_page(old_page);
3637 
3638 	/*
3639 	 * Drop page table lock as buddy allocator may be called. It will
3640 	 * be acquired again before returning to the caller, as expected.
3641 	 */
3642 	spin_unlock(ptl);
3643 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3644 
3645 	if (IS_ERR(new_page)) {
3646 		/*
3647 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3648 		 * it is due to references held by a child and an insufficient
3649 		 * huge page pool. To guarantee the original mappers
3650 		 * reliability, unmap the page from child processes. The child
3651 		 * may get SIGKILLed if it later faults.
3652 		 */
3653 		if (outside_reserve) {
3654 			put_page(old_page);
3655 			BUG_ON(huge_pte_none(pte));
3656 			unmap_ref_private(mm, vma, old_page, haddr);
3657 			BUG_ON(huge_pte_none(pte));
3658 			spin_lock(ptl);
3659 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3660 			if (likely(ptep &&
3661 				   pte_same(huge_ptep_get(ptep), pte)))
3662 				goto retry_avoidcopy;
3663 			/*
3664 			 * race occurs while re-acquiring page table
3665 			 * lock, and our job is done.
3666 			 */
3667 			return 0;
3668 		}
3669 
3670 		ret = vmf_error(PTR_ERR(new_page));
3671 		goto out_release_old;
3672 	}
3673 
3674 	/*
3675 	 * When the original hugepage is shared one, it does not have
3676 	 * anon_vma prepared.
3677 	 */
3678 	if (unlikely(anon_vma_prepare(vma))) {
3679 		ret = VM_FAULT_OOM;
3680 		goto out_release_all;
3681 	}
3682 
3683 	copy_user_huge_page(new_page, old_page, address, vma,
3684 			    pages_per_huge_page(h));
3685 	__SetPageUptodate(new_page);
3686 
3687 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3688 				haddr + huge_page_size(h));
3689 	mmu_notifier_invalidate_range_start(&range);
3690 
3691 	/*
3692 	 * Retake the page table lock to check for racing updates
3693 	 * before the page tables are altered
3694 	 */
3695 	spin_lock(ptl);
3696 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3697 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3698 		ClearPagePrivate(new_page);
3699 
3700 		/* Break COW */
3701 		huge_ptep_clear_flush(vma, haddr, ptep);
3702 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3703 		set_huge_pte_at(mm, haddr, ptep,
3704 				make_huge_pte(vma, new_page, 1));
3705 		page_remove_rmap(old_page, true);
3706 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3707 		set_page_huge_active(new_page);
3708 		/* Make the old page be freed below */
3709 		new_page = old_page;
3710 	}
3711 	spin_unlock(ptl);
3712 	mmu_notifier_invalidate_range_end(&range);
3713 out_release_all:
3714 	restore_reserve_on_error(h, vma, haddr, new_page);
3715 	put_page(new_page);
3716 out_release_old:
3717 	put_page(old_page);
3718 
3719 	spin_lock(ptl); /* Caller expects lock to be held */
3720 	return ret;
3721 }
3722 
3723 /* Return the pagecache page at a given address within a VMA */
3724 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3725 			struct vm_area_struct *vma, unsigned long address)
3726 {
3727 	struct address_space *mapping;
3728 	pgoff_t idx;
3729 
3730 	mapping = vma->vm_file->f_mapping;
3731 	idx = vma_hugecache_offset(h, vma, address);
3732 
3733 	return find_lock_page(mapping, idx);
3734 }
3735 
3736 /*
3737  * Return whether there is a pagecache page to back given address within VMA.
3738  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3739  */
3740 static bool hugetlbfs_pagecache_present(struct hstate *h,
3741 			struct vm_area_struct *vma, unsigned long address)
3742 {
3743 	struct address_space *mapping;
3744 	pgoff_t idx;
3745 	struct page *page;
3746 
3747 	mapping = vma->vm_file->f_mapping;
3748 	idx = vma_hugecache_offset(h, vma, address);
3749 
3750 	page = find_get_page(mapping, idx);
3751 	if (page)
3752 		put_page(page);
3753 	return page != NULL;
3754 }
3755 
3756 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3757 			   pgoff_t idx)
3758 {
3759 	struct inode *inode = mapping->host;
3760 	struct hstate *h = hstate_inode(inode);
3761 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3762 
3763 	if (err)
3764 		return err;
3765 	ClearPagePrivate(page);
3766 
3767 	/*
3768 	 * set page dirty so that it will not be removed from cache/file
3769 	 * by non-hugetlbfs specific code paths.
3770 	 */
3771 	set_page_dirty(page);
3772 
3773 	spin_lock(&inode->i_lock);
3774 	inode->i_blocks += blocks_per_huge_page(h);
3775 	spin_unlock(&inode->i_lock);
3776 	return 0;
3777 }
3778 
3779 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3780 			struct vm_area_struct *vma,
3781 			struct address_space *mapping, pgoff_t idx,
3782 			unsigned long address, pte_t *ptep, unsigned int flags)
3783 {
3784 	struct hstate *h = hstate_vma(vma);
3785 	vm_fault_t ret = VM_FAULT_SIGBUS;
3786 	int anon_rmap = 0;
3787 	unsigned long size;
3788 	struct page *page;
3789 	pte_t new_pte;
3790 	spinlock_t *ptl;
3791 	unsigned long haddr = address & huge_page_mask(h);
3792 	bool new_page = false;
3793 
3794 	/*
3795 	 * Currently, we are forced to kill the process in the event the
3796 	 * original mapper has unmapped pages from the child due to a failed
3797 	 * COW. Warn that such a situation has occurred as it may not be obvious
3798 	 */
3799 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3800 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3801 			   current->pid);
3802 		return ret;
3803 	}
3804 
3805 	/*
3806 	 * Use page lock to guard against racing truncation
3807 	 * before we get page_table_lock.
3808 	 */
3809 retry:
3810 	page = find_lock_page(mapping, idx);
3811 	if (!page) {
3812 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3813 		if (idx >= size)
3814 			goto out;
3815 
3816 		/*
3817 		 * Check for page in userfault range
3818 		 */
3819 		if (userfaultfd_missing(vma)) {
3820 			u32 hash;
3821 			struct vm_fault vmf = {
3822 				.vma = vma,
3823 				.address = haddr,
3824 				.flags = flags,
3825 				/*
3826 				 * Hard to debug if it ends up being
3827 				 * used by a callee that assumes
3828 				 * something about the other
3829 				 * uninitialized fields... same as in
3830 				 * memory.c
3831 				 */
3832 			};
3833 
3834 			/*
3835 			 * hugetlb_fault_mutex must be dropped before
3836 			 * handling userfault.  Reacquire after handling
3837 			 * fault to make calling code simpler.
3838 			 */
3839 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3840 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3841 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3842 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3843 			goto out;
3844 		}
3845 
3846 		page = alloc_huge_page(vma, haddr, 0);
3847 		if (IS_ERR(page)) {
3848 			ret = vmf_error(PTR_ERR(page));
3849 			goto out;
3850 		}
3851 		clear_huge_page(page, address, pages_per_huge_page(h));
3852 		__SetPageUptodate(page);
3853 		new_page = true;
3854 
3855 		if (vma->vm_flags & VM_MAYSHARE) {
3856 			int err = huge_add_to_page_cache(page, mapping, idx);
3857 			if (err) {
3858 				put_page(page);
3859 				if (err == -EEXIST)
3860 					goto retry;
3861 				goto out;
3862 			}
3863 		} else {
3864 			lock_page(page);
3865 			if (unlikely(anon_vma_prepare(vma))) {
3866 				ret = VM_FAULT_OOM;
3867 				goto backout_unlocked;
3868 			}
3869 			anon_rmap = 1;
3870 		}
3871 	} else {
3872 		/*
3873 		 * If memory error occurs between mmap() and fault, some process
3874 		 * don't have hwpoisoned swap entry for errored virtual address.
3875 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3876 		 */
3877 		if (unlikely(PageHWPoison(page))) {
3878 			ret = VM_FAULT_HWPOISON |
3879 				VM_FAULT_SET_HINDEX(hstate_index(h));
3880 			goto backout_unlocked;
3881 		}
3882 	}
3883 
3884 	/*
3885 	 * If we are going to COW a private mapping later, we examine the
3886 	 * pending reservations for this page now. This will ensure that
3887 	 * any allocations necessary to record that reservation occur outside
3888 	 * the spinlock.
3889 	 */
3890 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3891 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3892 			ret = VM_FAULT_OOM;
3893 			goto backout_unlocked;
3894 		}
3895 		/* Just decrements count, does not deallocate */
3896 		vma_end_reservation(h, vma, haddr);
3897 	}
3898 
3899 	ptl = huge_pte_lock(h, mm, ptep);
3900 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3901 	if (idx >= size)
3902 		goto backout;
3903 
3904 	ret = 0;
3905 	if (!huge_pte_none(huge_ptep_get(ptep)))
3906 		goto backout;
3907 
3908 	if (anon_rmap) {
3909 		ClearPagePrivate(page);
3910 		hugepage_add_new_anon_rmap(page, vma, haddr);
3911 	} else
3912 		page_dup_rmap(page, true);
3913 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3914 				&& (vma->vm_flags & VM_SHARED)));
3915 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3916 
3917 	hugetlb_count_add(pages_per_huge_page(h), mm);
3918 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3919 		/* Optimization, do the COW without a second fault */
3920 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3921 	}
3922 
3923 	spin_unlock(ptl);
3924 
3925 	/*
3926 	 * Only make newly allocated pages active.  Existing pages found
3927 	 * in the pagecache could be !page_huge_active() if they have been
3928 	 * isolated for migration.
3929 	 */
3930 	if (new_page)
3931 		set_page_huge_active(page);
3932 
3933 	unlock_page(page);
3934 out:
3935 	return ret;
3936 
3937 backout:
3938 	spin_unlock(ptl);
3939 backout_unlocked:
3940 	unlock_page(page);
3941 	restore_reserve_on_error(h, vma, haddr, page);
3942 	put_page(page);
3943 	goto out;
3944 }
3945 
3946 #ifdef CONFIG_SMP
3947 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3948 			    pgoff_t idx, unsigned long address)
3949 {
3950 	unsigned long key[2];
3951 	u32 hash;
3952 
3953 	key[0] = (unsigned long) mapping;
3954 	key[1] = idx;
3955 
3956 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3957 
3958 	return hash & (num_fault_mutexes - 1);
3959 }
3960 #else
3961 /*
3962  * For uniprocesor systems we always use a single mutex, so just
3963  * return 0 and avoid the hashing overhead.
3964  */
3965 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3966 			    pgoff_t idx, unsigned long address)
3967 {
3968 	return 0;
3969 }
3970 #endif
3971 
3972 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3973 			unsigned long address, unsigned int flags)
3974 {
3975 	pte_t *ptep, entry;
3976 	spinlock_t *ptl;
3977 	vm_fault_t ret;
3978 	u32 hash;
3979 	pgoff_t idx;
3980 	struct page *page = NULL;
3981 	struct page *pagecache_page = NULL;
3982 	struct hstate *h = hstate_vma(vma);
3983 	struct address_space *mapping;
3984 	int need_wait_lock = 0;
3985 	unsigned long haddr = address & huge_page_mask(h);
3986 
3987 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3988 	if (ptep) {
3989 		entry = huge_ptep_get(ptep);
3990 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3991 			migration_entry_wait_huge(vma, mm, ptep);
3992 			return 0;
3993 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3994 			return VM_FAULT_HWPOISON_LARGE |
3995 				VM_FAULT_SET_HINDEX(hstate_index(h));
3996 	} else {
3997 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3998 		if (!ptep)
3999 			return VM_FAULT_OOM;
4000 	}
4001 
4002 	mapping = vma->vm_file->f_mapping;
4003 	idx = vma_hugecache_offset(h, vma, haddr);
4004 
4005 	/*
4006 	 * Serialize hugepage allocation and instantiation, so that we don't
4007 	 * get spurious allocation failures if two CPUs race to instantiate
4008 	 * the same page in the page cache.
4009 	 */
4010 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4011 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4012 
4013 	entry = huge_ptep_get(ptep);
4014 	if (huge_pte_none(entry)) {
4015 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4016 		goto out_mutex;
4017 	}
4018 
4019 	ret = 0;
4020 
4021 	/*
4022 	 * entry could be a migration/hwpoison entry at this point, so this
4023 	 * check prevents the kernel from going below assuming that we have
4024 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4025 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4026 	 * handle it.
4027 	 */
4028 	if (!pte_present(entry))
4029 		goto out_mutex;
4030 
4031 	/*
4032 	 * If we are going to COW the mapping later, we examine the pending
4033 	 * reservations for this page now. This will ensure that any
4034 	 * allocations necessary to record that reservation occur outside the
4035 	 * spinlock. For private mappings, we also lookup the pagecache
4036 	 * page now as it is used to determine if a reservation has been
4037 	 * consumed.
4038 	 */
4039 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4040 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4041 			ret = VM_FAULT_OOM;
4042 			goto out_mutex;
4043 		}
4044 		/* Just decrements count, does not deallocate */
4045 		vma_end_reservation(h, vma, haddr);
4046 
4047 		if (!(vma->vm_flags & VM_MAYSHARE))
4048 			pagecache_page = hugetlbfs_pagecache_page(h,
4049 								vma, haddr);
4050 	}
4051 
4052 	ptl = huge_pte_lock(h, mm, ptep);
4053 
4054 	/* Check for a racing update before calling hugetlb_cow */
4055 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4056 		goto out_ptl;
4057 
4058 	/*
4059 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4060 	 * pagecache_page, so here we need take the former one
4061 	 * when page != pagecache_page or !pagecache_page.
4062 	 */
4063 	page = pte_page(entry);
4064 	if (page != pagecache_page)
4065 		if (!trylock_page(page)) {
4066 			need_wait_lock = 1;
4067 			goto out_ptl;
4068 		}
4069 
4070 	get_page(page);
4071 
4072 	if (flags & FAULT_FLAG_WRITE) {
4073 		if (!huge_pte_write(entry)) {
4074 			ret = hugetlb_cow(mm, vma, address, ptep,
4075 					  pagecache_page, ptl);
4076 			goto out_put_page;
4077 		}
4078 		entry = huge_pte_mkdirty(entry);
4079 	}
4080 	entry = pte_mkyoung(entry);
4081 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4082 						flags & FAULT_FLAG_WRITE))
4083 		update_mmu_cache(vma, haddr, ptep);
4084 out_put_page:
4085 	if (page != pagecache_page)
4086 		unlock_page(page);
4087 	put_page(page);
4088 out_ptl:
4089 	spin_unlock(ptl);
4090 
4091 	if (pagecache_page) {
4092 		unlock_page(pagecache_page);
4093 		put_page(pagecache_page);
4094 	}
4095 out_mutex:
4096 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4097 	/*
4098 	 * Generally it's safe to hold refcount during waiting page lock. But
4099 	 * here we just wait to defer the next page fault to avoid busy loop and
4100 	 * the page is not used after unlocked before returning from the current
4101 	 * page fault. So we are safe from accessing freed page, even if we wait
4102 	 * here without taking refcount.
4103 	 */
4104 	if (need_wait_lock)
4105 		wait_on_page_locked(page);
4106 	return ret;
4107 }
4108 
4109 /*
4110  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4111  * modifications for huge pages.
4112  */
4113 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4114 			    pte_t *dst_pte,
4115 			    struct vm_area_struct *dst_vma,
4116 			    unsigned long dst_addr,
4117 			    unsigned long src_addr,
4118 			    struct page **pagep)
4119 {
4120 	struct address_space *mapping;
4121 	pgoff_t idx;
4122 	unsigned long size;
4123 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4124 	struct hstate *h = hstate_vma(dst_vma);
4125 	pte_t _dst_pte;
4126 	spinlock_t *ptl;
4127 	int ret;
4128 	struct page *page;
4129 
4130 	if (!*pagep) {
4131 		ret = -ENOMEM;
4132 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4133 		if (IS_ERR(page))
4134 			goto out;
4135 
4136 		ret = copy_huge_page_from_user(page,
4137 						(const void __user *) src_addr,
4138 						pages_per_huge_page(h), false);
4139 
4140 		/* fallback to copy_from_user outside mmap_sem */
4141 		if (unlikely(ret)) {
4142 			ret = -ENOENT;
4143 			*pagep = page;
4144 			/* don't free the page */
4145 			goto out;
4146 		}
4147 	} else {
4148 		page = *pagep;
4149 		*pagep = NULL;
4150 	}
4151 
4152 	/*
4153 	 * The memory barrier inside __SetPageUptodate makes sure that
4154 	 * preceding stores to the page contents become visible before
4155 	 * the set_pte_at() write.
4156 	 */
4157 	__SetPageUptodate(page);
4158 
4159 	mapping = dst_vma->vm_file->f_mapping;
4160 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4161 
4162 	/*
4163 	 * If shared, add to page cache
4164 	 */
4165 	if (vm_shared) {
4166 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4167 		ret = -EFAULT;
4168 		if (idx >= size)
4169 			goto out_release_nounlock;
4170 
4171 		/*
4172 		 * Serialization between remove_inode_hugepages() and
4173 		 * huge_add_to_page_cache() below happens through the
4174 		 * hugetlb_fault_mutex_table that here must be hold by
4175 		 * the caller.
4176 		 */
4177 		ret = huge_add_to_page_cache(page, mapping, idx);
4178 		if (ret)
4179 			goto out_release_nounlock;
4180 	}
4181 
4182 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4183 	spin_lock(ptl);
4184 
4185 	/*
4186 	 * Recheck the i_size after holding PT lock to make sure not
4187 	 * to leave any page mapped (as page_mapped()) beyond the end
4188 	 * of the i_size (remove_inode_hugepages() is strict about
4189 	 * enforcing that). If we bail out here, we'll also leave a
4190 	 * page in the radix tree in the vm_shared case beyond the end
4191 	 * of the i_size, but remove_inode_hugepages() will take care
4192 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4193 	 */
4194 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4195 	ret = -EFAULT;
4196 	if (idx >= size)
4197 		goto out_release_unlock;
4198 
4199 	ret = -EEXIST;
4200 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4201 		goto out_release_unlock;
4202 
4203 	if (vm_shared) {
4204 		page_dup_rmap(page, true);
4205 	} else {
4206 		ClearPagePrivate(page);
4207 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4208 	}
4209 
4210 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4211 	if (dst_vma->vm_flags & VM_WRITE)
4212 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4213 	_dst_pte = pte_mkyoung(_dst_pte);
4214 
4215 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4216 
4217 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4218 					dst_vma->vm_flags & VM_WRITE);
4219 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4220 
4221 	/* No need to invalidate - it was non-present before */
4222 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4223 
4224 	spin_unlock(ptl);
4225 	set_page_huge_active(page);
4226 	if (vm_shared)
4227 		unlock_page(page);
4228 	ret = 0;
4229 out:
4230 	return ret;
4231 out_release_unlock:
4232 	spin_unlock(ptl);
4233 	if (vm_shared)
4234 		unlock_page(page);
4235 out_release_nounlock:
4236 	put_page(page);
4237 	goto out;
4238 }
4239 
4240 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4241 			 struct page **pages, struct vm_area_struct **vmas,
4242 			 unsigned long *position, unsigned long *nr_pages,
4243 			 long i, unsigned int flags, int *nonblocking)
4244 {
4245 	unsigned long pfn_offset;
4246 	unsigned long vaddr = *position;
4247 	unsigned long remainder = *nr_pages;
4248 	struct hstate *h = hstate_vma(vma);
4249 	int err = -EFAULT;
4250 
4251 	while (vaddr < vma->vm_end && remainder) {
4252 		pte_t *pte;
4253 		spinlock_t *ptl = NULL;
4254 		int absent;
4255 		struct page *page;
4256 
4257 		/*
4258 		 * If we have a pending SIGKILL, don't keep faulting pages and
4259 		 * potentially allocating memory.
4260 		 */
4261 		if (fatal_signal_pending(current)) {
4262 			remainder = 0;
4263 			break;
4264 		}
4265 
4266 		/*
4267 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4268 		 * each hugepage.  We have to make sure we get the
4269 		 * first, for the page indexing below to work.
4270 		 *
4271 		 * Note that page table lock is not held when pte is null.
4272 		 */
4273 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4274 				      huge_page_size(h));
4275 		if (pte)
4276 			ptl = huge_pte_lock(h, mm, pte);
4277 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4278 
4279 		/*
4280 		 * When coredumping, it suits get_dump_page if we just return
4281 		 * an error where there's an empty slot with no huge pagecache
4282 		 * to back it.  This way, we avoid allocating a hugepage, and
4283 		 * the sparse dumpfile avoids allocating disk blocks, but its
4284 		 * huge holes still show up with zeroes where they need to be.
4285 		 */
4286 		if (absent && (flags & FOLL_DUMP) &&
4287 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4288 			if (pte)
4289 				spin_unlock(ptl);
4290 			remainder = 0;
4291 			break;
4292 		}
4293 
4294 		/*
4295 		 * We need call hugetlb_fault for both hugepages under migration
4296 		 * (in which case hugetlb_fault waits for the migration,) and
4297 		 * hwpoisoned hugepages (in which case we need to prevent the
4298 		 * caller from accessing to them.) In order to do this, we use
4299 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4300 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4301 		 * both cases, and because we can't follow correct pages
4302 		 * directly from any kind of swap entries.
4303 		 */
4304 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4305 		    ((flags & FOLL_WRITE) &&
4306 		      !huge_pte_write(huge_ptep_get(pte)))) {
4307 			vm_fault_t ret;
4308 			unsigned int fault_flags = 0;
4309 
4310 			if (pte)
4311 				spin_unlock(ptl);
4312 			if (flags & FOLL_WRITE)
4313 				fault_flags |= FAULT_FLAG_WRITE;
4314 			if (nonblocking)
4315 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4316 			if (flags & FOLL_NOWAIT)
4317 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4318 					FAULT_FLAG_RETRY_NOWAIT;
4319 			if (flags & FOLL_TRIED) {
4320 				VM_WARN_ON_ONCE(fault_flags &
4321 						FAULT_FLAG_ALLOW_RETRY);
4322 				fault_flags |= FAULT_FLAG_TRIED;
4323 			}
4324 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4325 			if (ret & VM_FAULT_ERROR) {
4326 				err = vm_fault_to_errno(ret, flags);
4327 				remainder = 0;
4328 				break;
4329 			}
4330 			if (ret & VM_FAULT_RETRY) {
4331 				if (nonblocking &&
4332 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4333 					*nonblocking = 0;
4334 				*nr_pages = 0;
4335 				/*
4336 				 * VM_FAULT_RETRY must not return an
4337 				 * error, it will return zero
4338 				 * instead.
4339 				 *
4340 				 * No need to update "position" as the
4341 				 * caller will not check it after
4342 				 * *nr_pages is set to 0.
4343 				 */
4344 				return i;
4345 			}
4346 			continue;
4347 		}
4348 
4349 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4350 		page = pte_page(huge_ptep_get(pte));
4351 
4352 		/*
4353 		 * Instead of doing 'try_get_page()' below in the same_page
4354 		 * loop, just check the count once here.
4355 		 */
4356 		if (unlikely(page_count(page) <= 0)) {
4357 			if (pages) {
4358 				spin_unlock(ptl);
4359 				remainder = 0;
4360 				err = -ENOMEM;
4361 				break;
4362 			}
4363 		}
4364 same_page:
4365 		if (pages) {
4366 			pages[i] = mem_map_offset(page, pfn_offset);
4367 			get_page(pages[i]);
4368 		}
4369 
4370 		if (vmas)
4371 			vmas[i] = vma;
4372 
4373 		vaddr += PAGE_SIZE;
4374 		++pfn_offset;
4375 		--remainder;
4376 		++i;
4377 		if (vaddr < vma->vm_end && remainder &&
4378 				pfn_offset < pages_per_huge_page(h)) {
4379 			/*
4380 			 * We use pfn_offset to avoid touching the pageframes
4381 			 * of this compound page.
4382 			 */
4383 			goto same_page;
4384 		}
4385 		spin_unlock(ptl);
4386 	}
4387 	*nr_pages = remainder;
4388 	/*
4389 	 * setting position is actually required only if remainder is
4390 	 * not zero but it's faster not to add a "if (remainder)"
4391 	 * branch.
4392 	 */
4393 	*position = vaddr;
4394 
4395 	return i ? i : err;
4396 }
4397 
4398 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4399 /*
4400  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4401  * implement this.
4402  */
4403 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4404 #endif
4405 
4406 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4407 		unsigned long address, unsigned long end, pgprot_t newprot)
4408 {
4409 	struct mm_struct *mm = vma->vm_mm;
4410 	unsigned long start = address;
4411 	pte_t *ptep;
4412 	pte_t pte;
4413 	struct hstate *h = hstate_vma(vma);
4414 	unsigned long pages = 0;
4415 	bool shared_pmd = false;
4416 	struct mmu_notifier_range range;
4417 
4418 	/*
4419 	 * In the case of shared PMDs, the area to flush could be beyond
4420 	 * start/end.  Set range.start/range.end to cover the maximum possible
4421 	 * range if PMD sharing is possible.
4422 	 */
4423 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4424 				0, vma, mm, start, end);
4425 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4426 
4427 	BUG_ON(address >= end);
4428 	flush_cache_range(vma, range.start, range.end);
4429 
4430 	mmu_notifier_invalidate_range_start(&range);
4431 	i_mmap_lock_write(vma->vm_file->f_mapping);
4432 	for (; address < end; address += huge_page_size(h)) {
4433 		spinlock_t *ptl;
4434 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4435 		if (!ptep)
4436 			continue;
4437 		ptl = huge_pte_lock(h, mm, ptep);
4438 		if (huge_pmd_unshare(mm, &address, ptep)) {
4439 			pages++;
4440 			spin_unlock(ptl);
4441 			shared_pmd = true;
4442 			continue;
4443 		}
4444 		pte = huge_ptep_get(ptep);
4445 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4446 			spin_unlock(ptl);
4447 			continue;
4448 		}
4449 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4450 			swp_entry_t entry = pte_to_swp_entry(pte);
4451 
4452 			if (is_write_migration_entry(entry)) {
4453 				pte_t newpte;
4454 
4455 				make_migration_entry_read(&entry);
4456 				newpte = swp_entry_to_pte(entry);
4457 				set_huge_swap_pte_at(mm, address, ptep,
4458 						     newpte, huge_page_size(h));
4459 				pages++;
4460 			}
4461 			spin_unlock(ptl);
4462 			continue;
4463 		}
4464 		if (!huge_pte_none(pte)) {
4465 			pte_t old_pte;
4466 
4467 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4468 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4469 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4470 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4471 			pages++;
4472 		}
4473 		spin_unlock(ptl);
4474 	}
4475 	/*
4476 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4477 	 * may have cleared our pud entry and done put_page on the page table:
4478 	 * once we release i_mmap_rwsem, another task can do the final put_page
4479 	 * and that page table be reused and filled with junk.  If we actually
4480 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4481 	 */
4482 	if (shared_pmd)
4483 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4484 	else
4485 		flush_hugetlb_tlb_range(vma, start, end);
4486 	/*
4487 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4488 	 * page table protection not changing it to point to a new page.
4489 	 *
4490 	 * See Documentation/vm/mmu_notifier.rst
4491 	 */
4492 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4493 	mmu_notifier_invalidate_range_end(&range);
4494 
4495 	return pages << h->order;
4496 }
4497 
4498 int hugetlb_reserve_pages(struct inode *inode,
4499 					long from, long to,
4500 					struct vm_area_struct *vma,
4501 					vm_flags_t vm_flags)
4502 {
4503 	long ret, chg;
4504 	struct hstate *h = hstate_inode(inode);
4505 	struct hugepage_subpool *spool = subpool_inode(inode);
4506 	struct resv_map *resv_map;
4507 	long gbl_reserve;
4508 
4509 	/* This should never happen */
4510 	if (from > to) {
4511 		VM_WARN(1, "%s called with a negative range\n", __func__);
4512 		return -EINVAL;
4513 	}
4514 
4515 	/*
4516 	 * Only apply hugepage reservation if asked. At fault time, an
4517 	 * attempt will be made for VM_NORESERVE to allocate a page
4518 	 * without using reserves
4519 	 */
4520 	if (vm_flags & VM_NORESERVE)
4521 		return 0;
4522 
4523 	/*
4524 	 * Shared mappings base their reservation on the number of pages that
4525 	 * are already allocated on behalf of the file. Private mappings need
4526 	 * to reserve the full area even if read-only as mprotect() may be
4527 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4528 	 */
4529 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4530 		/*
4531 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4532 		 * called for inodes for which resv_maps were created (see
4533 		 * hugetlbfs_get_inode).
4534 		 */
4535 		resv_map = inode_resv_map(inode);
4536 
4537 		chg = region_chg(resv_map, from, to);
4538 
4539 	} else {
4540 		resv_map = resv_map_alloc();
4541 		if (!resv_map)
4542 			return -ENOMEM;
4543 
4544 		chg = to - from;
4545 
4546 		set_vma_resv_map(vma, resv_map);
4547 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4548 	}
4549 
4550 	if (chg < 0) {
4551 		ret = chg;
4552 		goto out_err;
4553 	}
4554 
4555 	/*
4556 	 * There must be enough pages in the subpool for the mapping. If
4557 	 * the subpool has a minimum size, there may be some global
4558 	 * reservations already in place (gbl_reserve).
4559 	 */
4560 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4561 	if (gbl_reserve < 0) {
4562 		ret = -ENOSPC;
4563 		goto out_err;
4564 	}
4565 
4566 	/*
4567 	 * Check enough hugepages are available for the reservation.
4568 	 * Hand the pages back to the subpool if there are not
4569 	 */
4570 	ret = hugetlb_acct_memory(h, gbl_reserve);
4571 	if (ret < 0) {
4572 		/* put back original number of pages, chg */
4573 		(void)hugepage_subpool_put_pages(spool, chg);
4574 		goto out_err;
4575 	}
4576 
4577 	/*
4578 	 * Account for the reservations made. Shared mappings record regions
4579 	 * that have reservations as they are shared by multiple VMAs.
4580 	 * When the last VMA disappears, the region map says how much
4581 	 * the reservation was and the page cache tells how much of
4582 	 * the reservation was consumed. Private mappings are per-VMA and
4583 	 * only the consumed reservations are tracked. When the VMA
4584 	 * disappears, the original reservation is the VMA size and the
4585 	 * consumed reservations are stored in the map. Hence, nothing
4586 	 * else has to be done for private mappings here
4587 	 */
4588 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4589 		long add = region_add(resv_map, from, to);
4590 
4591 		if (unlikely(chg > add)) {
4592 			/*
4593 			 * pages in this range were added to the reserve
4594 			 * map between region_chg and region_add.  This
4595 			 * indicates a race with alloc_huge_page.  Adjust
4596 			 * the subpool and reserve counts modified above
4597 			 * based on the difference.
4598 			 */
4599 			long rsv_adjust;
4600 
4601 			rsv_adjust = hugepage_subpool_put_pages(spool,
4602 								chg - add);
4603 			hugetlb_acct_memory(h, -rsv_adjust);
4604 		}
4605 	}
4606 	return 0;
4607 out_err:
4608 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4609 		/* Don't call region_abort if region_chg failed */
4610 		if (chg >= 0)
4611 			region_abort(resv_map, from, to);
4612 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4613 		kref_put(&resv_map->refs, resv_map_release);
4614 	return ret;
4615 }
4616 
4617 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4618 								long freed)
4619 {
4620 	struct hstate *h = hstate_inode(inode);
4621 	struct resv_map *resv_map = inode_resv_map(inode);
4622 	long chg = 0;
4623 	struct hugepage_subpool *spool = subpool_inode(inode);
4624 	long gbl_reserve;
4625 
4626 	/*
4627 	 * Since this routine can be called in the evict inode path for all
4628 	 * hugetlbfs inodes, resv_map could be NULL.
4629 	 */
4630 	if (resv_map) {
4631 		chg = region_del(resv_map, start, end);
4632 		/*
4633 		 * region_del() can fail in the rare case where a region
4634 		 * must be split and another region descriptor can not be
4635 		 * allocated.  If end == LONG_MAX, it will not fail.
4636 		 */
4637 		if (chg < 0)
4638 			return chg;
4639 	}
4640 
4641 	spin_lock(&inode->i_lock);
4642 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4643 	spin_unlock(&inode->i_lock);
4644 
4645 	/*
4646 	 * If the subpool has a minimum size, the number of global
4647 	 * reservations to be released may be adjusted.
4648 	 */
4649 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4650 	hugetlb_acct_memory(h, -gbl_reserve);
4651 
4652 	return 0;
4653 }
4654 
4655 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4656 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4657 				struct vm_area_struct *vma,
4658 				unsigned long addr, pgoff_t idx)
4659 {
4660 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4661 				svma->vm_start;
4662 	unsigned long sbase = saddr & PUD_MASK;
4663 	unsigned long s_end = sbase + PUD_SIZE;
4664 
4665 	/* Allow segments to share if only one is marked locked */
4666 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4667 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4668 
4669 	/*
4670 	 * match the virtual addresses, permission and the alignment of the
4671 	 * page table page.
4672 	 */
4673 	if (pmd_index(addr) != pmd_index(saddr) ||
4674 	    vm_flags != svm_flags ||
4675 	    sbase < svma->vm_start || svma->vm_end < s_end)
4676 		return 0;
4677 
4678 	return saddr;
4679 }
4680 
4681 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4682 {
4683 	unsigned long base = addr & PUD_MASK;
4684 	unsigned long end = base + PUD_SIZE;
4685 
4686 	/*
4687 	 * check on proper vm_flags and page table alignment
4688 	 */
4689 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4690 		return true;
4691 	return false;
4692 }
4693 
4694 /*
4695  * Determine if start,end range within vma could be mapped by shared pmd.
4696  * If yes, adjust start and end to cover range associated with possible
4697  * shared pmd mappings.
4698  */
4699 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4700 				unsigned long *start, unsigned long *end)
4701 {
4702 	unsigned long check_addr = *start;
4703 
4704 	if (!(vma->vm_flags & VM_MAYSHARE))
4705 		return;
4706 
4707 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4708 		unsigned long a_start = check_addr & PUD_MASK;
4709 		unsigned long a_end = a_start + PUD_SIZE;
4710 
4711 		/*
4712 		 * If sharing is possible, adjust start/end if necessary.
4713 		 */
4714 		if (range_in_vma(vma, a_start, a_end)) {
4715 			if (a_start < *start)
4716 				*start = a_start;
4717 			if (a_end > *end)
4718 				*end = a_end;
4719 		}
4720 	}
4721 }
4722 
4723 /*
4724  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4725  * and returns the corresponding pte. While this is not necessary for the
4726  * !shared pmd case because we can allocate the pmd later as well, it makes the
4727  * code much cleaner. pmd allocation is essential for the shared case because
4728  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4729  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4730  * bad pmd for sharing.
4731  */
4732 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4733 {
4734 	struct vm_area_struct *vma = find_vma(mm, addr);
4735 	struct address_space *mapping = vma->vm_file->f_mapping;
4736 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4737 			vma->vm_pgoff;
4738 	struct vm_area_struct *svma;
4739 	unsigned long saddr;
4740 	pte_t *spte = NULL;
4741 	pte_t *pte;
4742 	spinlock_t *ptl;
4743 
4744 	if (!vma_shareable(vma, addr))
4745 		return (pte_t *)pmd_alloc(mm, pud, addr);
4746 
4747 	i_mmap_lock_write(mapping);
4748 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4749 		if (svma == vma)
4750 			continue;
4751 
4752 		saddr = page_table_shareable(svma, vma, addr, idx);
4753 		if (saddr) {
4754 			spte = huge_pte_offset(svma->vm_mm, saddr,
4755 					       vma_mmu_pagesize(svma));
4756 			if (spte) {
4757 				get_page(virt_to_page(spte));
4758 				break;
4759 			}
4760 		}
4761 	}
4762 
4763 	if (!spte)
4764 		goto out;
4765 
4766 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4767 	if (pud_none(*pud)) {
4768 		pud_populate(mm, pud,
4769 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4770 		mm_inc_nr_pmds(mm);
4771 	} else {
4772 		put_page(virt_to_page(spte));
4773 	}
4774 	spin_unlock(ptl);
4775 out:
4776 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4777 	i_mmap_unlock_write(mapping);
4778 	return pte;
4779 }
4780 
4781 /*
4782  * unmap huge page backed by shared pte.
4783  *
4784  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4785  * indicated by page_count > 1, unmap is achieved by clearing pud and
4786  * decrementing the ref count. If count == 1, the pte page is not shared.
4787  *
4788  * called with page table lock held.
4789  *
4790  * returns: 1 successfully unmapped a shared pte page
4791  *	    0 the underlying pte page is not shared, or it is the last user
4792  */
4793 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4794 {
4795 	pgd_t *pgd = pgd_offset(mm, *addr);
4796 	p4d_t *p4d = p4d_offset(pgd, *addr);
4797 	pud_t *pud = pud_offset(p4d, *addr);
4798 
4799 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4800 	if (page_count(virt_to_page(ptep)) == 1)
4801 		return 0;
4802 
4803 	pud_clear(pud);
4804 	put_page(virt_to_page(ptep));
4805 	mm_dec_nr_pmds(mm);
4806 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4807 	return 1;
4808 }
4809 #define want_pmd_share()	(1)
4810 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4811 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4812 {
4813 	return NULL;
4814 }
4815 
4816 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4817 {
4818 	return 0;
4819 }
4820 
4821 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4822 				unsigned long *start, unsigned long *end)
4823 {
4824 }
4825 #define want_pmd_share()	(0)
4826 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4827 
4828 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4829 pte_t *huge_pte_alloc(struct mm_struct *mm,
4830 			unsigned long addr, unsigned long sz)
4831 {
4832 	pgd_t *pgd;
4833 	p4d_t *p4d;
4834 	pud_t *pud;
4835 	pte_t *pte = NULL;
4836 
4837 	pgd = pgd_offset(mm, addr);
4838 	p4d = p4d_alloc(mm, pgd, addr);
4839 	if (!p4d)
4840 		return NULL;
4841 	pud = pud_alloc(mm, p4d, addr);
4842 	if (pud) {
4843 		if (sz == PUD_SIZE) {
4844 			pte = (pte_t *)pud;
4845 		} else {
4846 			BUG_ON(sz != PMD_SIZE);
4847 			if (want_pmd_share() && pud_none(*pud))
4848 				pte = huge_pmd_share(mm, addr, pud);
4849 			else
4850 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4851 		}
4852 	}
4853 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4854 
4855 	return pte;
4856 }
4857 
4858 /*
4859  * huge_pte_offset() - Walk the page table to resolve the hugepage
4860  * entry at address @addr
4861  *
4862  * Return: Pointer to page table or swap entry (PUD or PMD) for
4863  * address @addr, or NULL if a p*d_none() entry is encountered and the
4864  * size @sz doesn't match the hugepage size at this level of the page
4865  * table.
4866  */
4867 pte_t *huge_pte_offset(struct mm_struct *mm,
4868 		       unsigned long addr, unsigned long sz)
4869 {
4870 	pgd_t *pgd;
4871 	p4d_t *p4d;
4872 	pud_t *pud;
4873 	pmd_t *pmd;
4874 
4875 	pgd = pgd_offset(mm, addr);
4876 	if (!pgd_present(*pgd))
4877 		return NULL;
4878 	p4d = p4d_offset(pgd, addr);
4879 	if (!p4d_present(*p4d))
4880 		return NULL;
4881 
4882 	pud = pud_offset(p4d, addr);
4883 	if (sz != PUD_SIZE && pud_none(*pud))
4884 		return NULL;
4885 	/* hugepage or swap? */
4886 	if (pud_huge(*pud) || !pud_present(*pud))
4887 		return (pte_t *)pud;
4888 
4889 	pmd = pmd_offset(pud, addr);
4890 	if (sz != PMD_SIZE && pmd_none(*pmd))
4891 		return NULL;
4892 	/* hugepage or swap? */
4893 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4894 		return (pte_t *)pmd;
4895 
4896 	return NULL;
4897 }
4898 
4899 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4900 
4901 /*
4902  * These functions are overwritable if your architecture needs its own
4903  * behavior.
4904  */
4905 struct page * __weak
4906 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4907 			      int write)
4908 {
4909 	return ERR_PTR(-EINVAL);
4910 }
4911 
4912 struct page * __weak
4913 follow_huge_pd(struct vm_area_struct *vma,
4914 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4915 {
4916 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4917 	return NULL;
4918 }
4919 
4920 struct page * __weak
4921 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4922 		pmd_t *pmd, int flags)
4923 {
4924 	struct page *page = NULL;
4925 	spinlock_t *ptl;
4926 	pte_t pte;
4927 retry:
4928 	ptl = pmd_lockptr(mm, pmd);
4929 	spin_lock(ptl);
4930 	/*
4931 	 * make sure that the address range covered by this pmd is not
4932 	 * unmapped from other threads.
4933 	 */
4934 	if (!pmd_huge(*pmd))
4935 		goto out;
4936 	pte = huge_ptep_get((pte_t *)pmd);
4937 	if (pte_present(pte)) {
4938 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4939 		if (flags & FOLL_GET)
4940 			get_page(page);
4941 	} else {
4942 		if (is_hugetlb_entry_migration(pte)) {
4943 			spin_unlock(ptl);
4944 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4945 			goto retry;
4946 		}
4947 		/*
4948 		 * hwpoisoned entry is treated as no_page_table in
4949 		 * follow_page_mask().
4950 		 */
4951 	}
4952 out:
4953 	spin_unlock(ptl);
4954 	return page;
4955 }
4956 
4957 struct page * __weak
4958 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4959 		pud_t *pud, int flags)
4960 {
4961 	if (flags & FOLL_GET)
4962 		return NULL;
4963 
4964 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4965 }
4966 
4967 struct page * __weak
4968 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4969 {
4970 	if (flags & FOLL_GET)
4971 		return NULL;
4972 
4973 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4974 }
4975 
4976 bool isolate_huge_page(struct page *page, struct list_head *list)
4977 {
4978 	bool ret = true;
4979 
4980 	VM_BUG_ON_PAGE(!PageHead(page), page);
4981 	spin_lock(&hugetlb_lock);
4982 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4983 		ret = false;
4984 		goto unlock;
4985 	}
4986 	clear_page_huge_active(page);
4987 	list_move_tail(&page->lru, list);
4988 unlock:
4989 	spin_unlock(&hugetlb_lock);
4990 	return ret;
4991 }
4992 
4993 void putback_active_hugepage(struct page *page)
4994 {
4995 	VM_BUG_ON_PAGE(!PageHead(page), page);
4996 	spin_lock(&hugetlb_lock);
4997 	set_page_huge_active(page);
4998 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4999 	spin_unlock(&hugetlb_lock);
5000 	put_page(page);
5001 }
5002 
5003 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5004 {
5005 	struct hstate *h = page_hstate(oldpage);
5006 
5007 	hugetlb_cgroup_migrate(oldpage, newpage);
5008 	set_page_owner_migrate_reason(newpage, reason);
5009 
5010 	/*
5011 	 * transfer temporary state of the new huge page. This is
5012 	 * reverse to other transitions because the newpage is going to
5013 	 * be final while the old one will be freed so it takes over
5014 	 * the temporary status.
5015 	 *
5016 	 * Also note that we have to transfer the per-node surplus state
5017 	 * here as well otherwise the global surplus count will not match
5018 	 * the per-node's.
5019 	 */
5020 	if (PageHugeTemporary(newpage)) {
5021 		int old_nid = page_to_nid(oldpage);
5022 		int new_nid = page_to_nid(newpage);
5023 
5024 		SetPageHugeTemporary(oldpage);
5025 		ClearPageHugeTemporary(newpage);
5026 
5027 		spin_lock(&hugetlb_lock);
5028 		if (h->surplus_huge_pages_node[old_nid]) {
5029 			h->surplus_huge_pages_node[old_nid]--;
5030 			h->surplus_huge_pages_node[new_nid]++;
5031 		}
5032 		spin_unlock(&hugetlb_lock);
5033 	}
5034 }
5035